
The Locality of Memory Checking
Weijie Wang

∗

Yale University

Yujie Lu
†

Yale University

Charalampos Papamanthou
‡

Yale University

Fan Zhang
§

Yale University

ABSTRACT
Motivated by the extended deployment of authenticated data struc-

tures (e.g., Merkle Patricia Tries) for verifying massive amounts

of data in blockchain systems, we begin a systematic study of the

I/O efficiency of such systems. We first explore the fundamental

limitations of memory checking, a previously-proposed abstrac-

tion for verifiable storage, in terms of its locality—a complexity

measure that we introduce for the first time and is defined as the

number of non-contiguous memory regions a checker must query

to verifiably answer a read or a write query. Our central result is

an Ω(log𝑛/log log𝑛) lower bound for the locality of any memory

checker. Then we turn our attention to (dense and sparse) Merkle

trees, one of the most celebrated memory checkers, and provide

stronger lower bounds for their locality. For example, we show that

any dense Merkle tree layout will have average locality at least

1

3
log𝑛. Furthermore, if we allow node duplication, we show that if

any write operation has at most polylog complexity, then the read

locality cannot be less than log𝑛/log log𝑛. Our lower bounds help
us construct two new locality-optimized authenticated data struc-

tures (DupTree and PrefixTree) which we implement and evaluate

on random operations and real workloads, and which are shown to

outperform traditional Merkle trees, especially as the number of

leaves increases.

1 INTRODUCTION
Memory checking, introduced by Blum et al. [6], is a primitive that

captures the fundamental abstraction of cryptographically verifying

untrusted storage. In memory checking, an array A of 𝑛 elements is

stored in an untrusted memory𝑀 . A memory checker, with the help

of trusted and potentially private sublinear memory 𝑠 provides algo-

rithms to verifiably read and writeA[𝑖] by querying public memory

𝑀 and private memory 𝑠 . There are different implementations of

memory checking, with the most widely-used memory checker

being the celebrated Merkle tree [35]. In Merkle trees, the small

memory corresponds to the Merkle root digest, the public memory

corresponds to the Merkle tree itself, and reading/writing A[𝑖] re-
quires querying log𝑛 public memory locations, which along with

the root digest (stored in the privatememory 𝑠), can be used to verify

the correctness of A[𝑖]. Other primitives that can serve as memory

checkers are, for example, vector commitments [9, 12, 29, 31, 42]

and accumulators [5, 17, 34].

Query complexity of memory checking. One of the basic com-

plexity measures of a memory checker is its query complexity, i.e.,

∗
weijie.wang@yale.edu

†
yujie.lu@yale.edu

‡
charalampos.papamanthou@yale.edu

§
f.zhang@yale.edu

the maximum number (across all index queries 1, . . . , 𝑛) of public

memory locations that need to be queried for either a read or a

write. For example, the query complexity of Merkle trees is log𝑛

since log𝑛 hashes must be collected for a verifiable read or a write.

Dwork et al. [18] showed that there is a query lower bound of

log𝑛/log log𝑛 for every memory checker, ruling out the existence

of memory checkers with 𝑂 (1) query complexity (Note that al-

though memory checkers like accumulators can have 𝑂 (1) query
complexity for reads, their write query complexity is almost linear.)

Introducing locality to capture I/O efficiency. Currently vari-

ous instantiations of memory checkers are being used on massive

amounts of data, mainly for blockchain applications. For example,

all smart contract states in Ethereum can be accessed efficiently

via an authenticated Merkle Patricia Trie, a type of Merkle tree

designed for storing key-value pairs. At the time of this writing, the

current Ethereum block stores the root digest of a Merkle Patricia

Trie on 240 million accounts [19]. The state stored in the Merkle

Patricia Trie of an operational full node is about 1.2 terabytes and

is stored on SSD via LevelDB [26], a LSM-based database system.

Vector commitments, another implementation of memory checking,

are also used to commit to large databases in many zero-knowledge

proof systems (such as Plonky2 [32], Spartan [39]) in various ap-

plications such as zk-rollups [22], sequencers [21] and stateless

blockchains [8, 14]. Clearly, since these real-world memory check-

ers are used on large amounts of data residing in secondary storage

mediums such as SSDs and HDs, we must take into consideration

their I/O efficiency.

To formally capture the I/O efficiency of memory checking, we

introduce and study its locality. The definition of locality is quite

natural and follows a similar frameworkwith the one used in search-

able encryption [4, 10, 15, 40]: We say that a memory checker has

locality 𝑡 , if the maximum number (across all index queries 1, . . . , 𝑛)

of non-contiguous public memory regions queried is 𝑡 . For example,

the “textbook” implementation of Merkle trees results in log𝑛 local-

ity since for every index 𝑖 , the hash values along the path from 𝑖 to

the root are stored in log𝑛 non-contiguous memory locations (The

Merkle tree “textbook” implementation stores the first level in one

contiguous memory region, followed by the second level in another

contiguous memory region, and so on.) However, one might choose

to store a Merkle tree differently (We call this layout “NAIVE” later

on.) For every index 𝑖 , store every path 𝑝𝑖 in consecutive memory

locations, by duplicating the root 𝑛 times, its children 𝑛/2 times,

etc. In this case, while the read locality is 1 and read query com-

plexity is log𝑛, the write query complexity increases to linear (This

is because all copies of the root node must be updated whenever

an index changes.) This is a fundamental trade-off between query

complexity and locality, which is among the things studied in this

paper.

In particular this paper poses and answers the following two

questions that relate to the locality of memory checking.

What are the fundamental limitations of memory checking in
general and (dense and sparse) Merkle trees in particular, in terms of

locality, both with and without node duplication?

Can we outperform the “textbook” implementation of Merkle trees for
large amounts of data by improving its locality?

We now present our contributions in detail.

1.1 Our contributions
This paper comprises two pairs of contributions (one pair per ques-

tion above) which we summarize in the following.

Lower bound for the locality of memory checking. Our first
contribution is to prove an Ω(log𝑛/log log𝑛) lower bound on the

locality of memory checking. In particular, we show that, given a

memory checker with poly-logarithmic query complexity 𝑞 and

locality 𝑡 , we can construct another checker with query complexity

at most 2𝑡 . Since, by Dwork et al. [18], we know that the query com-

plexity of any memory checker is lower-bounded by log𝑛/log log𝑛,
our locality lower bound follows. The key point in our reduction is

to transform each contiguous chunk we need to query (there are at

most 𝑡 such chunks for one index) in the first checker into at most

2𝑡 “memory slots” in the new checker, by changing the alphabet

size, yielding a new checker with query complexity 2𝑡 .

Lower bounds for locality of Merkle trees. Next, we turn our

attention to studying the locality of Merkle trees. Our hope is to

derive stronger lower bounds given that Merkle trees is a specific

memory checker. We consider two cases, one where no duplicate

nodes are allowed and one where duplicate nodes are allowed. For

the first case, we show that, no matter how we arrange the Merkle

tree nodes on disk, the average concrete locality for each index is

at least
1

3
log𝑛. Also, motivated by the use of sparse Merkle trees in

blockchain systems like Ethereum, we extend our result to sparse

Merkle trees, showing that for any sparse tree with height ℎ and

𝑛 leaves, the locality is Ω(logℎ 𝑛). Finally, when storing at most 𝐾

copies of a Merkle node in memory (node duplication), we show

that the read locality should be Ω(log𝑛/log𝐾) and the update com-

plexity becomes proportional to 𝐾 . This result essentially implies a

tradeoff between the update complexity and the read locality when

duplicate nodes are used, which can be useful to explore depending

on the application.

New Merkle tree constructions with low locality. Our lower
bound proofs above help us derive Merkle trees with better locality.

In particular, for the case of no duplication we provide a Merkle

tree layout that has average locality exactly
1

3
log𝑛, matching our

lower bound. This layout could be a fair optimization for practical

purposes. When we allow duplicate nodes, we first ask the question

whether the “NAIVE” layout presented in the beginning of the

introduction can be improved to occupy space 𝑂 (𝑛), instead of

𝑂 (𝑛 log𝑛). We answer this question in the affirmative by building

DupTree: The basic idea is to copy nodes only of certain height

so that the data structure size still stays linear. See Section 4.1 for

details of our construction.

However, DupTree has large update complexity (𝑛/log𝑛). To
address this, we propose DupTree++ with 𝑂 (log𝑐 𝑛) update com-

plexity. Our main idea is to partition the tree of height log𝑛 into

layers of height log log𝑛. There are log𝑛/log log𝑛 such layers.

In each layer, there are several sub-trees of height log log𝑛 with

𝑂 (2log log𝑛) = 𝑂 (log𝑛) nodes. We then apply DupTree to each

subtree to make the locality in each tree almost constant. The re-

sulting locality for reads is about 𝑂 (log𝑛/log log𝑛) and the write

complexity is about 𝑂 (log2 𝑛), while the disk space is still linear.

Our final locality-aware construction is PrefixTree for sparse

Merkle trees, like the Ethereum Merkle Patricia Trie (MPT). Our

idea is to tweak the MPT implementation used in Ethereum as

follows: In Ethereum’s implementation of MPT, each node is stored

in a key-value database with its hash as the address (index) and the

serialized node as the value. As a result, tree nodes are essentially

stored in random places in the database, leading to bad read and

write locality. Instead, our PrefixTree construction stores nodes

with its key prefixes as the index, so that nodes on a Merkle path

are stored in adjacent locations.

Evaluation. We implemented DupTree++ and PrefixTree in C++

using LevelDB [26] as the persistent storage. Our evaluation has

two components.

Comparison of DupTree++ with “textbook” implementation of Merkle
trees. We compare the performance of DupTree++ with the “text-

book” implementation a Merkle tree stored in LevelDB, with no

duplication. Our experiments show that DupTree++ outperforms

the “textbook” Merkle tree when 𝑛 is large, by up to 1.64×, both for

reads and writes.

Evaluation of PrefixTree on real-world workload. We also evaluate

PrefixTree on a real-world workload extracted from transactions

in the first 4 million Ethereum blocks (from July 2015 to July 2017).

We compare the performance of PrefixTree with a simplified im-

plementation of Merkle Patricia Trie (as the baseline). We find that

PrefixTree is up to 3× faster after 2.4 million blocks and the advan-

tage is increasing as the tree grows. This experiment shows that the

locality of sparse Merkle trees significantly impacts its performance

on real-world workloads.

1.2 Related work

Memory checkers. Blum et al. [6] introduced the notion of mem-

ory checking, formalizing the algorithm that uses the client’s small

secret storage to detect faults in the large remote storage. Dwork

et al. [18] investigated the lower bound of the query complexity of

memory checkers, i.e., the number of queries made to the remote

storage per user query. They proved that when the client’s secret

space is sub-linear to the size of the database, the query complexity

has lower bound Ω(log𝑛/log log𝑛).

Efficient authenticated storage systems. Authenticated stor-

age access has become the performance bottleneck for blockchain

systems [33, 37, 38], because each read or write operation in the

standard Merkle Patricia Trie structure incurs 𝑂 (log𝑛) I/O oper-

ations. LVMT [33] uses the authenticated multipoint evaluation

tree (AMT) [43] to improve I/O efficiency. Read/write amplifica-

tion in authenticated key-value storage systems means that each

2

read or write operation to the authenticated storage will be am-

plified to multiple disk operations. By leveraging AMT to reduce

the read/write amplifications from𝑂 (log𝑛) to𝑂 (1) (this is because
AMT needs only constant time to update the digest while Merkle

trees require log-time), LVMT reduces disk I/O at the cost of a

significant increase in the proof generation time due to the use of

vector commitments.

mLSM [38] combines LSM [36] with Merkle Patricia Tries and

caching techniques to reduce the read/write amplification and it

is optimized for write-heavy workloads. Similar to LSM, mLSM

maintains multiple independent trees and organizes them with

multiple levels. However, mLSM also does not consider the effect

of locality on I/O efficiency.

Rainblock [37] proposed a new architecture that transforms

local storage I/O into network-distributed storage I/O, benefiting

from parallel I/O and in-memory storage. To decrease network

storage read latency, RainBlock also implements I/O prefetchers

and mandates that miners attach all accessed key-value pairs and

witnesses (MPT nodes) when broadcasting blocks.

Jellyfish Merkle tree [23] leverages spatial locality to reduce

compactions to zero, thereby reducing the write amplification. More

specifically, they add the version number before the hash key, so

that nodes with the same version will be stored near each other

on the disk. Our work further introduces locality to formalize such

optimizations.

Spatial locality. Locality [16] is a common attribute exhibited by all

computational processes, whereby they frequently access a specific

subset of their resources over long periods. System and cryptogra-

phy researchers have utilized this attribute to enhance performance

through various methods. For example, Cash et al. [11] initiated

the study of the locality in searchable symmetric encryption and

provided a tradeoff between the locality of memory accesses and

the server storage. Demertzis et al. [15] investigated the optimal

locality of searchable encryption, reducing disk I/O by proposing a

better access pattern of each keyword search. EvenDB [24] is a per-

sistent key-value store that leverages spatial locality by combining

spatial data partitioning with LSM-like batch I/O.

1.3 Paper outline
The paper outline is as follows. In Section 2 we give preliminary

definitions and notations. In Section 3 we give four lower bound

proofs for locality (memory checking, full (dense) Merkle trees,

sparse Merkle trees, Merkle trees with duplication). In Section 4 we

introduce our new locality-aware constructions. In Section 5 we

present an evaluation of our constructions.

2 PRELIMINARIES
2.1 Notation
We use lowercase letters 𝑎, 𝑏, 𝑐, . . . to denote tree nodes and capital

letters𝑇, 𝐿, 𝑃, . . . to denote trees. When referring to a tree𝑇 , we use

𝑟 to denote the root node, 𝑇1 the left subtree, 𝑇2 the right subtree,

𝑟1 the root of 𝑇1, and 𝑟2 the root of 𝑇2. Furthermore, by default,

𝑎1, 𝑎2, . . . are nodes in 𝑇1 and 𝑏1, 𝑏2, . . . are nodes in 𝑇2. We use

H(·) to denote the height of a tree node defined in the standard

way where any leaf 𝑙 has height 0 (i.e.,H(𝑙) = 0). The height of a

treeH(𝑇) is defined to be the height of its root 𝑟 .

2.2 Memory checking
The problem ofmemory checking, introduced by Blum, Evans, Gem-

mel, Kannan and Naor [7] in 1991, arises in the following setting.

A user wants to outsource the storage of a large bit database to a

public and untrusted party (called the public memory) and wishes

to query (i.e., read and write) entries in the database with correct-

ness guarantees. To enable that, one can use a memory checker. A

memory checker receives queries from the user, interacts with the

public memory, and returns to the user the query result or an error.

A memory checker should guarantee that the returned result is

the latest value the user stored in the database with overwhelming

probability. To make the problem non-trivial, we require that the

memory checker’s local memory is much smaller than the database

(otherwise the memory checker can store the entire database).

Dwork et al. [18] formalized the security for online memory

checkers, i.e., checkers that respond to the user queries immediately

after the requests (These are the checkers we will be studying here.)

We adjust their definition to have two algorithms Setup and Check.

Definition 2.1 (Memory Checker). A (Σ, 𝑛, 𝑞, 𝑠) deterministic and

non-adaptive memory checker consists of the following algorithms

(Without loss of generality we assume this checker is for a database

of 𝑛 binary bits):

(1) Setup(𝑛,Db) → (S,O): Given a databaseDb of𝑛 bits, it outputs
the initial secret memory S and an array O as the public memory.

The secret space and public memory are over the alphabet Σ, which
is allowed to be non-binary. S is stored locally and secretly, so we

can assume that S is trusted.

(2) Check(𝑖,mode, 𝑢,S,O) → (𝑏, 𝑣,S′,O′): Given index 𝑖 ∈ [1, 𝑛],
the access mode mode ∈ {Read,Write}, the value to be written 𝑢

(𝑢 = null ifmode = Read), the secret memoryS and public memory

O, return result (𝑏, 𝑣) (𝑏 is a bit and 𝑣 is the value corresponding to

the 𝑖-th index) as well as the updated secret and public memories

S′ and O′.

In the above definition, 𝑏 = 1 indicates the checker returns the

correct (latest) value of location 𝑖 , when the operation is a read.

Also, we say the checker has query complexity 𝑞 if the maximum

number of public memory locations that Check accesses for any

index 𝑖 is 𝑞. We say the checker has secret space 𝑠 if |S| ≤ 𝑠 .

Definition 2.2 (Completeness of memory checker). We say that a

(Σ, 𝑛, 𝑞, 𝑠) memory checker (Setup,Check) has completeness 𝑐 (2/3
by default) if for all (S0,O0) ← Setup(𝑛,Db), for all polynomial-

sized set of requests (𝑗1,mode1, 𝑢1), (𝑗2,mode2, 𝑢2), . . . it is
Check(𝑗𝑖 ,mode𝑖 , 𝑢𝑖 ,S𝑖−1,O𝑖−1) → (1, 𝑣𝑖 ,S𝑖 ,O𝑖)

with probability at least 𝑐 . Importantly, when mode𝑖 is Read, we
require 𝑣𝑖 equal the last value written at index 𝑗𝑖 .

Definition 2.3 (Soundness of memory checker). We say that a

(Σ, 𝑛, 𝑞, 𝑠) memory checker (Setup,Check) has soundness 𝑝 (1/3 by
default) if for all (S0,O0) ← Setup(𝑛,Db), for all polynomial-sized

set of requests (𝑗1,mode1, 𝑢1), . . . the probability that

Check(𝑗𝑖 ,mode𝑖 , 𝑢𝑖 ,S𝑖−1,O𝑖−1) → (1, 𝑣𝑖 ,S𝑖 ,O𝑖)
and 𝑣𝑖 is not the latest value written on index 𝑗𝑖 is at most 𝑝 , even

if the contents of the public memory that Check accesses can be

maliciously changed.

3

A query complexity lower bound. In their seminal work, Dwork

et al. [18] studied the query efficiency of a memory checker and

showed the following query complexity lower bound.

Theorem 2.4 ([18]). For a (Σ, 𝑛, 𝑞, 𝑠) deterministic and non-adaptive
online memory checker, with secret space 𝑠 < 𝑛1−𝜖 for some 𝜖 > 0 and
alphabet size |Σ| ≤ 2

polylog 𝑛 , it must be that the query complexity

𝑞 = Ω(log𝑛/log log𝑛) .

Read-write tradeoffs for memory checking. Dwork et al. [18]

provide a trade-off with respect to query complexities of read and

write operations. More specifically, for any desired logarithm base

𝑇 , they show how to build a checker where the frequent operation

(read or write) is inexpensive and has query complexity 𝑂 (log𝑇 𝑛),
and the infrequent operation (write or read respectively) has query

complexity 𝑂 (𝑇 log𝑇 𝑛). If log𝑇 𝑛 = 1/𝜖 where 𝜖 is some constant,

then the resulting complexities are 𝑂 (1/𝜖) for the frequent opera-
tion and 𝑂 (𝑛𝜖) for the infrequent operation. One of our construc-
tion will be manifesting a similar tradeoff.

2.3 Merkle trees
A Merkle tree [35] is an authenticated data structure with many

applications, such as efficient state authentication in blockchain

systems. In a Merkle tree, every non-leaf node stores the hash of

its children, while leaf nodes store the actual values. When the

value of a leaf node changes, it is necessary to update the hashes

of all nodes along the path from the affected leaf to the root. The

Merkle root, which is publicly accessible, can be saved in trusted

local storage and be used for verifying read operations.

Merkle trees can be considered as a special case of onlinememory

checker, where the Merkle commitment is stored in the secret

memory and all the nodes in the Merkle tree are placed in the

public memory. Whenever we need to read a value for index 𝑖 ,

we fetch the nodes on the path from leaf 𝑖 to the root and check

if that Merkle proof is valid. Writing values is similar. The query

complexities for both reads and writes are exactly log𝑛.

2.4 LevelDB
Our implementation is using LevelDB [26]. We chose LevelDB

mainly because it is the backend database of choice in most in-

fluential blockchain systems. In particular, Bitcoin Core [1] and

go-ethereum [20] store the blockchain metadata using a LevelDB

database. LevelDB has also been used for other projects, for instance,

as the backend database for Google Chrome’s IndexedDB [28].

LevelDB provides a persistent key value store. Keys and values

are arbitrary byte arrays. The keys are ordered according to a user-

specified comparator function. Benchmarks of read/write show that

sequential read/write operations outperform random read/write

operations (see Table 1). These initial findings indicate that locality

might be an important factor that we can leverage by scheduling

the order of the data we read/write in those applications using

LevelDB. We will have more discussion in Section 5.

3 LOWER BOUNDS FOR LOCALITY
We start with studying the locality of memory checkers. As we

mentioned in the introduction, the locality of a memory checker is

naturally defined as the maximum number of jumps the checker

Table 1: Benchmarks of different I/O operations in LevelDB.
Note that these numbers might depend on caching as well as on

additional optimizations implemented in LevelDB.

LevelDB operation Average time (micro seconds)
Random read 16.677

Sequential read 0.476

Random write 2.460

Sequential write 1.765

𝒪𝒪1[0] 𝒪𝒪1[q-1]… 𝒪𝒪1[q] 𝒪𝒪1[2q-1]… 𝒪𝒪1[2q] …

…

∊∑

𝒪𝒪2[0] 𝒪𝒪2[1] … ∊∑q𝒪𝒪1[2]

𝒪𝒪1

𝒪𝒪2

Figure 1: Illustration for construction of O2 from O1 (S1 and
S2 similarly).

performs on the public memory when querying any single index.

We now give the formal definition.

Definition 3.1 (Locality of a memory checker). Fix a (Σ, 𝑛, 𝑞, 𝑠)
memory checker 𝐶 . We say 𝐶 has locality 𝑡 if for a query (either

read or write) of any index 𝑖 (1 ≤ 𝑖 ≤ 𝑛), 𝐶 accesses at most

𝑡 memory regions in public memory, where a memory region is

defined as a set of contiguous indices.

We now prove lower bounds on locality. We first prove the lower

bound for general memory checkers and then we prove locality

lower bounds for Merkle trees, which is a special memory checker.

Finally we conclude with a lower bound on the locality of sparse

Merkle trees.

3.1 Bounds for memory checkers
We now prove the lower bound on memory checking locality by

giving a reduction. In particular we show that if we can build

a memory checker with very small locality, we can also build a

memory checker with very small query complexity, violating the

lower bound from Theorem 2.4.

Theorem 3.2. Suppose we have a (Σ, 𝑛, 𝑞, 𝑠) memory checker 𝐶1
where 𝑞 = 𝑂 (polylog 𝑛) and locality is 𝑡 ≤ 𝑞, then we can construct
a new (Σ𝑞, 𝑛, 𝑞′, 𝑠/𝑞) memory checker 𝐶2 where 𝑞′ ≤ 2𝑡 .

Proof. We construct 𝐶2 from 𝐶1 with the same database size 𝑛:

(1) 𝐶2 .Setup(𝑛,Db) → (S2,O2):
Call 𝐶1 .Setup(𝑛,Db) → (S1,O1). Construct S2,O2 from S1,O1 as
follows. Let 𝑁 be the total size of words in Σ contained in O1. O2
will contain exactly the same information as O1, but organized in

𝑁 /𝑞 words in Σ𝑞 . The same procedure is followed for the secret

memory and the size of secret memory becomes 𝑠/𝑞. See Fig. 1.
(2) 𝐶2 .Check(𝑖,mode, 𝑢,S2,O2) → (𝑏, 𝑣,S′

2
,O′

2
):

Follow every step in the code of 𝐶1 .Check(𝑖,mode, 𝑢,S1,O1), ex-
cept whenever 𝐶1 sends a “read” request for O1 [𝑗], send a “read”

request for O2 [⌊ 𝑗/𝑞⌋] and get its “ 𝑗 mod 𝑞”-th element; similarly

4

for a “write” request on O1 [𝑗], send a “read” request for O2 [⌊ 𝑗/𝑞⌋],
modify its “ 𝑗 mod 𝑞”-th element and send a “write” request for

O2 [⌊ 𝑗/𝑞⌋]. We apply the same process for S1.
Now we consider complexities in 𝐶2. Any query in 𝐶1 accesses

at most 𝑞 locations in O1 and therefore can occupy at most two

contiguous words in O2. Since each query in 𝐶1 accesses at most 𝑡

separate memory regions in O1 (by definition of locality), the query

complexity in 𝐶2 is at most 2𝑡 for each index. Note also that the

alphabet size of 𝐶2, is still |Σ𝑞 | ≤ 2
polylog 𝑛

. □

This result demonstrates that the locality lower bound is almost

equivalent to the query complexity lower bound, which leads to

the following corollary.

Corollary 3.3. For a (Σ, 𝑛, 𝑞, 𝑠) memory checker, with query com-
plexity 𝑞 = 𝑂 (polylog 𝑛), secret space 𝑠 < 𝑛1−𝜖 for some 𝜖 > 0 and
alphabet size |Σ| ≤ 2

polylog 𝑛 , it must be that the locality

𝑡 = Ω(log𝑛/log log𝑛) .

Remark. 𝑞 = 𝑂 (polylog 𝑛) is a reasonable restriction. Otherwise
if 𝑞 is not 𝑂 (polylog 𝑛), then there exist memory checker con-

structions that can achieve constant locality. For example, view a

𝑛-element database as a

√
𝑛 ×
√
𝑛 2-dimensional array and store√

𝑛 Merkle trees (one for each row) in the public memory and

√
𝑛

roots in the secret memory; querying any element can be done with

locality 1 by reading a

√
𝑛-sized Merkle tree.

3.2 Bounds for Merkle trees
As we discussed in Section 2.3, a Merkle tree is a special type mem-

ory checker, and, based on our results in the previous section, the

locality lower bound Ω(log𝑛/log log𝑛) applies. In this section we

ask the question of whether we can prove an even stronger lower

bound just for Merkle trees. For example, the textbook implementa-

tion of Merkle trees has locality log𝑛 and there does not seem to be

an easy way to to re-arrange the memory locations of the Merkle

tree nodes so that to reduce the locality to say, 𝑜 (log𝑛). Indeed, we
prove in this section that Merkle trees admit an improved Ω(log𝑛)
locality lower bound.

For sake of simplicity, we consider an equivalent implementation

of Merkle trees where each internal node stores the node hash, as

well as the left child hash and the right child hash. In this way

to build the Merkle proof for a leaf 𝑥 , we just need to access the

nodes on the path from 𝑥 to the root of the Merkle tree, and not

any sibling nodes. Therefore both read and write operations must

access exactly the same nodes.

Consider now aMerkle tree with 2𝑛−1 nodes, where the number

of leaves is 𝑛 and where the height of the tree isℎ = log𝑛. We define

a natural numbering for the nodes of a Merkle tree, where 1 is the

Merkle root, 2 is its left child, 3 is its right child, 4 is its leftmost

grandchild, etc. Any permutation from [2𝑛 − 1] to [2𝑛 − 1] defines
a way to store these nodes in memory (For example, without loss

of generality, we can assume that the textbook implementation of

Merkle trees uses the identity permutation.) If each node can only

be stored once (i.e., no copies of the same node are allowed), we are

going to show that for any permutation 𝜎 of the 2𝑛−1Merkle nodes,

there must be some leaf 𝑥 for which accessing the path 𝑝𝑎𝑡ℎ(𝑥)
from 𝑥 to the root requires Ω(log𝑛) jumps, i.e., in 𝜎 , the nodes on

𝑝𝑎𝑡ℎ(𝑥) are partitioned into Ω(log𝑛) memory regions.

3.2.1 Definitions. For a fixed permutation 𝜎 of all 2𝑛 − 1Merkle

nodes of a Merkle tree of height ℎ, we denote with Λ(𝜎) the sum,

over all leaves, of their locality, where the locality of each leaf 𝑥

is the number of non-consecutive memory regions accessed when

traversing the path from 𝑥 to the root. We also define the following:

(1) With Δ(ℎ) we denote the minimum value of Λ(𝜎) over all 𝜎 ;
(2) With 𝛿 (ℎ) we denote the minimum value of Λ(𝜎) over all

𝜎 such that the Merkle root 𝑟 is stored as one end of 𝜎 , i.e.,

𝜎 (𝑟) = 1 or 𝜎 (𝑟) = 2𝑛 − 1.
We also define N𝜎 as the set of all neighbor pairs in 𝜎 , i.e., if 𝜎

is the permutation 𝜎 = [𝑥1, 𝑥2, . . . , 𝑥2𝑛−1], then

N𝜎 = {(𝑥𝑖 , 𝑥𝑖+1) : 1 ≤ 𝑖 ≤ 2𝑛 − 2} .

3.2.2 Main result and proof. In this section, we will prove the

following theorem, which indicates that the locality for Merkle tree

is Ω(log𝑛).

Theorem 3.4. Δ(ℎ) = Θ(2ℎ ·ℎ), i.e., for any 𝜎 ,Λ(𝜎) = Ω(𝑛 log𝑛).

We will use the following two lemmas to prove Theorem 3.4. In

the lemmas, we consider a tree of height ℎ ≥ 1. Also, please refer

to Section 2 for the definition of variables 𝑟 , 𝑟1, 𝑟2, 𝑎𝑖 and 𝑏𝑖 that

appear in the lemmas below.

Lemma 3.5. There is one permutation 𝜎 such that 𝜎 is of the form

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟2, 𝑟] or [𝑟, 𝑟1, 𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . .]

and such that Λ(𝜎) = 𝛿 (ℎ).

Lemma 3.6. There is one permutation 𝜎 such that 𝜎 is of the form

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .]

and such that Λ(𝜎) = Δ(ℎ).

We will prove these lemmas later. Here, we show the proof of

our main result using these lemmas.

Proof of Theorem 3.4. According to Lemma 3.6, there exists a

permutation 𝜎 for a tree of height ℎ such that Λ(𝜎) = Δ(ℎ) and 𝜎
is of the following form

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .]

Note that 𝜎1 = [𝑎1, 𝑎2, . . . , 𝑟1] is a permutation for the left sub-

tree and 𝜎2 = [𝑟2, 𝑏1, 𝑏2, . . .] a permutation for the right subtree.

From the definition of 𝛿 (·), we have

Λ(𝜎1) ≥ 𝛿 (ℎ − 1), Λ(𝜎2) ≥ 𝛿 (ℎ − 1) .

We can observe that it must be that Λ(𝜎1) = 𝛿 (ℎ − 1), otherwise
if Λ(𝜎1) > 𝛿 (ℎ − 1) = Λ(𝜎′

1
) for some 𝜎′

1
then we can replace 𝜎1

with 𝜎′
1
in 𝜎 to get smaller Λ(𝜎), which is a contradiction. Similarly,

it must be that Λ(𝜎2) = 𝛿 (ℎ − 1). Moreover, since 𝑟 is next to both

𝑟1 and 𝑟2 in 𝜎 , we have

Λ(𝜎) = Λ(𝜎1) + Λ(𝜎2) ⇒ Δ(ℎ) = 𝛿 (ℎ − 1) + 𝛿 (ℎ − 1) . (1)

Now, according to Lemma 3.5, there is a permutation 𝜎 for a tree

of height ℎ such that Λ(𝜎) = 𝛿 (ℎ) and 𝜎 is, for example, of the form

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟2, 𝑟] .
5

a1 b1 ra3 a2b2 b3 a1b1 r a3a2b2 b3

a1 b1 r a3 a2b2 b3 a1b1 r a3 a2b2b3

a1b1r a3 a2b2 b3 a1b1r a3 a2b2 b3

Figure 2: Cut-and-paste. Cut-and-paste transformation. In these

three examples, cut pairs and paste pairs are chosen in such a way

so that the permutation is divided into two pieces such that each

one contains all the nodes in one subtree.

Note that 𝜎3 = [𝑎1, 𝑎2, . . .] is a permutation for the left subtree and

𝜎4 = [𝑏1, 𝑏2, . . . , 𝑟2] for the right subtree. From the definitions and

based on similar arguments as above, we have

Λ(𝜎3) = Δ(ℎ − 1), Λ(𝜎4) = 𝛿 (ℎ − 1) .
However note now that none of the nodes in the left subtree is the

neighbor of 𝑟 , so for queries of each leaf node from the left subtree,

we need to access the root 𝑟 with an additional jump. Therefore,

we have the following equation

Λ(𝜎) = Λ(𝜎3) + Λ(𝜎4) +
𝑛

2

which is equivalent to

𝛿 (ℎ) = 𝛿 (ℎ − 1) + Δ(ℎ − 1) + 𝑛
2

= 𝛿 (ℎ − 1) + Δ(ℎ − 1) + 2ℎ−1 . (2)

Now, we can easily compute the values of Δ(·) and 𝛿 (·) for small ℎ:

Δ(0) = 𝛿 (0) = 1, Δ(1) = 2, 𝛿 (1) = 3.

We can now solve Eq. (1) and Eq. (2):

Δ(ℎ) = (ℎ + 1)2
ℎ

3

+ 2
ℎ+2

9

+ 2

9

(−1)ℎ = Θ(2ℎ · ℎ) ,

𝛿 (ℎ) = (ℎ + 1)2
ℎ

3

+ 7 · 2ℎ
9

+ 1

9

(−1)ℎ+1 .

Therefore, for any 𝜎 , Λ(𝜎) ≥ Δ(ℎ) = Ω(𝑛 log𝑛). □

3.2.3 Proof of Lemma 3.5 and Lemma 3.6.

Cut-and-paste. Before we prove Lemma 3.5 and Lemma 3.6, we

introduce the notion of cut-and-paste for permutations. In partic-

ular, assume we have a permutation 𝜎 with a fixed Λ(𝜎) value.
We will define a cut-and-paste transformation that will output

another permutation 𝜎′ whose Λ(𝜎′) value we can control. In

particular, the cut-and-paste transformation takes as input 𝑘 cut
pairs (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) and 𝑘 paste pairs (𝑧1,𝑤1), . . . , (𝑧𝑘 ,𝑤𝑘)
and outputs a new permutation 𝜎′ by first “cutting" at cut pairs and
then “pasting" at paste pairs. cut pairs must be neighbors in 𝜎 and

paste pairs must be valid cut locations from cut pairs.
Fig. 2 shows three examples of cut-and-paste, where, for instance,

the first cut-and-paste cuts at (𝑎1, 𝑏1), (𝑏2, 𝑎3), (𝑎3, 𝑏3) and pastes at
(𝑏2, 𝑏3), (𝑎2, 𝑎1), (𝑎1, 𝑎3). Here we show an important lemma about

how locality changes after cut-and-paste.

Lemma 3.7. If we cut a permutation 𝜎 at (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) and
paste at (𝑧1,𝑤1), . . . , (𝑧𝑘 ,𝑤𝑘) to get 𝜎′, then we have

Λ(𝜎′) = Λ(𝜎) +
𝑘∑︁
𝑖=1

𝑃 (𝑥𝑖 , 𝑦𝑖) −
𝑘∑︁
𝑖=1

𝑃 (𝑧𝑖 ,𝑤𝑖) ,

where 𝑃 (𝑥,𝑦) = min{2H(𝑥) , 2H(𝑦) } when 𝑥 and 𝑦 have at least one
common descendant. Otherwise 𝑃 (𝑥,𝑦) = 0.

Proof of Lemma 3.7. For any leaf node 𝑙 , suppose its locality

in 𝜎 is 𝑘 . When we cut at a pair (𝑥𝑖 , 𝑦𝑖), if 𝑥𝑖 and 𝑦𝑖 are both an-

cestors of 𝑙 , then the locality of 𝑙 will become 𝑘 + 1, otherwise it
stays 𝑘 . When we paste at pair (𝑧𝑖 ,𝑤𝑖), if 𝑧𝑖 and 𝑤𝑖 are both an-

cestors of 𝑙 the locality of 𝑙 will become 𝑘 − 1, otherwise it stays 𝑘 .
Clearly for any cut (𝑥𝑖 , 𝑦𝑖) and paste (𝑧𝑖 ,𝑤𝑖) (such that 𝑥𝑖 and 𝑦𝑖
have at least one common descendant and 𝑧𝑖 and𝑤𝑖 have at least

one common descendant) there are exactlymin{2H(𝑥𝑖),H(𝑦𝑖) } and
min{2H(𝑧𝑖),H(𝑤𝑖) } common descendants of (𝑥𝑖 , 𝑦𝑖) and (𝑧𝑖 ,𝑤𝑖)
respectively, and therefore the result follows. □

Lemma 3.8. For any permutation 𝜎 , there is a cut-and-paste trans-
formation that outputs a new permutation 𝜎′ such that

(1) Λ(𝜎′) ≤ Λ(𝜎);
(2) The left half part of 𝜎′ are all from one subtree and the right

half part of 𝜎′ are from another subtree (except for the root 𝑟);
(3) If in 𝜎 , 𝑟 is on one end, then in 𝜎′, 𝑟 is still on one end with the

same neighbor.

Proof of Lemma 3.8. We apply the cut-and-paste transforma-

tion as follows.

(1) We cut at pairs (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) in 𝜎 such that 𝑥𝑖 and 𝑦𝑖
belong to different subtrees;

(2) We paste at pairs (𝑧1,𝑤1), . . . , (𝑧𝑘 ,𝑤𝑘) so that the new per-

mutation 𝜎′ has at most one neighbor pair with nodes be-

longing to different sub-trees (The output permutation can

have zero such neighbor pairs in case the root lies exactly in

the middle.)

For example, consider a Merkle tree of 4 leaves, with 3 nodes

𝑎1, 𝑎2, 𝑎3 belonging to the left subtree and 3 nodes 𝑏1, 𝑏2, 𝑏3 be-

longing to the right subtree. Assume the initial permutation 𝜎 is

[𝑎1 𝑏1 𝑏2 𝑎3 𝑏3 𝑟 𝑎2] .

The aforementioned cut-and-paste transformation works as follows.

First it creates three cuts, i.e.,

[𝑎1 | 𝑏1 𝑏2 | 𝑎3 | 𝑏3 𝑟 𝑎2]

with cut pairs (𝑎1, 𝑏1), (𝑏2, 𝑎3) and (𝑎3, 𝑏3), yielding three chunks
(𝑎1, 𝑎2 and 𝑏1 𝑏2) eligible for move and then rearranges the permu-

tation by moving chunks 𝑎1 and 𝑎3 to the right (in any order) and

chunk 𝑏1 𝑏2 right before 𝑏3. The final permutation is

[𝑏1 𝑏2 𝑏3 𝑟 𝑎2 𝑎1 𝑎3] ,

with paste pairs (𝑎2, 𝑎1), (𝑎1, 𝑎3) and (𝑏2, 𝑏3). Fig. 2 shows three

types of such cut-and-paste transformations.

Note that based on the above transformation, the root will never

be a node in a cut pair and therefore the root will never move if it

is on one end of the initial permutation. Also, the final step of the

transformation ensures that nodes of the same subtree lie in one

side of the permutation. Therefore (2) and (3) are true.

For (1), we calculate Λ(𝜎′) using Lemma 3.7. In particular, for cut

pairs (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘), each (𝑥𝑖 , 𝑦𝑖) contains nodes from differ-

ent subtrees, so all 𝑃 (𝑥𝑖 , 𝑦𝑖) = 0 and therefore

∑𝑘
𝑖=1 𝑃 (𝑥𝑖 , 𝑦𝑖) = 0. For

6

paste pairs (𝑧1,𝑤1), . . . , (𝑧𝑘 ,𝑤𝑘), it must be that

∑𝑘
𝑖=1 𝑃 (𝑧𝑖 ,𝑤𝑖) ≥ 0

since 𝑃 (·, ·) is always ≥ 0. Therefore,

Λ(𝜎′) = Λ(𝜎) −
𝑘∑︁
𝑖=1

𝑃 (𝑧𝑖 ,𝑤𝑖) ≤ Λ(𝜎) ,

and (1) also holds. □

Proof of Lemma 3.5. Pick any permutation𝜎0 such thatΛ(𝜎0) =
𝛿 (ℎ) and 𝑟 is on one end of 𝜎0. According to Lemma 3.8 we can

apply cut-and-paste to 𝜎0 to get 𝜎1 as described in Lemma 3.8. Note

that 𝑟 is still on one end of 𝜎1. If we have either (𝑟, 𝑟1) ∈ N𝜎1 or
(𝑟, 𝑟2) ∈ N𝜎1 , then the proof is done. Now consider the case that

we have neither (𝑟, 𝑟1) ∈ N𝜎1 nor (𝑟, 𝑟2) ∈ N𝜎1 . Assume 𝑟1 is on

the right side of 𝑟2 and 𝜎1 is of the form

𝜎1 = [. . . , 𝑐1, 𝑟1, 𝑐2, . . . , 𝑐3, 𝑟],
where 𝑐2, 𝑐3 are all of height less thanℎ−1 and 𝑃 (𝑐1, 𝑟1) ≤ 2

ℎ−2
. We

apply cut-and-paste to 𝜎1: Cut at (𝑐1, 𝑟1), (𝑟1, 𝑐2), (𝑐3, 𝑟) and paste

at (𝑐1, 𝑐2), (𝑐3, 𝑟1), (𝑟1, 𝑟) to get

𝜎2 = [. . . , 𝑐1, 𝑐2, . . . , 𝑐3, 𝑟1, 𝑟] .
According to Lemma 3.7, we have

Λ(𝜎2) ≤ Λ(𝜎1) +2ℎ−2+2H(𝑐2) +2H(𝑐3) −2H(𝑟1) −2H(𝑐3) ≤ Λ(𝜎1) .
Since Λ(𝜎2) ≤ Λ(𝜎1) ≤ Λ(𝜎0) = 𝛿 (ℎ) and also Λ(𝜎2) ≥ 𝛿 (ℎ),

we have Λ(𝜎2) = Λ(𝜎0) = 𝛿 (ℎ). 𝑟1 is now the only neighbor of 𝑟 in

𝜎2 and therefore 𝜎2 is the desired permutation. □

Proof of Lemma 3.6. Pick any permutation𝜎0 such thatΛ(𝜎0) =
Δ(ℎ). Apply cut-and-paste as in Lemma 3.8 to produce 𝜎1. Note

that in 𝜎1, 𝑟 cannot be on one end of 𝜎1. If it was, e.g., if

𝜎1 = [𝑎1, . . . , 𝑎2, 𝑏1, . . . , 𝑏2, 𝑟] ,
then we could cut at (𝑎2, 𝑏1) and paste at (𝑟, 𝑎1) to get 𝜎2. According
to Lemma 3.7, it would then hold

Λ(𝜎2) < Λ(𝜎1) ≤ Λ(𝜎0) = Δ(ℎ) ,
which is not possible since Δ(ℎ) is the minimum value. Now we

only need to consider the case that 𝑟 is not on one end of 𝜎1 and

we have neither (𝑟, 𝑟1) ∈ N𝜎1 nor (𝑟, 𝑟2) ∈ N𝜎1 . We consider the

following two cases.

Case 1: 𝜎1 is of the following form (as in the first case in Fig. 2)

[𝑎1, . . . , 𝑟1, 𝑎2, . . . , 𝑎3, 𝑟 , 𝑏1, . . . , 𝑏2, 𝑟2, . . . , 𝑏3] ,
where 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 are all of height less than ℎ − 1. Apply

cut-and-paste on 𝜎1: cut at (𝑟1, 𝑎2), (𝑎3, 𝑟), (𝑟, 𝑏1), (𝑏2, 𝑟2) and then

paste at (𝑎3, 𝑎1), (𝑟1, 𝑟), (𝑟, 𝑟2), (𝑏3, 𝑏1) to get

𝜎2 = [𝑎2, . . . , 𝑎3, 𝑎1, . . . , 𝑟1, 𝑟 , 𝑟2, . . . , 𝑏3, 𝑏1, . . . , 𝑏2] .
According to Lemma 3.7, we have

Λ(𝜎2) ≤ Λ(𝜎1) + 2H(𝑎2) + 2H(𝑎3) + 2H(𝑏1) + 2H(𝑏2)

− 2H(𝑟1) − 2H(𝑟2) ≤ Λ(𝜎1) .
Thus Λ(𝜎2) = Δ(ℎ) and 𝜎2 is the desired permutation.

Case 2: 𝜎1 is of the following form

[𝑎1, . . . , 𝑟1, 𝑎2, . . . , 𝑎3, 𝑏1, . . . , 𝑏2, 𝑟 , 𝑏3, . . . , 𝑏4, 𝑟2, . . . , 𝑏5] ,
as in the second case in Fig. 2 (Note we can assume that 𝑟2 is on

the right side of 𝑟 , otherwise we can flip [𝑏1, . . . , 𝑏5] to make 𝑟2 on

right side of 𝑟 .) Here, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 are all of height less

than ℎ − 1. Apply cut-and-paste on 𝜎1:

Cut at: (𝑟1, 𝑎2), (𝑎3, 𝑏1), (𝑏2, 𝑟), (𝑟, 𝑏3), (𝑏4, 𝑟2)
Paste at: (𝑎3, 𝑎1), (𝑟1, 𝑟), (𝑟, 𝑟2), (𝑏5, 𝑏1), (𝑏2, 𝑏3)
Get: 𝜎2 = [𝑎2, . . . , 𝑎3, 𝑎1, . . . , 𝑟1, 𝑟 , 𝑟2, . . . , 𝑏5, 𝑏1, . . . , 𝑏2, 𝑏3, . . . , 𝑏4]
According to Lemma 3.7, we have

Λ(𝜎2) ≤ Λ(𝜎1) + 2H(𝑎2) + 2H(𝑏2) + 2H(𝑏3) + 2H(𝑏4)

− 2H(𝑟1) − 2H(𝑟2) ≤ Λ(𝜎1) .
Thus Λ(𝜎2) = Δ(ℎ) and 𝜎2 is the desired permutation. □

Remark. In Theorem 3.4, we proved that Δ(ℎ) is ≈ 1

3
𝑛 log𝑛. Also,

we proved that permutation 𝜎 of Lemma 3.6 has Λ(𝜎) = Δ(ℎ).
In some applications, where locality is significant, arranging the

nodes as in Lemma 3.6 could provide around 33% to 67% concrete

reduction on the number of non-consecutive accesses, leading to

better overall performance.

3.3 Bounds for Merkle trees with duplicates
In light of the lower bounds on locality discussed in the previous

subsection, we can conclude that simply changing the order of the

nodes cannot asymptotically reduce the locality of the textbook

implementation of Merkle trees. But what if we could duplicate

Merkle tree nodes? More precisely, if we allow a maximum of

𝐾 copies for each node, implying that the query complexity for

write may increase to 𝐾 log𝑛, then what is the lower bound for the

locality of reads? We now prove the following theorem.

Theorem 3.9. For a Merkle tree of height ℎ (with 𝑛 = 2
ℎ leaves),

if we allow at most 𝐾 copies for each Merkle tree node, then the sum,
taken over all leaf nodes 𝑣 , of 𝑣 ’s read locality is Ω(ℎ · 2ℎ/log𝐾) =
Ω(𝑛 log𝑛/log𝐾).

Proof. From the definition of Ω(·), it is enough to prove that

there are constants 𝑐 and ℎ0 such that the locality sum is at least

𝑐 · ℎ · 2
ℎ

log𝐾

for all ℎ ≥ ℎ0. Set 𝑐 to be a fixed value in (0, log𝐾/2(log𝐾 + 2))
and ℎ0 = log𝐾 (Note 𝐾 ≥ 2.) We are going to use induction on ℎ.

For the base case, we prove that the claim holds for log𝐾 ≤ ℎ ≤
log 4𝐾 = 2 + log𝐾 . The locality is at least 2

ℎ
, which is

2
ℎ > 𝑐 · 2ℎ 2 + log𝐾

log𝐾
≥ 𝑐 · 2

ℎ · ℎ
log𝐾

.

Now suppose the theorem is correct for any tree of height < ℎ,

e.g., for a tree of height ℎ − log(4𝐾), the locality sum is at least

𝑐 · (ℎ − log(4𝐾)) · 2
ℎ−log(4𝐾)

log𝐾
= 𝑐 · (ℎ − log(4𝐾)) · 2

ℎ

4𝐾 · log𝐾 .

Now we consider the case involving a tree of height ℎ. Pick any

permutation (including duplicate nodes) on the disk and remove

all the nodes of height greater than ℎ − log(4𝐾) and less than ℎ

(just “imagine” those nodes are not needed any more). Notably, this

removing behavior will not cause any increase of any leaf node’s

read locality. Next let us analyze how we place the 𝐾 copies of the

root of the tree with 2
ℎ
leaves. Since there are exactly 4𝐾 sub-trees

7

of 2
ℎ/(4𝐾) leaves in this tree, at most 2𝐾 of those sub-trees have

nodes adjacent to one of those copies, which means that at least

2𝐾 of those sub-trees are not adjacent to any one of those copies.

Therefore, in the new permutation, the sum of read locality over

all leaves is at least

𝑐 · (ℎ − log(4𝐾)) · 2
ℎ

4𝐾 · log𝐾 · 4𝐾 + 2𝐾 · 2
ℎ

4𝐾

= 𝑐 · ℎ · 2
ℎ

log𝐾
− 𝑐 · 2ℎ · 2 + log𝐾

log𝐾
+ 2

ℎ

2

> 𝑐 · ℎ · 2
ℎ

log𝐾
.

Thus the induction step is completed. □

Remark. Theorem 3.9 suggests a way to balance the locality for

reads and writes. For example, suppose we are using Merkle trees

to design a database system where write operations are rare and

read operations are more frequent and suppose our goal is reducing

the locality for reads. Moreover, we want to ensure that write

operations are not overly expensive, hence we require the write

complexity to be at most poly-log time, i.e., modifying at most

log
𝑐 𝑛 nodes for some constant 𝑐 . According to Theorem 3.9, if each

node can have at most 𝐾 = log
𝑐 𝑛 copies, then the average read

locality for all leaves is Ω(log𝑛/log𝐾) = Ω(log𝑛/log log𝑛), which
means the read locality for this Merkle tree (maximum read locality

over leaves, see Definition 3.1) will be Ω(log𝑛/log log𝑛).

3.4 Bounds for sparse Merkle trees
In many blockchain and transparency applications, sparse Merkle

trees [2, 13] are used instead of dense Merkle trees. In this subsec-

tion, we will extend our discussion in Section 3.2 to sparse Merkle

trees and study the lower bounds of their locality.

Our sparse Merkle tree model is similar to [2], where a tree has

three types of nodes: root, internal nodes and leaves, and every

internal nodes has exactly two children. See Figure 3 in [2] as an

example. We consider a sparse Merkle tree of height ℎ with 𝑛 leaves.

Similar to Section 3.2, we are going to show that for any sparse

Merkle tree of height ℎ with 𝑛 leaves, its locality is Ω(logℎ 𝑛).

3.4.1 Definitions and technical outline. For any fixed sparse tree

𝑇 , we denote with num(𝑇) the number of leaves in 𝑇 . For any

permutation 𝜎 of 𝑇 , we denote with Λ𝑇 (𝜎) the maximum locality

over all its leaves (not sum of locality). Similarly as before, we

denote with Δ(𝑇) the minimum value of Λ𝑇 (𝜎) over all 𝜎 , and 𝛿 (𝑇)
the minimum value of Λ𝑇 (𝜎) over all 𝜎 such that “𝑇 ’s root 𝑟 is

stored as one end of 𝜎”. We call Δ(𝑇) the minimum locality of 𝑇

and 𝛿 (𝑇) the partial minimum locality of 𝑇 .

It is hard to compute Δ(𝑇) if we do not know the tree structure.

However, we can try to compute the minimum value of Δ(𝑇) over
all trees of height ℎ with 𝑛 leaves. We define

Δ(𝑛,ℎ) := min{Δ(𝑇) : 𝑇 is sparse with height ℎ and 𝑛 leaves}
𝛿 (𝑛,ℎ) := min{𝛿 (𝑇) : 𝑇 is sparse with height ℎ and 𝑛 leaves} .

We then prove a lower bound for Δ(𝑛,ℎ). We also need additional

definitions for our proof: Γ(ℎ, 𝑙) is the maximum number of leaves

over all sparse trees of height ℎ and minimum locality 𝑙 , and 𝛾 (ℎ, 𝑙)
is defined accordingly wrt the partial minimum locality, i.e.,

Γ(ℎ, 𝑙) := max{num(𝑇) : H(𝑇) = ℎ and Δ(𝑇) = 𝑙}
𝛾 (ℎ, 𝑙) := max{num(𝑇) : H(𝑇) = ℎ and 𝛿 (𝑇) = 𝑙} .

Technical outline.We now prove that the locality of any sparse

Merkle tree is Ω(logℎ 𝑛).
Theorem 3.10. Δ(𝑛,ℎ) = Ω(logℎ 𝑛).
Our proof is based on the computation of Γ(ℎ, 𝑙). In Section 3.4.2,

we will prove some preliminary lemmas, which will be helpful

to compute Γ(ℎ, 𝑙). Next, in Section 3.4.3, we will compute Γ(ℎ, 𝑙)
based on the lemmas in Section 3.4.2. Finally, in Section 3.4.4, we

will prove our main result (Theorem 3.10) using Γ(ℎ, 𝑙).

3.4.2 Preliminary lemmas.

Lemma 3.11. For any permutation 𝜎 of a fixed tree 𝑇 , there is a
cut-and-paste transformation that outputs a new permutation 𝜎′ such
that

(1) Λ𝑇 (𝜎′) ≤ Λ𝑇 (𝜎);
(2) The left half part of 𝜎′ are all from one subtree and the right

half part of 𝜎′ are from another subtree (except for the root 𝑟);
(3) If in 𝜎 , 𝑟 is on one end, then in 𝜎′, 𝑟 is still on one end with the

same neighbor.

Proof sketch. Similar to the proof of Lemma 3.8, we cut-and-

paste 𝜎 to get 𝜎′ (Fig. 2). The only difference here is that now Λ𝑇 (𝜎)
is the maximum locality of all leaves. However, it is still true that

cutting 𝜎 at pairs from different subtrees will not cause Λ𝑇 (𝜎) to
increase, while pasting pairs from the same sub-tree might cause

Λ𝑇 (𝜎) to decrease, so Λ𝑇 (𝜎′) ≤ Λ𝑇 (𝜎). The other two claims also

follow as in proof of Lemma 3.8. □

Lemma 3.12. For any fixed sparse tree 𝑇 , there is one permutation
𝜎 such that 𝜎 is of the form

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟2, 𝑟] or [𝑟, 𝑟1, 𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . .]
and such that Λ𝑇 (𝜎) = 𝛿 (𝑇).

Proof. Pick any permutation 𝜎0 such that Λ𝑇 (𝜎0) = 𝛿 (ℎ) and 𝑟
is on one end of 𝜎0. First apply cut-and-paste on 𝜎0 as Lemma 3.11

described to get 𝜎1. Now we only need to consider the case that we

have neither (𝑟, 𝑟1) ∈ N𝜎1 nor (𝑟, 𝑟2) ∈ N𝜎1 .
Since 𝑟 is one end of 𝜎1, assume that the only neighbor of 𝑟 is

𝑎 ∈ 𝑇1, and without loss of generality 𝑟 is on the right end. Then

move 𝑟1 from its original place to the middle of (𝑎, 𝑟) so that the

resulting new permutation 𝜎2 is of the form we want.

Note that the move of 𝑟1 will not cause the maximum locality of

leaves to change, thus we have Λ𝑇 (𝜎2) = Λ𝑇 (𝜎1) = Λ𝑇 (𝜎0) = 𝛿 (ℎ)
and 𝜎2 is the desired permutation. □

Lemma 3.13. For any fixed sparse tree 𝑇 , there is one permutation
𝜎 such that 𝜎 is of the form

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .] or [𝑎1, . . . , 𝑏1, . . . , 𝑟 , 𝑟2, 𝑏𝑖 , 𝑏𝑖+1, . . .]
and such that Λ𝑇 (𝜎) = Δ(𝑇).

Proof. Pick any permutation 𝜎0 such that Λ𝑇 (𝜎0) = Δ(ℎ). First
apply cut-and-paste on 𝜎0 as Lemma 3.11 described to get 𝜎1. Now

we only need to consider the case that we have neither (𝑟, 𝑟1) ∈ N𝜎1
nor (𝑟, 𝑟2) ∈ N𝜎1 .
Case 1: If 𝜎1 is of the same type as the first case in Fig. 2, then we

just move 𝑟1, 𝑟2 from their original place to be the neighbors of 𝑟 to

get 𝜎2:

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .] .
8

Also, the move of 𝑟1, 𝑟2 will not cause the maximum locality of

leaves to change, thus we have Λ𝑇 (𝜎2) = Λ𝑇 (𝜎1) = Λ𝑇 (𝜎0) = Δ(ℎ)
and 𝜎2 is the desired permutation.

Case 2: If 𝜎1 is of the same type as the second case in Fig. 2, i.e., 𝜎1
is of form

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟 , . . . , 𝑏 𝑗]
where 𝑟 is surrounded by nodes in𝑇2 but 𝑟2 is not its neighbor, then

move 𝑟2 from its original place to be a neighbor of 𝑟 so that the

resulting new permutation𝜎2 is of the formwewant. Again, moving

𝑟2 will not cause the maximum locality of leaves to change, thus

Λ𝑇 (𝜎2) = Λ𝑇 (𝜎1) = Λ𝑇 (𝜎0) = Δ(ℎ) and 𝜎2 is what we want. □

Lemma 3.14. Δ(2ℎ, ℎ) = ⌊ℎ/2⌋ + 1, 𝛿 (2ℎ, ℎ) = ⌊(ℎ + 1)/2⌋ + 1.

Proof. We prove by induction. If ℎ = 0 or 1, then the claim

trivially holds. Suppose the conclusion holds for ℎ < 𝑘 . Now we

consider Δ(2𝑘 , 𝑘) and 𝛿 (2𝑘 , 𝑘). Note that only the full binary tree

𝑇 is a tree of height 𝑘 with 2
𝑘
leaves. Moreover, since 𝑇 is full, we

have Δ(𝑇) = Δ(2𝑘 , 𝑘) and 𝛿 (𝑇) = 𝛿 (2𝑘 , 𝑘).
According to Lemma 3.12, without loss of generality, there is a

permutation 𝜎 of form

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟2, 𝑟]
and Λ𝑇 (𝜎) = 𝛿 (𝑇) = 𝛿 (2𝑘 , 𝑘). When computing 𝛿 (2𝑘 , 𝑘), i.e., the
maximum locality over all leaves, we need to consider themaximum

locality in each sub-tree. In𝑇1, the maximum locality is Δ(2𝑘−1, 𝑘 −
1) + 1, and in 𝑇2, it is 𝛿 (2𝑘−1, 𝑘 − 1). Thus we have

𝛿 (2𝑘 , 𝑘) = max{𝛿 (2𝑘−1, 𝑘 − 1),Δ(2𝑘−1, 𝑘 − 1) + 1}
= max{⌊𝑘/2⌋ + 1, ⌊(𝑘 − 1)/2⌋ + 2} = ⌊(𝑘 + 1)/2⌋ + 1.

According to Lemma 3.13, there is also a permutation 𝜎 of form

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .] or [𝑎1, . . . , 𝑏1, . . . , 𝑟 , 𝑟2, 𝑏𝑖 , 𝑏𝑖+1, . . .]
and Λ𝑇 (𝜎) = Δ(𝑇) = Δ(2𝑘 , 𝑘). If 𝜎 is of the first form, then

Δ(2𝑘 , 𝑘) = 𝛿 (2𝑘−1, 𝑘 − 1) = ⌊𝑘/2⌋ + 1;
If 𝜎 is of the second form, then

Δ(2𝑘 , 𝑘) = max{Δ(2𝑘−1, 𝑘−1),Δ(2𝑘−1, 𝑘−1) +1} = ⌊(𝑘+1)/2⌋ +1.
Now, as Δ(2𝑘 , 𝑘) = Δ(𝑇) is the minimum locality over all permuta-

tions, 𝜎 must be of the first form. Thus Δ(2𝑘 , 𝑘) = ⌊𝑘/2⌋ + 1. □

This lemma shows that Γ(ℎ, 𝑙) is only defined over ℎ ≥ 2𝑙 − 2.
This is because when ℎ ≤ 2𝑙 − 3, Δ(2ℎ, ℎ) ≤ 𝑙 − 1, even the full

binary tree of height ℎ has no locality-𝑙 leaves, so Γ(ℎ, 𝑙) is only
meaningful when ℎ ≥ 2𝑙 − 2. A similar claim shows that 𝛾 (ℎ, 𝑙) is
defined over ℎ ≥ 2𝑙 − 3.

3.4.3 Computing Γ(ℎ, 𝑙). First, based on Lemma 3.14, we have

Γ(ℎ, 𝑙) = 2
ℎ, if ℎ = 2𝑙 − 2 or ℎ = 2𝑙 − 1

𝛾 (ℎ, 𝑙) = 2
ℎ, if ℎ = 2𝑙 − 3 or ℎ = 2𝑙 − 2 (3)

We then discover the recurrence relation on 𝛾 (ℎ, 𝑙) and Γ(ℎ, 𝑙)
so that we can compute Γ(·, ·) from the initial cases in Eq. (3).

Fix a tree𝑇 which hasH(𝑇) = ℎ, 𝛿 (𝑇) = 𝑙 and num(𝑇) = 𝛾 (ℎ, 𝑙).
Whenℎ ≥ 2𝑙−2, according to Lemma 3.12, without loss of generality,

there is a permutation 𝜎 of form

[𝑎1, 𝑎2, . . . , 𝑎𝑖 , 𝑏1, 𝑏2, . . . , 𝑟2, 𝑟]

and Λ𝑇 (𝜎) = 𝛿 (𝑇). Note that Λ𝑇1 ([𝑎1, 𝑎2, . . . , 𝑎𝑖]) ≤ 𝑙 − 1,H(𝑇1) =
ℎ − 1 and num(𝑇1) ≤ Γ(ℎ − 1, 𝑙 − 1), it must be that num(𝑇1) =
Γ(ℎ − 1, 𝑙 − 1), otherwise num(𝑇1) < Γ(ℎ − 1, 𝑙 − 1) then we can

find a subtree with Γ(ℎ − 1, 𝑙 − 1) leaves to substitute 𝑇1 and make

num(𝑇) increase, which is impossible. Similarly, it must be that

num(𝑇2) = 𝛾 (ℎ − 1, 𝑙). Hence, we have
𝛾 (ℎ, 𝑙) = Γ(ℎ − 1, 𝑙 − 1) + 𝛾 (ℎ − 1, 𝑙), ℎ ≥ 2𝑙 − 2 . (4)

Here we require ℎ ≥ 2𝑙 − 2 because as discussed before, 𝛾 (ℎ, 𝑙) is
defined over ℎ ≥ 2𝑙 − 3.

For the recurrence relation on Γ(ℎ, 𝑙), we prove the following
lemma by induction:

Lemma 3.15. Whenℎ ≥ 2𝑙−1, we have Γ(ℎ, 𝑙) = 2𝛾 (ℎ−1, 𝑙), Γ(ℎ−
1, 𝑙) ≤ Γ(ℎ, 𝑙) ≤ 2Γ(ℎ − 1, 𝑙) and Γ(ℎ − 1, 𝑙) ≥ 𝛾 (ℎ − 1, 𝑙).

Proof. We prove the statement by two-dimensional induction.

Initial step 1: For any 𝑙 ≥ 1, when ℎ = 2𝑙 − 1, according to Eq. (3),

Γ(ℎ, 𝑙) = 2
2𝑙−1 = 2·2ℎ−1 = 2𝛾 (ℎ−1, 𝑙), Γ(ℎ−1, 𝑙) = 2

2𝑙−2 < Γ(ℎ, 𝑙) =
2
2𝑙−1 = 2Γ(ℎ − 1, 𝑙), 𝛾 (ℎ − 1, 𝑙) = 𝛾 (2𝑙 − 2, 𝑙) = 2

2𝑙−2 = Γ(ℎ − 1, 𝑙).
The statement is correct.

Initial step 2: When 𝑙 = 1, we compute from scratch and we have

Γ(ℎ, 1) = 2, 𝛾 (ℎ, 1) = 1 for any ℎ ≥ 1. The statement is still correct.

Induction step: For any 𝑠 > 1, 𝑡 ≥ 0, suppose the statement is

correct for any pair of (ℎ, 𝑙) such that

1 ≤ 𝑙 < 𝑠, 2𝑙 − 1 ≤ ℎ ≤ 2𝑙 + 𝑡
or 𝑙 = 𝑠, 2𝑙 − 1 ≤ ℎ ≤ 2𝑙 + 𝑡 − 1,

then we are going to prove that the statement is also correct for

𝑙 = 𝑠 and ℎ = 2𝑙 + 𝑡 = 2𝑠 + 𝑡 .
Now fix a tree 𝑇 which hasH(𝑇) = ℎ = 2𝑠 + 𝑡 , Δ(𝑇) = 𝑙 = 𝑠 and

num(𝑇) = Γ(ℎ, 𝑙). According to Lemma 3.13, there is a 𝜎 of form

[𝑎1, 𝑎2, . . . , 𝑟1, 𝑟 , 𝑟2, 𝑏1, 𝑏2, . . .]
or

[𝑎1, 𝑎2, . . . , 𝑏1, 𝑏2, . . . , 𝑟 , 𝑟2, 𝑏𝑖 , 𝑏𝑖+1, . . .]
and Λ𝑇 (𝜎) = Δ(𝑇). If 𝜎 is of the first form, then

Γ(ℎ, 𝑙) = 2𝛾 (ℎ − 1, 𝑙) .
If it is of the second form, then

Γ(ℎ, 𝑙) = Γ(ℎ − 1, 𝑙) + Γ(ℎ − 1, 𝑙 − 1) .
Since Γ(ℎ, 𝑙) is the maximum number of leaves of trees satisfying

that Δ(𝑇) = 𝑙 andH(𝑇) = ℎ, we have
Γ(ℎ, 𝑙) = max{2𝛾 (ℎ − 1, 𝑙), Γ(ℎ − 1, 𝑙) + Γ(ℎ − 1, 𝑙 − 1)}.

Now from induction step, we have

2𝛾 (ℎ − 1, 𝑙) = 2(𝛾 (ℎ − 2, 𝑙) + Γ(ℎ − 2, 𝑙 − 1))
= 2𝛾 (ℎ − 2, 𝑙) + 2Γ(ℎ − 2, 𝑙 − 1)
= Γ(ℎ − 1, 𝑙) + 2Γ(ℎ − 2, 𝑙 − 1)
≥ Γ(ℎ − 1, 𝑙) + Γ(ℎ − 1, 𝑙 − 1) .

Thus Γ(ℎ, 𝑙) = 2𝛾 (ℎ − 1, 𝑙) = Γ(ℎ − 1, 𝑙) + 2Γ(ℎ − 2, 𝑙 − 1).
Since Γ(ℎ − 1, 𝑙) = Γ(ℎ − 2, 𝑙) + 2Γ(ℎ − 3, 𝑙 − 1) and Γ(ℎ − 2, 𝑙) ≤

Γ(ℎ − 1, 𝑙),Γ(ℎ − 3, 𝑙 − 1) ≤ Γ(ℎ − 2, 𝑙 − 1) (from induction step), we

have Γ(ℎ − 1, 𝑙) ≤ Γ(ℎ, 𝑙).
From induction step, we have Γ(ℎ − 2, 𝑙) ≥ 𝛾 (ℎ − 2, 𝑙), so Γ(ℎ −

1, 𝑙) ≥ Γ(ℎ−2, 𝑙)+Γ(ℎ−2, 𝑙−1) ≥ 𝛾 (ℎ−2, 𝑙)+Γ(ℎ−2, 𝑙−1) = 𝛾 (ℎ−1, 𝑙).
Finally, Γ(ℎ, 𝑙) = 2𝛾 (ℎ − 1, 𝑙) ≤ 2Γ(ℎ − 1, 𝑙).

9

This completes the induction step. □

Now we can combine Lemma 3.15 with Eq. (4), when ℎ ≥ 2𝑙 , and

then we have

Γ(ℎ, 𝑙) = 2𝛾 (ℎ − 1, 𝑙) = 2(𝛾 (ℎ − 2, 𝑙) + Γ(ℎ − 2, 𝑙 − 1))
= 2𝛾 (ℎ − 2, 𝑙) + 2Γ(ℎ − 2, 𝑙 − 1)
= Γ(ℎ − 1, 𝑙) + 2Γ(ℎ − 2, 𝑙 − 1) .

(5)

If we solve Eq. (3) and Eq. (5) for Γ(ℎ, 𝑙) when ℎ ≥ 2𝑙 , we have

Γ(ℎ, 𝑙) = 2
ℎ − 2𝑙 ·

ℎ−2𝑙∑︁
𝑖=0

2
ℎ−2𝑙−𝑖

(
𝑙 + 𝑖 − 1

𝑖

)
. (6)

3.4.4 Proof of Theorem 3.10.

Proof. First of all, we can easily prove by induction that Γ(ℎ, 𝑙)
is non-decreasing when 𝑙 is increasing: first compute Γ(ℎ, 1) and
Γ(ℎ, 2) from scratch, and then use Eq. (5) to do the induction step.

With this non-decreasing property, if Γ(ℎ, 𝑙) < 𝑛, then Δ(𝑛,ℎ) must

be larger than 𝑙 otherwise it will contradict the definition of Γ(ℎ, 𝑙).
Hence, we have

Δ(𝑛,ℎ) = min{𝑙 : Γ(ℎ, 𝑙) ≥ 𝑛}. (7)

Note that this formula is a quick way to compute the concrete value

of Δ(𝑛,ℎ) from Γ(ℎ, 𝑙).
Next, we are going to show that Γ(ℎ, log

2ℎ 𝑛) < 𝑛 when ℎ > 8.

First, when ℎ > 8, we have 2 < (2ℎ)1/4, 𝑛 ≤ 2
ℎ < (2ℎ)ℎ/4, and then

ℎ > 4 log
2ℎ 𝑛 . (8)

From generalized binomial theorem [30, 44], we have the follow-

ing formula

∞∑︁
𝑖=0

(𝑙+𝑖−1
𝑖

)
2
𝑖

= 2
𝑙 . (9)

Then with Eq. (6) and Eq. (9), in order to prove Γ(ℎ, log
2ℎ 𝑛) < 𝑛

when ℎ > 8, it is equivalent to show that

∞∑︁
𝑖=ℎ−2𝑙+1

(𝑙+𝑖−1
𝑖

)
2
𝑖

<
𝑛

2
ℎ−𝑙 , where 𝑛 = (2ℎ)𝑙 , ℎ > 8 .

Now we take a careful look at

(𝑙+𝑖−1
𝑖

)
. When 𝑖 > ℎ − 2𝑙 + 1 and

ℎ > 4𝑙 we have (from Eq. (8))

𝑙 + 𝑖 − 1
𝑖

<
𝑙 + (ℎ − 2𝑙 + 1) − 1

ℎ − 2𝑙 + 1 =
ℎ − 𝑙

ℎ − 2𝑙 + 1 <
3

2

.

Then when 𝑖 > ℎ − 2𝑙 + 1 we have(
𝑙 + 𝑖 − 1

𝑖

)
=
𝑙 · (𝑙 + 1) · · · (𝑙 + 𝑖 − 1)

𝑖!

=

(
𝑙 + (ℎ − 2𝑙 + 1) − 1

ℎ − 2𝑙 + 1

) 𝑖∏
𝑗=ℎ−2𝑙+2

𝑙 + 𝑗 − 1
𝑗

<

(
ℎ − 𝑙
𝑙 − 1

) (
3

2

)𝑖−(ℎ−2𝑙+1)
.

(10)

Therefore, from Eq. (10) we have

∞∑︁
𝑖=ℎ−2𝑙+1

(𝑙+𝑖−1
𝑖

)
2
𝑖

<

∞∑︁
𝑖=ℎ−2𝑙+1

(ℎ−𝑙
𝑙−1

)
2
ℎ−2𝑙+1 ·

(
3

2 · 2

)𝑖−(ℎ−2𝑙+1)
=

(ℎ−𝑙
𝑙−1

)
2
ℎ−2𝑙+1

∞∑︁
𝑗=0

(
3

4

) 𝑗
=

2

(ℎ−1
𝑙−1

)
2
ℎ−2𝑙 <

2(ℎ − 𝑙)𝑙−1

2
ℎ−2𝑙

=
4(2(ℎ − 𝑙))𝑙−1

2
ℎ−𝑙 <

(2ℎ)𝑙

2
ℎ−𝑙 =

𝑛

2
ℎ−𝑙 .

Now we have proved Γ(ℎ, log
2ℎ 𝑛) < 𝑛 when ℎ > 8. From Eq. (7),

we know that when ℎ > 8

Δ(𝑛,ℎ) > log
2ℎ 𝑛 =

log𝑛

1 + logℎ >
1

2

logℎ 𝑛 ,

which means Δ(𝑛,ℎ) = Ω(logℎ 𝑛). □

4 MERKLE TREE CONSTRUCTIONS WITH
IMPROVED LOCALITY

In this section, we present constructions for Merkle trees with im-

proved locality exploiting two ideas: in Section 4.1, we present a

family of constructions of full Merkle trees with duplication to trade
off read/write performance; in Section 4.2, we present a locality-

aware construction of 16-ary sparse Merkle trees that are widely

used in blockchain systems such as Ethereum [45] as authenti-

cated key-value stores. We will evaluate the performance of these

constructions in the next section.

4.1 Full Merkle trees with adjustable read/write
performance

Our lower bound in Section 3 precludes the possibility of simultane-

ously improving read and write locality, so the best one could hope

for is to trade write locality (and complexity) for read locality or

vice versa based on application needs. Fortunately, such trade-off

typically makes sense because many applications have an unbal-

anced read/write workload. For example, 60% queries to the Merkle

Patricia Trie in Ethereum are read in 2021 winter [33], in which

case improving read locality could be beneficial overall, even at

the cost of increased write complexity. To this end, we introduce a

family of Merkle tree constructions that allow adjustable trade-offs

between read and write complexity by duplicating tree nodes.
A natural way to reduce read locality is to store paths in con-

tinuous regions on the persistent storage (which we generically

call a disk, while the actual implementation may utilize a different

storage medium, such as a database). In an extreme scenario, the

read locality can be reduced to 1 at the cost of duplicating height-ℎ

nodes 2
ℎ
times (i.e., the root is duplicated 𝑛 times, its children 𝑛/2

times, and so on). This naive construction has two notable issues.

First, it incurs a log𝑛-factor storage overhead which could be sig-

nificant for big 𝑛 (e.g., 32× for a typical choice 𝑛 = 2
32
). Second,

write becomes prohibitively expensive since changing a leaf node

requires modifying 𝑂 (𝑛) nodes (the root alone has 𝑛 copies).

To strike a better balance between read and write overhead, we

first show how to avoid the log𝑛-factor storage overhead. Then,

we show how to apply the same idea recursively to improve the

read locality. Finally, putting the two ideas together, we present

DupTree++ that allows adjustable read/write performance.

10

…

…… … …

logn-
loglogn

loglogn

lognlogn

Figure 3: Duplicating nodes with a height above log log𝑛.
This construction has𝑂 (log log𝑛) read locality and𝑂 (𝑛/log𝑛)
write complexity.

…

…… …

…

…… …

n
Layer 1

…

logn
Layer 2

log*n layers

Figure 4:DupTree+with𝑂 (log∗ 𝑛) read locality and𝑂 (𝑛/log𝑛)
write complexity.

4.1.1 Basic constructions. To avoid the log𝑛-factor storage over-

head, we modify the above naive construction to only store the top

part of each path in continuous regions (with duplication), while

the lower part is stored without any duplication. We call this con-

struction DupTree. As illustrated in Fig. 3, specifically, DupTree
duplicates internal nodes with a height higher than log log𝑛 so that

the top (log𝑛 − log log𝑛) nodes of each path are stored in a con-

tiguous region. As a result, an internal node of height ℎ ≥ log log𝑛

has 2
ℎ−log log𝑛

copies. The construction of DupTree is formally

specified in Fig. 11.

The read locality of DupTree is 𝑂 (log log𝑛), because all of the
ancestors with height greater than log log𝑛 can be read by one

jump, and the lower part can be read with at most 𝑂 (log log𝑛)
jumps. The space complexity of DupTree is

𝑂 ((log𝑛− log log𝑛) · (𝑛/2log log𝑛) +2log log𝑛 (𝑛/2log log𝑛)) = 𝑂 (𝑛) .
To update a leaf node, all copies of its ancestors need to be updated,

thus the write complexity is 𝑂 (𝑛/2log log𝑛) = 𝑂 (𝑛/log𝑛).
We can further improve the read locality from 𝑂 (log log𝑛) to

𝑂 (log∗ 𝑛) at the cost of a slight (log
∗ 𝑛 factor) increase of space

complexity, where log
∗ 𝑛 is iterated logarithm defined as

log
∗ 𝑛 :=

{
0 if 𝑛 ≤ 1;

1 + log∗ (log𝑛) if 𝑛 > 1.

We call this construction DupTree+. The key observation is that

we can apply the above construction recursively (see Fig. 4 for an

…

…… … …

…

…… … …

…

…… … …

…

…… … …

…

…… … …

Level 1:
1 sub-tree

Level 2:
P sub-trees

Level
log 𝑛

log 𝑃
:

𝑛

𝑃
 sub-trees

P leavesP leaves

...

…
…

……

...

logP

logP

Figure 5: DupTree++ with 𝑂 (log𝑛/log log𝑛) read locality and
𝑂 (log2 𝑛/(log log𝑛)2) write complexity. We ignore log

∗ term
which in practice is no larger than 5.

illustration). Consider the read locality for reading a given leaf (and

its path to the root) in the previous construction. While the upper

part of the path can be read in one jump, the lower part may take

up to 𝑂 (log log𝑛) jumps. Now, we recursively apply the previous

construction to each subtree. Specifically, in the second layer of

recursion, we have 𝑛/log𝑛 sub-trees of size 𝑂 (log𝑛). We duplicate

the first (log log𝑛−log log log𝑛) nodes in each path, which requires
an additional 𝑂 (𝑛) disk space

1
. Now, each leaf node in the original

tree needs only two jumps to access ancestors of height higher than

log log log𝑛. Keep iterating the process and the recursion ends after

at most log
∗ 𝑛 layers. The resulting construction has𝑂 (log∗ 𝑛) read

locality, 𝑂 (𝑛 log∗ 𝑛) disk space, and 𝑂 (𝑛/log𝑛) write complexity.

Space reduction. We can reduce the space to linear if we apply

DupTree+ to a tree from its root to nodes of height log
∗ 𝑛. Letting

𝑚 = 𝑛/2log∗ 𝑛 , the resulting construction has 𝑂 (log∗𝑚 + log∗ 𝑛) =
𝑂 (log∗ 𝑛) locality for read, 𝑂 (𝑚 log

∗𝑚 + 𝑛) = 𝑂 (𝑛) disk space and

also 𝑂 (𝑚/log𝑚) = 𝑂 (𝑛/log𝑛) write complexity.

4.1.2 DupTree++ with tunable read/write performance.
While the read locality of DupTree and DupTree+ is minimal

(even when𝑛 = 2
65536

, we still have log
∗ 𝑛 = 5), its write complexity

is unattractively large. In this section, we present DupTree++ that

has an adjustable parameter so one can tune the performance to

meet the real-world workload.

Consider a tree of 𝑛 = 2
ℎ
leaves and a parameter 𝑃 (2 ≤ 𝑃 ≤ 𝑛)

assumed to be a power of 2. The high-level idea is to divide the tree

into subtrees with 𝑃 leaves and store each of them using DupTree+.
Specifically, we partition the tree into log𝑛/log 𝑃 levels (see Fig. 5)

and each level consists of subtrees of 𝑃 leaves. For each of these

subtrees, we store it as DupTree+, yielding 𝑂 (log∗ 𝑃) read locality,

𝑂 (𝑃/log 𝑃) write complexity, and 𝑂 (𝑃 log∗ 𝑃) space complexity

(c.f. Section 4.1.1). Therefore, to sum up, the entire Merkle tree

has 𝑂 (log∗ 𝑃 · log𝑛/log 𝑃) read locality, 𝑂 (𝑃 log𝑛/log2 𝑃) write
complexity, and 𝑂 (𝑛 log∗ 𝑃) space complexity. If we pick 𝑃 = log𝑛

and ignore the log
∗
term (as we said in Section 4.1.1), the resulting

construction has 𝑂 (𝑛) space complexity, 𝑂 (log𝑛/log log𝑛) read
locality, and 𝑂 (log2 𝑛/(log log𝑛)2) write complexity.

1
to be precise, 𝑛/log𝑛 · (log log𝑛 − log log log𝑛) · (log𝑛/2log log log𝑛) = 𝑂 (𝑛)

11

Fig. 12 formally specifies the construction of DupTree++. In order
to simplify the description, the specification omits the optimiza-

tion to remove the log
∗ 𝑛 factor from the disk space so the space

complexity is 𝑂 (𝑛 log∗ 𝑛).
Interestingly, the above trade-off between read locality and write

complexity is very similar to the read-write trade-off of query com-

plexity in [18] (see Section 2.2).

4.2 PrefixTree: Construction for sparse Merkle
trees with versions

While DupTree++ is designed for full binary Merkle trees, sparse

Merkle trees are widely used in large-scale key-value stores [2, 13,

45] for their scalability. We introduce an approach to constructing

locality-aware sparse Merkle trees by arranging tree nodes that

are frequently accessed together in close proximity on disk. Our

starting point is a simplified version of the Merkle Patricia Trie

construction used in Ethereum.

Prefix: (empty)

Database index : hash of children’s hashes

Prefix: 8

Database index: hash of children’s hashes

Prefix: 840

Database index : hash of children’s hashes

Key: 84027
Value: node2

Database index: hash of value

Hash: hash of children’s hashes

Database index: (empty) || #

Hash: hash of children’s hashes

Database index: 8 || #

Hash: hash of children’s hashes

Database index: 840 || #

Hash: hash of value
Value: node2

Database index: 84027 || #

#: version number

Figure 6: Simplified version of Merkle Patricia Trie (left) and
PrefixTree (right).

Merkle Patricia Trie (MPT) In Ethereum [45], smart contract

states are stored in an authenticated key-value store implemented

by an MPT, a 16-ary prefix tree (or trie) augmented with member-

ship proofs like Merkle trees. To store the (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair, the
𝑘𝑒𝑦 determines the location of the tree node in which 𝑣𝑎𝑙𝑢𝑒 will

be stored, allowing for efficient search. Specifically, we consider a

simplified version of MPT where each branch node stores 16 hash

pointers to its children (possibly null if some children are empty),

and the common prefix of the keys of all descendants. Refer to Fig. 6

to see this simplified version of MPT. Searching for a given 𝑘𝑒𝑦 in an

MPT is the same as searching in a regular prefix tree, starting from

the root node and traversing down the tree by following the hash

pointers determined by 𝑘𝑒𝑦. This scheme supports versioning so

that write operations will create new nodes while keeping existing

nodes intact. This allows for efficient rollback needed in blockchain

systems. In Ethereum, each block header has a new root hash from

which a new version of the MPT can be accessed.

Our construction: PrefixTree. In Ethereum’s implementation of

MPT, each node is stored in a key-value database (LevelDB, specifi-

cally) with its hash as the index (to avoid confusion, we use indices

to refer to the keys of the data entries in the database) and the

serialized node as the value. As a result, tree nodes are essentially

stored in random places in the database, leading to high read and

write locality. Based on this observation, we propose PrefixTree

(Fig. 13) that stores nodes with its key prefixes as the index, so that

nodes on a Merkle path are stored in adjacent locations.

This change also requires us to change the node data structure.

To support versioning, the index of every node is appended with a

version number (e.g., the block number). Instead of hash pointers,

each branch node stores 16 prefix strings of its children, and the

hash of the current node. See Fig. 6 for structure of PrefixTree.
Note that tree nodes in PrefixTree may have a smaller storage

footprint since prefixes may be shorter than hash pointers. On the

other hand, in order to generate a Merkle proof, in PrefixTree we
also need to access the siblings of the nodes on the path to get their

hashes, which means the number of nodes to read is concretely

higher than MPT. Therefore, whether PrefixTree will outperform
MPT is not immediately clear and that is the goal of our experiments

in Section 5.2. As a heads-up, when comparing PrefixTree and MPT,

we artificially pad the prefix to the same length as hash pointers so

that the performance will not benefit from smaller tree node size.

5 EVALUATION
In this section, we report on the implementation details of our

constructions and the result of the performance evaluation. We

implemented the algorithms of DupTree++ and PrefixTree in about

1600 lines of C++ (available online
2
). For all constructions, we use

LevelDB as backend storage (which is how Ethereum, the widely

used smart contract blockchain, stores its Merkle Patricia Tries).

All experiments are executed on a server with Intel(R) Xeon(R)

Platinum 8380 CPU @ 2.30GHz with 80 cores, 128GB of RAM, and

7TB of SSD.

5.1 DupTree++
5.1.1 Implementation details.

We implementedDupTree++ for binaryMerkle trees. For aMerkle

tree of height ℎ with 2
ℎ
leaves, each node is a ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pair

where 𝑘𝑒𝑦 is the hash of 𝑣𝑎𝑙𝑢𝑒 . For internal nodes, 𝑣𝑎𝑙𝑢𝑒 is the

concatenation of its two children’s keys; for leaf nodes, 𝑣𝑎𝑙𝑢𝑒 stores

the data users will query and update.

To store tree nodes in contiguous storage regions, we leverage

the fact that key-value pairs in LevelDB are sorted by keys within

each level. Therefore when storing a tree node ⟨𝑘, 𝑣⟩ in LevelDB,

we prepend a string 𝑖𝑑 before 𝑘 (i.e., 𝑣 is stored with index 𝑖𝑑 ∥𝑘).
By setting appropriate 𝑖𝑑s, we can control the order of the nodes

stored in LevelDB.

Choosing parameters. In our implementation,DupTree++ is used
to optimize read efficiency: a Merkle tree is stored on persistent

storage according to DupTree++, but when receiving a read opera-

tion for one leaf, DupTree++ only reads one copy of all its ancestors.
The read locality is therefore 𝑜 (log𝑛)). To write a node, we need to

modify all duplication of its ancestors.

We pick 𝑃 = log𝑛 so that asymptotically we have around log 𝑃 =

log log𝑛 times improvement in read locality while the extra cost in

write is at most 𝑂 (𝑃/log2 𝑃) times.

Also, we make some other slight changes on how we organize

every𝑂 (𝑃) = 𝑂 (log𝑛)-size sub-tree. In real-world applications, the

number of leaves of a Merkle tree roughly lies in the range from

2
20

to 2
40

[19]. Thus log 𝑃 ≈ log
∗ 𝑃 ≈ 5, and then we naturally

2
https://github.com/wangnick2017/DupTree

12

https://github.com/wangnick2017/DupTree

20 25 30

0

1,000

2,000

tree height

t
i
m
e
(
s
e
c
)

DupTree++

Naive approach

(a) Runtime of 105 random reads

20 25 30

0

500

tree height

t
i
m
e
(
s
e
c
)

DupTree++

Naive approach

(b) Runtime of 105 random writes

Figure 7: Performance comparison of DupTree++ and a stan-
dard Merkle tree.

choose to use the version with 𝑃 log 𝑃 disk space and 𝑂 (1) read
locality for each 𝑂 (𝑃)-size sub-tree. Furthermore, since all the leaf

nodes in the sub-trees have read locality only 1, we can put those

log 𝑃 consecutive nodes in one database entry to improve the read

performance. In fact, this method will not introduce too much extra

write cost at all since the new (big) database entries are only about

log 𝑃 ≈ 5 times as the original (small) ones.

In summary, our implementation is optimized for reads, which

has 𝑂 (log𝑛/log log𝑛) read locality, 𝑂 (log2 𝑛/log log𝑛) write com-

plexity, and 𝑂 (𝑛 log log𝑛) disk space.

5.1.2 Comparison with naive approach.
We compare the performance of our implementation with a

standard implementation of Merkle tree as baseline where nodes

are stored in LevelDB with no duplication, in which the locality for

both read and write is 𝑂 (log𝑛).
Experimental setting.We run experiments for a Merkle tree of

height ℎ with 2
ℎ
leaves, where ℎ goes from 18 to 30. For each ℎ, we

randomly pick 10
5
leaf nodes to conduct read/write experiments

for both our approach and naive approach.

To benchmark a read operation of a given leaf node, we read

from LevelDB relevant nodes for a given leaf node. To benchmark

a write operation, we update relevant nodes in LevelDB, but we

should carefully consider the effect of “BatchWrite” in LevelDB.

LevelDB allows users to buffer write requests and later make mul-

tiple changes in one atomic batch write. According to the official

benchmark [25], a single batch of 𝑁 writes may be significantly

faster than 𝑁 individual writes. Therefore, for both schemes, we

have one BatchWrite after 10
4
updates on random leaf nodes so

that both schemes enjoy the same speed up.

Results and analysis. We repeat our experiments 20 times and

report the average and standard deviation (as error bars) in Fig. 7,

for read and write respectively. The coefficient of variation is up to

6.4% on reads, up to 15.4% on writes for baseline, and up to 7.1% on

reads, up to 22.2% on writes for DupTree++.
Our approach always has better performance on reads. Since

DupTree++ may have more amount of data to read, this means that

a smaller read locality can indeed reduce the cost of I/O operations.

Although our improvement is not significant (around 1.2× to 1.6×
better), the advantage increases with 𝑛. As our read locality is

𝑂 (log log𝑛) times smaller than the naive approach, we conjecture

that our construction will exhibit a notable advantage for larger

trees. One possible reason why our construction is not log log𝑛 > 4

times faster is that the caching technique in LevelDB partially

mitigates the overhead of the naive construction.

For write performance, we observe that our construction is

slightly (∼ 1.3×) slower than the naive approach for small trees

but has equal or even better (up to 1.6×) performance for large

trees. However, we believe that in applications heavily rely on read-

ing data, our construction will have better performance among all

(read/write) operations.

The runtime of both schemes grows rapidly when 𝑛 > 2
28
. We

conjecture that this rapid growth comes when LevelDB needs to

jump multiple times over an extremely large database on the disk.

5.2 PrefixTree
PrefixTree is designed to support large key-value stores such as the

world state in the smart contract platform Ethereum. To evaluate its

performance, we replay real-world Ethereum workload (read/write

queries extracted from Ethereum transactions) and compare the

runtime of PrefixTree and standard implementation of Merkle Patri-

cia Trie (thereafter called the baseline). We note that Go Ethereum

(geth) has a similar implementation called PathScheme that uses pre-

fix strings as database indices [20]. However, this locality-friendly

version was not put into use in practice and its performance im-

provement is not clear as it also changes the tree node data structure.

Padding of prefixes. As explained in Section 4.2, the concrete

read/write complexity of PrefixTree differs from the baseline. To

make the comparison completely unbiased, we artificially pad every

prefix string to (at least) 64-nibble to match the hash pointer length.

We confirmed that PrefixTreewith padding always reads and writes
more bits than the baseline in our experiments, as shown in Fig. 8.

This means that the performance advantage of PrefixTree is due to
improved locality.

Real-world workload. The workload we used to benchmark Pre-
fixTree is the real-world Merkle Patricia Trie queries extracted from

transactions in the first 4 million blocks (from July 2015 to July

2017). We stopped at 4 million blocks as the trend is clear. After pro-

cessing 4 million blocks, on average, there are over 100K read/write

queries in each block, and the sparse Merkle tree is 60GB and has

roughly 100 million nodes.

Experimental settings.We replay the read/write queries in every

100k blocks to both implementation and measure the time for pro-

cessing these queries. Same as Section 5.1, we set the write batch

size of LevelDB to be 10
4
for both schemes to reduce the running

time of experiments. Since both schemes have the exact same tree

structure and thus the numbers of writes to LevelDB, they enjoy

equal speed up from batching, so the comparison remains fair.

Results and analysis. We repeat our experiments 5 times and

report the average (we stop at 5 because the standard deviation is

low) result in Fig. 9. Each data point (𝑥,𝑦) shows the runtime for

processing 100k blocks between block number (𝑥 − 1) · 105 + 1 to
block number 𝑥 · 105.

Fig. 9 shows that PrefixTree performs much better after about 2.4

million blocks, and the advantage is increasing as the tree grows.

At 4 million blocks, PrefixTree performs around 3× faster than

the baseline. Note that we artificially added padding to ensure the

13

0 20 40

0

0.5

1

1.5

·1012

every 100k blocks

N
u
m
b
e
r
o
f
b
i
t
s
r
e
a
d

PrefixTree with padding

Merkle Patrica Trie

(a) Number of bits read from disk during the
experiments

0 20 40

0

0.5

1

1.5

·1011

every 100k blocks

N
u
m
b
e
r
o
f
b
i
t
s
w
r
i
t
t
e
n PrefixTree with padding

Merkle Patrica Trie

(b) Number of bits written to disk during the
experiments

0 20 40

0

0.5

1

1.5

·1012

every 100k blocks

T
o
t
a
l
b
i
t
s
r
e
a
d
a
n
d
w
r
i
t
t
e
n

PrefixTree with padding

Merkle Patrica Trie

(c) Total number of bits read and written during
the experiment

Figure 8: By padding the prefix strings, PrefixTree always incursmore I/O overhead (measured as the number of bits read/written)
than the baseline, confirming that the performance advantage of PrefixTree is only due to improved locality. For each data point,

the 𝑦 value is for processing 100k blocks between block number (𝑥 − 1) · 105 + 1 to block number 𝑥 · 105.

0 10 20 30 40

0

1

2

·104

every 100k blocks

t
i
m
e
(
s
e
c
)

Prefix Tree (w/ padding)

Prefix Tree (w/o padding)

Merkle Patrica Trie

Figure 9: Time to process real-world Ethereum workload in
every 100k blocks.

comparison is far, but the padding is not necessary in practice.

Without padding, PrefixTree is around 4× faster than the baseline

at 4 million blocks. We believe this advantage comes from the fact

that PrefixTree has low locality and benefits from the caching of

LevelDB. More specifically, according to the official document of

LevelDB [27], the unit of disk transfer and caching is a “block”

(approximately 4096 uncompressed bytes by default) and adjacent

indices will usually be placed in the same block (or adjacent blocks).

Therefore, in Merkle Patricia Trie, each query involves loading

several separate blocks while in PrefixTree each query might only

touch one or more adjacent blocks, which has a significant impact

on the resulting performance. We note that the abnormal peak

between block number 2.3 million and 2.6 million is caused by DOS

attacks to Ethereum[3] that happened in 2016.

In conclusion, this experiment shows that the locality of sparse

Merkle trees significantly impacts its performance on real-world

workloads. Moreover, the improvement from locality even out-

weighs the slightly increased read and write complexity.

6 CONCLUSION
In this paper, we introduced and studied the concept of locality
in memory checkers. We first proved the lower bound of locality

on general memory checking and then we showed some stronger

bounds of locality on Merkle trees. Next, we gave some construc-

tions to meet those lower bounds and conducted several experi-

ments to show that our constructions can indeed improve perfor-

mance.

Future work. Our future work can be partitioned into two cate-

gories: theoretical exploration and experimental validation.

Better lower bound of locality on general online memory checkers.
Since we have shown that proving lower bound for locality is almost

as hard as proving the bound for query complexity, we could prove

stronger bounds for query complexity of general online memory

checkers. We have the following conjecture on query complexity.

Conjecture 1. For a (Σ, 𝑛, 𝑞, 𝑠) deterministic and non-adaptive
online memory checker, with secret space 𝑠 < 𝑛1−𝜖 for some 𝜖 > 0, it
must be that the query complexity 𝑞 = Ω(log𝑛/log log |Σ|) .

Macrobenchmarks and comparison with other efficient authenticated
storage systems. It would be very interesting to run and compare

our constructions on other key-value storage systems such as

RocksDB [41] or even directly on SSD. In addition, we can compare

our construction with other other efficient authenticated storage

systems [33, 37, 38] for maintaining a huge set of key-value pairs, or

apply our construction to some other tree-structure applications.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation,

VMware, Protocol Labs, and the Roberts Innovation Fund at Yale

University.

REFERENCES
[1] 2023. Bitcoin Developer Network. https://bitcoindev.network/.

[2] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Don-

ald Kossmann, Jonathan Protzenko, Ravi Ramamurthy, Tahina Ramananandro,

Aseem Rastogi, Srinath Setty, Nikhil Swamy, Alexander van Renen, and Min

Xu. 2021. FastVer: Making Data Integrity a Commodity. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 89–101.

https://doi.org/10.1145/3448016.3457312

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks

on ethereum smart contracts (sok). In Principles of Security and Trust: 6th Interna-
tional Conference, POST 2017, Held as Part of the European Joint Conferences on

14

https://bitcoindev.network/
https://doi.org/10.1145/3448016.3457312

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings 6. Springer, 164–186.

[4] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and

efficiently searchable encryption. In Advances in Cryptology-CRYPTO 2007: 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007. Proceedings 27. Springer, 535–552.

[5] Josh Benaloh and Michael de Mare. 1994. One-Way Accumulators: A Decentral-

ized Alternative to Digital Signatures. In EUROCRYPT ’93, Tor Helleseth (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 274–285.

[6] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.

1994. Checking the correctness of memories. Algorithmica 12 (1994), 225–244.
[7] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni

Naor. 1991. Checking the Correctness of Memories. In 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE
Computer Society, 90–99.

[8] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Accu-

mulators with Applications to IOPs and Stateless Blockchains. In CRYPTO’19.
[9] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Niz-

zardo. 2020. Incrementally Aggregatable Vector Commitments and Applications

to Verifiable Decentralized Storage. In Advances in Cryptology – ASIACRYPT
2020, Shiho Moriai and Huaxiong Wang (Eds.). Springer International Publishing,

Cham, 3–35.

[10] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Cătălin Roşu, and Michael Steiner. 2014. Dynamic searchable encryption

in very-large databases: Data structures and implementation. Cryptology ePrint
Archive (2014).

[11] David Cash and Stefano Tessaro. 2014. The Locality of Searchable Symmetric

Encryption. In EUROCRYPT. Springer, 351–368. https://doi.org/10.1007/978-3-

642-55220-5_20

[12] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Appli-

cations. In Public-Key Cryptography - PKC 2013 - 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 -
March 1, 2013. Proceedings. 55–72.

[13] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.

SEEMless: Secure End-to-End Encrypted Messaging with Less Trust. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity (London, United Kingdom) (CCS ’19). Association for Computing Machinery,

New York, NY, USA, 1639–1656. https://doi.org/10.1145/3319535.3363202

[14] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. 2018.

Edrax: A Cryptocurrency with Stateless Transaction Validation. https://eprint.

iacr.org/2018/968.

[15] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou.

2018. Searchable encryption with optimal locality: Achieving sublogarithmic read

efficiency. In Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part I 38. Springer, 371–406.

[16] Peter J. Denning. 2005. The Locality Principle. Commun. ACM 48, 7 (jul 2005),

19–24. https://doi.org/10.1145/1070838.1070856

[17] Thaddeus Dryja. 2019. Utreexo: A dynamic hash-based accumulator optimized

for the Bitcoin UTXO set. https://eprint.iacr.org/2019/611.

[18] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. 2009.

How Efficient Can Memory Checking Be?. In Theory of Cryptography, Omer

Reingold (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 503–520.

[19] Ethereum. 2023. Etherscan. https://etherscan.io/.

[20] Ethereum. 2023. go-ethereum. https://github.com/ethereum/go-ethereum.

[21] Ethereum. 2023. Optimistic Rollups. https://ethereum.org/en/developers/docs/

scaling/optimistic-rollups. Accessed: 2023-05.

[22] Ethereum. 2023. Zero-Knowledge Rollups. https://ethereum.org/en/developers/

docs/scaling/zk-rollups/. Accessed: 2023-05.

[23] Zhenhuan Gao, Yuxuan Hu, and Qinfan Wu. 2021. Jellyfish Merkle Tree. (2021).

[24] Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottesman, Eshcar

Hillel, Idit Keidar, Nurit Moscovici, and Rana Shahout. 2020. EvenDB: optimizing

key-value storage for spatial locality. In Proceedings of the Fifteenth European
Conference on Computer Systems. 1–16.

[25] Google. 2011. LevelDB Benchmarks. http://www.lmdb.tech/bench/microbench/

benchmark.html.

[26] Google. 2018. LevelDB. https://github.com/google/leveldb. Accessed: 2023-04.

[27] Google. 2018. LevelDB - Key Layout. https://github.com/google/leveldb/blob/

main/doc/index.md#key-layout. Accessed: 2023-08.

[28] Google. 2023. Chromium README. https://chromium.googlesource.com/

chromium/src/+/HEAD/third_party/leveldatabase/README.chromium/.

[29] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020. Point-

proofs: Aggregating Proofs for Multiple Vector Commitments. In CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna (Eds.). ACM, 2007–2023.

[30] David Guichard. 2017. An Introduction to Combinatorics and Graph Theory. Whit-

man College.

[31] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT’10.
[32] Polygon Labs. 2022. Introducing Plonky2. https://polygon.technology/blog/

introducing-plonky2.

[33] Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu, Wei Xu, and Fan

Long. 2023. LVMT: An Efficient Authenticated Storage for Blockchain. (2023).

[34] Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal Accumulators with Efficient

Nonmembership Proofs. In Applied Cryptography and Network Security, Jonathan
Katz and Moti Yung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 253–

269.

[35] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO ’87, Carl Pomerance (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 369–378.

[36] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.
[37] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai,

Vijay Chidambaram, and Michael Wei. 2021. RainBlock: Faster Transaction

Processing in Public Blockchains.. In USENIX Annual Technical Conference. 333–
347.

[38] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener,

Vijay Chidambaram, and Ittai Abraham. 2018. mLSM: Making Authenticated

Storage Faster in Ethereum.. In HotStorage.
[39] Srinath Setty. 2020. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. In Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020,
Proceedings, Part III. Springer, 704–737.

[40] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proceeding 2000 IEEE symposium on
security and privacy. S&P 2000. IEEE, 44–55.

[41] Meta Open Source. 2023. RocksDB. https://rocksdb.org/.

[42] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin

Tomescu, and Yupeng Zhang. 2022. Hyperproofs: Aggregating and Maintaining

Proofs in Vector Commitments. In 31st USENIX Security Symposium (USENIX Secu-
rity 22). USENIX Association, Boston, MA. https://www.usenix.org/conference/

usenixsecurity22/presentation/srinivasan

[43] Alin Tomescu. 2020. How to Keep a Secret and Share a Public Key (Using Polyno-
mial Commitments). Ph. D. Dissertation. Massachusetts Institute of Technology,

Cambridge, MA, USA.

[44] Wikipedia contributors. 2023. Binomial theorem - Wikipedia, the free ency-

clopedia, 2023. https://en.wikipedia.org/wiki/Binomial_theorem. Accessed:

2023-07.

[45] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

15

https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1145/3319535.3363202
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2018/968
https://doi.org/10.1145/1070838.1070856
https://eprint.iacr.org/2019/611
https://etherscan.io/
https://github.com/ethereum/go-ethereum
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
http://www.lmdb.tech/bench/microbench/benchmark.html
http://www.lmdb.tech/bench/microbench/benchmark.html
https://github.com/google/leveldb
https://github.com/google/leveldb/blob/main/doc/index.md##key-layout
https://github.com/google/leveldb/blob/main/doc/index.md##key-layout
https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/leveldatabase/README.chromium/
https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/leveldatabase/README.chromium/
https://polygon.technology/blog/introducing-plonky2
https://polygon.technology/blog/introducing-plonky2
https://rocksdb.org/
https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan
https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan
https://en.wikipedia.org/wiki/Binomial_theorem

A CONSTRUCTION DETAILS

• MerkleTreeInit(𝑛, [𝑣1, . . . , 𝑣𝑛]) → 𝑇𝑀 :

Given an array of 𝑛 values, this subroutine returns a

Merkle tree with 𝑛 values as leaves, represented as an

array of 2𝑛 − 1 nodes. All nodes have the format <k,v>
where k is the hash of v; for internal nodes, v is the

concatenation of its children’s ks, and for leaf nodes, v
is some 𝑣𝑖 .

• SubTree(𝑖,𝑇𝑀) → 𝑇 ′:
This subroutine returns the sub-tree in 𝑇𝑀 with root

𝑖 , i.e., a subarray of 𝑇𝑀 , including node 𝑖 and all the

descendants of 𝑖 in the tree.

• SubTreeDistance(𝑖, 𝑑,𝑇𝑀) → 𝑇 ′:

This subroutine returns the sub-tree with root 𝑖 and 2
𝑑

leaves, i.e., a subarray of𝑇𝑀 , including node 𝑖 and all the

descendants of 𝑖 that has distance at most 𝑑 to 𝑖 in the

tree.

Figure 10: Subroutines used in other constructions.

• BasicInit(𝑛, 𝛿,𝑇𝑀) → 𝑇 :

// 𝑇𝑀 is a standard Merkle tree with 𝑛 leaves built with

MerkleTreeInit. 𝛿 is a constant such that if the number

of leaves is smaller than 𝛿 , we use the naive approach to

store the tree.

if 𝑛 ≤ 𝛿 then
return 𝑇𝑀

else
𝑇 ← []
for each node 𝑖 in 𝑇𝑀 of height log log𝑛 do

⊲ There are exactly 𝑛/log𝑛 such nodes

𝑇 ← 𝑇 :: BasicInit(log𝑛, 𝛿, SubTree(𝑖,𝑇𝑀))
Append 𝑖’s (log𝑛 − log log𝑛) ancestors to 𝑇 ,

nodes with smaller height first

end for
return 𝑇

end if
• BasicWrite(𝑖, 𝑣,𝑇):

if 𝑛 ≤ 𝛿 then ⊲ 𝑇 is a normal Merkle tree

Write 𝑣 into the value of node 𝑖 and update the hashes
in all its ancestors;

else
𝑘 ← |𝑇 |

𝑛/log𝑛 ; 𝑗 ← ⌊
𝑖−1
log𝑛
⌋

BasicWrite(𝑖− 𝑗 · log𝑛, 𝑣,𝑇 [𝑗𝑘 +1 : (𝑗 +1)𝑘− (log𝑛−
log log𝑛)])

Update the hashes in𝑇 [(𝑗+1)𝑘−(log𝑛−log log𝑛)+1 :
(𝑗 + 1)𝑘]

for ℎ ← log log𝑛 + 1 to log𝑛 do
There are 2

ℎ−log log𝑛
copies of the height-ℎ an-

cestor of 𝑖; update the hashes in all of them.

end for
end if

• BasicRead(𝑖,𝑇) → [log𝑛 nodes to form a Merkle proof]:
if 𝑛 ≤ 𝛿 then ⊲ 𝑇 is a normal Merkle tree

Read and return node 𝑖 and all its ancestors;

else
𝑘 ← |𝑇 |

𝑛/log𝑛 ; 𝑗 ← ⌊
𝑖−1
log𝑛
⌋

return BasicRead(𝑖 − 𝑗 · log𝑛,𝑇 [𝑗𝑘 + 1 : (𝑗 + 1)𝑘 −
(log𝑛− log log𝑛)]) :: 𝑇 [(𝑗 +1)𝑘 − (log𝑛− log log𝑛) +1 :
(𝑗 + 1)𝑘]
end if

Figure 11: The construction of DupTree. Subroutines are de-
fined in Fig. 10.

16

• GeneralInit(𝑛, 𝑃, 𝛿,𝑇𝑀) → 𝑇 :

if 𝑛 ≤ 𝛿 then
return 𝑇𝑀

else
𝑇 ← []
for 𝑖 ← 1 to log𝑛/log 𝑃 do

for each 𝑗 ∈ 𝑇𝑀 of height log𝑛 − (𝑖 − 1) log 𝑃 do
𝑇 ← 𝑇 :: BasicInit(𝑃, 𝛿, SubTreeDistance(𝑗,

log 𝑃, 𝑇𝑀))
end for

end for
return 𝑇

end if
• GeneralWrite(𝑖, 𝑣,𝑇):

if 𝑛 ≤ 𝛿 then ⊲ 𝑇 is a normal Merkle tree

Write 𝑣 into the value of node 𝑖 and update the hashes
in all its ancestors;

else
𝑘 ← |𝑇 |

(𝑛−1)/(𝑃−1)
𝑗 ← 𝑛/𝑝−1

𝑝−1 + ⌊
𝑖−1
𝑝 ⌋ + 1

𝑣 ′ ← 𝑣

for 𝑗 ≥ 1 do
BasicWrite(𝑃, 𝑣 ′,𝑇 [(𝑗 − 1)𝑘 + 1 : 𝑗𝑘])
𝑣 ′ ← 𝑇 [𝑗𝑘]’s key
𝑗 ← ⌊ 𝑗−2

𝑃
⌋ + 1; 𝑖 ← ⌊ 𝑖−1

𝑃
⌋ + 1

end for
end if

• GeneralRead(𝑖,𝑇) → [log𝑛 nodes to form a Merkle proof]:
if 𝑛 ≤ 𝛿 then ⊲ 𝑇 is a normal Merkle tree

Read and return node 𝑖 and all its ancestors;

else
𝑘 ← |𝑇 |

(𝑛−1)/(𝑃−1)
𝑅 ← []
𝑗 ← 𝑛/𝑝−1

𝑝−1 + ⌊
𝑖−1
𝑝 ⌋ + 1

for 𝑗 ≥ 1 do
𝑅 ← 𝑅 :: BasicRead((𝑖 −1)%𝑃 +1,𝑇 [(𝑗 −1)𝑘 +1 :

𝑗𝑘])
𝑗 ← ⌊ 𝑗−2

𝑃
⌋ + 1; 𝑖 ← ⌊ 𝑖−1

𝑃
⌋ + 1

end for
return 𝑅

end if

Figure 12: The construction of DupTree++. Subroutines are
defined in Fig. 10 and Fig. 11

Node structure in PrefixTree:
• 𝑘𝑒𝑦 : (𝑝𝑟𝑒 𝑓 𝑖𝑥 ; 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)
• 𝑣𝑎𝑙𝑢𝑒 : (ℎ𝑎𝑠ℎ; {𝑘𝑒𝑦𝑖 }𝑖∈[1,16] ; 𝑡𝑒𝑥𝑡)

• Init(𝑙) → 𝑇 :

𝑙𝑖𝑠𝑡 ← [], 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 0, 𝑇 ← []
Set 𝑇 ’s maximum key length to be 𝑙

return 𝑇
• Update(𝑘, 𝑡, 𝑙𝑖𝑠𝑡,𝑇):

𝑙𝑖𝑠𝑡 .append(𝑘, 𝑡)
• Commit(𝑙𝑖𝑠𝑡, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛,𝑇):

𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1
𝑠𝑡𝑎𝑐𝑘 ← []
𝑠𝑡𝑎𝑐𝑘.push(𝑇 .𝑟𝑜𝑜𝑡 with new 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)
for (𝑘, 𝑡) ∈ 𝑙𝑖𝑠𝑡 do

Find 𝑝 ∈ 𝑠𝑡𝑎𝑐𝑘 with longest common prefix with 𝑘

while 𝑝 has a child 𝑝′ with longer common prefix

with 𝑘 do
𝑠𝑡𝑎𝑐𝑘.push(𝑝′ with new 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)
𝑝 ← 𝑝′

end while
if 𝑝.𝑝𝑟𝑒 𝑓 𝑖𝑥 = 𝑘 then

𝑝.𝑡𝑒𝑥𝑡 ← 𝑡

else
Determine 𝑘 should lie in 𝑝’s 𝑖-th child

if 𝑝’s 𝑖-th child is empty then
𝑙 ← new leaf node for (𝑘, 𝑡)
𝑠𝑡𝑎𝑐𝑘.push(𝑙)

else
𝑘′ ← common prefix of 𝑘 and 𝑝’s 𝑖-th child

𝑙 ← new leaf node for (𝑘, 𝑡)
𝑛 ← new internal node with 𝑘′ as key, 𝑙 and

𝑝’s original 𝑖-th child as children

𝑠𝑡𝑎𝑐𝑘.push(𝑛)
𝑠𝑡𝑎𝑐𝑘.push(𝑙)

end if
end if

end for
while 𝑠𝑡𝑎𝑐𝑘 is not empty do

𝑛 ← 𝑠𝑡𝑎𝑐𝑘.pop()
compute hash of 𝑛 and write 𝑛 to the disk

end while
• Read(𝑘,𝑇) → [nodes to form a Merkle proof]:

𝑝𝑟𝑜𝑜 𝑓 ← []
𝑝 ← 𝑇 .𝑟𝑜𝑜𝑡

while 𝑝.𝑝𝑟𝑒 𝑓 𝑖𝑥 ≠ 𝑘 do
read 𝑣𝑎𝑙𝑢𝑒 of 𝑝 from disk

append keys of siblings in 𝑣𝑎𝑙𝑢𝑒 to 𝑝𝑟𝑜𝑜 𝑓

Determine 𝑘 should lie in 𝑝’s 𝑖-th child

𝑝 ← 𝑝’s 𝑖-th child

end while
return 𝑝𝑟𝑜𝑜 𝑓

Figure 13: The construction of PrefixTree. When it comes a

new block, we first call Update to record each update from the

transactions, and then call Commit to compute new nodes and

write changes to the disk.

17

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Paper outline

	2 Preliminaries
	2.1 Notation
	2.2 Memory checking
	2.3 Merkle trees
	2.4 LevelDB

	3 Lower bounds for Locality
	3.1 Bounds for memory checkers
	3.2 Bounds for Merkle trees
	3.3 Bounds for Merkle trees with duplicates
	3.4 Bounds for sparse Merkle trees

	4 Merkle tree constructions with improved locality
	4.1 Full Merkle trees with adjustable read/write performance
	4.2 PrefixTree: Construction for sparse Merkle trees with versions

	5 Evaluation
	5.1 DupTree++
	5.2 PrefixTree

	6 Conclusion
	Acknowledgments
	References
	A Construction Details

