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Abstract. The design and analysis of dedicated tweakable block ciphers
constitute a dynamic and relatively recent research field in symmetric
cryptanalysis. The assessment of security in the related-tweakey model
is of utmost importance owing to the existence of a public tweak. This pa-
per proposes an automatic search model for identifying related-tweakey
impossible differentials based on the propagation of states under specific
constraints, which is inspired by the research of Hu et al. in ASIACRYPT
2020. Our model is universally applicable to block ciphers, but its search
efficiency may be limited in some cases. To address this issue, we in-
troduce the Locality Constraint Analysis (LCA) technique to impossi-
ble differential cryptanalysis and propose a generalized automatic search
model. Technically, we transform our models into Satisfiability Modulo
Theories (SMT) problems and solve them using the STP solver. We have
applied our tools to several tweakable block ciphers, such as Joltik-BC,
SKINNY, QARMA, and CRAFT, to evaluate their effectiveness and practical-
ity. Specifically, we have discovered 7-round related-tweakey impossible
differentials for Joltik-BC-192, and 12-round related-tweak impossible
differentials, as well as 15-round related-tweakey impossible differentials
for CRAFT for the first time. Based on the search results, we demonstrate
that the LCA technique can be effectively performed when searching and
determining the contradictory positions for the distinguisher with long
trails or ciphers with large sizes in impossible differential cryptanalysis.

Keywords: Tweakable Block Cipher · Related-tweakey · Impossible dif-
ferential cryptanalysis · LCA technique · SAT method

1 Introduction

Tweakable block ciphers are constructions that have an additional input called
tweak compared to traditional block ciphers, which can be defined as a func-
tion C = E(K,T, P ) from Fn

2 × Fκ
2 × Ft

2 → Fn
2 when the tweak length is t bits.

The concept of tweakable block ciphers was first introduced by Schroeppel in



the Hasty Pudding Cipher [32], and was later formalized by Liskov et al.[23,24].
They aimed to move the randomization of symmetric primitives by bringing the
high-level mode operations, like ΘCB3 [18] or Counter-in-Tweak [29], directly
to the design of block ciphers. Unlike the secret key, the tweak is entirely public
and offers attackers more flexibility. Designers must therefore handle the tweak
more carefully than the key without reducing efficiency. Responding to the high
demmand, Jean et al. [13] introduced the TWEAKEY framework to bridge the gap
between key and tweak inputs by providing a unified framework in ASIACRYPT
2014, which can be viewed as a straightforward generalization of key-alternating
ciphers, where the key and tweak basically treated as a whole called tweakey.
Based on this framwork , there are several dedicated tweakable block ciphers,
such as Joltik-BC [14], Deoxys-BC [15], SKINNY [3]. Furthermore, with the de-
velopment of tweakable block cipher, its design also becomes diversified, such as
QARMA [1], CARFT [4], and some other tweakable block ciphers based on Tweak-
aNd-Tweak [9] and Elastic-Tweak [6].

Impossible differential cryptanalysis was independently introduced by Biham
et al. [5] and Knudsen [17] to evaluate the security of Skipjack and DEAL. In
contrast to differential cryptanalysis, impossible differential cryptanalysis aims
to identify a differential characteristic that have zero probability. Due to the lim-
itations of manual derivation, various automatic methods have been developed
to search for impossible differentials, including the U-method [16], the UID-
method [27], and the WW-method [34]. Unfortunately, these method handle the
underlying S-box as ideal and cannot consider its details. However, this problem
was soon settled with the Mixed Integer Linear Programming (MILP) applica-
tion to cryptanalysis. It was firstly proposed by Mouha et al. [28] to evaluate
the lower bound on the number of the differential and linear active S-boxes and
then improved by Sun et al. [33] to search for the differential characteristics of
bit-oriented block ciphers. Based on this, Cui et al. [7] proposed a MILP-based
tool to search the impossible differentials for lightweight block ciphers and an
algorithm to verify the impossible differentials. Soon after, Sasaki and Todo [31]
presented a MILP-based tool to search the impossible differential for SPN block
ciphers by treating the large S-boxes as permutations so that their tool was valid
to detect the contradiction in linear components.

However, the above methods are all based on the propagation of the differ-
ences and can not evaluate the effect of key schedules in the single-key setting.
Hu et al. [12] solved this problem by using the equivalence between the impos-
sible (s+ 1)-polytopic tansitions and impossible differentials. They transformed
the characterization of differential propagation from the traditional sense of de-
scribing it through differential spreads, to reflecting it through the propagation
of constraint values. This new approach provides a novel perspective and enables
the possibility of handling large state S-boxes or value-dependent operations that
are difficult to realize in the traditional sense. Additionally, this approach is ap-
plicable to all differential cryptanalysis methods, such as searching differential
trail or differential active S-box, which facilitates more accurate analysis of a
block cipher to resist the attacks of differential cryptanalysis.
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Our Contributions. For the majority of current tweakable block ciphers, ad-
versaries have the ability to manipulate tweak values. Drawing inspiration from
Hu et al.’s contributions in [12], we present an automatic search model for related-
tweakey impossible differentials. Specifically, we transform the problem of iden-
tifying an impossible differential into the Satisfiability Modulo Theories (SMT)
problem by explicating the propagation of states and the tweakey update func-
tion with specific constraints, which can efficiently evaluate the resistance against
impossible differential analysis for most of the block ciphers.

Unfortunately, it leads to a significant loss of efficiency with an increase in
the state space and number of search rounds if considering all the details of
round functions and tweakey update functions. To address this, we propose a
generalized search model by introducing the Locality Constraint Analysis (LCA)
technique. The optimized model has two significant advantages: improving the
search efficiency for long trails and identifying the contradictory positions of
impossible differentials.

In terms of practical implementation, we have employed our automatic search
model in the evaluation of several tweakable block ciphers. The outcomes of these
evaluations are presented below.

– For Joltik-BC, we have discovered several 6-round and 7-round related-
tweakey impossible differentials for Joltik-BC-128 and Joltik-BC-192, re-
spectively, wherein a single nibble is active for input and output. These
differentials were previously unknown.

– For SKINNY, we have identified related-tweakey impossible differentials for
SKINNY-64-64, SKINNY-64-128, and SKINNY-62-192, with 12-round, 14-
round, and 16-round, respectively. Notably, the majority of these differentials
had not been previously reported by Sadeghi et al. in [30].

– For QARMA-64, we have derived several 7-round asymmetric related-tweak im-
possible differential distinguishers spanning from the 6th to the 12th round.
Particularly, the majority of these distinguishers were not identified using
Zong’s method in [36].

– For CRAFT, we have successfully derived 12-round related-tweak impossible
differentials and 15-round related-tweakey impossible differentials, assuming
the condition that only one nibble is active in the tweakey differences. It is
noteworthy that these differential properties have not been reported before.

Outline. In Section 2, we provide a brief overview of the necessary prelimi-
naries utilized in the present paper. Subsequently, in Section 3, we introduce
an automatic search model for related-tweakey impossible differentials based
on the SAT solver. Section 4 is dedicated to the application of our tool in
the search for related-tweakey impossible differentials in some tweakable block
ciphers, followed by a concise evaluation of our model in Section 5. Finally,
we conclude this work in Section 6. The source codes are publicly available at
https://github.com/Rainy1024/ImpossibleDifferentialAnalysis.git.
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2 Preliminaries

2.1 Notations

The following notations are used in the present paper. Throughout the paper,
we use ⊕ to denote the bitwise XOR of two vectors or XOR of two bits.

– F2 = {0, 1}: the finite field with 2 elements.
– Fn

2 : the vectors space over the finite field F2 with dimension n.
– ∆n

m: the set that {(a, a′) ∈ Fn
2 × Fn

2 |a⊕ a′ = m,m ∈ Fn
2 \ {0}}.

– BC(n,m, l): the set of iterated block ciphers whose block cipher is n-bit,
master key size is m-bit, and round key size is l-bit.

– TBC(n, κ, t): the set of tweakable block ciphers whose cipher size is n-bit,
master key size is κ-bit and initial tweak size is t-bit.

– TKr
j [i]: the i-th nibble of the j-th subtweakey of the r-th round. The differ-

ence donates as △TKr
j [i].

– DR: the length of an impossible differential distinguisher.
– ConR: the round index where the contradiction occurs.
– ConPs: The specific location of the contradiction. For instance, Si means the

contradiction is in the S-box with the index i.

2.2 Related-tweakey Impossible Differential

Related-key impossible differential cryptanalysis is a variant of the impossible
differential cryptanalysis where the attacker can control the key schedule of the
cipher. In this attack, the attacker can choose two related keys and use them to
generate a specific input difference that produces a target output difference with
zero probability. Here, we first recall some definitions of impossible 2-polytopic
transitions proposed in [12].

For an iterated block cipher E ∈ BC(n,m, l), the tuple (x, x′) with x, x′ ∈ Fn
2

is called a 2-polygon in Fn
2 . The 2-polygon (xrb , x

′
rb
) propagates through round

by round. If there exits an r-round related-key 2-polygonal trail

((xrb , x
′
rb
), (E1

krb
(xrb), E

1
k′
rb
(x′

rb
)), . . . , (Er

krb+r−1
(xrb+r−1), E

r
k′
rb+r−1

(x′
rb+r−1)))

such that

(xre , x
′
re) = (Er

krb+r−1
(xrb+r−1), E

r
k′
rb+r−1

(x′
rb+r−1)),

the triplets ((xrb , x
′
rb
), (krb , k

′
rb
), (xre , x

′
re)) is called an r-round dependent-key

possible 2-polygons. Otherwise, it is an r-round dependent-key impossible 2-
polygons of E. Based on this, we redefine the related-tweakey impossible differ-
ential for tweakable block ciphers.

Definition 1 (Related-tweakey Impossible Differential). For a tweakable
block cipher E ∈ TBC(n, κ, t), if ((srb , s

′
rb
), (tk, tk′), (sre , s

′
re)) is an (re − rb)-

round dependent-tweakey impossible 2-polygons, where tk is the initial tweakey,
and ∀(srb , s′rb) ∈ ∆n

α, ∀(sre , s′re) ∈ ∆n
β, ∀(tk, tk′) ∈ ∆κ+t

δ , the triplet (α, β, δ) is
called an (re − rb)-round related-tweakey impossible differential.
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According to Definition 1, instead of describing the differential propagation,
we pay attention to the propagation of values with certain constraints in the
present paper. Specifically, refering to the automatic search model proposed
in [12], we give an autoamtic search model for the (re − rb)-round5 related-
tweakey impossible differentials by considering the propagation of states from
the rbth round to the reth round, which is shown in Algorithm 1.

Algorithm 1: The Model for related-tweakey impossible differentials
Input: E ∈ TBC(n, κ, t), rb, re
Output: The length of distinguisher and the values of input differentials

1 Generate Ω = {(α, β, δ)|α, β ∈ Fn
2 , δ ∈ Fκ+t

2 , (α, β, δ) ̸= (0, 0, 0)};
2 Define: distinguisher find = True;
3 while distinguisher find do
4 distinguisher find = False;
5 foreach (α, β, δ) ∈ Ω do

// Step 1: Describe the cipher E in CVC format
6 Declare all variables to be used;
7 Describe the propagation of (tk0, tk′0) → · · · → (tkre , tk

′
re);

8 Describe the propagation of (srb , s′rb) → · · · → (sre , s
′
re);

9 Add the constraints: srb ⊕ s′rb = α, sre ⊕ s′re = β, tk ⊕ tk = δ;
10 Add the statements “QUERY(FALSE);”

“COUNTEREXAMPLE;”;
// Step 2: Invoke the STP to solve the file

11 Start to solve the file;
12 if solver returns “Valid” then
13 Record the triplets (α, β, δ) and the round number (rb, re);
14 distinguisher find = True;
15 Break;

16 if distinuisher find then
17 The distinguisher from rb to re is found in Ω;
18 Let re = re + 1;
19 else
20 The distinguisher from rb to re is not found in Ω;

2.3 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is to find whether a set of variables,
which if plugged into a boolean expression, will result in “True”. Any boolean
expression can be converted to normal form and the conjunctive normal form
5 In the present paper, we use rb and re to represent the beginning and ending round,

respectively. With this method, we can adequately consider the influence of the
number of rounds on the state propagation and accurately locate the distinguisher’s
position, which is more convenient for constructing a key-recovery attacks.
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(CNF) is one of them. The CNF expression is a bunch of clauses consisting of
variables, ORs, and NOTs, all of which are then glued together with AND into
a full expression. SAT solver is merely a solver of huge boolean equations in
CNF form. It just gives the answer, if there is a set of input values that can
satisfy CNF expression, and what input values must be. There have been some
heuristic SAT solvers. Most support CNF files as the standard input format,
such as Cryptominisat [19].

The Satisfiability Modulo Theories (SMT) problem is an extension of the SAT
problem, in which CNF formulas are enriched by binary-valued functions over
a suitable set of binary and (or) non-binary variables. Many works searching
for the differential and linear characteristics are based on the SMT problem,
where STP6 is a common solver for SMT problems. STP supports the CVC
format and starts from an initial assignment for the literals, then builds a search
tree using systematic backtracking until all conflicting clauses are resolved. An
SMT problem is unsatisfiable if returning either an assignment of variables for a
satisfiable set of clauses or a predicate indicates. However, when invoking STP to
solve an SMT problem, the solver first interprets SMT instances in CVC format
into SAT instances with CNF and then determines its satisfiability.

3 The Optimized Automatic Search Model

By utilizing Algorithm 1 to investigate related-tweakey impossible differentials,
we observe that with an increase in the number of search rounds, the equation
system employed to represent the state propagation expands correspondingly.
This leads to an exponential escalation in both the runtime and memory require-
ments caused by the augmented amount of data acquired during the database
query process. To overcome these impediments and enhance the efficiency of Al-
gorithm 1, we propose an optimized automatic search model based on the LCA
technique in the section.

3.1 Application of LCA in Impossible Differential Cryptanalysis

Locality Constraint Analysis (LCA) is an analytical method that uses the proper-
ties of local variables to deduce global features. In the impossible differential anal-
ysis, if Ek

r1(∆
n
α) = Dk

r2(∆
n
β) is never satisfied under any k for E ∈ BC(n,m, l),

the differential (α, β) is called an impossible differential. However, according to
the security criterion for confusion and diffusion in the design of a block cipher,
with the exception of some positions in which contradictions may occur, the
value of the other positions almost reaches full diffusion after several rounds of
iteration, which means that the values in those positions can traverse the en-
tire space. Therefore, we can use the LCA technique to determine an impossible
differential by considering some of the positions instead of the full state.

From the perspective of theoretical analysis, suppose x = (x0, x1, · · · , xn−1)
with xi ∈ F2, if it satisfies xi = 0 for ∀xi ∈ x, i.e.

∨
0≤i≤n−1 xi = 0, we call that

6 https://github.com/stp/
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x is inactive. Otherwise, x is active. Then we can draw the following conclusion
according to the definition of related-tweakey impossible differential.

Theorem 1. Let E(x, tk) ∈ TBC(n, κ, t) be a tweakable block cipher and CP
be a tuple including the sets of possible contradictory positions that need to be
constrained in the search model. For any α, β ∈ Fn

2 , δ ∈ Fκ+t
2 \ {0}, if there exits

a set P ⊂ CP, such that

LCA :=
∨
i∈P

Ci(x, y, tk)⊕ Ci(x⊕ α, y ⊕ β, tk ⊕ δ)

is active for ∀x, y ∈ Fn
2 and ∀tk ∈ Fκ+t

2 , where Ci(x, y, tk) := Er1 [i](x, tk) ⊕
Dr2 [i](y, tk) and Dr(Er(x, tk), tk) = x. Then (α, β, δ) is an (r1 + r2)-round
related-tweakey impossible differential of E(x, tk).

Proof. According to Definition 1, if proving (α, β, δ) is an (r1+r2)-round related-
tweakey impossible differential for (α, β, δ) ̸= (0, 0, 0), we need to prove that

Er(x, tk)⊕ Er(x⊕ α, tk ⊕ δ) = β

does not hold for any x ∈ Fn
2 and tk ∈ Fκ+t

2 , where r = r1 + r2. Note that
Er(x, tk) = Er2(Er1(x, tk), tk), so the above equation is equivalent to

Er2(Er1(x⊕ α, tk ⊕ δ), tk ⊕ δ) = Er2(Er1(x, tk), tk)⊕ β

By composing Dr2(x, tk), we get that

Er1(x⊕ α, tk ⊕ δ) = Dr2(Er2(Er1(x, tk), tk)⊕ β, tk ⊕ δ)

Let y = Er2(Er1(x, tk), tk). Then Er1(x, tk) = Dr2(y, tk) and hence we have

Er1(x, tk)⊕ Er1(x⊕ α, tk ⊕ δ) = Dr2(y, tk)⊕Dr2(y ⊕ β, tk ⊕ δ) (1)

However, since LCA is active for P ⊆ CP, that is∨
i∈CP

Ci(x, y, tk)⊕ Ci(x⊕ α, y ⊕ β, tk ⊕ δ) ̸= 0

Thus, ∃i ∈ P such that for ∀x, y ∈ Fn
2 and ∀tk ∈ Fκ+t

2 ,

1 =Ci(x, y, tk)⊕ Ci(x⊕ α, y ⊕ β, tk ⊕ δ)

=Er1 [i](x, tk)⊕Dr2 [i](y, tk)⊕ Er1 [i](x⊕ α, tk ⊕ δ)⊕Dr2 [i](y ⊕ β, tk ⊕ δ)

This means that Equation (1) does not hold for any x, y ∈ Fn
2 , tk ∈ Fκ+t

2 . There-
fore, (α, β, δ) is an (r1 + r2)-round related-tweakey impossible differential of
E(x, tk).
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The idea of our approach. We use the “miss-in-the-middle” method to
find impossible differential distinguishers of block ciphers. In contrast, we weaken
the conditions of the intermediate constraints. As shown in Fig.1, we split an
(r1+ r2)-round impossible differential into an r1-round encryption and r2-round
decryption and only pay attention to the values of a few bits in the middle with
the LCA technique.

In particular, suppose that P = {i0, i1, · · · , im} is a set in which contradic-
tions may occur. Then, if the equation∨

i∈P

Er1(x, tk)[i]⊕ Er1(x
′, tk′)[i]⊕Dr2(y, tk)[i]⊕Dr2(y

′, tk′)[i] = 0

is never satisfied for ∀(x, x′) ∈ ∆n
α, ∀(y, y′) ∈ ∆n

β and ∀(tk, tk′) ∈ ∆κ+t
δ , the

triplet (α, β, δ) is an (r1+r2)-round related-tweakey impossible differential. How-
ever, it is worth noting that a differential triplet (α, β, δ) satisfying Theorem 1
is a related-tweakey impossible differential, not vice versa.

Er1

Er1

E2

E2

E1

E1

Dr2

Dr2

D2

D2

D1

D1

. . .

. . .

x

x′

tkr1tk2tk1

tk′
r1

tk′
2

tk′
1

. . .

. . .

y

y′

t̃kr2 t̃k2 t̃k1

t̃k
′

r2
t̃k

′

2
t̃k

′

1

G*�

1M+`vTi r1 `QmM/b .2+`vTi r2 `QmM/b

Fig. 1: The Optimization Scheme of Our Automatic Search Model

3.2 The Optimized Automatic Search Model for Related-tweakey
Impossible Differentials

Based on the preceding analysis, we present an optimized automatic search
model for related-tweakey impossible differentials, outlined in Algorithm 2.

Specifically, given a tweakable block cipher E ∈ TBC(n, κ, t), the deter-
mination of whether a triplet (α, β, δ) is an (re − rb)-round related-tweakey
impossible differential can be accomplished through three phases: search space
determination, statements generation, and STP invocation. Initially, the input
parameters are the starting round number rb, the termination round number re,
and rm where the constraints are added. For each triplet (α, β, δ) in the search
space Ω, whether (α, β, δ) constitutes an (re− rb)-round related-tweakey impos-
sible differential is transformed into the corresponding SMT problem using the
CVC language and solved by invocation of the STP solver. Finally, Algorithm
2 outputs the length of distinguishers and the corresponding input and output
differentials. Further details of Algorithm 2 are presented below.
Specification of the search space determination phase. The efficacy of
our automated search approach hinges predominantly on two factors, as demon-
strated in Lines 6 and 7 of Algorithm 2: the duration needed to complete a
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Algorithm 2: Optimized automatic search model using LCA technique
Input: E ∈ TBC(n, κ, t), rb, re, rm
Output: (α, β, δ), (rb, re, rm), and P

1 Generate Ω = {(α, β, δ)|α, β ∈ Fn
2 , δ ∈ Fκ+t

2 , (α, β, δ) ̸= (0, 0, 0)};
2 Generate a constraint set CP ;
3 Define: distinguisher find = True;
4 while distinguisher find do
5 distinguisher find = False;
6 foreach (α, β, δ) ∈ Ω do
7 foreach P ⊆ CP do

// Step 1: Describe the cipher E in CVC format
8 Declare all variables to be used;
9 Describe the propagation of (tk0, tk′0) → · · · → (tkre , tk

′
re);

10 Describe the propagation of (srb , s′rb) → · · · → (srm , s′rm) ;
11 Describe the propagation of (ŝrm , ŝ′rm) → · · · → (sre , s

′
re) ;

// Constrain the input and output difference
12 Add the constraints: srb ⊕ s′rb = α, sre ⊕ s′re = β, tk⊕ tk′ = δ.;

// Locality Constraint Analysis
13 foreach i ∈ P do
14 Add the constraints: srm [i]⊕ s′rm [i]⊕ ŝrm [i]⊕ ŝ′rm [i] = 0;
15 Add the statements: “QUERY(FALSE);”
16 “COUNTEREXAMPLE;” ;

// Step 2: Invoke the STP to solve the file
17 Start to solve the file;
18 if solver returns “Valid” then
19 Record the triplets (α, β, δ), the round (rb, re, rm), and

the set of positions P;
20 distinguisher find = True;
21 Break ; // Break out of all for loops

22 if distinuisher find then
23 The distinguisher from rb to re is found in Ω;
24 Let re = re + 1;
25 else
26 The distinguisher from rb to re is not found in Ω;

search and the magnitude of the search space. As the search time is restricted
by the size of the cipher and the hardware used, enhancing search efficiency can
be challenging under limited resources. Consequently, selecting the search space
judiciously so that a minimal number of elements reflect a greater number of
differential properties will be pivotal in increasing search efficiency.

The choice of Ω. The utilization of linear tweak schedules and XOR opera-
tions for the purpose of mixing subtweakeys with internal states, as observed in
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numerous state-of-the-art tweakable block ciphers, can inadvertently benefit po-
tential attackers. Specifically, under the related-tweakey setting, an attacker can
manipulate certain state values by XORing the same difference of subtweakeys
at corresponding positions, thereby nullifying the difference of internal states.
This, in turn, enables the attacker to pass one round function without incurring
any additional cost, as depicted in Fig.2.

. . . f
∆i 0 0

f
∆i+1 ∆i+2

. . .

. . . h

g

∆
′

i

∆
′

i

h

g

∆
′

i+1

∆
′

i+1

. . .

g

∆
′

i+2

∆i ∆i+1 ∆
′′

i+2

Fig. 2: The differential model under the related-tweakey setting4.

Furthermore, Sasaki and Todo [31] have observed that all existing ciphers
have the longest impossible differentials with only one active word in both input
and output. In light of this, it is common practice to set the input and output
difference to zero and only introduce differences to the tweakeys, that is, Ω =
{(α, β, δ)|α = 0, β = 0, δ ∈ Fκ+t

2 \ {0}}. The specific choice of δ depends on the
cipher’s structure, with one bit being active for bit-oriented encryption and one
cell being active for cell-oriented encryption.

The choice of rm and CP. The parameters rm and CP jointly determine the
locations of the contradictions. Based on empirical observations and experimen-
tal tests, we observe that for a distinguisher of odd length, the contradictions
typically manifest in the middle round; whereas for even length, they appear
in the middle two rounds. As such, we derive the expression rm = ⌈ rb+re

2 ⌉ if
(re − rb) is odd, and rm ∈ { rb+re

2 , rb+re
2 + 1} if (re − rb) is even. The selection

of the constrained position tuple CP is also informed by empirical evidence and
experimental results.

Especially, for ARX-based block ciphers, we apply a constraint tuple CP =
{[i]|0 ≤ i ≤ (n − 1)}, where we constrain one bit of the intermediate state in
each search. To verify the effectiveness of this approach, we utilized Algorithm 2
on SIMON and SPECK [2], and the results are presented in Table 1, where only one
branch is constrained to define CP for ciphers based on the Feistel structure. For
SPN-based block ciphers, we consider an S-box as a constraint unit in our mod-
ified model, i.e., CP = {Si|0 ≤ i ≤ (m− 1)}, where Si = {i|0 ≤ i ≤ (m− 1)} for
an m-bit S-box. Using this constraint, we applied Algorithm 2 to SKINNY, QARMA,
and CRAFT. Notably, we define CP = {{S4i, S4i+1, S4i+2, S4i+3}|0 ≤ i ≤ 3} when
applying Algorithm 2 to Joltik-BC, since the matrix used in its MixNibbles
operation is an MDS matrix.

4 This is a TWEAKEY framework proposed by Jean et al. [13] to bridge the gap between
key and tweak inputs in the design of tweakable block ciphers, which can be viewed
as a straightforward generalization of key-alternating ciphers. In the model, f is the
round function and h represents the tweakey update function.
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Table 1: The experimental results for SIMON32/64 and SPECK32/64

Ciphers Input Difference Output Difference DR ConR ConPs

SIMON32/64
0000 0000 0000 0000

1000 0000 0000 0000

0000 0001 0000 0000

0000 0000 0000 0000
11 6 24

SPECK32/64
0000 0000 0000 1000

0000 0000 0000 0000

1000 0000 0000 0000

1000 0000 0000 0010
6 2 5

Specification of statements generation phase. The statements generation
phase is described in lines 8-16 of Algorithm 2. A detailed account of each step
is then presented in the following.
− Line 8. Declare the variables to describe the propagation of round func-

tions and tweakey schedules, including the variables that represent the in-
put 2-polygon and output 2-polygons, tweakey 2-polygons, and some other
intermediate variables.

− Line 9-11. According to the propagation rules for Copy, Xor, Modular
Addition, Binary Matrix Multiplication and S-box given in [12], con-
struct the propagation from the input 2-polygons (srb , s

′
rb
) to the output 2-

polygons (srm , s′rm) with the aid of the tweakey 2-polygons and intermediate
variables in CVC format. Especially, the tweakey 2-polygons is constrained
according to the tweakey schedule.

− Line 12. Generate the statements in CVC format such that the input and
output 2-polygons satisfies that srb ⊕ s′rb = α and sre ⊕ s′re = β, while the
tweakey 2-polygons satisfies that tkrb ⊕ tk′rb = δ.

− Line 13-14. Generate the statements in CVC format such that the output
2-polygon of the first (rm − rb) rounds and the input 2-polygon of the last
(re− rm) rounds satisfies that srm [i]⊕ s′rm [i]⊕ ŝrm [i]⊕ ŝ′rm [i] = 0 for ∀i ∈ P.

− Line 15-16. Add the statements “QUERY(FALSE);” and “COUNTEREX-
AMPLE” to the statements system, which is a common predicate in STP to
determine whether an SMT problem has a solution.

Specification of the STP invocation phase. We invoke STP to tackle the
file, which comprises a system of statements. If the outcome of STP is “Valid,”
this implies that no solution exists for the SMT problem. As such, the corre-
sponding triplets (α, β, δ) represent an (re − rb)-round related-tweakey impossi-
ble differential, where rm and P ascertain the contradictory positions. Alterna-
tively, if STP returns “Invalid” along with a collection of solutions, the triplets
(α, β, δ) do not denote an (re−rb)-round related-tweakey impossible differential,
and these solutions constitute the corresponding differential characteristic from
round rb to round re for E.

4 Applications from Cryptanalysis Aspect

In this section, we apply our automatic search model to Joltik-BC, SKINNY,
QARMA, and CRAFT from the cryptanalysis aspect. Especially, when searching
for related-tweakey impossible differentials, only the tweakey is modified while
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keeping the input and output differences at zero, that is, Ω = {(0, 0, δ)|δ ∈ Fκ+t
2 \

{0}}, where κ and t are constants. Consequently, by exploiting the relationship
between the tweakey and the state of a cipher, an impossible differential can be
derived for the (r+2)-round if a r-round related-tweakey impossible differential
is found within the search space Ω. Furthermore, ∆in and ∆out denote the input
and output difference of the operation AddRoundTweakey, respectively.

4.1 Application to Joltik-BC

Joltik-BC is an iterative substitution-permutation network that transforms the
initial plaintext through a series of round functions (that depend on the key
and the tweak) to a ciphertext. The cipher exists in two variations, namely
Joltik-BC-128, with a total key and tweak size of 128 bits, and Joltik-BC-192,
with a combined key and tweak size of 192 bits. Additional information regard-
ing Joltik-BC can be found in [14]. Notably, the construction of Joltik-BC
is based on the Superposition TWEAKEY design [13], with the tweakey schedule
satisfying Proposition 1. This property allows for greater differential properties
when assessing differential propagation.

Proposition 1 (Cancellation of the Tweak Differences [14]). Cancella-
tion of differences (in general as the key schedule is linear) in the chosen nibble
of TK-p cannot occur more than (p − 1) times. For TK-2 this means that the
accumulative difference coming from the subtweakeys can be canceled only once
by XOR of the subtweakeys. For TK-3, this can happen twice.

Previous Cryptanalysis. To the best of our knowledge, the most extensive
distinguisher discovered for the block cipher Joltik-BC-128 is a 6-round related-
tweak impossible differential, which was proposed in [36]. This particular impos-
sible differential exhibits two active nibbles for both input and output differ-
ences. For Joltik-BC-192, no public impossible differential has been identified,
apart from a meet-in-the-middle distinguisher that spans 7 rounds, which was
constructed in [20].

List of 6-Round Related-tweakey Impossible Differentials for Joltik-
BC-128. By introducing the difference to TKr

1 and TKr
2 in a single nibble, we

applied Algorithm 1 to Joltik-BC-128 and discovered a 6-round related-tweakey
impossible differential with a time of 4.43 seconds. To confirm the absence of a
7-round impossible differential in the search space, we conducted a verification
process by traversing the entire search space, which took approximately 23.4
hours. Based on Proposition 1, the search results can be classified into three
cases. The corresponding values are presented in Table 2.

Case 1. The cancellation occurs during the second round of the distinguisher.
Specifically, this cancellation is characterized by ∆in = △TKr

1 ⊕ △TKr
2 ,

∆out = △TKr+6
1 ⊕△TKr+6

2 , and △TKr
1 [i] ⊕KS1(△TKr

2 [i], 2) = 0, subject
to the constraint that △TKr

1 [i] ̸= △TKr
2 [i] ̸= 0, where i ∈ {0, 1, · · · , 15}.
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Table 2: The 6-round related-tweakey impossible differentials for Joltik-BC-128

Cases (△TKr
1 [i],△TKr

2 [i]) Index

Case 1
(1, 9),(2, 1),(3, 8),(4, 2),(5, B),(6, 3),(7, A),(8, 4)
(9, D),(A, 5),(B,C),(C, 6),(D,F ),(E, 7),(F,E)

i ∈ {0, 1, 2, · · · , 15}

Case 2
(1, 7),(2, E),(3, 9),(4, F ),(5, 8),(6, 1),(7, 6),(8, D)

(9, A),(A, 3),(B, 4),(C, 2),(D, 5),(E,C),(F,B)
i ∈ {0, 1, 2, · · · , 15}

Case 3 (9, 3),(D, 6) i ∈ {0, 2, 4, · · · , 14}

Case 2. The cancellation occurs during the fifth round of the distinguisher. At
this point, the input difference is denoted by ∆in = △TKr

1 ⊕△TKr
2 , and the

output difference is denoted by ∆out = △TKr+6
1 ⊕△TKr+6

2 . Additionally, it
holds that △TKr

1 [i]⊕KS5(△TKr
2 [i], 2) = 0, where △TKr

1 [i] ̸= △TKr
2 [i] ̸= 0

for i ∈ {0, 1, · · · , 15}.
Case 3. The distinguisher is not subject to cancellation. However, if the initial
difference of the tweakey satisfies that (△TKr

1 [i],△TKr
2 [i]) ∈ {(9, 3), (D, 6)}

for i ∈ {0, 2, 4, · · · , 14}, then the input difference ∆in = △TKr
1 ⊕ △TKr

2

cannot propagate to the output difference ∆out = △TKr+6
1 ⊕△TKr+6

2 after
6-round encryption.

List of 7-Round Related-tweakey Impossible Differentials for Joltik-
BC-192. By introducing differences to the same nibble of TKr

1 , TKr
2 , and TKr

3 ,
respectively, a 7-round related-tweakey impossible differential is obtained with
a time of 2403.67 seconds. It required approximately 25 days7 to verify the non-
existence of an 8-round impossible differential in the search space. As Proposition
1 suggests, the tweakey differences can be canceled twice. The search results can
be categorized into the following five cases, as shown in Table 3.

Case 1. The cancellation occurs in both the second round and the third round
of the 7-round distinguisher. Specifically, if the difference between the tweakeys
satisfies the conditions that △TKr

1 [i]⊕KS1(△TKr
2 [i], 2)⊕KS1(△TKr

3 [i], 4) =
0 and △TKr

1 [i]⊕KS2(△TKr
2 [i], 2)⊕KS2(△TKr

3 [i], 4) = 0, with △TKr
1 [i] ̸=

△TKr
2 [i] ̸= △TKr

3 [i] ̸= 0 for i ∈ {0, 1, · · · , 15}, then a 7-round related-
tweakey impossible differential for Joltik-BC-192 exists. The corresponding
input and output differences are denoted by ∆in = △TKr

1 ⊕△TKr
2 ⊕△TKr

3

and ∆out = △TKr+7
1 ⊕△TKr+7

2 ⊕△TKr+7
3 .

Case 2. The cancellation phenomenon is observed in the final two rounds of
the distinguisher. Specifically, for i ∈ {0, 1, · · · , 15}, if the difference of tweakey
satisfies the conditions that △TKr

1 [i]⊕KS5(△TKr
2 [i], 2)⊕△KS5(△TKr

3 , 4) =
0 and △TKr

1 [i]⊕KS6(△TKr
2 [i], 2)⊕KS6(△TKr

3 , 4) = 0, where △TKr
1 [i] ̸=

△TKr
2 [i] ̸= △TKr

3 [i] ̸= 0, then a 7-round related-tweakey impossible differ-
ential for Joltik-BC-192 exists. The input difference ∆in is given by ∆in =
△TKr

1 ⊕△TKr
2 ⊕△TKr

3 , and the output difference ∆out is given by ∆out =
△TKr+7

1 ⊕△TKr+7
2 ⊕△TKr+7

3 .
7 The size of the search space is about (16 ∗ 15)3 ≈ 223.7

13



Table 3: The 7-round related-tweakey impossible differentials for Joltik-BC-192

Cases (△TKr
1 [i],△TKr

2 [i],△TKr
3 [i]) Index

Case 1

(1, 4, F ),(2, 8, D),(3, C, 2),(4, 3, 9),(5, 7, 6)
(6, B, 4),(7, F,B),(8, 6, 1),(9, 2, E),(A,E,C)

(B,A, 3),(C, 5, 8),(D, 1, 7),(E,D, 5),(F, 9, A)

i ∈ {0, 1, 2, · · · , 15}

Case 2

(1, D, 3),(2, 9, 6),(3, 4, 5),(4, 1, C),(5, C, F )

(6, 8, A),(7, 5, 9),(8, 2, B),(9, F, 8),(A,B,D)

(B, 6, E),(C, 3, 7),(D,E, 4),(E,A, 1),(F, 7, 2)
i ∈ {0, 1, 2, · · · , 15}

Case 3

(1, 3, 5),(2, 6, A),(3, 5, F ),(4, C, 7),(5, F, 2)
(6, A,D),(7, 9, 8),(8, B,E),(9, 8, B),(A,D, 4)

(B,E, 1),(C, 7, 9),(D, 4, C),(E, 1, 3),(F, 2, 6)
i ∈ {0, 1, 2, · · · , 15}

Case 4 (1, C, 9),(4, 6, F ),(F, 8, E),(F, 6, 8) i ∈ {0, 2, 4, · · · , 14}

Case 5 (3, 6, 7),(4, 9, C),(D, 6, D),(F,A, 2) i ∈ {1, 3, 5, · · · , 15}

Case 3. The cancellation phenomenon is observed in the second and sixth
rounds of the distinguisher. Specifically, for i ∈ {0, 1, · · · , 15}, if the differ-
ence between the two tweakeys satisfies that △TKr

1 [i] ⊕KS1(△TKr
2 [i], 2) ⊕

KS1(△TKr
3 , 4) = 0 and △TKr

1 [i]⊕KS6(△TKr
2 [i], 2)⊕△KS6(△TKr

3 , 4) = 0,
with △TKr

1 [i] ̸= △TKr
2 [i] ̸= △TKr

3 [i] ̸= 0, then a 7-round related-tweakey
impossible differential exists for the Joltik-BC-192, where ∆in = △TKr

1 ⊕
△TKr

2 ⊕△TKr
3 and ∆out = △TKr+7

1 ⊕△TKr+7
2 ⊕△TKr+7

3 .
Case 4. The cancellation occurs in the sixth round. Specifically, the input dif-
ference ∆in = △TKr

1⊕△TKr
2⊕△TKr

3 cannot propagate to the output differ-
ence ∆out = △TKr+7

1 ⊕△TKr+7
2 △TKr+7

3 after 7-round encryption when the
initial difference of the tweakey satisfies that (△TKr

1 [i],△TKr
2 [i],△TKr

3 [i]) ∈
{(1, C, 9), (4, 6, F ), (F, 8, E), (F, 6, 8)} for i ∈ {0, 2, 4, · · · , 14}, where we find
that △TKr

1 [i]⊕KS6(△TKr
2 [i], 2)⊕△KS6(△TKr

3 , 4) = 0.
Case 5. The cancellation occurs in the second round. Specifically, the input
difference ∆in = △TKr

1⊕△TKr
2⊕△TKr

3 cannot propagate to the output dif-
ference ∆out = △TKr+7

1 ⊕△TKr+7
2 ⊕△TKr+7

3 after 7-round encryption if the
input differences of tweakeys satisfies that (△TKr

1 [i],△TKr
2 [i],△TKr

3 [i]) ∈
{(3, 6, 7), (4, 9, C), (D, 6, D), (F,A, 2)} for i ∈ {1, 3, 5, · · · , 15}, where we find
that △TKr

1 [i]⊕KS1(△TKr
2 [i], 2)⊕KS1(△TKr

3 , 4) = 0.

4.2 Application to SKINNY

SKINNY is a family of lightweight tweakable block ciphers designed to have the
smallest hardware footprint, which was proposed at CRYPTO 2016 by Beierle
et al. [3]. It has 6 main variants for SKINNY. Particularly, SKINNY-n-t is a block
cipher that operates on n-bit blocks with t-bit tweakey, where n = 64 or 128
and t = n, 2n or 3n. More details can be found in [3]. This section will apply
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our model in Algorithm 2 to search the related-tweakey impossible differential
for SKINNY.

Previous Cryptanalysis. To the best of our knowledge, the longest related-
tweakey impossible differentials obtained assuming a single active nibble are
12-, 14-, and 16-round for SKINNY-64-64, SKINNY-64-128, and SKINNY-64-192,
respectively, as reported in [25]. Although Sadeghi et al. [30] claimed that they
found 13- and 15-round related-tweakey impossible differential for SKINNY-64-64
and SKINNY-64-128, the length of distinguishers in the mode of (0, 0, δ) was the
same as our results. In their results, the extra round was not eligible in our
opinion because the input difference of the extra round is not certain.

The 12-Round Related-tweakey Impossible Differentials for SKINNY-64
-64. By introducing the difference to one nibble of TKr

1 , we apply Algorithm 2 to
find a 10-round related-tweakey impossible differential (including 10 SubCells
operations) with 817.69 seconds. It took about 1.01 hours to prove that there is
no 11-round impossible differential in the search space. According to the rela-
tionship between the tweakey schedule and the round function, we can further
extend the 10-round related-tweakey impossible differentials to the 12-round
related-tweakey impossible differentials in the mode of (α, β, δ), which is shown
in Table 4.

Table 4: The related-tweakey impossible differentials for SKINNY-64-64

Num. ∆in = ∆TKr
1 ∆out ConR ConPs

RTK01 a000 0000 0000 0000 0000 000a 0000 0000

7

S8

RTK02 0a00 0000 0000 0000 000a 0000 0000 0000 S4,10,12

RTK03 00a0 0000 0000 0000 0a00 0000 0000 0000 S8,9

RTK04 000a 0000 0000 0000 0000 00a0 0000 0000 S7

RTK05 0000 0a00 0000 0000 0000 a000 0000 0000 S9,15

RTK06 0000 00a0 0000 0000 00a0 0000 0000 0000 S9,13

RTK07 0000 000a 0000 0000 0000 0a00 0000 0000 S5,13

The 14-Round Related-tweakey Impossible Differentials for SKINNY-64
-128. By introducing differences to the same nibble of TKr

1 and TKr
2 , we have

discovered a 12-round related-tweakey impossible differential with a duration of
5.96 hours using Algorithm 2. It took approximately 26.89 hours to establish
the absence of a 13-round impossible differential in the search space. Based on
the relationship between the tweakey schedule and the round function, we have
extended the 12-round related-tweakey impossible differentials in the (0, 0, δ)
mode to 14-round related-tweakey impossible differentials in the (α, β, δ) mode.
Here, ∆in = △TKr

1⊕△TKr
2 , △TKr

1⊕L2(△TKr
2) = 0, and ∆out = △TKr+14

1 ⊕
△TKr+14

2 . The values are presented in Table 5.

The 16-Round Related-tweakey Impossible Differentials for SKINNY-64
-192. By introducing the differences to the same nibble of TKr

1 , TKr
2 , and

15



Table 5: The related-tweakey impossible differentials for SKINNY-64-128

i (∆TKr
1 [i],∆TKr

2 [i]) ∆in ∆out ConR ConPs

0

(1, 8),(2, 1),(3, 9)
(4, 2),(5, A),(6, 3)
(7, B),(8, C),(9, 4)
(A,D),(B, 5),(C,E)

(D, 6),(E,F ),(F, 7)

a000 0000 0000 0000 0b00 0000 0000 0000

8

S4,8,12

1 0a00 0000 0000 0000 0000 000b 0000 0000 S9,12

2 00a0 0000 0000 0000 b000 0000 0000 0000 S14,15

3 000a 0000 0000 0000 0000 0b00 0000 0000 S1,7,14,15

4 0000 a000 0000 0000 00b0 0000 0000 0000 S11,13,14

5 0000 0a00 0000 0000 0000 00b0 0000 0000 S3,8,9

6 0000 00a0 0000 0000 0000 b000 0000 0000 S5,9,12

7 0000 000a 0000 0000 000b 0000 0000 0000 S0,5,13

TKr
3 , respectively, we applied our tool to discover the 14-round related-tweakey

impossible differential with 6.9 days in the search space. Moreover, we extended
the 14-round related-tweakey impossible differentials in the mode of (0, 0, δ) to
the 16-round related-tweakey impossible differentials in the mode of (α, β, δ),
where ∆in = △TKr

1 ⊕ △TKr
2 ⊕ △TKr

3 and ∆out = △TKr+16
1 ⊕ △TKr+16

2 ⊕
△TKr+16

2 . Due to the cancellation among the differences of the tweakeys, the
search results can be divided into two cases. Table 6 presents the experimental
outcomes for ∆in = (a000, 0000, 0000, 0000) and ∆out = (b000, 0000, 0000, 0000).

Case 1.The values of (△TKr
1 ,△TKr

2 ,△TKr
3) are subject to the constraint

that △TKr
1 [i]⊕L1

2(△TKr
2 [i])⊕L1

3(△TKr
3 [i]) = 0 and △TKr

1 [i]⊕L2
2(△TKr

2 [i])
⊕ L2

3(△TKr
3 [i]) = 0, where i ∈ {0, · · · , 7}. As a result, no differences are

introduced for the first six rounds. The propagation of differentials in this
scenario is illustrated in Fig.3 in Appendix A.
Case 2.The tuple of values (△TKr

1 ,△TKr
2 ,△TKr

3) is constrained such that
△TKr

1 [i]⊕ L1
1(△TKr

2 [i])⊕ L1
1(△TKr

3 [i]) = 0 and △TKr
1 [i]⊕ L7

2(△TKr
2 [i])⊕

L7
3(△TKr

3 [i]) = 0 for i ∈ {0, · · · , 7}. The proof of this assertion resembles that
of Case 1, where no difference is introduced to the first and last four rounds.

Table 6: The related-tweakey impossible differentials for SKINNY-64-192

Case (∆TKr
1 [0],∆TKr

2 [0],∆TKr
3 [0]) ConR ConPs

Case 1
(1, 7, C),(2, F, 8),(3, 8, 4),(4, E, 1),(5, 9, D)

(6, 1, 9),(7, 6, 5),(8, 9, E),(9, C, 2),(A, 4, 6)

(B, 3, A),(C, 5, F ),(D, 2, 3),(E,A, 7),(F,D,B)

9 S14

Case 2
(1, 2, B),(2, 4, 7),(3, 6, C),(4, 9, F ),(5, B, 4)

(6, D, 8),(7, F, 3),(8, 1, 5),(9, 3, E),(A, 5, 2)

(B, 7, 9),(C, 8, A),(D,A, 1),(E,C,D),(F,E, 6)

9 S8,9

4.3 Application to QARMA

The QARMA block cipher, designed by Avanzi at ToSC’17, is a lightweight tweak-
able block cipher with three-round Even-Mansour construction. There are two
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variants of QARMA that support block sizes of n = 64 and n = 128 bits, denoted
by QARMA-64 and QARMA-128, respectively. The tweak is also n bits long and the
key is always 2n bits long. In the present paper, we pay attention to QARMA-64.

Previous Cryptanalysis. Since the proposal of the tweakable block cipher
QARMA, various attacks have been employed to assess its security, such as meet-in-
the-middle attacks [22], impossible differential attacks [35,36,26] and statistical
saturation attacks [21]. However, the longest related-tweak impossible differential
of QARMA is 7-round proposed by Zong et al. [36] by considering the differential
relationship between the tweak and a single-tweak impossible differential.

List of 7-round Related-tweakey Impossile Differentials for QARMA-64.
By modifying a single nibble in the initial tweak, we apply Algorithm 2 to derive
several related-tweakey impossible differentials for QARMA-64, ranging from the
7th to the 11th round, some of which were not previously discovered. By taking
into account the impact of the tweak update function, we further obtain some
7-round related-tweakey impossible differentials for QARMA-64, which is covering
rounds from the 6th to the 12th, as tabulated in Table 7. We take the Num.RT03
in Table 7 as an example to verify the correctness with the “miss-in-the-middle”
method, which is shown in Fig.4 of Appendix A.

Table 7: The 7-round related-tweak impossible differentials for QARMA-64

Num. ∆in = ∆T ∆out ConR ConPs

RT01 a000 0000 0000 0000 0000 0000 0000 00b0

9

S1

RT02 000a 0000 0000 0000 0000 c000 0000 0000 S13

RT03 0000 0a00 0000 0000 0c00 0000 0000 0000 S14

RT04 0000 0000 00a0 0000 0000 0000 0000 b000 S1

RT05 0000 0000 000a 0000 0000 00c0 0000 0000 S10

RT06 0000 0000 0000 0a00 0000 0000 b000 0000 S5

a ∈ F24 \ {0}, b = ω(a) and c = ω2(a), where ω = ω−1.

4.4 Application to CRAFT

CRAFT is a lightweight tweakable block cipher introduced by Beierle et al. [4]
at FSE 2019, which follows the SPN design with 32 rounds. The main goal of
CRAFT was to efficiently protect its implementations against Differential Fault
Analysis (DFA) attacks. It consists of a 64-bit block, a 128-bit key K and 64-bit
tweak T , where the 128-bit key is split into two 64-bit keys K0 and K1. Using
the permutation Q on the tweak, four 64-bit tweakeys TK0, TK1, TK2 and TK3

are derived from the tweak T and keys K0, K1. Then in each round, without
any key update, the tweakey TKi mode 4 is XORed to the cipher state. More
information can be obtained in [4].

Previous Cryptanalysis. In the specification file, Hadipour et al. [4] con-
ducted an extensive analysis of the security of CRAFT. Specifically, they identified
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the 13-round impossible differential under the single-key setting as the longest
one in the analysis until now. Subsequently, many studies have been conducted
to evaluate the security of round-reduced CRAFT under both the single-key mode
and related-key mode. However, the majority of research has been centered on
differential attacks, as documented in [11,8,10]. Furthermore, Hadipour et al. [11]
have reported a 14-round zero-correlation linear distinguisher under the related-
tweak setting in previous research, in addition to some probability-type attacks.

List of 12-round Related-tweak Impossible Differentials for CRAFT.
When searching the related-tweak impossible differentials for CRAFT, we activate
a single nibble of the initial tweak while other differences remain inactive. Specifi-
cally, the active set is denoted as Ω = {(0, 0, δ)|δ ∈ Fκ+t

2 \{0}}, △K0 = △K1 = 0,
and △T = δ. By utilizing Algorithm 2, we discovered several 10-round related-
tweak impossible differentials for the first time in a total time of 891.34 seconds,
which also can be extended to 12-round, as shown in Table 8. We take the
Num.RT01 in Table 7 as an example to verify the correctness with the “miss-in-
the-middle” method, which is shown in Fig.5 of Appendix A. Additionally, we
have proven that there are no 13-round related-tweak impossible differentials in
the search space, which required a total time of 4698.06 seconds..

Table 8: The 12-round related-tweak impossible differentials for CRAFT

Num ∆in = ∆T ∆out ConR ConPs

RT01 0a00 0000 0000 0000 0a00 0000 0000 0000

7
S6

RT02 0000 0a00 0000 0000 0000 0a00 0000 0000 S10

RT03 0000 0000 a000 0000 0000 0000 a000 0000 S10

List of 15-round Related-tweakey Impossible Differentials for CRAFT.
By setting the input and output differences to be zero and modify only one
single nibble of K0, K1, and T , i.e. Ω = {(0, 0, δ)|δ ∈ Ft

2 \ {0}} and △K0 =
△K1 = △T = δ, we apply Algorithm 2 to derive the 13-round related-tweakey
impossible differentials for CRAFT for the first time within 3263.46 seconds, which
also can be extended to the 15-round. The search results are summarized in
Table 9. Additionally, we have proven that there are no 16-round related-tweakey
impossible differentials within the search space, with a total search time of 7040.3
seconds.

Table 9: The 15-round related-tweakey impossible differentials for CRAFT

(∆T,∆K0,∆K1) ∆in ∆out ConR ConPs

0000 0000 000a 0000

0000 0000 000a 0000

0000 0000 000a 0000

a00a 0000 a00a 0000 0000 0000 a00a 0000 9
S4

S10
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5 Evaluation of the Automatic Search Models

The LCA technique is an analysis method explicates the complete attributes by
way of partial features. Consequently, compared with traditional search methods,
utilizing the LCA technique can alleviate the interdependence among variables.
Subsequently, we will present an assessment of Algorithm 2 compared with Al-
gorithm 1 based on the search results.

Improving the Search Efficiency for Long Trials. The utilization of the LCA
technique may enhance search efficiency and significantly reduce time costs, es-
pecially when exploring distinguishers with long trails. An illustrative example
is provided in Table 10, which presents the computational time required for
Algorithm 1 and Algorithm 2 to ascertain the existence of a related-tweakey
impossible differential for CRAFT. The experimental evaluation was performed
on the platform: Inter(R) Core i7-9700 CPU@3.00GHz×8, 8GB RAM, 64-bit
Ubuntu VMware. As evidenced by Table 10, when the number of rounds is lim-
ited, Algorithm 2 must sequentially traverse the constraint set and intermediate
rounds, resulting in a total time cost comparable to Algorithm 1. However, as
the number of rounds increases, the time complexity of Algorithm 1 escalates
nearly exponentially, whereas Algorithm 2 maintains a relatively constant and
gradual growth trend.

Table 10: The time for the related-tweakey impossible differentials of CRAFT

Scenario DR Alg.1 Alg.2 Results

CRAFT-RT
11 425.18s 330.06s find 11-round RTID.
12 1752.21s 1466.48s find 12-round RTID.
13 84102.11s 1998.46s find no 13-round RTID.

CRAFT-RTK
14 3528.08s 2902.99s find 14-round RTKID.
15 4424.64s 3263.46s find 15-round RTKID.
16 −− 7040.30s find no 16-round RTKID.

RT: Related-tweak impossible differential. RTK: Related-tweakey impossible differ-
ential. “−−”: Terminating the program because it took too long to run.

Additionally, Algorithm 2 exhibits considerably superior performance to Al-
gorithm 1 when applied to the cipher SKINNY, as indicated in Table 11. However,
it should be noted that Algorithm 2 does not consistently outperform Algorithm
1. Specifically, in scenarios where the length of the distinguisher is relatively
short for QARMA and Joltik-BC, Algorithm 2 provides a lesser advantage over
Algorithm 1 when searching for distinguishers. For instance, in the case of QARMA,
Algorithm 1 required 1631.37 seconds to establish the absence of 8-round related-
tweak impossible differentials, whereas Algorithm 2 necessitated 1624.66 seconds.
In this particular case, the search efficiency was comparable. However, the dis-
crepancy in efficiency becomes evident for Joltik-BC-128, where Algorithm 1
required 84447.57 seconds to prove the nonexistence of 7-round related-tweakey
impossible differentials, whereas Algorithm 2 demanded 476278.89 seconds.

19



Table 11: The time for related-tweakey impossible differentials of SKINNY

(n, t) DR
Alg.1 Alg.2

Results
Single Total Single Total

(64, 64)
12 26950s – 6.61s 817.69s find 12-round RTKID.
13 −− −− 16.23s 3643.37s find no 13-round RTKID.

(64, 128)
14 104.17s −− 13.01s 21439.97s find 14-round RTKID.
15 −− −− 31.00s 96791.32s find no 15-round RTKID.

(64, 192)

14 30.71s 1483.65s 15.34s 732.44s find 14-round RTKID.
15 32.36s 1727.89s 34.00s† 1744.75s find 15-round RTKID.
16 258709s −− 20.24s† 599280s find 16-round RTKID.

Single: The time it takes to complete a search, not the average time. Total: The
total time it took to find the first distinguisher while traversing the search space.
“†”: In this case, we choose the middle round as rm for odd-numbered rounds, while
middle two rounds for even-numbered rounds. So this time is reasonable.

Determining the Contradictory Positions. In cryptanalysis, the “miss-in-
the-middle” method has traditionally been employed to manually deduce the
contradictory positions of an impossible differential. However, the process be-
comes challenging if the length of a distinguisher is too long or the cipher with
sound diffusions. Therefore, there is a need for automatic tools to assist in deter-
mining the locations of contradictions. To this end, similar to the one used for
verifying impossible differential distinguishers in [7] and [12], the LCA technique
can be also used to derive the contradictory positions. Specifically, if there ex-
ists an impossible differential under the constraint set P, then the contradictory
occurs in the positions of P. Here, we provide an example of SIMON128, which is
obtained by Algorithm 2.

Example 1. The differential (0x0000000000000000, 0x8000000000000000) ↛ (0x
4000000000000000, 0x0000000000000000) is a 19-round impossible differential for
SIMON128, where the contradictory occurs in the second bit of the 11-th round.

6 Conclusion

This paper evaluates the security of tweakable block ciphers against the related-
tweakey impossible differential analysis. The main approach involves construct-
ing a differential propagation system using the SAT method, which describes
the propagation of corresponding states under specific constraints and deter-
mines whether the transition is invalid. To achieve this goal, an automatic search
model is proposed for related-tweakey impossible differentials based on the SMT
problem. Subsequently, this method has been employed to identify the related-
tweakey impossible differentials for QARMA-64 and Joltik-BC, respectively.

Furthermore, the paper introduces a novel analytical strategy known as Lo-
cality Constraint Analysis (LCA), which aims to improve the efficiency of search-
ing the distinguisher with long trails or ciphers with large size. A generalized
automatic search model is constructed based on LCA, and the proposed method
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is applied to various ciphers such as SIMON, SPECK, QARMA, CRAFT, Joltik-BC,
and SKINNY. Based on the search results, it is demonstrated that introducing the
LCA technique to impossible differential cryptanalysis significantly improves the
search efficiency and provides much more convenience for deriving the locations
of the contradictory positions. Additionally, the LCA technique also can be used
to searching the tranditional impossible differential, even though no specific ex-
ample is provided in this paper.
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Fig. 3: The 16-round Related-tweakey impossible differential for SKINNY-64-192.
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Fig. 4: The 7-round related-tweak impossible differential for QARMA-64
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Fig. 5: The 12-round Related-tweak impossible differential for CRAFT.
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