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Abstract

How can amodel owner prove they trained their model according to the correct specification? More
importantly, how can they do so while preserving the privacy of the underlying dataset and the final
model? We study this problem and formulate the notion of zero-knowledge proof of training (zkPoT),
which formalizes rigorous security guarantees that should be achieved by a privacy-preserving proof of
training. While it is theoretically possible to design zkPoT for any model using generic zero-knowledge
proof systems, this approach results in extremely unpractical proof generation times. Towards design-
ing a practical solution, we propose the idea of combining techniques from MPC-in-the-head and zk-
SNARKs literature to strike an appropriate trade-off between proof size and proof computation time.
We instantiate this idea and propose a concretely efficient, novel zkPoT protocol for logistic regression.

Crucially, our protocol is streaming-friendly and does not require RAM proportional to the size of
the circuit being trained and, hence, can be adapted to the requirements of available hardware. We
expect the techniques developed in this paper to also generally be useful for designing efficient zkPoT
protocols for other relatively more sophisticated ML models.

We implemented and benchmarked prover/verifier runtimes and proof sizes for training a logistic
regression model using mini-batch gradient descent on a 4 GB dataset of 262,144 records with 1024 fea-
tures. We divide our protocol into three phases: (1) data-independent offline phase (2) data-dependent
phase that is independent of the model (3) online phase that depends both on the data and the model.
The total proof size (across all three phases) is less than 10% of the data set size (< 350MB). In the on-
line phase, the prover and verifier times are under 10 minutes and half a minute respectively, whereas
in the data-dependent phase, they are close to one hour and a few seconds respectively.

∗UC Berkeley sanjamg@berkeley.edu
†NTT Research aarushi.goel@ntt-research.com
‡University of Wisconsin, Madison jha@cs.wisc.edu
§Meta saeedm@meta.com
¶University of Virginia mohammad@virginia.edu
∥UC Berkeley guruvamsip@berkeley.edu
∗∗UC Berkeley mingyuan@berkeley.edu

1

mailto:sanjamg@berkeley.edu
mailto:aarushi.goel@ntt-research.com
mailto:jha@cs.wisc.edu
mailto:saeedm@meta.com
mailto:mohammad@virginia.edu
mailto:guruvamsip@berkeley.edu
mailto:mingyuan@berkeley.edu


Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 (Packed) Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Secure Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Secure Fix-point Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 (List) Polynomial Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Protocols for Sumcheck and Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Formalizing Proof of Training 16

4 MPC Protocol for MPC-in-the-Head 18
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Pre-Processing Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Online Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Zero-Knowledge Sub-Routines for Specific Relations 23
5.1 Checking Consistency of Packed Secret Shares . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Checking Consistency of Correlated Randomness . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Checking the Range for Truncation Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Checking Consistency of Data Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Zero-Knowledge Proof of Training for Logistic Regression 29
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Extension: zkPoT for Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Implementation and Evaluation 35
7.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



1 Introduction

Machine learning models continue to advance at an unprecedented pace, characterized by ever-expanding
capabilities and resource demands [TMS+23, ND21]. State-of-the-art models are predominantly developed
by organizations possessing extensive resources (e.g., openAI and Google), ranging from computational
resources, proprietary data, and intellectual property. In certain instances, model trainers must provide
evidence of compliance with particular training specifications, while maintaining the confidentiality of the
datasets or the model itself. Furthermore, they might need their evidence of training to be verifiable with
fewer resources than were required for training the model.

Consider, for instance, a model proprietor offering the model as a service (e.g., for a loan or credit ap-
proval). They may face allegations of neglecting requisite safety measures intended to ensure the fairness
of decisions1 or the privacy of data [nyt]. In such scenarios, the model owner may be compelled to present
proof of adhering to the appropriate specifications that satisfy constraints related to safety properties.
Another type of evidence that may be required pertains to model ownership, as an entity that trains and
provides a model as a service might need to substantiate their claims against accusations of model theft or
distillation [TZJ+16] by providing a proof that they trained the model themselves.

In this study, we present the concept of proof of training (PoT), a primitive that enables model trainers
to prove the proper execution of training optimization. Specifically, while training a model 𝑀 on dataset
𝐷 , the learner concurrently generates a proof 𝜋 . Subsequently, a verifier equipped with 𝜋 can verify
whether the prover has trained the model according to the specifications of the learning algorithm. A
crucial requirement for such a proof system, as exemplified by both aforementioned applications, is zero-
knowledge [GMR85]. The proof 𝜋 must preserve the confidentiality of the model 𝑀 and the dataset 𝐷
used during training. In applications where PoT aims to demonstrate the privacy of model training (e.g.,
proving that the model was trained with differentially private stochastic gradient descent (DPSGD), data
privacy is paramount, rendering the proof irrelevant if the entire training dataset is exposed. In the case
of model ownership, exposing the model or dataset would likewise be self-defeating. If a model holds
sufficient value to warrant a proof of ownership, then revealing the model parameters or the training
dataset would be undesirable. Consequently, we concentrate on zero-knowledge proofs of training that
preserve the confidentiality of the model and the associated dataset, which we call zero-knowledge proof of
training (zkPoT).

At first glance, the notion of zkPoT may appear paradoxical; how can one substantiate model training
without disclosing the model or training set? The crux lies in the model owner providing a PoT for a model
and a dataset to which they have cryptographically committed [Nao90]. Therefore, a proof of training
validates a statement of the following nature: "The prover possesses a model𝑀 consistent with a commit-
ment 𝑐𝑀 , dataset 𝐷 is consistent with a commitment 𝑐𝐷 , and the model 𝑀 has been trained on dataset 𝐷
according to training algorithm 𝐿." To verify this statement, the verifier receives a proof 𝜋 , commitments
𝑐𝑀 , 𝑐𝐷 , and the training algorithm specifications (such as the number of steps, architecture, learning rate,
batch size, etc.). The verifier can then proceed to further examine the commitments of the model and the
dataset. For example, the verifier may request proof that a query response was generated by a model 𝑀
consistent with the commitment 𝑐𝑀 (e.g., using a proof of inference [LXZ21a, LKKO20, FQZ+21]) or a proof
that the dataset𝐷 linked to commitment 𝑐𝐷 has certain properties (e.g., containing specific examples, using
commitments with partial selective opening [BHK12]).

1As a concrete example, there is well-documented evidence[exa] showing that black homeowners typically have higher in-
terest rates than white homeowners, even when they have substantially higher incomes.
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1.1 Our Contributions

In this work, we formulate the notion of zero-knowledge proof of training (zkPoT) as a cryptographic
proof primitive. This proof system enables the learner to prove that the training was done according to
the desired specification without leaking the dataset or the final model.

Over the years, significant research has resulted in zero-knowledge proof systems that are capable of
generating privacy-preserving proofs for any generic computation, and theoretically, one could consider
using such proof systems for generating a proof of ML training. However, these generic proofs typically
either require a significant overhead in the proof generation time or produce a gigantic proof. For ex-
ample, succinct zero-knowledge non-interactive argument (zk-SNARK) [Kil92, Mic94, BCC+17] result in
extremely short proofs, but incur a massive (of the order of at least a thousand times) overhead in the proof
generation time as compared to the training time, rendering them essentially infeasible for any reason-
ably sophisticated training task. On the other hand, the MPC-in-the-head style techniques [IKOS07] incur
minimum overhead in generating the proof, but result in proof sizes (as well as verification time) that are
as large as the training circuit, making it infeasible to communicate this proof.

To bridge this gap between theory and practice, in this work, we propose the idea of combining zk-
SNARK techniques and theMPC-in-the-head techniques for the purpose of zkPoT. This allows us to achieve
an appropriate trade-off between the proof generation time and proof size. In particular, we instantiate our
idea and design a concretely efficient zkPoT for logistic regression. In detail, assuming we have a dataset
with 𝑁 records and 𝐷 features each, our proof size only depends linearly on 𝑁 and is independent of 𝐷 .
This technique enables the possibility of working with massive datasets.

Another significant advantage of our approach is its streaming-friendliness. Unlike most zkSNARKs,
our proof generation does not require holding the entire computation trace in main memory (RAM). In-
stead, it can be loaded in from secondary memory as and when required. As a result, there is no funda-
mental memory limit to how large a model and data set can be trained using our approach, making it more
compatible with ML training tasks.

Implementation and Evaluation. We test our protocol for logistic regression and are able to generate
zero-knowledge proofs of training with reasonable efficiency. For the sake of exposition, we find it most
instructive to divide our protocol into three phases — Offline Phase (independent of data and model), Data
Checks Phase (only dependent on data), and Online Phase (dependent both on the data and model). These
provide insights into the bottlenecks of our protocol and are also a meaningful separation as the offline
phase can be carried out before the data is even available and data checks phase can be repurposed for
proving properties about the dataset and for training a different model.

Here, we provide prover/verifier runtimes and proofs sizes for training a logistic regression model
using mini-batch gradient descent on a data set with 262,144 entries, and 1024 features each (amounting to
4 GB in size). The offline prover/verifier time have not been benchmarked, see Section 7 for details on how
proof size was estimated. We implemented a prototype of our zkPoT algorithm in Rust and benchmarked
the prover/verifier run time and proof sizes.

Phase Prover (s) Verifier (s) Size (MB)

Online 518 24 196
Data Checks 3690 2.5 5.3
Offline - - < 140
Total - - < 350
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To put our results in context, the time taken to carry out the actual training is roughly 1 s. However,
when training is done over a larger 128-bit finite field that our protocol requires, instead of rust’s native
f64 data type, it takes roughly 11.5 s. We note that comparing the overhead of generating a proof of
training against both the above times is meaningful as the former gives the overhead on top of optimized
training algorithms, whereas the latter provides insight into how much overhead is introduced by our
techniques beyond the seemingly inherent overhead introduced by moving to larger finite fields that are
not natively supported by modern CPU architectures. This large cryptographic overhead2 is typical of
zero-knowledge proofs even for protocols that were specially designed for machine learning circuits. For
instance, [LXZ21b] designed a highly optimized proof of inference for CNNs and had similar cryptographic
overheads.

Moreover, using an off-the-shelf zkSNARK such as Groth16 [Gro16] is completely infeasible as it would
require massive amounts of memory. In fact, prior work [BFH+20] that attempted to do this for a linear
model ran out of memory for a training data set of just 2000 points. Our speedup is mainly due to the use
of fast hash-based proofs and completely avoiding elliptic curve operations. Although our proof sizes are
not as small in comparison to zkSNARKs, we argue that this is a favorable trade-off in many situations
where the verifier is reasonably powerful, albeit still sub-linear.

Real World Applicability. Although logistic regression is a relatively simple model, a zkPoT for logistic
regression is already quite useful in many scenarios. For instance, logistic regression plays an important
role in the context of foundation models trained on vast datasets. The success of these models allows
for the fine-tuning of smaller networks on top of the feature extractors, even when working with smaller
datasets [RKH+21]. In such cases, it is well-motivated for model owners to generate a zkPoT for proving
that the fine-tuning was done honestly w.r.t. a commitment to the output of the foundation model.

Moreover, logistic regression is only the first step. Developing practical zkPoTs for more sophisticated
models is an exciting future research direction, and we expect the techniques that we develop in this work
to be generally applicable to more sophisticated models. We refer the readers to more discussion on this
in Section 1.2.

1.2 Technical Overview

As discussed in the previous section, our objective is to give a sound, zero-knowledge proof to convince
the verifier that the final model is the output of an honest training process under some committed data set
(refer to Section 3 for formal definitions).

Challenges with Existing Approaches. We start by discussing why naïvely using some common ex-
isting approaches fail to give a practically feasible solution for our task.

(I) zkSNARKs: One of the most popular types of zero-knowledge proof systems are zero-knowledge
succinct non-interactive arguments of knowledge (or zkSNARKs) [Mic94, BCC+17]. zkSNARKs allow
a prover to generate a small proof of honest computation. Over the last few years, zkSNARKs have
been extensively studied and have led to concretely-efficient proof systems for several real-world ap-
plications [BCG+14, ZkR21, KGC+18, ZFZS20, RPX+22, GHH+23]. In fact, zkSNARKs have already been
successfully implemented in some cases for proof of inference [LKKO20, LXZ21a, FQZ+21].

In general, while zkSNARKs enable extremely fast verification of zero-knowledge proofs, the proof
generation time is significantly slower. This is primarily due to the use of cryptographic operations, which
are several orders of magnitude more expensive than the computation being proved, resulting in very large

2That is the ratio between the time to generate the proof and the time to merely do the training.
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cryptographic overhead. In particular, due to the massive amount of data used in training, and the size
of the models that are being trained, the amount of computation involved in training ML models is very
large. Introducing large cryptographic overheads on top of this would make it completely infeasible.

Additionally, most of the existing zkSNARKs would require the prover to load the entire trace of com-
putation in the memory. That is, the prover needs to first do the training in the entirety, keep track of all
the intermediate values computed during training, then load them all into the memory and perform some
computation on it (e.g., fast Fourier transform) to produce a proof. This highly undesirable feature is a
deal-breaker for applying existing zkSNARKs.3

Finally, another difficulty in applying zkSNARKs to ML training is type mismatch. All zkSNARKs
work by representing the given computation as an arithmetic circuit4 or a set of constraints over some
finite field. In contrast, ML training is typically done over real-valued data. Therefore, to use zkSNARKs,
one must translate an algorithm for real numbers into an arithmetic circuit. However, a typical training
task involves many non-arithmetic operations. For instance, if one uses a field element to represent a real
number with a fixed precision,5 a truncation operation must be applied after each multiplication to restore
the precision. Therefore, translating these non-native operations into arithmetic operations introduces
a significant overhead. As a result, translating such computations into an arithmetic circuit and then
computing a zkSNARK proof over it (using existing approaches), is prohibitively expensive.

(II) MPC-in-the-head: The other most common proof generation technique that yields efficient proof
systems is one based on MPC-in-the-head [IKOS07]. MPC-in-the-head is a generic approach for building
zero-knowledge proofs from secure multiparty computation protocols. Recent works [AHIV17, GMO16,
CDG+17, KKW18] have shown that this technique can be used to design proof systems with efficient proof
generation.

The advantage of this approach in our context is that efficient MPC protocols for non-arithmetic oper-
ations exist. For instance, if parties hold secret shares J𝑎K of 𝑎 and wish to truncate it by𝑚 bits, they could
reconstruct 𝑎 + 𝑟 in the clear using some random mask 𝑟 and locally compute (𝑎 + 𝑟 ) mod 2𝑚 to correctly
cancel the last𝑚 bits of 𝑎(refer to Section 2.4 for details). Crucially, these non-arithmetic operations can
be done in a distributed manner in MPC protocols without translating into arithmetic operations. Conse-
quently, these non-arithmetic operations no longer pose a significant barrier to the prover’s run time.

A disadvantage of the MPC-in-the-head approach, however, is that the proof size is large. Indeed, the
ZK proof solely generated using the classical MPC-in-the-head approach has a proof size linear in the size
of the computation. This is in sharp contrast to zkSNARKs, where proof size is sublinear in the size of the
computation. This is far from ideal for massive computations, such asML training. Indeed, communicating
proofs whose size is proportional to the computation involved in ML training would be nearly impossible
over most networks.

A New Framework. To overcome the barriers presented by existing approaches, we propose a new
framework for the efficient generation of succinct zero-knowledge proofs. Conceptually, our framework
can be described as follows. Suppose we want to generate a proof for some computation (represented by
a circuit C), consisting of two types of gates/operations (e.g., arithmetic and non-arithmetic operations).
Our idea here is to employ two types of zero-knowledge proof techniques— one for each type of operation.

3For instance, a recent work [BFH+20] used Ligero++ to produce a proof for linear model. Even for such a simple training
task with a data set of size 2000, it ran out of memory (See Section 1.3).

4Arithmetic circuits only have addition and multiplication gates with respect to the underlying field.
5Many of the existing private preserving machine learning (PPML) literature considers training with fixed-point real numbers.

See, for instance, [LJLA17, CPR18, AS19, RRG+21, KVH+21].
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Assuming each of these techniques are well-suited for the respective type of operations, we propose a novel
way to compose the two proof techniques to obtain an efficient zero-knowledge proof system for C.

Traditionally, zkSNARKs are not streaming friendly and require memory proportional to the entire
circuit6, whereas MPCitH is streaming friendly and only requires memory proportional to what is needed
when simply evaluating the circuit. Our new framework preserves streaming friendliness by carefully
combining techniques from the succint proofs literature with MPCitH. We refer the reader to Section 7 for
a more detailed discussion on why our protocol is streaming friendly.

At a high-level, our proof will consist of commitments to a number of intermediate states in the circuit
execution. Furthermore, we generate a proof for each type of operation, proving that the execution of that
operation is consistent with the committed states and the output. Evidently, the proof size and the prover
time here will be a sum of that in each proof system, which depends on the number/size of operations of
each type.

In this work, we apply this framework to the training task. Naturally, we divide the operations into
arithmetic and non-arithmetic operations. We use a custom MPC-in-the-head style zero-knowledge proof
for the non-arithmetic operations and techniques from the zkSNARK literature for the arithmetic opera-
tions.

Main technical novelty. In MPC-in-the-head style protocols, the prover executes an MPC protocol for
the circuit C and commits to the view of each party in the MPC. The verifier picks a random subset of
parties and asks the prover to reveal the views of those parties in the clear. The verifier accepts the proof
if the revealed views of the parties are consistent with an honest execution of the MPC protocol. The
zero-knowledge property follows from the privacy of the MPC protocol.

As discussed earlier — in comparison to zkSNARKs — while this technique is better suited to handle
real number operations, the proof size here is linear in the circuit size. To overcome this limitation, we
make use of the techniques from zkSNARKs. In particular, when the verifier requests the opening of a
party’s view, we do not send the entire view in the clear. Instead, we give a succinct proof proving that the
arithmetic operation each party does locally is done correctly. Note that some parts of the view are still
revealed in the clear to allow the verifier to verify that the non-arithmetic operations are done correctly.

CustomMPC: The above use of zk-SNARKs helped us partially reduce the proof size by allowing the prover
to not reveal the entire view of each party. However, the communication of theMPCprotocol is still entirely
revealed, which itself could be large (and contribute to a large proof size). Recently, there has been a lot of
progress [BGJK21, GPS22, EGPS22] on reducing the communication complexity of MPC protocols using
techniques of packed secret sharing [FY92]. We design a customMPC protocol for logistic regression based
on packed secret sharing to further reduce the communication complexity of our MPC protocol (and have
it be sublinear in the size of the computation). This, in turn, helps us ensure that the proof size is sublinear
in the size of the data and also improves the prover run-time.

It is worth noting that effectively implementing the MPC-in-the-head template typically requires start-
ing with an MPC protocol that includes "some notion of robustness" against malicious adversaries. As dis-
cussed earlier, ML training is usually done over real-valued data. We use fixed-point arithmetic to represent
real numbers with a fixed decimal precision using field elements7 and borrow techniques from [CS10] to
design our MPC protocol that works for fixed-point arithmetic. When working with this representation,
we need to include a truncation step (which is a non-arithmetic operation) after every multiplication gate
in the circuit. The way to handle these truncation steps (and all other non-arithmetic operations in ML

6Some exceptions include recent works such as [BCHO22, BHR+20, BHR+21] that introduce new techniques to design
memory-friendly zkSNARKs at the cost of increasing the proof size.

7we refer the reader to Section 2.4 for a detailed discussion on how fixed-point arithmetic works
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training) inside an MPC is to have the parties collectively sample shares of random field elements from a
certain range. Sampling them in a distributed manner within an MPC requires adding additional checks
to ensure they are sampled from the right distribution (necessary for robustness), which adds significant
overhead to the MPC protocol. We avoid this overhead by designing an MPC in the preprocessing hybrid
model, where we assume that these shares were generated in the preprocessing phase by a “trusted entity”.
In our MPC-in-the-head protocol, we allow the prover to act as this trusted entity to generate these ran-
dom shares and give zkSNARK proofs8 to the verifier certifying their validity and consistency. We defer
more details to the technical sections of the paper.

Summary. In summary, our approach naturally enjoys the best of both worlds by combining MPC-in-
the-head-based ZK proofs with zkSNARKs. That is, it enjoys a low prover time for the non-arithmetic
operations and a succinct proof size for the arithmetic operations. As a result, our proof is both concretely
efficient and of size sublinear in the data set.

Training Function. As a very first step toward designing concretely efficient proof systems for honest
machine learning, we consider training linear models with logistic regressions in this work. Given a set of
data points (x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 ) ∈ R𝐷 × {0, 1}, the objective is to train a good linear modelw ∈ R𝐷 under
some activation function 𝑓 : R → (0, 1) and the cross-entropy loss function.9 We consider the stochastic
gradient descent method with batching [MR18] for the training. In this setting, the training algorithm
starts with some initial weights w0 ∈ R𝐷 and iteratively updates the model w as

w𝑗 ← w𝑗−1 −
𝑎

𝐵
· X⊺

𝑗
×
(
𝑓
(
X𝑗 ×w𝑗−1

)
− y𝑗

)
,

where 𝑎 is some constant and (X𝑗 , 𝑦 𝑗 ) are different 𝐵-sized batches of the data. We will sometimes use the
term models and weights interchangeably. We refer the reader to Section 2.2 for more details.

Limitations and Extensions of Our Techniques. One limitation of our techniques is that weworkwith
a slightly modified training algorithm. For instance, we used a piece-wise linear function as an approxima-
tion of the activation function in logistic regression. Moreover, we employ fixed-point arithmetic instead
of floating-point arithmetic. These slight modifications are fairly standard in privacy-preserving ML and
have been shown to not greatly affect the accuracy [CBD15, MZ17, CDNF+21, EMMZ20]. We should note
that, if one insists on proving that the training was done correctly without these simplifications, then the
efficiency of the prover will likely worsen.

However, if one is willing to make these slight modifications to the training procedure, then the tech-
niques that we develop in this paper could be more generally beneficial for designing concretely efficient
zero-knowledge proof systems, that achieve an appropriate trade-off between proof generation time and
proof size. For instance, there are no fundamental barriers to applying our techniques for designing a zkPoT
for more complicated models such as convolution neural networks (CNN) with fixed-point arithmetic and
where the activation function is approximated with appropriate piece-wise linear functions and all other
operations are essentially matrix multiplications (we discuss more details in Section 6.3). However, one
will need to work out the details and further optimize this protocol, since the training time in such mod-
els without any privacy/integrity guarantees is already significantly longer. We leave these extensions as
exciting directions for future work.

Finally, while our zkPoT achieves sublinear proof size and verification time, they are not of constant
size. In particular, they are quite larger than zkSNARK proofs. However, this is a price we pay for a
reasonable proof generation time.

8For this, we design custom zk-SNARK proofs for some specific relations.
9That is, 𝐻 (𝑎, 𝑏) = −𝑎 · log𝑏 − (1 − 𝑎) · log(1 − 𝑏) for all 𝑎, 𝑏 ∈ (0, 1).
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1.3 Related Works

Recently, many works [LKKO20, LXZ21a, FQZ+21, blo22a, blo22b] have explored using zk-SNARKs for
secure inference. Here, the objective is to convince the user of the integrity of the machine learning
predictions. In general, inference involves a much smaller computation compared to training and, hence,
the use of zk-SNARKs has found success in this setting.

To our best knowledge, Ligero++[BFH+20] is the only work that mentions that their succinct proof
system can be used for training. They provide estimates when trying to prove that linear regression was
done correctly. Compared to our work, linear regression is a much simpler (and less commonly used)
model than logistic regression, as there are no non-linear activation functions. Even for this simple task,
Ligero++ runs out of memory after a training dataset of 2000, even when using a machine with 64 GB
of RAM. More crucially, their proof system does not prove that the model is trained honestly; rather, it
only proves that the final model has a high accuracy under the mean square loss function by utilizing
the closed-form solution of linear regression. This is highly limited and undesirable for many reasons.
First, it does not generalize to more complicated models, such as logistic regression, which does not have
a closed-form solution. Second, training in practice does not always produce the optimal solution under
the corresponding loss function, which renders this approach infeasible. Finally, for many training tasks,
it is critical not only to achieve high accuracy, but also to ensure that the training process follows specific
algorithms to satisfy fairness, differential privacy, and other requirements [CDG18, PMSW18].

In the SNARKs literature, several works [SVP+12, WYX+21, GJJZ22] also initiated the study of improv-
ing the efficiency of SNARKs for non-arithmetic operations such as floating-point numbers and integers.

On the other hand, designing efficient MPC protocol for machine learning has been extensively studied
in the private preserving machine learning (PPML) literature. By now, we have a wide range of efficient
protocols [MZ17, MR18, CGR+19, WGC19, ASKG19, CRS20, KVH+21, PSSY21, RBS+22] computing vari-
ous ML tasks. Motivated by practical scenarios, those works typically consider protocols among a small
number of parties, for instance, two parties or three parties. The MPC-in-the-head framework that we
consider requires a large number of parties, for instance, 𝑛 = 128. This is because the soundness of the
MPC-in-the-head approach grows exponentially in the number of parties.

Proof of Learning. The work of [JYCC+21] introduces the notion of proof of learning that is closely
related to the notion of proof of training. According to [JYCC+21], a proof of learning protocol “demon-
strates that a party has expended the computation required to obtain a set of model parameters correctly”
and that “an adversary seeking to illegitimately manufacture a proof-of-learning needs to perform at least
as much work than is needed for gradient descent itself”. The key difference between our work and proof
of learning is that we do not care about the running time the adversary needs to create a proof (except for
running in polynomial time). The adversary should not be able to create a proof unless they perform the
underlying computation. Additionally, a proof of learning does not care about the zero-knowledge which
is a key aspect of our study. The notion of proof of learning has been subsequently studied in several
works[TJSP22, Yam22, MWW22, FJT+22]. Notably, the work of [KCC23] shows that if one uses the proof
of learning protocols introduced in [JYCC+21] as a proof for correctness, then they can indeed forge these
proofs and show that models are trained privately.

1.4 Road Map

The rest of the paper is organized as follows. Section 2 includes the necessary preliminaries. Section 3
formally presents our proof of training model. Section 4 gives the MPC protocol for logistic regression.
Section 5 introduces several sub-routines for giving a succinct proof of specific relations. Section 6 presents
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our final scheme, which combines theMPC protocol in Section 4 with the sub-routines in Section 5. Finally,
Section 7 discusses the concrete efficiency of our scheme.

2 Preliminaries

In this work, we use _ as the computational security parameter. We use negl(_) for a negligible function,
which means that for all polynomial 𝑓 (_), negl(_) < 1/𝑓 (_) for large enough _. In addition, we use ^ for
the statistical security parameter. Next, we recall some useful primitives for our construction.

2.1 (Packed) Secret Sharing

Threshold secret-sharing schemes allow one to distribute a secret 𝑠 ∈ F among 𝑛 parties such that any 𝑡 +1
parties can reconstruct the secret, while any 𝑡 parties cannot learn any information about the secret. In
this work, we will use Shamir’s secret sharing [Sha79]. To share a secret 𝑠 , one picks a random polynomial
𝑓 with degree 𝑡 such that 𝑓 (𝛼0) = 𝑠 . The secret share of the 𝑖𝑡ℎ party is 𝑓 (𝛼𝑖) ∈ F, where 𝛼0, 𝛼1, . . . , 𝛼𝑛 are
some fixed field elements that are FFT-friendly.

Shamir’s secret sharing can be extended to share multiple secrets, known as packed secret shar-
ing [FY92]. In particular, to pack ℓ secrets (𝑠1, 𝑠2, . . . , 𝑠ℓ ) ∈ Fℓ , one picks a degree 𝑡 polynomial 𝑓 such
that 𝑓 (𝛼0) = 𝑠1, 𝑓 (𝛼−1) = 𝑠2, . . . , 𝑓 (𝛼−(ℓ−1) ) = 𝑠ℓ . The 𝑖𝑡ℎ secret share shall be 𝑓 (𝛼𝑖) ∈ F. Again,
𝛼−(ℓ−1) , . . . , 𝛼−1, 𝛼0, 𝛼1, . . . , 𝛼𝑛 are some fixed field elements that are FFT-friendly. In this case, privacy
will hold against a corruption of any 𝑡𝑝 = 𝑡 − ℓ parties, while 𝑡 + 1 parties are sufficient to reconstruct all ℓ
secrets.

Well-Formedness of Secret Shares
In our protocol, we sometimes need to check that the secret shares are well-formed. Note that the

secret shares are well-formed if and only if they form a Reed-Solomon codeword with dimension 𝑡 + 1
and block length 𝑛. Therefore, one may check the well-formedness by using the parity check matrix10
𝐻 ∈ F𝑛×(𝑛−𝑡+1) . That is, (𝑠1, . . . , 𝑠𝑛) is well-formed if and only if (𝑠1, . . . , 𝑠𝑛) ·𝐻 = 0. In particular, one may
pick a random vector 𝑟 ∈ F𝑛−𝑡+1, which gives a random vector𝐻 ·𝑟⊺ in the dual space of the Reed-Solomon
code, and check if (𝑠1, . . . , 𝑠𝑛) · (𝐻 · 𝑟⊺)

?
= 0. If this holds, with 1 − 1/|F| probability, one can be convinced

that (𝑠1, . . . , 𝑠𝑛) is well-formed.

Notations. Throughout this paper, we use the following notations. 𝑛 stands for the number of parties.
𝑡 stands for the threshold. ℓ represents the number of secrets each packed secret shares pack. For any
long vector X, we use (X) (𝑖 ) to denote the 𝑖𝑡ℎ pack of ℓ elements. For example, if X = (𝑥1, 𝑥2, . . .), (X) (2)
denotes (𝑥ℓ+1, . . . , 𝑥2ℓ ). In the case that X is a matrix, we use (X) ⟨𝑘,∗⟩ to denote the 𝑘𝑡ℎ row of the matrix
X. Similarly, (X) (𝑖 )⟨𝑘,∗⟩ denotes the 𝑖

𝑡ℎ chunk of the 𝑘𝑡ℎ row of the matrix X.

For any ℓ secrets 𝜶 , we use J𝜶 K to denote the packed secret sharing of 𝛼 . For example,
r
(X) (𝑖 )⟨𝑘,∗⟩

z
to

denote the packed secret sharing of (X) (𝑖 )⟨𝑘,∗⟩ . Finally, during theMPC protocol, the degree of the polynomial
grows from 𝑡 to 2𝑡 after each multiplication. To denote the packed secret shares that have degree 2𝑡 , we
will use the notation, for instance,

q
(X) (𝑖 )

y
2𝑡 .

10The parity matrix can be efficiently computed. See, for example, Theorem 5.1.6 of [Hal15] for one explicit representation of
the parity check matrix of the Reed-Solomon code.
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2.2 Machine Learning

In this paper, we design efficient proofs for logistic regression. Similar to prior work [MR18], we consider
the following specification of these learning tasks.

Logistic Regression. For a set of data points (x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 ) ∈ R𝐷 × {0, 1}, we want to find a linear
model w ∈ R𝐷 such that w × x gives a “good” prediction of 𝑦. Given an activation function 𝑓 : R→ (0, 1),
the closeness is measured by the cross-entropy function

1
𝑁

∑︁
𝑖∈[𝑁 ]

(
− 𝑦𝑖 · log 𝑓 (w × xi) − (1 − 𝑦𝑖) · log 𝑓 (1 −w × xi)

)
.

In logistic regression, the activation function is usually chosen as 𝑓 (𝑥) = 1/(1 + 𝑒𝑥 ). We consider the
stochastic gradient descent method with batching for training w. In this method, the data points are
randomly divided into batches of size 𝐵: X1, . . . ,X𝑁 /𝐵 . The initial weight w0 is set to be an arbitrary
vector. Next, one applies the batches of data iteratively to update the weight vector

w𝑗 ← w𝑗−1 −
𝑎

𝐵
· X⊺

𝑗
× (𝑓

(
X𝑗 ×w𝑗−1

)
− y𝑗 ) .

Here, 𝑎 is some appropriate constant known as the learning rate. After exhausting all the batches, one may
rerandomize the data points into another set of batches and repeat the process.

Since 𝑒𝑥 is an expensive operation for MPC, we use the following approximation of 𝑓 as the activation
function (similar to [MR18])

𝑓 (𝑥) =


0 𝑥 < −1/2
𝑥 + 1/2 −1/2 ⩽ 𝑥 < 1/2
1 1/2 ⩽ 𝑥

.

Regularization. In practice, it is important to train machine learning models with some form of reg-
ularization to prevent overfitting. For linear regression, the commonly used regularization function is
L2 regularizer. That is, instead of minimizing the original loss function Loss(w,X,Y), one minimizes
Loss(w,X,Y) + 𝑐 ·∑𝐷

𝑖=1𝑤
2
𝑖 for some appropriate constant 𝑐 . Applying the gradient descent method to this

modified loss function yields an almost identical iterative updating function on w. We omit this practi-
cal consideration in our construction but keep a note here that it can be added without any additional
changes.

2.3 Secure Multiparty Computation

Secure Multiparty Computation (or MPC) is a distributed protocol that allows a group of 𝑛 mutually dis-
trusting parties to jointly compute a function on their private inputs, in amanner such that nothing beyond
the output of the function is revealed. For the sake of completeness, we recall the definitions of 𝑡𝑝-privacy
and 𝑡𝑟 -robustness from [IKOS07] that will be crucially used when instantiating an MPC-in-the-head with
a given MPC.

Definition 1 (𝑡𝑝-Privacy [IKOS07]). Let 1 ⩽ 𝑡𝑝 < 𝑛. We say that Π realizes 𝑓 with computational 𝑡𝑝-privacy
if there is a PPT simulator sim such that for any inputs 𝑥1, . . . , 𝑥𝑛 and every set of corrupt players I ⊆ [𝑛]
such that |I | ⩽ 𝑡𝑝 , the joint view ViewI (𝑥1, . . . , 𝑥𝑛) of the players in I and sim(I, {𝑥𝑖}𝑖∈I, 𝑓 (𝑥1, . . . , 𝑥𝑛))
are (identically distributed, statistically close, computationally close).
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Definition 2 (Statistical 𝑡𝑟 -Robustness [IKOS07]). Let 1 ⩽ 𝑡𝑟 < 𝑛. We say thatΠ realizes 𝑓 with statistical 𝑡𝑟 -
robustness if (1) it correct evaluates 𝑓 in the presence of a semi-honest adversary (with at most negligible error)
and (2) if for any computationally unbounded malicious adversary corrupting a set I of at most 𝑡𝑟 players,
and for any inputs (𝑥1, . . . , 𝑥𝑛), if there is no (𝑥 ′1, . . . , 𝑥 ′𝑛) such that 𝑓 (𝑥 ′1, . . . , 𝑥 ′𝑛) = 1, then the probability that
some uncorrupted player outputs 1 in an execution of Π in which the inputs of the honest player are consistent
with (𝑥1, . . . , 𝑥𝑛) is negligible in the security parameter.

2.4 Secure Fix-point Arithmetic Operations

This section describes how to do the secure fix-point arithmetic computation over a prime finite field F𝑞 .
Our approach follows the prior work of [CS10]. We consider fix-point real numbers with𝑚 bits precision,
i.e., in the binary representation, there are𝑚 bits after the decimal point.

Representation of Real Number. For a real number 𝑎, we use Rep(𝑎) ∈ F𝑞 to denote the field element
that represents 𝑎, which is defined as Rep(𝑎) = (𝑎 · 2𝑚) mod 𝑞. Note that 𝑎 · 2𝑚 is an integer since
we consider𝑚 bits precision. Moreover, given a representation Rep(𝑎), we could always recover the real
number 𝑎 as

𝑎 =

{
Rep(𝑎)/2𝑚 when Rep(𝑎) < 𝑞/2
(Rep(𝑎) − 𝑞)/2𝑚 when Rep(𝑎) > 𝑞/2

.

Here, the first case (resp., second case) corresponds to 𝑎 being positive (resp., negative). In order to have
correctness, we need the field size 𝑞 to be large enough. In particular, we require that 𝑞 ⩾ 2𝑀+𝑚+^ . Here,
𝑀 is an upper bound on the maximum number that we encounter during training, i.e., we assume |𝑎 | · 2𝑚
will never exceed 2𝑀 . The ^ is the statistical security parameter. Looking ahead, our protocol for secure
fix-point arithmetic operations will be 2−Θ(^ ) statistically secure.

Secure Addition/Subtraction. Addition and subtraction can be simply done as follows. Observe that
Rep(𝑎 + 𝑏) = Rep(𝑎) + Rep(𝑏). Here, the first addition is over the real number, and the second addition is
over the field. Similarly, Rep(𝑎 − 𝑏) = Rep(𝑎) − Rep(𝑏) . Based on this, parties could perform addition and
subtraction non-interactively. For instance, if parties hold secret sharing JRep(𝑎)K and JRep(𝑏)K, they may
simply locally add their secret shares to get shares of Rep(𝑎 + 𝑏), i.e., JRep(𝑎)K + JRep(𝑎)K = JRep(𝑎 + 𝑏)K.

Secure Multiplication. For multiplication, observe that Rep(𝑎) · Rep(𝑏) does not represent 𝑎 · 𝑏 but
𝑎 · 𝑏 · 2𝑚 instead. Therefore, we need to truncate the last𝑚 bits of Rep(𝑎) · Rep(𝑏) to restore correctness.
The following protocol [CS10] is a secure truncation protocol with 2−^ statistical security.

Secure Truncation. This protocol truncates a number 𝑎 by 𝑚 bits. Let 𝛼 = Rep(𝑎). Parties hold se-
cret shares of two masks 𝛾high and 𝛾low, which are sampled randomly from {0, . . . , 2𝑀+^} and {0, . . . , 2𝑚},
respectively. Let 𝛾 = 𝛾high · 2𝑚 + 𝛾low.

1. J𝛽K = J𝛼K + 2𝑀+𝑚 .

2. Parties reconstruct 𝛾 ′ = 𝛾 + 𝛽 by broadcasting their secret shares J𝛾 + 𝛽K.

3. Parties compute (J𝛼K + J𝛾lowK − (𝛾 ′ mod 2𝑚)) · 2−𝑚 locally as the share of the truncated value.

The first step is to ensure that the 𝛽 represents a positive value. The 𝛾low is to mask the last 𝑚 bits.
The 𝛾hish is to mask the high order bits. Since we are masking integers, we need 𝛾hish to be uniform over a
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range that is 2^ times bigger than the maximum integer we are masking. This ensures that the protocol is
2−^ insecure. Note that this is a probabilistic truncation protocol.11

In our actual protocol, we use this protocol with packed secret sharing. The difference is that the
reconstructed secret 𝛾 ′ is a vector of ℓ secret. Therefore, parties do not subtract 𝛾 ′ mod 2𝑚 in the last
step, but subtract the respective packed secret share of J𝛾 ′ mod 2𝑚K.

Secure “Less-than”. Finally, we note that the secure truncation protocol can be used to compute the “less

than” function securely. Here, given the input 𝑥 , we want to compute 1𝑥>𝑐 =

{
1 𝑥 > 𝑐

0 𝑥 ⩽ 𝑐
for some constant

𝑐 . Suppose 𝑥 − 𝑐 ∈ {−2𝑀 , 2𝑀 }. Then 1𝑥<𝑐 is exactly the (𝑀 + 1)𝑡ℎ order bits of 𝑥 − 𝑐 + 2𝑀 . Therefore, we
could use a secure truncation protocol to securely compute 1𝑥>𝑐 for any constant 𝑐 .

One subtle issue is that the truncation protocol we present earlier is for probabilistic truncation. Here,
we want to compute the floor function

⌊
𝑥−𝑐+2𝑀

2𝑀

⌋
. In the MPC-in-the-head setting, the trick is that the

prover will always pick the mask for the lower-order bits 𝛾low appropriately such that the last 𝑀 bits of
the masked value are all 1. This ensures: (1) Correctness – there is no overflow for the lower-order bits,
which means that we are doing the floor function instead of probabilistic truncation; (2) Soundness – all
the masked bits are one guarantees zero-knowledge.

2.5 (List) Polynomial Commitment

Polynomial commitment scheme allows the committer C to use a short commitment to commit to a poly-
nomial. Later, it can open this polynomial at any location and convince the receiver R that the opening is
consistent with the commitment. In this work, we use list polynomial commitment [KPV22], which is a
relaxed variant of polynomial commitment. It has the following components.

• 𝜎 ← Com(𝑓 ): For any polynomial 𝑓 of degree ⩽ 𝑑 , Com(𝑓 ) computes a succinct commitment of 𝑓 .

• 𝑏 ← ⟨C(𝑓 , 𝜎, {(𝑥𝑖}𝑖),R(𝜎, {(𝑥𝑖 , 𝑦𝑖}𝑖)⟩ : is an interactive protocol between the committer C and the
receiver R. The committer has input 𝑓 , 𝜎, {𝑥𝑖}𝑖 and the receiver has input 𝜎, {(𝑥𝑖 , 𝑦𝑖}𝑖 . This protocol
allows C to convince R that 𝜎 is a commitment of some polynomial 𝑓 such that 𝑦𝑖 = 𝑓 (𝑥𝑖) for all 𝑖 .
At the end of the protocol, the receiver R outputs either 𝑏 = 0 or 𝑏 = 1.

A polynomial commitment should satisfy both correctness and binding properties. For correctness, the
verifier should always accept honestly generated proofs. Formally, for all polynomial 𝑓 of degree ⩽ 𝑑 and
a set of evaluation points {𝑥𝑖}𝑖 , it holds that

Pr

[
𝑏 = 1

����� 𝜎 ← Com(𝑓 )
𝑏 ← ⟨C(𝑓 , 𝜎, {𝑥}𝑖),R(𝜎, {𝑥𝑖 , 𝑓 (𝑥𝑖)}𝑖)⟩

]
= 1.

The binding property for the 𝑡-list polynomial commitment requires that, for any commitment
𝜎 ← A(1_) generated by a malicious committer A, there exists a list of degree ⩽ 𝑑 polynomials
𝐿 = {𝑓1, 𝑓2, . . . , 𝑓𝑡 } such that, for any set of points {𝑥𝑖 , 𝑦𝑖}𝑖 , we have

Pr

[
∃𝑓 ∈ 𝐿 s.t.
∀𝑖, 𝑓 (𝑥𝑖 ) = 𝑦𝑖

����� 1← ⟨A(𝑓 , 𝜎, {𝑥}𝑖 ),R(𝜎, {𝑥𝑖 , 𝑓 (𝑥𝑖 )}𝑖 )⟩
]
= 1 − negl(_).

11For instance, to truncate 1.1 to be an integer, it will output 2 with probability 0.1 and 1 with probability 0.9.
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There aremany polynomial commitment schemes in the literature. In this work, we use the polynomial
commitment scheme based on FRI [BBHR18]. This scheme avoids the use of “expensive” group operations
and relies only on “cheap” cryptographic tools such as cryptographic hash functions, which is crucial for
concrete efficiency. Furthermore, the relaxation from polynomial commitment to list polynomial commit-
ment further help reduce the prover’s cost and proof size for FRI-based polynomial commitment schemes.
Overall, it has the following properties.

• Constant commitment size: |𝜎 | = 𝑂 (1).

• The interactive protocol ⟨C,R⟩ has logarithmic (i.e.,𝑂 (log𝑑)) rounds and𝑂 (log2 𝑑) overall commu-
nication.

By invoking Fiat-Shamir heuristics, it gives a non-interactive opening proof with size 𝑂 (log2 𝑑). We re-
fer the readers to [Sta21] for more details. In particular, we employ the “grinding” techniques (refer to
Section 3.11.3 of [Sta21]) to further reduce the concrete proof size.

Privacy. Our protocol employs the polynomial commitment schemes through the following paradigm.
Initially, the message is encoded using randomized (Reed-Solomon) encodings, after which the encodings
are committed using the FRI-based polynomial commitment schemes. The final proof will give a few
opening proofs of the committed polynomials at a random location. These opening proofs do not leak
anything since the randomized encoding ensures that the symbols at any small number of locations reveal
no information about the encoded message. These points are discussed within the proof when we argue
the zero-knowledge property.

2.6 Protocols for Sumcheck and Permutation

In this section, we present two protocols that we employ as a subroutine in our final construction. These
protocols allow the prover to prove useful relations about the committed values.

Sumcheck protocol. The first protocol is a univariate sumcheck protocol, introduced by [BCR+19].
Let Q = {𝜔,𝜔2, . . . , 𝜔s = 1} be a multiplicative subgroup of F. Let 𝑓 (𝑥) be a polynomial such that
𝑓 (𝜔), 𝑓 (𝜔2), . . . , 𝑓 (𝜔s) encodes the information that we are interested in. The sumcheck protocol lets
the prover give a succinct proof proving the sum of the encoded values

∑s
𝑖=1 𝑓 (𝜔𝑖) . In particular, we have

the following lemma and univariate sumcheck protocol.

Lemma 1. Given a polynomial 𝑓 (𝑥) of arbitrary degree, the sum of the evaluation of 𝑓 (𝑥) on the set Q =

{𝜔,𝜔2, . . . , 𝜔s = 1} is 𝛾 if and only if there exist two quotient polynomials 𝑄1(𝑥) and 𝑄2(𝑥) such that (1) the
degree of 𝑄1(𝑥) is at most s − 2 and (2) the following polynomial identity holds.

𝑓 (𝑥) = 𝛾/s +𝑄1(𝑥) · 𝑥 +𝑄2(𝑥) · 𝑍 (𝑥).

Here, 𝑍 (𝑥) is the vanishing polynomial for Q defined as 𝑍 (𝑥) = ∏s
𝑖=1(𝑥 − 𝜔𝑖) = 𝑥 s − 1.

Statement. The prover and verifier hold a commitment of some polynomial 𝑝 (𝑥) of degree 𝑛. The
prover wants to prove that

∑s
𝑖=1 𝑝 (𝜔𝑖) = 𝛼.

Protocol Description.

1. The prover samples and commits to a polynomial 𝑞(𝑥) of the same degree as 𝑝 (𝑥). In addition,
it sends 𝛽 =

∑s
𝑖=1 𝑞(𝜔𝑖).
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2. The verifier sends random challenges 𝑐 .

3. The prover computes the quotient polynomial 𝑄1(𝑥) and 𝑄2(𝑥) according to Equation 1 with
𝑓 (𝑥) = 𝑐 · 𝑝 (𝑥) + 𝑞(𝑥) and 𝛾 = 𝑐 · 𝛼 + 𝛽 . The prover sends the commitment of 𝑄1(𝑥) and 𝑄2(𝑥)
to the verifier.

4. The verifier picks a random point 𝑟 .

5. Prover sends the evaluation of all the polynomials at 𝑟 : 𝑝 (𝑟 ), 𝑞(𝑟 ), 𝑄1(𝑟 ), 𝑄2(𝑟 ) .

6. Prover and receiver invoke the polynomial commitment protocol to prove

• All the evaluations at 𝑟 are correct.
• The degree of 𝑄1(𝑥) is ⩽ s − 2.

7. Verifier accepts the proof if (1) the verification in the last step succeeds; (2) Equation 1 holds at
𝑥 = 𝑟 .

Figure 1: Sum-Check Protocol

Lemma 2 ([BCR+19]). The univariate sumcheck protocol is correct and sound. That is, (1) the verifier will
accept the proof with probability 1 when interacting with an honest prover. (2) the verifier will reject the proof
with probability 1 − negl(_) for any false statement that a malicious prover tries to prove.

Remark. In the protocol, we often need to use the sumcheck protocol on the product or sum of polynomials,
e.g., 𝑓 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) or 𝑓 (𝑥) = 𝑓1(𝑥) · 𝑓2(𝑥), where 𝑓1(𝑥) and 𝑓2(𝑥) are committed. Note that, one may
still run the sum-check protocol above. In cases where one needs to open 𝑓 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) at a random
location 𝑥 = 𝑟 , one may simply open 𝑓1(𝑥) and 𝑓2(𝑥) at 𝑥 = 𝑟 separately, and derive 𝑓 (𝑟 ) = 𝑓1(𝑟 ) + 𝑓2(𝑟 ).

On another note, we also sometimes need to do sumcheck on the difference between two polynomials
𝑓1(𝑥) and 𝑓2(𝑥), where they encode values on different subgroups. For instance, 𝑓1(𝑥) encodes information
on Q = {𝜔,𝜔2, . . . , 𝜔s = 1}, while 𝑓2(𝑥) encodes information on H = {`, `2, . . . , `s/𝑡 = 1}. In such cases,
we may do sumcheck on the polynomial 𝑓1(𝑥) − 𝑓2(𝑥) · 𝐼 (𝑥), where 𝐼 (𝑥) = 1 for 𝑥 ∈ H and 𝐼 (𝑥) = 0 for
𝑥 ∈ Q \ H.

Permutation Check Protocol. The second protocol checks whether a sequence of committed values
satisfies a specific permutation relation. This protocol is due to Plonk [GWC19]. Looking ahead, this
protocol is useful when we want to check the data used during training across different iterations are
correctly permutated.

Let Q = {𝜔,𝜔2, . . . , 𝜔s = 1} be a multiplicative subgroup.Let 𝑓1(𝑥), . . . , 𝑓𝑘 (𝑥) and 𝑔1(𝑥), . . . , 𝑔𝑘 (𝑥)
be polynomials such that their evaluations on Q encodes the information that we are interested in. Let
Perm : [𝑘 · s] → [𝑘 · s] be a permutation. The permutation check protocol allows the prover to give a
succinct proof proving that the vectors

𝒇 = (𝑓1(𝜔), . . . , 𝑓1(𝜔s), . . . , 𝑓𝑘 (𝜔), . . . , 𝑓𝑘 (𝜔s))
𝒈 = (𝑔1(𝜔), . . . , 𝑔1(𝜔s), . . . , 𝑔𝑘 (𝜔), . . . , 𝑔𝑘 (𝜔s))

are consistent with Perm, i.e., 𝒇 𝑖 = 𝒈Perm(𝑖 ) for all 𝑖 . For this protocol, we define the following degree
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⩽ s − 1 polynomials 𝐼1, 𝐼2, . . . , 𝐼𝑘 and 𝐽1, 𝐽2, . . . , 𝐽𝑘 based on Perm. For all 𝑖 ∈ [𝑘], 𝑗 ∈ [s], it satisfies

𝐼𝑖 (𝜔 𝑗 ) = (𝑖 − 1) · s + 𝑗
𝐽𝑖 (𝜔 𝑗 ) = Perm((𝑖 − 1) · s + 𝑗)

Statement. The prover and verifier hold commitments to 𝑓1, 𝑓2, . . . , 𝑓𝑘 and 𝑔1, 𝑔2, . . . , 𝑔𝑘 . The prover
wants to prove that they satisfy the permutation defined by Perm.
Protocol Description.

1. The verifier sends random challenges 𝛽,𝛾 .

2. The prover computes the following

𝑓 ′𝑖 (𝑥) = 𝑓𝑖 (𝑥) + 𝛽 · 𝐼𝑖 (𝑥) + 𝛾
𝑔′𝑖 (𝑥) = 𝑔𝑖 (𝑥) + 𝛽 · 𝐽𝑖 (𝑥) + 𝛾

Let 𝑓 ′(𝑥) = ∏𝑘
𝑖=1 𝑓

′
𝑖 (𝑥) and 𝑔′(𝑥) = ∏𝑘

𝑖=1 𝑔
′
𝑖 (𝑥). The prover computes a polynomial 𝑃 (𝑥) of

degree ⩽ s − 1 defined as
𝑃 (𝜔𝑖) =

∏
1⩽ 𝑗<𝑖

𝑓 ′(𝜔 𝑗 )/𝑔′(𝜔 𝑗 )

for all 𝑖 ∈ {2, . . . , s} and 𝑃 (𝜔) = 1. It also computes 𝑄1(𝑥) and 𝑄2(𝑥) according to Equation 1.

It commits to 𝑃 (𝑥), 𝑄1(𝑥), 𝑄2(𝑥) and sends the commitments to the verifier.

3. The verifier sends a random challenge 𝑟 .

4. The prover sends the following 𝑃 (𝑟 ), 𝑃 (𝑟 ·𝜔),𝑄1(𝑥),𝑄2(𝑥), 𝑓1(𝑟 ), . . . , 𝑓𝑘 (𝑟 ), and𝑔1(𝑟 ), . . . , 𝑔𝑘 (𝑟 ).

5. The prover and receiver invoke the polynomial commitment protocol to verify all the evalua-
tions.

6. Verifier accepts the proof if (1) the verification in the last step succeeds; (2) the following poly-
nomial identities hold at 𝑥 = 𝑟 .

𝑥𝑛 − 1
𝑥 − 𝜔 · (𝑃 (𝑥) − 1) = 𝑍 (𝑥) ·𝑄1(𝑥)

𝑃 (𝑥) · 𝑓 ′(𝑥) − 𝑃 (𝑥 · 𝜔) · 𝑔′(𝑥) = 𝑍 (𝑥) ·𝑄2(𝑥)

 (1)

Figure 2: Permutation Check Protocol

Lemma 3 ([GWC19]). The permutation check protocol above is correct and sound. That is, (1) the verifier
will accept the proof with probability 1 when interacting with an honest prover. (2) the verifier will reject the
proof with probability 1 − negl(_) for any false statement that a malicious prover tries to prove.

3 Formalizing Proof of Training

In this section, we formally present our notion of zero-knowledge proof of training as a cryptographic
primitive. Consider a public learning algorithm𝐶 , which takes data and randomness as input, and outputs

16



a model
model = 𝐶 (data, rand) .

A proof of training for this training task consists of the following.

• 𝜎 = Commit(data, rand): on input the data and randomness, outputs a commitment.

• (model, 𝜎 ′, 𝜋) = Prove(data, rand): on input the data and the randomness used in the training process,
output the model, a commitment to the model 𝜎 ′, and a proof 𝜋 .

• 𝑏 = Verify(𝜎, 𝜎 ′, 𝜋): on input the commitment 𝜎 to the data and the randomness, the commitment 𝜎 ′ to
the model, and a proof 𝜋 , it output 𝑏 ∈ {0, 1}.

The proof of training should satisfy the following guarantees.

• Correctness. An honestly trained model and its corresponding generated proof should always be ac-
cepted. That is, for any commitment 𝜎 = Commit(data, rand), we have

Pr

[
𝑏 = 1

����� (model, 𝜎 ′, 𝜋) = Prove(data, rand)
𝑏 = Verify(𝜎, 𝜎 ′, 𝜋)

]
= 1

• Soundness. The prover cannot convince the verifier to accept an incorrect model. In particular, for any
commitment 𝜎 = Commit(data, rand) and PPT adversary A, we have

Pr


𝑏 = 1 ∧

model∗ ≠ model

�������
(model, 𝜎 ′, 𝜋) = Prove(data, rand)
(model∗, (𝜎 ′)∗, 𝜋∗) ← A(data, rand)

𝑏 = Verify(𝜎, (𝜎 ′)∗, 𝜋∗)

 = negl(_).

• Zero-knowledge. The proof 𝜋 should not reveal anything about the model. That is, there exists a
simulator Sim such that, for any data and rand,

Sim(1_) ≈


𝜎 = Commit(data, rand)

(model, 𝜎 ′, 𝜋) = Prove(data, rand)
Output 𝜎, 𝜎 ′, 𝜋

 .

For the practicality of this primitive, we also have the following efficiency requirements. Let 𝑇 be the
running time of the algorithm.

• The proof is sublinear in 𝑇 , i.e., |𝜋 | = 𝑜 (𝑇 ).

• The prover’s and verifier’s complexity should be concretely efficient. Asymptotically, we require that
the prover’s complexity is 𝑂 (𝑇 log𝑇 ), while the verification complexity is 𝑂 (𝑇 ).

For perspectives on the efficiency requirement, the existing SNARK approaches achieve give extremely
short proofs |𝜋 | = polylog𝑇 , but the prover’s concrete running time is simply astronomical.12 The MPC-
in-the-head style proof, on the other hand, has great concrete efficiency, but the proof size is even larger
than 𝑇 , i.e., |𝜋 | ⩾ 𝑇 .

A few remarks regarding our definitions are in order.
12For instance, for a training task that requires a few hours to train, the prover’s running time will be a few days [blo22a].
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• Privacy of the model. In the above definition, we consider the setting where the model is private. One
may consider an analogous definition where the model is in the clear.

• On use of commitments. In our definition, by default, the common input consists of commitments to
the dataset, model, and the randomness. When it comes to the randomness, it can even be generated
by the verifier itself to prevent potential choices of malicious randomness selection [GKVZ22], and our
protocols can directly adapt to this setting. Regarding using commitments to exchange the model and
the data set, we note that doing so is a natural choice for the following reasons. First, we want the
transcript uniquely determine the model and the data set (in fact, the data set can be seen as a common
input given to the two parties). This means that the exchanged message should bind the prover to the
model and the data set. Second, we want the whole protocol to remain zero-knowledge, which implies
the exchanged messages should still hide the model and the data set.

Fine-Tuning over Foundational Model. In our definition, we assume that the commitment to the data
and randomness is honestly generated by the trainer. For applying our definitions to proving fine-tuned
models on foundation models, one may desire the assurance that the input data are indeed given by the
feature extractor (i.e., foundationmodel). There aremany generic ways one could ensure this. For instance,
if the committed input is generated by the foundation model, one may assume that the foundation model
also signs the commitment using a digital signature [GMR88]. Then, one may simply verify the digital
signature to be convinced that the committed input is indeed produced by the foundational model. Or, if
one considers the setting where the commitment is generated by the prover itself, one may assume that
the foundation model signs the features that it outputs. Additionally, we request the prover to not only
prove that the model is trained honestly, but also prove that the input is well-formed, which is to prove the
fact that it knows valid signatures of the committed input.

These additionalmeasures are relativelymuch cheaper than proving the honesty of training. Therefore,
in this work, we omit these additional details and focus on the part of proving honest training.

4 MPC Protocol for MPC-in-the-Head

As discussed in the introduction, we design an MPC-in-the-head-based zero-knowledge proof of training
for logistic regression, that is interspersed with techniques used in the design of zkSNARKs. In this section,
we describe the MPC protocol that we use to instantiate our modified MPC-in-the-head framework. We
start by giving a more detailed overview of our approach to highlight the choices involved in designing
this MPC protocol.

4.1 Overview

Let us first recall the basic blueprint of how a zero-knowledge proof based on MPC-in-the-head works.

MPC-in-the-head: MPC-in-the-head [IKOS07] is a technique used for designing three-round, public-
coin, zero-knowledge proofs of knowledge using MPC protocols (also called Σ-protocols). At a high level,
the prover simulates an 𝑛-party MPC protocol Π virtually on the relation circuit R(𝑥, ·), that has the
statement hard-wired in it. The input to this MPC is the witness 𝑤 (which is shared among the virtual
parties) corresponding to the statement 𝑥 , such that R(𝑥,𝑤) = 1. In the first round of the protocol, the
prover commits to the views of all the parties in this MPC execution. In the second round, an honest
verifier then selects a random subset of the views to be opened. In the third round, the prover opens to

18



the views of the selected players. The verifier then verifies that those views are consistent with each other
and with an honest execution, where the output of Π is 1.

Zero-knowledge property in such a protocol follows from the fact that the verifier only gets to open
the views of a subset of the virtual parties (the size of this subset depends on the number of corrupt parties
that the underlying MPC protocol Π can tolerate). From the privacy of Π, it follows that these views do
not leak any information about the witness. The soundness of this protocol depends on the fraction of
parties whose views the verifier is allowed to open. For instance, if the verifier is allowed to open corr
out of 𝑛 parties’ views, the soundness error in the above protocol is expected to be roughly 1/

(
𝑛
corr

)
. It

is easy to see that if 1/
(
𝑛
corr

)
is negligibly small, a single iteration of the above protocol ensures enough

soundness. However, if this is not the case, then we need to repeat the above protocol enough number of
times (typically proportional to the security parameter) using fresh randomness to amplify soundness.

MPC-in-the-head using an Honest Majority MPC: Let us now analyze what impact the choice of
𝑛 and corr have on the communication complexity of the resulting zero-knowledge protocol. We want
to avoid the communication overhead (dependent on the security parameter) from having to repeat the
protocol in order to get sufficient soundness. Hence, we somehow want to ensure that a single iteration
gives us enough soundness. For this, we can choose 𝑛 = 𝑂 (_) and corr = 𝑛/𝑐 , where _ is the security
parameter and 𝑐 is some constant. For these values of 𝑛 and corr, 1/

(
𝑛
corr

)
is negligibly small.

However, since the verifier gets to open the views of corr number of parties, the communication in
our ZKP now depends on corr = 𝑂 (_). If the view of each party is proportional to the size of the relation
circuit, overall the communication complexity will be𝑂 (_ · |R |). This clearly does not seem to have helped
us in avoiding additional dependence on the security parameter.

Our idea to avoid this is to instead use a special MPC protocol where the view of each party is somehow
sublinear in the size of the related circuit. For instance, if the view of each party was𝑂 ( |R|/𝑛), then overall
the communication complexity of the resulting ZKP will be𝑂 (corr · |R |/𝑛) = 𝑂 ( |R|). Such MPC protocols
are known for special classes [BGJK21] of circuits using a technique known as packed secret sharing [FY92].

This, however, yields a zero-knowledge proof where the total communication is linear in the relation
circuit (a.k.a., the data and logistic regression computation in our setting). As discussed in the introduction,
training is typically done over massive data-sets, and it would be practically infeasible to communicate
proofs that are linear in its size.

Optimizing Honest Majority MPC for Logistic Regression: Let us now discuss how we can hope to
further improve the communication and make it sublinear in the size of the data. We observe that given
the data x1, . . . , x𝑁 ∈ R𝐷 , and 𝑦1, . . . , 𝑦𝑁 ∈ R (Note that this 𝑁 here is different from the 𝑛 that denotes the
number of parties in our MPC protocol) and the initializing parameters, training a linear model primarily
requires additions and inner-product computations. In honest-majority MPC protocols based on Shamir
secret sharing or packed secret sharing, securely computing additions does not require any communica-
tion. Moreover, it is possible to securely compute inner products using communication independent of the
length of inner-product vectors. This essentially allows us to design a packed secret sharing-based MPC
protocol for this linear model (logistic regression) computation, where the total communication between
the parties is 𝑂 (𝑁 ) and is independent of 𝐷 .

High-Level Description of Our MPC Protocol. Given the above background on some of our design
choices, we now give a brief summary of our MPC protocoland then proceed to give a formal description
in Section 4.2.

As discussed in Section 1.2, we use fixed-point arithmetic to represent real numbers as field elements
and design an MPC protocol in the pre-processing model that works as follows:
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• Pre-Processing Phase: We assume that a trusted entity implements this phase.

1. Data (and Model) Independent Preprocessing: The trusted party generates some correlated randomness
(independent of the data and weights), computes packed secret shares of these values and sends them
to the parties.

2. Data Dependent Preprocessing: The trusted party computes two different packed secret sharings of
the data and sends them to the parties. Recall that, when using mini-batch gradient descent, the data
x1, . . . , x𝑁 ∈ R𝐷 is segregated into batches of the form X1, . . . ,X𝑁 /𝐵 ∈ R𝐵×𝐷 . The trusted party
essentially computes two different packed secret sharings of each of these batches — one where the
values in these matrices are packed and shared row-wise and another where the values are packed
and shared column-wise. It then sends both types of shares to the parties.

• Online Phase: We assume that the inital weights vector w0 ∈ R𝐷 is publicly known to all parties. Given
this and all the above shares received in the pre-processing phase, the parties run a distributed algorithm
to securely compute the logistic regression function and obtain packed secret shares of the resulting
weights vector. The parties in this phase essentially perform fixed-point arithmetic computation (see
Section 2.4 for reference) over packed secret shares.

Remark. We remark that the total computation and the total size of all the private states held by the par-
ties in this MPC protocol are still 𝑂 (𝐷𝑁 ). Instantiating the MPC-in-the-head framework with this MPC
protocol does not yet give us a zero-knowledge proof system, where communication is sublinear. Recall
that in an MPC-in-the-head-based ZKP, when the verifier chooses to open the views of a subset of the
parties, those views consist of the messages that the opened parties received from other virtual parties in
the MPC as well as their entire private state. Here, in our MPC, since the total private state is still𝑂 (𝐷𝑁 )
(i.e.,𝑂 (𝐷𝑁 /𝑛) per party), overall our communication will still be corr×𝑂 (𝐷𝑁 /𝑛) = 𝑂 (𝐷𝑁 ). As discussed
in the introduction, to avoid this overhead, we intersperse the verifier checks in our MPC-in-the-head
protocol with techniques from the zkSNARKs literature. For this, we design a few zkSNARKs for specific
relations which we discuss in Section 5.

4.2 Protocol Description

We now give a formal description of our 𝑛-party MPC protocol. We describe the pre-processing phase of
our MPC in Section 4.2.1 and the online phase in Section 4.2.2.

4.2.1 Pre-Processing Phase.

∀𝑗 ∈ [𝑁 /𝐵], the trusted entity proceeds as follows in the pre-processing phase:

• Correlated Random Shares:

1. Sampling Randomness: Sample random vectors 𝜽 𝑗 , 𝝁 𝑗 ,𝜶 𝑗 ,𝝉 𝑗 ∈ F𝐵 and 𝜸 𝑗 , 𝜷 𝑗 ∈ F𝐷 . For each
𝑘 ∈ [𝐵], let 𝝂 𝑗,𝑘 be an ℓ length vector containing ℓ copies of 𝝉 𝑗 [𝑘] and for each 𝑘 ∈ [𝐷], let 𝜹 𝑗,𝑘 be
an ℓ length vector containing ℓ copies of 𝜷 𝑗 [𝑘].

2. Packed Shares: Compute the following packed secret shares
{s(

𝜸 𝑗

) (𝑢 ){
,

s(
𝜸 𝑗

) (𝑢 ){
2𝑡

}
𝑢∈[𝐷/ℓ ]

,{q
𝝂 𝑗,𝑘

y}
𝑘∈[𝐵 ] ,

{q
𝜹 𝑗,𝑘

y}
𝑘∈[𝐷 ] ,

{r(
𝝉 𝑗

) (𝑢 )z
2𝑡

}
𝑢∈[𝐵/ℓ ]

,
{s(

𝜷 𝑗

) (𝑢 ){
2𝑡

}
𝑢∈[𝐷/ℓ ]

,
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{r(
𝜶 𝑗

) (𝑢 )z
,

r(
𝜶 𝑗

) (𝑢 )z
2𝑡

}
𝑢∈[𝐵/ℓ ]

,
{r(

𝜽 𝑗

) (𝑢 )z
2𝑡
,

s(
𝝁 𝑗

) (𝑢 ){
2𝑡
,

r(
𝜽 𝑗

) (𝑢 )z
,

s(
𝝁 𝑗

) (𝑢 ){}
𝑢∈[𝐵/ℓ ]

.

• Masks for Non-Arithmetic Computations:

1. Sampling Masks:

– ∀𝑢 ∈ [𝐵/ℓ], sample random vectors mask↓
𝑗,𝑢
∈ {0, 2𝑚}ℓ , mask↑

𝑗,𝑢
∈ {0, 2𝑀+^}ℓ , LT↓

𝑗,𝑢
, LT
↓
𝑗,𝑢 ∈

{0, 2𝑀 }ℓ and LT↑
𝑗,𝑢
, LT
↑
𝑗,𝑢 ∈ {0, 2^+1}ℓ .

– ∀𝑢 ∈ [𝐷/ℓ], sample random vectors mask
↓
𝑗,𝑢 ∈ {0, 2𝑚}ℓ and mask

↑
𝑗,𝑢 ∈ {0, 2𝑀+𝑘 }ℓ .

2. Packed Shares: Compute packed secret shares
{r

mask↓
𝑗,𝑢

z
,

r
mask↑

𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

,{r
LT↓

𝑗,𝑢

z
,

r
LT↑

𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

,
{r

LT
↓
𝑗,𝑢

z
,

r
LT
↑
𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

and
{r

mask
↓
𝑗,𝑢

z
.

r
mask

↑
𝑗,𝑢

z}
𝑢∈[𝐷/ℓ ]

.

• Data Shares: Let the input training sample be X𝑗 ∈ F𝐵×𝐷 , ∀𝑗 ∈ [𝑁 /𝐵] and the corresponding output

be 𝑦1, . . . , 𝑦𝑁 ∈ F. ∀𝑗 ∈ [𝑁 /𝐵], compute packed secret shares:

{r(
y𝑗

) (𝑢 )z
,

{s(
X⊺

𝑗

) (𝑢 )
⟨𝑘,∗⟩

{}
𝑘∈[𝐷 ]

}
𝑢∈[𝐵/ℓ ]

and
{r(

X𝑗

) (𝑢 )
⟨𝑘,∗⟩

z}
𝑘∈[𝐵 ],𝑢∈[𝐷/ℓ ]

.

Finally, it sends the above shares to the respective parties P1, . . . , P𝑛 .

4.2.2 Online Phase.

Let w0 ∈ F𝐷 be the initial weights vector. In addition to the shares received from the trusted party in the
above pre-processing phase, we also assume that the parties have the following packed secret shares of
the initial weights vector: Jw0,1K , . . . ,

q
w0,𝐷/ℓ

y
, where each Jw0,𝑢K is a packed secret sharing of an ℓ-length

vector (w0,𝑢, . . . ,w0,𝑢) and w0,𝑢 denotes the 𝑢th element in w0. Since the initial weights vector is public,
we assume that these shares are deterministically computable given w0 and hence known to all parties.
Given these shares, the parties proceed as described in Figure 3. Without loss of generality, we assume
that party P1 acts as Pleader in this protocol.

For each 𝑗 ∈ [𝑁
𝐵
], the parties proceed as follows:

• Step I: Computing (X𝑗 ×w𝑗−1)

1. Local Computation: For each 𝑢 ∈ [𝐵/ℓ], parties locally compute their share of
(
z𝑗
) (𝑢 ) as follows and

send the resulting shares to the designated leader Pleader:
r(
z𝑗
) (𝑢 )z

2𝑡
=

r(
𝜶 𝑗

) (𝑢 )z
2𝑡
+∑𝑘∈[𝐷 ]

s(
X⊺

𝑗

) (𝑢 )
⟨𝑘,∗⟩

{
·

q
w𝑗−1,𝑘

y
.

2. Degree Reduction: For each𝑢 ∈ [𝐵/ℓ], Pleader reconstructs
(
z𝑗
) (𝑢 ) ← Recon

(r(
z𝑗
) (𝑢 )z

2𝑡
, 2𝑡

)
. Computes

packed shares
r(
z𝑗
) (𝑢 )z← Share

(
z𝑗,𝑢, 𝑡

)
and sends

r(
z𝑗
) (𝑢 )zP𝑖

to party P𝑖 (for each 𝑖 ∈ [𝑛]).

3. Truncation. For each 𝑢 ∈ [ 𝐵
ℓ
], all parties proceeds as follows.

– Compute and broadcast
q
(𝒂 𝑗 ) (𝑢 )

y
=

r(
z𝑗
) (𝑢 )z − r(

𝜶 𝑗

) (𝑢 )z + 2𝑚 · rmask↑
𝑗,𝑢

z
+

r
mask↓

𝑗,𝑢

z
.

– Use the broadcasted packed secret shares to reconstruct the secret vector (𝒂 𝑗 ) (𝑢 ) ∈ Fℓ and locally
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compute the shares
q
(𝒃 𝑗 ) (𝑢 )

y
=

(r(
z𝑗
) (𝑢 )z − r(

𝜶 𝑗

) (𝑢 )z + r
mask↓

𝑗,𝑢

z
−

q
(𝒂 𝑗 ) (𝑢 ) mod 2𝑚

y)
· 2−𝑚 .

• Step II: Computing the Activation Function

1. Generate shares of the indicator for the event (𝒃 𝑗 ) (𝑢 ) < −1/2 and (𝒃 𝑗 ) (𝑢 ) < 1/2:

– For each 𝑢 ∈ [ 𝐵
ℓ
], parties compute and broadcast

q
(𝒃′ 𝑗 ) (𝑢 )

y
=

q
(𝒃 𝑗 ) (𝑢 ) + 2𝑀 + 1/2

y
+ 2𝑀 ·

r
LT↑

𝑗,𝑢

z
+

r
LT↓

𝑗,𝑢

z
and

q
(𝒃′′ 𝑗 ) (𝑢 )

y
=

q
(𝒃 𝑗 ) (𝑢 ) + 2𝑀 − 1/2

y
+ 2𝑀 ·

r
LT
↑
𝑗,𝑢

z
+

r
LT
↓
𝑗,𝑢

z
.

– For each 𝑢 ∈ [ 𝐵
ℓ
], parties verify that the last 𝑀 bits of the reconstructed values are 1 and compute

the secret shares
r
1(− 1

2 )
(𝑢 )
𝑗

z
=

(q
(𝒃 𝑗 ) (𝑢 ) + 2𝑀 + 1/2

y
+

r
LT↓

𝑗,𝑢

z
−

q
(𝒃′ 𝑗 ) (𝑢 ) mod 2𝑀

y)
· 2−𝑀 and

r
1( 12 )

(𝑢 )
𝑗

z
=

(q
(𝒃 𝑗 ) (𝑢 ) + 2𝑀 − 1/2

y
+

r
LT
↓
𝑗,𝑢

z
−

q
(𝒃′′ 𝑗 ) (𝑢 ) mod 2𝑀

y)
· 2−𝑀 of the indicator.

2. Computing Piecewise Function: For each 𝑢 ∈ [ 𝐵
ℓ
], parties do the following.

– Parties compute and send
r
𝒇 (𝑢 )
𝑗

z

2𝑡
=

r
1(− 1

2 )
(𝑢 )
𝑗

z
·
(
1 −

r
1( 12 )

(𝑢 )
𝑗

z)
+

r
𝜽 (𝑢 )
𝑗

z

2𝑡
to Pleader, who recon-

structs 𝒇 (𝑢 )
𝑗

and re-shares it.

– Parties reconstruct
r
1(− 1

2 ,
1
2 )
(𝑢 )
𝑗

z
=

r
𝒇 (𝑢 )
𝑗

z
−

r
𝜽 (𝑢 )
𝑗

z
and send

(
1 −

r
1(− 1

2 )
(𝑢 )
𝑗

z)
· 0 +

r
1(− 1

2 ,
1
2 )
(𝑢 )
𝑗

z
·

q
(𝒃 𝑗 ) (𝑢 ) + 1

2
y
+

r
1( 12 )

(𝑢 )
𝑗

z
· 1 +

r
𝝁 (𝑢 )
𝑗

z

2𝑡
to Pleader.

– Pleader reconstructs these values and re-shares them as
r
𝒆′ (𝑢 )

𝑗

z
and all parties locally reconstruct

r
𝒆 (𝑢 )
𝑗

z
=

r
𝒆′ (𝑢 )

𝑗

z
−

r
𝝁 (𝑢 )
𝑗

z
.

• Step III: Repacking Shares All parties proceed as follows:

– For each 𝑢 ∈ [ 𝐵
ℓ
], compute and broadcast

r(
r′ 𝑗

) (𝑢 )z
=

q
(𝒆 𝑗 ) (𝑢 )

y
−

r(
y𝑗

) (𝑢 )z + r(
𝝉 𝑗

) (𝑢 )z
2𝑡
.

– Parties then locally reconstruct
(
r′ 𝑗

) (𝑢 ) and for each𝑘 ∈ [𝐵], they compute deterministic shares
(
r′ 𝑗

) (𝑢 ) ←
Recon

(r(
r′ 𝑗

) (𝑢 )z
2𝑡
, 2𝑡

)
.

– For each 𝑘 ∈ [𝐵], parties locally compute
q
r𝑗,𝑘

y
=

q
r′ 𝑗,𝑘

y
−

q
𝝂 𝑗,𝑘

y
.

• Step IV: Remaining Computation

1. LocalComputation: For each𝑢 ∈ [𝐷/ℓ], parties locally compute their share of
(
s𝑗
) (𝑢 ) as follows and send

the resulting shares to the designated leaderPleader:
r(
s𝑗
) (𝑢 )z

2𝑡
=

s(
𝜸 𝑗

) (𝑢 ){
2𝑡
+∑𝑘∈[𝐵 ]

r(
X𝑗

) (𝑢 )
⟨𝑘,∗⟩

z
·
q
r𝑗,𝑘

y
.

2. DegreeReduction: For each𝑢 ∈ [𝐷/ℓ], Pleader reconstructs
(
s𝑗
) (𝑢 ) ← Recon

(r(
s𝑗
) (𝑢 )z

2𝑡
, 2𝑡

)
. Computes

packed shares
r(
s𝑗
) (𝑢 )z← Share

(
s𝑗,𝑢, 𝑡

)
and sends

r(
s𝑗
) (𝑢 )zP𝑖

to party P𝑖 (for each 𝑖 ∈ [𝑛]).

3. Truncation: For each 𝑢 ∈ [𝐷
ℓ
], all parties proceeds as follows.

– Compute and broadcast
q
(𝒄 𝑗 ) (𝑢 )

y
=

r(
s𝑗
) (𝑢 )z − s(

𝜸 𝑗

) (𝑢 ){
+ 2𝑚 ·

r
mask

↑
𝑗,𝑢

z
+

r
mask

↓
𝑗,𝑢

z
.

– Use the broadcasted packed secret shares to reconstruct the secret vector (𝒄 𝑗 ) (𝑢 ) ∈ Fℓ and locally

compute the shares
q
(𝒅 𝑗 ) (𝑢 )

y
=

(r(
s𝑗
) (𝑢 )z − s(

𝜸 𝑗

) (𝑢 ){
+

r
mask

↓
𝑗,𝑢

z
−

q
(𝒄 𝑗 ) (𝑢 ) mod 2𝑚

y)
· 2−𝑚 .

4. Local Computation: For each 𝑢 ∈ [𝐷
ℓ
], all parties compute

r(
w𝑗

) (𝑢 )z
=

r(
w𝑗−1

) (𝑢 )z − 𝑎
𝐵
·
q
(𝒅 𝑗 ) (𝑢 )

y
.
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• Step V: Repacking Shares All parties proceed as follows:

– For each 𝑢 ∈ [𝐷
ℓ
], compute and broadcast

r(
w′ 𝑗

) (𝑢 )z
=

r(
w𝑗

) (𝑢 )z + s(
𝜷 𝑗

) (𝑢 ){
2𝑡
.

– Parties then locally reconstruct
(
w′ 𝑗

) (𝑢 ) and for each 𝑘 ∈ [𝐷], they compute deterministic shares(
w′ 𝑗

) (𝑢 ) ← Recon
(r(

w′ 𝑗
) (𝑢 )z

2𝑡
, 2𝑡

)
.

– For each 𝑘 ∈ [𝐷], parties locally compute
q
w𝑗,𝑘

y
=

q
w′ 𝑗,𝑘

y
−

q
𝜹 𝑗,𝑘

y
.

Figure 3: Online Phase of Our MPC protocol.

Lemma 4. Assuming that the pre-processing phase was implemented honestly by a trusted party and that
the leader Pleader is honest, the above MPC protocol is (𝑡 − ℓ)-private and (𝑛 − 𝑡)-robust.

Proof of Lemma 4. We argue privacy. The view of the adversary consists of the public communication of
the protocol and the local views of the corrupted parties. Public communications are just packed secret
shares of random values assuming the correlated setup and, hence, simulatable. The local views of ⩽ 𝑡 − ℓ
corrupted parties are uniformly random due to the privacy of the packed secret-sharing scheme. Therefore,
the entire view of the adversary is simulatable.

We argue robustness. First, observe that, in the semi-honest setting, all possible choices of the random-
ness tape of the leader will result in the correct output, i.e., there is no bad randomness. Next, consider the
malicious setting and let us fix any randomness tape of the leader Pleader. Observe that the output of the
honest parties is a deterministic function of their views and the communication transcript of the MPC —
which only comprises of parties exchanging packed secret shares. Thus, the adversary may only alter the
output of the honest parties by changing the transcript from packed shares of an honest value to packed
shares of some incorrect values. If there are ⩾ 𝑡 honest parties, their packed secret shares will be honest
and uniquely define the honest value packed. Consequently, if the adversary sends any incorrect secret
shares, the packed secret shares will not be well-formed and the honest parties will abort. In conclusion,
if the adversary corrupts ⩽ 𝑛 − 𝑡 parties, the honest parties’ output will always be correct.

5 Zero-Knowledge Sub-Routines for Specific Relations

In this section, we present a number of sub-routines for checking some specific relations based on tech-
niques from the SNARKs literature. The MPC protocol described in the previous section requires the
pre-processing phase to be implemented by a “trusted” entity. Looking ahead, in our MPC-in-the-head
based zero-knowledge proof, when the prover runs this MPC in its head, he will act as the “trusted entity”
in the MPC protocol. However, for obvious reasons, the prover cannot be simply trusted to have executed
this step honestly. Therefore, before it runs the remaining online phase of the MPC in its head and com-
mits to the views of the virtual parties, it must first convince the verifier that the pre-processing phase of
the MPC was executed honestly. The sub-routines presented in this section will be used exactly for this
purpose. For reasons that will become clear in Section 6, these proofs are given with respect to shares and
values committed in a very specific manner using polynomial commitments. Several of the proofs use the
sum-check protocol (see Section 2.6 for reference)as a subroutine.

Notations. For efficiency reasons, SNARK proofs typically work with a specific multiplicative subgroup
H = {𝜔,𝜔2, . . . , 𝜔 |H |} ⊂ F∗ whose order is a power of 2. This approach offers several advantages, such
as FFT-friendly evaluation points and a succinct representation of the Lagrange basis polynomial. We
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Sub-Protocol for Checking Consistency of Packed Secret Shares

1. Round 1. (Prover) For each 𝑣 ∈ [ℓ], the prover computes and sends commitments to polynomial 𝑞𝑔𝑣 such that

𝑔𝑣 (𝑋 ) −
∑︁
𝑖∈[𝑛]
LQ

𝑖,𝑣
(𝑋 ) · 𝑔 (𝑖 ) (𝑋 ) = 𝑞

𝑔
𝑣 (𝑋 ) · 𝑧Q (𝑋 ).

2. Round 2. (Verifier) Verifier sends random field elements 𝜖, 𝛼 ∈ F and a random 𝑛-sized vector 𝒓 = (𝑟1, . . . , 𝑟𝑛)
from the dual space of Reed-Solomon codes (see Section 2.1 for reference) to the prover.

3. Round 3. (Prover) Prover sends openings to the following polynomial evaluations: ∀𝑣 ∈ [ℓ]: 𝑔𝑣 (𝜖), 𝑞𝑔𝑣 (𝜖) and
∀𝑖 ∈ [𝑛], 𝑔 (𝑖 ) (𝜖).

4. Round 3-5 (Sum-Check) Computes 𝑔(𝑋 ) = ∑
𝑖∈[𝑛] 𝑟𝑖 · 𝑔 (𝑖 ) (𝑋 ). Let 𝑏 (𝑋 ) be a polynomial encoding of a vector

𝜷 = (𝛼0, . . . , 𝛼s−1). Prover invokes a modified instance of the sumcheck protocol (see Section 2.6 for a detailed
discussion on how to prove such a relation) to prove that: sum of evaluations of 𝑔(𝑋 ) · 𝑏 (𝑋 ) on 𝑠 th roots of unity
is 0.

5. Local VerificationVerifier checks if all the openings are correct and checks if the following holds for each 𝑣 ∈ [ℓ]:

𝑔𝑣 (𝜖) −
∑︁
𝑖∈[𝑛]
LQ

𝑖,𝑣
(𝜖) · 𝑔 (𝑖 ) (𝜖) = 𝑞

𝑔
𝑣 (𝜖) · 𝑧Q (𝜖).

Output. If all the checks in the above protocol verify, the verifier outputs accept, else it outputs reject.

Figure 4: Checking for Consistency of Packed Secret Shares

usually use 𝜔 as the generator of the subgroup. However, in some cases, we may need to work with
multiple subgroups of different orders. In such situations, we use `, 𝜑,𝜓 as the generators of those other
subgroups. The orders of the subgroups generated by the corresponding generators shall be clear from the
context.

5.1 Checking Consistency of Packed Secret Shares

At the end of the pre-processing phase, all parties receive packed secret shares of some random vectors and
the data. The following sub-protocol allows the prover to succinctly prove to the verifier that the shares
sent to the parties correspond to valid packed secret sharings of some vectors. For technical reasons,
we give both the commitment to the secret shares and the commitment to the actual secrets. We use 𝑛
different commitments for the shares, one corresponding to each party, and ℓ commitments to store the
actual secrets. Through this sub-protocol, we check the following: (1) the commitment to the secret shares
are well-formed secret shares and (2) the reconstructions of the secret shares are consistent with the secrets
committed.

Lemma 5. If deg > s − 1, then the protocol in Figure 4 is a correct, sound, and zero-knowledge proof system
for the following relation R𝑠ℎ𝑎𝑟𝑒𝑠 :

• Statement: Commitments to the following degree deg polynomials: ∀𝑖 ∈ [𝑛], 𝑔 (𝑖 ) (𝑋 ) and ∀𝑣 ∈ [ℓ], 𝑔𝑣 (𝑋 ).

• Witness: 𝒈 ∈ Fℓ ·s and ∀𝑖 ∈ [𝑛], polynomials 𝑔 (𝑖 ) (𝑋 ).

• Relation: ∀𝑎 ∈ [0, s − 1]: 𝑔𝑣 (𝜔𝑎) = 𝒈 [𝑎ℓ + 𝑣] and (𝑔 (1) (𝜔𝑎), . . . , 𝑔 (𝑛) (𝜔𝑎)) are packed shares of (𝒈) (𝑎) .
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Sub-Protocol for Checking Consistency of Correlated Randomness

1. Round 1. (Verifier) Verifier sends random field elements {𝜌𝑎}𝑎∈[s−1] ∈ F to the prover.

2. Both the prover and verifier compute the following:

• A polynomial 𝑘 (𝑋 ) of degree s − 1 such that for each 𝑎 ∈ [s − 1], 𝑘 (𝜔𝑎−1) = 𝜌𝑎 . Let ℎ′ (𝑋 ) = 𝑘 (𝑋 ) · ℎ(𝑋 ).
• For each 𝑣 ∈ [ℓ], a polynomial 𝑓𝑣 (𝑋 ) of degree s

ℓ
− 1 such that for each 𝑎 ∈ [0, s

ℓ
− 1], 𝑓𝑣 (`𝑎) = 𝜌ℓ ·𝑎+𝑣 . Let

ℎ′𝑣 (𝑋 ) = 𝑓𝑣 (𝑋 ) · ℎ𝑣 (𝑋 ).

3. Round 2-4 (Sum-Check) Let ℎ′ (𝑋 ) =
∑

𝑣∈[ℓ ] ℎ
′
𝑣 (𝑋 ) and 𝑔′ (𝑋 ) =

∑
𝑣∈[ℓ ] 𝑔

′
𝑣 (𝑋 ). Prover invokes a modified

instance of the sumcheck protocol (see Section 2.6 for a detailed discussion on how to prove such a relation) to
prove that: sum of evaluations of ℎ′ (𝑋 ) on 𝑠 th roots of unity - sum of evaluations of 𝑔′ (𝑋 ) on 𝑠/ℓ th roots of unity is 0.

Output. If all the checks in the above sum-check protocols verify, the verifier outputs accept, else it outputs reject.

Figure 5: Checking Consistency of Correlated Randomness

Proof of Lemma 5. Correctness is straightforward. The zero-knowledge property comes from the fact that
the view of the verifier consists only of a number of openings of the polynomials. Since all the polynomials
are randomized encodings, these openings are all random field elements, which are simulatable.

We argue soundness. Let

𝐺 =
©«
𝑔 (1) (𝜔1) 𝑔 (1) (𝜔2) · · · 𝑔 (1) (𝜔s)

...
...

. . .
...

𝑔 (𝑛) (𝜔1) 𝑔 (𝑛) (𝜔2) · · · 𝑔 (𝑛) (𝜔s)

ª®®¬ .
As we discussed in Section 2.1, the secret shares are well-formed as long as it passes the parity check. For
a random vector 𝑟 spanned by the parity check matrix, if 𝑔 (𝑖 ) are not well-formed secret shares, 𝑟 ·𝐺 will
not be a zero-vector with probability 1− s

|F | . Conditioned on it being a non-zero vector, 𝑟 ·𝐺 ·
(

#„

𝛽

)⊺
is not

0 with probability 1 − s
|F | by Schwartz-Zippel. Finally, if 𝑟 ·𝐺 ·

(
#„

𝛽

)⊺
≠ 0, the verifier will reject the proof

with overwhelming probability by the soundness of the sum-check protocol.
The soundness for the consistency between the secret shares and the secrets are straightforward. The

polynomials 𝑔 (1) , . . . , 𝑔 (𝑛) and 𝑔𝑣 should satisfy the linear relationship defined by the Lagrange interpola-
tion. By Schwartz-Zippel, if this linear relation is satisfied at a random point 𝑥 = 𝜖 , it holds globally with
overwhelming probability. Finally, the soundness follows from the soundness of the polynomial com-
mitment scheme, which guarantees that the openings of the polynomial are correct with overwhelming
probability.

5.2 Checking Consistency of Correlated Randomness

The following sub-routine allows the prover to convince the verifier that 𝝉 and 𝝂 values (and 𝜷 and 𝜹
values, resp.) are appropriately correlated (i.e., these are the same values that were secret shared using
different thresholds). Looking ahead, this sub-routine will be invoked together with the sub-routine from
Section 5.1 to ensure that the shares of these random values are consistent and appropriately correlated.
As before, for technical reasons, we store these values across ℓ polynomial commitments.
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Lemma 6. If deg1 > s/ℓ − 1 and deg2 > s − 1, then the protocol in Figure 5 is a correct, sound, and zero-
knowledge proof system for the following relation R𝑐𝑜𝑟𝑟 :

• Statement: ∀𝑣 ∈ [ℓ], commitments to degree deg1 polynomial 𝑔𝑣 (𝑋 ) and a degree deg2 polynomial ℎ(𝑋 ).

• Witness: 𝒈 ∈ Fs.

• Relation: The following conditions hold:

– ∀𝑎 ∈ [s], ℎ(𝜔𝑎) = 𝒈 [𝑎]
– ∀𝑣 ∈ [ℓ], ∀𝑎 ∈ [0, s

ℓ
− 1], 𝑔𝑣 (`𝑎) = 𝒈 [𝑎ℓ + 𝑣] .

Proof of Lemma 6. Correctness is straightforward. The zero-knowledge property follows from the fact
that the verifier’s view consists of a number of openings of polynomials (in the sum-check protocol).
Since the polynomials are randomized encoded, all the openings are random field elements and, hence, are
simulatable.

We argue soundness. Intuitively, to prove that two vectors #„𝑎 and
#„

𝑏 are identical. The verifier picks
a random #„𝜌 , and the prover proves that #„𝜌 · #„𝑎 − #„𝜌 · #„

𝑏 = 0. This is indeed what this protocol does. The
verifier picks the vector #„𝜌 = (𝜌0, . . . , 𝜌𝑠−1) and generates a polynomial 𝑘 (𝑋 ) that encodes #„𝜌 . The product
ℎ′(𝑋 ) between 𝑘 (𝑋 ) andℎ(𝑋 ) encodes the coordinate-wise products between the vectors. Similarly, 𝑔′𝑣 (𝑋 )
encodes the coordinate-wise products between #„𝜌 and the other vector. By the soundness of the sum-
check protocol, we know that with an overwhelming probability, the difference between the sums of the
values encoded in those polynomials is 0. By our earlier argument, with 1 − 1

|F | probability, the statement
holds.

5.3 Checking the Range for Truncation Masks

To ensure correctness, all masks used in the main MPC protocol for non-arithmetic operations must come
from a certain range. The subprotocol in this section allows the prover to generate a succinct proof for this.
The protocol utilizes similar ideas as in the bit-decomposition-based range proofs (e.g., [CCs08, BBB+18]).
Intuitively, to prove that 0 ⩽ 𝑥 < 2range, one commits to the binary representation 𝑥0, 𝑥1, . . . , 𝑥range−1 and
proves two conditions: (1) for all 𝑖 , 𝑥2𝑖 − 𝑥𝑖 = 0 (i.e., 𝑥𝑖 ∈ {0, 1}) and (2) 𝑥 =

∑
𝑖 2𝑖 · 𝑥𝑖 .

Lemma 7. If deg > s
ℓ
− 1, then the protocol in Figure 6 is a correct, sound, and zero-knowledge proof system

for the following relation R𝑚𝑎𝑠𝑘 :

• Statement: ∀𝑣 ∈ [ℓ], commitments to degree deg polynomials 𝑝𝑣 (𝑋 ) and a range range.

• Witness: 𝒑 ∈ Fs.

• Relation: The following conditions hold:

– ∀𝑣 ∈ [s], 𝒑 [𝑣] ∈ [0, 2range).
– ∀𝑣 ∈ [ℓ], ∀𝑎 ∈ [0, s

ℓ
− 1], 𝑝𝑣 (`𝑎) = 𝒑 [𝑎ℓ + 𝑣].

Proof of Lemma 7. Correctness is straightforward. The zero-knowledge property comes from the fact that
the view of the verifier consists only of a number of openings of the polynomials bin𝑐𝑣 (𝑋 ), 𝑝𝑣 (𝑋 ), and
𝑞𝑐,𝑣 (𝑋 ). Since all the polynomials are randomized encodings, these openings are all random field elements,
which are simulatable.

26



Sub-Protocol for Checking the Range for Truncation Masks

1. Round 1. (Prover) For each 𝑢 ∈ [s], let 𝑏𝑢,1, . . . , 𝑏𝑢,range denote the bit decomposition of 𝒑 [𝑢]. The prover
computes and sends commitments to the following polynomials for each 𝑣 ∈ [ℓ]:

• For each 𝑐 ∈ [range], a randomized polynomial bin𝑐𝑣 of degree s
ℓ
, such that for each 𝑎 ∈ [0, s

ℓ
−1], bin𝑐𝑣 (`𝑎) =

𝑏𝑎ℓ+𝑣,𝑐 .

• For each 𝑐 ∈ [range], polynomial 𝑞𝑐,𝑣 such that bin𝑐𝑣 (𝑋 ) · bin𝑐𝑣 (𝑋 ) − bin𝑐𝑣 (𝑋 ) = 𝑞𝑐,𝑣 (𝑋 ) · 𝑧S (𝑋 ).

2. Round 2. (Verifier) Verifier sends random field elements 𝜖 ∈ F to the prover.

3. Round 3. (Prover) Prover sends openings to the following polynomial evaluations:

• For each 𝑣 ∈ [ℓ]: 𝑝𝑣 (𝜖).
• For each 𝑣 ∈ [ℓ]: for each 𝑐 ∈ [range], bin𝑐𝑣 (𝜖), 𝑞𝑐,𝑣 (𝜖).

4. Local Verification The verifier checks if all the openings are correct and performs the following checks for each
𝑣 ∈ [ℓ]:

• 𝑝𝑣 (𝜖) =
∑

𝑗∈[range] 2𝑗−1 · bin
𝑗
𝑣 (𝜖).

• For each 𝑐 ∈ [range], bin𝑐𝑣 (𝜖) · bin𝑐𝑣 (𝜖) − bin𝑐𝑣 (𝜖) = 𝑞𝑐,𝑣 (𝜖) · 𝑧S (𝜖).

Output. If all of these checks verify, the verfier outputs accept, else it outputs reject.

Figure 6: Checking the Range for Truncation Masks

We argue soundness. By the soundness of the polynomial commitment scheme, with overwhelming
probability, bin𝑐𝑣 , 𝑝𝑣 , and 𝑞𝑐,𝑣 are polynomials with the correct opening bin𝑐𝑣 (𝜖), 𝑝𝑣 (𝜖), and 𝑞𝑐,𝑣 (𝜖). Next,
by Schwartz-Zippel lemma, with probability ⩾ 1 − 2 deg

|F | , the following polynomial identities hold for all
𝑣 ∈ [ℓ].

𝑝𝑣 (𝑋 ) =
∑︁

𝑗∈[range]
2𝑗−1 · bin𝑗

𝑣 (𝑋 )

bin𝑐𝑣 (𝑋 ) · bin𝑐𝑣 (𝑋 ) − bin𝑐𝑣 (𝑋 ) = 𝑞𝑐,𝑣 (𝑋 ) · 𝑧S(𝑋 )

The second polynomial identity guarantees that bin𝑐𝑣 (𝑋 ) ∈ {0, 1} for all 𝑋 ∈ S. This fact and the first
polynomial identity guarantee that, for all 𝑋 ∈ S, 𝑝𝑣 (𝑋 ) ∈ [0, 2range).

5.4 Checking Consistency of Data Shares

In our MPC protocol, we require parties to have two kinds of packed secret sharings of the data. Therefore,
it must be proved that these two sharings are consistent with each other. For technical reasons, we give
the polynomial commitments to both 𝑋1, . . . , 𝑋𝑁 /𝐵 and 𝑋

⊺
1 , . . . , 𝑋

⊺
𝑁 /𝐵 . The sub-protocol in the section

essentially allows the prover to give a succinct proof to convince the verifier that these commitments
satisfy the “transpose” relationship.

Intuitively, to prove that two matrices 𝐴 and 𝐵 satisfy 𝐴 = 𝐵⊺ , we simply pick random vectors (of
appropriate dimensions) #„𝛼 and

#„

𝛽 , and checks

#„𝛼 · 𝐴 ·
(

#„

𝛽

)⊺ ?
=

#„

𝛽 · 𝐵 · ( #„𝛼 )⊺ .

27



Sub-Protocol for Checking Consistency of Data Shares

1. Round 1. (Verifier) The verifier sends random field elements 𝛼1, . . . , 𝛼𝐷 , 𝛽1, . . . , 𝛽𝐵, 𝑟 ∈ F to the prover.

2. Prover computes the following:

• 𝑝row (𝑋 ) = ∑
𝑢∈[𝐷/ℓ ],𝑣∈[ℓ ] 𝛼ℓ (𝑢−1)+𝑣 · row𝑢,𝑣 (𝑋 ).

• A polynomial 𝑓 of degree 𝑁 − 1, such that for each 𝑎 ∈ [𝐵], 𝑏 ∈ [0, 𝑁 /𝐵 − 1], 𝑓 (𝜑 𝑁
𝐵
(𝑎−1)+𝑏) = 𝛽𝑎 · 𝑟𝑏+1. Let

𝑠row (𝑋 ) = 𝑓 (𝑋 ) · 𝑝row (𝑋 ).
• 𝑝col (𝑋 ) = ∑

𝑢∈[𝐵/ℓ ],𝑣∈[ℓ ] 𝛽ℓ (𝑢−1)+𝑣 · col𝑢,𝑣 (𝑋 ).
• A polynomial 𝑘 of degree 𝑁𝐷/𝐵−1, such that for each 𝑎 ∈ [𝐷], 𝑏 ∈ [0, 𝑁 /𝐵−1], 𝑘 (𝜓𝑁 /𝐵 (𝑎−1)+𝑏) = 𝛼𝑎 ·𝑟𝑏+1.
Let 𝑠col (𝑋 ) = 𝑘 (𝑋 ) · 𝑝col (𝑋 ).

3. Round 2-4 (Sum-Check) Prover invokes a modified instance of the sumcheck protocol (see Section 2.6 for a
detailed discussion on how to prove such a relation) to prove that: sum of evaluations of 𝑠row (𝑋 ) on 𝑁 th roots of
unity - sum of evaluations of 𝑠col (𝑋 ) on 𝑁𝐷/𝐵th roots of unity is 0.

Output. If all the checks in the above sum-check protocols verify, the verifier outputs accept, else it outputs reject.

Figure 7: Checking Consistency of Data Shares within a given iteration

If this check passes, with probability ⩾ 1 − 1
|F | , it holds that 𝐴 = 𝐵⊺ .

For our purpose, we have two matrices

𝐴 =
(
𝑋1, . . . , 𝑋𝑁 /𝐵

)⊺
𝐵 =

(
𝑋
⊺
1 , . . . , 𝑋

⊺
𝑁 /𝐵

)⊺
.

To checks that𝐴 and 𝐵 indeed satisfy this “special-transpose” relationship, we picks #„𝛼 ,
#„

𝛽 , and additionally
a random 𝑟 ∈ F. We check if(

𝑟 · #„𝛼 , 𝑟 2 · #„𝛼 , . . . , 𝑟𝑁 /𝐵 · #„𝛼

)
𝐴

#„

𝛽
?
=

(
𝑟 · #„

𝛽 , 𝑟 2 · #„

𝛽 , . . . , 𝑟𝑁 /𝐵 · #„

𝛽

)
𝐵 #„𝛼 .

If this passes, by Schwartz-Zippel lemma, with 1 − poly(_)
|F | probability, the relationship is satisfied.

Lemma 8. If deg1 > 𝑁 − 1 and deg2 > 𝑁𝐷/𝐵 − 1, then the protocol in Figure 7 is a correct, sound, and
zero-knowledge proof system for the following relation R𝑑𝑎𝑡𝑎 :

• Statement: ∀𝑣 ∈ [ℓ], 𝑢 ∈ [𝐷/ℓ], commitment to degree deg1 polynomial row𝑢,𝑣 (𝑋 ) and ∀𝑣 ∈ [ℓ], 𝑢 ∈
[𝐵/ℓ], commitment to degree deg2 polynomial col𝑢,𝑣 (𝑋 )

• Witness: ∀𝑗 ∈ [𝑁 /𝐵], X𝑗 ∈ F𝐵×𝐷 .

• Relation: The following conditions hold ∀𝑣 ∈ [ℓ]:

– ∀𝑢 ∈ [𝐷/ℓ], row𝑢,𝑣 (𝑋 ) is a polynomial encoding of the concatenation the vectors
(X1) ⟨∗,(𝑢−1) ·ℓ+𝑣⟩, . . . , (X𝑁 /𝐵) ⟨∗,(𝑢−1) ·ℓ+𝑣⟩ .

– ∀𝑢 ∈ [𝐵/ℓ], col𝑢,𝑣 (𝑋 ) is a polynomial encoding of the concatenations of the vectors
(X⊺1 ) ⟨∗,(𝑢−1) ·ℓ+𝑣⟩, . . . , (X

⊺
𝑁 /𝐵) ⟨∗,(𝑢−1) ·ℓ+𝑣⟩ .
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Proof of Lemma 8. Correctness is straightforward. The zero-knowledge property comes from the fact that
the view of the verifier, during the sum-check protocol, consists only of a number of openings of the
polynomials. Since all the polynomials are randomized encodings, these openings are all random field
elements, which are simulatable.

We argue soundness. By the soundness of the sum-check protocol, with overwhelming probability, we
have that (

𝑟 · #„𝛼 , 𝑟 2 · #„𝛼 , . . . , 𝑟𝑁 /𝐵 · #„𝛼

)
𝐴

#„

𝛽
?
=

(
𝑟 · #„

𝛽 , 𝑟 2 · #„

𝛽 , . . . , 𝑟𝑁 /𝐵 · #„

𝛽

)
𝐵 #„𝛼 , (2)

where #„𝛼 = (𝛼1, . . . , 𝛼𝐷 ),
#„

𝛽 = (𝛽1, . . . , 𝛽𝐵), and

𝐴 =
(
row1,1∥ · · · ∥row1,ℓ ∥ · · · ∥row𝐷/ℓ,1∥ · · · ∥row𝐷/ℓ,ℓ

)
,

𝐵 =
(
col1,1∥ · · · ∥col1,ℓ ∥ · · · ∥col𝐵/ℓ,1∥ · · · ∥col𝐵/ℓ,ℓ

)
.

It remains to show that Identity 2 implies the “special-transpose” relation between {row𝑢,𝑣} and {col𝑢,𝑣}.
Let us write

𝐴 =

©«
𝐴1
𝐴2
...

𝐴𝑁 /𝐵

ª®®®®¬
𝐵 =

©«
𝐵1
𝐵2
...

𝐵𝑁 /𝐵

ª®®®®¬
.

Furthermore, let us write
𝑐𝑖 =

#„𝛼 · (𝐴𝑖 − 𝐵⊺𝑖 ) · (
#„

𝛽 )⊺ .

If there exists an 𝑖 such that𝐴𝑖 ≠ 𝐵
⊺
𝑖
, then 𝑐𝑖 ≠ 0with probability 1− 1

|F | . Then
∑

𝑖 𝑐𝑖 ·𝑟 𝑖 ≠ 0with probability
1 − 𝑁 /𝐵

|F | by Schwartz-Zippel. Therefore, Identity 2 implies, with overwhelming probability, that {row𝑢,𝑣}
and {col𝑢,𝑣} satisfies the “special-transpose” relation.

6 Zero-Knowledge Proof of Training for Logistic Regression

With all the tools presented in the previous two sections, we are now ready to describe our zero-knowledge
proof of training for logistic regression. We start by giving an overview and then proceed to give a formal
description.

6.1 Overview

Based on the discussion thus far, it is clear that we want to use the MPC protocol from Section 4 to instan-
tiate an MPC-in-the-head framework, where we somehow want to use the zkSNARK sub-protocols from
Section 5 to verify whether the prover honestly executed the pre-processing phase in the MPC. To verify
whether the online phase of this MPC was honestly executed, we still want to primarily rely on MPC-in-
the-head style techniques. However, as discussed towards the end of Section 4.1, our MPC protocol cannot
be used as is to obtain a sublinear-sized zero-knowledge proof.

We now discuss our final idea to reduce the communication complexity of our MPC-in-the-head-based
zero-knowledge proof of training. Recall that the reason why the verifier needs to learn the entire view of
the opened virtual parties in an MPC-in-the-head protocol, is to perform some local “consistency-checks”.
At a high level, these checks ensure that each of these opened parties performed the computation hon-
estly based on the messages that they receive from other virtual parties and that the messages exchanged
between the opened parties are consistent with each other. In other words, these consistency checks can

29



be divided into — (1) ones that check for the correctness of computation and (2) ones that check commu-
nication consistency.

Since the communication complexity of our underlying MPC is 𝑂 (𝑁 ), the complexity of checks that
ensure communication consistency is also𝑂 (𝑁 ). While the complexity of checks that ensure consistency
of computation is 𝑂 (𝐷𝑁 ). Our aim is to reduce the complexity of this class of checks to 𝑂 (𝑁 ) in the
hope that instead of sending the views of the opened virtual parties in the clear to the verifier, it somehow
suffices for us to give a functional commitment to amajor chunk of the opened parties’ views to the verifier.
And the verifier is still able to perform the checks using these functional commitments with𝑂 (𝑁 ) instead
of 𝑂 (𝐷𝑁 ) complexity.

Towards this, we make the following observations:

• The most significant chunk of each party’s view is a sharing of the initial input data, i.e., #„
𝑋 1, . . . ,

#„
𝑋 𝑁 ∈

R𝐷 . And this is only used by the verifier to check for computation correctness (i.e., consistency checks of
the first type). The rest of the view is only of size𝑂 (𝑁 ). Therefore, we can simply focus on giving some
kind of functional commitment to these shares of the data and modifying the corresponding consistency
checks to reduce their complexity to 𝑂 (𝑁 ) instead of 𝑂 (𝐷𝑁 ). The hope is to use interaction (with the
prover) during the verifier’s “consistency-checking phase”.

• Our second observation is that the checks that the verifier performs w.r.t. to the shares of #„
𝑋 1, . . . ,

#„
𝑋 𝑁 ∈

R𝐷 are essentially of the following form: Given some #„𝑎 𝑖 ,
#„

𝑏 𝑖 , 𝑐 , check if ⟨ #„𝑎 𝑖 ,
#„

𝑏 𝑖⟩
?
= 𝑐 , where #„𝑎 𝑖 ,

#„

𝑏 𝑖 can
be derived via some linear function on the shares of #„

𝑋 1, . . . ,
#„
𝑋 𝑁 ∈ R𝐷 .

Our Idea: Our idea here is to combine all of these checks for all into a single check. In particular, embed
all the #„𝑎 𝑖s into a vector of polynomials (say #„

𝐴 (𝑥)) using the polynomial extension. Similarly, embed all the
#„

𝑏 𝑖s into another vector of polynomials (say #„
𝐵 (𝑥)) and all the 𝑐𝑖s into a polynomial𝐶 (𝑥). To ensure that the

inner product relation is satisfied for all ( #„𝑎 𝑖 ,
#„

𝑏 𝑖 , 𝑐) triples, it now suffices (due to Schwartz-Zippel Lemma)
to check if the inner-product relation is satisfied at the random point on polynomials #„

𝐴 (𝑥), #„
𝐵 (𝑥),𝐶 (𝑥).

For this, it suffices to the prover to give a polynomial commitment to polynomials #„
𝐴 (𝑥), #„

𝐵 (𝑥),𝐶 (𝑥) for
the verifier to query them at a random point and check if the inner product relation is satisfied.

Overall, this helps us reduce the size of our proof to𝑂 (𝑁 ), even though the total computation in logistic
regression is 𝑂 (𝐷𝑁 ).

6.2 Protocol Description

We now give a formal description of our zero-knowledge proof of training for logistic regression. As
discussed in Section 3, we assume that the verifier has commitments to the final model (aka the final
weights vector), the randomness used in the training process as well as the dataset. Throughout this
protocol, the prover computes commitments to polynomial encodings (see Section 2.6) of shares of held
by the parties in the MPC and of some intermediate values in the computation (that might be witness
dependent.) In order to guarantee the zero-knowledge property and ensure that these commitments do not
leak the witness or model when the verifier queries them at random points, the prover sends commitments
to randomized encodings. This is a standard trick used in zkSNARKs. The amount of randomness added
to each encoding depends on the number of times the verifier queries the polynomial commitment.

Our Main Protocol: For each iteration, the prover and verifier proceed as follows:

• Data Shares: Let the input training sample be X𝑗 ∈ F𝐵×𝐷 , ∀𝑗 ∈ [𝑁 /𝐵] and the corresponding output
be 𝑦1, . . . , 𝑦𝑁 ∈ F.
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1. Packed Shares: ∀𝑗 ∈ [𝑁 /𝐵], prover computes packed secret shares:{r(
y𝑗

) (𝑢 )z
,

{s(
X⊺

𝑗

) (𝑢 )
⟨𝑘,∗⟩

{}
𝑘∈[𝐷 ]

}
𝑢∈[𝐵/ℓ ]

and
{r(

X𝑗

) (𝑢 )
⟨𝑘,∗⟩

z}
𝑘∈[𝐵 ],𝑢∈[𝐷/ℓ ]

in the pre-processing

phase in the MPC protocol.
2. Polynomial Commitments:

– Encoding Party Shares: For each party 𝑖 ∈ [𝑛]: for each ∀𝑢 ∈ [𝐷/ℓ], the prover sends a commitment

to a randomized polynomial encoding row(𝑖 )𝑢 (𝑋 ) of all shares of the form
r(
X𝑗

) (𝑢 )
⟨𝑘,∗⟩

zP𝑖
. Similarly

for each 𝑢 ∈ [𝐵/ℓ], compute and send commitments to randomized encodings col(𝑖 )𝑢 (𝑋 ) for shares
corresponding to X⊺

𝑗
.

– Encoding Data: For each 𝑣 ∈ [ℓ]: for each ∀𝑢 ∈ [𝐷/ℓ], we assume that the prover and verifier

have a commitment to a polynomial encoding row𝑢,𝑣 (𝑋 ) of the 𝑣 th element in
(
X⊺

𝑗

) (𝑢 )
⟨𝑘,∗⟩

for each
𝑘 ∈ [𝐵], 𝑗 ∈ [𝑁 /𝐵]. Similarly for each 𝑢 ∈ [𝐵/ℓ], compute encodings col𝑢,𝑣 (𝑋 ) for corresponding
elements in X⊺

𝑗
. This corresponds to the commitment to the data that the verifier has at the beginning

of the protocol.
3. Checking Well-Formedness of Packed Shares: Invoke instances of the sub-protocol from Fig-

ure 4 on the following statements: ∀𝑢 ∈ [𝐷/ℓ],
({
row𝑢,𝑣

}
𝑣∈[ℓ ] ,

{
row(𝑖 )𝑢

}
𝑖∈[𝑛]

)
and ∀𝑢 ∈ [𝐵/ℓ],({

col𝑢,𝑣
}
𝑣∈[ℓ ] ,

{
col(𝑖 )𝑢

}
𝑖∈[𝑛]

)
.

4. Checking Consistency of Row and Column Encodings: Invoke an instance of the sub-protocol
from Figure 7 on statement

({
{row𝑢,𝑣}𝑢∈[𝐷/ℓ ], {col𝑢,𝑣}𝑢∈[𝐵/ℓ ]

}
𝑣∈[ℓ ]

)
.

5. Checking Consistency of Data with Previous Iteration: Let the encodings of data in the pre-
vious iteration were of the form ˆrow𝑢,𝑣 and ˆcol𝑢,𝑣 . Invoke an instance of the permutation check on
statement

{
{row𝑢,𝑣, ˆrow𝑢,𝑣}𝑢∈[𝐷/ℓ ], {col𝑢,𝑣, ˆcol𝑢,𝑣}𝑢∈[𝐵/ℓ ]

}
𝑣∈[ℓ ]

and the permutation polynomial used
during the training process. The commitments to this permutation polynomial essentially corresponds
to the commitment to randomness that the verifier receives at the beginning of the protocol.

• Pre-Processed Random Sharings: Following is done to generate and ensure consistency of random
shares generated in the pre-processing phase in the MPC:

1. Packed Shares: Prover samples random vectors of appropriate lengths in the pre-processing phase
of the MPC (as described in Section 4.2) and generates the following packed secret shares ∀𝑗 ∈ [𝑁 /𝐵]:{r(

𝜶 𝑗

) (𝑢 )z}
𝑢∈[𝐵/ℓ ]

,
{s(

𝜸 𝑗

) (𝑢 ){}
𝑢∈[𝐷 ]/ℓ

,
{q
𝝂 𝑗,𝑘

y}
𝑘∈[𝐵 ] ,

{r(
𝜶 𝑗

) (𝑢 )z
2𝑡

}
𝑢∈[𝐵/ℓ ]

,
{s(

𝜸 𝑗

) (𝑢 ){
2𝑡

}
𝑢∈[𝐷/ℓ ]

,{r(
𝝉 𝑗

) (𝑢 )z
2𝑡

}
𝑢∈[𝐵/ℓ ]

,
{r(

𝜽 𝑗

) (𝑢 )z
2𝑡
,

s(
𝝁 𝑗

) (𝑢 ){
2𝑡
,

r(
𝜽 𝑗

) (𝑢 )z
,

s(
𝝁 𝑗

) (𝑢 ){}
𝑢∈[𝐵/ℓ ]

.

2. Polynomial Commitments: Prover sends commitments to the following randomized polynomial
encodings:

– ∀𝑖 ∈ [𝑛], a randomized encoding 𝑝 (𝑖 ) (𝑋 ) of vector
(r(

𝜶 𝑗

) (𝑢 )zP𝑖

2𝑡

)
𝑗∈[𝑁 /𝐵 ],𝑢∈[𝐵/ℓ ]

.

– ∀𝑣 ∈ [ℓ], a randomized encoding 𝑝𝑣 (𝑋 ) of vector
( (
𝜶 𝑗

) (𝑢 ) [𝑣])
𝑗∈[𝑁 /𝐵 ],𝑢∈[𝐵/ℓ ]

.
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Compute and send commitments to similar randomized encodings for both types of sharings of 𝜶 ,
𝜸 , 𝜽 , 𝝁,𝝉 , 𝝂 and their actual values. Compute and send commitments to randomized polynomial
encodings of vectors (𝝉 𝑗 ) 𝑗∈[𝑁 /𝐵 ] (and (𝜷 𝑗 ) 𝑗∈[𝑁 /𝐵 ] resp.) and for each 𝑖 ∈ [𝑛], compute an encoding

of vector
(q
𝝂 𝑗,𝑘

yP𝑖
)
𝑗∈[𝑁 /𝐵 ],𝑘∈[𝐵 ]

(and
(q
𝜹 𝑗,𝑘

yP𝑖
)
𝑗∈[𝑁 /𝐵 ],𝑘∈[𝐷 ]

resp.).

3. Checking Well-Formedness of Packed Shares: Similar to how it was done for data shares, the
prover and verifier invoke instances of the sub-protocol from Figure 4 on the above encodings of
shares and values to check for well-formedness of all packed secret sharings of each type of ran-
domness in one-shot (For instance, the well-formedness of all shares of all 𝛼-values is checked in
one-shot). We note that when checking the well-formedness of both types of shares of 𝜶 , 𝜸 , 𝜽 and
𝝁 values, we use the same encodings of the actual 𝜶 , 𝜸 , 𝜽 and 𝝁 values. This also helps ensure that
the two types of sharings are also consistent with each other. For checking well-formedness of the
shares of 𝝂 𝑗,𝑘 , we use ℓ copies of the same polynomial encoding of vector (𝝉 𝑗 ) 𝑗∈[𝑁 /𝐵 ] .

4. Checking Consistency of Correlated Randomness Invoke 2 instances of the sub-protocol from
Figure 5 on encodings of 𝝉 , 𝝂 and 𝜷 , 𝜹 respectively.

• Masks forNon-Arithmetic Computations: Following is done to generate shares ofmasks (and ensure
that they come from the right range) that will be used for non-arithmetic operations in the online phase
of the MPC:

1. Packed Shares: Prover samples randommasks of appropriate lengths and from the appropriate range
in the pre-processing phase of the MPC (as described in Section 4.2) and generates the following
packed secret shares for each 𝑗 ∈ [𝑁 /𝐵]:

{r
mask↓

𝑗,𝑢

z
,

r
mask↑

𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

,
{r

LT↓
𝑗,𝑢

z
,

r
LT↑

𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

,{r
LT
↓
𝑗,𝑢

z
,

r
LT
↑
𝑗,𝑢

z}
𝑢∈[𝐵/ℓ ]

and
{r

mask
↓
𝑗,𝑢

z
.

r
mask

↑
𝑗,𝑢

z}
𝑢∈[𝐷/ℓ ]

.

2. Polynomial Commitments: As before, prover computes and sends commitments to randomized
polynomial encodings of the shares/values of masks mask↓,mask↑,mask

↓
,mask

↑
, LT↓, LT↑, LT

↓
, LT
↑.

The commitments to actual masks here also corresponds to the commitment to randomness that the ver-
ifier receives at the beginning of the protocol.

3. Checking Well-Formedness of Packed Shares: As before, invoke instances of the sub-protocol
from Figure 4 on the above encodings to ensure consistency of packed secret shares of masks.

4. Checking Validity of Masks: Invokes instances of the sub-protocol from Figure 6 on the above
encodings ofmasks and the respective ranges to ensure that themaskswere sampled from appropriate
ranges.

• MPC-in-the-head (for the online phase): Using the above shares of data, correlated randomness, and
masks for non-arithmetic computations, the prover runs the online phase of MPC protocol from Figure
3 in its head. It then computes hash-based commitments to the views of each virtual party in this MPC
execution and sends these 𝑛 commitments to the verifier. Here, the view of each party comprises of all
the shares/values received and sent by the parties. As discussed in the overview, because of the massive
size, we do not include the shares of data in these views.

In order to convince the verifier that the output of this MPC is the model that the verifier was holding a com-
mitment to, the prover sends the following additional information: for each 𝑖 ∈ [𝑛] it sends a commitment
to a randomized polynomial encoding of the packed secret shares of w𝑁 /𝐵,0, . . . ,w𝑁 /𝐵,𝐷 held by party
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P𝑖 . It also invokes Figure 4 on these as well as the commitments to the actual values w𝑁 /𝐵,0, . . . ,w𝑁 /𝐵,𝐷
that the verifier was given at the beginning of the protocol.13

• Sample Random Subset of Parties: Verifier samples random field elements 𝑟, 𝑠 ∈ F and a random
(𝑡 − ℓ)-sized subset 𝑇 ⊂ [𝑛] of the parties (which includes Pleader) and sends 𝑟, 𝑠,𝑇 to the prover.

• Opening Views: Prover opens the views of parties in subset𝑇 to the verifier, including the randomness
used by the prover to create polynomial commitments the shares of correlated randomness and masks
held by the virtual parties in 𝑇 (note that the prover does not send shares of the data or the random-
ness used to compute commitments to data shares). For data shares, the prover additionally sends the
following for each 𝑖 ∈ 𝑇 :

– For Step I(1):

1. Let weights(𝑖 ) (𝑋 ) be a polynomial encoding of a 𝑁𝐷/𝐵-length vector(
𝑟 1Jw0,1KP𝑖 , . . . , 𝑟 1Jw0,𝐷KP𝑖 , . . . , 𝑟

𝑁
𝐵

r
w𝑁

𝐵
−1,1

zP𝑖
, . . . , 𝑟

𝑁
𝐵

r
w𝑁

𝐵
−1,𝐷

zP𝑖
)

2. For each 𝑢 ∈ [𝐵/ℓ], let 𝑧
(𝑖 )
𝑢 (𝑋 ) be a polynomial encoding of a 𝑁 /𝐵-length vector(

𝑟 1 (z1) (𝑢 ) , . . . , 𝑟𝑁 /𝐵
(
z𝑁 /𝐵

) (𝑢 ) ) . Let 𝑧 (𝑖 ) (𝑋 ) = ∑
𝑢∈[𝐵/ℓ ] 𝑠

𝑢 · 𝑧 (𝑖 )𝑢 (𝑋 )

3. For each 𝑢 ∈ [𝐵/ℓ], let alpha(𝑖 )𝑢 (𝑋 ) be a polynomial encoding of a 𝑁 /𝐵-length vector(
𝑟 1 (𝜶 1) (𝑢 ) , . . . , 𝑟𝑁 /𝐵

(
𝜶𝑁 /𝐵

) (𝑢 ) ) . Let alpha(𝑖 ) (𝑋 ) = ∑
𝑢∈[𝐵/ℓ ] 𝑠

𝑢 · alpha(𝑖 )𝑢 (𝑋 )

4. Let col(𝑖 ) (𝑋 ) = ∑
𝑢∈[𝐵/ℓ ] 𝑠

𝑢 · col(𝑖 )𝑢 (𝑋 )
5. Sumcheck: The prover proves the following relation using sumcheck: sum of evaluations of

𝑧 (𝑖 ) (𝑋 )-sum of evaluations of (alpha(𝑖 ) (𝑋 ) on 𝑁 /𝐵th roots of unity) - (sum of evaluations of
col(𝑖 ) (𝑋 ) · weights(𝑖 ) (𝑋 ) on 𝑁𝐷/𝐵th roots of unity) is 0

– For Step IV(1): The prover performs similar computations for Step IV(1) w.r.t. to the row(𝑖 )𝑢 polyno-
mials and invokes a sumcheck in a similar manner at the end of it.

• Checking Consistency of Views: The verifier performs the following local checks for each 𝑖 ∈ 𝑇 :

1. Consistent Polynomial Commitments: Check if the polynomial commitments to shares of correlated
randomness andmasks are consistent with the information received from the prover in the previous
step.

2. Correctness of Model: Run the verification checks from Figure 4 using the information provided by
the prover about the shares of the final model (or weight vector). This allows him to verify that the
this proof verifies against the commitment to the final model that the verifier was holding on to.

3. Sumchecks for Steps I(1) and III(1) Verify if the sumcheck proofs that the prover provides for these
steps verify.

4. All other steps: For each 𝑗 ∈ [𝑁 /𝐵], it checks if all the other views of opened parties are consistent
with the description of the MPC protocol from Figure 3.

If all the above checks verify, the verifier outputs accept, else it outputs reject.
13We assume that the polynomial commitments to these actual weight values are computed in a similar manner as all other

commitments to random values in previous steps.
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Theorem 1. The above protocol is a zero-knowledge proof of training (as defined in Section 3) for logistic
regression.

Proof of Theorem 1. As prescribed by the definition of proof of training, in our construction, the com-
mitment to the data is simply the encoding of the data, and the commitment to the randomness are the
encoding of the permutation polynomials (which defines how the data are shuffled between different iter-
ations) and the polynomial commitment of the truncation masks (which defines the randomness used in
the probabilistic truncation).

Correctness is straightforward. Soundness follows from the soundness of theMPC-in-the-head and the
subroutines. First, the plain MPC-in-the-head guarantees a (statistical) soundness of (1 − 𝑡𝑟/𝑛)𝑡𝑝 . Recall
that the robustness parameter of the MPC protocol is 𝑡𝑟 = 𝑛 − 2𝑡 , and the privacy parameter is 𝑡𝑝 = 𝑡 − ℓ .
For our setting of 𝑡 ≈ 𝑛/4 and ℓ ≈ 𝑛/8, the (statistical) soundness of the MPC protocol is 2−𝑛/8, exponential
in 𝑛. Next, additional soundness errors are introduced when we do not reveal the view in the clear but give
succinct proofs for it using our subroutines. Since all of our subroutines have a negligible soundness error,
the overall soundness of our protocol is negl(_). The zero-knowledge property of our protocol follows
from the zero-knowledge property of the MPC-in-the-head approach and the subroutines. The simulator
may simulate the view of the MPC-in-the-head part first, which gives the statement of the subroutines.
Next, it invokes the simulator of the subroutines to simulate the entire view of the verifier.

6.3 Extension: zkPoT for Other Models

As discussed earlier, MPC-in-the-head-based zero-knowledge proof systems typically yield proofs whose
size is linear in the size of the computation. A careful reader might have observed that for reducing the
proof size of our MPC-in-the-head-based zero-knowledge proof, (amongst other optimizations,) we cru-
cially leverage two main properties of logistic regression in the above protocol:

• All operations except for the activation function are simple addition/subtraction and matrix multiplication:
Addition/subtraction is very efficient to implement inside an MPC without additional communication.
Moreover, matrix multiplication essentially involves computing inner products, which can be computed
inside an MPC with minimal communication (as discussed in Section 4.1, this is essentially what allows
us to design a zkPoTwhere the proof size is independent of the number of features in the data set). Finally,
since these addition/subtraction and matrix multiplication operations are repeated several times, we can
check that they were all computed honestly in a “single-shot” using techniques from the zk-SNARKs
literature.

• The activation function, which is the only non-linear operation can be approximated using a piecewise-linear
function without significant loss in accuracy [MR18]: Piecewise-linear function is essentially a “selection
function” that can also be computed quite efficiently using existing MPC techniques (see Step 2 in Fig-
ure 3).

As one might expect, the above two properties are not unique to logistic regression. Indeed, apart from
a non-linear activation function, all other operations in the training procedure for more sophisticated
models such as neural networks, are simple addition/subtraction and matrix multiplication operations.
Moreover, it has been shown in prior works [CBD15, MZ17, CDNF+21, EMMZ20] that the activation func-
tion in such models can be approximated using a piecewise-linear function without significantly affecting
accuracy.

As a result, our techniques can also be extended to design zkPoT for such models, provided their
activation function can be safely approximated using a piece-wise linear function. However, since the
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training times in these models is already quite long, we will have to introduce other algorithmic (and
systems) optimizations in order to obtain a “truly” efficient solution for larger models. We leave this for
future work.

7 Implementation and Evaluation

We implemented a prototype of our Proof of Training protocol for logistic regression in Rust, which can be
found at https://github.com/guruvamsi-policharla/zkpot. We rely on the winterfell library14 for field
arithmetic and implement our own library for packed secret sharing. We then extend the implementation
of FRI (Fast Reed-Solomon Interactive Oracle Proof of Proximity) in winterfell to build various poly-
nomial arguments such as a commitment scheme and the sumcheck protocol and its variants. Finally, we
use these core building blocks to implement our MPC-in-the-head (MPCitH) style zero-knowledge proof.
Our code is written in a modular fashion, allowing it to be easily used and extended for other applications
as well.

Setup. Our experiments were run on an N2 GCP instance with 512 GB of RAM, in single-threaded mode.
We emphasize that the high RAM requirement is an artifact of our implementation and is not necessary.
In fact, if our implementation is upgraded to a streaming-friendly version,15 we expect that it can be run
on consumer-grade laptops. All arithmetic is implemented over a 128-bit (𝑝 = 2128 − 45 ∗ 240 + 1) prime
field. The larger field size is required by the secure truncation protocol for fixed-point arithmetic(see
Section 2.4). We expect that finding a way to avoid this and instead using a 64-bit field would further
speed up the protocol and reduce proof size. For the MPCitH, we use 512 parties with a packing factor of
64 (𝑛/8); for FRI, we use a low-degree-extension with blowup factor 2 and use 95 queries combined with
20 bits of grinding for 115 bits of security [Sta21].

Three Phases. We divide the benchmarks of our protocol into three phases to better understand the
bottlenecks in different parts of the protocol.

• Offline phase. We categorize the offline phase as any computation that can be done before any
data is made available to the prover, such as setting up randomness needed for the MPCitH. We find
this to be a meaningful separation because the prover can pre-compute these offline proofs during
system idle time.

• Data phase. We demarcate this step by any work done that is oblivious to the model training.
This includes consistency checks on the data that is secret shared amongst parties in MPCitH (see
Section 6).

• Online phase. Finally, the online phase refers to any computation related to the actual training of
the model after the offline phase and data checks have been completed.

We believe that the above separation highlights both the advantages (a very fast and efficient online
phase) and limitations of our approach (an expensive pre-processing phase) as is typical in secure multi-
party computation. We focus on benchmarking the overall proof size and the prover/verifier time for the
data and online phase. The online phase can further be divided into two main categories of checks:

14https://github.com/facebook/winterfell
15We discuss later in the section how this can be done.
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• The first type are what we refer to as cryptographic checks, which involve cryptographic objects
such as hash functions. These are typically slower but offer very powerful compression in proof
sizes and verifier time. In our concrete instantiation, this is primarily the hash-based FRI proofs.

• The second type are information-theoretic checks, which only involve algebraic checks and are very
fast in comparison but result in larger sizes. These are mainly the algebraic checks from theMPCitH.

Our main strategy is to use the former to compress very large parts of the witness, such as the training
data, at the cost of some additional work to the prover, but at the same time, we try to maximize the use of
the latter as it allows us to greatly minimize the cryptographic overhead, thereby striking a delicate balance
between the prover/verifier work and the size of proofs.

System Design. The overall proof contains many moving parts and in our implementation, it was vital
to design modular protocols that can be combined easily with each other. We first implemented a Packed
Secret Sharing scheme, which works over any generic field implemented in the winterfell library.
Next, we observe that it is sufficient to open all polynomials in the online phase (resp., offline phase),
at the same random point. When this is the case, FRI openings can be batched together where instead
of producing an individual opening proof for each polynomial, the polynomials can first be folded and
then a single opening proof can be produced for the folded polynomial [Hab22]. This results in several
advantages as hashing in the FRI proofs becomes a major bottleneck at the scale in which we operate and
the overhead of FRI polynomial openings is no longer multiplicative and instead additive. However, this
complicates our system design as we now have to gather polynomials from various subprotocols and prove
them in one final step. We handle this by implementing a batch-prover struct that can be passed to
various subprotocols, which can then append their polynomials by inserting them into a key-value store.
The batch-prover is then finalized exactly once at the end of the proof creation. We note that although our
implementation is not fully optimized, it is still quite performant and many of our modules can be used in
a black-box manner.

Streaming Friendliness. As mentioned earlier, our design is naturally streaming friendly and as a result,
we expect that our protocols can also be run on commodity laptops, even for large datasets (in the order of
10s of GBs). In the offline and data checks phases, the prover computation essentially involves embedding
random values or data inside polynomials and checking if these values satisfy some requisite correlations
by polynomial-based techniques (Section 5). While protocol from Section 6.2 suggests embedding all the
values associated with a certain check into a single polynomial, we note that this is not strictly necessary.
We can instead embed these values intomultiple smaller polynomials (depending on the available memory)
and perform the requisite checks on each of them separately. As expected, this will result in slightly larger
proof sizes. In the online phase, the MPCitH protocol is already streaming-friendly and the cryptographic
checks can be handled in a manner similar to the offline and data checks phase.

Packed Secret Sharing. We note that implementing packed secret sharing such that sharing and recon-
struction both take place in 𝑂 (𝑛 log𝑛) time using FFTs is somewhat non-trivial and can be sub-optimal if
not done carefully. 16 We present details here for completeness. The challenge over plain Shamir-secret
sharing, stems from the fact that there are many secrets that need to be shared, which must be stored as
evaluations of the polynomial over a smooth domain (for efficiency in various other parts of the protocol).
Simultaneously, the shares must also be stored on a smooth domain as we also want to be able to recover

16For example the implementation in https://github.com/snipsco/rust-threshold-secret-sharing uses an FFT for powers of
3 which is slower than powers of 2 as benchmarked in https://medium.com/snips-ai/optimizing-threshold-secret-sharing-
c877901231e5.
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secrets in quasi-linear time. The strategy is to set one of these domains (say the share domain) to be the
𝑛-th roots of unity if there are 𝑛 parties. Next, let ℓ be the number of secrets packed in each polynomial and
𝑡𝑝 be the number of corrupt parties. Then, we set the secrets domain to be a coset of the ℓ + 𝑡𝑝 + 1-th roots
of unity. First note that the two domains do not have any elements in common by the definition of a coset.
We now rely on the fact that FFTs over cosets of a smooth domain can also be computed in quasi-linear
time and thus to compute shares we simply use the coset-iFFT to obtain coefficients and compute an FFT
over the 𝑛-th roots of unity. Our implementation can be found in the secret-sharing crate of our
zkPoT library.

7.1 Benchmarks

We report the performance in each of the three phases (online, data, offline) separately. The total proof size
can be estimated by simply adding up the proof size in individual phases. We also provide benchmarks
for prover/verifier time in the data checks and online phase which can be added up to determine the
time taken to prove/verify data dependent parts of the protocol. Although the cost of creating proofs of
training may seem very large we note that a) we are able to handle large data sets that are used in the real
world (10s of GB). For instance the largest data set size used in Kaggle competitions is 82 GB 17 and b) our
implementation is far from optimal and further improvements can significantly reduce the cryptographic
overhead. In the tables that follow, 𝑁 denotes the dataset size, 𝐷 the dimension of each entry and 𝐵 the
batch size of the mini-batch gradient descent.
Online proof size. As discussed earlier, the online phase can be separated into two parts – information-
theoretic and cryptographic. For the information-theoretic checks, our proof size and prover/verifier time
grow linearly with the number of batches given that it is an MPCitH proof. For the cryptographic checks,
since we use FRI, the proof size and verifier time only grow poly-logarithmically and amount to < 5 MB
in total, even for the largest parameters that we benchmark. In Table 1 and Table 2, we provide micro-
benchmarks for the size and prover (verifier) time, respectively, of MPCitH proofs generated in each epoch.
These can be used to easily estimate the online proof size and timings for any dataset size.

D B 128 256 512 1024

128 95.7 171 321.7 623
256 116 191.4 342 643.3
512 156.7 232.1 382.7 684
1024 238.1 313.5 464.1 765.4

Table 1: Proof size (in KB) per batch of information-theoretic checks in the online phase as the dimension
and batch size are varied.

While the information-theoretic checks form the biggest chunk of the final proof of training, the cryp-
tographic checks based on FRI take the longest to prove. We benchmark these checks for varying data set
sizes and dimensions to understand the scaling behavior. In Table 3 we provide benchmarks for prover
(verifier) times.
Data Set Checks. We next benchmark the prover (verifier) time to ensure that the commitments to the
data and the shares of data are correctly related and second that the commitments to row and column

17https://www.kaggle.com/code/benhamner/competitions-with-largest-datasets
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D B 128 256 512 1024

128 15.8
(5.2)

29.3
(10.5)

55.9
(20.9)

116.5
(42.4)

256 31.7
(5.7)

51.2
(10.8)

102.4
(21.4)

188.1
(43.1)

512 60.0
(6.3)

104.3
(11.5)

181.5
(22.1)

347.4
(44.1)

1024 117.1
(7.6)

168.9
(12.8)

298.2
(23.2)

607.1
(45.5)

Table 2: Prover (verifier) time (in ms) per batch of information-theoretic checks in the online phase as the
dimension and batch size are varied.

N D 128 256 512 1024

212 1.1
(0.17)

1.8
(0.18)

3.1
(0.20)

5.8
(0.26)

214 5.1
(0.67)

7.9
(0.73)

13.9
(0.85)

26.0
(1.1)

216 22.52
(2.77)

35.1
(3.01)

63.3
(3.55)

117.69
(4.69)

218 104.5
(11.45)

160.2
(12.52)

274.8
(14.89)

521.1
(19.39)

Table 3: Prover (verifier) time (in s) of cryptographic checks in the online phase as the dimension and
data-set size are varied with a fixed batch size of 256.

encodings have been computed correctly (see Section 6) In Table 4, we provide timings for varying data
set sizes and dimensions. Since these are just FRI proofs, again owing to the fact that we can provide short
batch openings of polynomials, these only cost ≈ 5 megabytes.

Offline proof size. We did not implement the offline phase and instead estimate the cost of the offline
phase involving the preprocessing and randomness checks. At a high-level the offline phase consists solely
of FRI proofs resulting in small proofs and verifier time but an expensive prover time. However, these can
be done before the data is even available and hence pre-processed and stored for when training needs to be
done, at which point, the prover only needs to run the online phase and data checks. To estimate the proof
size, we use the following strategy. We first write a script to measure the number of polynomials that will
need to be opened in the offline phase18 and find this to be less than 86000 polynomials. In comparison to
the queries made by the verifier on these (very large number of) polynomials (< 140 MB), the FRI proof
size is quite small (< 500 KB). 19

Cryptographic Overhead. To put our results in context, we compare the training time to proof genera-
18The number of polynomials is independent of various parameters of the machine learning such as batch size, dimensions or

data set size.
19We arrive at < 140𝑀𝐵 because we open each polynomial at 95 points, each of which is a 128-bit field element.
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N D 128 256 512 1024

212 4.2
(0.033)

8.6
(0.035)

14.3
(0.042)

39.8
(0.059)

214 17.7
(0.044)

38.1
(0.059)

85.1
(0.093)

178.0
(0.154)

216 83.8
(0.099)

173.3
(0.157)

383.8
(0.279)

829.7
(0.532)

218 387.3
(0.308)

817.5
(0.560)

1655.5
(1.182)

3690.2
(2.474)

Table 4: Prover (verifier) time (in s) of data checks as the dimension and data-set size are varied with a
fixed batch size of 256.

tion. If we consider the task of training on a data set with 218 entries, 1024 dimensions for each entry, and
a batch size 1024, the online proof size is approximately 200 MB, resulting in a total proof size of ≈ 350MB
including proofs for the data checks and offline phase. Although this may seem large in comparison to
zkSNARKs, we note that the proof size is < 10% of the input dataset (4 GB). In comparison to previously
proposed non-private solutions [PMSW18], although ours is computationally more expensive, we provide
formal cryptographic guarantees of soundness against malicious provers, privacy of the model and train-
ing, and in addition our proof sizes are sub-linear in the training data, whereas prior work [PMSW18]
needed to send the verifier the entire training dataset.

We next turn to estimate the computational overhead on top of training a model to produce a proof of
training. To do so, we first implemented a logistic regression training to benchmark the time taken to do
plain training. We actually implement this for two different data types. The first is using rust’s native f64
datatype, which handles floating point arithmetic and we observed that training on the above-mentioned
dataset took approximately 1 s. However, the f64 arithmetic is highly optimized and is much faster than
arithmetic over the 128-bit field that we use. We also estimated the cost of training over the 128-bit field
and found that even without the overhead of fixed point arithmetic and completely ignoring the activation
function, training took approximately 11.5 s.

Finally, we benchmarked the time taken to produce a proof of training and found that the online phase
took 518 s and data checks took close to one hour. We note that comparing the overhead of generating a
proof of training against both the above times is meaningful as the former gives the overhead on top of
optimized training algorithms, whereas the latter provides insight into how much overhead is introduced
by our techniques beyond the seemingly inherent overhead introduced by moving to larger finite fields
that are not natively supported by modern CPU architectures. The online phase has an overhead of ≈ 518×
and ≈ 45× respectively, whereas the overhead of all computation excluding preprocessing (data checks +
online phase) is ≈ 4200× and ≈ 366× respectively.

Although this may seem large, we emphasize that a) proof generation in all existing zero-knowledge
(zk) proofs is slower than the time to do the actual computation and b) our implementation can be fur-
ther optimized. In zk-SNARKs, this overhead is significantly higher. For instance, the fastest zk-proof
of inference [LXZ21b] is approximately 1500× slower than the inference-time (this is a highly optimized
zk-SNARK for a specific application, the overhead incurred by general zk-SNARKs is much higher.). More-
over, known constructions of zk-SNARKs do not scale well for large computations because they are not
streaming-friendly. A prior work [BFH+20] ran out of memory when attempting to prove that a linear
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model was trained correctly on a dataset of size 2000.
Crucially, we note that there is no fundamental barrier in terms of memory requirements for how

large a model can be proved using our techniques, as our algorithm is streaming-friendly and can be
adapted to the needs of available hardware. We believe that MPC-in-the-Head, when carefully combined
with techniques from the succinct proofs literature, offers a promising path for cryptographic proofs of
training.
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