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ABSTRACT
Privacy-Preserving Machine Learning (PPML) provides protocols

for learning and statistical analysis of data that may be distributed

amongst multiple data owners (e.g., hospitals that own proprietary

healthcare data), while preserving data privacy. The PPML literature

includes protocols for various learning methods, including ridge

regression. Ridge regression controls the 𝐿2 norm of the model, but

does not aim to strictly reduce the number of non-zero coefficients,

namely the 𝐿0 norm of the model. Reducing the number of non-zero

coefficients (a form of feature selection) is important for avoiding

overfitting, and for reducing the cost of using learnt models in

practice. In this work, we develop a first privacy-preserving protocol

for sparse linear regression under𝐿0 constraints. The protocol addresses
data contributed by several data owners (e.g., hospitals). Our protocol

outsources the bulk of the computation to two non-colluding servers,

using homomorphic encryption as a central tool. We provide a

rigorous security proof for our protocol, where security is against

semi-honest adversaries controlling any number of data owners and

at most one server. We implemented our protocol, and evaluated

performance with nearly a million samples and up to 40 features.

KEYWORDS
Privacy preservingmachine learning, sparse linear regression, feature

selection, securemultiparty computation, homomorphic encryption

1 INTRODUCTION
The Machine Learning (ML) revolution critically relies on large

volumes of data to attain high confidence predictions. However, the

massive amounts of data collected on individuals and organizations

incur serious threats to security and privacy. From a legal perspective,

privacy regulations such as the European General Data Protection

Regulation (GDPR) and the California Customer Privacy Act (CCPA)

aim at controlling these threats. From a technological perspective,

Privacy PreservingMachine Learning (PPML) [45] attainsML utility

without exposing the raw data,
1
e.g., by leveraging tools for secure

computation [28, 33, 69].Many PPML solutions focus on the inference
phase, e.g., [11, 31, 34]. A growing body of literature also addresses

training, covering a range of learning tasks and techniques, including
training decision tree models, e.g., [45], as well as linear regression,

logistic regression and neural networks models, e.g., [49]. Recently,

attention has been drawn also to the task of privacy preserving

feature selection [44], which –in the context of linear regression– is

the focus of our work.

Feature selection [36] is the process of selecting a subset

of informative features to be used for model training, while

1
Other PPML concerns include limiting the amount of information revealed by the

output, e.g., using differential privacy in [57]; see a survey in [43].

removing non-informative or redundant ones. Feature selection

is important for avoiding overfitting, that is, for producing

models that support high quality prediction on new data rather

than models that essentially “memorize” the training data set

while failing to generalize. Moreover, feature selection supports

producing sparse models whose use for prediction in practice

requires measuring only the few selected features. Sparsity is

often a desired property, leading to significant cost savings when

the model is repeatedly used for prediction, especially when

feature extraction is expensive. For example, sparse models are

highly desired in medical applications where feature extraction

might involve medical interventions with associated financial and

morbidity costs (see Section 3.1).

The focus of this work is on feature selection under 𝐿0
constraints,2 specifically for wrapper methods. In contrast, previous

work on privacy preserving feature selection considered only
filter [16, 44, 53] and embedded methods [1, 3, 4, 20, 27, 29, 40, 45,
46, 50, 62–64, 66, 68, 71, 71], but not wrapper methods. We next

elaborate on the differences between these methods.

Selecting the subset of features of highest predictive power is

computationally intractable [15]; nonetheless heuristic methods

– which can be categorized into filter, embedded and wrapper
methods – are widely employed in practice with great success.

Filter methods assign a score to each feature in isolation, outputting

the highest scoring features; they are typically very fast, but often
fail to select the best features because they ignore relationships and

dependencies between features. Embedded methods intrinsically

incorporate feature selection into the model training process, e.g.,

in decision tree regression, as well as in ridge and Lasso regression;

The latter two techniques penalize models according to their (𝐿2 and

𝐿1 respectively) norms, favoring models with fewer high-weight

features. However, they do not necessarily return a sparse model: the
model often includes a tail of low-weight features (particularly in

ridge regression). Wrapper methods select features in an iterative

process, with a target ML algorithm in mind (e.g., linear regression).

In each iteration: (1) a model is trained on the current subset of

features, then (2) features are ranked according to an evaluation

metric measuring their usefulness for that model, and (3) this

ranking is used to specify the subset of features for the next iteration.

Wrapper methods are considerably slower than filter and embedded

methods, due to the multiple rounds of model training, but often
lead to superior outcomes for the target ML algorithm.

In summary, none of the aforementioned methods strictly

dominates the others (see, e.g., a comparative study in [39]).

2
Concretely, an 𝐿0 constraint determines the intended number of features in the model

(e.g., dictated by hardware considerations and/or limitations, as in [52]). We then look

for the best model that satisfies this constraint.
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Consequently, common practices often examine several methods in

search of the best performing one (using cross-validation to avoid

overfitting) or use a hybrid approach to combine the strengths of

several methods. Examples for hybrid approaches include using

a filter method to quickly remove many features, then selecting

from the remaining ones using an embedded or wrapper method

(see, e.g., [19, 59]); or, executing wrapper and embedded methods

in parallel, each scoring the features, where the output includes the

features with highest total score (see, e.g., [17, 18, 35]).

Thus, providing privacy preserving solutions to a wide variety of
feature selection methods is essential to supporting versatile usecases.

1.1 Our Contribution
In this work we present the first privacy-preserving feature selection
solution in a wrapper method, producing a sparse regression model
under 𝐿0 constraint (i.e., with exactly the specified number of

features). Concretely:

Our protocol.We design the Secure Iterative Ridge regression (SIR)
protocol: a new protocol that produces a sparse ridge regression
model, over input data that is (horizontally)-partitioned among

distrusting data-owners, and where the bulk of the computation is

outsourced to two non-colluding servers (aka, two-server model).
Horizontal partitioning means that each data owner contributes

a subset of data samples. Our solution utilizes homomorphic

encryption [28, 54] as a central tool. The wrapper method that

we realized in a privacy preserving fashion is the commonly

used Recursive Feature Elimination (RFE) algorithm, introduced

in the highly influential paper [37]. RFE starts by considering all

features, iteratively training amodel on the current set of “surviving”

features, and removing features of lowest weight (the number of

removed features is a tunable parameter), until reaching the 𝐿0
constraint. The ML model that we train at each iteration is a ridge

regression model, so that at the termination of all iterations we

obtain a sparse regression model. As a central new component

we introduce a scaled ridge regression protocol, which may be of

independent interest.

Privacy & Threat Model. Privacy holds against all semi-honest

computationally-bounded adversaries controlling any number of

data owners and at most one of the two servers. The security

guarantee is that such adversaries cannot infer any information on

the inputs of data owners that they do not control, except for what

can be efficiently computed directly from the public parameters, and

the inputs and outputs of corrupted parties.
3
Our security proof for

SIR covers the case of overdetermined linear regression (more data

samples than features and full rank). To demonstrate the necessity

of the security measures implemented in SIR, we devise explicit
attacks showing that simplified variants without these measures

are insecure.

Complexity. The complexity of each data owner is proportional

only to her input and output size (and polynomial in the security

parameter). The two servers engage in a two-party protocol with

round complexity logarithmic in the number of input features 𝑑 ,

and complexity that is cubic in 𝑑 (up to poly-logarithmic factors)

3
The public parameters consist of the number of input samples and features, data

precision, model regularization parameter, and model sparsity.

and logarithmic in the number of input records 𝑛 (and polynomial

in the security parameter); the protocol includes homomorphic

computations of multiplicative depth at most 𝑂 (log𝑑+ log log𝑛).
System and empirical evaluation. We implemented our protocol SIR

and empirically evaluated its performance. Our system is generic

and can be applied to any dataset with numerical features. As

a concrete example, we ran experiments on a gene-expression

dataset derived from TCGA [60]. The full data matrix taken from

TCGA breast cancer data consists of gene expression profiles for

781 samples. Each profile, representing a human subject, consists

of over 10𝐾 values. Our proof of concept data represents regressing

the expression pattern of a target gene (a vector with 781 entries),

based on arbitrarily selected 40 other genes. Furthermore, we

artificially randomly partition the 781 instances amongst 10 data

owners. We note that horizontal partition, as in our experiments,

has interesting use cases in analyzing gene expression related data,

e.g., in [6, 8, 30, 58]. In our experiments, each iteration removes

10% of the features, and the 𝐿0 constraint is to produce a model

consisting of 8 features.

We point out that the initial selection of 40 out of 10𝐾 features

would typically be executed using filter methods (due to their

fast runtime), which can be done using the prior art on privacy

preserving filter methods [16, 44, 53]. We focus therefore on

selecting the 8 out of 40 remaining features using SIR –our privacy

preserving RFE– which is the contribution of our work.

Our experiments demonstrate that our system produces the

desired model – i.e., the same model as produced in the clear.

Running in the clear takes seconds while our privacy preserving

system terminates in just under a day, using 134GB RAM.

Scalability. Our protocol scales favorably with the number of

input records and data owners, as demonstrated by our empirical

evaluation on up to 802,816 records and 1000 data owners, where a

512× growth in the number of records (respectively, 10× growth in

the number of data owners) led to runtime increase by only 10%

(resp., 1%).

1.2 Comparison to Prior Work
Prior privacy preserving feature selection solutions were in filter or

embedded methods, whereas ours is the first in a wrapper method

(concretely, a privacy preserving RFE). Although none of these

methods dominates the others, RFE was developed in [37] for the

use case of gene expression data, where it excelled. Indeed, the

mean square error (MSE) of the model produced by our system

significantly outperforms the regression models produced by filter,

ridge and Lasso (the baseline); see Section 10.2.

In terms of runtime, our system is expected to be slow, since,

even in cleartext, wrapper methods are considerably slower than

filter and embedded ones. This is also evident by our experiments,

where the runtime of our system (on 40 features) is roughly 1 day,

compared to runtimes between slightly under a minute, and a few

hours, on various dataset sizes (with 20-120 features) reported in

previous works [4, 16, 27, 29, 40, 44, 50, 53, 63, 64, 71, 71].

Producing better models (i.e., with smaller MSE) –as in SIR– is

typically desired, even if it incurs a slower (but reasonable) training

runtime. This is because training a model occurs once, whereas

the fruits of having a better MSE provide recurring benefits in

2
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each use of the model. Furthermore, a runtime of 1 day (and even

more) seems to be reasonable in the context of gene-expression

data, where the trained model is used to guide the manufacturing

of a medical testing device (DNA chip), and our training time is

insignificant when compared to the manufacturing pipeline.

Furthermore, our runtime can be significantly lowered by tuning

the system parameters to remove a larger fraction of the features

in each iteration, thus reducing the total number of iterations. In

particular, when tuning parameters so that our system returns a

model satisfying the 𝐿0 constraint in a single iteration, our system

terminates in only 1 hour (when executed on 20 features and 1000

data samples). This single-iteration parameter setting may be of

independent interest, because it provides a privacy preserving

truncated ridge model – i.e., a ridge regression model whose

low weight features are truncated as to satisfy the 𝐿0 constraint.

This should be used with caution though, as our experiments

indicate that there is a tradeoff between runtime and MSE – where

performing more iterations typically yields a better MSE.

In summary, SIR expands over prior work in offering the first

privacy preserving feature selection in a wrapper method. This

widens the PPML toolset to include the commonly used RFE, which

leads to favorable learning outcomes in some use cases of interest.

1.3 Paper Organization
We give an overview of our techniques, along with a comparison to

techniques used in prior work, in Section 2. Preliminary definitions

appear in Section 3; the problem statement in Section 4. The SIR

protocol appear in Sections 5-6; our attacks (on simplified variants

of SIR, demonstrating the necessity of SIR’s various components)

in Section 7; and the security and complexity analysis of SIR in

Sections 8-9 respectively. Our system and empirical evaluation

appear in Section 10. Conclusions appear in Section 11.

2 OVERVIEW OF OUR TECHNIQUES
In this section we give an overview of our techniques. We present

the high level overview of SIR in Section 2.1, elaborate on its key

components in Sections 2.2-2.3, discuss our attacks in Section 2.4,

and compare our techniques to prior work in Section 2.6.

2.1 IR and SIR
We first describe the (insecure) feature selection algorithm, called

Iterated Ridge (IR); and then present our Secure Iterative Ridge

regression (SIR) protocol.

Iterated Ridge (IR, cf. Figure 1) is an RFE algorithm for sparse ridge

regression, analogous to the sparse logistic regression algorithm

used in [26]. IR starts with all features, removing 10% of the features

in each iteration, until reaching 2 · 𝑠 features, where 𝑠 is the user-
determined target number of features, then removes features one-

by-one.
4
(This follows the paradigm of adjusting the learning

rate to a smaller value when approaching the solution.) Selecting

which features to remove in each iteration is done by solving ridge

regression (see Section 3.1) on the surviving features to obtain an

intermediate model, and removing the features whose weights (in

absolute value) are in the bottom 10%.

4
The fraction of features to be removed in each iteration, and the threshold determining

when to transition to the one-by-one phase, are both user-definable hyper-parameters.

Secure Iterative Ridge (SIR, cf. Figure 2) is executed between𝑚 data

owners DO1, . . . ,DO𝑚 and two non-colluding servers S1,S2. The
data owners’ inputs are a horizontal partition of the data matrix

𝑋 ∈ R𝑛×𝑑 and the target vector ®𝑦 ∈ R𝑛 ; i.e., there is a partition

𝐼1, . . . , 𝐼𝑚 of [𝑛] = {1, . . . , 𝑛} so that each data owner DO𝑗 holds

the restriction of 𝑋 and ®𝑦 to rows with indices in 𝐼 𝑗 , denoted 𝑋
𝑗

and
®𝑦 𝑗 . Let 𝑁 denote a sufficiently large integer (as determined

by Equation 4). In SIR we use homomorphic computation over

encrypted data, which translates into computing on the underlying

cleartext values with arithmetic modulo 𝑁 , i.e., in the ring Z𝑁
(unless explicitly stated otherwise). The values in 𝑋, ®𝑦 are assumed

to be normalized to [−1, 1] (which is common in ML), and each

data owner scales her data to integral values in [−10ℓ , 10ℓ ] for a
common precision parameter ℓ . Moreover, 𝑁 is set to be sufficiently

large so that, despite computing modulo 𝑁 , we are able to produce

the same final output as if computing over the integers.

SIR is composed of four phases as detailed next.

Phase I. Setup & Upload (cf. Figures 4-5 and Figure 6 Step 1): S2
generates a key pair (𝑝𝑘, 𝑠𝑘) for a fully homomorphic encryption

scheme, and publishes 𝑝𝑘 .5 Each data owner DO𝑗 encrypts (entry-

by-entry) 𝐴 𝑗 = (𝑋 𝑗 )𝑇 · 𝑋 𝑗 and ®𝑏 𝑗 = (𝑋 𝑗 )𝑇 · ®𝑦 𝑗 under 𝑝𝑘 , and
sends the ciphertexts to S1 who homomorphically combines them

to obtain ciphertexts for:

𝐴 =
∑
𝑗

𝐴 𝑗 + _𝐼 ∈ R𝑑×𝑑 and
®𝑏 =

∑
𝑗

®𝑏 𝑗 ∈ R𝑑 .

Phase II. Obliviously Permute Features (cf. Figure 6 Steps 2-3): S1 and
S2 engage in a 1-message protocol that concludes with S1 holding
ciphertexts for

𝐴𝑝 = 𝑃𝑇 · 𝐴 · 𝑃 and
®𝑏𝑝 = 𝑃𝑇 ®𝑏,

where 𝑃 is a random 𝑑 × 𝑑 permutation matrix. Importantly, S1
and S2 have no information on 𝑃 other than it being a random

permutation of the features’ indices [𝑑] = {1, . . . , 𝑑}. For this

purpose 𝑃 is sampled obliviously as follows. First, S2 samples a

uniformly random 𝑑 × 𝑑 permutation matrix 𝑃2, encrypts it, and

sends the ciphertexts to S1. Next, S1 samples a uniformly random

𝑑 × 𝑑 permutation matrix 𝑃1, and homomorphically computes

𝑃 = 𝑃1 · 𝑃2, 𝐴𝑝 and
®𝑏𝑝 .

Phase III. Privacy Preserving RFE (cf. Figure 2, Steps 2-3): At the onset
of this phase, S1 initializes the set 𝐹 of surviving features to be all

features, i.e., 𝐹 = [𝑑]. Denote by𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 the restriction of𝐴𝑝

and
®𝑏𝑝 to the surviving features 𝐹 (i.e., include only rows of𝐴𝑝 and

®𝑏𝑝 whose indices are in 𝐹 , and likewise for columns of 𝐴𝑝 ). While

the number of features in 𝐹 exceeds the 𝐿0 constraint, features are

removed as follows:

(1) Scaled ridge (cf. Figure 3): First, S1 and S2 engage in a

two-party protocol, at the conclusion of which S1 holds

a ciphertext encrypting the scaled ridge regression model:

®𝑤
scaled

= det(𝐴𝑝 |𝐹 ) ·
[
(𝐴𝑝 |𝐹 )−1 · ®𝑏𝑝 |𝐹

]
5
More precisely, S2 produces two key pairs –(𝑝𝑘𝑁 , 𝑠𝑘𝑁 ) and (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) , with
𝑑+1 ≤ 𝐷 ≪ 𝑁– supporting homomorphic computationmodulo𝑁 and𝐷 respectively.

We primarily employ 𝑝𝑘𝑁 ; using 𝑝𝑘𝐷 only briefly during ranking (Phase III, Part 2).

3
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This is a scaling by factor det(𝐴𝑝 |𝐹 ) of the ridge regression
model for (𝐴𝑝 |𝐹 , ®𝑏𝑝 |𝐹 ) which is ®𝑤 = (𝐴𝑝 |𝐹 )−1 · ®𝑏𝑝 |𝐹 . This
scaling is central for both the correctness and the efficiency

of our protocol; see a detailed discussion in Section 2.2.

In detail, the scaled ridge protocol operates as follows. First,

S1 homomorphically masks 𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 , and sends their

masked versions to S2, where these masked versions are:

𝐴masked = 𝐴𝑝 |𝐹 · 𝑅 and
®𝑏masked = ®𝑏𝑝 |𝐹 + 𝐴𝑝 |𝐹 · ®𝑟 for

uniformly random invertible matrix 𝑅 and random vector 𝑟

of the appropriate dimensions.
6
Next,S2 decrypts, computes

det(𝐴masked) and ®𝑤masked

scaled
= adj(𝐴masked) · ®𝑏masked

in the

clear, encrypts them, and sends the ciphertexts to S1. Finally,
S1 homomorphically unmasks to obtain ciphertexts for

the scaled (un-masked) model, using the algebraic identity:

®𝑤
scaled

= 𝑅 · ®𝑤masked

scaled
+ det(𝐴masked) · ®𝑟 . We refer the reader

to our analysis in Section 8 for the proof of correctness.

(2) Ranking (cf. Figure 9, Steps 1-4): Next, S1 and S2 engage in a

two-party protocol, at the conclusion of which S1 holds a
ranking –in cleartext– of the surviving features according to

their weight in ®𝑤
scaled

; see details in Section 2.3. Importantly,

S1 does not know the actual weights, only their ordering.

This does not violate privacy, because the features were

randomly permuted; details are provided in our privacy

analysis in Section 8.

(3) Removal (cf. Figure 9, Steps 5-6): Finally, S1 removes the

(dynamically adjusted desired number of) lowest ranking

features, and updates 𝐹 , 𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 accordingly.

We elaborate on the scaled ridge regression and ranking sub-

protocols in the subsections below.

Phase IV. Obliviously un-permute and rationally reconstruct (cf.
Figure 8):At the onset of this phase the servers hold a subset 𝐹 ⊆ [𝑑]
of feature indices, which satisfies the 𝐿0 constraint, i.e., |𝐹 | = 𝑠 . They
now engage in a two-party protocol to produce a (cleartext) sparse

ridge regressionmodel whose non-zeroweights are only on features

in 𝐹 .7 First, S1 and S2 engage in a two-party sub-protocol, at the

conclusion of which S1 holds ciphertexts for the ridge regression
model ®𝑤𝑝 = (𝐴𝑝 |𝐹 )−1 · ®𝑏𝑝 |𝐹 for the final set of features 𝐹 . Second,S1
homomorphically un-permutes the features’ order (where features

that did not survive have weight zero), and sends this un-permuted

encrypted model to S2 who decrypts it, and sends it in the clear

to S1. That is, S1 now has ®𝑤 = 𝐴−1|𝐹 · ®𝑏 |𝐹 , where the inverse and
product are computed in Z𝑁 . Finally, S1 maps ®𝑤 to the solution to

ridge regression over the surviving features when computed over the
rationals (rather than in Z𝑁 ) via rational reconstruction [23, 65],

8

and outputs the resulting model.

6
This masking was introduced in [29] in the context of privacy preserving ridge

regression. However, unlike our work, they employ masking to produce a ridge model

that is un-scaled and in cleartext; see details in Section 2.6.

7
The ridge regression model is computed similarly to the protocol of [4], except for

restricting the data to the features in 𝐹 , and obliviously masking and un-permuting

over an encrypted model; see Section 2.6.

8
Rational reconstruction refers to the Lagrange-Gauss algorithm which allows one to

recover a rational 𝑞 = 𝑟/𝑠 from its representation 𝑞′ = 𝑟 · 𝑠−1 ∈ Z𝑁 for sufficiently

large 𝑁 (in particular, this holds for 𝑁 which satisfies Equation 4).

2.2 Our Scaled Ridge Protocol
A central new component in our solution is a sub-protocol that we

call scaled ridge regression, which may be of independent interest.

Our scaled ridge builds on the following two observations.

Observation 1: Ranking is invariant to scaling. Ranking indices of a

vector ®𝑤 according to the magnitude of their associated values

𝑤 [𝑖] (in absolute value) is invariant to scaling the vector by a

positive factor. Therefore, instead of ranking features according to

their magnitude in the ridge regression model, we can rank them

according to any (non-zero) scaling of this model.

Observation 2: homomorphic ranking is considerably faster with our
scaling. We show that homomorphic ranking is considerably faster

when we scale the ridge regression model as we do. To explain

why this is so, we first provide some background and point out a

key complexity bottleneck in homomorphic ranking of the ridge

regression model. We then explain how to eliminate this bottleneck

using scaling.

Let (𝑋, ®𝑦) be a data matrix and target vector in a ridge regression

problem, and set𝐴 = 𝑋𝑇 ·𝑋 +_𝐼 and ®𝑏 = 𝑋𝑇 · ®𝑦. The ridge regression
model is:

®𝑤 = 𝐴−1 · ®𝑏
where the arithmetic in computing 𝐴, ®𝑏 and ®𝑤 is over the reals. In

our privacy-preserving solution we compute an encrypted model ®𝑤
via homomorphic computation over encrypted 𝐴 and

®𝑏, and where

the underlying plaintext computation is conducted in a finite ring

Z𝑁 of integers modulo 𝑁 (rather than over the reals). To ensure

that the same model is obtained despite performing computations

modulo 𝑁 , two measures are required. First, 𝑁 must be sufficiently

large (cf. Equation 4) so that, e.g., 𝐴 mod 𝑁 and
®𝑏 mod 𝑁 are

identical to 𝐴 and
®𝑏. Second, rational reconstruction must be

computed on each entry of the reduced model 𝐴−1 · ®𝑏 mod 𝑁 to

map it to the model ®𝑤 computed over the reals. Unfortunately,

homomorphically computing rational reconstruction is a complexity
bottleneck.

Next, we show that scaling the model by the factor det(𝐴) allows
us to eliminate the need for rational reconstruction. Relying on

the algebraic identity 𝐴−1 = adj(𝐴)
det(𝐴) (where adj(𝐴) is the adjugate

matrix of 𝐴), we can see that the scaled model ®𝑤
scaled

= det(𝐴) ·
𝐴−1 · ®𝑏 is equal to

®𝑤
scaled

= adj(𝐴) · ®𝑏.
Since computing adj(𝐴) involves onlymultiplications and additions,

then –when using a sufficiently large 𝑁 , as we do– no wrap-around

occurs when computing ®𝑤
scaled

modulo 𝑁 . Namely, computing

over Z𝑁 produces an identical scaled model as when computing

over the reals. This implies that we can directly rank the entries

of ®𝑤
scaled

mod 𝑁 without executing rational reconstruction. Namely,

we are able to avoid performing rational reconstruction in each

iteration, thus eliminating a key complexity bottleneck.

2.3 Our Ranking Protocol
We rank features in the scaled ridge model of the current iteration

by their absolute value. This is done by ordering features according

to their “size”, measured as their distance from the nearest multiple

of 𝑁 . This measurement of the “size” of a feature can be thought of

4
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as treating values larger than (𝑁 − 1)/2 as negative, and comparing

the absolute value of the features. Denote the current scaled model

by ®𝑤
scaled

= (𝑧1, . . . , 𝑧𝑑 ) ∈ Z𝑑𝑁 s.t. it has non-zero values 𝑧𝑖 ≠ 0

only on indices 𝑖 in the current surviving set of features 𝐹 ⊆ [𝑑].
The ranking is computed as follows. First, S1 masks each pairwise

difference 𝑧2
𝑖
− 𝑧2

𝑗
mod 𝑁 , with 𝑖, 𝑗 ∈ 𝐹 , by homomorphically

adding to it a uniformly random integer 𝑟𝑖, 𝑗 (modulo 𝑁 ), and sends

the masked differences to S2. Second, S2 decrypts each masked

difference 𝑧2
𝑖
−𝑧2

𝑗
+𝑟𝑖, 𝑗 mod 𝑁 , converts it to a binary representation

(in the clear), encrypts this bit-by-bit and sends the ciphertexts toS1.
The encryption of this binary representation is under the key pair

(𝑝𝑘𝐷 , 𝑠𝑘𝐷 ), generated byS2 during setup, whose plaintext modulus

is a small integer 𝐷 larger than 𝑑 . Third, S1 homomorphically

compares each encrypted masked pairwise difference 𝑧2
𝑖
− 𝑧2

𝑗
+ 𝑟𝑖, 𝑗

with his cleartext 𝑟𝑖, 𝑗 (where both are in binary representation,

and while accounting for all possible overflows), producing an

encrypted outcome bit𝑏𝑖, 𝑗 which is equal to 1 if-and-only-if 𝑧
2

𝑖
> 𝑧2

𝑗

and zero otherwise. Then, for each 𝑖 , S1 homomorphically sums up

the bits 𝑏𝑖, 𝑗 for all 𝑗 to obtain a ciphertext encrypting Ord𝑖 , which

is the number of indices 𝑗 with magnitude 𝑧2
𝑗
smaller than 𝑧2

𝑖
(we

assume all weights are distinct), and sends all these ciphertexts to

S2. Fourth, S2 decrypts all ordinals, computes the set of surviving

features according toOrd1, . . . ,Ord𝑑 (i.e., the set of highest-ranking

features), and sends the indicator vector of this set (in the clear) to

S1.
Importantly, in order to support fast homomorphic summation

of these encrypted results, we instructed S2 – when encrypting the

weights in binary representation – to use a small plaintext modulus

of size 𝐷 , where 𝐷 > 𝑑 is larger than the number of comparison

results to be summed-up. Since 𝐷 > 𝑑 , then there is no overflow

when computing Ord1, . . . ,Ord𝑑 , and so they are a permutation

of {1, . . . , 𝑑} ranking the entries of ®𝑤 by their size. The Boolean

operations computed during the aforementioned homomorphic

comparison are then emulated in Z𝐷 (defining, for 𝑎, 𝑏 ∈ {0, 1},
𝐴𝑁𝐷 (𝑎, 𝑏) = 𝑎 · 𝑏 mod 𝐷 and 𝑋𝑂𝑅(𝑎, 𝑏) = (𝑎 − 𝑏)2 mod 𝐷). This

at most doubles the multiplicative depth of comparison, for the

benefit of making the summation computation a linear function

that requires no multiplications.

The above (simplified) description of the ranking protocol

overlooked the following subtle point: in each iteration, the servers

learn the ordering between the features in the current iteration’s

model. If the same permutation on features were to be used in all

iterations, this knowledge from the execution of multiple iterations

might reveal non-trivial information (similar to the issues which

arise by performing scaled ridge on unpermuted features, see

Section 7). To overcome this, we have S1 apply a fresh permutation

on the Ord𝑖 ’s before sending them to S2. The permutation is

inverted at the end of this step, and does not affect the rest of

the computation. Privacy is preserved because each iteration uses

a fresh permutation for ranking (which is applied on top of the

long-term permutation applied at the onset of the protocol). See

Section 8 for details.

2.4 Security Challenges and Attacks
The iterative training of intermediate models is inherent to wrapper

methods (and does not occur in filter or embedded methods),

and introduces several security challenges. Indeed, we show that

revealing any of the following (which are revealed in standard IR)

would violate privacy (see details in Section 7):

• The order by which features are removed.

• The intermediate models.

• The scaling factor det(𝐴) in a scaled ridge model.

This demonstrates the necessity of the security measures

implemented in SIR. Hiding this information while maintaining

efficiency is a key challenge in designing SIR.

2.5 Discussion: Model Inversion Attacks
Our protocol (SIR) guarantees that only the output model (and

whatever can be efficiently inferred from it) is revealed. This is the

standard security goal in secure computation; however, it leaves

open the question of how much information is revealed by the

output model, and how to reveal even less.

Prior works [24, 25, 70] have shown that learning the model may

indeed reveal non-trivial information on private inputs of honest

parties. Most relevantly, [25] showed, in the context of genomic data

for personalized medicine using a (non-sparse) linear regression
model, that access to the trained model can be abused to infer

private genomic attributes about individuals in the training dataset.

Moreover, [25] showed that differential privacy is not effective for

guaranteeing privacy because it is at odds with utility: when setting

the privacy parameters sufficiently high to prevent their attack, the

produced model does not retain sufficient clinical efficacy.

SIR is likewise susceptible to model inversion attacks. This is

because sparsity of the model in itself does not guarantee security
against inversion attacks, since even a single bit of information

can compromise privacy. For example, in the context of gene-

expression data, certain genetic variants are more common in

some ethnicities than in others, and so revealing whether a feature

corresponding to such a genetic variant is selected in the model may

reveal the ethnicity of the population represented in the training

dataset. Concretely, we present a model inversion attack showing

that corrupt data owners who inject maliciously crafted inputs

(but otherwise follow the protocol) can infer from the output

model non-trivial information on the inputs of the honest data

owners. The attack holds even when the output is a 1-sparse model,

i.e., it consists of one selected feature. At a high-level, corrupted

data owners use “balanced” inputs, in which all features have the

same correlation with the response vector. Thus, inputs provided

by corrupted parties do not affect the output model, and any

correlations in the inputs of the honest parties will determine which

features are selected in the sparse output model. The formal details

are provided in Section 7.

To reduce the privacy risk associated with revealing the model,

our solution SIR offers a fine grained control on how, and to

whom, the model is revealed. This can be obtained by applying

the following minor changes in Phase IV: “Obliviously un-permute

and rationally reconstruct” step(cf. Section 2.1 and Figure 8 Step 3).

Alternative 1: Revealing the output model in cleartext to all
participants of the protocol (but nothing more). This is the outcome

when executing the protocol as specified in Section 2.1.

Alternative 2: Revealing the model only to one designated party,
denoted O, who may be an external party participating only in
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Phase IV, as follows. S1 sends the (encrypted and un-permuted)

model to O (instead of S2); O homomorphically masks the model

with a random additive mask (using Add from Table 1), and sends

the encrypted masked model to S2 who decrypts and returns the

(cleartext) masked model to O; finally, O removes the masking and

computes rational reconstruction to obtain the output model. This

is motivated by scenarios where S1,S2 are powerful servers to

which computation is outsourced (say, Amazon AWS and Google

Cloud) and where O is some health organization authorized to

receive the computed model (say, the World Health Organization).

Alternative 3: Outputting the model only in encrypted form. In this

case S1 simply publishes the encrypted model, instead of sending

it to S2 for decryption (i.e., remove Step 3 in Figure 8). The model

in this case is specified by a vector of 𝑑 ciphertexts whose plaintext

values are in Z𝑁 and where at most 𝑠 of them are non-zero (in order

to hide both the indices of the selected features and their weight).

Outputting an encrypted model is motivated by scenarios where the

encryptedmodel is employed for privacy preserving inference using

homomorphic computation, as follows. Given the encrypted model

and a (possibly, encrypted) sample
9
homomorphically compute the

inner product of the model and sample, homomorphically mask the

resulting value in Z𝑁 (using additive mask), and send the ciphertext

to S2 for decryption; then unmask the returned plaintext and apply

rational reconstruction to obtain the inference result as a rational

number. See Remark 8.9 for further details. We note that in order

to reduce the efficacy of model inversion attacks it is advised to

enforce a security policy restricting the entities authorize to make

inference queries, and limiting their number of allowed queries.

Analyzing such security measures is beyond the scope of this work.

2.6 Comparison to Prior Techniques
The two-server approach for privacy-preserving ridge regression

dates back to the work of Nikolenko et al. [50], who were also

the first to propose using additive homomorphic encryption

for merging the data from all data owners. We follow them

in our Setup & Upload phase. Solving the linear system (𝐴, ®𝑏)
was done in [50] using garbled circuits to guarantee security.

Giacomelli et al. [29] proposed instead to solve a masked linear

system (𝐴masked, ®𝑏masked), where S1 masks the systems using

homomorphic addition, S2 decrypts, solves, and sends the solution

(the model) –in cleartext– to S1, who unmasks and applies rational

reconstruction in the clear. Importantly, in [29] the model is sent in

the clear, and both the unmasking and the rational reconstruction

are done in the clear. However, this is impossible in our setting:

we cannot expose the intermediate models in the clear, because

this compromises privacy as we show in our attacks. Moreover, we

cannot simply have S2 send the model in encrypted form and have

S1 process it homomorphically, because the rational reconstruction

step requires many sequential steps, making it computationally

expensive to compute homomorphically.

Blom et al. [10] proposed avoiding rational reconstruction by

having S2 send adj(𝐴masked) · ®𝑏masked
and det(𝐴masked) (in the

clear), where S1 unmasks to obtain adj(𝐴) · ®𝑏 and det(𝐴) and

9
The sample is a length 𝑑 vector specifying the sample’s value for each features. Note

that we require specifying all 𝑑 features, rather than only the selected 𝑠 features,

because in this scenario we do not reveal which features are selected to the model.

then computes the model 𝐴−1®𝑏 = adj(𝐴) ®𝑏/det(𝐴) with division
over the reals. However, we cannot follow their approach, because

we cannot send these values in the clear (as this would violate

privacy, as we show in our attacks). Moreover, we cannot send the

values in encrypted form, and have S1 homomorphically compute

the division, because computing division homomorphically (be it

modulo 𝑁 or over the reals) is computationally expensive and thus

not a viable alternative. In fact, even in the final iteration where the

model can be revealed, our attacks demonstrate that it still violates

privacy to reveal the pair (adj(𝐴) ®𝑏, det(𝐴)) rather than only their

ratio adj(𝐴) ®𝑏/det(𝐴). We therefore cannot employ the approach

of [10]. Nonetheless, their approach inspired us in proposing our

scaled ridge regression protocol.

Our proposed scaled ridge regression offers a new formulation,

which eliminates the need for both rational reconstruction

and division. In our protocol, S2 sends –in encrypted form–

the pair adj(𝐴masked) · ®𝑏masked
and det(𝐴masked), which S1

homomorphically unmasks to obtain ciphertexts for the scaled

model 𝑤
scaled

= adj(𝐴) · ®𝑏. Next, S1 homomorphically ranks the
features of this scaled model, without computing any division or
rational reconstruction. This is novel to our work, and may be

of independent interest, with potential usage in other privacy

preserving solutions using ridge regression as a component in a

larger computation.

The overall structure of our protocol is likewise novel to our

work, including its components of obliviously permuting and un-

permuting the features (Phases II and IV in SIR) as well as the

iterative execution of privacy-preserving regression for the ranking

and removal (Phase III in SIR). We note that this overall structure

necessitates using a fully homomorphic encryption (FHE), e.g.,

BGV [14] or B/FV [12, 22], to support both homomorphic addition

and multiplication with respect to our plaintext modulus 𝑁 (cf. only

additive homomorphism in [10, 29]). However, as observed in [4],

existing FHE libraries (e.g., HElib [38] and SEAL [55]) only support

plaintext modulus of size up to 64-bit, whereas our protocol requires

much larger integers (1260-bit integer in our implementation). To

resolve this issue we follow [4] who suggested using the Chinese

Remainder Theorem to represent each integer modulo 𝑁 as a tuple

of integers modulo small(ish) primes as supported by these libraries.

3 PRELIMINARIES

Notation. Upper-case letters (e.g.,𝑀) denote matrices, and vector

notation (e.g., ®𝑣) denotes vectors. We use boldface letters to denote

ciphertexts (e.g.,M, ®𝑣 for a matrix and vector, respectively). We use

Greek letters to denote masked values (see, e.g., Figure 6).

For a vector ®𝑤 we denote the number of its non-zero entries by

nnz ( ®𝑤), and call it 𝑠-sparse if nnz( ®𝑤) ≤ 𝑠 . For a vector ®𝑣 (similarly,

set 𝑆), we use |®𝑣 | (|𝑆 |) to denote its length (size). For a matrix 𝑋 , we

use 𝑋𝑖 to denote its 𝑖’th row, and 𝑋𝑇 to denote its transpose. For a

matrix𝐴, we use adj (𝐴) , det (𝐴) to denote the adjugate matrix and

determinant of 𝐴, respectively. We note that for any pair 𝐴, 𝐵 of

matrices it holds that adj (𝐴 · 𝐵) = adj (𝐵)·adj (𝐴), and det (𝐴 · 𝐵) =
det (𝐴) · det (𝐵). For natural 𝑑, 𝑁 ∈ N, we use GL (𝑑,Z𝑁 ) to denote
the group of all invertible 𝑑 × 𝑑 matrices with entries in Z𝑁 .

For a real value 𝑥 , we use abs (𝑥) to denote its absolute value,

and ⌊𝑥⌉ to denote its nearest integer. We extend the notation to
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apply to vectors and matrices entry-by-entry. We say that 𝑥 ∈ R
has precision ℓ if 𝑥 is given as a real number with ℓ digits after

the decimal point (which could be 0). If 𝑥 has precision ℓ , then by

scaling 𝑥 to lie in Z we mean multiplying 𝑥 by 10
ℓ
.

For 𝑁 ∈ N, [𝑁 ] denotes the set {1, 2, . . . , 𝑁 }, and Z𝑁 denotes

the ring of integers modulo 𝑁 . In our protocols, elements of Z𝑁
are represented using the integers 0, 1, . . . , 𝑁 − 1 (this is without
loss of generality). We treat values in Z𝑁 that are greater or equal

to 𝑁 /2 as negative. In particular, this allows us to define the “size”

– alternatively, the “absolute value” – of a group element as its

distance from the nearest multiple of𝑁 . For example, 1 is considered

to be smaller than 𝑁 − 2 ≡ −2 mod 𝑁 .

For random variables R,R′, R ≈ R
′
denotes that R,R′ are

computationally indistinguishable. negl (^) denotes a function

which is negligible in ^, and PPT is shorthand for Probabilistic

Polynomial Time. We use the standard notion of computational

indistinguishability (e.g., from [32]).

3.1 Sparse Linear Regression & Applications
Linear regression is an important and widely-used statistical tool

for modeling the relationship between properties of data instances

®𝑥𝑖 ∈ R𝑑 (features) and an outcome 𝑦𝑖 ∈ R (response) using a linear

function 𝑦𝑖 = ®𝑥𝑖 ®𝑤 (the feature vectors are augmented with an

additional first entry set to 1, as is standard). Training a regression

model, takes 𝑛 data instances ( ®𝑥𝑖 , 𝑦𝑖 ) ∈ R𝑑+1 and returns a model

®𝑤 ∈ R𝑑+1 that minimizes a loss function, e.g., the Mean-Square-

Error (MSE):

®𝑤 = argmin

®𝑢∈R𝑑+1
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
(1)

where the rows of the matrix 𝑋 are the 𝑛 (augmented) vectors

®𝑥𝑖 ∈ R𝑑+1 .
As we will discuss below, regularizing the solution ®𝑤 to

Equation 1 is often beneficial, leading to LASSO regression [9, 61]

and ridge regression, both are special cases of controlling the norm

of ®𝑤 . Ridge regression [4, 29, 41] seeks to find

®𝑤 = argmin

®𝑢∈R𝑑+1

(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ _ ∥®𝑢∥2

2

)
(2)

where notation is as above and _ ≥ 0 is the

regularization (hyper)-parameter. Lasso seeks to find:

®𝑤 = argmin®𝑢∈R𝑑+1
(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ _ ∥®𝑢∥

1

)
.

In certain cases it is desired (or even required) that the output

model ®𝑤 be sparse. That is, we are seeking a model ®𝑤 with many

zero coefficients. Even stronger –due to hardware limitations, for

example– we would be seeking a model with a fixed number of

features. The latter is called 𝐿0 sparsity, and leads to the following

optimization task:

®𝑤 = argmin

®𝑢∈R𝑑+1,nnz( ®𝑢) ≤𝑠

(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ _ ∥®𝑢∥2

2

)
(3)

where nnz(®𝑢) denotes the number of non-zero entries in ®𝑢, and 𝑠 ∈
N is the sparsity (hyper)-parameter. This task is the one addressed

in this work, and is referred to as sparse linear regression.
In typical datasets, learning sparse linear models is useful due

to two main reasons. First, simpler models are preferred during

the training stage to avoid overfitting [9, 56]. Lower complexity

translates to lower degree of polynomial models and/or less features

in the output model. The latter can be reduced to model sparsity.

The second reason to prefer sparser models is due to practical

considerations. In some cases, hardware limitations restrict the

number of features which can be measured when using the

prediction model in the execution phase - when used to predict

values, 𝑦, for new instances. In other cases, using more features

in the execution prediction model is more expensive. For example,

if 𝑦 represents tumor severity, it might be reasonable to assume

that 𝑦 can be expressed as a linear (or polynomial) combination

of molecular genomic information, say gene expression levels,

in 𝑋 . However, we expect, from a biological perspective, most

genes to minimally affect the prediction performance. That is, the

biology will be driven by a small number of genes.
10

Therefore,

most components of ®𝑤 can be zero so that an assay used in

clinical practice, based on such a predictive model, can use less

expensive hardware, quantifying the expression levels of fewer

genes [7, 21, 26, 51, 67].

3.2 Feature Selection and Iterated Ridge
Feature selection is an essential component in computational

modelling and in the practical application of models. It has therefore

been an active and prolific field of research in various domains

such as pattern recognition, machine learning, statistics and data

mining [47, 48]. Clever selection of the set of features to be used for

data modelling, and as part of the execution models derived from

learning, has been shown to improve the performance of supervised

and unsupervised learning. Reasons are discussed above, as well as

in the literature [7, 21, 37, 52]

Feature selection methods can be classified into several types

based on the employed techniques, as discussed in Section 1. In this

work we focus on a variant of Recursive Feature Elimination [37],

a wrapper approach. A detailed description of the approach, in the

clear, follows. Our approach is an iterative one that starts with all

features, and iteratively removes features. This is similar to [26],

that developed a sparse logistic regression model using RFE. In each

iteration we run ridge regression with _ ≥ 0 [4, 56] to calculate

the weights for all features considered. Then, we remove features

with low weights (in absolute value). The algorithm operates in

two phases. In the first phase, we remove a 0.1-fraction of features,

whereas when the current number of features decreases below

a (user-defined) threshold thr, we move to the second phase, in

which we remove a single feature in each iteration (this latter

phase is analogous to Backward Subset Selection). The choice of

the actual value of thr and the choice of the fraction removed in

the early stages can affect the computational complexity of the

process. Moreover, they are hyper-parameters of the model and can

be tuned by cross validation. The pseudo-code of this algorithm is

given in Figure 1.

3.3 FHE
Fully-Homomorphic Encryption (FHE) is a public-key encryption

scheme E = (KG, Enc,Dec, Eval) that allows one to compute “under

10
The human genome codes for roughly 30𝐾 genes and many more functional

elements.

7



Adi Akavia, Ben Galili, Hayim Shaul, Mor Weiss, and Zohar Yakhini

Input: A dataset 𝐷 ∈ R𝑛×𝑑 and a target vector ®𝑦 ∈ R𝑛 (where entries are

normalized to the same scale), and parameters 𝑠 , rej ∈ (0, 1) , thr ∈ [𝑑 ].
Output: A set Ω𝑠 of the 𝑠 ≤ 𝑑 selected features, and a ridge regression

model ®𝑤𝑠 on these features.

Steps:
(1) Initialize Ω to be the set of all features, and ®𝑤 = ®1.
(2) While nnz( ®𝑤) > thr:

(a) ®𝑤 = 𝐿𝑅 (𝐷, 𝑦,Ω)
(b) 𝜋 = argsort(abs ( ®𝑤))
(c) prefix(𝜋 ) = 𝜋[0: rej · |Ω |]
(d) Ω = Ω \ prefix(𝜋 )

(3) While nnz( ®𝑤) > 𝑠:
(a) ®𝑤 = 𝐿𝑅 (𝐷, 𝑦,Ω)
(b) smallest = argmin(abs ( ®𝑤))
(c) Ω = Ω \ {smallest}

(4) Let Ω𝑠 = Ω and ®𝑤𝑠 = 𝐿𝑅 (𝐷, 𝑦,Ω𝑠 ) . Return (Ω𝑠 , ®𝑤𝑠 ) .

Figure 1: Iterated Ridge (IR). Notations: 𝐿𝑅(𝐷,𝑦,Ω) denotes
the solution of the linear regression system given by (𝐷,𝑦)
when using only features in Ω; nnz( ®𝑤) denotes the number
of non-zero elements in ®𝑤 ; the function argsort sorts the
indices of an array according to the values it contains;
abs ( ®𝑤) returns the absolute value of each entry of ®𝑤 . The
regularization parameter _ is implicit in this pseudo-code.

the hood” of the encryption (without the secret decryption key).

We use the scheme as a black-box, and only make the assumption

that during key generation, one can choose the plaintext space
by specifying an 𝑁 ∈ N, so that homomorphic operations are

performed modulo 𝑁 . (We note that this is the case in many FHE

candidates, e.g. [13].) This assumption is captured by incorporating

the plaintext modulus𝑁 explicitly into the syntax of the scheme.We

now formally define FHEs. The algorithms are required to satisfy

the following three properties: (1) standard decryption correctness.

(2) FHE correctness, in the sense that the ciphertext obtained by

evaluating a circuit C (using Eval) on a set of ciphertexts decrypts

to the value that would have been obtained by evaluating𝐶 directly

on the underlying messages. (3) Computational indistinguishability,

namely for every ^, 𝑁 , and every msg ∈ Z𝑁 , the joint distribution
of pk (i.e., a public key randomly generated by KG) and c ←
Enc (pk,msg) is computationally indistinguishable from the joint

distribution of pk and c0 ← Enc (pk, 0). This is formalized in the

following definition.

Definition 3.1 (FHE). A Fully-Homomorphic Encryption (FHE)
scheme E = (KG, Enc,Dec, Eval) consists of four algorithms where

KG, Enc and Eval are PPT algorithms, and Dec is (deterministic)

polynomial time. The algorithms have the following syntax:

• KG (1^ , 𝑁 ) takes as input a security parameter ^, and an

𝑁 ∈ N. It outputs a pair of public and secret keys (pk, sk).
We assume without loss of generality that pk includes 𝑁 in

its description.

• Enc (pk,msg) takes as input a public key pk, and a message

msg ∈ Z𝑁 , and outputs a ciphertext c.

• Dec (sk, c) takes as input a secret decryption key sk, and a

ciphertext c, and outputs a plaintext message msg
′
.

• Eval (pk,𝐶, c1, . . . , c𝑘 ) takes as input a public key pk, a circuit
𝐶 : Z𝑘

𝑁
→ Z𝑙

𝑁
for some 𝑙, 𝑘 ∈ N, and 𝑘 ciphertexts c1, . . . , c𝑘 ,

and outputs 𝑙 ciphertexts

(
c
′
1
, . . . , c′

𝑙

)
.

The scheme is required to satisfy the following semantic

properties.

• Correctness. For every natural 𝑁 , every security parameter

^, and every message msg ∈ Z𝑁 :

Pr

msg = msg
′
:

(pk, sk) ← KG (1^ , 𝑁 )
c ← Enc (pk,msg)

msg
′ = Dec (sk, c)


is at least 1 − negl (^), where the probability is over the

randomness of KG and Enc.

• FHE Correctness. For every natural 𝑁 , every security

parameter ^, every 𝑘, 𝑙 ∈ N, every arithmetic circuit 𝐶 :

Z𝑘
𝑁
→ Z𝑙

𝑁
, and every msg

1
, . . . ,msg𝑘 ∈ Z𝑁 :

Pr

msg = msg
′
:

(pk, sk) ← KG (1^ , 𝑁 )
c𝑖 ← Enc

(
pk,msg𝑖

)
, ∀𝑖 ∈ [𝑘 ]

c ← Eval (pk,𝐶, (c1, . . . , c𝑘 ))
msg = Dec (sk, c)


is at least 1 − negl (^), where msg

′ = 𝐶
(
msg

1
, . . . ,msg𝑙

)
,

and the probability is over the randomness of KG, Enc and

Eval.

• Computational security (non-uniform
distinguishers). For every ^, all public parameters

params, and every msg ∈ 𝑄 , the following distributions

are computationally indistinguishable by non-uniform

distinguishers:

– Sample (pk, sk) ← KG (1^ , params), and c ←
Enc (pk,msg).11 Output (pk, c).

– Sample (pk, sk) ← KG (1^ , params), and c← Enc (pk, 0).
Output (pk, c).

Remark 3.2. Though we define FHE schemes as encrypting a

single ring element, we also consider FHE schemes encrypting

vectors or matrices of ring elements, namely Enc might take as

input a vector or matrix of ring elements, and Dec might take as

input a vector or matrix of ciphertexts (each encrypting a field

element). See Section 10 for further details.

4 PROBLEM STATEMENT
We follow the security and threat model of [4], and parts of

this section are taken almost verbatim from [4]. SIR guarantees

computational security, in the passive setting, against a single

server colluding with a proper subset of the data owners. More

specifically, we assume all parties, even corrupted ones, are PPT

and follow the protocol (though corrupted parties will try to infer

additional information). We guarantee correctness of the output,

and privacy of the inputs, in this setting. Specifically, the only

information revealed to the corrupted parties is the leakage profile,
namely the information that is explicitly revealed by the protocol.

In our protocols, the leakage profile consists of the output model

®𝑤 , as well as the following public parameters: the number 𝑛 of

data instances; the number 𝑑 of features; the precision ℓ ; a sparsity

parameter 𝑠; and a regularization parameter _ ≥ 0. More formally,

11
See Remark 3.2 below about simultaneously encrypting multiple field elements.
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we consider 𝑘-privacy in the passive setting, for inputs 𝑋 such that

𝐴 = 𝑋𝑇𝑋 + _𝐼 is invertible in the ring Z𝑁 (invertability is needed

for IR correctness; and in our case – as in previous works [4, 29] –

also for privacy). We note that the input is horizontally-partitioned

between the data owners (i.e., data owners hold disjoint subsets of

rows of (𝑋, ®𝑦)).

Terminology. Let Π be an (𝑚 + 2)-party protocol executed between

PPT data owners DO1, . . . ,DO𝑚 and PPT servers S1,S2. We

assume that every pair of parties share a secure point-to-point

channel, and that all parties share a broadcast channel. We also

restrict attention to protocols in which all parties obtain the same

output, and only the data owners have inputs. For inputs 𝑥1, . . . , 𝑥𝑚
of DO1, . . . ,DO𝑚 , we use Π (𝑥1, . . . , 𝑥𝑚) to denote the random

variable describing the output in a random execution of Π (the

probability is over the randomness of all participating parties,

including the servers). For 𝐼 ⊂ {DO1, . . . ,DO𝑚,S1,S2}, the (joint)
view of 𝐼 in Π, denoted V

Π
𝐼
(𝑥1, . . . , 𝑥𝑚), is the random variable

consisting of the inputs and randomness of all parties in 𝐼 , as

well as the messages they received from the honest parties in a

random execution of Π with inputs 𝑥1, . . . , 𝑥𝑚 . We say a subset

𝐼 ⊆ {DO1, . . . ,DO𝑚,S1,S2} is 𝑘-permissible if it contains at most

𝑘 data owners, and at most one of the servers.

Security notion. We consider standard computational security

against a passive adversary (see, e.g., [32]), adapted to the setting

of non-colluding servers as in [50]. Since optimal feature selection

under 𝐿0 (Equation 3) is NP hard in general [15], we focus on

providing a secure variant of the Iterated Ridge heuristic approach
(see Section 3.1). Specifically, we require correctness in the sense

that the secure variant has the same output as the cleartext iterated

ridge algorithm, and privacy in the sense that any 𝑘-permissible

set 𝐼 learns nothing except the leakage profile (which consists of

the public parameters and the output model) and the inputs of the

parties in 𝐼 (and anything efficiently computable therefrom).We also

offer the option of returning an encrypted model (cf. Section 2.5 ),

in which case the output model is excluded from the leakage profile

and the adversary learns nothing beyond the public parameters

and the input of the parties in 𝐼 (and anything efficiently computed

therefrom). Following [29] we define correctness with respect to

a subset T of inputs (where there is no correctness guarantee for

inputs not in T ). Formally,

Definition 4.1 (Secure Iterated Ridge Implementation). Let𝑚,𝑘 ∈
N, let ^ be a security parameter, let D,R be an arbitrary domain

and range, let 𝑓 : D𝑚 → R be an iterated ridge algorithm (e.g., the

algorithm of Figure 1), and let T ⊆ D𝑚 . We say that an (𝑚 + 2)-
party protocol Π is a secure iterated ridge implementation of 𝑓 with

𝑘-privacy for inputs in T with leakage profile L if:

(1) Correctness: there exists a negligible function negl (^) :
N→ N such that for all inputs (𝑥1, . . . , 𝑥𝑚) ∈ T ,

Pr [Π (𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥1, . . . , 𝑥𝑚)] = 1 − negl (^)

where the probability is over the randomness of the parties.

(2) Privacy: for every 𝑘-permissible 𝐼 there exists a PPT

simulator Sim such that for every (𝑥1, . . . , 𝑥𝑚) ∈ T :

V
Π
𝐼 (𝑥1, . . . , 𝑥𝑚) ≈ Sim

( (
𝑥 𝑗

)
DO𝑗 ∈𝐼 ,L

)
.

5 SIR PROTOCOL
Our privacy preserving iterated ridge protocol SIR is specified

in Figures 2-3 (with further details available in the figures in

Section 6). See also an overview in Section 2; remarks on input

encoding, parameter choice, and useful observations in Section 5.1;

and notations for simple sub-circuits we use in the homomorphic

evaluation in Table 1. Our security and complexity analysis of SIR is

summarized below. Complexity is stated in term of 𝑑 and 𝑁 where

log𝑁 = 𝑂 (𝑑 log𝑛) (by Equation 4).

Theorem 5.1 (SIR analysis). Let 𝑚,𝑛,𝑑 ∈ N, 𝑋 ∈ R𝑛×𝑑 and
®𝑦 ∈ R𝑛×1 s.t. 𝑋 has full rank and 𝑑 ≤ 𝑛. Then, the following holds
when executing SIR on (𝑋, ®𝑦) when horizontally partitioned amongst
𝑚 data-owners:
Security. SIR (Figure 2) is a secure iterated ridge implementation of
IR (Figure 1) with𝑚-privacy.
Complexity. Let E = (Gen, Enc,Dec, Eval) be the homomorphic
encryption scheme with which SIR is instantiated, and Z𝑁 be the used
plaintext ring, then:
• Each data owner runtime is dominated by the time to
compute 𝑑2 encryptions, and her communication complexity
is dominated by transmitting 𝑑2 ciphertexts (in one round).
• S1 runtime is dominated by the time to rank features, which
entails homomorphically evaluating 𝑂 (log𝑑) circuits, each
with 𝑂 (𝑑2 log𝑁 )= 𝑂 (𝑑3 log𝑛) multiplication gates and of
multiplicative depth 𝑂 (log log𝑁 )= 𝑂 (log𝑑 + log log𝑛).12
• S2 runtime complexity is dominated by the time to solve (in
the clear) 𝑂 (log𝑑) linear systems of size 𝑑 × 𝑑 .
• The communication of the two servers consists
of 𝑂 (log𝑑) communication rounds, transmitting
𝑂 (𝑑2 log𝑁 )= 𝑂 (𝑑3 log𝑛) ciphertexts in each round.13

Proof. The proof is provided in Sections 8 and 9. □

5.1 Input, Parameters and Observations
The notations and operations used in SIR are described in Table 1.

Remarks clarifying some implementation details follow.

Remark 5.2 (Input representation and encoding.). We assume

that the datasets entries are in the range [−1, 1], given with ℓ-digit

precision. The inputs are scaled to be in Z𝑁 for a sufficiently large𝑁

(for the choice of 𝑁 , see Remark 5.3). All subsequent computations

in the protocol are performed in Z𝑁 or in Z𝐷 for some 𝐷 ≥ 𝑑 .

Note that 𝐷 is much smaller than 𝑁 . All inputs (and intermediate

values generated during the computation) are encoded as in [4].

(We refer the interested reader to [4] for a detailed description of

the encoding and its efficiency benefits.)

Remark 5.3 (On the choice of 𝑁 ). The plaintext ring Z𝑁 should

be sufficiently large to guarantee that all computations during

the (scaled) ridge regression step emulate the corresponding

computations over the reals (i.e., no overflows occur), as well as

12
We ignore addition gates, since additive homomorphism is much faster than

multiplicative homomorphism in practice. We note that the masking step includes

matrix multiplication, which has complexity cubic in𝑑 , but since it entails only additive

homomorphism it is not accounted for in the complexity analysis.

13
When using a homomorphic encryption that supports packing sl plaintext values in

each ciphertext with support for single instruction multiple data (SIMD) computation,

the time and communication complexity of the servers can be divided by sl.
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to allow for rational reconstruction to be performed on the output

model at the end of the protocol. This can be guaranteed by using

the same plaintext ring Z𝑁Gia
as [29]. However, for our selection

protocol (Figure 9) we will need the modulo 𝑁 to be at least square

that value, namely:

𝑁 = 𝑁 2

Gia
>

(
2𝑑 (𝑑 − 1)

𝑑−1
2 10

4ℓ𝑑 (𝑛2 + _)2𝑑
)
2

(4)

where 𝑛,𝑑, ℓ, _ are as specified in Section 4.

Remark 5.4 (On the choice of the plaintext modulus 𝐷 in SIR.).
For efficiency reasons, we would like to avoid (when possible)

performing computations in the ring Z𝑁 , since such computations

would be heavy due to the size of 𝑁 (as described above). Instead, in

SIR we are able to use a smaller modulus 𝐷 for some computations.

We can make due with any 𝐷 ≥ 𝑑 which can be used as a plaintext

modulus in the underlying FHE scheme.

Remark 5.5 (Dimension reduction and projection). Our protocol

iteratively reduces the set 𝐹 of current features (i.e., ones that will

be part of the output model), which is done in two steps as follows.

(1) reset the entries of 𝐴, ®𝑏 that correspond to entries in [𝑑] \ 𝐹 ,
by setting to zero the rows and columns of 𝐴 (the entries of

®𝑏,
respectively) that are indexed by 𝑖 ∉ 𝐹 , resulting in a matrix 𝐴′

and a vector
®𝑏 ′. (2) projecting 𝐴′, ®𝑏 ′ to 𝐹 by erasing the rows and

columns of 𝐴′ (entries of ®𝑏, respectively) indexed by 𝑖 ∉ 𝐹 . We

denote this operation by pjct𝐹 (·) (this operation can be applied

to a matrix or a vector), namely we compute pjct𝐹 (𝐴′) , pjct𝐹
(
®𝑏 ′

)
.

Step (1) is obtained by multiplying with a nullifier matrixN𝐹 which

is defined as follows:N𝐹 ∈ Z𝑑×𝑑𝑁
is obtained from the 𝑑 ×𝑑 identity

matrix by resetting the diagonal entries in all rows indexed by

𝑖 ∉ 𝐹 (we omit 𝑑 from the notation, since it is clear from the

context). More specifically, we set 𝐴′ = N𝐹 ·𝐴 · N𝐹 and
®𝑏 ′ = N𝐹 · ®𝑏.

Notice that for any matrix 𝑋 , multiplying by N𝐹 from the left

(right, respectively) rests the rows (columns, respectively) indexed

by 𝑖 ∉ 𝐹 , and similarly when multiplying a vector ®𝑣 by N𝐹 from

the left. Another operation which will be used in our protocols is

an expansion from dimension 𝐹 to dimension [𝑑]. Specifically, we
define expd𝐹 (·) such that on input an |𝐹 | × |𝐹 | matrix 𝑋 (a length-

|𝐹 | vector ®𝑣 , respectively) returns the 𝑑 × 𝑑 matrix 𝑋 ′ (length-𝑑
vector ®𝑣 ′, respectively) such that for every 𝑖 ∉ 𝐹 the 𝑖th row and

column in 𝑋 ′ (𝑖th entry in ®𝑣 ′, respectively) is 0, and additionally

𝑋 = pjct𝐹 (𝑋 ′) , ®𝑣 = pjct𝐹 (®𝑣 ′).

Remark 5.6 (Unique Entries in IntermediateModels). Our security
analysis will rely on the assumption that for every intermediate

model ®𝑧𝐹 computed in Step 3a of the SIR protocol (Figure 2), all

entries are unique (i.e., if 𝑖 ≠ 𝑗 then ®𝑧𝐹,𝑖 ≠ ®𝑧𝐹,𝑗 ). This can be easily

achieved as follows. First, when scaling the inputs in the setup

phase (Figure 4), we incorporate log𝑑 additional “empty” least-

significant bits. That is, instead of scaling an ℓ-precision real number

by multiplying it by 10
ℓ
, we multiply it by 10

ℓ+log𝑑
. Then, at the end

of each scaled ridge regression iteration (Figure 3) we replace the

log𝑑 least-significant bits of ®𝑧𝐹,𝑖 with the binary representation of

𝑖 (this can be done because at this point the ciphertext is encrypted

entry-by-entry).

Remark 5.7 (Emulating Boolean circuits using arithmetic circuits).
Our protocols embed binary values into a larger ring Z𝐷 , and
operate over these representations. Therefore, we need to emulate

the Boolean circuits BinCompareL𝑐′ and BinCompareR𝑐′ using

arithmetic circuits over Z𝐷 . This is done as follows. 𝑎 ∧ 𝑏 is

implemented by multiplying 𝑎 · 𝑏 in Z𝐷 . 𝑎 ⊕ 𝑏 is implementing

by computing (𝑎 − 𝑏)2 in Z𝐷 . This perfectly emulates AND and

XOR whenever 𝑎, 𝑏 ∈ Z𝐷 ∩ {0, 1}. The Neg circuit on input 𝑐 is

emulated by computing 1 − 𝑐 (where 1 is the identity of Z𝐷 ). This
perfectly emulates the Neg circuit when 𝑐 ∈ {0, 1}.

6 SIR PROTOCOL: FULL DESCRIPTION
In this section we provide the full description of all sub-protocols

used as part of SIR.

Public parameters: E, 𝑛, 𝑑 , 𝑁 , 𝐷 as in Figure 2.

Input: the parties have no private inputs.

Output: encryption keys

(
pk𝑁 , sk𝑁

)
and

(
pk𝐷 , sk𝐷

)
for S2, and public

keys pk𝑁 , pk𝐷 for all other parties. The output of S1 additionally includes

encryptions P2,P𝑇
2
of 𝑃2, 𝑃

𝑇
2
(respectively) for a random permutation

matrix 𝑃2 ∈ Z𝑑×𝑑𝑁
.

Steps: S2 performs the following:

(1) Generates encryption keys

(
pk𝑁 , sk𝑁

)
← KeyGen (1^ , 𝑁 ) and(

pk𝐷 , sk𝐷
)
← KeyGen (1^ , 𝐷) .

(2) Picks a random permutation matrix 𝑃2 ∈ Z𝑑×𝑑𝑁
, and encrypts

P2 ← Enc

(
pk𝑁 , 𝑃2

)
, and P𝑇

2
← Enc

(
pk𝑁 , 𝑃

𝑇
2

)
.

(3) Sends P2 and P𝑇
2
to S1, and publishes pk𝑁 , pk𝐷 .

Figure 4: Setup

Public parameters: E, ^ 𝑛, 𝑑 , 𝑁 , ℓ , 𝑛1, . . . , 𝑛𝑚 , and𝑚 as in Figure 2.

Input from previous phase: all parties take as input the public
encryption key pk𝑁 .

Input: for every 𝑗 ∈ [𝑚], the input of data owner DO𝑗 consists of a

matrix 𝑋 𝑗 ∈ R𝑛 𝑗×𝑑
, and a vector ®𝑦 𝑗 ∈ R𝑛 𝑗

, given with precision ℓ .

Output for the next phase: the output of S1 are encryptions A, ®b under

key pk𝑁 of a matrix 𝐴 = 𝑃𝑇
2
𝑃𝑇
1
·
(
𝑋𝑇 ·𝑋 + _𝐼

)
· 𝑃1𝑃2 ∈ Z𝑑×𝑑𝑁

and a

vector
®𝑏 = 𝑃𝑇

2
𝑃𝑇
1
·𝑋𝑇 · ®𝑦 ∈ Z𝑑

𝑁
, respectively, where 𝑃1 is a random

permutation matrix. The other parties have no output.

Steps: for every 1 ≤ 𝑗 ≤𝑚, DO𝑗 does the following:

(1) Data Representation: Scales its inputs 𝑋 𝑗 , ®𝑦 𝑗
to have entries in

Z ,and then embeds them in Z𝑁 . Then, DO𝑗 computes

𝐴𝑗 =
(
𝑋 𝑗

)𝑇 ·𝑋 𝑗
, and

®𝑏 𝑗 =
(
𝑋 𝑗

)𝑇 · ®𝑦 𝑗
.

(2) Data Encryption: Encrypts A𝑗 ← Enc

(
pk𝑁 , 𝐴

𝑗
)
and

®b
𝑗
← Enc

(
pk𝑁 ,

®𝑏 𝑗
)
, and sends A𝑗 , ®b

𝑗
to S1.

(3) Data Merging and Permuting: S1 executes the data merging

and permuting algorithm of Figure 6, to obtain A, ®b.

Figure 5: Data Uploading

7 ON THE NECESSITY OF HIDING PARTIAL
INFORMATION

In this section we explain the cryptographic design choices made

in our protocols. Specifically, we explain why certain operations
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Operation Type Circuit Name Inputs Constants output

Scaled matrix addition Add_ matrices 𝐴1, . . . , 𝐴𝑚 _ > 0

∑
𝑖∈[𝑚] 𝐴𝑖 + _𝐼

Matrix multiplication MatMult matrices 𝐴1, 𝐴2 — 𝐴1 · 𝐴2

Matrix by vector multiplication MatVecMult matrix 𝐴1 and vector ®𝑣 — 𝐴1 · ®𝑣
Matrix right multiplication (w. plaintext 𝑅) MatMultR𝑅 𝑑 × 𝑑-size matrix𝑀 𝑑 × 𝑑-size matrix 𝑅 𝑀 · 𝑅
Matrix left multiplication (w. plaintext 𝐿) MatMultL𝐿 𝑑 × 𝑑-size matrix𝑀 𝑑 × 𝑑-size matrix 𝐿 𝐿 ·𝑀

Addition with plaintext matrix MatAdd𝑅 𝑑 × 𝑑-size matrix𝑀 𝑑 × 𝑑-size matrix 𝑅 𝑀 + 𝑅
Multiplication with plaintext vector VecMatMultR®𝑟 𝑑 × 𝑑-size matrix𝑀 length-𝑑 vector ®𝑟 𝑀 · ®𝑟

Vector addition Add vectors ®𝑣1, . . . , ®𝑣𝑚 —

∑
𝑖∈[𝑚] ®𝑣𝑖

Vector subtraction Sub vectors ®𝑣1, ®𝑣2 — ®𝑣1 − ®𝑣2
Vector multiplication w. plaintext matrix MatVecMultL𝑅 length-𝑑 vector ®𝑣 𝑑 × 𝑑 matrix 𝑅 𝑅 · ®𝑣

Vector addition w. plaintext vector VecAdd®𝑟 vector ®𝑣 vector ®𝑟 ®𝑣 + ®𝑟
Vector multiplication w. plaintext scalar ScalerVecMult𝑐 vector ®𝑣 scalar 𝑐 𝑐 · ®𝑣
Vector multiplication w. secret scalars ScalerVecMult vector ®𝑣 and scalars 𝑐1, . . . , 𝑐𝑘 — 𝑐1 · . . . · 𝑐𝑘 · ®𝑣

Vector addition VecBinAdd®𝑟 vector ®𝑣 ∈ {0, 1}𝑘 vector ®𝑟 ∈ {0, 1}𝑘 ®𝑟 + ®𝑣 (computed

(binary representation) using 2’s complement)

Vector subtraction VecBinSub®𝑟 vector ®𝑣 ∈ {0, 1}𝑘 vector ®𝑟 ∈ {0, 1}𝑘 ®𝑟 − ®𝑣 (computed

(binary representation) using 2’s complement)

Scalar multiplication w. plaintext vector VecScalerMult®𝑣 scalar 𝑐 ′ vector ®𝑣 𝑐 ′ · ®𝑣
Scalar squaring Square scalar 𝑐 ′ — (𝑐 ′)2
Scalar addition AddNums scalars 𝑐 ′, 𝑐 ′′ — 𝑐 ′ + 𝑐 ′′

Scalar subtraction SubNums scalars 𝑐 ′, 𝑐 ′′ — 𝑐 ′ − 𝑐 ′′
Scalar multiplication MultNums scalars 𝑐 ′, 𝑐 ′′ — 𝑐 ′ · 𝑐 ′′

Scalar addition w. plaintext scalar AddConst𝑐 scalar 𝑐 ′ scalar 𝑐 𝑐 + 𝑐 ′
Scalar smaller than BinCompareR𝑐 ®𝑐 ′ ∈ {0, 1}∗ scalar 𝑐 1 if 𝑐 ′ ≤ 𝑐 , otherwise 0
Scalar greater than BinCompareL𝑐 ®𝑐 ′ ∈ {0, 1}∗ scalar 𝑐 1 if 𝑐 < 𝑐 ′, otherwise 0
Scalar negation Neg scalar 𝑐 ′ ∈ {0, 1} — 𝑐 ′’s complement (i.e.,

1 if 𝑐 = 0
′
, 0 otherwise)

Table 1: Sub-circuits used for homomorphic computation in SIR. In the table, 𝑘, 𝑑,𝑚 ∈ N; 𝐴1, . . . , 𝐴𝑚 are matrices of the same
dimensions over some ring𝐺 ; ®𝑣, ®𝑣1, . . . , ®𝑣𝑚 are vectors of the same length over𝐺 ; 𝑐 ′, 𝑐 ′′ are a pair of values from the same domain
(e.g., from Z𝑁 ), and ®𝑐 ′, ®𝑐 ′′ denote their binary representation. In the “vector multiplication with secret scalars” operation,
𝑐1 · . . . · 𝑐𝑘 multiplies each coordinate of ®𝑣 . In the “vector addition/subtraction (binary representation)” operations, we allow
VecBinAdd®𝑟 ,VecBinSub®𝑟 to be executed on vectors in Z𝑘

𝐷
for some 𝐷 ∈ N (and emulating Boolean operations using operations

in Z𝐷 , see Remark 5.7), but there is no guarantee on the output when the entries of ®𝑣, ®𝑟 are not bits. The “scalar greater/smaller
than” operations are computed using standard Boolean circuits for comparing a pair of binary strings.

in our protocols are masked, or performed under the hood

of the encryption (consequently increasing the round and/or

communication complexity of the resultant protocol), by showing

that performing these operations on cleartext (and unmasked) data

would violate privacy. In the end of the section we also describe an

attack showing that SIR is susceptible to inversion attacks.

We describe several “toy” attacks which illustrate the insecurities

of performing the iterated ridge regression protocol (whose scaled

version appears in Figure 3) on cleartext, unpermuted, or unmasked

data. For the sake of clarity, we present minimal, concrete examples

that capture the main ideas underlying the attacks. These toy

examples help illustrate situations which arise in practice, when

performing ridge regression on actual data (see discussion below).

An “attack” on the security of the scheme (i.e., violating

Definition 4.1) consists of a pair of inputs for the data owners,

for which the inputs and outputs of some permissible adversary

(i.e., one which corrupts at most one server and a subset of the data

owners) in the protocols are identical, but the adversary’s views

of the protocol executions are different. In all attacks we consider

the setting with 4 or 5 data records, with a single corrupt server

(i.e., all data owners are honest). In this case, the adversary has

no input, and its output is the (final) output model. Moreover, for

simplicity of the examples, we set the regularization parameter to

_ = 0, thus 𝐴 = 𝑋𝑇𝑋 . Furthermore, we analyze the attack over R
(and not over Z𝑁 ). Analyzing the attacks over R suffices, because

𝑁 is chosen such that the computation in Z𝑁 perfectly emulates

the computation over R (i.e., throughout the computation all values

are scaled to be integers, and there are no overflows).

The necessity of permuting the data. Our protocols operate over
permuted federated data (see Step 3 in Figure 6). As we show in

Section 8, permuting the data hides the order in which features are

discarded in the iterative learning process. This is necessary for

privacy, since the order might reveal non-trivial information about

the inputs, as we now show. Specifically, we will show a pair of

11
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Public parameter: an FHE scheme E = (KeyGen, Enc,Dec, Eval) , a
security parameter ^ , a regularization parameter _, dimensions 𝑛 ×𝑑 of the

input matrix, a plaintext ring size 𝑁 satisfying the requirements of

Remark 5.3, the number of data owners𝑚, positive input sizes

𝑛1, 𝑛2, . . . , 𝑛𝑚 > 0 such that

∑𝑚
𝑗=1 𝑛 𝑗 = 𝑛, a sparsity parameter 𝑠 < 𝑑 , a

precision parameter ℓ , a sparsity parameter rej which determines the

fraction of features that are removed in each iteration, and a threshold

parameter thr which determines when the protocol starts to remove a

single feature in each iteration. Additionally, let 𝐷 ≥ 𝑑 (see Remark 5.4).

Inputs: For every 𝑗 ∈ [𝑚], the input of data owner DO𝑗 consists of a data

matrix 𝑋 𝑗 ∈ R𝑛 𝑗×𝑑
and a response vector ®𝑦 𝑗 ∈ R𝑛 𝑗

. We denote by (𝑋 | ®𝑦)
the combined input obtained from all 𝑋 𝑗 , ®𝑦 𝑗

. That is, [𝑛] is partitioned
into𝑚 subsets 𝐼1, . . . , 𝐼𝑚 ⊆ {1, . . . , 𝑛}, and 𝑋 𝑗 , ®𝑦 𝑗

is the restriction of

𝑋, ®𝑦 to the rows in 𝐼 𝑗 . (Here, 𝑋 and ®𝑦 are scaled to lie in Z, and then

embedded in Z𝑁 for a sufficiently large 𝑁 , see Remark 5.3.) The servers

S1, S2 have no input.

Output: all parties obtain as output an 𝑠-sparse model ®𝑤 ∈ R𝑑 .
Steps:

(1) Setup: The parties execute the setup protocol of Figure 4 to obtain

keys

(
pk𝑁 , sk𝑁

)
and

(
pk𝐷 , sk𝐷

)
. Then, the parties execute the

data uploading, merging and permuting protocols of Figures 5-6,

and S1 obtains encryptions of the aggregated input matrix and

response vector 𝐴, ®𝑏.
(2) Let 𝐹 = [𝑑 ] (i.e., initially 𝐹 contains all features), and let

𝐴𝐹 = 𝐴, ®𝑏𝐹 = ®𝑏.
(3) While |𝐹 | > 𝑠 , do:

(a) Ridge Regression Iteration: S1 and S2 execute the scaled
ridge protocol of Figure 3, where the input of S1 consists of 𝐹 ,
encryptions A𝐹 , ®b𝐹 of 𝐴𝐹 , ®𝑏𝐹 , respectively, and the input of S2
is 𝐹, sk𝑁 . The output of S1 is an entry-wise encryption ®z𝐹 of a

vector ®𝑧𝐹 ∈ Z𝑑𝑁 under key pk𝑁 .

(b) Selecting features:
• Large-set case: If |𝐹 | > thr then set 𝑘′ = ⌊rej · |𝐹 | ⌋.
(Intuitively, when |𝐹 | > thr the set of current features is still

sufficiently large that we can remove a subset of features in

each iteration.)

• Small-set case: Otherwise (i.e., |𝐹 | ≤ thr), set 𝑘′ = 1. (In this

case, the set of current features is small, so features should be

removed one at a time.)

• S1 and S2 execute the selection protocol of Figure 9 to find

the smallest 𝑘′ features. S1 has input ®z𝐹 , S2 has input sk𝑁 ,

and both parties have input pk𝑁 , pk𝐷 , 𝐹 , 𝑘
′
. The output of

both servers is the set 𝑆
del

consisting of the 𝑘′ features to be

removed.

(c) Compacting data for the next iteration: Let 𝐹 ∗ = 𝐹 \ 𝑆
del

.

Then S1 locally executes the compacting algorithm of Figure 7,

with input 𝐹 ∗, pk𝑁 ,A and
®b (encrypting 𝐴 and

®𝑏, respectively).
The output of S1 are updated (compacted) A𝐹 ∗ , ®b𝐹 ∗ .

(d) set 𝐹 = 𝐹 ∗.
(4) Output: Parties execute the computing and unpermuting output

protocol of Figure 8 to obtain the 𝑠-sparse model ®𝑤.

Figure 2: SIR: Secure Iterated Ridge

inputs for which the resultant model is identical, but the order in

which columns are removed in the iterations is different.

The high-level idea of the attack is to begin with 𝑋, ®𝑦 in which

one column is not correlated with ®𝑦, the second is somewhat

correlated with ®𝑦, and the third is highly correlated with ®𝑦, where
we are looking for a 1-sparse solution. Thus, the first column will

The protocol uses the circuitsMatMultR𝑀 , VecMatMultR®𝑟 ,
MatVecMultL𝑀 , Add, Sub, VecScalerMult®𝑟 and ScalerVecMult𝑐 of

Section 5.1.

Public parameters: E = (KeyGen, Enc,Dec, Eval) , 𝑑, 𝑁 , as in Figure 2.

Inputs from previous phases: the public encryption key pk𝑁 , the set

𝐹 ⊆ [𝑑 ] of feature indices that “survived” to the current iteration, and

encryptions A𝐹 , ®b𝐹 of the matrix 𝐴𝐹 = N𝐹 ·𝐴 · N𝐹 ∈ Z𝑑×𝑑𝑁
and vector

®𝑏𝐹 = N𝐹 · ®𝑏 ∈ Z𝑑𝑁 (see Remark 5.5 for the description of the nullifier

matrix N𝐹 ; and recall that intuitively, 𝐴𝐹 , ®𝑏𝐹 are obtained from 𝐴, ®𝑏 by

resetting the rows, columns, and entries for 𝑖 ∉ 𝐹 ). S2 additionally has as

input the private decryption key sk𝑁 .

Output: the output of S1 is an encryption ®z, under key pk𝑁 , of ®𝑧 ∈ Z𝑑
𝑁

such that ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 , where: (1) 𝐴

′
𝐹
= pjct𝐹 (𝐴𝐹 ) is the projection

of 𝐴𝐹 to the indices in 𝐹 ; (2) 𝐴′
𝐹
· ®𝑤′

𝐹
= pjct𝐹

(
®𝑏𝐹

)
, and additionally (3)

®𝑤𝐹 = expd𝐹

(
®𝑤′
𝐹

)
. (See Remark 5.5 for a description of expd𝐹 ( ·) and

pjct𝐹 ( ·) .) The other parties have no output.

Steps:
(1) Masks Generation: S1 picks a random invertible matrix

𝑅′ ← GL ( |𝐹 | ,Z𝑁 ) , and a random vector ®𝑟 ′ ← Z𝑑
𝑁
. Then, S1

computes 𝑅 = expd𝐹 (𝑅′) , ®𝑟 = N𝐹 · ®𝑟 ′.
(2) Data masking: S1 masks the data by homomorphically

computing Γ𝐹 = 𝐴𝐹 · 𝑅 and
®𝛽𝐹 = ®𝑏𝐹 +𝐴𝐹 · ®𝑟 as follows:

• ΓΓΓ𝐹 ← Eval

(
pk𝑁 ,MatMultR𝑅,A𝐹

)
.

• ®𝑡𝑡𝑡 ← Eval

(
pk𝑁 ,VecMatMultR®𝑟 ,A𝐹

)
.

• ®𝛽𝛽𝛽𝐹 ← Eval

(
pk𝑁 ,Add,

®b𝐹 , ®𝑡𝑡𝑡
)
.

Then, S1 sends ΓΓΓ𝐹 , ®𝛽𝛽𝛽𝐹 to S2. (Notice that for every 𝑖 ∉ 𝐹 , the 𝑖th
row and column in Γ𝐹 is ®0, and similarly the 𝑖th entry of

®𝛽𝐹 is 0.)

(3) Decrypting Masked Data: S2 decrypts Γ𝐹 = Dec (sk𝑁 , ΓΓΓ𝐹 ) and
®𝛽𝐹 = Dec

(
sk𝑁 ,

®𝛽𝛽𝛽𝐹
)
. Then, S1 projects Γ𝐹 , ®𝛽𝐹 to the indices in 𝐹

by computing Γ = pjct𝐹 (Γ𝐹 ) ∈ Z
|𝐹 |×|𝐹 |
𝑁

and

®𝛽 = pjct𝐹

(
®𝛽𝐹

)
∈ Z|𝐹 |

𝑁
.

(4) Masked learning: S2 computes adj (Γ) and Δ = det (Γ) , as well
as
®Z = adj (Γ) · ®𝛽 . Then, S2 computes

®Z𝐹 = expd𝐹 (Z ) ∈ Z𝑑𝑁 .

Finally, S2 encrypts ®ZZZ 𝐹 ← Enc

(
pk𝑁 ,

®Z𝐹
)
and ΔΔΔ← Enc

(
pk𝑁 ,Δ

)
,

and sends
®Z𝐹 ,ΔΔΔ to S1. (Intuitively, S2 solves the linear system

Γ · ®𝜔 = ®𝛽 to obtain the masked model ®𝜔 . Notice that
®Z = det (Γ) · ®𝜔 .)

(5) Unmasking: S1 homomorphically computes ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 ,

where 𝐴′
𝐹
= pjct𝐹 (𝐴𝐹 ) . This is done by performing the following:

• ®𝑡𝑡𝑡1 ← Eval

(
pk𝑁 ,MatVecMultL𝑅,

®ZZZ 𝐹
)
. (Notice that

®𝑡1 = 𝑅 · ®Z𝐹
so, as explained in the proof of Lemma 8.4,

®𝑡1 = det (Γ) · ( ®𝑤𝐹 + ®𝑟 ) .)
• ®𝑡𝑡𝑡2 ← Eval

(
pk𝑁 ,VecScalerMult®𝑟 ,ΔΔΔ

)
. (Notice that

®𝑡2 = det (Γ) · ®𝑟 .)
• ®𝑡𝑡𝑡3 ← Eval

(
pk𝑁 , Sub,

®𝑡𝑡𝑡1, ®𝑡𝑡𝑡2
)
. (Notice that

®𝑡3 = ®𝑡1 − ®𝑡2 = det (Γ) · ®𝑤𝐹 .)

• ®z← Eval

(
pk𝑁 , ScalerVecMult

det(𝑅′)−1 ,
®𝑡𝑡𝑡3
)
. (Notice that

®𝑧 = det (𝑅′)−1 · ®𝑡3, so ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 , because Γ = 𝐴′

𝐹
· 𝑅′ so

det (Γ) = det (𝑅′) · det
(
𝐴′
𝐹

)
.)

(6) S1 sets ®z to be its output for the phase.

Figure 3: Scaled ridge regression (single iteration).
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The algorithm is executed locally by S1, using the circuits Add_ , Add,
MatMultL𝑀 , MatMultR𝑀 , MatMult and MatVecMult of Section 5.1.

Public parameters: E, ^ ,𝑚, 𝑛, 𝑑 , 𝑁 , _, as in Figure 2.

Inputs from previous phase: the public encryption key pk𝑁 , and, for

every 𝑗 ∈ [𝑚], encryptions A𝑗 , ®b
𝑗
of 𝐴𝑗 ∈ Z𝑑×𝑑

𝑁
, ®𝑏 𝑗 ∈ Z𝑑

𝑁
, as well as

encryptions P2,P𝑇
2
of 𝑃2, 𝑃

𝑇
2
(respectively) under key pk𝑁 .

Output: encryptions A, ®b of 𝐴 = 𝑃𝑇
2
𝑃𝑇
1

(∑
𝑗∈[𝑚] 𝐴

𝑗 + _𝐼
)
𝑃1𝑃2 and

®𝑏 = 𝑃𝑇
2
𝑃𝑇
1

∑
𝑗∈[𝑚] ®𝑏 𝑗 , respectively, under key pk𝑁 , where 𝑃1 ∈ Z𝑑×𝑑𝑁

is a

random permutation matrix. (Notice that 𝐴 is a permuted version of∑
𝑗∈[𝑚] 𝐴

𝑗 + _𝐼 , and ®𝑏 is the corresponding representation of 𝑋𝑇 ®𝑦.)
Steps: S1 performs the following:

(1) Data Merging: Homomorphically computes𝑇 1 =
∑

𝑗∈[𝑚] 𝐴
𝑗 + _𝐼

(𝐼 ∈ Z𝑑×𝑑
𝑁

is the identity matrix) and ®𝑡 = ∑
𝑗∈[𝑚] ®𝑏 𝑗 by computing

𝑇𝑇𝑇 1 ← Eval

(
pk𝑁 ,Add_,A

1, . . . ,A𝑚
)
, and

®𝑡𝑡𝑡 ← Eval

(
pk𝑁 ,Add,

®b
1

, . . . , ®b
𝑚

)
. (We note that𝑇 1 = 𝑋𝑇 ·𝑋 + _𝐼 ,

and ®𝑡 = 𝑋𝑇 · ®𝑦.)
(2) Permutation Generation: Picks a random permutation matrix

𝑃1 ∈ Z𝑑×𝑑𝑁
, and homomorphically computes 𝑃 = 𝑃1 · 𝑃2 and 𝑃𝑇 by

performing P← Eval

(
pk𝑁 ,MatMultL𝑃1 ,P2

)
and

P𝑇 ← Eval

(
pk𝑁 ,MatMultR

𝑃𝑇
1

,P𝑇
2

)
.

(3) Data Permuting: Homomorphically computes 𝐴 = 𝑃𝑇 ·𝑇 1 · 𝑃
and
®𝑏 = 𝑃𝑇 · ®𝑡 as follows:𝑇𝑇𝑇 2 ← Eval

(
pk𝑁 ,MatMult,P𝑇 ,𝑇𝑇𝑇 1

)
.

A← Eval

(
pk𝑁 ,MatMult,𝑇𝑇𝑇 2,P

)
.

®b← Eval

(
pk𝑁 ,MatVecMult,P𝑇 , ®𝑡𝑡𝑡

)
.

Figure 6: Data Merging and Permuting

The algorithm is executed locally by S1 and uses the circuitsMatMultR𝑀

and MatVecMultL𝑀 of Section 5.1.

Public parameter: Eand 𝑁 as in Figure 2.

Inputs from previous phases: a set 𝐹 ∗ of the indices of features that
survived the current iteration, the public encryption key pk𝑁 , and

encryptions A, ®b of 𝐴 ∈ Z𝑑×𝑑
𝑁

and
®𝑏 ∈ Z𝑑

𝑁
, respectively.

Output: encryptions A𝐹 ∗ , ®b𝐹 ∗ of 𝐴𝐹 ∗ = pjct𝐹 ∗ (𝐴) ∈ Z𝑑×𝑑𝑁
and

®𝑏𝐹 ∗ = pjct𝐹 ∗
(
®𝑏
)
∈ Z𝑑

𝑁
(i.e., the projection of 𝐴, ®𝑏 to [𝐹 ∗ ]).

Steps:
(1) Compacting: S1 compacts the data by homomorphically

computing𝐴𝐹 ∗ = N𝐹 ∗ ·𝐴 · N𝐹 ∗ and ®𝑏𝐹 ∗ = N𝐹 ∗ · ®𝑏, by performing:

• T← Eval

(
pk𝑁 ,MatMultRN𝐹 ∗ ,A

)
.(Notice that T encrypts

𝐴 · N𝐹 ∗ .)

• A𝐹 ∗ ← Eval

(
pk𝑁 ,MatMultLN𝐹 ∗ ,T

)
.

• ®b𝐹 ∗ ← Eval

(
pk𝑁 ,MatVecMultLN𝐹 ∗ ,

®b
)
.

(Notice that for every 𝑖 ∉ 𝐹 ∗, the 𝑖th row and column in 𝐴𝐹 ∗ are ®0,
and all other entries are identical to the corresponding entry in 𝐴.

Similarly, for every 𝑖 ∉ 𝐹 ∗ the 𝑖th entry of
®𝑏𝐹 ∗ is 0, otherwise it

equals the corresponding entry in
®𝑏.)

(2) Output: S1 outputs A𝐹 ∗ , ®b𝐹 ∗ .

Figure 7: Compacting current data.

be removed first, and the second column will be removed next. This

can be used to construct a pair of inputs 𝑋 (0) , ®𝑦 (0) and 𝑋 (1) , ®𝑦 (1)
for which the order in which columns are removed is different, by

switching the locations of the first and second columns. We first

The protocol uses the circuits ScalerVecMult and MatVecMult of

Section 5.1.

Public parameter: E, 𝑛, 𝑑 ,𝑚, 𝑠 , 𝑁 as in Figure 2.

Inputs from previous phases: the input of S1 consists of the public
encryption key pk𝑁 , encryptions A𝐹 , ®b𝐹 of𝐴𝐹 , ®𝑏𝐹 (respectively), the set 𝐹

of the features that survived to this iteration, and an encryption P of a

permutation matrix 𝑃 . The input of S2 consists of 𝐹 and the keys

pk𝑁 , sk𝑁 . The data owners have no input.

Output: the output of all parties is an 𝑠-sparse model ®𝑤.
Steps:

(1) Learning step:
• S1 and S2 execute the scaled ridge protocol of Figure 3 (where

the input of S1 is 𝐹, pk𝑁 ,A𝐹 , ®b𝐹 , and the input of S2 is 𝐹, sk𝑁 )

with the following changes:

– The output of S1 is an entry-by-entry encryption ®z𝐹 of a

vector ®𝑧𝐹 ∈ Z𝑑𝑁 .

– Let Δ = det (Γ) denote the determinant which S2 computes

in Step 4 of Figure 3. Then S2 encrypts
Δ−1Δ−1Δ−1 ← Enc

(
pk𝑁 ,Δ

−1)
, and sends Δ−1Δ−1Δ−1 to S1.

• Recall that ®𝑧𝐹 = expd𝐹

(
det

(
𝐴′
𝐹

)
· ®𝑤′

𝐹

)
, where

𝐴′
𝐹
= pjct𝐹 (𝐴𝐹 ) ∈ Z|𝐹 |×|𝐹 |𝑁

and ®𝑤′
𝐹
∈ Z|𝐹 |

𝑁
were defined in

Figure 3. S1 homomorphically computes ®𝑤𝐹 = expd𝐹

(
®𝑤′
𝐹

)
as

follows:

– let 𝐷 = det

(
𝐴′
𝐹

)
, then S1 homomorphically computes 𝐷−1 by

computing D−1 ← Eval

(
pk𝑁 , ScalerVecMult(det(𝑅′) )−1 ,Δ

−1Δ−1Δ−1
)
.

(This step computes 𝐷−1 because

Δ = det (Γ) = det

(
𝐴′𝐹 · 𝑅

′) = det

(
𝑅′

)
· det

(
𝐴′𝐹

)
.)

– homomorphically computes

®w𝐹 ← Eval

(
pk𝑁 , ScalerVecMult, ®z𝐹 ,D−1

)
. (Notice that

®𝑤𝐹 = expd𝐹

(
®𝑤′
𝐹

)
, where 𝐴′

𝐹
· ®𝑤′

𝐹
= pjct𝐹

(
®𝑏𝐹

)
.)

(2) Unpermuting: S1 homomorphically unpermutes ®𝑤𝐹 to obtain

®𝑤int = 𝑃 · ®𝑤𝐹 by computing

®wint ← Eval

(
pk𝑁 ,MatVecMult,P, ®𝑤𝐹

)
, and sends ®wint

to S2.
(Notice that ®𝑤𝐹 contains the correct weights, but they are

permuted according to 𝑃𝑇 . Multiplying by 𝑃 =
(
𝑃𝑇

)−1
thus inverts

the permutation.)

(3) Decrypting the output: S2 decrypts ®𝑤int = Dec

(
sk𝑁 , ®wint

)
,

recovers from it the model ®𝑤 ∈ Q𝑑 using rational

reconstruction [23, 65], and sends ®𝑤 to all parties.

Figure 8: Computing and unmasking the output

present the explicit example, then discuss the intuition underlying

it, and possible extensions.

The Example. Consider the following data matrix and response

vector:

𝑋 =

©«
1 1 10

−1 2 11

5 1 12

1 1 1

ª®®®¬ , ®𝑦 =

©«
21

23

25

3

ª®®®¬ .
Then the iterated ridge protocol is instantiated with inputs

𝐴 = 𝑋𝑇𝑋 =
©«

28 5 60

5 7 45

60 45 366

ª®¬ , ®𝑏 = 𝑋𝑇 ®𝑦 =
©«

126

95

766

ª®¬
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The protocol uses the circuits Square, SubNums, AddConst𝑐 , BinCompareR𝑐 , BinCompareL𝑐 , Neg, MultNums and AddNums of Section 5.1. All

computations are in Z𝐷 .

Public parameter: E = (KeyGen, Enc,Dec, Eval) and 𝑁,𝐷 as in Figure 2.We denote 𝑙 = ⌈log𝑁 ⌉.
Inputs from previous phases: both servers take as input the set 𝐹 ⊆ [𝑑 ] of the currently used feature indices, and public encryption keys pk𝑁 , pk𝐷 , as

well as a value 𝑘 such that 1 ≤ 𝑘 < |𝐹 | which determines the size of the output set 𝑆
del

. S1 additionally has as input a vector ®z, which is an entry-wise

encryption of a vector ®𝑧 ∈ Z𝑑
𝑁
, where 𝑧𝑖 <

√
𝑁 for every 𝑖 ∈ [𝑑 ] (here and below, 𝑧𝑖 denotes the 𝑖’th entry of ®𝑧). S2 additionally has as input the private

decryption key sk𝑁 .

Output: the output of S1, S2 is a subset 𝑆del ⊆ [ |𝐹 | ] of size 𝑘 which contains the indices of the smallest entries in ®𝑧.
Steps:

(1) Compute masked differences: 𝑠𝑒𝑟𝑣1 sends to S2 the values
{
dfdfdf𝑖,𝑗

}
𝑖,𝑗∈𝐹,𝑖≠𝑗 which are computed as follows:

• For every 𝑖 ∈ 𝐹 , homomorphically computes the value 𝑧′
𝑖
:= 𝑧2

𝑖
by computing z′

𝑖
← Eval

(
pk𝑁 , Square, z𝑖

)
.

• For every 𝑖, 𝑗 ∈ 𝐹 such that 𝑖 ≠ 𝑗 , picks a random 𝑟𝑖,𝑗 ← Z𝑁 , and computes t𝑖,𝑗 ← Eval

(
pk𝑁 , SubNums, z′

𝑖
, z′

𝑗

)
and

dfdfdf𝑖,𝑗 ← Eval

(
pk𝑁 ,AddConst𝑟𝑖,𝑗 , t𝑖,𝑗

)
. (df𝑖,𝑗 is the difference 𝑧

2

𝑖
− 𝑧2

𝑗
, masked with the random 𝑟𝑖,𝑗 .)

(2) Compute non-negative ranges of masked differences: S2 performs the following for every 𝑖, 𝑗 ∈ 𝐹, 𝑖 ≠ 𝑗 :

• Decrypts df𝑖,𝑗 = Dec

(
sk𝑁 ,dfdfdf𝑖,𝑗

)
.

• If df𝑖,𝑗 <
𝑁−1
2
+ 1 then set rangeMin

′
𝑖,𝑗

= df𝑖,𝑗 , rangeMax
′
𝑖,𝑗

= df𝑖,𝑗 + 𝑁−1
2
+ 1 (the sum is computed over the integers), and Negative𝑖,𝑗 = 0.

• Else, set rangeMin
′
𝑖,𝑗

= df𝑖,𝑗 − 𝑁−1
2

(computed over the integers), rangeMax
′
𝑖,𝑗

= df𝑖,𝑗 + 1, and Negative𝑖,𝑗 = 1.

• Let

#                 —
rangeMin𝑖,𝑗 ,

#                  —
rangeMax𝑖,𝑗 denote the binary representation of rangeMin

′
𝑖,𝑗

and rangeMax
′
𝑖,𝑗

as length-𝑙 strings, respectively. S2 encrypts
#                 —
rangeMinrangeMinrangeMin𝑖,𝑗 ← Enc

(
pk𝐷 ,

#                 —
rangeMin𝑖,𝑗

)
,

#                  —
rangeMaxrangeMaxrangeMax𝑖,𝑗 ← Enc

(
pk𝐷 ,

®rangeMax𝑖,𝑗

)
, andNegativeNegativeNegative𝑖,𝑗 ← Enc

(
pk𝐷 ,Negative𝑖,𝑗

)
.

Then, S2 sends
{

#                 —
rangeMinrangeMinrangeMin𝑖,𝑗 ,

#                  —
rangeMaxrangeMaxrangeMax𝑖,𝑗 ,NegativeNegativeNegative𝑖,𝑗

}
𝑖,𝑗∈𝐹,𝑖≠𝑗

to S1.
(3) Compute ordering: S1 homomorphically computes the ordering of 𝑧1, . . . , 𝑧𝑑 , where the order of index 𝑖 is the number of indices 𝑗 ∈ 𝐹 such that

𝑧𝑖 < 𝑧 𝑗 (as elements of Z𝑁 ). Specifically, S1 performs the following:

• For every 𝑖 ∈ 𝐹 , encryptsOrdOrdOrd𝑖 ← Enc

(
pk𝐷 , 0

)
. (Ord𝑖 is the location of index 𝑖 in the ordering; intuitively, it is initialized to 0 and will be increased

for every 𝑗 ≠ 𝑖 such that 𝑧 𝑗 ≤ 𝑧𝑖 .)
• For every 𝑖, 𝑗 ∈ 𝐹, 𝑖 ≠ 𝑗 , let ®𝑟𝑖,𝑗 denote the length-𝑙 bit string representing 𝑟𝑖,𝑗 , then S1 checks whether 𝑟𝑖,𝑗 ∈

[
rangeMin𝑖,𝑗 , rangeMax𝑖,𝑗

)
. This is

done homomorphically as follows.

– S1 homomorphically computes two indicators: IsBiggerIsBiggerIsBigger𝑖,𝑗 ← Eval

(
pk𝐷 ,BinCompareR®𝑟𝑖,𝑗 ,

#                 —
rangeMinrangeMinrangeMin𝑖,𝑗

)
,

IsSmallerIsSmallerIsSmaller𝑖,𝑗 ← Eval

(
pk𝐷 ,BinCompareL®𝑟𝑖,𝑗 ,

#                  —
rangeMaxrangeMaxrangeMax𝑖,𝑗

)
(Intuitively, IsBigger𝑖,𝑗 = IsSmaller𝑖,𝑗 = 1 if and only if

rangeMin𝑖,𝑗 ≤ 𝑟𝑖,𝑗 < rangeMax𝑖,𝑗 .)

– Next, S1 increases Ord𝑖 by ost𝑖,𝑗 := IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗 · Negative𝑖,𝑗 +
(
1 − IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗

)
·
(
1 − Negative𝑖,𝑗

)
. (Intuitively,

ost𝑖,𝑗 ∈ {0, 1} is 1 if and only if 𝑧𝑖 > 𝑧 𝑗 , which happens if either: (1) 𝑧2
𝑖
− 𝑧2

𝑗
+ 𝑟𝑖,𝑗 is “negative”, which is denoted by Negative𝑖,𝑗 = 1, and then

𝑧2
𝑖
− 𝑧2

𝑗
is “positive” if and only if rangeMin𝑖,𝑗 ≤ 𝑟𝑖,𝑗 < rangeMax𝑖,𝑗 , in which case the first summand is 1; or (2) 𝑧2

𝑖
− 𝑧2

𝑗
+ 𝑟𝑖,𝑗 is “non-negative”,

in which case Negative𝑖,𝑗 = 0, and additionally 𝑟𝑖,𝑗 < rangeMin𝑖,𝑗 or rangeMax𝑖,𝑗 ≤ 𝑟𝑖,𝑗 , i.e., the second summand is 1.)

This is done by homomorphically computing the following values:

(a) The negations notInRange𝑖,𝑗 and NotNegative𝑖,𝑗 of IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗 and Negative𝑖,𝑗 (respectively), computed as

inRangeinRangeinRange𝑖,𝑗 ← Eval

(
pk𝐷 ,MultNums, IsBiggerIsBiggerIsBigger𝑖,𝑗 , IsSmallerIsSmallerIsSmaller𝑖,𝑗

)
,

notInRangenotInRangenotInRange𝑖,𝑗 ← Eval

(
pk𝐷 ,Neg, inRangeinRangeinRange𝑖,𝑗

)
,NotNegativeNotNegativeNotNegative𝑖,𝑗 ← Eval

(
pk𝐷 ,Neg,NegativeNegativeNegative𝑖,𝑗

)
(b) 𝑡𝑡𝑡1

𝑖,𝑗
← Eval

(
pk𝐷 ,MultNums, IsBiggerIsBiggerIsBigger𝑖,𝑗 , IsSmallerIsSmallerIsSmaller𝑖,𝑗

)
. (Then 𝑡1

𝑖,𝑗
= IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗 .)

(c) 𝑡𝑡𝑡2
𝑖,𝑗
← Eval

(
pk𝐷 ,MultNums, 𝑡𝑡𝑡1

𝑖,𝑗
,NegativeNegativeNegative𝑖,𝑗

)
. (Then 𝑡2

𝑖,𝑗
= IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗 · Negative𝑖,𝑗 .)

(d) 𝑡𝑡𝑡3
𝑖,𝑗
← Eval

(
pk𝐷 ,MultNums,notInRangenotInRangenotInRange𝑖,𝑗 ,NotNegativeNotNegativeNotNegative𝑖,𝑗

)
. (Then 𝑡3

𝑖,𝑗
=

(
1 − IsBigger𝑖,𝑗 · IsSmaller𝑖,𝑗

)
·
(
1 − Negative𝑖,𝑗

)
.)

(e) 𝑡𝑡𝑡4
𝑖,𝑗
← Eval

(
pk𝐷 ,AddNums, 𝑡𝑡𝑡2

𝑖,𝑗
, 𝑡𝑡𝑡3

𝑖,𝑗

)
. (Then 𝑡4

𝑖,𝑗
= ost𝑖,𝑗 .)

(f) OrdOrdOrd𝑖 ← Eval

(
pk𝐷 ,AddNums,OrdOrdOrd𝑖 , 𝑡𝑡𝑡

4

𝑖,𝑗

)
. (This increases Ord𝑖 by ost𝑖,𝑗 .)

(4) Permuting ordinals: S1 draws a random permutation Π on 𝐹 , and computes the vector

#    —

OrdOrdOrd
Π ∈ Z|𝐹 |

𝐷
such that

#    —

OrdOrdOrd
Π
𝑖
= OrdOrdOrdΠ (𝑖 ) for every 𝑖 ∈ 𝐹 .

Then, S1 sends
#    —

OrdOrdOrd
Π
to S2.

(5) Computing 𝑘 smallest features: for every 𝑖 ∈ 𝐹 , S2 decrypts
#    —
Ord

Π
𝑖
= Dec

(
sk𝐷 ,

#    —

OrdOrdOrd
Π
𝑖

)
, and generates a vector 𝜒Π ∈ {0, 1}𝑑 by setting 𝜒Π

𝑖
= 1 if

#    —
Ord

Π
𝑖
< 𝑘 , otherwise setting 𝜒Π

𝑖
= 0. S2 sends ®𝜒Π :=

(
𝜒Π
1
, . . . , 𝜒Π|𝐹 |

)
to S1.

(6) Output: 𝑆1 computes 𝑆
del

=

{
𝑖 : ®𝜒Π

Π (𝑖 ) = 1

}
and sends it to S2. Both servers set 𝑆

del
to be their output for the phase.

Figure 9: Selecting which features to remove in the current iteration.
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The solution to the linear system 𝐴 ®𝑤 = ®𝑏 is

®𝑤 =
©«

157/1281
970/1281
2536/1281

ª®¬
Therefore, from the correctness of the iterated ridge step (Figure 3,

see analysis in Section 8), the first column of 𝐴 will be removed

in the first iteration. Thus, the second iteration is initialized with

inputs
14

𝐴′ =
(

7 45

45 366

)
, ®𝑏 ′ =

(
95

766

)
And the solution to 𝐴′ ®𝑤 ′ = ®𝑏 ′ is

®𝑤 ′ =
(

100/179
1087/537

)
So the second column will be removed in the second iteration (from

the correctness of the iterated ridge step). Thus, for 𝑋, ®𝑦 the order

in which columns are removed is 1,2 (and column 3 “survives” the

iterations). Consider now switching the first and second columns

of 𝑋 , i.e., running the protocol with inputs

𝑋 (1) =
©«

1 1 10

2 −1 11

1 5 12

1 1 1

ª®®®¬ , ®𝑦 (1) =
©«

21

23

25

3

ª®®®¬ .
In this case, all calculations will be symmetric to those with 𝑋, ®𝑦,
except that the role of columns 1,2 is reversed. In particular, column

2will be removed in the first iteration, and column 1will be removed

in the second iteration. Consequently, if the protocol is executed

over unpermuted data, then the set of surviving features (computed

in Step 3c in Figure 2) will differ when executing over 𝑋, ®𝑦, and
𝑋 (1) , ®𝑦 (1) , and so the adversary’s view is different, even though its

output (the final 1-sparse model𝑤 = (0 0 766/366)𝑇 ) is the same.

Discussion: intuition and extensions.We now describe the

intuition underlying the example. The starting point is a set of 4

linear equations in 3 variables, with an exact solution, in which

each of the columns of the matrix defining the linear system has

a unique “role” (i.e., there is no symmetry between the columns).

Specifically, consider the following system:

©«
1 1 10

−1 1 11

5 1 12

1 1 1

ª®®®¬ ·
©«
𝑤1

𝑤2

𝑤3

ª®¬ =

©«
21

23

25

3

ª®®®¬ .
The solution of the system is 𝑤1 = 0,𝑤2 = 1,𝑤3 = 2. Intuitively,

this is because the first column is uncorrelated with the result, and

the “weight” of the third column (i.e., its effect on the solution)

is double that of the second column. Thus, when searching for

a 1-sparse solution with these inputs, the first column will be

removed in the first iteration, and the second column will be

removed next. Therefore, the system given above already gives an

example in which the order of removing columns reveals non-trivial

information. To show that such information leakage is possible

even when no exact solution exist, we add “noise” to the system,

14
Here, we assume that only the first feature is removed in the first iteration. This will

indeed be the case for this toy example, since the cutoff point in Step 3b of Figure 2

will be computed with |𝐹 | ≤ thr since the number of features is small.

by changing the second entry on the second row from 1 to 2, thus

obtaining the 𝑋, ®𝑦 described above.

We note that for simplicity, we chose to present a case in

which the two inputs 𝑋 (0) , 𝑋 (1) have the same columns (in a

different order). However, the example generalizes to cases in

which 𝑋 (0) , 𝑋 (1) do not share any column, as long as the order

of correlations between the columns and the response vector are

different in the two inputs. We additionally note that the example

can be generalized to matrices of higher dimensions, where instead

of considering single columns of 𝑋 , we divide the columns into 3

sets: a set that is highly correlated with ®𝑦 (representing column

3 in the toy example), a set that is somewhat correlated with ®𝑦
(representing column 2 in the toy example), and a set that is not

correlated with ®𝑦 (representing column 1 in the toy example).

Such types of inputs naturally arise when learning is performed

over real data. Indeed, 𝑋 and 𝑋 (1) can represent records from

two different sub-populations P1,P2 with different characteristics.

Specifically, the second feature (i.e., column) might be highly

correlated with the response vector in P1 but not in P2, whereas
the first feature (i.e., column) is highly correlated with the response

vector inP2 (but not inP1). Thus, the information leakage described

through this toy example can be used to infer from which of the

sub-populations the data was taken.

The necessity of hiding the intermediate models. Our protocols
hide the models computed during intermediate iterations of the

ridge regressions protocol (Figure 3). We now show that this is

necessary for privacy, as intermediate models might reveal non-

trivial information about the inputs. Specifically, we will show a

pair of inputs for which the final model, and the order in which

columns are removed, are identical, but the intermediate models

are not. In particular, this shows that revealing the intermediate

models reveals information beyond what is revealed by the order in

which features are removed.

The high-level idea of the attack is to consider pairs 𝑋 (0) , ®𝑦 (0)
and𝑋 (1) , ®𝑦 (1) of inputs for which there exist (𝑠+1)-sparse solutions
(that are not 𝑠-sparse) that differ only in the value of the smallest

coordinate which is present in the (𝑠 + 1)-sparse solution. Since we
are looking for an 𝑠-sparse solution, this coordinate will not appear

in the final model, which will therefore be identical in both cases.

More specifically, we can even take 𝑋 (0) , 𝑋 (1) to be identical. We

proceed to describe the example.

The Example. Consider the following data matrix and response

vector:

𝑋 =

©«
1 0 1 0

0 1 0 0

1 1 0 0

1 1 1 1

1 1 1 0

ª®®®®®¬
, ®𝑦 (0) =

©«
6

3

7

10

9

ª®®®®®¬
where we are looking for a 3-sparse solution. Then the data merging

step (Figure 6) outputs a permuted version of

𝐴 = 𝑋𝑇𝑋 =

©«
4 3 3 1

3 4 2 1

3 2 3 1

1 1 1 1

ª®®®¬
15
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and

®𝑏 (0) = 𝑋𝑇 ®𝑦 (0) =
©«

32

29

25

10

ª®®®¬
where for simplicity of the descriptionwe assume the permutation is

the identity (so the permuted versions are identical to 𝐴, ®𝑏 (0) ). This
is without loss of generality, since applying a general permutation

will only permute the coordinates of the intermediate models, but

will not affect their values. Therefore, the first iteration of the

scaled iterated ridge regression phase (Figure 3) is run on inputs

𝐴, ®𝑏 (0) , where S2 executes the learning algorithm over masked

versions of 𝐴, ®𝑏 (0) . Again, for simplicity of the description we

assume the masking is trivial (i.e., 𝑅 is the identity and ®𝑟 = ®0), so
that learning is performed directly on 𝐴, ®𝑏 (0) . This again is without

loss of generality since from the correctness of the protocol (see

Section 8), learning on masked data returns the “correct” model,

which would have been computed if learning had been performed

directly on unmasked data. In this case, S2 computes the scaled

model ®𝑧 (0) as:

®𝑧 (0) = adj (𝐴) · ®𝑏 (0)

=

©«
5 −2 −4 1

−2 2 1 −1
−4 1 5 −2
1 −1 −2 5

ª®®®¬ ·
©«

32

29

25

10

ª®®®¬ =

©«
12

9

6

3

ª®®®¬ (5)

Notice that the corresponding model is

®𝑤 (0) = (det (𝐴))−1 · ®𝑧 (0) =
©«

4

3

2

1

ª®®®¬ .
The last column of 𝐴 will be removed in the first iteration,

15
which

will also be the last iteration since we are looking for a 3-sparse

solution. The final model will be

®𝑤 =

©«
4

3

2

0

ª®®®¬ .
Consider now the inputs 𝑋, ®𝑦 (1) , where

®𝑦 (1) =

©«
6

3

7

9.5

9

ª®®®®®¬
.

Again, we assume without loss of generality that the permutation

and masking are trivial, and so in the first iteration of the scaled

iterated ridge regression phase, S2 computes the scaled model

15
We note that though the computation is performed over the binary representation

of abs

(
®𝑧 (0)

)
, it returns the same result as would have been computed directly on ®𝑧 (0)

because the computation is over R and all coordinates are positive.

®𝑧 (1) = adj (𝐴) · ®𝑏 (1) , where

®𝑏 (1) = 𝑋𝑇 ®𝑦 (1) =
©«

31.5

28.5

24.5

9.5

ª®®®¬ .
Then

®𝑧 (1) =
©«

12

9

6

1.5

ª®®®¬ ,
and notice that the corresponding unscaled model is

®𝑤 (1) =
©«

4

3

2

0.5

ª®®®¬ .
Again, there will be a single iteration and the final model will

be ®𝑤 , but the intermediate models are different: ®𝑧 (0) ≠ ®𝑧 (1) and
consequently also ®𝑤 (0) ≠ ®𝑤 (1) .

The necessity of hiding det (𝐴). Our protocols hide the

determinant det (𝐴) used to un-scale the final model (see Step 1 in

Figure 8). We now show this is necessary for privacy, as det (𝐴)
might reveal non-trivial information about the inputs. Specifically,

we will show a pair of inputs for which the (unscaled) final and

intermediate models, and the order in which columns are removed,

are identical, but det (𝐴) is not. In particular, this shows that

revealing det (𝐴) reveals information beyond what is revealed by

the order in which features are removed, and the intermediate

models.

The high-level idea of the attack is conceptually simple: we

consider a pair 𝑋 (0) , ®𝑦 (0) of inputs, and a “scaled” version 𝑋 (1) =
2𝑋 (0) , ®𝑦 (1) = 2®𝑦 (0) . Since the data and response vector are scaled by
the same scaler, the resultant models will be the same (throughout

the execution of the protocol), but det (𝐴) will be different. We

proceed to explicitly describe the example.

The Example. For 𝑋 (0) , ®𝑦 (0) we consider the same inputs as

in the previous example (which showed the necessity of hiding

the intermediate models). As in the previous example, we consider

the case that parties are looking for a 3-sparse solution, and make

the same simplifying assumptions (namely, that the permutation

and masking are trivial). Consequently, all computations will be

identical. In particular, the scaled model ®𝑧 (0) , the unscaled model

®𝑤 (0) , the final model ®𝑤 , and det

(
𝐴(0)

)
= det

((
𝑋 (0)

)𝑇
· 𝑋 (0)

)
satisfy:

®𝑧 (0) =
©«

12

9

6

3

ª®®®¬ , ®𝑤 (0) =
©«

4

3

2

1

ª®®®¬ ,

®𝑤 =

©«
4

3

2

0

ª®®®¬ , det

(
𝐴(0)

)
= 3.
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Now, consider the inputs 𝑋 (1) = 2𝑋 (0) , ®𝑦 (1) = 2®𝑦 (0) . Then

𝐴(1) =
(
𝑋 (1)

)𝑇
𝑋 (1) =

©«
16 12 12 4

12 16 8 4

12 8 12 4

4 4 4 4

ª®®®¬ = 4𝐴(0) ,

and

®𝑏 (1) =
(
𝑋 (1)

)𝑇
®𝑦 (1) =

©«
128

116

100

40

ª®®®¬ = 4
®𝑏 (0)

Therefore, in the first iteration of the scaled iterated ridge regression

phase (Figure 3), S2 computes the scaled model ®𝑧 (1) as:

®𝑧 (1) = adj

(
𝐴(1)

)
· ®𝑏 (1)

=

©«
320 −128 −256 64

−128 128 64 −64
−256 64 320 −128
64 −64 −128 320

ª®®®¬ ·
©«

128

116

100

40

ª®®®¬
= 64adj

(
𝐴(0)

)
· 4®𝑏 (0) = 256®𝑧 (0) =

©«
3072

2304

1536

768

ª®®®¬ (6)

Notice that the corresponding model is

®𝑤 (1) =
(
det

(
𝐴(1)

))−1
· ®𝑧 (1) = 1

768

· ®𝑧 (1) =
©«

4

3

2

1

ª®®®¬ .
The last column of 𝐴 will again be removed in the first iteration,

which will also be the last iteration since we are looking for a 3-

sparse solution. The final model will be ®𝑤 as in the previous case.

In summary, the (unscaled) intermediate and final models are the

same, as well as the order in which columns are removed. However,

det

(
𝐴(0)

)
= 3 ≠ 768 = det

(
𝐴(1)

)
.

SIR is susceptible to inversion attacks. We conclude this section

by showing that SIR is susceptible to inversion attacks. More

specifically, we show that the output model may be used to infer

non trivial information on the inputs of parties, even when all
parties follow the protocol (i.e., are semi-honest). In particular, such

attacks might be exploited by corrupted parties, who may choose to

use different inputs (but otherwise follow the protocol) in order to

learn non-trivial information about the inputs of the honest parties.

The high-level idea of the attack is for corrupted parties to use

“balanced” inputs, in which all features have the same correlation

with the response vector. Thus, the inputs provided by corrupted

parties will not affect the output model, and any correlation in the

output model will then point to correlations in the inputs of honest

parties. A concrete example follows.

We consider a setting with two data owners DO
Alice

and DO
Bob

,

each holding 3 data records with 3 features. DO
Bob

will be corrupt,

and will try to infer information about the inputs of DO
Alice

. We

note that unlike the previous attacks of the section, we cannot

directly consider the final data matrix 𝑋 (on which SIR will be

executed), but rather we define the data matrices ofDO
Alice

,DO
Bob

and use them to define 𝑋 and the response vector. (The reason for

this difference is that previous attacks considered only a corrupted

server, so leaking information about the inputs of any of the data

owners was problematic; whereas here we are trying to leak on the

input of a specific data owner.)
The Example. Consider the following data matrix and response

vector for DO
Bob

:

𝑋Bob =
©«

1 0 0

0 1 0

0 0 1

ª®¬ , ®𝑦Bob =
©«

1

1

1

ª®¬
and two possible inputs for DO

Alice
:

𝑋Alice,0 =
©«

1 0 0

0 1 0

0 0 1

ª®¬ , ®𝑦Alice,0 = ©«
1

0

0

ª®¬
and

𝑋Alice,1 =
©«

1 0 0

0 1 0

0 0 1

ª®¬ , ®𝑦Alice,1 = ©«
0

0

1

ª®¬
Consider executing sparse ridge regression with _ = 0, where

we are looking for a 1-sparse solution. Then

𝐴Bob
:=

(
𝑋Bob

)𝑇
· 𝑋Bob = 𝐼

(here, 𝐼 is the unit matrix), and

®𝑏Bob :=

(
𝑋Bob

)𝑇
· ®𝑦Bob = ®𝑦Bob .

In the first execution, when DO
Alice

’s input is 𝑋Alice,0, ®𝑦Alice,0 we
have

𝐴Alice,0
:=

(
𝑋Alice,0

)𝑇
· 𝑋Alice,0 = 𝐼

and

®𝑏Alice,0 :=
(
𝑋Alice,0

)𝑇
· ®𝑦Alice,0 = 𝑦Alice,0

whereas in the second execution, when DO
Alice

’s input is

𝑋Alice,1, ®𝑦Alice,1 we have

𝐴Alice,1
:=

(
𝑋Alice,1

)𝑇
· 𝑋Alice,1 = 𝐼

and

®𝑏Alice,0 :=
(
𝑋Alice,1

)𝑇
· ®𝑦Alice,1 = 𝑦Alice,1

These are then merged into a single matrix and response vector.

The merged matrices are 𝐴0
:= 𝐴Alice,0 + 𝐴Bob = 2𝐼 in the first

case, and 𝐴1
:= 𝐴Alice,1 +𝐴Bob = 2𝐼 in the second case. As for the

response vectors, these are

®𝑏0 := ®𝑏Alice,0 + ®𝑏Bob =
©«

2

1

1

ª®¬
in the first case, and

®𝑏1 := ®𝑏Alice,1 + ®𝑏Bob =
©«

1

1

2

ª®¬
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in the second case. The solutions ®𝑤0, ®𝑤1
to the linear systems

𝐴0 ®𝑤0 = ®𝑏0 and 𝐴1 ®𝑤1 = ®𝑏1, respectively, are

®𝑤0 =
©«

1

1/2
1/2

ª®¬ , ®𝑤1 =
©«

1/2
1/2
1

ª®¬
Therefore, the output sparse models would be

®𝑤0′ =
©«

1

0

0

ª®¬ , ®𝑤1′ =
©«

0

0

1

ª®¬
respectively, which reveals which feature in the input of DO

Alice
is

most correlated with the response vector.

8 SECURITY ANALYSIS
In this section we analyze the security of our protocol SIR. We first

set some notation.

Notation 8.1. For natural 𝑁,𝑑 , _ ≥ 0, and ∅ ≠ 𝐹𝑘 ⊂ . . . ⊂ 𝐹1 ⊆
[𝑑], letT

Inv,𝑁 ,𝑑,_,𝐹1,...,𝐹𝑘 denote the subset ofR𝑛×𝑑×R𝑛×1 consisting
of all (𝑋, ®𝑦) such that:

• 𝐴 = 𝑋𝑇𝑋 + _𝐼 is invertible in Z𝑑×𝑑
𝑁

.

• For every 1 ≤ 𝑗 ≤ 𝑘 , pjct𝐹 𝑗 (𝐴) is invertible in Z
|𝐹 𝑗 |×|𝐹 𝑗 |
𝑁

.

Remark 8.2 (On the types of inputs for which SIR is secure). As

noted in Section 1, SIR is secure when 𝑑 ≤ 𝑛 and 𝑋 is invertible

(the same assumption is also made in previous works [4, 29]). More

specifically, we only consider security for inputs in T
Inv,𝑁 ,𝑑,_,𝐹1,...,𝐹𝑘

(where _, 𝑑 and 𝑁 are as defined in Section 4, and 𝐹1, . . . 𝐹𝑘 are the

sets of features that survive iterations 1, . . . , 𝑘 , respectively; notice

that the sizes of these sets depend only on the public parameters

of SIR). This is similar to the security guarantee of Giacomelli et

al. [29], who only consider security for inputs in T
Inv,𝑁 ,𝑑,_, [𝑑 ] . Our

assumption that (𝑋, ®𝑦) ∈ T
Inv,𝑁 ,𝑑,_,𝐹1,...,𝐹𝑘 is a natural extension of

the assumption of [29] (that (𝑋, ®𝑦) ∈ T
Inv,𝑁 ,𝑑,_, [𝑑 ] ) to our setting

of iterated computation. We stress that when 𝑑 ≤ 𝑛, it suffices to

assume that 𝑋 is inevitable (i.e., has degree 𝑑). Indeed, in this case

𝑋𝐹 – the restriction of 𝑋 to the rows and columns in 𝐹 ⊆ [𝑑] –
also has full degree (i.e., degree |𝐹 |), and consequently the matrices

𝐴𝐹 = (𝑋𝐹 )𝑇 𝑋𝐹 used in the ridge regression iteration all have

full degree. As noted in Section 1, for the case 𝑑 > 𝑛 SIR can be

combined with another learning method (e.g., filter) to reduce the

number of features to 𝑛.

Theorem 8.3 (SIR Security). Let 𝑑 ≤ 𝑛 ∈ N. Then SIR is an
iterated ridge implementation of the algorithm of Figure 1 with𝑚-
privacy for any _ ≥ 0, and any 𝑁 ∈ N that satisfies Equation 4,
assuming the input matrix 𝑋 is invertible.

Proof of Theorem 8.3. Correctness Follows from Lemma 8.4

below. As for privacy, let 𝐼 ⊆ [𝑚] denote the subset of corrupted
data owners, and we consider three cases. First, assume that S1 is
corrupted. Then privacy follows from Lemma 8.5 below. Second,

assume that S2 is corrupt, then privacy follows from Lemma 8.6

below. Third, assume that both servers are honest. Since the

servers have no input, and the output is public, simulatability

follows immediately from simulatability when one of the servers is

corrupted. □

The next lemma states that the protocol is correct.

Lemma 8.4 (Correctness). Protocol SIR is correct. That is, for
every input𝑋, ®𝑦, the output of SIR is identical to its non-secure version
Iterative Ridge of Figure 1, except with negligible probability negl (^).

Proof. We will prove a stronger claim: we will prove that if

the FHE scheme has perfect correctness, then the outputs of SIR

and Iterative Ridge are identical. That is, we will prove that the

only source of error is the correctness error of the FHE scheme

(introduced by either the Eval or theDec algorithms). This is indeed

stronger than the statement of Lemma 8.4, because the correctness

error of the FHE scheme is negligible. Therefore, for the remainder

of the proof we assume that the FHE scheme is perfectly correct.

Consequently, it suffices to prove correctness of a revised version

of the protocol in which all values are given in the clear, and

all computations are executed directly (not using homomorphic

evaluation). This “unencrypted” version of SIR (Figure 2) differs

from the non-secure Iterative Ridge algorithm (Figure 1) in the

following points:
16

(1) Correctness of computing over a finite ring: Iterative
Ridge performs all computations in R, whereas SIR works in

finite ringsZ𝑁 andZ𝐷 , and then uses rational reconstruction

to recover a sparse model in Q𝑑 .
(2) Correctness of working over permuted inputs: In SIR,

the data used for learning consists of permuted versions 𝐴, ®𝑏
of the merged data

∑
𝑗 ∈[𝑚] 𝐴

𝑗 + _𝐼,∑𝑗 ∈[𝑚] ®𝑏 𝑗 , whereas in
Iterative Ridge 𝐴, ®𝑏 are used directly.

(3) Correctness of the scaled ridge phase: SIR performs

every ridge regression step (Figure 3) over masked data,

computes the model ®𝑤 = 𝐴−1 · ®𝑏 using the identity 𝐴−1 =

det (𝐴) · adj (𝐴), and outputs a model scaled by det (𝐴).
Moreover, the values Γ, 𝛽 used for learning are obtained from
a 𝑑 × 𝑑 matrix and a length-𝑑 vector, which are projected

to the set 𝐹 of surviving feature indices. Iterative Ridge,

on the other hand, performs this learning phase in the

clear (over unmasked data), computes 𝐴−1 explicitly, and

outputs the actual model (instead of a scaled one as in SIR).

Moreover, in Iterative Ridge the values 𝐴, ®𝑏 used to perform

the learning are the projected matrix and vector obtained

from the previous iteration.

(4) Correctness of the selection phase: The set 𝑆
del

of

smallest features that are removed in each iteration are

computed from the full set [𝑑] using masked differences of
squares (i.e., 𝑧2

𝑖
− 𝑧2

𝑗
+ 𝑟𝑖, 𝑗 ), whereas in Iterative Ridge it is

computed directly from the set of surviving features using

the absolute value (represented in R). Also, in SIR these are

computed over a permuted ordering, whereas in Iterative

Ridge it is computed directly on the ordering.

(5) Correctness of the compaction phase: The data

compaction phase in SIR resets the entries of 𝐴, ®𝑏
corresponding to features that did not survive the iteration,

16
We note that this comparison is in terms of the operations performed in each of the

protocols. Thus, the fact that the computation in SIR is divided between two servers,

and in Iterative Ridge it is performed by a single server, is irrelevant for us, as we

assume that the communication channels do not induce errors (this can be guaranteed

using error-correcting codes).
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whereas in Iterative Ridge these features are removed by

projecting 𝐴, ®𝑏 to the set of indices of surviving features.

(6) Correctness of the final output: The final learning phase
in Iterative Ridge simply consists of performing another

linear regression step which outputs the final sparse model.

SIR uses a dedicated output phase, in which it performs

masked ridge regression to obtain a scaled model, rescales

it to the actual (permuted) output model, and finally

unpermutes the output model.

We now argue that each of these steps preserves correctness

(with probability 1) and therefore the protocol itself, which

combines all steps, is also correct.

Computing over a finite ring (Item 1): the learning phase

computations in SIR are performed in Z𝑁 , whereas Z𝐷 is only

used to compute the ordering between the features. 𝑁 is chosen

such that no overflows will occur (see Remark 5.3), guaranteeing

that all computations in Z𝑁 perfectly emulate computations in R.
Moreover, since 𝐷 ≥ 𝑑 , and the ordering contains values between 0

and 𝑑 − 1, then overflows do not occur in the computations in Z𝐷 .
Moreover, correctness of the rational reconstruction algorithm was

proven in [29] (and holds here because 𝑁 is sufficiently large, see

Remark 5.3).

Using permuted inputs (Item 2): permuting𝐴, ®𝑏 is equivalent
to permuting the columns of the 𝑋 𝑗 ’s and ®𝑦 𝑗 ’s. (This holds because
of the manner in which we apply the permutation, specifically by

multiplying 𝐴 by 𝑃𝑇 from the right and by 𝑃 from the left.) Put

differently, the permutation simply permutes the features, as well as

their weights in the output model. Other than that, the computation

remains unchanged and, in particular, the computed models (in

all iterations) have the “right” weights, but they are permuted

according to the same permutation as the input. Following the

final learning phase, we unpermute the learned model (by applying

the inverse permutation 𝑃 =

(
𝑃𝑇

)−1
, see Figure 8), thus the

permutation does not affect correctness.

Correctness of the scaled ridge phase: Item 3 does not affect

correctness due to the following. First, computing 𝐴−1 as det(𝐴) ·
adj(𝐴) is based on a mathematical identity. Second, the fact that

the output model is scaled by det(𝐴) does not change the ordering
(in absolute value) between the model’s entries, and therefore does

not affect the following stages of the iteration (in which the model

is used to order the features and removes the ones with smallest

weights – in absolute value). Next, we prove that the output is the

correct (scaled) model det

(
𝐴′
𝐹

)
· ®𝑤𝐹 , even though computations

are performed over masked 𝐴, ®𝑏, and even though the inputs to

this phase were not projected to |𝐹 | (recall that in 𝐴𝐹 , ®𝑏𝐹 the rows,

columns and entries corresponding to indices not in 𝐹 were set

to 0, but were not deleted as they are in Iterative Ridge). Referring

to Figure 3, the (scaled, encrypted) model which S2 sends to S1
is
®Z𝐹 = expd𝐹

(
adj (Γ) · ®𝛽

)
(see Remark 5.5 for a description of

expd𝐹 (·)). S1 then removes the masking by computing(
det

(
𝑅′

) )−1 · [𝑅 · ®Z𝐹 − det (Γ) · ®𝑟 ]
=

(
det

(
𝑅′

) )−1 · [𝑅 · expd𝐹 (
adj (Γ) · ®𝛽

)
− det (Γ) · ®𝑟

]
.

We now analyze each of these components separately. We first

make the following observation:

∀𝐹 ⊆ [𝑑] ,∀𝐵,𝐶 ∈ Z𝑑×𝑑𝑁 :

pjct𝐹 (N𝐹𝐵N𝐹 · N𝐹𝐶N𝐹 ) = pjct𝐹 (𝐵) · pjct𝐹 (𝐶)
(7)

and

∀𝐹 ⊆ [𝑑] ,∀𝐵 ∈ Z𝑑×𝑑𝑁 ,∀®𝑣 ∈ Z |𝐹 |
𝑁

:

pjct𝐹

(
N𝐹𝐵N𝐹 · expd𝐹 (®𝑣)

)
= pjct𝐹 (𝐵) · ®𝑣

(8)

Using Equation 7, we have:

Γ = pjct𝐹 (Γ𝐹 ) = pjct𝐹 (𝐴𝐹 · 𝑅)

=(1) pjct𝐹 (N𝐹𝐴N𝐹 · N𝐹𝑅N𝐹 )

=(2) pjct𝐹 (𝐴) · pjct𝐹 (𝑅) = 𝐴′𝐹 · 𝑅
′

where the equality denoted by (1) follows from the definition of 𝐴

and from the fact that 𝑅 = expd𝐹 (𝑅′) (so 𝑅 = N𝐹𝑅N𝐹 ), the equality
denoted by (2) used Equation 7, and the rightmost equality follows

from the definitions of 𝐴′
𝐹
and 𝑅′ (see Figure 3).

Therefore,

adj (Γ) = det (Γ) · Γ−1

= det (Γ) ·
(
𝐴′𝐹 · 𝑅

′)−1
= det (Γ) ·

(
𝑅′

)−1 · (𝐴′𝐹 )−1
Next, we observe that:

∀𝐹 ⊆ [𝑑] ,∀®𝑣, ®𝑢 ∈ Z𝑑𝑁 :

pjct𝐹 (®𝑣 + ®𝑢) = pjct𝐹 (®𝑣) + pjct𝐹 (®𝑢)
(9)

which implies that

®𝛽 =(1) pjct𝐹
(
®𝛽𝐹

)
=(2) pjct𝐹

(
®𝑏𝐹 +𝐴𝐹 · ®𝑟

)
=(3) pjct𝐹

(
®𝑏𝐹

)
+ pjct𝐹 (𝐴𝐹 · ®𝑟 )

=(4) pjct𝐹
(
®𝑏𝐹

)
+ pjct𝐹 (𝐴) · ®𝑟 ′

=(5) pjct𝐹
(
®𝑏𝐹

)
+𝐴′𝐹 · ®𝑟

′

where (1) is by the definition of
®𝛽 , (2) is by the definition of

®𝛽𝐹 , (3)
follows from Equation 9, (4) follows from Equation 8 because 𝐴𝐹 =

N𝐹𝐴N𝐹 and ®𝑟 = expd𝐹 (®𝑟 ′), and (5) follows from the definition of

𝐴′
𝐹
.

Putting the two together, we have

®Z = adj (Γ) · ®𝛽

= det (Γ) ·
(
𝑅′

)−1 · (𝐴′𝐹 )−1 · [pjct𝐹 (
®𝑏𝐹

)
+𝐴′𝐹 · ®𝑟

′
]

= det (Γ) ·
(
𝑅′

)−1 · [ ®𝑤 ′𝐹 + ®𝑟 ′] .
(10)

where the right-most equality follows from the definition of ®𝑤 ′
𝐹

(see Figure 3).

Next, we notice that

∀𝐹 ⊆ [𝑑] ,∀®𝑣, ®𝑢 ∈ Z |𝐹 |
𝑁

:

expd𝐹 (®𝑣 + ®𝑢) = expd𝐹 (®𝑣) + expd𝐹 (®𝑢)
(11)
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Therefore,

®Z𝐹 =(1) expd𝐹
(
®Z
)

=(2) expd𝐹
(
det (Γ) ·

(
𝑅′

)−1 · [ ®𝑤 ′𝐹 + ®𝑟 ′] )
= det (Γ) · expd𝐹

( (
𝑅′

)−1 · [ ®𝑤 ′𝐹 + ®𝑟 ′] )
=(3) det (Γ) · expd𝐹

( (
𝑅′

)−1 · ®𝑤 ′𝐹 )
+ det (Γ) · expd𝐹

( (
𝑅′

)−1 · ®𝑟 ′) .
where (1) follows from the definition of Z , (2) follows from

Equation 10, and (3) follows from Equation 11.

Next, notice that

∀𝐹 ⊆ [𝑑] ,∀𝐵 ∈ Z |𝐹 |× |𝐹 |
𝑁

,∀®𝑣 ∈ Z |𝐹 |
𝑁

:

expd𝐹 (𝐵 · ®𝑣) = expd𝐹 (𝐵) · expd𝐹 (®𝑣)
(12)

which implies that

®Z𝐹 =(1) det (Γ) · expd𝐹
( (
𝑅′

)−1 · ®𝑤 ′𝐹 )
+ det (Γ) · expd𝐹

( (
𝑅′

)−1 · ®𝑟 ′)
=(2) det (Γ) · expd𝐹

( (
𝑅′

)−1) · expd𝐹 (
®𝑤 ′𝐹

)
+ det (Γ) · expd𝐹

( (
𝑅′

)−1) · expd𝐹 (
®𝑟 ′

)
=(3) det (Γ) · expd𝐹

( (
𝑅′

)−1) · [ ®𝑤𝐹 + ®𝑟 ]
where (1) was established above, (2) follows from Equation 12, and

(3) follows from the definition of ®𝑤 ′
𝐹
and ®𝑟 .

Moreover, notice that

∀𝐹 ⊆ [𝑑] ,∀𝐵,𝐶 ∈ Z |𝐹 |× |𝐹 |
𝑁

:

expd𝐹 (𝐵 ·𝐶) = expd𝐹 (𝐵) · expd𝐹 (𝐶)
(13)

in particular, this implies that

𝑅 · expd𝐹
( (
𝑅′

)−1)
=(1) expd𝐹

(
𝑅′

)
· expd𝐹

( (
𝑅′

)−1)
=(2) expd𝐹

(
𝑅′ ·

(
𝑅′

)−1)
= expd𝐹

(
𝐼 |𝐹 |

) (14)

where (1) follows from the definition of 𝑅, (2) follows from

Equation 13, and 𝐼 |𝐹 | denotes the |𝐹 | × |𝐹 | identity matrix.

Consequently, we have that

𝑅 · ®Z𝐹 =(1) 𝑅 · det (Γ) · expd𝐹
( (
𝑅′

)−1) · [ ®𝑤𝐹 + ®𝑟 ]
=(2) det (Γ) · expd𝐹

(
𝐼 |𝐹 | × |𝐹 |

)
· [ ®𝑤𝐹 + ®𝑟 ]

=(3) det (Γ) · [ ®𝑤𝐹 + ®𝑟 ]

where (1) follows from substituting
®Z𝐹 with the value computed

above, (2) follows from Equation 14, and (3) follows from the fact

that ®𝑤𝐹 , ®𝑟 have 0 in every index 𝑖 ∉ 𝐹 .

Finally, notice that

det (Γ) = det

(
𝐴′𝐹 · 𝑅

′) = det

(
𝑅′

)
· det

(
𝐴′𝐹

)
(15)

where we used the fact, noted above, that Γ = 𝐴′
𝐹
· 𝑅′.

Putting it together, we have that(
det

(
𝑅′

) )−1 · [𝑅 · ®Z𝐹 − det (Γ) · ®𝑅]
=(1)

(
det

(
𝑅′

) )−1 · [det (Γ) · ( ®𝑤𝐹 + ®𝑟 ) − det (Γ) · ®𝑟 ]
=

(
det

(
𝑅′

) )−1 · det (Γ) · ®𝑤𝐹
=(2)

(
det

(
𝑅′

) )−1 · det (𝑅′) · det (𝐴′𝐹 ) · ®𝑤𝐹
=

(
𝐴′𝐹

)
· ®𝑤𝐹

where (1) follows by substituting 𝑅 · ®Z𝐹 with the value computed

above, and (2) follows from Equation 15. This concludes the

correctness proof for the scaled ridge phase.

Correctness of the selection phase (Item 4): first, the fact

that selection in SIR is computed from the set [𝑑] instead of the

current set 𝐹 of features does not affect correctness, since S1 only
computes the ordinals of indices 𝑖 ∈ 𝐹 (see Figure 9). This effectively
means that the ordinals are computed over the restriction of the

model ®𝑧𝐹 to the set 𝐹 of features that survived to the current

iteration, exactly as in Iterative Ridge. Moreover, S2 identifies

the correct features to be removed (i.e., the ones with smallest

weights) regardless of the fact that the weights are permuted,

because applying a permutation between the weights does not

affect the ordering between them. Once the smallest features are

identified, S1 inverts the permutation, so the resultant set 𝑆
del

of

features to be removed is identical to the set computed in Figure 1,

conditioned on the ordinals being correctly computed. It therefore

remains to show that the ordinals are correctly computed.

We now show that Ord𝑖 is the number of 𝑧 𝑗 ’s which are smaller

than 𝑧𝑖 . Recall that the “size” of 𝑧𝑖 is measured as its distance

from the nearest multiple of 𝑁 , and so it measures the absolute
value of 𝑧𝑖 , when the elements of Z𝑁 are represented using the

integers

{
−𝑁−1

2
, . . . ,−1, 0, 1, . . . , 𝑁−1

2

}
. Since the elements of Z𝑁

are represented using the elements 0, 1, . . . , 𝑁 − 1, this corresponds
to interpreting values 0 < 𝑥 ≤ (𝑁 − 1)/2 as “positive”, and

values (𝑁 − 1)/2 < 𝑥 < 𝑁 as “negative”. We will show that

Ord𝑖 =
��{𝑧 𝑗 :

��𝑧 𝑗 �� < |𝑧𝑖 |}��. Notice that

��𝑧 𝑗 �� < |𝑧𝑖 | if and only

if 𝑧2
𝑗
< 𝑧2

𝑖
, because 𝑁 was chosen such that 𝑧𝑖 , 𝑧 𝑗 <

√
𝑁 (i.e.,

𝑧2
𝑖
, 𝑧2
𝑗

< 𝑁 ), meaning no wrap around occurs when squaring.

Therefore,

��𝑧 𝑗 �� < |𝑧𝑖 | if and only if 𝑧2𝑖 −𝑧2𝑗 > 0. Thus, computing the

ordinals can be done using the differences of squares, namelyOrd𝑖 =���{ 𝑗 : 𝑧2
𝑖
− 𝑧2

𝑗
> 0

}���. It remains to show that the computation using

themasked differences of squares is correct. Fix a pair 𝑖, 𝑗 ∈ 𝐹, 𝑖 ≠ 𝑗 ,

fix an 𝑟𝑖, 𝑗 ∈ Z𝑁 , and denote 𝛼𝑖, 𝑗 := 𝑧
2

𝑖
− 𝑧2

𝑗
and 𝛼 ′

𝑖, 𝑗
:= 𝛼𝑖, 𝑗 + 𝑟𝑖, 𝑗 .

We consider four cases, based on whether 𝛼 ′
𝑖, 𝑗

< 𝑁−1
2
+ 1 (i.e., it

is “nonnegative” according to the aforementioned interpretation

of positive and negative values in Z𝑁 ) or not, and whether a wrap-

around occurred when computing 𝛼 ′
𝑖, 𝑗

from 𝛼𝑖, 𝑗 and 𝑟𝑖, 𝑗 . In all cases,

we consider two subcases: (1) 𝛼𝑖, 𝑗 is non-negative, i.e., it is positive

(recall that we assume all weights 𝑧𝑖 are unique, so 𝛼𝑖, 𝑗 ≠ 0), in

which case we show that ost𝑖, 𝑗 = 1; and (2) 𝛼𝑖, 𝑗 is negative, in which

case we show that ost𝑖, 𝑗 = 0. In the following, all computations are

over Z.
Case I: 𝛼 ′

𝑖, 𝑗
< 𝑁−1

2
+ 1 and no wrap-around occurred. In this case,

Negative𝑖, 𝑗 = 0 and rangeMin
′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
, rangeMax

′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
+ 𝑁−1

2
+

20



Privacy Preserving Feature Selection for Sparse Linear Regression

1. Additionally, 𝛼 ′
𝑖, 𝑗

= 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 because no wrap-around occurred.

First, if 𝛼𝑖, 𝑗 is positive then 0 < 𝛼𝑖, 𝑗 <
𝑁+1
2
+ 1, which implies that

𝑟𝑖, 𝑗 <
(2) 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 = 𝛼 ′𝑖, 𝑗 <

(1) 𝑟𝑖, 𝑗 +
𝑁 − 1
2

+ 1.

Since 𝛼 ′
𝑖, 𝑗

< 𝑁−1
2
+ 1 by the assumption of case I, inequality (1)

always holds (because 𝑟𝑖, 𝑗 ≥ 0). Inequality (2) implies that 𝑟𝑖, 𝑗 <

𝛼 ′
𝑖, 𝑗

= rangeMin𝑖, 𝑗 , so IsBigger𝑖, 𝑗 = 0, and ost𝑖, 𝑗 = 1 (because the

second summand in its definition in Figure 9 is 1) as required. If,

on the other hand, 𝛼𝑖, 𝑗 is negative then (𝑁 − 1)/2 < 𝛼𝑖, 𝑗 so

𝑁 − 1
2

≤ 𝑟𝑖, 𝑗 +
𝑁 − 1
2

< 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 = 𝛼 ′𝑖, 𝑗

(the left-most inequality holds because 𝑟𝑖, 𝑗 ≥ 0) which contradicts

the case assumption that 𝛼𝑖, 𝑗 ≤ (𝑁 − 1)/2. Therefore, if 𝛼𝑖, 𝑗 is
negative and no wrap-around occurred, then it cannot be the case

that 𝛼 ′
𝑖, 𝑗

< 𝑁
2
+ 1.

Case II: 𝛼 ′
𝑖, 𝑗

< 𝑁−1
2
+ 1 and a wrap-around occurred. In this

case, Negative𝑖, 𝑗 = 0 and rangeMin
′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
, rangeMax

′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
+

𝑁−1
2
+ 1 as in case I, but 𝛼 ′

𝑖, 𝑗
= 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 − 𝑁 because a wrap-

around occurred. (This is indeed the only other possibility since

𝑟𝑖, 𝑗 , 𝛼𝑖, 𝑗 < 𝑁 .) First, if 𝛼𝑖, 𝑗 is positive, i.e., 0 < 𝛼𝑖, 𝑗 <
𝑁+1
2
+ 1, then

𝑟𝑖, 𝑗 − 𝑁 < (1) 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 − 𝑁 = 𝛼 ′𝑖, 𝑗

< (2) 𝑟𝑖, 𝑗 +
𝑁 − 1
2

+ 1 − 𝑁

= 𝑟𝑖, 𝑗 −
𝑁 − 1
2

.

Since 𝛼 ′
𝑖, 𝑗

is positive, then inequality (1) always holds over Z.

Inequality (2) implies that 𝛼 ′
𝑖, 𝑗
+ 𝑁−1

2
< 𝑟𝑖, 𝑗 , meaning rangeMax𝑖, 𝑗 =

𝛼 ′
𝑖, 𝑗
+ 𝑁−1

2
+1 ≤ 𝑟𝑖, 𝑗 , so IsSmaller𝑖, 𝑗 = 0, and consequently ost𝑖, 𝑗 = 1.

If, on the other hand, 𝛼𝑖, 𝑗 is negative then (𝑁 − 1)/2 < 𝛼𝑖, 𝑗 < 𝑁 so

𝑟𝑖, 𝑗 −
𝑁 − 1
2

≤ 𝑟𝑖, 𝑗 +
𝑁 − 1
2

− 𝑁

< (1) 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 − 𝑁 = 𝛼 ′𝑖, 𝑗

< (2) 𝑟𝑖, 𝑗 + 𝑁 − 𝑁 = 𝑟𝑖, 𝑗 .

Then inequality (1) implies that 𝑟𝑖, 𝑗 < 𝛼
′
𝑖, 𝑗
+ 𝑁−1

2
< rangeMax𝑖, 𝑗 so

IsSmaller𝑖, 𝑗 = 1, and inequality (2) implies that rangeMin𝑖, 𝑗 =

𝛼 ′
𝑖, 𝑗

< 𝑟𝑖, 𝑗 so IsBigger𝑖, 𝑗 = 1. Together with the fact that

Negative𝑖, 𝑗 = 0, this implies that ost𝑖, 𝑗 = 0.

Case III: 𝛼 ′
𝑖, 𝑗
≥ 𝑁−1

2
+ 1 and no wrap-around occurred. In this

case, Negative𝑖, 𝑗 = 1 and rangeMin
′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
− 𝑁−1

2
, rangeMax

′
𝑖, 𝑗

=

𝛼 ′
𝑖, 𝑗
+ 1. Additionally, 𝛼 ′

𝑖, 𝑗
= 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 because no wrap-around

occurred. First, if 𝛼𝑖, 𝑗 is positive then 0 < 𝛼𝑖, 𝑗 <
𝑁+1
2
+ 1, which

implies as in case I that

𝑟𝑖, 𝑗 <
(1) 𝛼 ′𝑖, 𝑗 <

(1) 𝑟𝑖, 𝑗 +
𝑁 − 1
2

+ 1.

Inequality (1) implies that 𝑟𝑖, 𝑗 < 𝛼 ′
𝑖, 𝑗

< rangeMax𝑖, 𝑗 and so

IsSmaller = 1. Inequality (2) guarantees that rangeMin𝑖, 𝑗 − 1 =

𝛼 ′
𝑖, 𝑗
− 𝑁−1

2
−1 < 𝑟𝑖, 𝑗 so rangeMin𝑖, 𝑗 ≤ 𝑟𝑖, 𝑗 , meaning IsBigger𝑖, 𝑗 = 1.

Combined with the fact that Negative𝑖, 𝑗 = 1, we get that ost𝑖, 𝑗 = 1

(because of the first summand in its definition in Figure 9). If, on

the other hand, 𝛼𝑖, 𝑗 is negative then (𝑁 − 1)/2 < 𝛼𝑖, 𝑗 so

𝑟𝑖, 𝑗 +
𝑁 − 1
2

< 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 = 𝛼 ′𝑖, 𝑗

namely rangeMin𝑖, 𝑗 = 𝛼 ′
𝑖, 𝑗
− 𝑁−1

2
> 𝑟𝑖, 𝑗 , so IsBigger𝑖, 𝑗 = 0.

Combined with the fact that Negative𝑖, 𝑗 = 1 this implies that

ost𝑖, 𝑗 = 0.

Case IV: 𝛼 ′
𝑖, 𝑗
≥ 𝑁−1

2
+ 1 and a wrap-around occurred. In this

case, Negative𝑖, 𝑗 = 1 and rangeMin
′
𝑖, 𝑗

= 𝛼 ′
𝑖, 𝑗
− 𝑁−1

2
, rangeMax

′
𝑖, 𝑗

=

𝛼 ′
𝑖, 𝑗
+1 as in case III, but 𝛼 ′

𝑖, 𝑗
= 𝑟𝑖, 𝑗 +𝛼𝑖, 𝑗 −𝑁 because a wrap-around

occurred. We show first that in this case, 𝛼𝑖, 𝑗 cannot be positive.

Indeed, since 𝑟𝑖, 𝑗 < 𝑁 , if 𝛼𝑖, 𝑗 were positive, i.e., 𝛼𝑖, 𝑗 ≤ 𝑁−1
2

, then it

would hold that

𝛼 ′𝑖, 𝑗 = 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 − 𝑁 < 𝑁 + 𝑁 − 1
2

− 𝑁 =
𝑁 − 1
2

which contradicts the case assumption that 𝛼 ′
𝑖, 𝑗
≥ 𝑁−1

2
+ 1. It

remains therefore to show that in case IV necessarily IsBigger𝑖, 𝑗 = 0

or IsSmaller𝑖, 𝑗 = 0 (this will imply that ost𝑖, 𝑗 = 0 because

Negative𝑖, 𝑗 = 1). We show that IsSmaller𝑖, 𝑗 = 0. Indeed, since

𝛼𝑖, 𝑗 < 𝑁 then

rangeMax𝑖, 𝑗 − 1 = 𝛼 ′𝑖, 𝑗 = 𝑟𝑖, 𝑗 + 𝛼𝑖, 𝑗 − 𝑁 < 𝑟𝑖, 𝑗 + 𝑁 − 𝑁 = 𝑟𝑖, 𝑗

namely rangeMax𝑖, 𝑗 ≤ 𝑟𝑖, 𝑗 and so IsSmaller𝑖, 𝑗 = 0.

Correctness of the compaction phase (Item 5): this phase
only affects the computations using the compacted𝐴, ®𝑏, namely the

scaled ridge phase and the output phase. We show when discussing

these phases, that resetting the entries corresponding to features

that were removed has the same effect as projecting 𝐴, ®𝑏 to the set

of surviving features, so Item 5 does not affect correctness.

Correctness of the final output (item 6): we claim that the

final output of SIR is correct (i.e., identical to that of Iterative Ridge).

Indeed, as described in the analysis of Item 3 above, the scalde ridge

phase outputs a scaled model ®𝑧𝐹 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 (where ®𝑤𝐹 is

a permuted version of the actual output model). S1 additionally
obtains an encryption of

Δ−1 = (det (Γ))−1

=(1)
(
det

(
𝐴′𝐹

)
· det

(
𝑅′

) )−1
= det

(
𝐴′𝐹

)−1 · det (𝑅′)−1
(where (1) follows from Equation 15) from which S1 computes

det

(
𝐴′
𝐹

)−1
(this is possible because S1 knows 𝑅′). S1 then recovers

®𝑤𝐹 by computing det (𝐴𝐹 )−1 · ®𝑧𝐹 . We will show that ®𝑤𝐹 contains

the correct weights (as in the output model of Figure 1), but they

are permuted according to 𝑃 . This will imply the correctness of the

output model ®𝑤 int
because it is obtained by multiplying ®𝑤𝐹 with

𝑃𝑇 = 𝑃−1, which inverts the permutation (and the correctness of

the final output model ®𝑤 then follows from the correctness of the

rational reconstruction [23, 65]).
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To see why ®𝑤𝐹 contains the correct weights, but permuted

according to 𝑃 , recall that

®𝑤𝐹 = expd𝐹

(
®𝑤 ′𝐹

)
= expd𝐹

( (
𝐴′𝐹

)−1 · pjct𝐹 (
®𝑏𝐹

))
=(1) expd𝐹

( (
𝐴′𝐹

)−1) · expd𝐹 (
pjct𝐹

(
®𝑏𝐹

))
= expd𝐹

( (
pjct𝐹 (𝐴)

)−1) · ®𝑏𝐹
where (1) follows from Equation 12. Moreover, by the definition of

𝐴 and
®𝑏 we have:

𝐴 = 𝑃𝑇
(
𝑋𝑇𝑋 + _𝐼

)
𝑃 = 𝑃𝑇𝑋𝑇𝑋𝑃 + 𝑃𝑇 · _𝐼 · 𝑃

=(1) (𝑋𝑃)𝑇 · 𝑋𝑃 + _𝐼
(where (1) uses the fact that 𝑃𝑇 = 𝑃−1), and

®𝑏 = 𝑃𝑇𝑋𝑇 ®𝑦 = (𝑋𝑃)𝑇 · ®𝑦.

Therefore, performing the learning over 𝐴, ®𝑏 (which are permuted

versions of 𝑋𝑇𝑋 + _𝐼 and 𝑋𝑇 ®𝑦, respectively) is equivalent to

performing the learning over unpermuted 𝐴′, ®𝑏 ′ that were obtained
from a permuted input 𝑋 ′ = 𝑋𝑃 , namely in which the columns (i.e.,

features) of 𝑋 were permuted. Therefore, the correctness of each

ridge regression step guarntees that the output model ®𝑤𝐹 – which

contains the weights of these features – is permuted according to

the same permutation 𝑃 , as we set out to prove. □

The next lemma states that SIR is secure against an

adversary corrupting S1 and an arbitrary subset of data owners.

Intuitively, throughout the protocol execution the only unencrypted

informationwhich the adversary sees are the subsets 𝑆
del

of features

to be removed, which it obtains fromS2 in Step 3b of Figure 2. Thus,
security follows from the fact (which we prove below) that these

sets are perfectly simulatable because of the random permutation

𝑃 = 𝑃1 · 𝑃2 used to permute the data.

Lemma 8.5 (Privacy when S1 is corrupted). Let 𝐼 ⊆ [𝑚], let
_, 𝑑 ∈ N, and let 𝑁 ∈ N which satisfies Equation 4. Then SIR is
private against an adversary corrupting 𝐼 and S1.

Proof. To prove the lemma, we describe a simulator Sim, whose

input consists of the public parameters of the protocol (i.e., ^, _,

𝑁 , 𝐷 , 𝑛1, . . . , 𝑛𝑚 , 𝑑 , 𝑠 , ℓ , rej, thr), the inputs
{(
𝑋 𝑗 , ®𝑦 𝑗

)}
𝑗 ∈𝐼 of the

corrupted data owners, and the output model ®𝑤 ∈ Q𝑑 . We note

that the number of iterations performed by SIR, and the number of

features that should be removed in each iteration (i.e., the size of the

set 𝑆
del

), depend (deterministically) only on the public parameters

𝑑, 𝑠, rej and thr. Therefore, these values can be computed by Sim.

Moreover, we note that if 𝐼 = [𝑚] then Sim can trivially emulate

the entire execution of the protocol, because it is given the inputs

𝑋 𝑗 , ®𝑦 𝑗 of all data owners. Therefore, we assume that 𝐼 ⊂ [𝑚].
Sim operates as follows.

• Initializes a set 𝐹0 := [𝑑], and 𝑓0 = 𝑑 . (Intuitively, 𝐹𝑙 and

𝑓𝑙 will denote the set and number of features, respectively,

which survived the 𝑙 ’th iteration.)

• During setup (Step 1 in Figure 2), Sim honestly generates

encryption keys

(
pk𝑁 , sk𝑁

)
,
(
pk𝐷 , sk𝐷

)
, and random

encryptions P2 ← Enc

(
pk𝑁 , 0𝑑

)
and P𝑇

2
← Enc

(
pk𝑁 , 0𝑑

)
,

where 0𝑑 denotes the 𝑑 × 𝑑 all-zeros matrix. Additionally,

for every honest DO𝑗 , it generates a random encryption

A𝑗 ← Enc

(
pk𝑁 , 0𝑑

)
, and

®b
𝑗
← Enc

(
pk𝑁 , 0

𝑑
)
where 0

𝑑

denotes the length-𝑑 all-zeros vector.

• In the 𝑙 ’th iteration (Step 3 in Figure 2), Sim simulates the

encryptions which S1 is given, as follows:
– Simulates the messages received by S1 during the

execution of the ridge regression phase (Figure 3) by

generating a random encryption ZZZ 𝑙 ← Enc

(
pk𝑁 , 0

𝑑
)
, and

ΔΔΔ𝑙 ← Enc

(
pk𝑁 , 0

)
.

– Simulates the ciphertexts received by S1 during

the execution of the selection phase (Figure 9) by

setting IsBigger𝑖, 𝑗 , IsSmaller𝑖, 𝑗 ,Negative𝑖, 𝑗 to be random

encryptions of 0 under pk𝐷 , for every 𝑖, 𝑗 ∈ 𝐹𝑙 , 𝑖 ≠ 𝑗 .

– Simulates the set 𝑆𝑙
del

of features to be removed in the 𝑙 ’th

iteration (computed in Step 3b of Figure 2) as follows. Let

𝐹𝑙−1 denote the set of features that survived to the 𝑙 ’th

iteration, and let 𝑣𝑙 denote the number of features that

should be removed in the 𝑙 ’th iteration (as noted above,

Sim can compute 𝑣𝑙 from the public parameters). Then

Sim picks a random subset 𝑆𝑙
del
⊆ 𝐹𝑙−1 of size

���𝑆𝑙
del

��� = 𝑣𝑙 .
Then, it sets 𝐹𝑙 = 𝐹𝑙−1 \ 𝑆𝑙

del
, and 𝑓𝑙 = 𝑓𝑙−1 − 𝑣𝑙 . It then

samples a random permutation 𝜋 on [𝑑] and permutes the

indicator vector of 𝑆𝑙
del

according to 𝜋 , to obtain a vector

®𝜒𝜋 .
• During the output phase (Step 4 in Figure 2), Sim sets

®ZZZ to
be 𝑑 random encryptions of 0 under pk𝑁 , where 𝑠 is the

sparsity parameter. It also generates a random encryption

ΔΔΔ−1 ← Enc

(
pk𝑁 , 0

)
.

Sim outputs the view V𝑆 consisting of pk𝑁 , pk𝐷 , the public

parameters of the protocol, the inputs of the corrupted data owners,

all ciphertexts sent to S1 throughout the simulation, the permuted

indicator vectors ®𝜒𝜋,𝑙 of all sets 𝑆𝑙
del

generated throughout the

simulation, and the output model ®𝑤 .

We now prove that the simulated and real views are

computationally indistinguishable through a sequence of hybrids.

We note that since the encryptions keys are identically distributed in

the real and simulated views, it suffices to prove indistinguishability

conditioned on them. The same holds for the random coins of S1.
H0: This is the real view V𝑅 .

H1: InH1, we replace all encryptions in V𝑅 with encryptions

of 0 (under the appropriate keys). We show that H0 ≈ H1

follows from the security of the encryption scheme.

Indeed, let 𝑡 denote the number of ciphertexts in V𝑅 , then we

define a sequence of hybrids H0 = H0

0
,H1

0
, . . . ,H𝑡

0
= H1,

where in the ℎ’th hybrid we replace the first ℎ encrypted

values from their value in V𝑅 to 0. Then if H0,H1 are not

computationally close, then there exists a pair of adjacent

hybrids Hℎ
0
,Hℎ+1

0
which are not computationally close.

That is, there exists a distinguisher D that distinguishes

between them with non-negligible probability. We use D to

break the security of the FHE scheme against non-uniform

distinguishers.

We define a (non-uniform) distinguisher D ′ that has the
inputs hard-wired into it. We will use the fact that the
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intermediate matrices 𝐴, ®𝑏, and the intermediate scaled

models ®𝑧, are determined deterministically by these inputs.

D ′ operates as follows. Let 𝑣 denote the value of the ℎ + 1’th
ciphertext. Notice that 𝑣 is either determined by the inputs,

or computable from the inputs by a random masking and

permutation that can be sampled by D ′. D ′ sends 𝑣, 0 to

its distinguisher as the values on which it wants to be

tested, and obtains from its challenger an encryption 𝑐 of

either 𝑣 or 0, as well as pk𝑁 or pk𝐷 (depending on 𝑣 , and

whether it is encrypted using pk𝑁 or pk𝐷 in V𝑅 ). It honestly

generates the secret and public encryption keys for the other

pair (i.e., if it got pk𝐷 then it generates

(
pk𝑁 , sk𝑁

)
, and

vice versa). Then, it uses 𝑐 to generate the entire hybrid

distribution: it computes 𝐴 𝑗 , ®𝑏 𝑗 as they are computed by the

data owners, as well as𝐴, ®𝑏 and their intermediate compacted

versions. It also computes the intermediate models ®𝑧𝑙 ,
their masked version

®Z 𝑙 and the masked determinants

Δ𝑙 , the values
{
IsBigger

𝑙
𝑖, 𝑗
, IsSmaller

𝑙
𝑖, 𝑗
,Negative𝑙

𝑖, 𝑗

}
𝑖, 𝑗 ∈𝐹,𝑖≠𝑗

generated during the selection phase in the 𝑙 ’th iteration,

the inverse Δ−1 of the determinant in the final iteration,

and all the subsets 𝑆𝑙
del

. It honestly encrypts the values

that appear encrypted in V𝑅 using pk𝑁 and pk𝐷 , and then

replaces the first ℎ ciphertexts with encryptions of 0 (under

the appropriate key pk𝑁 or pk𝐷 ). For the ℎ + 1’th ciphertext,

it uses 𝑐 . Then, it runs D and forwards its guess to the

challenger of D ′. Notice that D ′ perfectly emulatesHℎ
0
(if

𝑐 encrypts 𝑣) orHℎ+1
0

(if 𝑐 encrypts 0) for D, so D ′ obtains
the same non-negligible distinguishing advantage as D.

Notice that H1 contains no information about the

permutation 𝑃 (because it contains no information about

𝑃2).

H2: In H2, we generate the sets 𝑆𝑙
del

as follows. First, we

compute unpermuted versions 𝐴′, ®𝑏 ′ of ∑𝑚
𝑗=1

(
𝑋 𝑗

)𝑇 · 𝑋 𝑗 +
_𝐼,

∑𝑚
𝑗=1

(
𝑋 𝑗

)𝑇 · ®𝑦 𝑗 , respectively. Then, we iteratively

compute the intermediate scaled models ®𝑧𝑙 from the

unpermuted 𝐴′, ®𝑏 ′ in Step 3a, and compact the unpermuted

versions in Step 3c. For each iteration 𝑙 , once ®𝑧𝑙 has been
computed, we compute the set 𝑆𝑙

del
directly from it in

Step 3b. Finally, we apply the permutation 𝑃 to the 𝑆𝑙
del

’s,

and compute the ®𝜒𝜋,𝑙 from them (using a freshly sampled

permutation 𝜋 as described in the simulation). In summary,

a sample fromH2 is generated by sampling according toH1,

then recomputing the 𝑆𝑙
del

’s to be consistent with 𝑃 .

We claim thatH1 ≡ H2. This holds because the permutation

𝑃 does not affect the learned models ®𝑧𝑙 except for permuting

their coordinates. Indeed, assume that a ridge regression

step is applied to some permuted inputs 𝐻, ®𝑔, and the output
model is ®𝑣 . Let 𝐻 ′, ®𝑔′ denote the unpermuted inputs, and

®𝑣 ′ denote the output model of the ridge regression step on

𝐻 ′, ®𝑔′. Then ®𝑣 is exactly the vector obtained by applying 𝑃

to ®𝑣 ′ (here we also use the fact that the ridge regression step

is deterministic, and consists of solving a linear equation).

Since the 𝑆𝑙
del

’s are deterministically determined by the ®𝑧𝑙 ’s,
this implies thatH1 ≡ H2.

H3: H3 is identical to H2, except for the way in which the

𝑆𝑙
del

’s are permuted. In H3, we set 𝑃0 = 𝑃 . Additionally,

for every iteration 𝑙 , we choose a permutation 𝑃𝑙 which is

uniformly random and independent subject to the constraint

that 𝑃𝑙 agrees with 𝑃𝑙−1 on ∪𝑙−1𝑡=1
𝑆𝑡
del

. Each 𝑆𝑙
del

is permuted

according to 𝑃𝑙 before it is revealed to S1 through the

permuted indicator vector ®𝜒𝜋,𝑙 . (Intuitively, in each iteration

we re-sample the images of the coordinates that were not

yet revealed to S1.)
We claim that H3 ≡ H2. Indeed, notice that in H2 the

permutation 𝑃 could have been sampled “lazily”, where in

each iteration 𝑙 we only sample the images of the coordinates

in 𝑆𝑙
del

. (This is because the ciphertexts inH2 no longer carry

any information on 𝑃 , so the only information revealed on

𝑃 is from the sets 𝑆𝑙
del

. However, the images of the other

coordinates are not used in the 𝑙 ’th iteration, therefore

their sampling can be deferred to the next iterations). An

alternative (and identical) method is to sample an entire

permutation in the first iteration, and then consistently

resample the images of the coordinates that were not

previously used (where by “consistently resample” we mean

that the images that were already revealed in previous

iterations remain unchanged). This resampling is exactly

how the permutations are sampled inH3.

H4: InH4, after computing the intermediate models ®𝑧𝑙 ’s, we
define vectors ®𝑢𝑙 as follows: for every 1 ≤ 𝑡 ≤ 𝑑 , if 𝑧𝑙𝑡 = 0

then 𝑢𝑙𝑡 = 0. For the remaining coordinates, let 𝑧𝑙𝑡1
, . . . , 𝑧𝑙𝑡𝑓𝑙−1

denote the non-0 coordinates of ®𝑧𝑙 , ordered from the smallest

to the largest (i.e., 𝑧𝑙𝑡1
< . . . < 𝑧𝑙𝑡𝑓𝑙−1

). Here, we also use the

assumption that all entries of ®𝑧𝑙 are unique; see Remark 5.6.

Then for every 1 ≤ 𝑔 ≤ 𝑓𝑙−1 we set 𝑢𝑙𝑡𝑔
= 𝑔. The 𝑆𝑙

del
’s

are then computed from the ®𝑢𝑙 ’s instead of the ®𝑧𝑙 ’s (and
permuted as inH3).

Then H3 ≡ H4 because 𝑆
𝑙
del

depends only on the ordering
between the entries of ®𝑧𝑙 , and not on their actual values.

H5: This is simulated view which the simulator outputs.

We claim that H4 ≡ H5. The only difference between the

hybrids is in how the 𝑆𝑙
del

’s are chosen: in H4 they are

computed according to the actual order of the coordinates in

the intermediate model ®𝑧𝑙 , whereas inH5 they are chosen

as a random subset of the “surviving” coordinates. However,

since each 𝑆𝑙
del

inH4 is permuted using the permutation 𝑃𝑙 ,

which is uniformly random and independent conditioned

on being identical to 𝑃𝑙−1 on ∪𝑙−1𝑡=1
𝑆𝑡
del

, 𝑆𝑙
del

is also uniformly

random inH4.

□

The next lemma states that SIR is secure against an adversary

corrupting S2 and an arbitrary subset of data owners. Its proof will

use observations from the proof of Lemma 8.5 (regarding how to

simulate the sets 𝑆𝑙
del

), and an observation of [29], that the masking

perfectly hides the data matrix and response vectors (see Lemma 8.7

below). We note that Giacomelli et al. [29] proved this for a single
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execution of ridge regression, and we show that it extends to the

multiple iterations of SIR as well, due to the per-iteration masking.

Lemma 8.6 (Privacy when S2 is corrupted). Let 𝐼 ⊆ [𝑚], let
_, 𝑑 ∈ N, and let 𝑁 ∈ N which satisfies Equation 4. Then SIR is
private against an adversary corrupting 𝐼 and S2, for input matrices
𝑋 which are invertible.

The proof of Lemma 8.6 will use the following Lemma from [29,

Lemma 1].

Lemma 8.7 (Lemma 1 from [29]). Let 𝑁,𝑑 ∈ N, and let 𝐴 ∈
GL (𝑑,Z𝑁 ) and ®𝑏 ∈ Z𝑑𝑁 . Then the random variable defined by picking
a random 𝑅 ← GL (𝑑,Z𝑁 ) and a random ®𝑟 ← Z𝑑

𝑁
and outputting(

𝐴 · 𝑅, ®𝑏 +𝐴 · ®𝑟
)
is uniformly distributed over GL (𝑑,Z𝑁 ) × Z𝑑𝑁 .

Roughly (and somewhat inaccurately), we will use Lemma 8.7 to

claim that the masked matrices Γ𝐹 , and masked vectors
®𝛽𝐹 , which

S2 obtains in each ridge regression step, are distributed uniformly

over 𝐺𝐿 ( |𝐹 | ,Z𝑁 ) × Z |𝐹 |𝑁 . This, however, does not follow directly

from Lemma 8.7, because in SIR the masked Γ𝐹 , ®𝛽𝐹 are extended

versions of such a matrix and vector. In the following lemma, we use

Lemma 8.7 to show that Γ𝐹 , ®𝛽𝐹 in SIR are distributed as extensions

of uniformly random values in 𝐺𝐿 ( |𝐹 | ,Z𝑁 ) and Z |𝐹 |𝑁 , respectively.

Lemma 8.8. Let 𝑁,𝑑 ∈ N, let 𝐹 ⊆ [𝑑] of size 𝑓 = |𝐹 |, and let
𝐴′ ∈ GL (𝑓 ,Z𝑁 ) and ®𝑏 ∈ Z

𝑓

𝑁
. Then the random variable defined by

picking a random 𝑅′ ← GL (𝑓 ,Z𝑁 ) and a random ®𝑟 ′ ← Z𝑓
𝑁

and
outputting(

expd𝐹

(
𝐴′

)
· expd𝐹

(
𝑅′

)
, expd𝐹

(
®𝑏
)
+ expd𝐹

(
𝐴′

)
· expd𝐹

(
®𝑟 ′

) )
is uniformly distributed over expd𝐹 (GL (𝑓 ,Z𝑁 )) × expd𝐹

(
Z
𝑓

𝑁

)
.

Proof. Let 𝑀 := expd𝐹 (𝐴′) · expd𝐹 (𝑅′), and ®𝑣 = expd𝐹

(
®𝑏
)
+

expd𝐹 (𝐴′)·expd𝐹 (®𝑟 ′). We need to prove that𝑀 = expd𝐹 (𝑀 ′) , ®𝑣 =
expd𝐹 (®𝑣 ′) for 𝑀 ′ ∈ Z

𝑓 ×𝑓
𝑁

, ®𝑣 ′ ∈ Z𝑓
𝑁

where (𝑀 ′, ®𝑣 ′) is uniformly

distributed in 𝐺𝐿 (𝑓 ,Z𝑁 ) × Z
𝑓

𝑁
. Notice first that by Equation 12,

we have:

®𝑣 = expd𝐹

(
®𝑏
)
+ expd𝐹

(
𝐴′

)
· expd𝐹

(
®𝑟 ′

)
= expd𝐹

(
®𝑏
)
+ expd𝐹

(
𝐴′ · ®𝑟 ′

)
which by Equation 11 implies that ®𝑣 = expd𝐹

(
®𝑏 +𝐴′ · ®𝑟 ′

)
. Second,

notice that by Equation 13, it holds that 𝑀 = expd𝐹 (𝐴′) ·
expd𝐹 (𝑅′) = expd𝐹 (𝐴′ · 𝑅′). Therefore, it remains to prove that(
𝐴′ · 𝑅′, ®𝑏 +𝐴′ · ®𝑟 ′

)
is uniformly distributed over𝐺𝐿 (𝑓 ,Z𝑁 ) ×Z

𝑓

𝑁
.

This follows directly from Lemma 8.7 by setting 𝑑 := 𝑓 . □

Proof of Lemma 8.6. To prove the lemma, we describe a

simulator Sim. As in the proof of Lemma 8.5, the input of

Sim consists of the public parameters of the protocol (i.e.,

^, _, 𝑁 , 𝐷, 𝑛1, . . . , 𝑛𝑚, 𝑑, 𝑠, ℓ, rej, thr), the inputs
{(
𝑋 𝑗 , ®𝑦 𝑗

)}
𝑗 ∈𝐼 of the

corrupted data owners, and the output model ®𝑤 ∈ Q𝑑 . We assume

without loss of generality that 𝐼 ⊂ [𝑚]. Also, similar to the proof of

Lemma 8.5, Sim can compute the number of iterations performed

by SIR, and the number of features that should be removed in

each iteration (i.e., the size of the set 𝑆
del

), since these depend

(deterministically) only on the public parameters.

Sim operates as follows.

(1) Initializes a set 𝐹0 := [𝑑], and 𝑓0 = 𝑑 . (Intuitively, 𝐹𝑙 and

𝑓𝑙 will denote the set and number of features, respectively,

which survived the 𝑙 ’th iteration.)

(2) During setup (Step 1 in Figure 2), Sim uses the

randomness of S2 to determine the encryption keys(
pk𝑁 , sk𝑁

)
,
(
pk𝐷 , sk𝐷

)
.

(3) In the 𝑙 ’th iteration (Step 3 in Figure 2), Sim simulates the

encryptions which S2 receives, as follows:
(a) Messages during ridge regression phase (Figure 3):

generates a random invertible matrix Γ𝑙 ′ ← GL (𝑓𝑙−1,Z𝑁 )
and a random vector

®𝛽𝑙 ′ ← Z
𝑓𝑙−1
𝑁

, sets Γ𝑙 =

expd𝐹𝑙−1

(
Γ𝑙 ′

)
, ®𝛽𝑙 = expd𝐹𝑙−1

(
®𝛽𝑙 ′

)
, and randomly

encrypts them as ΓΓΓ𝑙 ← Enc

(
pk𝑁 , Γ

𝑙
)
, and

®𝛽𝛽𝛽
𝑙
←

Enc

(
pk𝑁 ,

®𝛽𝑙
)
.

(b) Messages during the feature selection phase (Figure 9): for

every 𝑖, 𝑗 ∈ 𝐹𝑙−1, 𝑖 ≠ 𝑗 , generates a random df
𝑙
𝑖, 𝑗
← Z𝑁 ,

and encrypts dfdfdf
𝑙
𝑖, 𝑗
← Enc

(
pk𝑁 , df

𝑙
𝑖, 𝑗

)
. Additionally, picks

a random permutation Π𝑙 on {0, 1, . . . , 𝑓𝑙−1 − 1} (recall
that 𝑓𝑙−1 is the number of features that survived to the

beginning of the 𝑙 ’th iteration), computes the vector

®
Ord

𝑙
obtained by applying Π𝑙 on (0, 1, . . . , 𝑓𝑙−1 − 1)𝑇 , and

randomly encrypts
®

OrdOrdOrd

𝑙
← Enc

(
pk𝐷 ,

®
Ord

𝑙
)
.

(c) Simulates the set 𝑆𝑙
del

of features that were removed in the

𝑙 ’th iteration (computed as part of the selection phase in

Step 3b in Figure 2) as follows. Let 𝑣𝑙 denote the number

of features that should be removed in the 𝑙 ’th iteration

(as noted above, Sim can compute 𝑣𝑙 from the public

parameters), and recall that 𝐹𝑙−1 is the set of features that
survived to the beginning of the 𝑙 ’th iteration. Then Sim

picks a random subset 𝑆𝑙
del
⊆ 𝐹𝑙−1 of size

���𝑆𝑙
del

��� = 𝑣𝑙 . Then,
it sets 𝐹𝑙 = 𝐹𝑙−1 \ 𝑆𝑙

del
, and 𝑓𝑙 = 𝑓𝑙−1 − 𝑣𝑙 .

(4) During the output phase (Step 4 in Figure 2), Sim

generates encryptions of masked matrix and vector Γ𝑙 , ®𝛽𝑙
as described in Step 3a above. Additionally, it uses the

model ®𝑤 ∈ Q𝑑 which it obtained as input, to determine

the model ®𝑤 ′ ∈ Z𝑑
𝑁

which corresponds to ®𝑤 (through the

rational reconstruction),
17

and randomly encrypts ®w′ ←
Enc

(
pk𝑁 , ®𝑤 ′

)
.

Sim outputs the view V𝑆 consisting of the randomness ofS2 (which
determines pk𝑁 , pk𝐷 ), the public parameters of the protocol, the

inputs of the corrupted data owners, all ciphertexts sent to S2
throughout the simulation, all the sets 𝑆𝑙

del
generated throughout

the simulation, and the output model ®𝑤 .

We now prove that the simulated and real views are identically

distributed through a sequence of hybrids.

17
More specifically, Sim does the following for every coordinate 1 ≤ 𝑡 ≤ 𝑑 : let
®𝑤𝑡 = 𝑝/𝑞, then ®𝑤′𝑡 := 𝑝𝑞−1 mod 𝑁 .
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H0: This is the real view V𝑅 .

H1: In H1, we replace the values df
𝑙
𝑖, 𝑗

for 𝑖, 𝑗 ∈ 𝐹𝑙−1, 𝑖 ≠ 𝑗

generated in all iterations (in the selection phase of Figure 9)

with uniformly random values in Z𝑁 .
We claim that H0 ≡ H1. Indeed, this follows from the

perfect security of the One-Time Pad (OTP). Notice that

the masking 𝑟𝑖, 𝑗 used to create df𝑖, 𝑗 in Figure 9 effectively

OTP-encrypts these values – i.e., (𝑧𝑙
𝑖
)2 − (𝑧𝑙

𝑗
)2 – with fresh

keys, since the computations (i.e., adding the masks) are

performed in Z𝑁 . More specifically, let 𝑡 denote the number

of such values df
𝑙
𝑖, 𝑗

in V𝑅 , then we define a sequence of

hybrids H0 = H0

0
,H1

0
, . . . ,H𝑡

0
= H1, where in the ℎ’th

hybrid we replace the first ℎ values from their value in V𝑅 to

random values as described above. Then each pair of adjacent

hybrids are identically distributed from the security of

OTP (in particular, even non-uniform distinguishers cannot

distinguish between the hybrids, which is what we need in

this case to deduce indistinguishability of the hybridsH0,H1

from the indistinguishability of a single OTP ciphertext), and

consequentlyH0 ≡ H1.

H2: In H2, for every iteration 𝑙 we replace the pair

(
Γ𝑙 , 𝛽𝑙

)
generated in the ridge regression phase of Figure 3 with

extensions of a uniformly random matrix in GL (𝑓𝑙−1,Z𝑁 )
and a uniformly random vector in Z

𝑓𝑙−1
𝑁

(respectively). That

is, in each iteration we choose ®𝑣 ← Z
𝑓𝑙−1
𝑁

and 𝑀 ←
𝐺𝐿 (𝑓𝑙−1,Z𝑁 ) (these values are chosen independently of each
other, and of all other values), and set

®𝑏𝑙 := expd𝐹 (®𝑣) and
Γ𝑙 = expd𝐹 (𝑀).
Then H1 ≡ H2 by Lemma 8.8. Indeed, Lemma 8.8

guarantees that

(
Γ𝑙 , 𝛽𝑙

)
are uniformly distributed in

expd𝐹 (GL (𝑓𝑙−1,Z𝑁 ))×expd𝐹
(
Z
𝑓𝑙−1
𝑁

)
. (Here, we use the fact

that all intermediate matrices 𝐴𝐹 are invertible, which holds

because 𝑋 is invertible and so (𝑋, ®𝑦) ∈ T
Inv,𝑁 ,𝑑,_,𝐹1,...,𝐹𝑘 , see

Remark 8.2.) In particular, this indistinguishability holds for

non-uniform distinguishers so similar to the previous set of

hybrids, we can define a sequence of hybrids starting from

H1 and endingwithH2 inwhichwe replace the pairs

(
Γ𝑙 , 𝛽𝑙

)
one at a time. Then each pair of consecutive hybrids are

indistinguishable by Lemma 8.8 and consequentlyH1 ≡ H2.

H3: H3 is identical to H2, except for the way in which the

permuted ordinal vectors
®

Ord

Π𝑙 ,𝑙
are computed. InH3, for

every iteration 𝑙 we pick a random permutation Π̂𝑙 and

set
®

Ord

Π𝑙 ,𝑘
to be the vector obtained by applying Π̂𝑙 to

(0, 1, . . . , 𝑓𝑙−1 − 1)𝑇 .
We claim thatH3 ≡ H2. Indeed, the intermediate model ®𝑧𝑙
computed in the 𝑙 ’th iteration has 𝑓𝑙−1 unique coordinates
(see Remark 5.6). Therefore, the unpermuted ordinal vector
®

Ord

𝑙
computed in the 𝑙 ’th iteration is a length-𝑓𝑙−1 vector

that contain each value in {0, 1, . . . , 𝑓𝑙−1 − 1} exactly once.

Put differently, it is a permutated version of the vector

(0, 1, . . . , 𝑓𝑙−1 − 1)𝑇 , obtained by applying some permutation

Π′
𝑙
. Applying the permutation Π𝑙 to

®
Ord

𝑙
is therefore

equivalent to applying the permutation Π′
𝑙
◦ Π𝑙 on the

vector (0, 1, . . . , 𝑓𝑙−1 − 1)𝑇 . Since the set of permutations

over {0, 1, . . . , 𝑓𝑙 − 1} is a group, and Π𝑙 is uniformly random,

then Π′
𝑙
◦ Π𝑙 is a uniformly random permutation, namely

it is distributed identically to the permutation Π̂𝑙 used in

H3. In summary, both H2 and H3 generate the ordinal

vector
®

Ord

Π𝑙 ,𝑙
by applying a random permutation to the

vector (0, 1, . . . , 𝑓𝑙−1 − 1)𝑇 . Moreover, in all other respects

the hybrids are identical. ThereforeH3 ≡ H2.

Notice thatH3 contains no information about the permutation 𝑃

(because it contains no information about 𝑃1, since we have already

replaced all values - such as 𝐴, ®𝑏 - that depend on it). Moreover, it

contains no information about the intermediate 𝐴𝐹 ,
®𝑏𝐹 (except for

what can be deduced from the inputs of the corrupted parties).

The remaining hybrids are defined similarly toH3,H4 andH5

in the proof of Lemma 8.6, and the proof of indistinguishability is

also similar:

H4: H4 is identical to H3, except for the way in which the

𝑆𝑙
del

’s are computed. Specifically, inH4, we change the way

in which the 𝑆𝑙
del

’s are computed. We set 𝑃0 = 𝑃 ; and

for every iteration 𝑙 , we choose a permutation 𝑃𝑙 which is

uniformly random and independent subject to the constraint

that 𝑃𝑙 agrees with 𝑃𝑙−1 on ∪𝑙−1𝑡=1
𝑆𝑡
del

. Each 𝑆𝑙
del

is permuted

according to 𝑃𝑙 before it is used to compute 𝐹𝑙 in H4.

(Intuitively, in each iteration we re-sample the images of

the coordinates that were not yet used to compute 𝑆𝑙
del

’s

which were revealed to S2.)
We claim that H4 ≡ H3. Indeed, neither of the hybrids

contain any information about 𝑃 . Moreover, as in the proof

of Lemma 8.5, the permutation 𝑃 could have been sampled

“lazily” inH3, and is therefore sampled identically toH4.

H5: H5 is identical to H4 in the proof of Lemma 8.5, and

the proof of indistinguishable from the previous hybrid is

identical to the proof in Lemma 8.5. (Here, we also rely on the

fact that the hybrids contain no information about 𝐴𝐹 ,
®𝑏𝐹 .)

H6: This is simulated view output by the simulator.

We claim thatH6 ≡ H5. There are two differences between

the hybrids: (1) how the encrypted model ®𝑤 is computed;

and (2) how 𝑆𝑙
del

’s are sampled. Regarding (2), these two

methods of sampling 𝑆𝑙
del

induce identical distributions, as

proven in Lemma 8.5 (in the proof that H4 ≡ H5). As for

(1), in H5, ®𝑤 is computed from the previously-calculated

intermediate models, whereas inH6 it is reconstructed from

the output model in Q𝑑 . However, since the output model

in Q𝑑 is obtained from ®𝑤 through rational reconstruction,

the correctness of the rational reconstruction algorithm

guarantees that the same model is obtained in both hybrids.

□

Remark 8.9. In SIR, the output model is revealed to all parties. As

discussed in Section 2.5, this involves some privacy risks, which

may be alleviated by revealing the output model only to some

of the parties. We now explain why SIR remains secure in this

setting. Consider first the variant in which S2 does not reveal

the output model to any party. This variant is still secure against
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an adversary corrupting S1 and a strict subset of data owners.

Indeed, the simulator in the proof of Lemma 8.5 does not use the

output model in the simulation, so the same proof works also

when S1 does not learn the output model. Next, consider the

variant in which only an external output party O learns the output

model. The difference from the previous variant is that now S2 also
doesn’t learn the model. We claim that SIR is still secure against an

adversary corrupting S2 and a strict subset of data owners. Indeed,

in the proof of Lemma 8.6, the simulator uses the output model

only to generate the final message sent from S1 to S2 in Step 2 of

Figure 8. The proof can be adjusted to the variant in which S2 does
not learn the output model as follows. First, the simulator does not

receive the output model as output, and is not required to simulate

the final message from S1 to S2 (this message does not exist in

this variant). Second, hybridH6 is not needed in the proof, since

H5 is already exactly the simulated view. Finally, the view of the

external party O can be simulated exactly as the integral model

®𝑤 int
is generated from the rationally-reconstrcted output model in

the proof of Lemma 8.6.

9 COMPLEXITY ANALYSIS
In this section we analyze the performance of SIR, and in particular

the number of iterations and communication rounds, its runtime

and communication complexity.

Communication is counted in the number of ciphertexts

exchanged, and S1 performs all operations over ciphertexts. The

CRT is implemented using 𝑂 (log𝑁 ) primes. Ciphertext size is

polynomial in the security parameter. We denote 𝜏 = 1 − rej. The
analysis is for rej, 𝜏 = 𝑂 (1), as is the case in our experiments.

The following corollary summarizing the main complexity

measures of SIR.

Corollary 9.1. Let 𝑑, thr, ℓ,𝑚, 𝑛 ∈ N and _ ≥ 0 be as in Figure 2.
Then SIR has the following complexity properties:
• To execute Step 1 of SIR (the data merging and permuting step,
Figure 6), S1 evaluates a circuit (consisting solely of addition
gates) of size

𝑂 (𝑚𝑑2 ⌈𝑑
2

sl

⌉ (ℓ + log(𝑛2 + _) + log𝑑))

• To execute Steps 3-4 of SIR, S1 evaluates a circuit of size

𝑂

(
𝑑 (𝑑 + thr2) ⌈ 𝑑

sl

⌉ (ℓ + log(𝑛2 + _) + log𝑑)
)

and multiplicative depth

𝑂

(
log𝑑 + log(ℓ + log(𝑛2 + _))

)
.

• The communication complexity betweenS1 andS2 throughout
the execution is

𝑂

(
𝑑 · (𝑑 + thr2) · ⌈ 𝑑

sl

⌉ ·
(
ℓ + log(𝑛2 + _) + log𝑑

))
ciphertexts.
• There are 𝑂 (log𝑑 + thr) rounds of communication.

To prove the corollary, we analyze the number of iterations, and

the complexity of the different steps in SIR. We first bound the

number of iterations when executing SIR.

Lemma 9.2 (Number of iterations). Let 𝑑 > thr > 𝑠 > 0 be
parameters as in Figure 2. Then SIR performs𝑂 (log𝑑 +thr) iterations,
and the number of features at the onest of each of these iterations
is: 𝑑, 𝑑 · 𝜏, 𝑑 · 𝜏2, . . . , 𝑑 · 𝜏𝑟 , 𝑑 · 𝜏𝑟 − 1, . . . 𝑠 , where 𝜏 = 1 − rej and
𝑟 = ⌈log𝜏 thr

𝑑
⌉.

The proof is straight forward:

Proof. Let 𝑑𝑖 be the number of features at the onset of the 𝑖-th

iteration, where 𝑑 = 𝑑1 is the number of features in the input to

SIR. Then the 𝑖-th iteration removes 𝑑𝑖 · rej features if 𝑑𝑖 > thr and

it removes a single feature otherwise. Since 𝜏 = 1 − rej, the number

of features at the onset of each iteration is 𝑑,𝑑 · 𝜏, 𝑑 · 𝜏2, . . . , 𝑑𝜏𝑟 , 𝑑 ·
𝜏𝑟 − 1, . . . 𝑠 + 1, where 𝑟 = ⌈log𝜏 thr

𝑑
⌉. □

We next turn to analyze the data owner complexity.

Lemma 9.3 (Data owner complexity). Let 𝑛 𝑗 , 𝑑, 𝑁 ∈ N be
parameters as in Figure 2, let sl ∈ N be the number of slots in a
ciphertext, and let 𝑋 𝑗 ∈ R𝑛 𝑗×𝑑 , and ®𝑦 𝑗 ∈ R𝑛 𝑗 be the input of data
owner DO𝑗 . Then the running time of DO𝑗 in SIR is 𝑂 (𝑑2 · 𝑛 𝑗 ), and
shes sends 𝑂 (𝑑 ⌈𝑑2

sl
⌉ log𝑁 ) ciphertexts.

Proof. We note that DO𝑗 , 𝑗 ∈ [𝑚] participates only in the data

uploading and merging phase (Figure 6) where she computes 𝐴 𝑗 =

(𝑋 𝑗 )𝑇 · 𝑋 𝑗 and ®𝑏 𝑗 = (𝑋 𝑗 )𝑇 · ®𝑦 𝑗 . The dominant part is computing

and uploading 𝐴 𝑗 . Computing 𝐴 𝑗 is done in plaintext and takes

𝑂 (𝑑2 · 𝑛 𝑗 ) time. Since we use the encoding and the packing of [4],

𝐴 is encoded using 𝑑 rotated copies. These 𝑑 rotated copies of 𝐴

consist of𝑂

(
𝑑 · ⌈𝑑2

sl
⌉
)
elements in total. Since each element is CRT-

encoded using 𝑂 (log𝑁 ) ciphertexts, the total communication is

𝑂 (𝑑 ⌈𝑑2
sl
⌉ log𝑁 ) ciphertexts. □

We note that using a different encoding (e.g. as described in

[2, 42]) can reduce the time and communication requirement from

the data owner on the expense of increasing the complexity for S1.

Lemma 9.4 (Data preparation). Let 𝑑, 𝑁 ,𝑚 ∈ N be parameters
as in Figure 2. Then during the data merging and permuting step
(Figure 6), S1 performs𝑂 (𝑚𝑑 ⌈𝑑2

sl
⌉ log𝑁 ) operations over ciphertexts.

Proof. The dominant part is merging the 𝐴 𝑗 ’s into 𝐴, and

permuting 𝐴. Computing 𝐴 =
∑𝑚
𝑗=1𝐴

𝑗
requires 𝑂 (𝑚𝑑 ⌈𝑑2

sl
⌉)

operations on elements of 𝐴. Permuting 𝐴 is done by 𝑂 (1) matrix

multiplications where each matrix multiplication takes 𝑂 (𝑑 ⌈𝑑2
sl
⌉)

operations on elements of 𝐴. (This is because 𝐴 has ⌈𝑑2
sl
⌉ elements,

and is represented using 𝑑 rotated copies, since we use the encoding

of [4].)

Each element of 𝐴 is CRT-encoded with 𝑂 (log𝑁 ) different
plaintext moduli. This yields a total running time of𝑂 (𝑑 ⌈𝑑2

sl
⌉ log𝑁 ).

□

Lemma 9.5. (Single SIR iteration) Let 𝑑𝑖 be the number of features
at the onset of the 𝑖-th iteration, 𝑁 be as in Figure 2, and sl be the
number of slots in a ciphertext. Then in the 𝑖-th iteration:

• S1 evalutes a circuit of size 𝑂 (𝑑𝑖 ⌈𝑑𝑖
sl
⌉ log𝑁 + 𝑑2

𝑖
(log log𝑁 +

⌈ log𝑁
sl
⌉)) and depth 𝑂 (log log𝑁 ).
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• The communication complexity between S1 and S2 is
𝑂 (𝑑2

𝑖
⌈ log𝑁

sl
⌉ + 𝑑𝑖 ⌈𝑑𝑖

sl
⌉ · log𝑁 ).

• There are 𝑂 (1) rounds of communication.

Proof. A single SIR iteration is composed of a scaled ridge

regression step, in which a vector𝑤 that satisfies 𝐴𝑤 = ®𝑏 (for the
given 𝐴, ®𝑏) is computed, and of a ranking step where the elements

of𝑤 are ranked.

By [4, Thm. 5], the ridge step can be implemented using a

circuit of size 𝑂 (𝑑𝑖 ⌈
𝑑2𝑖
sl
⌉ · log𝑁 ) with no multiplications (i.e., the

multiplicative depth is 0), and with a single communication round,

communicating 𝑂 (⌈𝑑
2

𝑖

sl
⌉ log𝑁 ) ciphertexts.

To rank the (squared) elements of𝑤 (Figure 9), SIR first computes

the masked differences Δ𝑖, 𝑗 = 𝑤
2

𝑖
−𝑤2

𝑗
+ 𝑟𝑖, 𝑗 for all 𝑖 > 𝑗 , where 𝑟𝑖, 𝑗

is chosen uniformly at random. Next, S1 and S2 communicate to

compute ranges in binary representation. S1 then compares these

ranges to 𝑟𝑖, 𝑗 to determine whether 𝑤2

𝑖
> 𝑤2

𝑗
for all 𝑖, 𝑗 , and then

computes the ranks. We now analyze: (i) computing Δ𝑖, 𝑗 , for 𝑖 > 𝑗 ,

(ii) computing the ranges and (iii) ranking the elements of𝑤 .

Computing Δ𝑖, 𝑗 . The elements of𝑤 are packed in the slots of

a ciphertext 𝐶 (if 𝑑𝑖 > sl this is simulated using ⌈𝑑𝑖
sl
⌉ ciphertexts).

Subtracting a rotation of𝐶 by 𝑗 slots (𝐶−Rotate(𝐶, 𝑗)) yields Δ𝑖,𝑖+𝑗 ,
for 𝑖 = 1, 2, . . . , 𝑑𝑖 − 𝑗 . Repeating this for 𝑗 = 1, 2, . . . , 𝑑𝑖 − 1 gives
Δ𝑖, 𝑗 for all 𝑖 > 𝑗 . This step is performed by S1 using a circuit of size
𝑂 (𝑑𝑖 ⌈𝑑𝑖

sl
⌉ log𝑁 ) and multiplicative depth 0. (There are 𝑑𝑖 vectors

Rotate(𝐶, 𝑗), each represented using ⌈𝑑𝑖
sl
⌉ log𝑁 ciphertexts.)

Computing ranges. To compute the ranges for a pair 𝑖, 𝑗 ,

S1 sends Δ𝑖, 𝑗 to S2. S2 then decrypts Δ𝑖, 𝑗 (which are masked
differences), computes the ranges – in binary representation

– and sends the encryptions of the ranges to S1. Each value

in these ranges can be represented with ⌈log
2
𝑁 ⌉ bits (padded

with 0s if needed). The bits are encoded in the slots of a single

ciphertext (where if log𝑁 > sl then this is simulated using

⌈ log𝑁
sl
⌉ ciphertexts). Therefore, computing the ranges can be done

with a single communication round in which 𝑂 (𝑑𝑖 ⌈𝑑𝑖
sl
⌉ log𝑁 +

𝑑2
𝑖
⌈ log𝑁

sl
⌉) ciphertexts are communicated. (The first term is due to

communicating the

(
Δ𝑖, 𝑗

)
𝑖< 𝑗 from S1 to S2, where the second is

due to communicating the ranges.)

Computing ranks. To compute the ranks, S1 computes an

indicator 𝜒𝑖, 𝑗 of whether 𝑤
2

𝑖
< 𝑤2

𝑗
, namely 𝜒𝑖, 𝑗 = 1 if 𝑤2

𝑖
< 𝑤2

𝑗
,

otherwise 𝜒𝑖, 𝑗 = 0. 𝜒𝑖, 𝑗 is computed by comparing the appropriate

ranges to 𝑟𝑖, 𝑗 . This comparison is done using a circuit of size

𝑂 (log log𝑁 + ⌈ log𝑁
sl
⌉) and depth 𝑂 (log log𝑁 ). Computing the

ranks of all 𝑑𝑖 features is done by computing all indicators 𝜒𝑖, 𝑗
and summing rank𝑖 =

∑
𝑗≠𝑖 𝜒𝑖, 𝑗 . Therefore, the entire circuit has

size 𝑂 (𝑑2
𝑖
(log log𝑁 + ⌈ log𝑁

sl
⌉)) and depth 𝑂 (log log𝑁 ).

Putting everything together gives the bounds specified in the

theorem statement. □

We note that an alternative method for computing the ranks is

to use a sorting network (e.g., bitonic or Batcher sort). In this case,

the ranking protocol (which would replace parts of the protocol of

Figure 9) can be done using a circuit of size 𝑂 (𝑑2 log2 𝑑 log log𝑁 )
and depth 𝑂 (log2 𝑑 log log𝑁 ).

Theorem 9.6 (SIR analysis). Let 𝑑, 𝑠, 𝑁 , rej, thr be as in Figure 2.
Then SIR has the following complexity properties:

• To execute Step 1 of SIR (the data merging and permuting step,
Figure 6), S1 evaluates a circuit (consisting solely of addition
gates) of size

𝑂 (𝑚𝑑 ⌈𝑑
2

sl

⌉ log𝑁 )

• To execute Steps 3-4 of SIR, S1 evaluates a circuit of size

𝑂 ((𝑑+thr2) ⌈ 𝑑
sl

⌉ log𝑁+𝑂
(
(𝑑2 + thr3) (log log𝑁 + ⌈ log𝑁

sl

⌉)
)

and multiplicative depth 𝑂 (log log𝑁 ).
• The communication complexity betweenS1 andS2 throughout
the execution is

𝑂

(
(𝑑 + thr2) ⌈ 𝑑

sl

⌉ log𝑁 + (𝑑2 + thr3) ⌈ log𝑁
sl

⌉
)

ciphertexts.
• There are 𝑂 (log𝑑 + thr) rounds of communication.

Proof. The complexity of the circuit which S1 evaluates in

Step 1 of SIR is described in Lemma 9.4. Let 𝐼 = 𝑂 (log𝑑) denote
the number of iterations in the first phase of SIR (i.e., when each

iteration removes a rej-fraction of features). By Lemma 9.2, the

number of features at the onset of the iterations of SIR are: 𝑑,𝑑 ·
𝜏, 𝑑 · 𝜏2, . . . , 𝑑 · 𝜏𝑟 , 𝑑 · 𝜏𝑟 − 1, . . . 𝑠 , where 𝜏 = 1 − rej, and 𝑑𝜏𝑟 =

𝑂 (thr). Substituting these numbers in the formula describing the

complexity of a single iteration in Lemma 9.5, we have that the size

of the entire circuit (evaluating all iterations) is

𝑂

(
𝐼∑
𝑖=1

(𝑑𝜏𝑖 ⌈𝑑𝜏
𝑖

sl

⌉ log𝑁 + 𝑑2𝜏2𝑖 (log log𝑁 + ⌈ log𝑁
sl

⌉))
)

+
thr∑
𝛿=𝑠

(𝛿 ⌈ 𝛿
sl

⌉ log𝑁 + 𝛿2 (log log𝑁 + ⌈ log𝑁
sl

⌉))

rearranging, we get

𝑂

(
𝑑 log𝑁 ·

𝐼∑
𝑖=1

𝜏𝑖 ⌈𝑑𝜏
𝑖

sl

⌉ + 𝑑2 (log log𝑁 + ⌈ log𝑁
sl

⌉) ·
𝐼∑

𝑖=1

𝜏2𝑖

+ log𝑁
thr∑
𝛿=𝑠

𝛿 ⌈ 𝛿
sl

⌉ + (log log𝑁 + ⌈ log𝑁
sl

⌉)
thr∑
𝛿=𝑠

𝛿2

)
≤ 𝑂

(
𝑑 log𝑁 ·

∞∑
𝑖=1

𝜏𝑖 ⌈𝑑𝜏
𝑖

sl

⌉
)

+𝑂
(
𝑑2 (log log𝑁 + ⌈ log𝑁

sl

⌉) ·
∞∑
𝑖=1

𝜏2𝑖

)
+ log𝑁

thr∑
𝛿=𝑠

thr ⌈ thr
sl

⌉ + (log log𝑁 + ⌈ log𝑁
sl

⌉)
thr∑
𝛿=𝑠

thr
2
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using the formula for an infinite geometric sum, we get

𝑂 (𝑑 log𝑁 · ⌈ 𝑑
sl

⌉ + 𝑑2 (log log𝑁 + ⌈ log𝑁
sl

⌉))

+ log𝑁 · thr2 ⌈ thr
sl

⌉ + (log log𝑁 + ⌈ log𝑁
sl

⌉) · thr3

≤ 𝑂 ((𝑑 + thr2) ⌈ 𝑑
sl

⌉ log𝑁

+𝑂
(
(𝑑2 + thr3)

(
log log𝑁 + ⌈ log𝑁

sl

⌉
))

where in the last inequality we use the fact that 𝑑 > thr.

Since every iteration starts with fresh ciphertexts (because in

each iteration S2 generates fresh ciphertexts) then circuit depth

is 𝑂 (log log𝑁 ). The analysis of the communication complexity is

similar to the analysis for the circuit size, and yields

𝑂 ((𝑑 + thr2) ⌈ 𝑑
sl

⌉ log𝑁 + (𝑑2 + thr3) ⌈ log𝑁
sl

⌉).

□

Corollary 9.1 now follows by plugging-in the value of 𝑁 from

Equation 4:

Proof of Corollary 9.1. By Equation 4 we have that log𝑁 =

𝑂
(
𝑑 (ℓ + log(𝑛2 + _) + log𝑑)

)
. Plugging this into Theorem 9.6,

immediately gives the stated size of the circuit computed by S1 in
Step 1 of SIR. Using the fact that 𝑑 > thr, 𝑥 ≥ log𝑥 for every 𝑥 > 0,

and ⌈𝑑 (ℓ+log(𝑛
2+_)+log𝑑)
sl

⌉ < ⌈𝑑
sl
⌉ (ℓ + log(𝑛2 + _) + log𝑑), we get

that S1 evaluates a circuit of size

𝑂

(
𝑑 · (𝑑 + thr2) · ⌈ 𝑑

sl

⌉ ·
(
ℓ + log(𝑛2 + _) + log𝑑

))
and depth

𝑂

(
log𝑑 + log(ℓ + log(𝑛2 + _))

)
and the communication between S1 and S2 consists of

𝑂

(
𝑑 · (𝑑 + thr2) · ⌈ 𝑑

sl

⌉ ·
(
ℓ + log(𝑛2 + _) + log𝑑

))
ciphertexts. □

10 SYSTEM AND EMPIRICAL EVALUATION
We implemented the SIR protocol into a system and ran experiments

on real data to evaluate its concrete complexity and correctness

(i.e., that output models match cleartext results). Furthermore, we

compare the iterated ridge approach (as securely realized in SIR) to

the filter and truncation approaches for feature selection, showing

it significantly outperforms the latter .

10.1 Data
The Cancer Genome Atlas (TCGA), a landmark cancer genomics

program, molecularly characterized over 20,000 primary cancer

and matched normal human tissue samples spanning 33 cancer

types. The program integrates contributions frommany researchers

coming from diverse disciplines and from multiple institutions. The

data spans genomic, epigenomic, transcriptomic, and proteomic

data measured on the aforementioned samples. We used a

small portion of this data for our experiments. Concretely we

used randomly selected portions of one of the breast cancer

transcriptomics data matrices. We start with a matrix with features

normalized to lie in [−1, 1] with 3-digit precision. The matrix

has 781 rows (samples/instances) and > 10𝐾 columns (features,

representing genes profiled). Each (𝑖, 𝑗) entry of the matrix

represents the expression level of gene 𝑗 in sample 𝑖 . We use D to

denote this full TCGA breast cancer expression profiling matrix.

The TCGA data also includes 781 TIL levels for this cohort, as part

of additional data to support biological and clinical interpretation.

TIL levels quantify tumor infiltrating immune cells in the (tumor)

samples.

To run an experiment with 𝑑 features, that is adequate for our

current running time complexity, we chose to work with 4, 10, 40

and 100 features. To generate a dataset for a given 𝑑 , we randomly

(uniformly) selected 𝑑 features (columns of D) to be the columns

of the data matrix 𝑋 . We then set the target vector ®𝑦 to be the

vector of TIL levels. To support bias, we add an extra column of

1’s to 𝑋 . When relevant, we evenly distributed the 781 samples

between the data owners. As described in the protocol, each data

owner computed 𝐴 = ⌊10ℓ𝑋𝑇𝑋 ⌉ and ®𝑏 = ⌊10ℓ𝑋𝑇 ®𝑦⌉, which also

scaled and rounded the values. Note that in our experiments on 𝑑

features, 𝐴 and
®𝑏 are therefore of dimensions (𝑑 + 1) × (𝑑 + 1) and

(𝑑 + 1), respectively. Solving for ®𝑦 continues in the same way as in

Protocol 2 (computing adjugate and determinant of a (𝑑+1)× (𝑑+1)
matrix), but computing the ranks of the features involves only 𝑑

features because the bias is not treated as a selectable feature.

10.2 Comparing IR to Filter, Ridge and Lasso,
on Our Example Dataset

To quantify the advantage of iterative ridge (IR) over the filter,

ridge, Lasso, and truncated ridge (truncate) approaches (the baseline

algorithms) we ran experiments in the clear. Data was generated as

detailed in Section 10.1.We generated 1000 data sets, each consisting

of 𝑑 = 100 features selected uniformly at random. The 781 samples

are 80/20 split into training and test. For each of the 1000 datasets

we ran IR, filter, ridge, Lasso and truncated ridge on the training

data. IR selects 10 features as specified in Figure 1. Filter selects the

top 10 features according to their Pearson correlation to the target

vector (on the training data); ridge regression was executed with

the regularization parameter set to its default value _ = 1 while in

Lasso, we set it to get the same number of non-zero feature as in IR;

truncate executes ridge regression and then removes features with

low weight to maintain the 10 features with the highest weights. In

each one of these caseswe then obtain the actual model (coefficients)

and apply it to the test data. In Figure 10 we compare the resulting

MSEs for IR to the other approaches. The histogram represents the

observed results for the percentage difference:

Δ =
MSE(baseline) −MSE(IR)

MSE(IR) · 100 (16)

We clearly observe a significant performance advantage for IR in our

example gene expression dataset. Concretely, IR outperforms (non-

negative Δ) filter, ridge, Lasso and truncate in 100.0%, 77.4%, 93.9%

and 100.0% of the experiments, respectively. The mean percentage

difference is 27.23%, 16.43%, 27.06% and 17.08%, respectively. We

repeated the experiment, selecting 8 out of 𝑑 = 40 features, showing
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similar results: IR outperforms filter, ridge, Lasso and truncate in

100.0%, 79.5%, 93.5% and 100.0% of the experiments, respectively.

10.3 System Implementation Details

Ring size. To obtain correctness in SIR, the ring sizes needed for

our experiments exceeded the sizes currently supported by FHE

libraries. For example, for inputs with 40 features, we require a ring

of size 1,260 bits, while current libraries support rings of size less

than 64 bits. To support such large ring sizes, we encoded the input

using the Chinese Remainder Theorem (CRT) with several distinct

30-bit primes, as was used in [4].

Permuting the input. In a preliminary step S1 and S2 participate
in a protocol to permute the input: 𝐴 = (𝑃1 · 𝑃2)𝑇 · 𝑇 1 · (𝑃1 · 𝑃2)
(for 𝑇 1

an intermediate value, see Figure 6), where 𝑃1 and 𝑃2 are

random permutation matrices chosen by S1 and S2, respectively.
There are several ways to compute this step. One option is for S1 to
perform all the computations using FHE (with multiplicative depth

2). Another option – which is the one used in our implementation

– is to utilize a protocol between S1 and S2 that uses masking

and requires only additive homomorphism. This step is executed

only once at the onset of the protocol, and its running time is

inconsequential compared to the total protocol runtime (e.g., with

40 features, this step took 1,152 seconds out of 84,690 seconds. See

Table 2).

Ranking weights. To decide which entries of ®𝑤 to remove in each

iteration, we compute a full ranking over the entries (see Figure 9).

This involves comparing pairs of entries. Our experiments show

that the majority of the running time is spent in this step. For

example, the total real time of SIR when 𝑑 = 40 was 84,690 seconds,

while computing the ranks took 76,184 seconds (see Table 2). To

Compare a single pair𝑤𝑖 ,𝑤 𝑗 of entries,S1 compares𝑤2

𝑖
−𝑤2

𝑗
+𝑟𝑖 𝑗 to

ranges received from S2, to determine whether𝑤2

𝑖
−𝑤2

𝑗
∈ [0, 𝑁 /2]

(and hence 𝑤𝑖 ≥ 𝑤 𝑗 ). In our implementation S1 performed all(𝑑
2

)
comparisons. An alternative is to use an approach similar to

Bitonic sort (or Batcher sort, see [5]). However, while a sorting

approach performs only
𝑑
2

( ⌈log
2
𝑑 ⌉

2

)
comparisons, it is less amenable

to parallelization. Specifically, the sorting approach is faster when

⌈ 1

CPUs

(𝑑
2

)
⌉ > ⌈ 𝑑/2

CPUs
⌉ ·

( ⌈log
2
𝑑 ⌉

2

)
, so for the number of features and

CPUs in our experiments the naive all-pairs approach was faster.

We stress that to utilize the Bitonic sort alternative (which would be

faster for larger 𝑑’s), one only needs to implement the comparison

step using Bitonic sort, making our protocol flexible, efficiently

supporting both regimes of 𝑑 .

Cryptographic Libraries. At a high level, the steps of our protocol

can be categorized into two types with different characteristics:

• Ranking steps. Computing the ranks of features in ®𝑤 , when
the entries are given in binary. These steps involve a sub-

circuit of large depth for sorting 𝑑 large numbers in binary

representation, e.g. 1,260-bit numbers when 𝑑 = 40. This

requires a key that supports large-depth circuits, and possibly

also bootstrapping. We note that the plaintext modulo

needed by these steps is relatively small.

• CRT steps consist of all other steps, and operate over

numbers that are represented using CRT. The CRT steps

of the protocol require only additive homomorphism,

but necessitate multiple (co-prime) plaintext moduli to

implement the CRT. Preferably, these plaintext moduli

should be as large as possible, because larger moduli mean

less elements in the CRT encoding.

We used two different FHE libraries (with different schemes) to

implement these two types of steps. For ranking we use BGV in

HElib [38] 2.1.0, because it supports bootstrapping (unlike SEAL).

For CRT steps we use B/FV in SEAL [55] 4.0, in which it is easier

to configure keys for multiple plaintext moduli. Switching between

the two libraries and schemes is done by S2, who generated the

keys (𝑝𝑘𝑁 , 𝑠𝑘𝑁 ) and (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) in HElib and SEAL respectively.

In detail, in HElib [38] 2.1.0 we initialize the keys while setting the

plaintext modulo to 17
2
, and the cyclotomic polynomial degree to

78,881. This resulted in ciphertexts with 7,000 slots, supporting a

multiplicative depth of 28, as well as bootstrapping. In SEAL we

initialize the keys while setting the cyclotomic polynomial degree

to 8,192, a chain length of 7, chain bits of 25 and prime bits of 30.

This resulted in a ciphertext with 4,096 slots that supports additive

homomorphism.

10.4 Evaluation Setup
We executed SIR (Protocol 2) on the data generated from TCGA

described in Section 10.1, and measured performance of the data

owners and servers. We executed two types of experiments: end-

to-end and single-iteration experiments. In all experiments rej was

set to 10% and the ring size 𝑁 was determined by Equation 4.

End-to-end experiments measure performance when executing the

entire SIR protocol, including the data encoding and all iterations,

until producing a sparse model that selects 𝑠 out of the 𝑑 initial

features from a dataset of 𝑛 records distributed amogst 𝑚 data

owners. We ran end-to-end experiments on the following𝑚,𝑛,𝑑, 𝑠

parameters: (1) TCGA data with number of features (𝑑, 𝑠) varying
between (4, 2), (10, 4), (40, 8) and (𝑚,𝑛) = (10, 781); (2) Synthetic
data with number of records 𝑛 =1568, 6272, 12544, 50176, 100352,

200704, 401408, 802816 and (𝑚,𝑑, 𝑠) = (10, 10, 2); (3) Synthetic data
with number of data owners𝑚 = 100, 200, . . . , 1000 and (𝑛,𝑑, 𝑠) =
(802816, 10, 2).

Single-iteration experiments measure performance when executing

a single iteration (Protocol 2, Step 3, i.e., computing scaled ridge,

ranking the features, and removing the features with the smallest

weight) on different values of 𝑑 . Concretely, we take 5 ≤ 𝑑 ≤ 40

features, in increments of 5.

Hardware. In all experiments, we used a single virtual machine to

simulate the data owners, S1 and S2. The virtual machine had 100

Xeon 2.7GHz CPUs and 900 GigaBytes of RAM. These are off-the-

shelf standard CPUs. Nonetheless, each data owner was executed

on a single CPU, to capture the prevalent usecase in which data

owners are computationally significantly weaker than the servers.

What we measured. We report the total runtime, as well as the

runtime of each sub-task in SIR: encrypt (Figure 5, Step 2); permute
(Figure 6, Step 3); mask (Figure 3, Step 2); unmask (Figure 3, Step 5);
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(a) IR vs Filter (b) IR vs Ridge (c) IR vs Lasso (d) IR vs Truncate

Figure 10: IR outperforms filter, ridge, Lasso and truncate in terms of the resulting MSE on the test data, for our example
datasets (1000 random test sets generated from the breast cancer gene expression datamatrix fromTCGA [60]). The histograms
depict the number of experiments (y-axis) for which we observe a given value for the percentage difference Δ of Eq 16 (x-axis).

(𝑑, 𝑠, 𝑁 ) RAM encrypt permute mask unmask decrypt solve pair diffs ranges ranks total

(4, 2, 2180) 21 1 (×2) 11 (×84) 1 (×100) 5 (×78) 1 (×100) 7 (×70) 1 (×10) 7 (×4) 1510 (×5) 2142 (×4)
(10, 4, 2360) 43 80 (×2) 105 (×80) 3 (×100) 41 (×60) 11 (×87) 56 (×70) 2 (×24) 23 (×17) 4540 (×24) 5718 (×21)
(40, 8, 21260) 134 80 (×2) 1152 (×52) 76 (×58) 1408 (×35) 152 (×92) 1584 (×40) 66 (×77) 336 (×65) 76184 (×79) 84690 (×74)
Table 2: Runtime (seconds),memory consumption (GB), and parallelization ratio (in parenthesis) in end-to-end SIR executions.

(𝑑, 𝑁 ) mask unmask decrypt solve pair diffs ranges ranks

(5, 2210) 2 (×29) 3 (×42) 1 (×7) 3 (×61) 1 (×3) 5 (×4) 806 (×10)
(10, 2360) 1 (×100) 20 (×53) 4 (×80) 24 (×64) 1 (×10) 11 (×25) 939 (×43)
(15, 2510) 3 (×57) 44 (×44) 1 (×130) 42 (×40) 1 (×23) 39 (×47) 2319 (×63)
(20, 2660) 5 (×46) 77 (×34) 4 (×100) 72 (×29) 1 (×51) 45 (×58) 4147 (×87)
(25, 2810) 5 (×56) 139 (×32) 4 (×86) 158 (×38) 1 (×97) 38 (×67) 7104 (×90)
(30, 2960) 6 (×64) 274 (×36) 26 (×91) 323 (×44) 2 (×65) 55 (×63) 13093 (×87)
(35, 21110) 7 (×57) 371 (×29) 9 (×90) 394 (×32) 3 (×72) 57 (×63) 11728 (×95)
(40, 21260) 9 (×58) 473 (×30) 24 (×91) 519 (×34) 5 (×72) 54 (×70) 19354 (×91)

Table 3: Runtime (seconds) in a single SIR iteration, and parallelization ratio (in
parenthesis).

(𝑑, 𝑁 ) 𝑛 solve ranks

(10, 2360) 1568 97 7407

(10, 2420) 6272 112 7391

(10, 2450) 12544 113 7373

(10, 2480) 50176 114 7367

(10, 2510) 100352 112 7312

(10, 2540) 200704 126 8166

(10, 2540) 401408 133 8209

(10, 2570) 802816 139 8048

Table 4: Runtime (seconds) of SIR
on a growing number of records (𝑛).

decrypt (Figure 3, Step 3);
18 solve (Figure 3, Step 4);

19 pair diff
(Figure 9, Step 1); ranges (Figure 9, Step 2); ranks (Figure 9, Step 3).

Furthermore, we report the parallelization ratio, which is the ratio

between runtime when executing the computation on a single CPU

(as measured by the operating system) vs. the runtime on our 100-

cores system. Intuitively, this indicates the average number of CPUs

that were busy performing the task, where a higher ratio means

the task is more amenable to parallelization as it utilize more CPUs

(the maximum being 100).

10.5 SIR Performance
Tables 2-3 summarize the performance exhibited in the end-to-

end experiments and the single-iteration experiments, respectively.

Table 4 presents SIR runtime on various database sizes.

18
Recall that we encoded the numbers using CRT; the time reported here includes the

CRT decoding time.

19
Here the computations are overZ𝑁 , where𝑁 is large (e.g., 1, 260-bits for 40 features).

Runtime. The total runtime is dominated by the time it takes to

rank the weights. For example, ranking took 91% (94%) of the total

runtime in our end-to-end (single-iteration) experiment on 𝑑 = 40.

Increasing the number of records by 512× (from 1568 to 802,816

records) led to runtime increase by less than 10% (from 7,504 to

8,187 seconds). Increasing the number of data owners by 10× (from

100 to 1000 data owners) affects only the time to homomorphically

merge the data (Step 1 in Figure 8) , that indeed increased by ten-fold

(from 10 to 102 seconds); however this has only a minor influence

on the overall runtime (which is dominated by the 8048 seconds

to rank features), and so a ten-fold increase in the number of data

owners led to an increase in the total runtime by roughly 1%.

RAM. The RAM usage of our system was significantly lower than

the allocated RAM, ranging from 21GB to 134GB. Furthermore, our

experiments indicate that the RAM requirement grows sub linearly

in the measured values for 𝑑 (e.g. from 43GB when 𝑑 = 10 to 134GB

when 𝑑 = 40). This is because our ciphertexts had more slots than
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needed for our encodings (for small 𝑑’s), so the total number of

ciphertexts grew only mildly in 𝑑 .

Parallelization. As 𝑑 grows, most tasks become more parallelizeable.

In particular, the ranking task –which dominates the bulk of the

runtime– is “embarrassingly” parallelizable since we make all

(𝑑
2

)
comparisons, which can be executed in parallel. We note that if

we had an unlimited number of CPUs, the ranking runtime would

essentially be the time of a single comparison. For example, when

(𝑑, 𝑁 ) = (40, 21260) (cf. Table 3 bottom row), our ranking utilized

an average of 91 CPUs (the system had 100 CPUs), whereas having

access to

(𝑑
2

)
CPUs is expected to improved the ranking runtime by

a factor of

(
40

2

)
/91 ≈ 8.6, thus improving the total runtime by 6×.

We remark that an alternative way to compute the rankingwould

be to homomorphically evaluate an oblivious sorting algorithm

(e.g., bitonic sort). Bitonic sort would require less comparisons –

𝑂 (𝑑 log2 𝑑); but this type of sorting admits a circuit structure having

𝑂 (log2 𝑑) layers, which is less amenable to parallelization. For 40

features and 100 CPUs, this alternative would have higher runtime.

11 CONCLUSIONS
We develop and analyze a privacy-preserving multi-party protocol

for running sparse linear regression in a federated learning setup,

based on an iterated ridge framework. Our protocol enjoys rigorous

security, and scales favorably with the number of records and

data owners. Moreover, our protocol naturally gives a privacy-

preserving ridge truncation protocol, which is less accurate (as we

have shown), but simpler and faster, and therefore may be preferred

in some cases.

The design of our protocol is based, amongst other consideration,

on certain potential attacks that can be developed when partial

or intermediate information is leaked. In particular, we show in

Section 7 that revealing the order in which features are removed

can be used to infer non-trivial information about the input data.

We also extend this attack to other leakages such as revealing

intermediate models or the determinant of the intermediate 𝐴

matrices. As explained in Sections 2.5 and 7, SIR is susceptible

to inversion attacks. Determining the exact extent to which such

attacks are harmful, and devising measures to protect against them,

are left for future work.

We mostly focus on the case 𝑑 ≤ 𝑛. In particular, our security

proof addresses this case and furthermore requires the matrix 𝐴 to

be invertible. Our protocol can be adjusted for settings with 𝑑 > 𝑛

by combining SIR with a faster learning method (e.g., filter) to first

partially reduce the number of features. One can similarly perform

a preparatory step to handle the case in which 𝑋 is not full rank.
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