
Multimixer-128: Universal Keyed Hashing Based
on Integer Multiplication

Koustabh Ghosh1, Parisa Amiri Eliasi1 and Joan Daemen1

Digital Security Group, Radboud University, Nijmegen, the Netherlands
{koustabh.ghosh,parisa.amirieliasi,joan.daemen}@ru.nl

Abstract. In this paper we introduce a new keyed hash function based on 32-bit
integer multiplication that we call Multimixer-128. In our approach, we follow the
key-then-hash parallel paradigm. So, we first add a variable length input message to
a secret key and split the result into blocks. A fixed length public function based on
integer multiplication is then applied on each block and their results are added to form
the digest. We prove an upper bound of 2−127 for the universality of Multimixer-128
by means of the differential probability and image probability of the underlying public
function.
There are vector instructions for fast 32-bit integer multiplication on many CPUs and
in such platforms, Multimixer-128 is very efficient. We compare our implementation
of Multimixer-128 with NH hash function family that offers similar levels of security
and with two fastest NIST LWC candidates. To the best of our knowledge, NH
hash function is the fastest keyed hash function on software and Multimixer-128
outperforms NH while providing same levels of security.
Keywords: Keyed Hashing · Parallel Construction · Multimixer-128

1 Introduction
Keyed hashing is a class of cryptographic primitives that compresses variable-length
messages into fixed-length digests, using a secret key. The security of keyed hashing can be
measured in terms of its ε-universality and ε-∆universality [Sti95]. The ε-universality of a
keyed hash function FK upper bounds the probability, taken over the key space and for
an optimal attacker, to generate collisions at the output of FK: Finding M and M∗ such
that FK(M) = FK(M∗). ε-∆universality is a natural generalization of the ε-universality
as it upper bounds the success probability, taken over the key space and for an optimal
attacker, to find a particular output difference ∆ at the output of FK: Finding M and
M∗ such FK(M)− FK(M∗) = ∆.

Keyed hash functions exhibiting good uniformity can be used to construct secure Mes-
sage Authentication Code (MAC) functions [WC81] and doubly extendable cryptographic
keyed (Deck) functions [BDH+17]. Deck functions generalize both MAC functions and
stream ciphers by supporting both variable-length inputs and outputs and can be used to
build authenticated encryption schemes and wide block ciphers.

There are various approaches to building keyed hash functions: They can be built
as modes of strong cryptographic primitive, like constructions based on cryptographic
hash functions such as HMAC [BCK96] and NMAC [BCK96], or block ciphers such as
CBC-MAC [BKR94], CMAC [BR00, IK03, 80005] and PMAC [BR02]. A more efficient
way to build keyed hash functions is by using iterated finite field multiplication using
Horner’s rule. Examples include GHASH [MV04], the function used to compute a MAC in
GCM mode and Poly-1305 [Ber05]. GHASH and Poly-1305 operate over fields F2128 and
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F2130−5 respectively and consequently, an important cost in these functions is the modular
reduction that is part of the finite field multiplication.

In order to design efficient keyed hash functions in software, the authors of [HK97] take
an interesting approach. They take as starting point the MMH [CW79] and NMH family
of hash functions that are based on multiplication over a finite field with prime elements.
The authors modify these algorithms such that instead of field multiplication, they can
make use of integer multiplication without any reductions and only need to do the modular
reduction once at the very end of the algorithm. They choose the prime to be 232 + 15 and
are able to implement these functions using division-less modular reductions making them
more efficient. Black et al. further simplified these designs to build a remarkable family of
keyed hash functions called NH hash function family [BHK+99] used in UMAC [BHK+99],
Adiantum [CB18] and HS1-SIV [Kro15]. This function makes use of integer multiplication
of 32-bit integers and thus all modular reductions are simple truncation to 32 or 64 bits.
The NH hash function takes as input a variable-length message and a key with length the
maximum message length supported. Both the message and key are first split into 32-bit
blocks and then added block by block modulo 232. These resultant integers are multiplied
in pairs, and these products are summed modulo 264 to produce a 64-bit digest. This
function is reported as 2−32-∆universal, restricting to collisions between messages of equal
length.

To decrease the universality to 2−128, they make use of the Toeplitz-NH denoted
as NHT. NHT applies the NH function 4 times to the input with 4 different keys and
concatenates the outputs, resulting in a 256-bit digest. In this paper we investigate whether
we can build a keyed hash function that is more efficient than NHT for the same level of
security.

1.1 Our Contribution

We propose a new keyed hash function as an alternative to NHT that we call Multimixer-
128. In order to build this secure and efficient keyed hash function, we adopt the framework
of [FRD23] that was applied in [GFAD23] using finite field multiplication.

To study the security of Multimixer-128, we thoroughly analyze the differential prop-
erties of integer multiplication, where the inputs are w-bit integers. We prove that
Multimixer-128 is an ε-∆universal hash function with ε = 2−127 and show that our
function is faster than the NHT hash function on a typical target CPU.

The ε achieved by Multimixer-128 is twice that reported for the NHT universal hash
function. Still Multimixer-128 achieves ε = 2−128 when restricted to collisions between
messages of equal length. For messages of unequal length the universality of NHT turns out
to be only ε = 2−124 (see Sect. 6). The designers of NHT avoid collisions between messages
of different length by defining a mode on top of NHT that applies NHT on fixed-length
inputs and NHT used with this mode attains the universality of 2−128 over messages of all
string length.

Multimixer-128 can be used as the compression phase of a MAC function. It has a digest
of 512-bits, which requires further compression when a 128-bit tag is required. NHT with
its digest size of 256-bits also has this requirement. In various current NHT applications,
e.g., in Adiantum [CB18] and HS1-SIV [Kro15], that is indeed the case. Furthermore,
Multimixer-128 can be used as the compression phase in the Farfalle construction [BDH+17]
to build DECK functions. The 512-bit digest does not cause any problems in that case as
a wide cryptographic permutation can be used for the expansion phase, e.g., the 1600-bit
permutation Keccak-f [BDH+08] or the 512-bit permutation in ChaCha [Berrs].
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1.2 Outline of the Paper

The paper is organized as follows. In Sections 2 and 3 we remind the readers of keyed-
hash-functions, their universalities and how a public function can be parallelized to form
such a keyed-hash-function [GFAD23]. We then introduce the notations that will be used
throughout the paper and then in Section 4, take a look at the differential properties of
the w-bit multiplication. In Section 5 we look at our first proposed public function F-128,
whose parallelization is called Multimixer-128. We look at the security of this construction
and concretely prove that it is 2−127-∆universal. In Section 6 we briefly talk about the
NH hash function family and compare its security to Multimixer-128. Finally in Section 8
we report on our implementation of Multimixer-128 and compare its efficiency with NH
hash function.

2 Preliminaries and Notations
A public function is denoted as f : G → G′, where G and G′ are abelian groups ⟨G, +⟩
and ⟨G′, +⟩. The elements of G are called blocks. The set containing ℓ-block string is
denoted as Gℓ, i.e., Gℓ = {(x0, x1, . . . , xℓ−1) | xi ∈ G for each i = 0, 1, . . . , ℓ− 1}. The set
of strings of length 1 upto κ is denoted as BS(G, κ) = ∪κ

ℓ=1Gℓ. We denote strings in bold
uppercase letters, like M, its blocks by Mi, where indexing starts from 0 and the length of
that string by |M|. Given any set S, the cardinality of that set is denoted by #S.

2.1 ε and ε-∆universality

Let FK denote a keyed hash function where the key K is sampled uniformly at random
from the key space. The security of FK is measured by the probability of generating a
collision at the output of FK or more strongly, by the probability of two distinct inputs
strings exhibiting a specific output difference. These probabilities are upper bounded
respectively by the ε-universality and the ε-∆universality of the keyed hash function.

Definition 1 (ε-universality [Sti95]). A keyed hash function F is said to be ε-universal if
for any distinct strings M, M∗

Pr[FK(M) = FK(M∗)] ≤ ε .

Definition 2 (ε-∆universality [Sti95]). A keyed hash function F is said to be ε-∆universal
if for any distinct strings M, M∗ and for all ∆ ∈ G

Pr[FK(M)− FK(M∗) = ∆] ≤ ε .

2.2 Key-then-hash Functions

Key-then-hash functions are a special type of keyed hash functions. They take as input
elements of BS(G, κ) and return an element of G′. The keys are elements of Gκ. When
processing an input, the key is first added to the input and then an unkeyed function
is applied to the result. A key-then-hash function is defined as: F : BS(G, κ) → G′

with FK(M) := F (K + M). The addition of two strings M = (M0, M1, . . . , M|M|−1)
and M∗ = (M∗

0 , M∗
1 , . . . , M∗

|M∗|−1) with |M| ≤ |M∗| is defined as M′ := M + M∗ =
(M0 +M∗

0 , M1 +M∗
1 , . . . , M|M|−1 +M∗

|M|−1) with |M′| = |M|. In Section 3 we demonstrate
how to build such functions using a public function as the underlying primitive [GFAD23].
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Figure 1: The parallelization Parallel [f ] adapted from [FRD23].

3 Parallel Universal Hashing
The parallelization of a public function to build key-then-hash function is described in
Algorithm 1 and depicted in Figure 1 [GFAD23]. The construction takes as parameters a
public function f : G→ G′ and a maximum string length κ. The inputs to the construction
are a key K ∈ Gκ and a string M ∈ BS(G, κ). The construction returns a digest h ∈ G′.

Algorithm 1: The parallelization Parallel [f ] [GFAD23]
Parameters : A public function f : G→ G′ and a maximum string length κ
Inputs : A key K ∈ Gκ and a message M ∈ BS(G, κ)
Output : A digest h ∈ G′

X←M + K
h← 0
for i← 0 to |M| − 1 do

h← h + f(Xi)
end
return h

Given any public function f , its parallelization is the key-then-hash function denoted
as Parallel [f ]. The key space of Parallel [f ] is Gκ and as such we assume the existence of
long keys with independent key blocks. This is a commonly made assumption and other
keyed hash functions including NHT also require long keys. In fact such a long key can
be precomputed from a short secret key by any Pseudorandom generator (PRG) and this
computation has to be made only when a change of key is required.

The universality of Parallel [f ] is upper-bounded by the propagation probabilities of
the underlying fixed length function f , which are defined as follows.

A differential defined over f is the tuple (A, ∆), where A ∈ G/{0} is called the input
difference and ∆ ∈ G′ is called the output difference. We now remind the reader of
differential probability of a differential over fixed-length public functions.

Definition 3 (Differential probability). Let f : G → G′ be a public function. The
differential probability of a differential (A, ∆) of f , denoted as DPf (A, ∆), is:

DPf (A, ∆) = #{X ∈ G | f(X + A)− f(X) = ∆}
#G

.

We say that input difference A propagates to output difference ∆ with probability
DPf (A, ∆).
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Definition 4 (Solution set). Given any public function f , the solution set of a differential
(A,∆) to f denoted as Sf (A, ∆) is

Sf (A, ∆) = {X ∈ G | f(X + A)− f(X) = ∆} .

Definition 5 (Differential weight). Let f : G→ G′ be a public function. The differential
weight of a differential (A, ∆) of f denoted as wf (A, ∆) is:

wf (A, ∆) = − log2(DPf (A, ∆)) = log2(#G)− log2(#Sf (A, ∆)) .

The relative frequency of outputs of a non-bijective public function f is not necessarily
constant. As such, the image probability of an output of a public function is defined as
follows.

Definition 6 (Image probability [GFAD23]). Let f : G→ G′ be a public function. The
image probability of an output Z ∈ G′ of f , denoted as IPf (Z), is the number of inputs
that f maps to Z divided by the total number of possible inputs, namely,

IPf (Z) = #{X ∈ G | f(X) = Z}
#G

.

The maximum possible value of DPf and IPf over all differentials and outputs of the
underlying fixed length public function f respectively are denoted as:

MDPf = max
(A,∆)

DPf (A, ∆) and MIPf = max
Z

IPf (Z) .

Theorem 1 (Theorem 1 [GFAD23]). The parallelization of a public function f , Parallel [f ],
is max {MDPf , MIPf}-∆universal.

Thus the problem of bounding universality of Parallel [f ] is reduced to bounding MDPf

and MIPf of the underlying fixed length function f . The tightness of the ε-∆universality
bound in Theorem 1 depends solely on the tightness of the bounds for MDPf and MIPf

of the underlying public function f .

3.1 Notations
In this paper, Z/2wZ denotes the ring of integer residues modulo 2w with the addition
and multiplication. (Z/2wZ)n denotes the cartesian product of Z/2wZ n-times. For the
public functions proposed in this paper, G = (Z/2wZ)8 and G′ =

(
Z/22wZ

)8 with w = 32.
So the input and the output to our public function are both 8-tuples, where each element
of the input tuple and output tuple are elements of Z/2wZ and Z/22wZ and we call them
as input word and output word respectively.

We represent X ∈ G = (Z/2wZ)8 as X = (x0, x1, x2, x3, y0, y1, y2, y3)⊺. For simplicity,
we slightly abuse the notations to denote X = (x, y), where x = (x0, x1, x2, x3)⊺ ∈
(Z/2wZ)4 and y = (y0, y1, y2, y3)⊺ ∈ (Z/2wZ)4. Similarly input differences and key blocks
are denoted as A = (a, b) and K = (h, k) respectively. An output Z ∈ G′ =

(
Z/22wZ

)8

is denoted as Z = (z0, z1, . . . , z7)⊺ and similarly an output difference ∆ is given by
∆ = (δ0, δ1, . . . , δ7)⊺. This means that throughout this paper for i ∈ {0, 1, 2, 3}, each of
xi, yi, ai, bi, hi, ki ∈ Z/2wZ and for i ∈ {0, 1, . . . , 7}, each of zi, δi ∈ Z/22wZ.

For n ≥ 1, the number of non-zero components of a vector x ∈ (Z/2wZ)n is its hamming
weight denoted as w(x). We further denote (0, 0, . . . , 0) ∈ (Z/2wZ)n as 0n. Z≥0 is used to
denote the set of positive integers including 0.

For two elements x, y ∈ Z/2wZ, x⊞y, x⊟y and x ·y denote respectively (x+y) mod 2w,
(x− y) mod 2w and (x · y) mod 2w. For any element x ∈ Z/2wZ, x denotes the additive
inverse of x, i.e., x = 2w ⊟ x .
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The integer multiplication of two elements of Z/2wZ is called the w-bit multiplication
and is denoted as M[w]. This operation is clearly not closed in Z/2wZ and is defined as

M[w] : (Z/2wZ)2 → Z/22wZ : M[w](x, y) = x× y . (1)

Example 1. Let w = 4. Then M[w](5, 6) = 5× 6 = 30.

To differentiate between w-bit multiplication and the ring multiplication in Z/2wZ,
× will be used to denote the w-bit multiplication and · will be used to denote the ring
multiplication throughout this paper.

We now take a brief look at the differential properties of the w-bit multiplication.

4 Differential Properties of w-bit Multiplication
M[w] is a binary operation in Z/2wZ. To that end an input difference to M[w] has the
form A = (a, b), where a, b ∈ Z/2wZ. The co-domain of M[w] is Z/22wZ and thus output
difference δ ∈ Z/22wZ. Naturally the solution set and DP of a differential ((a, b), δ) to
the w-bit multiplication are denoted as SM[w]((a, b), δ) and DPM[w]((a, b), δ) respectively.
To simplify notations, we denote N((a, b), δ) = #SM[w]((a, b), δ). For the sake of further
notational simplicity we will use DP((a, b), δ) and S((a, b), δ) without any subscript in
this section. Now, S((a, b), δ) is given by:

S((a, b), δ) = {(h, k) ∈ (Z/2wZ)2 | ((a ⊞ h)× (b ⊞ k)− h × k) mod 22w = δ} . (2)

Clearly DP((a, b), δ) = N((a,b),δ)
22w .

Corollary 1. For any differential ((a, b), δ) to M[w], DP((a, b), δ) is symmetric in the
components of its input difference. So, DP((a, b), δ) = DP((b, a), δ).

Proof. The proof follows from (2) and the commutativity of M[w].

Obtaining the cardinality of S((a, b), δ) for an input difference (a, b) with a = 0 or
b = 0 is an interesting case and requires special attention.

Definition 7 (Unilateral and bilateral differentials). For a pair of inputs from (Z/2wZ)2,
let their input difference be (a, b) ̸= (0, 0). When (a, b) is such that a = 0 or b = 0, we
call (a, b) an unilateral difference. Otherwise we call (a, b) a bilateral difference and any
differential to M[w] with a unilateral input difference is called a unilateral differential,
while a differential to M[w] with a bilateral difference is called a bilateral differential.

Due to Corollary 1 it suffices to only look at unilateral differentials of the form ((a, 0), δ).

Lemma 1. For a unilateral differential ((a, 0), δ) to M[w] with δ ̸= 0, we have

For δ < 2wa : DP((a, 0), δ) =
{

a
22w , if a | δ
0 , otherwise

For δ > 2wa : DP((a, 0), δ) =
{

a
22w , if a | 22w − δ

0 , otherwise

For δ = 2wa : DP((a, 0), δ) = 0 .

Proof. For an input difference (a, 0), (2) converts into

((a ⊞ h)× k − h × k) mod 22w = δ .



6 Multimixer-128: Universal Keyed Hashing Based on Integer Multiplication

After modular reduction, there are two cases namely

h < a : a × k = δ , (3)
h ≥ a : −a × k + 22w = δ . (4)

The solutions to (3) and (4) are positive integers smaller than 2w. When h < a, a × k = δ
has at most one solution and that solution exists iff a | δ such that δ/a < 2w, i.e., δ < 2wa.
Similarly for h ≥ a, −a × k + 22w = δ has at most one solution and that solution exists
when a | 22w − δ such that (22w − δ)/a < 2w, i.e., δ > 2wa. Since δ < 2wa and δ > 2wa
cannot occur simultaneously, we arrive at the lemma.

Lemma 2. For a unilateral differential ((a, 0), 0) to M[w], DP((a, 0), 0) = 1
2w .

Proof. For the unilateral differential ((a, 0), 0) to M[w], (2) transforms into

(a ⊞ h)× k = h × k .

This equation is satisfied iff k = 0. Hence S((a, b), 0) = {(h, 0) | h ∈ Z/2wZ}, i.e.,
N((a, 0), 0) = 2w. Thus DP((a, 0), 0) = 1

2w .

We now focus on bilateral differentials. Given any δ, obtaining S((a, b), δ) from (2)
involve modular reduction depending on whether h + a < 2w and whether k + b < 2w.
We deal with these reductions by partitioning the domain in four parts that we denote
as quadrants I,II,III and IV. We describe them along with the simplified form of (2) in
Table 1.

Table 1: The Quadrants corresponding to bilateral differential ((a, b), δ).
Quadrant Domain of quadrants Reduced form of (2) modulo 2w

I h ∈ [0, a), k ∈ [0, b) b× h + a× k + a× b = δ

II h ∈ [0, a), k ∈ [b, 2w)
(
−b× h + a× k − a× b

)
mod 22w = δ

III h ∈ [a, 2w), k ∈ [0, b) (b× h − a× k − a× b) mod 22w = δ

IV h ∈ [a, 2w), k ∈ [b, 2w) −b× h − a× k + a× b + 22w = δ

For a given bilateral differential ((a, b), δ) and i ∈ {I, II, III, IV}, we use Si((a, b), δ) to
denote S((a, b), δ) restricted to quadrant i, i.e., Si((a, b), δ) = S((a, b), δ) ∩Quadrant i.

We now depict the S((a, b), δ) for a concrete case when w = 4, a = 4, b = 8 and δ = 208
in Figure 2. Naturally a = 24−4 = 12 and b = 24−8 = 8. The horizontal axis represents h
and the vertical axis represents k: The whole domain of (Z/2wZ)2 is the grid of points with
integer coordinates (h, k) . The quadrants are naturally rectangles as depicted in Figure 2.
Now, each blue point in the figure is an element of S((4, 8), 208) for the 4-bit multiplication.
Thus #S((4, 8), 208) = 6. We further see that SI((4, 8), 208) = SIV((4, 8), 208) = ϕ and for
i = II, III, each element of Si((4, 8), 208) lies on line segments reflecting the linearity of the
equations within each quadrant.
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(0, 0) (15, 0)

(0, 15)

I

(0, 7)

II

(11, 15)

III

(12, 0)

IV

(15, 15)

(15, 9)

Figure 2: Solution set corresponding to the differential ((4, 8), 208) when w = 4.

Lemma 3. Let ((a, b), δ) be a bilateral differential of M[w] .Then for i ∈ {I,II,III,IV},
Si((a, b), δ) denote straight line segments in (Z/2wZ)2, whose slopes and maximum cardi-
nalities are given by

Slope Max #Si((a, b), δ)

SI((a, b), δ) −b/a
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
SII((a, b), δ) b/a

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
SIII((a, b), δ) b/a

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
SIV((a, b), δ) −b/a

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
Proof. We prove this for i =I. For (h, k) ∈ SI((a, b), δ), we see from Table 1 that b × h +
a × k + a × b = δ, which denotes a straight line with slope −b/a in (Z/2wZ)2.

Every point on this line can be expressed as (h + x, k − bx/a) for some x. This point
has integer coordinates iff a | bx, or equivalently, if a/ gcd(a, b) | x. This means that these
x coordinates of these points are at distances da = a/gcd(a, b) from each other. Quadrant
I has width (a− 1) and can fit at most ⌈a/da⌉ points. The y coordinates of these points
are at distances db = b/gcd(a, b) from each other and hence quadrant I with its height of
(b − 1) can fit at most

⌈
b/db

⌉
points. Both restrictions apply and hence the number of

points on a line is at most
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
.

The proofs are similar when i =II, III or IV.

Lemma 4. The solution set of a bilateral differential ((a, b), δ) is fully in quadrants I and
IV or in quadrants II and III.

Proof. We will first show that the solution set must be empty in one of SI((a, b), δ) and
SII((a, b), δ). Indeed if that were not the case, from Table 1 it follows that both the
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following equations must have a solution.

b× h + a× k + a× b = δ , 0 ≤ h < a, 0 ≤ k < b , (5)(
−b× h + a× k − a× b

)
mod 22w = δ , 0 ≤ h < a, b ≤ k < 2w . (6)

Now, (6) after reduction modulo 22w can have one of the following forms

−b× h + a× k − a× b = δ , (6.1)
−b× h + a× k − a× b = δ − 22w . (6.2)

From (5) we have,

0 ≤ k < b =⇒ δ − a × b < δ − a × k ≤ δ =⇒ δ − a × b < b × h + a × b ≤ δ

=⇒ δ − 2w × a < b × h ≤ δ − a × b . (7)

Similarly from (5) we also have:

δ − 2w × b < a × k ≤ δ − a × b . (8)

From (6.1) we see that

b ≤ k < 2w =⇒ −δ ≤ b × h < a × b − δ . (9)

Since both b × h ≥ 0 and b × h ≥ 0, δ ≥ a × b implies (9) cannot hold for any h and
δ < ab implies (7) cannot hold for any h, Thus for all values of δ, (7) and (9) cannot hold
simultaneously for any h.

Now from (6.2) we have

0 ≤ h < a =⇒ δ − 22w + a× b ≤ a× k < δ − 2w × b . (10)

But this implies that (8) and (10) cannot both hold simultaneously.
Hence (5) and (6) cannot have a common solution. Thus both SI((a, b), δ) and

SII((a, b), δ) cannot be non-empty. It can similarly be shown that both SI((a, b), δ) and
SIII((a, b), δ) or SII((a, b), δ) and SIV((a, b), δ) or SIII((a, b), δ) and SIV((a, b), δ) cannot be
non-empty.

Lemma 5. Let ((a, b), δ) be a bilateral differential to M[w]. Then

N((a, b), δ) ≤ max
(⌈

gcd(a, b) min
(

a
a , b

b

)⌉
+

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
,
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
+

⌈
gcd(a, b) min

(
a
a , b

b

)⌉)
.

Proof. We first note that,

S((a, b), δ) = SI((a, b), δ) ∪ SII((a, b), δ) ∪ SIII((a, b), δ) ∪ SIV((a, b), δ) .

By Lemma 4 it follows that for every differential ((a, b), δ), one of SI((a, b), δ)∪SIV((a, b), δ)
and SII((a, b), δ) ∪ SIII((a, b), δ) must be empty. Thus we must have

N((a, b), δ) ≤ max
(
#SI((a, b), δ) + #SIV((a, b), δ), #SII((a, b), δ) + #SIII((a, b), δ)

)
.

The rest of the proof follows immediately from Lemma 3.

For any input difference (a, b) to M[w], Lemma 5 gives us an upper-bound for
maxδ DP((a, b), δ). This upper-bound is not tight for all input differences, but is still a
reasonably good upper-bound. In fact in practice we only observed the difference between
the upper bound obtained in Lemma 5 and maxδ DP((a, b), δ) to be negligible with the
difference being 2

22w at most.
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Lemma 6. For any bilateral differential ((a, b), 0) to M[w], we have

N((a, b), 0) =
⌈

gcd
(
a, b

)
min

(
a

a
,

b

b

)⌉
+

⌈
gcd (a, b) min

(
a

a
,

b

b

)⌉
.

Proof. We first note that it can be verified from Table 1 that (0, b) ∈ SII((a, b), 0), i.e.,
SII((a, b), 0) ̸= ∅. Consequently from Lemma 4, SI((a, b), 0) ∪ SIV((a, b), 0) = ∅. Thus,

S((a, b), 0) = SII((a, b), δ) ∪ SIII((a, b), δ) .

We now claim that #SII((a, b), 0) =
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
. Indeed by Lemma 3, SII((a, b), 0)

denotes a line segment with slope b/a. (0, b) is one of the end points of the line segment
since (0, b) is one of the vertices of Quadrant II. Hence for any point (x, y) ∈ SII((a, b), 0) ,
0 ≤ x < a, b ≤ y < 2w and x is of the form ai

gcd(a,b) , y is of the form b + bj

gcd(a,b) for some
i, j ∈ Z≥0. Thus (x, y) ∈ SII((a, b), 0) for all i, j ∈ Z≥0 whenever

0 ≤ ai

gcd
(
a, b

) < a =⇒ i <

⌈
gcd

(
a, b

) a

a

⌉
,

b ≤ b + bj

gcd
(
a, b

) < 2w =⇒ j <

⌈
gcd

(
a, b

) b

b

⌉
.

Thus we can conclude that that #SII((a, b), 0) =
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
.

It can be similarly shown that #SIII((a, b), 0) =
⌈
gcd (a, b) min

(
a
a , b

b

)⌉
. SII((a, b), 0)

and SII((a, b), 0) are mutually disjoint and thus we arrive at our desired result.

Corollary 2. Let ((a, b), 0) be a bilateral differential to M[w] such that b = a. Then
N((a, b), 0) = 2w.

Proof. Substituting b = a in Lemma (6), we see that #S(A, 0) = 2w.

We call differences of the form (a, a) counter-diagonal differences. N((a, b), 0) = 2w

only for these bilateral differences and all the unilateral differences. We also call differences
of the form (a, a) the diagonal differences. Lemma 5 provides the upper-bound for DP of
a differential with diagonal difference as maxδ DP((a, a), δ) ≤ 2−w.

For an input difference (a, b), we are primarily interested in maxδ DP((a, b), δ). Lemma 5
provides a good upper-bound for this value. Another differential of interest is ((a, b), 0)
since this differential corresponds to collision at the output of the multiplication.

Figure 3 shows the histogram of differential weight vs the number of input differences
that attain that weight for some output difference for 16-bit multiplication , M[16].
Here a blue point at a coordinate (x, y) means that there are y input differences with
DP((a, b), 0) = x.2−32. Similarly a red point at a coordinate (x, y) means that there
are y input differences with maxδ DP((a, b), δ) ≤ x.2−32. So the red dots in the figure
correspond to the bound of Lemma 5
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Figure 3: Upper-bound of maxδ DP((a, b), δ) and DP((a, b), 0)-vs Number of differences
for w = 16.

Figure 3 shows that there are exactly 3 ·(2w−1) differentials with zero output difference
that have weight w. These are the unilateral differences and the counter-diagonal differences,
i.e., input differences with shape (a, 0), (0, a) or (a, a). Moreover, there are exactly 4·(2w−1)
input differences for which the bound of Lemma 5 gives weight w. These are the 3 · (2w−1)
ones with output difference 0 and the diagonal differences with shape (a, a). Disregarding
(2w−1, 2w−1), for the latter the bound of Lemma 5 is not tight: the output difference
with highest DP is attained for a = 1 and a = 1 and for these differences, the maximum
DP is 2w−1

22w . From this histrogram, it is clear that while the maximum possible value of
maxδ DP((a, b), δ) = 2−w, for most of the differentials this value is actually much smaller.
In fact, for about half of the differentials, maxδ DP((a, b), δ) ≤ 3

22w . These properties
make integer multiplication an excellent choice to be used as a source of non-linearity in
symmetric cryptographic functions.

5 Multimixer-128
We now introduce the key-then-hash function that we call Multimixer-128. It is the
parallelization of the public function, that we denote as F-128, i.e., Parallel [F-128] =
Multimixer-128. While Multimixer-128 operates on 32-bit input words, we will prove the
results in this section for a generic w unless otherwise specified.

The specification of F-128 is provided in Algorithm 2, where all the additions in the
indexes of x and y are done modulo 4. This function closely follows the multiply-transform-
multiply construction [GFAD23] with the differences being:

• The domain and co-domain of F-128 are (Z/232Z)8 and (Z/264Z)8 respectively,
neither of which is a field.

• All the multiplications in F-128 are integer multiplications.

In order to provide a design rationale for F-128, we first define coordinate-wise product
of vectors and circulant matrices.
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Algorithm 2: The public function of Multimixer, F-128
Inputs : X = (x0, x1, x2, x3, y0, y1, y2, y3)⊺ ∈

(
Z/232Z

)8

Output : Z = (z0, z1, z2, z3, z4, z5, z6, z7)⊺ ∈
(
Z/264Z

)8

for i← 0 to 3 do
ui ← xi ⊞ xi+1 ⊞ xi+2
vi ← yi ⊞ yi+1 ⊞ yi+2

end
for i← 0 to 3 do

zi ← xi × yi

zi+4 ← ui × vi

end
Z ← (z0, z1, z2, z3, z4, z5, z6, z7)
return Z

Definition 8 (Coordinate-wise product). Given x = (x0, x1, x2, x3)⊺, y = (y0, y1, y2, y3)⊺ ∈
(Z/2wZ)4, their coordinate wise product denoted as x⊗ y is given by

x⊗ y = (x0 × y0, x1 × y1, x2 × y2, x3 × y3)⊺ .

We let circ(α0, α1, . . . , αn−1) denote the n×n circulant matrix with (α0, α1, . . . , αn−1)
as its entries in the first row, where αi ∈ Z/2wZ for each i ∈ {0, 1, . . . , n−1}. For example,

circ(1, 1, 1, 0) =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

 .

We now look at an alternative definition of F-128
Definition 9 (Alternative definition of F-128). F-128 can alternatively be defined as:

F-128: (Z/2wZ)8 →
(
Z/22wZ

)8 : F-128(x, y) = (x⊗ y, Nα · x⊗Nβ · y) , (11)

where Nα and Nβ are 4× 4 circulant matrices: Nα = circ(1, 1, 1, 0) and Nβ = circ(0, 1, 1, 1).
By Algorithm 2 and following the notational convention of Section 3.1, we see that

Nα · x = u and Nβ · y = v. Thus F-128(x, y) = (x⊗ y, u⊗ v).
The branch number of a matrix plays an important role in our security analysis.

Definition 10 (Branch number [DR20]). Given a n× n matrix N defined over Z/2wZ,
its branch number is defined as min

x∈(Z/2wZ)n/{0n}
(w(x) + w(N · x)).

To look at the propagation of vectors under the circulant matrices inside F-128, we
define the cyclic shift operation over vectors of (Z/2wZ)4. For x ∈ (Z/2wZ)4, we denote
by τ(x) ∈ (Z/2wZ)4 the vector obtained by shifting the entries of x by one position to the
left cyclically. So for x = (x0, x1, x2, x3)⊺, τ(x) = (x1, x2, x3, x0)⊺. Naturally for r < 4, τ r

corresponds to shifting the entries of a vector belonging to (Z/2wZ)4 by r places to the
left cyclically.
Definition 11 (Activity pattern). Let x = (x0, x1, . . . , xn−1)⊺ ∈ (Z/2wZ)n. The activity
pattern of x is given by the binary vector (g0, g1, . . . , gn−1)⊺ ∈ Fn

2 , where ∀i ∈ {0, 1, . . . , n−
1}

gi =
{

1 , if xi ̸= 0
0 , if xi = 0 .

For i ∈ {0, 1, . . . , n− 1}, gi as called the activity of the xi.



12 Multimixer-128: Universal Keyed Hashing Based on Integer Multiplication

Example 2. Let w = 4. Then (2, 6, 0, 1)⊺ ∈ (Z/2wZ)4 has the activity pattern (1, 1, 0, 1)⊺.

We will argue based on the activity patterns of vectors belonging to (Z/2wZ)8 and
look at the vector’s propagation under linear maps. In general, activities at the output of
F-128 may depend on the concrete inputs. We denote such activities by x⃝.

Example 3. Let Nα = circ(1, 1, 1, 0). Then for a vector x ∈ (Z/2wZ)4 with activity
pattern (1, 1, 0, 0)⊺, Nα · x has activity pattern ( x⃝, 1, 1, x⃝)⊺.

The circulant nature of Nα and Nβ translates directly to activity patterns: cyclically
shifting an input activity pattern results in the same cyclic shift of the output activity
pattern. A 4× 4 circulant matrix commutes with the mapping τ r for any r < 4.

Lemma 7. Let N be a 4×4 circulant matrix and for x ∈ (Z/2wZ)4, let the activity pattern
of N · x be g. Then for any r < 4, the activity pattern of N · (τ r(x)) is τ r(g).

Proof. Due to N being circulant, we have N · (τ r(x)) = τ r(N ·x). Thus the activity pattern
of N · (τ r(x)) is τ r(g).

For a matrix N, We similarly denote by τ r(N) the matrix obtained by cyclically shifting
the columns of N by r places to the left.

When computing the DP of a differential (A, ∆) over F-128, the number of multiplica-
tions that has a non-zero input difference plays a crucial role in determining DPF-128(A, ∆).

Definition 12 (Active multiplication [GFAD23]). Let f be a public function that involves
w-bit multiplications. A w-bit multiplication in f is said to be active corresponding to an
input difference if that multiplication has a non-zero input difference in at least one of its
multiplicands as a result of propagation of that difference inside f .

So, our objective is to maximize the minimum number of active multiplication over all
possible input differences to F-128. This means that we require the matrices Nα and Nβ

to have good diffusion properties. But, for efficiency we are limited to small matrix entries
so that their computation can be done efficiently with vector addition and subtraction
only. We realized this with circulant matrices circ(1, 1, 1, 0) and circ(0, 1, 1, 1).

Thanks to the symmetry in the matrices and the fact the Nβ = τ3(Nα), the number of
cases to consider in security analysis is relatively small.

We now look at the maximum image probability and differential probability of F-128,
which in turn determines the ε-∆universality of Multimixer-128.

5.1 Maximum Image Probability of F-128
In this section we show that MIPF-128 ≤ 1

2127 and it is obtained for 08.

Lemma 8. For the public function F-128, IPF-128(08) = 24w+1−1
28w ≤ 2−127.

Proof. We show that F-128(x, y) = 08 if and only if x = 04 or y = 04.
We first show that if x = 04 or y = 04, F-128(x, y) = 08. Indeed if x = 04, we must

have u = 04 and if y = 04, we must have v = 04. Thus if x = 04 or y = 04, x ⊗ y = 04

and u⊗ v = 04; Consequently F-128(x, y) = 08.
We now show that when F-128(x, y) = 08, x = 04 or y = 04, i.e., when both x ̸= 04

and y ̸= 04, F-128(x, y) ̸= 08. We argue on the basis of activity patterns of x and show
that whenever x ̸= 04, we must have y = 04. Due to Lemma 7, we only need look at
inputs x that have different relative position of 1s in their activity pattern. So, looking at
vectors with activity pattern (1, 0, 0, 0) covers all cases with w(x) = 1 and so on.

Now for each such possible value of x based on its activity pattern, we look at the
activity pattern of u via its propagation under Nα. Furthermore, for F-128(x, y) = 08, we
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must have x⊗ y = 04 and u⊗ v = 04. This implies that for i ∈ {0, 1, 2, 3}, if the i-th bit
in the activity pattern of x (and u) is 1, then the i-th bit in the activity pattern of y (and
v) must be 0. Based on these arguments, for each possible x , we tabulate the activity
patterns of u and the possible activity pattern in y and v that are compatible with a 08

output in Table 2.

Table 2: Activity patterns of x, y, u and v for F-128(x, y) = 08.
Cases Activity pattern of

x u y v
1 (1, 0, 0, 0) (1, 0, 1, 1) (0, x⃝, x⃝, x⃝) (0, x⃝, 0, 0)
2 (1, 1, 0, 0) ( x⃝, 1, 1, x⃝) (0, 0, x⃝, x⃝) ( x⃝, 0, 0, x⃝)
3 (1, 0, 1, 0) ( x⃝, 1, x⃝, 1) (0, x⃝, 0, x⃝) ( x⃝, 0, x⃝, 0)
4 (1, 1, 1, 0) ( x⃝, x⃝, x⃝, x⃝) (0, 0, 0, x⃝) ( x⃝, x⃝, x⃝, x⃝)
5 (1, 1, 1, 1) ( x⃝, x⃝, x⃝, x⃝) (0, 0, 0, 0) ( x⃝, x⃝, x⃝, x⃝)

We now look at the cases, in particular at the difference propagation from y to v,
separately.

In case 1, we have y0 = 0 and also v0 = v2 = v3 = 0. Thus from Nβ · y = v we have

y1 ⊞ y2 ⊞ y3 = 0 ,

y1 ⊞ y3 = 0 ,

y1 ⊞ y2 = 0 .

However the above set of linear equation has a unique solution given by y1 = y2 = y3 = 0
and this in turn implies y = 04.

In case 2 we have y0 = y1 = 0 and v1 = v2 = 0. Thus, from Nβ · y = v we have
y2 ⊞ y3 = 0 and y3 = 0, i.e., y2 = y3 = 0. Thus again we have y = 04.

In case 3 we have y0 = y2 = 0 and v1 = v3 = 0. Thus, from Nβ · y = v we directly have
y1 = y3 = 0, i.e., y = 04.

In case 4, y0 = y1 = y2 = 0. Now, if y3 ̸= 0, then from Nβ · y = v we must have
v0 = v1 = v2 = y3 ̸= 0. Since u⊗ v = 04, this in turn implies u0 = u1 = u2 = 0.Now from
Nα · x = u and the fact that x3 = 0, we have

x0 ⊞ x1 ⊞ x2 = 0 ,

x1 ⊞ x2 = 0 ,

x0 ⊞ x2 = 0 .

But these system of solutions have a unique solution given by x0 = x1 = x2 = 0,
contradicting the fact that x has activity pattern (1, 1, 1, 0) and thus y3 must be 0. Hence
once again we have y = 04.

In case 5, it follows directly from Table 2 that y = 04.
Thus F-128(x, y) = 08 iff x = 04 or y = 04. Thus we conclude IPF-128(08) = 24w+1−1

28w ≤
1

24w−1 = 2−127.

We now upper bound the value of IPF-128(Z) for Z ≠ 08. To upper-bound this value
we first briefly remind the readers of highly composite numbers.

Definition 13 (Highly composite number). A number n ∈ N is called highly composite if
it has more divisors than any number smaller than n.

We computed the list of all highly composite numbers smaller than 265 based on the
code by Federico Glaudo1 . We found out that 36, 802, 111, 876, 251, 321, 600 is the largest

1https://gist.github.com/dario2994/fb4713f252ca86c1254d

https://gist.github.com/dario2994/fb4713f252ca86c1254d
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highly composite number smaller than 265 and has 207360 divisors. For our choice of
w = 32, we can thus claim that any number smaller than 264 has at most 207360 < 218

divisors.

Lemma 9. Let Z ̸= 08 . Then for the public function F-128, IPF-128(Z) ≤ 218(2w+1−1)3

28w <
2−149.

Proof. When Z ̸= 08, zi ̸= 0 for some i ∈ {0, 1, . . . , 8}. Now, we have:

xi × yi = zi for i ∈ {0, 1, 2, 3} , (12)
ui × vi = zi+4 for i ∈ {0, 1, 2, 3} . (13)

When zi ̸= 0 for some i ∈ {0, 1, 2, 3}, we assume without loss of generality that z0 ̸= 0.
Now, clearly the number of solutions to x0 × y0 = z0 is upper bounded by the number
of divisors of z0, i.e., by 218. Now each of xi × yi = zi for i ∈ {1, 2, 3} can have at most
2w+1 − 1 solutions. Consequently there can be at most 218(2w+1 − 1)3 solutions to (12).
Hence for such a Z, IPF-128(Z) < 218(2w+1−1)3

28w < 2−149.
When zi ̸= 0 for some i ∈ {4, 5, 6, 7}, we can similarly prove that (13) can have at

most 218(2w+1 − 1)3 solutions in ui, vi for i ∈ {0, 1, 2, 3} and since Nα and Nβ are both
invertible matrices, each value of ui, vi corresponds to a unique value of xi, yi and hence
for such a Z as well IPF-128(Z) < 2−149.

Corollary 3. For the public function F-128, we have MIPF-128 ≤ 2−127.

Proof. The proof follows directly from Lemmas 8 and 9.

5.2 Maximum Differential Probability of F-128
Given any differential ((a, b), ∆) to F-128, where a = (a0, a1, a2, a3)⊺, b = (b0, b1, b2, b3)⊺ ∈
(Z/2wZ)4 and ∆ = (δ0, δ1, . . . , δ7)⊺ ∈

(
Z/22wZ

)8, its DP depends on the number of active
multiplications in F-128 as a result of propagation of the input difference A = (a, b). The
number of such active multiplications are in turn lower bound by the branch numbers of
Nα and Nβ . We wanted to make sure that the minimum number of active multiplication
in F-128 is at least 4. This meant we were looking for a matrix with branch number
4. We also wanted the entries in our matrix to be small positive integers so that the
matrix multiplication could be computed using additions only. Nα satisfies these conditions
and Nβ = τ3(Nα). As such Nβ has similar diffusion properties and in particular has
branch number 4. Thus any differential over F-128 must contribute to at least 4 active
multiplications.

In the context of our public functions we call an input difference (a, b) ∈ (Z/2wZ)8 to
be unilateral iff a = 04 or b = 04. Due to the circulant nature of Nα and Nβ and since
Nβ = τ3(Nα), clearly DPF-128((a, 04), ∆) = DPF-128((04, a), ∆) and thus we only look at
unilateral differentials of type ((a, 04), ∆).

Now, the matrices are chosen such that only unilateral differentials lead to four active
multiplications in F-128. For a ≠ 0, we classify all such input differences (a, 04) and
compute the corresponding value of c in Table 3. Due to Lemma 7, we only look at values
of a with different relative position of non-zero components.

In Table 3 a = (2w−1, 2w−1, 2w−1, 0)⊺, denotes a single difference, while all other values
of a define a class of differences. This single entry appears since we are operating in Z/2wZ,
which is not a field and in Z/2wZ, 2 · 2w−1 = 0.

We now look at the DP of a unilateral differential to F-128. Throughout this section,
we will use the following notation: c = Nα · a, d = Nβ · b, p = Nα · h and q = Nβ · k.
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Table 3: Unilateral differences that lead to 4 active multiplications in F-128.
a⊺ c⊺

(a, 0, 0, 0) (a, a, a, 0)
(a, a, 0, 0) (0, a, a, 0)
(a, 0, a, 0) (0, a, 0, a)

(2w−1, 2w−1, 2w−1, 0) (2w, 0, 0, 0)

Lemma 10. Let ((a, 04), ∆) be a unilateral differential to F-128. Then we have

DPF-128((a, 04), ∆) ≤ 1
24w

,

where the equality occurs for ∆ = 08.

Proof. An input difference (a, 04) propagates to the output difference ∆ under the key
(h, k) iff (F-128(h ⊞ a, k)−F-128(h, k)) mod 22w = ∆, i.e.,

(((h ⊞ a)⊗ k, Nα · (h ⊞ a)⊗Nβ · k)− (h⊗ k, Nα · h⊗Nβ · k)) mod 22w = ∆ ,

where the output difference modulo 22w is computed component wise. This simplifies to,
for i ∈ {0, 1, 2, 3},

(((hi ⊞ ai)× ki)− (hi × ki)) mod 22w = δi ,

(((pi ⊞ ci)× qi)− (pi × qi)) mod 22w = δi+4 . (14)

For each of the 8 equations in (14), if the corresponding ai or ci becomes 0, that equation
leads to either an identity or a contradiction depending on whether the corresponding
δi or δi+4 is 0 or not. Now, if any of the 8 equations lead to a contradiction, then
DPF-128((a, 04), ∆) = 0.

Let us now assume that none of the 8 equations lead to a contradiction. Since Nα

has branch number 4, at least 4 components of (a, c) must be non-zero. Thus, (14) is a
system containing at least 4 equations. This system of equations, upon reduction modulo
2w, turn into a system of at least 4 linear equations involving only ki and qi by Lemma 1.
Furthermore, since q = Nβ · k , we have in fact a system of at least 4 linear equations in
the four variables k0, k1, k2 and k3, where the variables all lie in the interval [0, 2w). Nβ is
an invertible matrix and as such this system of equations can have at most one solution
for each of ki. This in turn implies that the total number of solutions to (14) can be at
most 24w. Thus, DPF-128((a, 04), ∆) ≤ 24w

28w = 1
24w and the upper bound is achieved when

the free variables h0, h1, h2, h3 take every possible value.
When ∆ = 08, (14) becomes:

((hi ⊞ ai)× ki) = (hi × ki) ,

((pi ⊞ ci)× qi) = (pi × qi) . (15)

Again, by similar arguments we see that (15) leads to a system of at least 4 equations
in 4 variables from ki, qi and any such system leads to a unique solution given by: k0 =
k1 = k2 = k3 = 0. They hold for any choice of h. Thus, we can say DPF-128((a, 04), 08) =
24w

28w = 1
24w .

So, for any differential ((a, 04), ∆) that leads to 4 active multiplications in F-128,
DPF-128((a, 04), ∆) ≤ 1

24w and in particular DPF-128((a, 04), 08) = 1
24w .

We now look at bilateral input differences that lead to 5 active multiplications in
F-128. We computed all such differences and again, keeping rotational symmetries aside
due to Lemma 7, for a, b ̸= 0 we tabulate these differences along with the value of the
corresponding c and d in Table 4.
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Table 4: Types of bilateral differences that lead to 5 active multiplications.
Type a⊺ b⊺ c⊺ d⊺

1 (a, 0, 0, 0) (b, 0, 0, 0) (a, 0, a, a) (0, b, b, b)
2 (a, 0, 0, 0) (0, b, 0, 0) (a, 0, a, a) (b, 0, b, b)
3 (a, 0, 0, 0) (b, 0, 0, b) (a, 0, a, a) (b, 0, 0, b)
4 (a, 0, 0, 0) (b, 0, b, 0) (a, 0, a, a) (b, 0, b, 0)
5 (a, 0, 0, a) (b, 0, 0, b) (a, a, 0, 0) (b, 0, 0, b)
6 (a, 0, 0, a) (b, b, 0, 0) (a, a, 0, 0) (b, b, 0, 0)
7 (a, 0, 0, a) (b, 0, b, b) (a, a, 0, 0) (2b, b, 0, 0)
8 (a, 0, a, 0) (b, 0, b, b) (0, a, 0, a) (0, b, 0, 2b)
9 (a, a, 0, a) (b, b, 0, b) (0, 0, 2a, a) (0, 0, b, 2b)
10 (a, a, a, 2a) (2b, b, b, b) (3a, 0, 0, 0) (3b, 0, 0, 0)

Lemma 11. Let ((a, b), ∆) be a bilateral differential of type 1 to F-128. So a = (a, 0, 0, 0)⊺
and b = (b, 0, 0, 0)⊺ for some a, b ̸= 0. Then,

DPF-128((a, b), ∆ ≤
∏

i∈{0,6,7} N((a, b), δi)
28w

.

In particular, for such (a, b), DPF-128((a, b), ∆) ≤ 2−5w.

Proof. An input difference (a, b) of type 1 propagates to the output difference ∆ under
the key (h, k) iff:

((h0 ⊞ a)× (k0 ⊞ b)− h0 × k0) mod 22w = δ0 , (16.1)
((p0 ⊞ a)× q0 − p0 × q0) mod 22w = δ4 , (16.2)
(p1 × (q1 ⊞ b)− p1 × q1) mod 22w = δ5 , (16.3)

((p2 ⊞ a)× (q2 ⊞ b)− p2 × q2) mod 22w = δ6 , (16.4)
((p3 ⊞ a)× (q3 ⊞ b)− p3 × q3) mod 22w = δ7 . (16.5)

Due to Lemma 1, (16.2) and (16.3) are satisfied for at most one value of q0 and p1
respectively. Let us assume that those equations are consistent and as such let those values
be: q0 = β and p1 = α.

Now for i ∈ {0, 6, 7}, (16.1), (16.4) and (16.5) has N((a, b), δi) solutions in variables
(h0, k0), (p2, q2) and (p3, q3) respectively. Let (α0, β0), (α6, β6) and (α7, β7) be one such
solution to equations (16.1), (16.4) and (16.5)respectively. Then we have

1 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

 ·


h0
h1
h2
h3

 =


α0
α
α6
α7

 and


1 0 0 0
0 1 1 1
1 1 0 1
1 1 1 0

 ·


k0
k1
k2
k3

 =


β0
β
β6
β7

 . (17)

Both the matrices in (17) are invertible and as such for each solution to (16.1), (16.4) and
(16.5), we obtain a unique value of (h, k). Thus, we can conclude

#SF-128((a, b), ∆) =


∏

i∈{0,6,7}
N((a, b), δi) , when (16.2), (16.3) are consistent

0 , otherwise .

Now, for each i ∈ {0, 6, 7}, N((a, b), δi) ≤ 2w. Thus we conclude that DPF-128((a, b), ∆ ≤∏
i∈{0,6,7}

N((a,b),δi)
28w ≤ 2−5w.



Koustabh Ghosh, Parisa Amiri Eliasi and Joan Daemen 17

For input difference (a, b) of types 2,3,4,5 and 6 as well, DPF-128((a, b), ∆) ≤ 2−5w.
We can see from Table 4 that for these types, just like differences of type 1, 2 of the active
multiplications have unilateral difference and the rest 3 have bilateral difference. Thus we
can upper-bound their DP in a similar way as described in the proof to Lemma 11.

Lemma 12. Let ((a, b), ∆) be a bilateral differential of type 7 to F-128. So a = (a, 0, 0, a)⊺
and b = (b, 0, b, b)⊺ for some a, b ̸= 0. Then, DPF-128((a, b), ∆) ≤ 2−5w.

Proof. An input difference (a, b) of type 7 propagates to the output difference ∆ under
the key (h, k) iff:

((h0 ⊞ a)× (k0 ⊞ b)− h0 × k0) mod 22w = δ0 , (18.1)
(h2 × (k2 ⊞ b)− h2 × k2) mod 22w = δ2 , (18.2)

((h3 ⊞ a)× (k3 ⊞ b)− h3 × k3) mod 22w = δ3 , (18.3)
((p0 ⊞ a)× (q0 ⊞ 2b)− p0 × q0) mod 22w = δ4 , (18.4)
((p1 ⊞ a)× (q1 ⊞ b)− p1 × q1) mod 22w = δ5 . (18.5)

Due to Lemma 1, (18.2) is satisfied for at most one value of h2. Let us assume that the
solution exists and let the solution be h2 = α.

Now, equations (18.1), (18.3) and (18.5) have N((a, b), δ0), N((a, b), δ3) and N((a, b), δ5)
solutions in variables (h0, k0), (h3, k3) and (p1, q1) respectively. Let (α0, β0), (α3, β3) and
(α5, β5) be one such solution to equations (18.1), (18.3) and (18.5)respectively. Then
corresponding to these solutions we have,

p1 = h1 ⊞ h2 ⊞ h3 = h1 ⊞ α ⊞ α3 = α5 =⇒ h1 = α5 ⊟ α ⊟ α3 ,

q1 = k0 ⊞ k2 ⊞ k3 = β0 ⊞ k2 ⊞ β3 = β5 =⇒ k2 = β5 ⊟ β0 ⊟ β3 .

Now the only unknown variable remaining is k1, which can be obtained from (18.4). Indeed
letting p0 = α0 ⊞ α5 ⊟ α3 = α4 and q0 = k1 ⊞ β5 ⊟ β0 = k′

1, (18.4) now becomes

((α4 ⊞ a)× (k′
1 ⊞ 2b)− α4 × k′

1) mod 22w = δ4 . (19)

Arguing similar to Lemma 1, we can see that (19) has at most one solution in k′
1 and

consequently for k1.
Thus, we see that corresponding to every solution of (18.1), (18.3) and (18.5), we obtain

a unique solution in (h, k). Thus we can conclude that

#SF-128((a, b), ∆) ≤ N((a, b), δ0)×N((a, b), δ3)×N((a, b), δ5) ≤ 23w .

Hence, DPF-128((a, b), ∆) ≤ 2−5w.

We can see that the proofs of Lemmas 11 and 12 are very similar. In fact, the same line
of reasoning as used in these proofs can be applied for differences of types 8,9, 10 and also
for bilateral differences that lead to more than 5 active multiplication. The basic strategy
is to first obtain the solution sets for three M[w]s in the corresponding variables (hi, ki) or
(pi, qi). This already finds 6 of the 8 unknown variables. Then corresponding to each such
solution, we can use remaining 2 equations to obtain the last 2 unknown variables. These
last 2 equations can now have at most 1 solution since these equations turn into modular
linear equation in a single variable and can have at most one solution. This upper-bounds
the number of solutions to 23w.

Corollary 4. For the public function F-128, MDPF-128 = 1
24w .

Proof. The proof follows directly from Lemmas 10, 11, 12 and the discussions that
follow.
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5.3 ε-∆universality of Multimixer-128
Theorem 2. Multimixer-128 is 2−127-∆universal.

Proof. The proof follows directly from Corollaries 3 and 4.

So, we see that MIPF-128 ≈ 1/2127. While it would have been ideal to have MIPF-128 ≈
1/2128, we would like to point out that for our public function only IPF-128(08) attains
that value and for all other outputs, the IP is significantly smaller than 1/2128. In fact
IPF-128(08) could also be decreased significantly if we used affine maps instead of the linear
maps corresponding to the matrices Nα and Nβ . However using affine maps will make
our function slightly less efficient. Furthermore for unilateral differentials with 4 active
multiplications, DPF-128 = 2−128 and using affine map instead of a linear one, does not
decrease the DPF-128 of such differentials. Thus difference of 1-bit in epsilon does not
outweigh the decrease in efficiency.

6 The NH Hash Function
The NH Hash function was proposed by Black et al. at CRYPTO 1999 [BHK+99]. For an
even κ ≥ 2 and a number w ≥ 1, the family of functions NH[κ, w] is defined as follows. Its
domain is BS(G, κ) with G = {0, 1}2w and range is {0, 1}2w. Let M = (M0, M1, . . . , Ml−1)
and K = (K0, K1, ..., Kκ−1), where l is an even integer. For each i ∈ {0, 1, . . . , l − 1} both
Mi, Ki ∈ {0, 1}w (where e.g. w = 16 or 32) and mi, ki denote respectively the numbers
that Mi and Ki represent as unsigned integers. Now, NH[κ, w] is defined as

NHK(M) =
(l−2)/2∑

i=0
[(m2i ⊞ k2i)× (m2i+1 ⊞ k2i+1)] mod 22w .

NH[κ, w] is 2−w-universal for equal length messages. To reduce this universality from
2−w to 2−tw, the authors apply NH[κ, w] function on the same message M with independent
keys t times, and concatenate the results. But this process requires t times as much key
material and to that end they further apply the Toeplitz technique [Kra94, MNT93] to
reduce the amount of extra key material. By this approach, they only require 2w(t−1)-bits
of extra key material. They denote the Toeplitz-NH as NHT[κ, w, t].

We compare Multimixer-128 with NHT[κ, 32, 4]. The NHT[κ, 32, 4] hash function does
achieve the universality of 2−128 for equal length messages by Theorems 1,2[BHK+99]. In
our security analysis, based on [FRD23] and [GFAD23], we consider messages of variable
length and MIP of a public function captures this notion. Thus, an analysis of NHT[κ, 32, 4]
taking into account messages of variable length, will lead to investigating the MIP of that
function. Now, NHT[κ, 32, 4] consists of parallel application of 4 NH[κ, 32] with independent
keys on the same message M. For NH[κ, 32], clearly MIPNH[κ,32] = IPNH[κ,32](0) = 2−31

and thus MIPNHT[κ,32,4] = 2−31×4 = 2−124.
The authors of NHT deal with messages of variable length by defining a mode on top

of NHT that applies NHT on fixed-length inputs. But, this results in longer digests for
long messages. While Multimixer-128 could also be applied on top of this mode, we do
not consider this since our analysis incorporates collisions between messages of different
length and as discussed in Section 5.3, offers similar levels of security as NHT.

7 Partial key knowledge
Some cryptographic algorithms have classes of weak keys and classes of weak keys of
MAC functions were identified in [HP08], where they were characterized as follows [HP08,
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Section 3.1]: “In symmetric cryptology, a class of keys is called a weak key class if for
the members of that class the algorithm behaves in an unexpected way and if it is easy to
detect whether a particular unknown key belongs to this class. For a MAC algorithm, the
unexpected behavior can be that the forgery probability for this key is substantially larger
than average.”

In this paper we investigate the differential uniformities of functions, that are defined
as worst case differential probabilities where the probability is taken over the full key space
assuming uniformly distributed keys. Clearly, taking this probability over non-uniform key
distributions can lead to significantly higher uniformities and thus forgery probabilities.
Any such non-uniform distribution could be labeled a class of weak keys (or rather a
generalization thereof). As a matter of fact, we think it is more informative to speak of
the implications of partial key knowledge on the effect of the forgery probability as done
in [HP08].

In general the knowledge of x key bits in Multimixer-128 may, in the worst case, increase
the forgery probability per message pair from 2−127 to 2x−127. We can illustrate that with
an extreme example. Assume the adversary knows the first half of the first block of the key:
(h0, h1, h2, h3). Then two single-block messages (−h0,−h1,−h2,−h3, m0, m1, m2, m3) and
(−h0,−h1,−h2,−h3, m′

0, m′
1, m′

2, m′
3) will collide for any values of (m0, m1, m2, m3) and

(m′
0, m′

1, m′
2, m′

3), so forgery can be realized with one generation query and one verification
query.

Multimixer-128 is not alone with this property. For example, in NHT knowledge of
128 bits of the key also allows generating a forgery in a single verification query [HP08,
Section 3.2]. So, while in classical block ciphers (or stream ciphers) with an n-bit key and
claimed pseudorandom permutation (PRP) security strength (or PRG security strength in
case of a stream cipher) of n bits, it is plausible that knowledge of x key bits may only
reduce the security strength to n− x, in Multimixer-128 and other keyed hash based MAC
functions only partial knowledge of the long key reduces the security strength to 0. It
is therefore essential for security that the long key K has been generated in a way that
makes its distribution practically indistinguishable from uniform.

8 Implementation and Benchmarking Results
We wrote optimized code for Multimixer-128 on 32-bit ARMv7 Cortex-A processors.
ARMv7 architecture was the first to introduce the Advanced Single Instruction and
Multiple Data Stream (ASIMD) extension to the ARMv7-A and ARMv7-R profiles. The
implementation of the ASIMD extension used in ARM processors is called NEON. To obtain
a highly-optimized keyed hash function, we not only considered the ASIMD extension in
our design phase but also utilized it in our implementation.

We chose ARMv7 architecture primarily because it is used inside many embedded
devices, and no Cryptography Extensions are available on this architecture. The Cryptog-
raphy Extensions add new instructions for the ASIMD to accelerate the execution of AES,
SHA1, and SHA2-256 algorithms. Although newer A-profile architecture targets allow for
these instructions, the availability of such extensions varies among devices and depends on
the CPU manufacturer’s decision.

We benchmark our code on a popular ARMv7-powered core, i.e., CortexA7. However,
our code runs on other ARMv7-A cores supporting NEON and can be adapted easily for
the ARMv8 Cortex-A family of processors.

We compare our code for Multimixer-128 with available open-source NHT implementa-
tion for the ARMv7 Cortex-A processors. For a fair comparison, all the performance-critical
parts in these implementations are written in assembly language, leveraging NEON in-
structions. Our code for Multimixer-128 outperforms NHT making it the fastest keyed
hash with that level of universality on ARMv7-powered devices. Software implementation
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can be found at https://github.com/Parisaa/Multimixer.

8.1 Multimixer-128 Implementation

NEON instructions make parallel operation on packed units of data, determined by the
so-called arrangement specifier, viable. We leveraged these instructions to parallelize our
process on data in the Multimixer-128 implementation. The arrangement specifier used in
all instructions of our code is 32 bits, as our input words in the design are defined with
the same length. The inputs to F-128 are 8 key and 8 message words that can be stored
in 4 vector registers. These message words are be loaded from memory and then mapped
as {x0, x1, y1, y2} and {x2, x3, y3, y0}. This re-mapping makes the implementation of the
circulant matrices more efficient and does not impact the security analysis.

The circulant matrix symmetry allows an efficient implementation using only vector
additions and a word shuffle called vector reverse in double-words. All in all, we imple-
mented both matrix multiplications in F-128 using only two vrev64 instructions and four
vadd instructions. Two vadd instructions add the key to the message in the beginning, and
4 vmlal instructions operate the integer multiplication and add the result to the register
that is used to keep the output. We end up with a total of 11 instructions per call to
F-128, while NHT uses 16 instructions to process same amount of data. By keeping most
operations in place we also minimize the number of MOV operations. We compare the
size features and number of arithmetic operations in Multimixer-128 with that of NHT in
Table 5.

Table 5: Feature comparison between NHT and Multimixer-128.
length in bits # ops. per 32-bit word

Algorithm digest block key × + mod 232 + mod 264

NHT 256 64 64(# blocks) +192 2 4 2
Multimixer-128 512 256 256(# blocks) 1 2.5 1

8.2 Performance

We benchmarked our Multimixer-128 code and that of NHT on an ARM Cortex-A7 pro-
cessor in the Broadcom BCM2836 chipset used in the Raspberry Pi 2 model B single
board computer and report in the results in Table 6. We also compared the performance
of Multimixer-128 and the two fastest NIST LWC candidates [MBA+23], Xoodyak [AK20]
and ASCON [DEMS21]. These two cryptographic schemes claim 128-bits of security and
they can be used for MAC computation by fixing the plaintext to empty and taking
associated data as input. For NHT and Xoodyak we used the fastest constant-time imple-
mentations we could find2,3. However, for the ASCON we used the reported performance
per authenticated/encrypted byte on an Armv7a architecture 4.

Xoodyak’s performance is around 24.5 cycles per authenticated byte for processing 1400
bytes, and the ASCON team reports performance of 30.7 cycles per authenticated/encrypted
byte on an Armv7a architecture, while for Multimixer-128, it is less than 2 cycles per
byte. Thus we conclude that Multimixer-128 outperforms NHT, Xoodyak, and ASCON on
Armv7a architecture platforms.

2https://github.com/google/adiantum/tree/master/benchmark/src/arm
3https://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo/ARMv7A-NEON
4https://ascon.iaik.tugraz.at/implementations.html

https://github.com/Parisaa/Multimixer
https://github.com/google/adiantum/tree/master/benchmark/src/arm
https://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo/ARMv7A-NEON
https://ascon.iaik.tugraz.at/implementations.html
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Table 6: Performance on ARM Cortex-A7 in cycles per byte.
Algorithm Input length in bytes

512 4096 32768
Multimixer-128 1.830 1.233 1.396

NHT 2.033 1.500 1.558
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