
ACE-HoT: Accelerating an Extreme Amount of
Symmetric Cipher Evaluations for (High-order)

Avalanche Tests

Emanuele Bellini1, Juan Grados1, Mohamed Rachidi1, Nitin Satpute1, Joan
Daemen2, and Solane El Hirch2

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
{emanuele.bellini, juan.grados, mohamed.rachidi,nitin.satpute}@tii.ae
2 Radboud University, Netherlands, joan@cs.ru.nl, solane.elhirch@ru.nl

Abstract. In this work, we tackle the problem of estimating the security
of iterated symmetric ciphers in an efficient manner, with tests that do
not require a deep analysis of the internal structure of the cipher. This
is particularly useful during the design phase of these ciphers, especially
for quickly testing several combinations of possible parameters defining
several cipher design variants.

We consider a popular statistical test that allows us to determine the
probability of flipping each cipher output bit, given a small variation in
the input of the cipher. From these probabilities, one can compute three
measurable metrics related to the well-known full diffusion, avalanche
and strict avalanche criteria.

This highly parallelizable testing process scales linearly with the number
of samples, i.e., cipher inputs, to be evaluated and the number of design
variants to be tested. But, the number of design variants might grow
exponentially with respect to some parameters.

The high cost of Central Processing Unit (CPU)s makes them a bad
candidate for this kind of parallelization. As a main contribution, we
propose a framework, ACE-HoT, to parallelize the testing process using
multi-Graphics Processing Units (GPUs). Our implementation does not
perform any intermediate CPU-GPU data transfers.

The diffusion and avalanche criteria can be seen as an application of dis-
crete first-order derivatives. As a secondary contribution, we generalize
these criteria to their high-order version. Our generalization requires an
exponentially larger number of samples, in order to compute sufficiently
accurate probabilities.

As a case study, we apply ACE-HoT on most of the finalists of the Na-
tional Institute of Standards and Technologies (NIST) lightweight stan-
dardization process, with a special focus on the winner ASCON.

Keywords: GPU · CUDA programming · Avalanche tests · Symmetric
ciphers · Statistical tests
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1 Introduction

In this work, we describe how to perform a security assessment of encryption
and authentication algorithms by means of statistical tests. These tests require
a large amount of computations to be executed. We show how to perform these
tests on Graphics Processing Units.

1.1 Background and Motivation

The cryptographic community is constantly trying to design more secure and
better-performing ciphers. Several public selections took place to determine the
best cryptographic primitives for standardization. Some notable examples by
the American NIST are the Advanced Encryption Standard selection process
[25] started in 1997, the Secure Hash Algorithm of third generation (SHA-3)
competition [20] started in 2007, and the NIST lightweight cryptography stan-
dardization process [21] started in 2018 and terminated in 2023 with the selec-
tion of ASCON, a permutation-based hash and authenticated encryption cipher.
Other examples include the eSTREAM competition [22] for stream ciphers, and
the CAESAR competition [1] for Authenticated Encryption.

In order for these competitions to evaluate the candidates more fairly, it
is important to establish a common framework that allows evaluation of the
security of each primitive. One possible approach to establishing the quality of a
round function is to define a certain measurable property, observe its variation
across the rounds, and then compare it with the computational cost of the round
function itself (which depends on the platform).

Avalanche tests A common way of performing this assessment is by measuring
some statistical properties observed after evaluating the cipher under scrutiny
over samples with certain characteristics. This work focuses on a particular type
of statistical test, namely the avalanche tests and on their higher order version
introduced in this work. The main challenge in performing high-order avalanche
tests is the large number of samples that they require. For example, the most
costly high-order avalanche test we perform requires 249.29 ≈ 1014.83 cipher eval-
uations.

Parallel computing GPUs can perform thousands of computations in par-
allel depending on the availability of the number of cores on the Streaming
Multiprocessors (SMs) [12,18,10]. The computations are distributed on GPUs
when the CPU launches an application in the form of a kernel. There are many
challenges with regard to the multi-GPU implementation of avalanche tests, es-
pecially when these tests have to be executed for an extremely high number
of variants of a cipher (during its design phase), or in their high-order version.
These challenges are categorized in terms of CPU-bottleneck during iterative
kernel calling, inter-block GPU synchronization, which is taken care of by itera-
tive kernel calling, inter-GPU communication during the processing of avalanche
tests and memory-based implementation of avalanche tests for random samples.
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One of the ways to overcome the above challenges is to effectively parallelize
the computations on the GPUs using the Compute Unified Device Architecture
(CUDA) programming framework. Typically, CPU acts as a host and launches
a device kernel with a required number of computation blocks on the GPU. The
GPU schedules the computation blocks for the kernel on the SMs. Each SM can
handle one or more computation blocks. The GPU resource manager schedules
and allocates resources for each compute block. The blocks communicate and
synchronize via a device memory on the GPU. Threads in a block execute in
groups called warps and share a common memory in that block. Each warp uses
the resources of the SM based on its register memory requirements. The ratio
between the number of warps in process and the maximum number of warps
defines the occupancy of the GPU [14,4]. It is important to maintain a high
occupancy of the GPU to achieve maximum computing performance. In order to
efficiently utilize the hardware, it is essential to understand the computation and
communication resources. Based on the availability of the CPU-GPU resources,
the tasks from an application can be scheduled and allocated efficiently.

1.2 Our contribution

In this work, we provide a framework, ACE-HoT, to perform avalanche tests
requiring an extremely high number of cipher evaluations exploiting GPUs. This
can be useful during the design phase of a cipher, when a very high number of
parameters have to be quickly evaluated against differential properties. We also
generalize avalanche tests to a high-order version. This generalization requires
a very large amount of cipher executions that can be easily handled by our
framework. As a case study, we provide a detailed analysis of our new test on
the winner of the NIST lightweight standardization process [21], namely the
ASCON permutation [6]. Due to space constraints, we provide a less detailed
analysis of the other finalists.

We refer to our new test as high order avalanche test. When the order d is
known, we say avalanche test of order d or d-order (or d-th order) avalanche
test. The contributions of the paper are presented below in more detail:

1. A framework to perform avalanche tests requiring an extremely high number
of cipher evaluations exploiting GPUs.

2. We introduce a new high-order avalanche test for the assessment of a sym-
metric cipher in the black box scenario, i.e. where no knowledge is assumed
of the internal structure of the cipher except its input/output bit size. From
a cryptographic point of view, the already known first-order test allows to
retrieve information about the applicability of certain attacks, such as im-
possible differentials [2] and truncated differentials [15]. With our general-
ization, we have information that might lead to the discovery of higher-order
differentials distinguishers [17,16].

3. We provide an accelerated implementation of the avalanche tests of orders 1,
2, 3 and 4 for the ASCON permutation and show that the avalanche criteria
(defined under 3 different metrics) are met after 4 rounds with avalanche
tests of order 1 and 2 and after 5 rounds for order 3 and 4.
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4. To the best of our knowledge, this is the first work towards multi-GPU
acceleration for high-order avalanche tests to study the trend of avalanche
metrics with respect to the number of samples and rounds. The proposed im-
plementation includes efficient utilization of hardware resources without any
intermediate CPU-GPU data transfers and no inter-GPU communications.

5. The 3rd order avalanche test requires 14 seconds (approx.) for 2,000 samples
on 8xTITAN GPUs. The implementation on 4xA100 Ampere GPUs is gener-
ally faster compared to the implementation on 8xTITAN GPUs. Notice that
in this case,

(
320
3

)
= 5, 410, 240 ≈ 222.36 differences need to be evaluated.

6. The 4th order avalanche test requires 49.55 seconds and 40.30 minutes for
2,000 and 100,000 samples respectively on 4xA100 Ampere GPUs. Notice
that in this case,

(
320
4

)
= 428, 761, 520 ≈ 228.67 differences need to be evalu-

ated, which corresponds to ≈ 246.29 5-round Ascon evaluations in the case of
100, 000 samples per difference. To highlight the potential of the framework,
we note that 247 5-round Ascon evaluations on a single core CPU are esti-
mated to last on average 113 days on an i9 Intel macOS laptop, which shows
a significant reduction in timing by using GPUs. Additionally, we verified
all the Ascon distinguishers presented by Raghvendra Rohit and Santanu
Sarkar [23] in minutes, while for them, it took weeks (especially for 7-round
Ascon distinguisher).

7. We release our source code to the community for future research (GitHub:
Link Anonymous3).

1.3 Related works

In this subsection, we give an insight into some of the works that have been
done previously. The notion of avalanche tests applied on ciphers was raised
from the ideas of completeness and avalanche effect first introduced by Kam
and Davida [11] and Feistel [8], respectively. A cipher is said complete (or that
it reached full diffusion) when each of its output bits depends on all of the
input bits. The avalanche effect of a cryptographic algorithm is observed when
an average of one half of the output bits change whenever a single input bit is
flipped. Webster and Tavares [27] explain how to build what are called perfect
4x4 S-Boxes by using the strict avalanche criterion. Later, Joan Daemen, Seth
Hoffert, Gilles Van Assche and Ronny Van Keer [5] report in their paper on
the performance of the cipher Xoodoo with respect to these criteria. Avalanche
tests can be seen as a special case of statistical tests where the randomness of the
output of a cipher is examined. One of the most frequently used test batteries
is the NIST Statistical Test Suite [24]. In 2021, Kim and Yeom [13] propose
a GPU based parallel implementation of the most time-consuming part of the
entropy estimation in these tests and demonstrate that their implementation is
about 3 to 25 times faster than that of the NIST package (measured on two
different hardware configurations, see reference for details). While in this work
we introduce the notion of high order avalanche test for a symmetric cipher, the

3 we can provide the source code to the reviewers if requested

https://anonymous_link
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notion of high order Strict Avalanche Criterion has already been known for a
long time in the case of small Boolean functions [9].

1.4 Outline of this work

The remainder of this paper is structured as follows. Section 2 and Section 3
describe high-order avalanche tests and criteria. Section 4 and Section 5 provide
framework for multi-GPU acceleration for high-order avalanche tests. Sections 6
to 8 explains the evaluation methodology and presents the detailed experimental
results and discussions. Finally, we conclude the paper in section 9.

2 Avalanche tests

We denote by GF (2) the binary field with 2 elements, and with GF (2)n the
n-dimensional vector space over GF (2). Block ciphers are functions with inverse
and they are iterated. That is, block ciphers apply an map repeatedly over a series
of rounds. In other words, given a set of r maps Fi : GF (2)n×GF (2)m → GF (2)n

with i = 0, . . . , r− 1, that takes as input a n bits block and a m bits subkey, an
iterated block cipher F is such that F = Fr−1 ◦ . . . ◦ F0.

Three tests to measure the avalanche properties of a symmetric iterated
block cipher are presented in [5]. These tests evaluate the cipher with respect to
three different criteria: the full diffusion, the avalanche, and the strict avalanche
criteria. The goal of these tests is to measure the quantitative diffusion power of
the round function. Note that the common behavior of an iterated cipher is not
to meet the criterion for the first rounds and then to meet it for all the remaining
ones.

2.1 The avalanche probability vector

The tests are performed by computing the so-called Avalanche Probability Vec-
tor (APV) P∆F of a cryptographic primitive F for an input difference ∆. The
i-th component of the APV is the probability that bit i of the output of F
flips due to the input difference ∆, or, equivalently, the probability that bit i of
F (x) + F (x + ∆) equals 1. After M samples, the expected standard deviation
of the elements of P∆F is 1/

√
M . So for high precision, M must be chosen large

enough. In [5] experiments M = 250, 000 was used. In this work, we observe the
behavior of the tests for smaller values of M .

2.2 Avalanche criteria

The APV is used to derive 3 metrics, where pi = P∆F i :

– Avalanche dependence: number of output bits that may flip, defined as
Dav(F,∆) = b−

∑
i δ(pi) , with δ(x) equal to 1 if x = 0 and 0 otherwise. The

full diffusion criterion is satisfied if Dav(F,∆) = b for all ∆ with Hamming
weight 1.
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– Avalanche weight: expected Hamming weight of the output difference,
defined as Wav(F,∆) =

∑
i pi . Given a certain threshold t, the avalanche

criterion is satisfied if b/2−t ≤ Wav(F,∆) ≤ b/2+t for all ∆ with Hamming
weight 1.

– Avalanche entropy: uncertainty about whether output bits flip, defined
as an entropy:
Hav(F,∆) =

∑
i(−pi log2(pi)− (1−pi) log2(1−pi)) . Given a certain thresh-

old t, the strict avalanche criterion (SAC) is satisfied if b−t ≤ Hav(F,∆) ≤
b+ t for all input differences ∆ with Hamming weight 1.

The three metrics have values in the range [0, . . . , b] and for a random trans-
formation F we have that for any input difference ∆ then Dav(F,∆) ≈ b,
Wav(F,∆) ≈ b/2 and Hav(F,∆) ≈ b. We actually report on the minimum value
over all first order input differences.

Algorithm 1 avalanche probability vector of order d

Require: a transformation F over GF (2)b, a vector space V of length b and dimension
d generated by a basis of 1-bit vectors (sometimes called unit vectors), and number
of samples M .

Ensure: p, the avalanche probability vector of order d.
1: Initialize a b-bit vector p of probabilities pi to all zeroes.
2: for M randomly generated states x do
3: Compute B =

∑
v∈V F (x+ v)

4: for all state bit positions i do
5: pi = pi +Bi/M
6: end for
7: end for

3 High-order avalanche tests

In [5], the metrics are computed for all ∆ of Hamming weight 1, i.e. for all 1st

order input differences of the cipher. This is equivalent to say that the APV is
computed for the first order derivative of the n-bit vectorial Boolean function F
with respect to the points ∆ of Hamming weight 1. Such derivative is defined as
D∆(x) = F (x) + F (x+∆), with x,∆ ∈ GF (2)b [3]. The same approach can be
easily extended to higher order derivatives of F with respect to a vector space
V of length b and dimension d, i.e. DV(x) =

∑
v∈V F (x + v). Our technique

is somewhat similar to computing higher order derivatives [17], however, the
metrics which we evaluate in this work are completely different. For example,
a traditional d-order derivative is utilized in integral/cube attacks to check the
presence or absence of a superpoly and then later used for recovering key bits.
In our case, we use the d-order derivative to generalize the first-order avalanche
tests. In what follows, we first describe metrics of high-order avalanche tests and
then discuss their computational challenges.



ACE-HoT 7

3.1 High-order avalanche probability vector

More precisely, the avalanche probability vector P∆F of order d of a cryptographic
primitive F for a vector space V of length b and dimension d and generated by a
basis of single-bit vectors, is the vector whose i-th component is the probability
that bit i of the output of

∑
v∈V F (x+ v) equals 1. The high-order APV can be

computed following algorithm 1.

3.2 High-order avalanche criteria

The avalanche dependence, weight and entropy are then computed as for the
first order and the three criteria are defined as follows.

– The full diffusion criterion of order d is satisfied if Dav(F,V) = b for all
vector spaces V of length b and dimension d generated by a basis of single-bit
vectors.

– Given a certain threshold t, the avalanche criterion of order d is satisfied
if b/2 − t ≤ Wav(F,V) ≤ b/2 + t for all vector spaces V of length b and
dimension d.

– Given a certain threshold t, the strict avalanche criterion of order d is
satisfied if b− t ≤ Hav(F,V) ≤ b+ t.

4 Parallelization strategies and multi-GPU
implementation

In this section, we discuss two parallelization strategies that are well-known
in machine learning training, namely, data and model -level parallelization (see,
e.g., [7, Section 5.1, 5.2]). We also provide a discussion on how to select the
most appropriate strategy with reference to concrete use cases. In particular,
for ease of explanation (and because it was never done before), we focus our
description on the case of computing high-order avalanche probability vectors
and their corresponding criteria. We briefly discuss how the same technique can
be also applied in other use cases.

4.1 Determining the workload

Let us now focus on the case of computing high-order avalanche probability
vectors and their corresponding criteria.

Recall that b is the bit size of the cipher input and V is a vector space over
GF (2) of dimension d, length b and whose basis is made of d 1-bit vectors. The
number of samples needed for each vector space is indicated by M . Also, recall
from section 3.2 that in order to compute the metrics avalanche dependence,
avalanche weight, and avalanche entropy, we need to compute first the APV for
a specific vector space V. Furthermore, to compute an APV, we need to compute
the sum B for every random sample (see algorithm 1). Finally, recall that once
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we have the metrics, we can compute the full-diffusion, avalanche, and strict
avalanche criteria.

From the description above, note that our main workload comes from cipher
evaluations F (·) to compute B. Thus, to compute B for an APV of order d, we
need |V| cipher evaluations. In turn, to compute this APV, we need M random
samples. Thus, to compute the avalanche metrics for all vector spaces (i.e.,

(
b
d

)
) in

a d order derivative of a cipher, we need a total of
(
b
d

)
· |V | ·M cipher evaluations.

4.2 Parallelization techniques overview

To parallelize the workload of the high-order avalanche test, we explore two op-
tions: data-level andmodel-level parallelization. Essentially, these two techniques
differ in how a dataset is distributed to the processing units, or CUDA threads
in the case of GPUs. More in detail, in the high-order avalanche test, the two
techniques differ as follows:

– Data-level Parallelism: Each CUDA thread is assigned a b-bit random sample
x and it is responsible of computing B =

∑
v∈V F (x+v) for the single sample

x. In this scenario, the same vector space is used across multiple threads until
the right number of samples is exhausted.

– Model-level Parallelism: Each CUDA thread is assigned a vector space and
computes B =

∑
v∈V F (x+ v) for all M samples x ∈ GF (2)b.

In data-level parallelism, the number of threads depends on the number of
samples needed to compute the avalanche criteria. On the other hand, in model-
level parallelism, the number of threads only depends on the number of vector
spaces.

4.3 Choosing the parallelization technique

Choosing which type of parallelism technique to adopt might not be trivial. In
particular, for the case of avalanche tests, it seems natural to distribute the sam-
ples over each thread. This might turn out to be a good solution for the case
of first-order avalanche tests, since the number of vector spaces (determined by
weight 1 differences) is very small, i.e., b. However, for higher dimensions, the
number of vector spaces quickly outnumbers the number of samples, and model-
level parallelization becomes more useful. Another factor in deciding which tech-
nique to exploit is the number of physical cores available in the machine. For
example, in our experiments with high-order avalanche tests, we used two types
of GPUs: TITAN RTX, with a capability of 18432 CUDA cores, and A100-SXM4,
with a capability of 27648 CUDA cores per GPU). If the number of samples is
≈ 104, then not all cores will be used in both cases. Finally, distributing the
samples over the processing units, requires some communication cost among the
units, to compute the value B of the summation. This is not the case in model-
level parallelization, where the generation of the elements of the vector space V,
the computation of B, the APVs, and the metrics are all computed in the same
thread. Note that all these operations have a relatively low cost for a GPU.
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For the case of high-order avalanche tests, and for all the reasons stated in the
paragraphs above, we decided to use model-level parallelism instead of data-level
parallelism.

4.4 Use cases

Another important use case for applying model-level parallelization is when eval-
uating first-order avalanche tests for a high number of variants of a cipher. This
highly parallelizable testing process scales linearly with the number of sam-
ples, i.e., cipher inputs, to be evaluated and the number of design variants to
be tested. But, the number of design variants might grow exponentially with
respect to some parameters. For example, in ASCON, freeing the 10 rotation
offsets in the linear layer gives 635 · 625 ≈ 260 possible variants of the cipher.

One third use case for applying model-level parallelization is when evaluat-
ing first-order avalanche tests for input differences with Hamming weight greater
than one. This would be useful to have a preliminary understanding of the re-
sistance of the cipher against differential cryptanalysis with a low Hamming
weight initial difference. Notice that is very common for high probability differ-
ential trails to start with low Hamming weight differences. Nevertheless, such a
test cannot replace automated differential trail search techniques, which, on the
other hand, require quite heavy computations and dedicated modeling of the
cipher.

A fourth scenario where model-level parallelization is beneficial is in the
evaluation of high-order truncated differentials. Specifically, consider an APV
P∆F of order d for a cryptographic primitive F . Each entry ρ in P∆F represents
the probability of a d-order truncated differential, starting with the vectors used
to compute P∆F , and ending at the index indicated by ρ. We will leave the
implementation of this scenario as future work.

5 Implementation challenges

In this section, we describe the main practical challenges in implementing model-
level parallelization in GPUs, and how we overcame them.

5.1 Avoiding CPU bottleneck

The logical number of threads might be different from the actual number of
CUDA cores. We already mentioned that when the number of threads is smaller
than the number of cores, there is a poor utilization of the GPU resources. On
the other hand, when the number of threads is greater than the number of cores,
then the threads are divided into batches and executed one batch at a time.
This iteration is concretized through an iterative call of the kernel from the
CPU. The CPU assigns workloads to the GPU through iterative calls, which is
time-consuming due to CPU-GPU communication. To optimize performance, we
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used the so-called grid-stride loop technique to execute the iterative task solely
on the GPU without CPU intervention, enhancing performance [19].

In CUDA programming, a grid-stride loop is a common technique used to
efficiently parallelize certain operations on NVIDIA GPUs. It involves breaking
down a large data set or computational task into smaller chunks and assigning
each chunk to a different thread block. The threads within each block then
process elements of the data in a loop.

The term grid in CUDA refers to the collection of thread computational
blocks that are launched to execute a kernel function on the GPU. Stride in a
grid-stride loop refers to the distance between consecutive elements that each
thread processes. It allows multiple threads to work on non-contiguous elements
in memory simultaneously. By using a stride, threads can efficiently load and
process data, minimizing memory access conflicts and improving memory coa-
lescing. Here’s a brief overview of how a grid-stride loop is typically implemented:

– Determine the grid and block dimensions: The data or task is divided into
a grid of thread blocks. The grid and block dimensions are chosen based on
the problem’s requirements and the available GPU resources.

– Calculate the global thread index : Each thread is assigned a unique global
index that represents its position within the entire grid of thread blocks.

– Calculate the stride: Stride is often computed as the total number of threads
in the grid multiplied by the number of elements each thread should process.

– Perform the grid-stride loop: Each thread enters a loop and processes the
data or computation assigned to it based on its global thread index and the
calculated stride. The loop continues until all elements have been processed.

Grid-stride loop is particularly useful when the data or task involves irregular
memory access patterns or when the data set is too large for a single thread block
to handle. Grid-stride loops help achieve better performance by maximizing par-
allelism and minimizing memory access conflicts. In particular, we use grid-stride
loop in high-order test to efficiently compute B (see algorithm 1), APVs, and
metrics for multiple vector spaces. Instead of assigning a single CUDA thread to
handle the computations associated with a single vector space, we map a thread
to a group of vector spaces in a stride way.

5.2 Synchronization and communication

In the context of parallel programming, synchronization refers to the coordina-
tion of parallel resources to avoid race conditions or to ensure the correct order
of operations, and communication refers to the transfer of data between parallel
resources. For example, moving data between different memory spaces, such as
transferring data from the host memory to the GPU memory or between dif-
ferent GPUs. In our implementation, we basically have the following parallel
resources, CUDA threads, CUDA blocks, GPUs, and CPUs.

As mentioned in section 2, a cipher is considered to meet the criteria if
the values of each metric, namely avalanche dependence, avalanche weight, and
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avalanche entropy, are b, b/2, and b, respectively, for all vector spaces V of di-
mension d and length b. This means that the cipher meets the criteria if the
minimum values (worst-case scenario) for each metric are approximately b, b/2,
and b, respectively. Thus, besides the computations of the APVs and metrics (as
stated in section 4.2), we compute the minimum value of each metric by using
an atomic operation. This minimum value is computed in each GPU and com-
municated to the CPU to perform the final computation to obtain the criteria.

By utilizing model-level parallelism, communication among the parallel re-
sources can be significantly reduced. As mentioned in section 4.2, we use model-
level parallelism to assign each thread a unique vector space and compute the
corresponding metrics independently. The only communication required is lim-
ited to 1) the initial transfer of avalanche test configurations from the CPU to
the GPU, and 2) the transmission of the minimum metric values from the GPUs
to the CPUs to compute the avalanche criteria.

Two methods can be used to achieve inter-block synchronization in the GPU:
atomic operations or transferring control to the CPU. In our approach, we use
the former method to compute the minimum value of each metric and check if
a cipher meets the criteria. We do not require inter-GPU synchronization since
we send the minimum value computed from each GPU to the CPU. However,
synchronization at the CPU is necessary to determine the resultant minimum
value after receiving the minimum values from corresponding GPU.

5.3 Distributing the workload

Below we describe the tasks of high-order avalanche tests on the CPU. Specif-
ically, we describe the tasks to distribute the main workload. The proposed
implementation takes the following inputs: the cipher, the order d of the test
(e.g., 1st, 2nd, 3rd, and 4th order), the number of samples M , the number of
rounds of the cipher, and the number of GPUs. The number of computational
threads and blocks are evaluated dynamically at runtime, and the workload is
assigned to each GPU by considering that we need to distribute |V| ·

(
n
d

)
· M

cipher evaluations among these resources.
A high-order avalanche test kernel is launched with the number of par-

allel threads and blocks on each GPU. To compute the number of parallel
threads and blocks, we use the CUDA API. Specifically, we use the function
cudaOccupancyMaxPotentialBlockSize, which returns the grid and block size
that achieves maximum potential occupancy for a device function. In our case,
this device function is the kernel high-order test.

As previously mentioned, a cipher performs well with respect to the high-
order avalanche tests if the following scores are satisfied for each vector space:
the avalanche dependence must be ≈ b, the weight must be ≈ b/2, and the
entropy must be ≈ b. Otherwise, the respective criterion is not satisfied. CPU
evaluates the resultant worst-case values of the avalanche metrics received from
all the GPUs.

The device kernel executes the following steps: 1) it generates vectors v ∈ V,
2) generates a seed, 3) uses the seed to generate random samples for evaluat-



12 Authors Suppressed Due to Excessive Length

ing avalanche metrics, 4) the cipher is evaluated on the random samples and
vectors v to compute, B, the APV and the metrics, 5) the minimum values of
avalanche metrics amongst threads on a GPU are obtained using atomic opera-
tion in CUDA. These minimum values from each GPU are communicated to the
CPU.

2 4 6
Rounds

0

100

200

300

De
p.

order 1
order 2
order 3
order 4

2 4 6
Rounds

0

50

100

150

W
ei

gh
t_

M
in order 1

order 2
order 3
order 4

2 4 6
Rounds

0

100

200

300

En
tro

py

order 1
order 2
order 3
order 4

2 4 6
Rounds

1

10

100

1000

Ti
m

e(
se

c) order 1
order 2
order 3
order 4

Samples 100000

The avalanche criteria are satisfied when Dep. ≈ 320, Weight Min ≈ 160 and
Entropy ≈ 320.

Fig. 1: High-order Avalanche Test for ASCON on 4xA100 Ampere GPUs for
100,000 samples. The above metrics are computed from the vector space that
gives the worst values of the corresponding criterion.
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Fig. 2: High-order Avalanche Test for ASCON 4 rounds on 4xA100 Ampere
GPUs

Note: 4th order test is not included for more than 100,000 samples due to linearly
increasing time dependency for evaluating all differences.

6 Detailed results in the ASCON use case

Due to the page limit and because it is the winner of the NIST lightweight
standardization process, we have decided to perform a detailed report on the
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performance of ASCON with respect to each criterion and for each different
number of rounds. We will summarize the results of other primitives in the next
section 7.

Specifically, this section presents a report for up to the 4th order and for dif-
ferent rounds. There are two aspects to analyze the results: 1) evaluate whether
ASCON performs well or not the tests along the rounds and 2) timings and
speedup of the experiments with respect to the number of rounds and the order
of the tests. We evaluated our approaches on the following platforms: 4xA100
GPUs and 8xTITAN GPUs. In section 6.1, we present experiments we did for
aspect 1) and in section 6.2, we present experiments we did for aspect 2). Also,
here, we make a comparison of our implementations with respect to the afore-
mentioned platforms (4xA100 GPUs and 8xTITAN).

6.1 High-Order Avalanche Tests on ASCON

We evaluate three avalanche metrics: avalanche dependence, weight, and entropy.
In order to perform well with respect to the criteria associated with these metrics,
ASCON must satisfy the following scores for their respective criterion:

1. avalanche dependence must be equal to 320

2. avalanche weight must be approximately4 160 and

3. avalanche entropy must be approximately 320.

We evaluate these tests for the variations in the number of rounds when the sam-
ple size is constant. Secondly, we assess the avalanche metrics for the variations
in the number of samples for a given number of rounds.

102 103 104 105
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101

102

103

Ti
m

e(
se

c)

8xTitan order 1
8xTitan order 2
8xTitan order 3
4xA100 order 1
4xA100 order 2
4xA100 order 3

Round 5

Fig. 3: Performance Comparison of Avalanche Tests for ASCON - on 4xA100
and 8xTITAN RTX GPUs.

4 A certain threshold has to be fixed.
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Avalanche properties versus the number of rounds We evaluate three
avalanche tests with respect to the number of rounds and the sample sizes. We
show the results corresponding to 100,000 samples in fig. 1. We observe the
following in terms of avalanche tests:

1. Full diffusion criterion: For all orders, 1st, 2nd, 3rd and 4th order, this
criterion needs 100 samples before saturation (when the values of the metric
increase with very slow rate). Regarding the numbers of rounds, 1st and 2nd

order need 4 rounds to meet the criterion, while 3rd and 4th order require
five rounds.

2. Avalanche criterion: Similar behaviour is observed here. For all orders,
800 samples are needed to reach 158 value and 2,000 samples to reach 159
value and then saturates. Regarding the numbers of rounds, 1st and 2nd need
four rounds, and 3rd and 4th require five rounds.

3. Strict Avalanche criterion: Here again, for all orders, 400 samples are
enough to reach 319 value and then saturates. Similarly to both previous
cases, 1st and 2nd need four rounds, and 3rd and 4th require five rounds.

For each criterion, the 3rd and 4th order tests require at least 5 rounds to
reach it. An important point to note is that our framework can also spot the
state bits for which the criteria are not satisfied for 4-round Ascon.

Avalanche Metrics versus The Number of Samples In what follows, we
observe the evolution of the values of the metrics with respect to the number
of samples. We evaluate the three avalanche metrics for 4 rounds of Ascon with
different number of samples as it is shown in fig. 25. We have not included 4th

order avalanche test for more than 100,000 samples (equivalent to ≈ 246.29 5-
rounds evaluations) due to linearly increasing time dependency. We observe from
fig. 2 that the values of the criteria are almost similar whether using 103 or 105

samples. To be more specific, fig. 6 shows how accurate the values of the criteria
are according to the chosen number of samples.

6.2 Time and Speedup of 4xA100 w.r.t. 8xTITAN GPUs

We measure evaluation time on 4xA100 GPUs and 8xTITAN GPUs and observe
the following:

1. Execution time for the 3rd order avalanche test requires 14 seconds for
2,000 samples on 8xTITAN GPUs. However, the implementation on 4xA100
GPUs is generally faster in comparison to the 8xTITAN GPUs as shown in
fig. 3. The number of multiprocessors per GPU is more in A100 (i.e. 108)
in comparison to the TITAN RTX (i.e. 72). Ampere A100 have more cores
(6912) and higher FLOPS (single and double) in comparison to the TITAN
RTX (4608 cores).

5 We recall that we report on the minimum value of each metric. This is why all
metrics are monotonically non-decreasing.
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2. Speedup The performance of 4xA100 GPUs is generally faster in compari-
son to the 8xTITAN GPUs as shown in fig. 3. The range of speedup varies
depending upon the order of the tests.

6.3 Note on the inverse of ASCON

We have seen that in the 1st order case, the 3 criteria are reached after 4 rounds
of ASCON. The inverse of ASCON reaches the 3 criteria even faster, as we can
see in fig. 4. Each cell of this figure is green if the probability of flipping of the
underlying bit is close to 1

2 with a 0.01 bias due to a single input bit difference,
red otherwise. We can see that after the 2nd round, all cells are green, meaning
that at this round, the weight criterion is satisfied.

This behavior is common on ciphers with a linear layer whose inverse is more
dense than its forward operation. For instance, it is well known that one bit
difference in the input of the inverse of Ascon linear layer affects at least 31
output bits, while it affects only 3 output bit for the forward linear layer. In
most cases, the inverse of a linear layer is chosen to be complex and therefore
allows a better diffusion, which prevent successful backward extension of linear
or differential trails for example.

Fig. 4: Weight criterion for the inverse of ASCON. Input bit difference injected
in position 0.

7 Results for the most popular ciphers

In this section, we decided to focus our attention on the permutations of the
finalists of the NIST lightweight standardization process, plus some of the most
famous block ciphers and cipher underlying permutations. More specifically, we
focused on the following primitives shown in table 1:
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Primitives plaintext size key size rounds

Ascon-p 320 - 12
Xoodoo 384 - 12
Gift 128 128 40

Keccak-f[400] 400 - 20
Photon 256 - 12
Skinny 128 384 40
Speck 128 128 32
AES 128 128 10

Chacha 512 - 20
DES 64 64 16

Present 64 80 31

Table 1: Selected primitives for our analysis and their respective plaintext and
key bit sizes.

From our experiments, we observed that the selected primitives had a similar
behavior than Ascon, that is satisfying all the 3 criteria for the 3rd and 4th orders
one round after they get satisfied for the 1st and 2nd orders.

Due to the page limit, we could not display the comparison between all
the previous ciphers for each of the 3 criteria. We had to choose one and we
believe that the most important criterion is the strict avalanche criterion based
on the avalanche entropy. The comparison is shown in fig. 5, where we display the
percentage of the number of rounds needed to reach the strict avalanche criterion
over the total number of rounds. We show this value for 1st, 2nd, 3rd, and 4th
orders. We notice that a more interesting comparison, rather than the number
of rounds, would take into account the number of gates in the implementation
on a specific platform. On the other hand, this metric is not easy to measure,
and we leave it for future work.

8 Discussion

In this paper, we propose and evaluate high-order avalanche tests on multi-
GPU platforms. We apply our new test to the selected candidate of the NIST
lightweight standardization process, namely the ASCON permutation, a round-
based cipher. We conclude the following in terms of avalanche metrics and exe-
cution time from the experimental analysis:

1. Full diffusion criterion needs 100 samples enough for full diffusion (see
section 6.1).

2. Avalanche criterion needs 800 samples (see section 6.1) to reach 158
(around 160) value and 2,000 samples to reach 159 (around 160) value and
then saturates (increases with very slow rate).

3. Strict Avalanche criterion needs 400 samples (see section 6.1) to reach
319 (around 320) value and then saturates.

4. Execution time for the 3rd order avalanche test requires 14 sec for 2,000
samples on 8xTITAN GPUs.

5. Following analysis can be made in order to satisfy all avalanche metrics:
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Fig. 5: Avalanche entropy comparison: percentage of number of rounds needed
to reach the entropy criterion over the total number of rounds, for 1st, 2nd, 3rd,
and 4th order.

(a) 1st and 2nd order avalanche tests require at least 4 rounds to satisfy all
criteria.

(b) 3rd and 4th order avalanche tests require at least 5 rounds to satisfy all
criteria.

6. Generalization of the number of threads required for performing
n-th order tests in parallel: Our initial implementation requires memory
for seeds corresponding to each thread in order to generate the number of
random samples for each thread. The memory requirements increase with
the increase in the number of threads corresponding to each combination
difference. The memory dependency with respect to the number of compu-
tational threads is detailed as follow: i-th order test requires at least

(
320
i

)
·48

KB memory and
(
320
i

)
threads.

However, the above memory dependency has been successfully removed in
our memory-less implementation for high-order avalanche tests.

7. Statistical Analysis of the Results We use a confidence level of 99% and
a population of 2320 input samples (for ASCON) as shown in fig. 6. It can
be seen that already from samples=100, for 1st order difference, 3 rounds is
outside the confidence interval. This cannot be observed only for 10 samples.
However, we will not worry too much as these are really very few samples.
The result can be interpreted as follows: given
(a) a Confidence Level of 99%
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Confidence Interval Sample size needed

0.1 1664100

0.91216 20,000

1 16641

2.8845 2,000

3.724 1,200

10 166

12.9 100

40 10

Fig. 6: Confidence Interval for the Sam-
ple Sizes for Confidence Level 99% on
population 2320

Samples Rounds Weight Min Weight Max Confidence Interval

10 3 131.1 160.0 40
10 4 150.2001 160.0 40

100 3 137.63 160.0 12.9
100 4 157.49 161.9 12.9

1,200 3 139.7333 160.0 3.724
1,200 4 159.3608 160.7158 3.724

2,000 3 139.8149 160.0 2.8845
2,000 4 159.4271 160.6405 2.8845

20,000 3 140.4578 160.0 0.91216
20,000 4 159.8024 160.1752 0.91216

Fig. 7: Analysis of Confidence Intervals
for Various Sample Sizes on 1st order
Avalanche Tests

(b) a Confidence Interval C (a positive integer). Note that C is a function
of the sample size, population size and the confidence level.

(c) an input difference D of 1st order,
then 99% of all possible plaintexts P will generate a pair (P, P + D) for
which the Avalanche Weight will fall inside the confidence interval of [160−
C, 160 +C]. For example, for a sample size of 20,000, we have C = 0.91216.
We see that at round 4, the avalanche weight is always inside the interval
[160− 0.91216, 160+0.91216], so we can consider the test passed at round 4
as shown in fig. 7.

8. Scalability: The model level implementation supports scalability in terms
of (the large) number of vector spaces computed per GPU. As the number
of GPUs increases, the total number of vector spaces computed per GPU
decreases and hence decreasing the total evaluation time. It will provide
flexibility to process high-order avalanche tests (where order ≥ 4) in lesser
time. Our implementation performs reasonably well for up to 4-th order
tests. Of course, adding or removing CUDA cores would improve or dimin-
ish the performances in a trivial way. The main challenge, which for now
remains an open problem, is to perform 5-th order tests. If one would want
to implement the same tests over CPUs, the main issue he would face is the
cost of purchasing several cores. For comparison, we used around 100,000
CUDA cores. The CPUs are efficient when the total number of vector spaces
to be processed is reasonable. The CPUs are limited by the number of cores
and the number of operations drastically increases when the order of tests
increases. CPUs under-performs already for 3-th order avalanche tests.

9 Conclusion

In this paper, we propose and evaluate high-order avalanche tests on multi-GPU
platforms through our ACE-HoT framework. This framework is general and can
be easily adapted to test other block ciphers and permutations on several GPU
models.

We provided a detailed analysis of the permutation of the ASCON cipher
and a comparison of how different ciphers perform under this test. We showed
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that for some ciphers (e.g. ASCON) the avalanche criteria are reached at a later
round when considering higher orders than 1.

The main challenge of this test was the huge number of cipher evaluations
that need to be performed, especially for order 4 tests. We leave for future work
to optimize the code and reach even higher orders and to study how the newly
found biases could be exploited as a base to mount new or improve existing
attacks.

Another open challenge for future work is to explore the use of this generic
framework for other applications of cryptanalysis like the work that has been
done for the first collision of full SHA-1 [26].
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