
Decentralised Repeated Modular Squaring Service
Revisited: Attack and Mitigation

Aydin Abadi† and Steven J. Murdoch‡

University College London

Abstract. Repeated modular squaring plays a crucial role in various time-based
cryptographic primitives, such as Time-Lock Puzzles and Verifiable Delay Func-
tions. At ACM CCS 2021, Thyagarajan et al. introduced “OpenSquare”, a decen-
tralised protocol that lets a client delegate the computation of repeated modular
squaring to third-party servers while ensuring that these servers are compensated
only if they deliver valid results. In this work, we unveil a significant vulnerability
in OpenSquare, which enables servers to receive payments without fulfilling the
delegated task. To tackle this issue, we present a series of mitigation measures.

1 Introduction

Repeated modular squaring presents an intriguing attribute: it is (believed to be) sequen-
tial. This characteristic assumes a pivotal role in the advancement of time-based cryp-
tographic primitives, such as Time-Lock Puzzles (TLPs) [25,3,20] and Verifiable De-
lay Functions (VDFs) [8,29,23]. In time-based cryptographic primitives, a solver must
continuously perform modular squaring for a (often large) period of time, demanding
significant computational power. Generally, to outsource specific computations (like re-
peated modular squaring) to an untrusted server, Verifiable Computation (VC) schemes
can be employed. These schemes have existed for decades, e.g., see [6,17,16]. However,
the initial VC schemes did not explicitly account for compensating honest servers. With
the emergence of blockchain technology, researchers have devised blockchain-based
schemes that offer compensation to servers supplying accurate computation results. As
a result, at ACM CCS in 2021, Thyagarajan et al. [27] presented “OpenSquare”, a
blockchain-based protocol that facilitates the delegation of the computation of repeated
modular squaring from a client to third-party servers, all while retaining the ability to
verify the accuracy of the results generated by these servers. The primary objective of
this scheme is to empower the client to remunerate the server solely in the event that
the provided result is valid.
Our Contributions. We have identified an attack that can be executed against Thya-
garajan et al.’s OpenSquare [27]. Moreover, we present potential mitigations to address
the aforementioned issue. This attack allows misbehaving entities to receive payments
from the client without actually carrying out the sequential squaring task. Our analy-
sis demonstrates that this attack consistently succeeds, except in scenarios where the

† aydin.abadi@ucl.ac.uk
‡ s.murdoch@ucl.ac.uk

number of colluding parties is exceptionally high. In such instances, these parties may
secure a diminished share of rewards compared to what they would earn if they were
to act honestly. This attack illustrates that OpenSquare cannot attain the two primary
objectives it sought to achieve: (1) incentivising servers to consistently provide their
services, and (2) guaranteeing a high probability that the client receives a valid result.

We have contacted the authors of OpenSquare and provided them with a copy of
the attack description. To maintain fairness, and with the authors’ approval, we have
incorporated their responses into this paper (in Section 5) too.

Broadly speaking, the matter we identify stems from a single scenario: insecure del-
egation of the verification phase. More precisely, in addition to delegating the task of
executing sequential squaring, OpenSquare delegates the task of verifying the results’
correctness to third parties, who may consist of rational and colluding adversaries. How-
ever, the system falls short in countering potentially rational verifiers who may deviate
from the protocol’s description and collaborate with others to increase their payoff.

Our findings provide evidence that special care must be taken when the verification
phase in a VC scheme is delegated to untrusted parties, especially when they have
financial incentives to deviate from the protocol’s description.

2 Related Work

2.1 Verifiable Computation: A Superclass of Delegated Repeated Squaring

Verifiable Computation (VC) is a protocol that enables a party to delegate the computa-
tion of a specific function to resourceful third-party servers, even if they are potentially
untrusted. This delegation allows the party to efficiently verify the computation result
without needing to re-execute the function. Some VC schemes, such as those described
in [6,17,16]), have been designed to support arbitrary computations. In contrast, oth-
ers, like the schemes outlined in [4,24,26]), have been specifically tailored to optimise
efficiency for particular types of computations.

However, the initial VC schemes did not incorporate mechanisms for automatically
compensating honest servers. As a result, various application-specific schemes, as ex-
emplified in [27,1] and generic schemes, like the ones discussed in [2,13], have been
proposed. These schemes allow a party to remunerate a server only if the server pro-
vides a valid result. In the following section, we will provide further details about Open-
Square, presented in [27].

2.2 Time-Lock Puzzles: An Application of Repeated Modular Squaring

Timothy C. May [21] was the first who proposed the idea of sending information into
the future, i.e., time-lock puzzle. Since the scheme that May proposed uses a trusted
agent that releases a secret on time for a puzzle to be solved and relying on a trusted
agent, Rivest et al. [25] proposed an RSA-based TLP scheme. This scheme does not re-
quire a trusted agent and relies on repeated modular squaring. This RSA-based protocol
has been the foundation of many time-lock puzzle schemes that support the encapsula-
tion of an arbitrary message.

2

Since the introduction of the RSA-based time-lock puzzle, various variants of it
have been proposed. For instance, researchers such as Garay et al. [15] have proposed
time-lock puzzle schemes which consider the setting where a client can be malicious
and needs to prove to a solver that the correct solution will be recovered after a certain
time. Also, Baum et al. [7] developed a composable TLP in the universal composability
framework.

Thyagarajan et al. [27] at the ACM CCS 2021 have presented a blockchain-based
protocol called “OpenSquare” that enables a party (for instance in a TLP scheme) to
delegate the computation of sequential squaring to a set of servers/solvers. OpenSquare
is of significant importance because (1) it is the first scheme that considers verifiably
outsourcing sequential squaring and (2) has been published at a prestigious venue.

In OpenSquare, a client posts the number of squaring required and its related public
parameters to a smart contract, say D, and places a certain amount of deposit in D.
The solvers (whose identities are not fixed before the protocol’s execution) are required
to propose a solution before a certain time point. Then, each solver locally computes
the solution and related proof of correctness. It sends to D, the solution, proof, and an
asking price. The contract allows any users or solvers to check the proof and send their
complaints if the proof is invalid. If no complaints are received, then D pays the solver
who asked for the lowest price. The scheme uses a proof system which requires at least
4 exponentiations to verify each proof. Since performing a fixed computation on a smart
contract, say D, costs more than performing the same computation locally, the scheme
requires users (that can include the competing solvers) to locally verify each proof and
report it to D if the verification fails. In this case, D verifies the proof itself.

Recently, Abadi et al. [3] proposed the notion of the “delegated time-lock puzzle”
and its concrete instantiation. The instantiation allows both the client and server/solver
to delegate the recourse-demanding tasks to untrusted semi-honest helpers.

TLPs have various applications, including e-voting [12], timely payments in central
bank digital currency [19], fair contract signing [10], and timed secret sharing [18].

2.3 Verifiable Delay Function (VDF): An Application of Repeated Modular
Squaring

A VDF enables a prover to provide a publicly verifiable proof stating that it has per-
formed a pre-determined number of sequential computations [8,29,9,23]. VDF was first
formalised by Boneh et al in [8]. They proposed several VDF constructions based on
SNARKs along with either incrementally verifiable computation or injective polynomi-
als, or based on time-lock puzzles. Later, Wesolowski [29] and Pietrzak [23] concur-
rently improved the previous VDFs from different perspectives and proposed schemes
based on sequential modular squaring. Most VDFs have been built upon TLP schemes.

VDFs find numerous applications, including their use in decentralised systems to
extract reliable public randomness from a blockchain [8], time-stamping [31], and proof
of storage [5].

3

3 Preliminaries

3.1 Commitment Scheme

A commitment scheme involves two parties, sender and receiver. It also includes two
phases: commit and open. In the commit phase, the sender commits to a message: x as
Com(x, r) = Comx, that involves a secret value: r $← {0, 1}λ. In the end of the commit
phase, the commitment Comx is sent to the receiver. In the open phase, the sender sends
the opening x := (x, r) to the receiver who verifies its correctness: Ver(Comx, x)

?
= 1

and accepts if the output is 1. A commitment scheme must satisfy two properties: (a)
hiding: it is infeasible for an adversary (i.e., the receiver) to learn any information about
the committed message x, until the commitment Comx is opened, and (b) binding: it is
infeasible for an adversary (i.e., the sender) to open a commitment Comx to different
values x′ := (x′, r′) than that was used in the commit phase, i.e., infeasible to find x′,
s.t. Ver(Comx, x) = Ver(Comx, x

′) = 1, where x 6= x′.
There exist efficient non-interactive commitment schemes both in (a) the standard

model, e.g., Pedersen scheme [22], and (b) the random oracle model using the well-
known hash-based scheme such that committing is: G(x||r) = Comx and Ver(Comx, x)

requires checking: G(x||r) ?
= Comx, where G : {0, 1}∗ → {0, 1}λ is a collision-

resistant hash function; i.e., the probability to find x and x′ such that G(x) = G(x′)
is negligible in the security parameter, λ.

3.2 Smart Contract

A smart contract is a computer program/code. It encodes the terms and conditions of an
agreement between parties and often contains a set of variables and functions. A smart
contract code is stored on a blockchain and is maintained by the miners who main-
tain the blockchain. When (a function of) a smart contract is triggered by an external
party, every miner executes the smart contract’s code. Ethereum [30] has been the most
predominant cryptocurrency framework that lets users define arbitrary contracts.

3.3 Counter Collusion Smart Contracts

To enable a party, e.g., a client, to efficiently delegate a computation to a couple of po-
tentially colluding third parties (e.g., servers), Dong et al. [13] proposed two main smart
contracts, “Prisoner’s Contract” (SCPC) and “Traitor’s Contract” (SCTC). SCPC is signed
by the client and the servers. This contract tries to incentivise correct computation by
using the following idea. It requires each server to pay a deposit before the compu-
tation is delegated. It is equipped with an external auditor that is invoked to detect a
misbehaving server when the servers provide non-equal results.

If a server behaves honestly, then it can withdraw its deposit. If a cheating server is
detected by the auditor, then its deposit is transferred to the client. If one of the servers
is honest and the other one cheats, then the honest server receives a reward taken from
the cheating server’s deposit. However, the dilemma, created by SCPC between the two
servers, can be addressed if they can make an enforceable promise, for instance via a
“Colluder’s Contract” (SCCC), in which one party, called “ringleader”, would pay its

4

counterparty a bribe if both follow the collusion and provide an incorrect computation
to SCPC. To counter SCCC, Dong et al. proposed SCTC, that incentivises a colluding server
to betray the other server and report the collusion without being penalised by SCPC.

4 The Attack

In this section, we will explain the attack that can be launched against OpenSquare. In
brief, this attack allows misbehaving parties to receive rewards without actually per-
forming the task of sequential squaring. As we will demonstrate, the flaw (i.e., failing
to take consider the possibility of parties colluding with each other, especially during
the verification phase) in this scheme creates a financial incentive for parties to collude
and neglect the verification of a solution’s correctness.

4.1 Overview of the OpenSquare

OpenSquare aims to enable a client to delegate the computation of sequential squaring
to a set of servers/solvers. This is because the modular exponentiation (for instance
conducted in the original RSA-based TLP [25]) is resource-demanding and a client with
limited resources may not be able to meet the demand. There are three types of entities
involved in OpenSquare; namely, (i) a client: who is willing to pay for a valid solution
(i.e., a predefined number of squaring), (ii) a set of servers: who produce solutions in
order to receive rewards, and (iii) a set of verifiers: who check solutions validity. In this
scheme, the client is assumed to be fully trusted. However, any subset of the servers and
verifiers can be rational adversaries. Briefly, the scheme works as follows:

1. The client sends the details of a sequential squaring operation to a smart contract
and simultaneously deposits a specified amount into the same contract.

2. The servers locally perform the sequential squaring. Each server posts to the smart
contract both the commitment of the result, which has been watermarked, and proof
of the result’s correctness, along with the commitment of an asking price. Addition-
ally, each server deposits a certain amount of coins to the smart contract.

3. The verifiers locally check the proof’s validity. This is done because the smart con-
tract side verification is computationally expensive. If a verifier concludes that a
proof is invalid, then it (i) deposits a certain amount of coins in the smart contract
and (ii) sends a complaint to it. The verifiers must send their complaints within a
pre-defined period of time.

4. If the smart contract receives a complaint, then it verifies the proof itself (using the
expensive verification process). If it concludes that the proof is indeed invalid, the
smart contract rewards the verifier and returns its deposit back.

5. If the smart contract does not receive a complaint before a pre-defined time, then it
will pay the server(s) with the lowest asking price and return their deposit.

4.2 Description of the Attack

The idea behind the attack is that the servers and verifiers collude with each other and
provide arbitrary values (i.e., in place of a valid result and proof) to the smart contract.

5

However, none of them sends any complaints to the smart contract. After the pre-defined
time elapses, the contract sends the reward to them who share it among themselves.
Specifically, this attack operates as follows:

1. The verifiers (e.g., the servers or other users) collude with each other and create
an enforceable collusion/promise contract. To achieve this, they develop a smart
contract, let us call it U , to which the users/servers deposit a certain amount of
coins (greater than the amount of reward proposed by the client) and agree to send
an arbitrary incorrect result to D; otherwise, they will forfeit their deposit.
This type of smart contract, which enforces collusion, has been referred to as the
“colluder’s contract” in [13].

2. The servers send an invalid proof and computation result (e.g., dummy values) to
D and ask it to send the reward to U .

3. None of them send any complaints to D.
4. Since no one complained, D rewards one of the servers (which offered the lowest

price) by sending a certain amount of coins to U .
5. U distributes the reward among the colluding parties and refunds their deposit.

4.3 Colluders’ Payoffs Analysis

Now, we discuss why collusion leads to a higher payoff than not colluding and follow-
ing the protocol. By definition, the computation resources and time required to perform
the sequential squaring are greater than those needed to perform the verification. Ac-
cordingly, the reward for the former task is higher than for the latter. Additionally, the
scheme does not guarantee that a solver who computes a correct result and provides
valid proof will always be rewarded, as other servers may do the same but offer a lower
price. In this case, the effort of the former server goes to waste.

Considering these facts and the parties’ enforceable promise through the collusion
contract, we will discuss the circumstances under which collusion becomes the dom-
inant strategy, resulting in a higher payoff for each of them. For taski, let mi be the
total number of colluding parties, rew(squ)

i be the reward for sequential squaring, and
rew(com)

i be the reward for sending a valid complaint. Then, from the perspective of:

– a verifier: as long as rew
(squ)
i

mi
> rew(com)

i , colluding yields a higher payoff than not
colluding and sending a complaint.

– a solver: although colluding with others and not performing the squaring enables a
solver to earn fewer rewards than the original reward offered by the client, collu-
sion does guarantee a payoff and can surpass the original reward if done multiple

times with different clients and/or puzzles. More precisely: ∃(x, i),
x∑

j=1

rew
(squ)
j

mj
≥

rew(squ)
i , where x is the total number of tasks offered and i ∈ [1, x].

4.4 Consequences of the Attack

In [27, p. 1] it is stated that “OpenSqaure: (1) incentivises servers to stay available
with their services, (2) minimizes the cost of outsourcing for the client, and (3) ensures

6

the client receives the valid computational result with high probability”. However, our
attack demonstrates that (i) the former property cannot be met since the scheme does not
incentivise rational servers to offer their computational services (instead, it incentivises
them to exploit the scheme), and (ii) the latter property, which is the core of the scheme,
cannot be satisfied either, as the client must pay without receiving a valid result.

4.5 Naive Rectifications

One may be tempted to rectify the issue by assuming either (a) one of the verifiers is
honest or (b) the (honest) client itself verifies the proof. However, we argue that this
strong assumption trivialises the OpenSquare design. Below, we elaborate on that.

Assumption 1: There Exist Honest Third-Party Verifiers. There will be two cases
under this assumption.

Case 1: The identities of honest verifiers are known in advance. In this case, the
scheme does not need to involve (i) the smart contract (and its related verification mech-
anism), (ii) the watermarking mechanism, (iii) the deposit paradigm, and (iv) the com-
mitment scheme anymore. Instead, the client sends its coins to the honest verifier. The
servers also send their solutions, related proofs, and asking price in plaintext directly
to the honest verifier who checks the proof and pays the server(s) which provided valid
proofs and offered the lowest price.

Case 2: The identities of honest verifiers are not known in advance. In this case, the
flawed scheme may run for a certain number of times, and those verifiers who have pro-
duced valid complaints are identified by the smart contract. Consequently, the scheme
will be reduced and trivialised to the aforementioned Case 1.

Assumption 2: Honest Client Acts as the Verifier. This case even more trivialises
the solution (compared to the cases under Assumption 1), as it falls in the server-client
setting, where the server directly sends the result, proof, and asking price to the client
which pays the server(s) that provided valid proofs and offered the lowest price.

4.6 Candidate Mitigation

Mitigation 1: Disincentivising Collusion. As we discussed in Section 3.3, Dong et
al. in [13] proposed a counter-collusion mechanism (consisting of two smart contracts,
SCPC and SCTC) that allows a client to outsource resource-intensive computations to a
couple of servers, who are potentially rational and may collude with each other. There-
fore, the counter-collusion mechanism presents a potential solution to address the attack
identified in OpenSquare. In the remainder of this section, we elucidate the utilisation
of this mechanism within the OpenSquare framework. For more comprehensive infor-
mation, interested readers are encouraged to consult [13].

First, all servers and verifiers need to sign SCPC and deposit a predetermined amount
of coins into SCPC. The client also deposits into SCPC (rather than OpenSquare’s smart
contract) the amount it wants to pay to the honest servers and verifier.

7

In the event that one of the colluding parties intends to betray the others, it must
engage with the client in a signing process of SCTC, requiring the client to deposit a
specific amount of coins into SCTC. The betraying party is also obligated to make a
deposit into SCTC. Furthermore, the betraying party needs to provide a “correct result”
to SCTC. In cases where the betraying party is a verifier, the correct result pertains to
the verification output. However, if the betraying party is a server, the correct result
corresponds to the output of the repeated modular squaring.

When no verifier sends any valid complaint or no party betrays other parties, then
OpenSquare operates as before and honest servers are paid from the client’s deposit.
Moreover, when a verifier sends a valid complaint, then OpenSquare operates as before
and pays only the honest verifier. In the event of an inconsistency in the result or an
act of betrayal, the counter-collusion mechanism’s auditor is summoned to detect and
penalise the parties involved in misconduct. The original counter-collusion mechanism
may need slight adjustments to align with the setting of OpenSquare. This is because the
original mechanism, along with its game-theoretic analysis, was initially designed for a
two-server setting, whereas OpenSquare operates within a multi-party environment.

Mitigation 2: Enabling the Smart Contract to Always Check Solutions’ Correct-
ness. OpenSquare delegates the verification task to third-party verifiers due to the com-
putational expense associated with verification itself, which incurs a substantial finan-
cial cost when executed by the smart contract. Nonetheless, OpenSquare has the po-
tential to benefit from the efficient verification mechanisms employed by the schemes
described in [3,1]. These schemes’ verification algorithms use an efficient hash-based
commitment scheme (as presented in Section 3.1) and do not require modular exponen-
tiation. In such a scenario, OpenSquare would not rely on external verifiers; instead,
the smart contract could handle verification once a solution is provided. This verifica-
tion may require further analysis to ensure that other features of OpenSquare, such as
unlinkability, are also upheld.

5 The Response of the OpenSquare’s Authors

We reached out to the authors of OpenSquare and forwarded them a copy of the attack
description. In the interest of fairness and with the authors’ consent, we have included
their responses in this section. As there have been several rounds of communication
between us, we have organised all communications in chronological order.

• Our Comment #1: We noticed an issue/attack in the OpenSquare scheme and we
highlighted it in our paper. Can we have your opinion on the issue?

• Their Response #1: In OpenSquare, we do not explicitly have a separate verifier
set. Rather anyone in the decentralised network can act as a verifier. This includes
servers, regular nodes, or the client who requested the puzzle himself. It is in their
financial interest to act as a verifier and complain about incorrect solutions. There-
fore, assuming rational players, there will be at least one online verifier who will
make the complaint. When we wrote the paper, we let the client himself be this
complainant. Another salient assumption we make is the liveness of the network.

8

Therefore, any user wanting to post a transaction on the blockchain can do so
within a bounded time. Therefore, a verifier’s complaint will go to the OpenSquare
contract within the complaint phase. Now contrary to Assumption 4.5 that you have
in Section 4.5, the client is not honest, but rather mutually distrustful and rational.
We do not consider him to be blatantly irrational and assume he does not go out of
the way to harm other users even when his own utility is hurt.

• Our Comment #2: As we discussed in Section 4.5, the attack works for any rela-
tional verifiers unless we assume the client always acts as the verifier. However,
under this assumption (that the client is [not fully trusted and] always involved in
the verification), the solution in OpenSquare boils down to the solution proposed in
Section 4 “Contingent Service Payment” in [11] (published at ACM CCS 2017).
Furthermore, assuming the client is rational (not trusted) creates an opportu-
nity for a new attack, as I will explain. In OpenSquare, the client itself generates
the parameters for squaring and posts them on the smart contract. The solvers/servers
do not check these parameters. In the OpenSquare paper, there exists no mechanism
that allows the solvers/servers to check these parameters. Ill-formed parameters can
prevent honest solvers from generating the correct result on time. This means, one
of the servers (say server A) can act as a client to generate ill-formed parameters
and put that on the smart contract. This can increase the rational server A’s payoff
because other solvers allocate resources to compute a correct result but they never
manage to do that, because the parameters have been ill-formed (e.g., they have
been set up to be solved in 10 years’ time). But server A can work on the request
posted by other clients and get the reward for that.

• Their Response #2: Recall that the request is essentially to perform T sequential
squarings from a starting value g in the modular group. This is strictly a deter-
ministic computation. However, if the group parameters are ill-formed, it could
potentially lead to some targeted DoS attacks, as we may not be able to guarantee
anything about the copy-prevention of the solutions. This is just intuition, but it has
to be formally checked if this indeed is possible for the Wesolowski VDF. But one
could quickly fix this problem if the client adds proof that the group parameters
were generated correctly. Concretely, in the RSA case, the client has to add proof
that the N is a valid RSA modulus. This will not affect the cost of OpenSquare, as
the contract does not do the verification.
Note that the problem does not arise for the unlinkable extension of OpenSquare
as we have a public HTLP setup available. Regarding point 1, Campanelli et al.’s
work [11] does not exactly fit our setting. Recall that in OpenSquare, the client is
the first one to make a move and never interacts with the servers again. To our un-
derstanding, what they have in Section 4 does not fit as there is interaction between
A and B, or it’s the seller making the first move, or the verification is private.

6 Discussion on OpenSquare’s Authors’ Reply

According to the OpenSquare’s authors’ response:

– “any party can be a verifier”. We argue (as discussed in Section 4.2 and comment
#2 in Section 5) that this is not the case. Because our attack works for any relational

9

verifiers unless we assume the client always acts as the verifier. This is an important
and strong assumption which has not been stated in the paper. This assumption
itself must rely on one of the following assumptions: (i) the client is fully honest
or (ii) the client is rational. As we discussed in Section 4.5, in the former case, the
solution offered by OpenSquare can be trivialised. However, OpenSquare cannot
deal with the latter case, as it requires further proving and verification algorithms
(as we will discuss shortly), which are not present in the OpenSquare paper.

– “the client can be a rational adversary”. We argue that (as discussed in comment
#2 in Section 5) assuming the client is rational creates an opportunity for a new
attack which OpenSquare cannot deal with.

– “additional proving and verification mechanisms must be in place to ensure a ratio-
nal client cannot provide ill-formed parameters to the servers”. We highlight that
the OpenSquare paper does not offer these additional mechanisms. Furthermore,
even if OpenSquare were to offer these mechanisms (to deal with a rational client),
then (i) it would still require the client to consistently verify the correctness of so-
lutions provided by the servers, which contradicts OpenSquare’s initial assumption
that any party can be a verifier, and (ii) the service offered by OpenSquare could
easily be provided by the “Contingent Service Payment (CSP)” method in [11],
which was published four years prior to the OpenSquare paper. Shortly, we will
delve into further discussion on the latter point.

– “the work of Campanelli et al. [11] does not exactly fit OpenSquare’s setting”.
We argue that this is not the case and CSP in [11] fits the OpenSquare setting,
because (i) in both settings, the client as a verifier must check the solutions provided
by the servers and (ii) in the CSP the (zero-knowledge) proving and verification
algorithms can be made non-interactive by relying on Fiat-Shamir heuristic [14].
Moreover, CSP works for publicly verifiable schemes as well.

7 Future Work

Recently, researchers introduced a “payment channel” for the “Monero” cryptocur-
rency, in [28]. This payment channel leverages OpenSquare service, enabling a party to
outsource the task of opening “verifiable timed linkable ring signatures” commitments
to servers. Consequently, this approach empowers the party to effectively manage nu-
merous Monero payment channels concurrently, removing the limitation imposed by its
computational capacity. To further enhance the understanding of this proposition, future
research could delve into exploring the potential impacts of our findings on the security
aspects of the proposed payment channel.

Acknowledgements

Aydin Abadi was supported in part by REPHRAIN: The National Research Centre
on Privacy, Harm Reduction and Adversarial Influence Online, under UKRI grant:
EP/V011189/1. Steven J. Murdoch was supported by REPHRAIN and The Royal Soci-
ety under grant UF160505. We would like to thank Dan Ristea for his comments.

10

References

1. Abadi, A., Kiayias, A.: Multi-instance publicly verifiable time-lock puzzle and its applica-
tions. In: FC (2021)

2. Abadi, A., Murdoch, S.J., Zacharias, T.: Recurring contingent service payment. In: IEEE
EuroS&P (2023)

3. Abadi, A., Ristea, D., Murdoch, S.J.: Delegated time-lock puzzle. arXiv preprint
arXiv:2308.01280 (2023)

4. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection on out-
sourced private datasets. In: FC (2016)

5. Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of storage-time: Efficiently checking
continuous data availability. In: NDSS. The Internet Society (2020)

6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic
time. In: ACM STOC (1991)

7. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A foundation of
time-lock puzzles in UC. In: EUROCRYPT (2021)

8. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO’18

9. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR Cryptol.
ePrint Arch. (2018)

10. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000
11. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contingent pay-

ments revisited: Attacks and payments for services. In: CCS’17
12. Chen, H., Deviani, R.: A secure e-voting system based on RSA time-lock puzzle mechanism.

In: BWCCA’12 ,
13. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, distrust, and

rationality: Smart counter-collusion contracts for verifiable cloud computing. In: CCS (2017)
14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature

problems. In: CRYPTO (1986)
15. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze, M. (ed.)

FC’02
16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing com-

putation to untrusted workers. In: CRYPTO (2010)
17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for

muggles. In: ACM STOC (2008)
18. Kavousi, A., Abadi, A., Jovanovic, P.: Timed secret sharing. Cryptology ePrint Archive

(2023)
19. Kiayias, A., Kohlweiss, M., Sarencheh, A.: Peredi: Privacy-enhanced, regulated and dis-

tributed central bank digital currencies. In: ACM CCS (2022)
20. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In:

CRYPTO’19
21. May, T.C.: Timed-release crypto (1993), https://cypherpunks.venona.com/

date/1993/02/msg00129.html
22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:

CRYPTO ’91
23. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer

Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

24. Ren, Y., Ding, N., Zhang, X., Lu, H., Gu, D.: Verifiable outsourcing algorithms for modular
exponentiations with improved checkability. In: ACM AsiaCCS (2016)

11

https://cypherpunks.venona.com/date/1993/02/msg00129.html
https://cypherpunks.venona.com/date/1993/02/msg00129.html

25. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech.
rep. (1996)

26. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASIACRYPT. pp. 90–107
(2008)

27. Thyagarajan, S.A.K., Gong, T., Bhat, A., Kate, A., Schröder, D.: Opensquare: Decentralized
repeated modular squaring service. In: CCS (2021)

28. Thyagarajan, S.A.K., Malavolta, G., Schmid, F., Schröder, D.: Verifiable timed linkable ring
signatures for scalable payments for monero. In: ESORICS (2022)

29. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT’19

30. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper (2014)

31. Wu, Q., Xi, L., Wang, S., Ji, S., Wang, S., Ren, Y.: Verifiable delay function and its
blockchain-related application: A survey. Sensors (2022)

12

	Decentralised Repeated Modular Squaring Service Revisited: Attack and Mitigation

