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ABSTRACT
We introduce Lanturn: a general purpose adaptive learning-based
framework for measuring the cryptoeconomic security of com-
posed decentralized-finance (DeFi) smart-contracts. Lanturn discov-
ers strategies comprising of concrete transactions for extracting
economic value from smart contracts interacting with a particular
transaction environment. We formulate the strategy discovery as
a black-box optimization problem and leverage a novel adaptive
learning-based algorithm to address it.

Lanturn features three key properties. First, it needs no contract-
specific heuristics or reasoning, due to our black-box formulation
of cryptoeconomic security. Second, it utilizes a simulation frame-
work that operates natively on blockchain state and smart con-
tract machine code, such that transactions returned by Lanturn’s
learning-based optimization engine can be executed on-chain with-
out modification. Finally, Lanturn is scalable in that it can explore
strategies comprising a large number of transactions that can be
reordered or subject to insertion of new transactions.

We evaluate Lanturn on the historical data of the biggest and
most active DeFi Applications: Sushiswap, UniswapV2, UniswapV3,
and AaveV2. Our results show that Lanturn not only rediscovers
existing, well-known strategies for extracting value from smart
contracts, but also discovers new strategies that are previously
undocumented. Lanturn also consistently discovers higher value
than evidenced in the wild, surpassing a natural baseline computed
using value extracted by bots and other strategic agents.

1 INTRODUCTION
The decentralized finance (DeFi) ecosystem,which consists of smart-
contract-based financial protocols on blockchains like Ethereum,
currently holds over $30 billion of stored value and executes billions
of dollars worth of transactions every day [2]. DeFi contracts have
enabled a wide array of financial blockchain applications including
exchanging cryptocurrency tokens [14], margin and derivatives
trading [7, 8], and collateralized lending [31]. DeFi has also wit-
nessed the creation of novel financial instruments such as auto-
mated market makers [14], atomic swaps [38], and flash loans [35].
These instruments have no traditional-finance analog, and can only
exist due to the deterministic and atomic execution via blockchains.
Economic security of smart contracts. The high economic value
at stake in DeFi contracts has naturally attracted the attention
of attackers. Observed attacks on smart contracts can be divided
into two broad categories: (1) Traditional software exploits and (2)
Financial (Cryptoeconomic) exploits.

∗The first two authors contributed equally to this work.

Many notable historical attacks on DeFi contracts, such as, reen-
trancy [30], batch overflow [23], incorrect initialization [5] can
be categorized as traditional software exploits. Existing tools and
well-studied techniques from the literature(e.g. [19, 28, 33]) can be
squarely applied to analyze and mitigate this category of exploits.

On the other hand, there has been a rise in attacks (e.g. sandwich
attacks [45], generalized frontrunning [37], liquidity sniping [40])
and strategic behavior (e.g. arbitrage [44], backrunning [34]) which
are primarily financial in nature. This cryptoeconomic category of
exploits is uniquely facilitated by blockchain systems and relies
primarily on an adversary’s ability to reorder, censor, and insert
new blockchain transactions—either through strategic increase in
transaction-fee payments or by using the power of block creators.

In this work, we develop Lanturn, which allows users, DeFi
developers, and researchers to study the cryptoeconomic security
of smart contracts, i.e., their exposure to financial attacks. At a very
high level, Lanturn takes in a given set of concrete transactions, as
well as any symbolic transactions with unknown parameters, and
utilizes a novel adaptive learning algorithm to output an ordered
sequence of concrete transactions that can be executed on chain
without modification to extract economic value. In the remainder
of this section, we first highlight why analysis of cryptoeconomic
security is challenging, then give a perspective on two lines of
work in literature that seek to address these challenges. Finally, we
present an overview of Lanturn and our contributions.

DeFi composability and attacks. The co-existence of a plethora
of DeFi contracts leads to interesting interactions, as the operation
or state of one contract can in many cases influence those in other
contracts. While composition of smart contracts is crucial for build-
ing interesting DeFi applications (e.g. collateralized lending [31]),
it raises significant challenges in analyzing their cryptoeconomic
security [16]. Security analysis of smart contracts seldom considers
this kind of composability, often due to the fact that predicting
the extent of interactions with future contracts is impossible [16].
As DeFi has grown, more complex and intricate financial interac-
tions have been observed among multiple DeFi contracts whose
composition is currently poorly understood.

Composability issues have been identified as the root cause of a
number of high-profile DeFi attacks [35] in which attackers have
cleverly exploited complex DeFi interactions and stolen billions
of dollars in the aggregate. As an example, flash-loans, which can
provide virtually unlimited capital as long as the loan amount is
returned within the same transaction, have been used to attack con-
tracts designed without anticipation of sudden injections of capital.
Crucially, these attacks target economic security in contrast to more
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traditional security exploits that take advantage of, e.g., program-
ming errors or network vulnerabilities. The attacker’s actions often
abide by the rules intentionally expressed in the contract’s code.

To design DeFi contracts that resist such attacks, it is critical
to gain an early understanding of their cryptoeconomic security
both in isolation and in composition with other contracts. A key
notion reflecting cryptoeconomic security is maximal (previously
miner) extractable value (MEV) [16, 20]. Intuitively, MEV quantifies
cryptoeconomic security by expressing the maximum profit that
can be extracted from a smart contract system. MEV encompasses
all profit-seeking strategies and thus includes everything from com-
monplace arbitrage strategies and generalized frontrunning bots to
complex composability exploits on, e.g., governance mechanisms.
Existing literature on DeFi economic security. Two broad
approaches have emerged in the literature.

The first approach employs attack heuristics and hard-coded
contract-specific strategies, and scans the transaction data and
blockchain state essentially looking for patterns. This technique is
highly performant and has found success at comprehensively find-
ing simple MEV opportunities like arbitrage cycles [44] or sandwich
attacks [45]. A major limitation however is the lack of generalizabil-
ity; since the heuristics and hard-coded strategies typically come
from exploits already seen in the wild, new strategies or worst-case
attacks are seldom found; this results in a poor understanding of
the overall risk. Furthermore, as new contracts are added, heuristics
for their interaction with previous contracts need to be developed
from scratch; this leads to more manual effort as DeFi ecosystems
become more complex.

The second, more recently developed technique [16] forgoes pre-
specified strategies and directly models the semantics1 of relevant
smart contracts programmatically. This allows for generic path
exploration to find all possible (including novel, previously unseen)
strategies through the use of formal verification tools. It also allows
analysis of the worst-case behavior, thereby providing concrete,
provable upper bounds on the exploitable value of composed DeFi
contracts. Unfortunately, as expected, a major drawback of this
approach is the lack of scalability. There is an exponential blowup
in the number of paths in terms of the number of transactions or the
complexity of contract code. While clever parallelization or manual
simplification of smart-contract models through, e.g., removal of
irrelevant code, can help, scalability remains a major bottleneck.

The above discussion illustrates an all-too-common tradeoff be-
tween generalizability and scalability. The two existing techniques
provide only one of these properties while significantly compromis-
ing on the other. This work bridges this gap by leveraging adaptive
learning techniques. We propose Lanturn2: an efficient and generic
tool to find MEV opportunities and understand the economic secu-
rity risks of smart contracts and their composition.

1.1 Lanturn Overview and Contributions
Lanturn is a general purpose adaptive learning-based framework
for measuring the cryptoeconomic security of composed DeFi smart

1While the entire smart contract code can be faithfully simulated in theory, perfor-
mance issues required [16] to manually remove the irrelevant code parts and encode
only the core functionality.
2The light produced by the Pokémon Lanturn, nicknamed the “Deep-Sea Star,” can
illuminate even the darkest depths of DeFi.

Figure 1: Lanturn problem formulation and architecture

contracts. As the validator (consensus node) represents the most
privileged player in the ecosystem, the problem of cryptoeconomic
security can be studied through the lens of Maximal Extractable
Value (MEV) [16, 20] available to the validator. We now briefly
present our problem formulation, the architecture and properties
of Lanturn, and a summary of our contributions.
Problem Formulation. The goal of an agent in the MEV land-
scape is to take as input a pending set of user transactions and
output a new sequence of transactions—including some or all of
the inputs—that maximizes the agent’s EV (Extractable Value), i.e.,
profit. The output set constitutes some or all of a new block on the
blockchain. Since the agent in Lanturn is by default a validator, it
can maximize EV by any desired combination of reordering user
transactions as well as inserting new transactions based on sym-
bolic transactions with unknown parameters.3 We do not consider
explicit censoring of transactions — for the purposes of this work,
censoring a transaction is no better than ordering it after the val-
idator’s last insertion. We assume that the agent holds a certain
amount of starting capital in the form of the native cryptocurrency
(such as ETH). We do not assume any additional permissions or
powers available to the agent (e.g., stake in a governance protocol
or participation in an oracle network [18]).

The core of Lanturn’s architecture consists of two modules:
An adaptive learning-based optimization module and a simulation
environment. At a high level, the optimization module strives to
learn an output transaction sequence that maximizes the agent’s EV.
It does so by querying the simulation environment as a black-box
to evaluate candidate transaction sequences. Figure 1 depicts this
formulation and Lanturn’s architecture.
Properties. Lanturn has the following key properties:

(1) Generalizability: Lanturn does not require encoding at-
tack heuristics or contract-specific strategies. It treats smart
contract execution as a black-box simulation environment4.
Moreover, Lanturn doesn’t simplify smart contracts or trans-
late them into another form. Its generalizability enables it
to discover both known and new MEV-extraction strategies.
Similar to [16], Lanturn does require symbolic templates
for performing insertions. Specifying templates, hwoever,

3We do not consider transaction insertions that deploy new smart contracts with
unknown code. The result would be an intractable problem space, and on-the-fly
contract synthesis is rarely used in on-chain arbitrage today.
4While not a focus of this work, a Lanturn practitioner can easily integrate contract-
specific heuristics to guide the optimization and find even more interesting strategies.
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requires only a cursory knowledge of the functionality of
the contract. It is not comparable in complexity to designing
contract-specific strategies, which requires detailed under-
standing of the contract and more importantly, research and
development for every new strategy.

(2) Native execution: Since Lanturn simulates actual smart
contract bytecode, the obtained profit-yielding strategies are
executable directly on-chain without any modification or
weeding of false positives. In fact, our experiments are done
directly on a private fork of the blockchain mainnet.

(3) Scalability: Lanturn scales with respect to both code com-
plexity and search space size. Unlike prior work ([16, 44]),
Lanturn does not use program analysis, so smart-contract-
code complexity, typically arising due to loops (e.g. in Curve
Finance [22], UniswapV3 [14]), recursions, etc. impose no
additional overhead on Lanturn. Additionally, by leverag-
ing adaptive learning, Lanturn can successfully handle vast
search spaces (unlike prior work [16]) arising out of reorder-
ing of a large number of transactions (as many as 80) as well
as insertion of new transactions with wide parameter ranges.

(4) Adaptability to computation budget: The Lanturn op-
timization algorithm can be tuned to match available com-
puting resources and time budgets. Lanturn is also linearly
parallelizable across servers in a straightforwardway, further
helping its scalability.

Contributions. Our work offers five concrete contributions:
• Problem formulation as black-box optimization (Sec-
tion 4): We are the first to formulate the problem of quan-
tifying the cryptoeconomic security of DeFi contract as a
black-box optimization problem.

• Adaptive-learning approach to MEV optimization (Sec-
tion 5.1): We present an adaptive-learning algorithm to scal-
ably optimize MEV extraction and thus cryptoeconomic se-
curity measurement.

• Lanturn tool (Section 5.2): We develop the Lanturn tool
which implements our learning-based optimization algo-
rithm and a simulation environment which is tailored to
efficiently simulate many transaction sequences on a private
fork of the blockchain mainnet.

• Experimental validation (Section 6): We conduct exten-
sive experiments with Lanturn on the biggest decentralized
exchanges (Sushiswap, UniswapV2, UniswapV3) and one of
the biggest lending protocols (AaveV2) using their real world
activity from Ethereum mainnet. Our results show that Lan-
turn uncovers significant MEV—surpassing a baseline derived
from the value extracted by strategic agents in the wild. In
Figure 15, we also report that Lanturn uncovers significant
MEV within tens of seconds to a few minutes for majority
of the problem instances. For comparison, prior work [16]
based on formal verification, takes more than an hour (under
the same computation resources) to analyze a search space
comprising of as little as 9 transactions.

• Strategy discovery (Section 6): Our experiments show that
Lanturn not only re-discovers well-known profit-making
MEV strategies but also discovers new strategies that are
previously undocumented.

2 BACKGROUND
2.1 Decentralized Finance and Contracts
We refer the reader to Appendix A for a background on the mechan-
ics of constant function Automated Market Makers (AMMs) such
as UniswapV2, Sushiswap and UniswapV3 [13, 14], and Lending
Contracts such as AaveV2 [12].

2.2 MEV
2.2.1 Maximal Extractable Value (MEV). Transaction ordering (i.e.,
the sequence in which transactions are executed) is critically impor-
tant for DeFi applications. Since the block-proposing entity (miner
in PoW and validator in PoS) is solely in charge of inclusion and or-
dering of transactions in the block that it creates, it can strategically
leverage this power to capture value from users by e.g., reordering
user transactions or inserting its own transactions. To capture such
behavior, Daian et al. [20] coined the term maximal (previously
miner) extractable value (MEV), which intuitively measures the
profit extractable by the block-proposing entity. MEV encompasses
a wide range of strategies including market-correcting forces like
DEX arbitrage, simple adversarial behavior like frontrunning or
sandwiching, as well as more complex, recent strategies; several
recent works [34, 41, 44, 45] have attempted to quantify the total
profit extracted for specific strategies.

To model arbitrary strategies, a concrete definition to quantify
MEV (for Ethereum-like systems) was later formulated by Babel
et al. [16]. We use this definition for our analyses, and provide the
relevant formalism in Section 3.1.

Flashbots. While validators are in the prime position to extract
MEV, they often do not have the expertise to find the optimal trans-
action ordering which gives them the maximal profit. This has led
to the outsourcing the task of finding these “MEV opportunities”
to specialized actors called searchers. Flashbots [9], an organization
formed in late 2020, has emerged as the leader in the marketplace
connecting searchers to validators. Informally, searchers find MEV
opportunities and consequently bid for inclusion of their specific
transaction sequences (or “bundles”) inside the validator’s block;
here, Flashbots acts as a trusted intermediary ensuring that valida-
tors cannot steal the searcher’s profits.

Since this MEV marketplace exists publicly, it allows us to es-
timate how much MEV was actually extracted on-chain. We will
use this as the baseline for our Lanturn experiments. More relevant
details of the inner workings of Flashbots and the impact of its
design on MEV extraction are given in Section 6.

3 MODEL
3.1 MEV Formalism
We introduce some basic formalism based on Babel et al. [16].

System state. Let the space of all possible accounts (e.g., 160-bit
identifiers in Ethereum) be denoted by A. Note that A captures
both user-owned and contract-owned accounts. For 𝑎 ∈ A, we use
balance(𝑎) [T] to denote the balance of token T in account 𝑎, and
data(𝑎) to denote the other associated data such as smart contract
code and storage. For simplicity, we use T = 0 to denote the primary
token (e.g., ETH in Ethereum).
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Define the system state 𝑠 as the combination of the balances
and data associated with all accounts: 𝑠 (𝑎) = (balance(𝑎), data(𝑎)).
Transactions are polynomial-sized (in the security parameter) strings
constructed by some player that are executed by the system and
can change the system state, similar to ACID-style database transac-
tions [39]. Unlike traditional database transactions which perform
simple read/write operations on the database, blockchain transac-
tions can be executed dynamically according to the relevant smart
contract code, which has Turing-complete semantics [42]. Note that
even if the smart contract throws an error during this execution,
the transaction still pays appropriate fees from the sender’s account
to the validator’s account, and thus also modifies the blockchain
state. These fees are based on the computation budget (called “gas”)
consumed by the transaction until the error is encountered.

A block in the blockchain, along with other protocol relevant
data, contains a sequence of transactions. The block transforms the
initial state to a new state, by executing the transaction sequence
in order. Let action denote this transformation. Then, the execution
of block 𝐵 at initial state 𝑠 can be represented by 𝑠 ′ = action(B) (s),
where 𝑠 ′ is the resulting state.
Extractable value. Extractable value (EV) in a state 𝑠 for a player
𝑃 is intuitively the maximum profit realizable by 𝑃 in any state 𝑠 ′
which is the result of some block 𝐵 that can be constructed by 𝑃5.
More formally, suppose that 𝑃 controls a set 𝐴𝑝 of accounts and
let B denote the set of (valid) blocks that 𝑃 can create in state 𝑠
(this includes any transactions inserted by 𝑃 along with those in
the transaction mempool). Then, EV is defined as follows:

EV(𝑃, 𝑠) = max
𝐵∈B


∑︁
𝑎∈𝐴𝑃

balance𝑠′ (𝑎) [0]
−balance𝑠 (𝑎) [0]

 .
where 𝑠 ′ = action(𝐵) (𝑠). The maximal extractable value (or MEV)
of a state 𝑠 can now be defined as the maximum value of EV(𝑃, 𝑠)
over all players 𝑃 . Since the validator is strictly more privileged
position than any other permissionless player in the system, MEV
will typically be the EV corresponding to this entity.

3.2 Threat Model
The agent (validator) is given pending user transactions and the
current blockchain state. It can reorder these transactions, but can-
not modify the transactions themselves, as the transactions are
cryptographically signed by the sender. The agent is given a fresh
key-pair (and can generate additional ones) which can be used
to create new transactions which interact with smart contracts
or simply transfer cryptocurrency between accounts. Finally, for
our experiments, we grant the account associated with the agent’s
given key-pair a certain amount of initial capital in terms of the
native cryptocurrency (e.g. ETH).

4 LANTURN ARCHITECTURE
Figure 2 presents a high-level overview of the steps performed
in Lanturn. In what follows, we explain Lanturn’s execution flow,
while referring to the component numbers in Figure 2.

5While Babel et al. [16] defines a more general version for multiple consecutive blocks,
only single-block extensions are considered for their experiments.
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Figure 2: Lanturn architecture and execution steps of the
learning-based optimizer. Here, subscript 𝑖 denotes the itera-
tion number for the learning-based optimizer.

Lanturn consists of two interlinked components, namely a learning-
based optimizer (optimizer for short) and a simulator. The optimizer
takes as input a set of user transactions and template symbolic
transactions that can be inserted by the validator ( 1 ). An example
of a validator insertion template can be abstractly represented as:

swap 𝛼0× token0 with 𝛼1× token1,
where token0 and token1 are tokens interacted with in users’ in-
put transactions and 𝛼0 and 𝛼1 are what we call template-variables.
What the template-variables denote depends on the template trans-
action – in this example, they may correspond to token amounts
if the particular transaction denotes a token swap executed by the
validator. Typically, template-variables denote the parameters of
a certain public function of a particular smart contract (see Sec-
tion 6 for details of template transactions and various examples).
A concrete transaction sequence refers to an ordered list of user
and validator transactions, wherein the template-variables inside
the validator transactions are instantiated with concrete values of
the appropriate type. The optimizer aims to determine the concrete
transaction sequence such that its EV is maximized ( 7 ). Each tem-
plate transaction is used to derive exactly one concrete transaction.
We provide details of our problem formulation for the optimizer in
Section 4.1. As shown in Figure 2, our optimizer encompasses two
hierarchical learning loops: the outer loop ( 3 ) learns the optimal
order of user and validator transactions while the inner loop ( 4 )
learns optimal values for template-variables in a given sequence of
transactions. Specifically, each transaction reordering in the outer
loop ( 3 ) initiates a call to the inner optimization loop, which then
searches over the template variables ( 4 ) and returns the MEV corre-
sponding to the re-ordering. Each learning loop follows a carefully
designed adaptive sampling algorithm outlined in Section 5.1.

For good performance, the optimizer relies on the simulator
to provide accurate evaluations of EV for concrete transaction se-
quences. The simulator is given the state of the blockchain by speci-
fying the block heightH ( 2 ), and the concrete transaction sequence
from the optimizer ( 5 ). The simulator returns the corresponding
EV ( 6 ). Details of our simulator are detailed in Section 5.2.
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4.1 Problem Formulation
To estimate the MEV for a given set of user transactions and valida-
tor template insertions, we formulate the problem as a black-box
optimization comprising three key components, namely, the op-
timization variables, the objective function, and the optimization
constraints (bounds). We adaptively learn and explore the underly-
ing space of values for the variables to find a solution, within the
defined bounds, that maximizes the objective function. Since the
search space is extensively large, linearly learning the whole space
is not scalable. Our adaptive learning-based optimization is devised
to be scalable by adaptively sampling and dynamically learning the
important and eventful portions of the search space.

To simulate the interplay among various optimization variables,
we concatenate them to form a vector ®𝑥 ∈ R𝑑 . Here, 𝑑 is the number
of variables that shall be determined by the optimizer. The goal of
black-box optimization is to solve the following problem:

max
®𝑥 ∈𝑋

𝐹1 ( ®𝑥). (1)

Here 𝐹1 (·) is the optimization objective and 𝑋 denotes the search
space, which includes all the valid values for the variables based
on the optimization constraints. We utilize EV as our objective
function in Equation 1. The possible choices for the validator, i.e.,
the order of the transactions and the template-variables, represent
the optimization variables ®𝑥 . Figure 3 illustrates template-variables
for an example problem. The constraints are set by the blockchain
protocol and the context of the experiment: (1) if there are multiple
transactions from a user, they should be ordered relative to each
other according to a per-user serial number (“nonce”) specified
in each blockchain transaction; (2) the values for the template-
variables are constrained by their type (such as the range of an
integer datatype); (3) there can be further constraints in the context
of a particular experiment, such as the validator’s capital.

To optimize Equation 1 in the context of this work, we reformu-
late it as a bi-level optimization problem: First, a certain reordering
of the transactions is proposed ( ®𝑥𝑜 ); then, for the given transaction
sequence, the optimizer seeks to find the concrete values of the
template-variables ( ®𝑥𝑎) that maximize EV. Using this formulation
for bi-level optimization, Equation 1 can be rewritten as:

max
®𝑥𝑜 ∈𝑋𝑜

𝐹1 ( ®𝑥𝑜 ),

where 𝐹1 ( ®𝑥𝑜 ) = max
®𝑥𝑎 ∈𝑋𝑎

𝐹2 ( ®𝑥𝑜 , ®𝑥𝑎) .
(2)

Here, the lower-level objective function 𝐹2 : 𝑋𝑜 × 𝑋𝑎 → R rep-
resents the expected EV obtained from a concrete transaction se-
quence. 𝑋𝑜 and 𝑋𝑎 represent the underlying space of valid choices
for ®𝑥𝑜 and ®𝑥𝑎 based on the aforementioned constraints. Specifically,
due to the protocol’s constraint on nonce, the space of transaction
ordering 𝑋0 is all permutations of user and validator transactions
wherein all transactions from a particular user appear in the exact
order specified by the user. The domain of template-variables is
determined by the aforementioned constraints and can be further
refined by the Lanturn practitioner (see Section 6).

Optimizing Equation 2 is especially challenging as the space of
possible solutions grows exponentiallywith the number of optimiza-
tion variables. Specifically, given | ®𝑥𝑜 | total transactions with𝑛𝑖 num-
ber of transactions from the 𝑖𝑡ℎ user and 𝑥 𝑗 possible values for the

User Transactions:
• User1 swaps 100 usdc for eth
• User2 swaps 4 eth for usdc

Template Symbolic Transactions:
• Validator adds 𝛼0 liquidity units in price range 𝛼1 to 𝛼2
• validator swaps 𝛼3 usdc for eth

Template-variables:
𝛼0 : uint128; 𝛼1, 𝛼2 : int24; 𝛼3 : uint256
Constraints:
𝛼0 ∈ {1, 10, 100}; 1000 < 𝛼1 < 1500;
2000 < 𝛼2 < 2500; 400 < 𝛼3 < 2000

Figure 3: An example input to the optimization platform
including a list of user and validator transactions with un-
known variables (𝛼𝑖 ). Lanturn adaptively learns the best re-
ordering of transactions along with the corresponding trans-
action amounts that maximize the MEV.

𝑗𝑡ℎ template-variable, the number of possible combinations equals
| ®𝑥𝑜 |!∏
𝑖 𝑛𝑖 !

×∏ | ®𝑥𝑎 |
𝑗=1 (𝑥 𝑗 ). As an example, let us consider the small toy prob-

lem in Figure 3 with only 4 transactions. The optimization space for
this problem contains almost 3 × 1010 = (4! × 3 × 500 × 500 × 1600)
possible solutions, which is obviously impractical for brute-force
evaluation. We therefore propose an improved optimizer in the
next section that efficiently solves the problem in Equation 2 by
leveraging adaptive learning techniques.

4.2 Applications of Lanturn
Lanturn empowers various stakeholders in the ecosystem:

• Developers and researchers: Lanturn directly enables smart con-
tract developers to understand the cryptoeconomic behavior of
their smart contracts in isolation as well as when composed with
other DeFi contracts. Blockchain researchers can utilize Lanturn
to understand the impact of MEV on the (in)stability of a consen-
sus mechanism [20].

• Users: Users can use Lanturn to learn the value exposed in their
transactions. Themethodology in Lanturn can be extended to also
discover unknown transaction parameters inside user-provided
transaction templates such that MEV extracted from users is
minimized (similar to minimax optimization [21]). We leave this
extension to future work.

• Strategic players: Lanturn can be used offline by strategic agents
such as “MEV bots” to analyze strategies that extract economic
value from users and smart contracts. Inter-block times (12 sec-
onds for Ethereum) is usually too short for our single-server
implementation of Lanturn in majority of the cases. For instance,
Figure 15 shows that given 10 seconds, Lanturn uncovers ≈ 40%
of the final MEV in ≈ 25% cases. However, we discuss in Sec-
tion 6.4 that the inherent parallelism in Lanturn can be exploited
to use Lanturn effectively in real-time6.

6Supporting “MEV bots” is not the focus of this work
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5 LANTURNMETHODOLOGY
5.1 Adaptive Learning
Deriving a closed-form relationship between MEV and a set of
input transactions, in terms of the template-variables appearing
in the validator transactions, is extremely difficult even for simple
smart contracts, and infeasible for general smart contracts. As ex-
plained above, Lanturn aims to find an optimal solution through
sampled evaluations of the underlying optimization space. In this
context, each sample represents one concrete transaction sequence
(a specific permutation of transactions as well as concrete values
for any template-variables). Recall that the Lanturn simulator exe-
cutes a given concrete transaction sequence on a particular state
and returns the corresponding EV. A uniformly random sampling
of the space is unlikely to find the maximum EV with a limited
sampling budget, especially as the size of the search space increases.
Lanturn therefore employs an adaptive non-uniform sampler that
gradually learns the objective function and automatically guides
future samples towards parts of the search space where the EV is
expected to be high.

Algorithm 1 is a pseudocode sketch of the adaptive sampling
procedure in Lanturn. It takes as input the EV evaluator 𝐹 (·), the
underlying search space 𝑋 , number of sampling iterations 𝑁 , early-
stopping tolerance𝑁𝑠 , and a sampling batch size𝑏. In each iteration,
a new batch of i.i.d. samples S𝑖 is generated and evaluated. The cur-
rent maximum EV, denoted by 𝐹 ∗, is then found across all evaluated
samples. The sampling procedure adaptively changes its sampling
distributions P to achieve a good probability of finding a near-
optimal solution. To this end, it utilizes the best samples evaluated
so far, dubbed the good samples S𝑔 , to learn and update P.

A proximity parameter 𝛾𝑖 ∈ [0, 1] serves to select the current
set of good samples S𝑔 , i.e., those close to the current maximum:
𝐹 ( ®𝑥𝑔) ≥ 𝛾𝑖𝐹 ∗ (∀®𝑥𝑔 ∈ S𝑔). A large value of 𝛾𝑖 encourages exploita-
tion of previously observed samples with a high EV while a lower
value leads to more exploration. As such, we adaptively tune the
value of 𝛾𝑖 by assigning it the maximum value ∈ [0, 1] such that
at least one batch of samples are marked as good. This, in turn,
ensures the good samples S𝑔 contain a diverse set of configurations,
thereby balancing exploration and exploitation. Finally, using the
derived S𝑔 , the sampling distributions are updated for the next
iteration. This process continues until convergence to a (local) op-
timum, i.e., when the maximum found EV does not change for
𝑁𝑠 consecutive steps, or until a maximum number of 𝑁 iterations.
The algorithm returns the maximizer ®𝑥∗ which corresponds to a
concrete transaction sequence leading to the maximal EV (MEV).
Sampling distribution. Our sampling distribution P represents a
combination of two distinct probability distributions that together
facilitate exploration and exploitation. Such choice of sampling dis-
tributions have shown to be successful for black box optimization
in large search spaces [29]. First, P includes a random uniform
distribution (U)7. In the absence of prior knowledge, our uniform
sampling allows for the most effective exploration of the objective
𝐹 (·). Second, P contains an adaptively generated sampling distri-
bution, G. This distribution draws on previously observed good
samples S𝑔 with a high EV to locate candidate regions of the search
7Weuse log-uniform samplingwhen the range of values in the search space is extremely
large (e.g., template-variables with dynamic range of [0, 1027 ]).

Algorithm 1 Overview of Lanturn Sampling
Inputs: arbitrary objective function 𝐹 (·), 𝑋 , 𝑁 , 𝑁𝑠 , 𝑏
Outputs: ®𝑥∗
1: S = ∅, 𝐹 ∗ = 0
2: P = Uniform distribution
3: for i=1 to 𝑁 do
4: sample S𝑖 ∼ P(𝑋 ), |S𝑖 | = 𝑏 ⊲ Sample a new batch
5: S = S ∪ S𝑖
6: 𝐹 ∗ = max

®𝑥 ∈S
𝐹 ( ®𝑥) ⊲ Find current maximum

7: 𝛾𝑖 = 1, S𝑔 = ∅
8: while |S𝑔 | < 𝑏 do ⊲ Tune 𝛾𝑖 and find S𝑔
9: reduce 𝛾𝑖
10: S𝑔 = {®𝑥 ∈ S|𝐹 ( ®𝑥) > 𝛾𝑖𝐹 ∗}
11: update P based on S𝑔 ⊲ Update sampling strategy
12: if 𝐹 ∗ did not change for 𝑁𝑠 consecutive steps then
13: break ⊲ activate early-stopping

14: ®𝑥∗ = argmax
®𝑥 ∈S

𝐹 ( ®𝑥)

15: return ®𝑥∗

space that can contain a local or global optimum. Specifically, the
sampling distribution consists of specialized sampling kernels (G)
around good samples, with the effect that new sampling occurs
nearby. Assuming mild regularity conditions on the objective func-
tion 𝐹 (·), focusing sampling locally around good samples will likely
lead to additional high-quality samples. The goal of the specialized
sampling kernels G is to facilitate search of such neighborhoods.

Figure 4 presents a conceptual example of sampling distributions
P in a 2-dimensional space. The black triangles represent the good
samples (S𝑔) observed in the previous iteration of the sampling
algorithm (iteration 𝑖 − 1). Learning from the good samples, we
generate the specialized sampling distributions (G) in their vicinity,
here shown in light blue. A new batch of samples S𝑖 (shown with
dark blue dots) is then sampled using a combination of the special-
ized kernels G and the random uniform distribution U (samples
shown with green diamonds) that together compose P.

In the first iteration of optimization, the sampling distribution is
initialized to entirely uniform to identify promising regions of the
search space. As the optimization progresses, the uniform sampling
budget is reduced to 20% and the remaining samples are generated
using the specialized exploitation kernels G. In what follows, we
explain how the specialized sampling kernels G are constructed.

5.1.1 Transaction Reordering. A validator can reorder user trans-
actions along with their injected transactions to maximize their
EV. Some well-known attacks that can be realized in this way in-
clude sandwiching [45] where the validator strategically places
certain transactions before and after a user transaction to extract
MEV. An important and challenging design consideration in the
Lanturn optimizer is complying with the underlying constraints
of the blockchain. For this purpose, we devise a novel technique
for exploring the space of valid transaction orderings. For a given
set of transactions, recall that a reordering is valid if and only if it
preserves the original order of the transactions of a user.
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Figure 4: Lanturn adaptively adjusts the underlying sampling
distributions by learning from previously evaluated samples
with highest EV (S𝑔). Our samples (S𝑖 ) are generated (nota-
tion ∼) using a combination of specialized kernels (G) and
uniform random distribution (U) to balance exploitation and
exploration.

To directly incorporate this constraint in the Lanturn optimizer,
we define our search space over an intermediate representation of
a given transaction set such that there is a one-to-one mapping
between valid transaction orderings and elements of the intermedi-
ate representation. The intermediate representation is obtained by
replacing each transaction with its corresponding unique user id
as shown in Figure 5. The result is a multiset that can be mapped
to a valid ordering of transactions by instantiating transactions for
unique user ids according to their nonces.

Our search space is constructed as a graph with nodes corre-
sponding to all unique permutations of the intermediate represen-
tation. We define neighbors as permutations where exactly two
adjacent elements are swapped, and connect them via an edge in
the search space as illustrated in Figure 5. The intuition behind this
particular way of organizing the search space of reorderings is that
swapping adjacent transactions smoothly imitates MEV activity
such as frontrunning and backrunning.

We develop a novel optimization algorithm based on adaptive
sampling to search the graph and locate the node which yields the
maximal EV. From the adaptive sampling perspective, the nodes
in the search space correspond to valid samples and the sampling
distributions are designed specifically for random graph traversal.
In devising our method we were inspired by genetic algorithms [36],
which are powerful metaheuristics for black-box optimization. As
evident from the name, genetic algorithms aim to mimic the bi-
ological process of evolution by encouraging generation of near-
optimal samples and eliminating inferior ones with a low objective
function value. To achieve this goal, genetic algorithms rely on
fitness-proportionate selection and randommutation to enable local
search in the vicinity of previously observed good samples.

Our adaptive sampling relies on similar heuristics to update the
sampling distributions and guide the search towards the MEV op-
tima (line 11 in Algorithm 1). Specifically, we create our sampling
distribution G via the selection and mutation operations in genetic
algorithms as follows. Once the good samples are identified (line 8
in Algorithm 1), we perform a random selection from S𝑔 , where

Figure 5: An example transaction block with the correspond-
ing intermediate representation. The optimization search
space for transaction ordering is constructed based on the
intermediate representation: nodes correspond to unique
permutations and edges connect (neighbor) permutations
which differ only in one adjacent pair of elements. Lanturn’s
optimizer learns to traverse this graph and find the transac-
tion ordering that achieves close to the maximal EV.

the probability of selecting a sample is proportional to the MEV it
obtained. This operation resembles the fitness-proportionate selec-
tion in genetic algorithms where samples with higher scores have
a higher chance of being selected.

We define random mutation as performing 𝑥 random hops from
the initial node (sample) over edges in the search space graph.
Each hop is simulated by swapping two adjacent elements in the
transaction order. We adaptively tune the number of adjacent swaps
𝑥 as a function of the MEV obtained by the original sample: for
higher-MEV samples, we select tighter bounds for local search by
reducing 𝑥 , while for lower-MEV samples, we increase our search
radius using a higher 𝑥 . We linearly map the original MEV range,
say [𝑎, 𝑏], observed among the selected samples to a probability (𝑝)
onto the range [𝑐, 𝑑] (specified as a hyperparameter to the learning
algorithm) in the inverse order. That is, a sample with EV=𝑎 is
mapped to probability 𝑝 = 𝑑 and a sample with EV=𝑏 is mapped
to probability 𝑝 = 𝑐 where 𝑐 < 𝑑 , with intermediate values in
[𝑎, 𝑏] mapped accordingly. Then for each sample, we obtain 𝑥 by
multiplying the corresponding probability 𝑝 with the length of
the sample vector, i.e., number of transactions. Controlling the
number of random hops (adjacent transaction order swaps) using
the probability 𝑝 enables us to adaptively tune the boundaries of
our search, thus balancing exploration and exploitation.

5.1.2 Transaction Template-Variables. The validator can inject tem-
plate symbolic transactions where the template-variables have a
very large search space. Lanturn automatically learns the best val-
ues for these variables such that the validator’s EV is maximized.
Recall that to this end, Lanturn relies on custom sampling kernels
that effectively search the space of valid values in order to locate
the EV optima. Our probability distribution functions for adaptive
sampling (G) adjust the sampling density across the search space
based on previously observed samples. To provide more detail, we
construct G using a Gaussian Mixture Model (GMM), where the
parameters are dynamically determined to maximize the likelihood
of prior good samplesS𝑔 . Prior work in sampling theory [25, 26, 43]
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proves that Gaussian kernels with adaptive covariances can recon-
struct arbitrary non-linear functions. We therefore spatially adjust
the covariance of our GMMs based on the location of prior samples
in S𝑔 . To comprehensively capture the behavior of the objective
function in the vicinity of S𝑔 , our samples are drawn from two
GMM components following the methodology proposed in [29].

The first GMM consists of multivariate Gaussian kernels N(·, ·)
with their means located on previously observed good samples:

G1 ( ®𝑥) ∼
|S𝑔 |∑︁
𝑘=1

𝜙𝑘 · N (®𝑥𝑔
𝑘
, Σ), (3)

where𝜙𝑘 denotes theweights assigned to different Gaussian kernels
and is proportional to theMEV obtained by the 𝑘-th good sample ®𝑥𝑔

𝑘
.

The covariance Σ is a diagonal matrix where the nonzero elements
are determined based on the current range of variables ®𝑥 [𝑖] |𝑑

𝑖=1
observed among good samples:

Σ = diag(𝜎1, . . . , 𝜎𝑑 ), 𝜎𝑖 =
1
3
·max( ®𝑥 [𝑖])

®𝑥 ∈S𝑔

−min( ®𝑥 [𝑖])
®𝑥 ∈S𝑔

. (4)

The second GMM is constructed using Gaussian kernels placed
at the midpoints between pairs of good samples as shown in equa-
tion 5. The intuition behind this sampling kernel is to explore the
region enclosed between two (local) optima, as their connecting
line is likely to be aligned with a gradient ascent trajectory. G2 is
constructed as follows:

G2 ( ®𝑥) =
𝐾∑︁
𝑘=1

N(`𝑘 , Σ𝑘 ) . (5)

Here,𝐾 is the total number of good sample pairs. For each Gauss-
ian kernel above, the mean and covariance matrices are constructed
using two good samples ®𝑥𝑔

𝑘,1 and ®𝑥𝑔
𝑘,2 as follows:

`𝑘 =
1
2
( ®𝑥𝑔
𝑘,1 + ®𝑥𝑔

𝑘,2),

Σ𝑘 = diag(𝜎𝑘1 , . . . , 𝜎
𝑘
𝑑
), 𝜎𝑘𝑖 =

1
6
· | ®𝑥𝑔

𝑘,1 [𝑖] − ®𝑥𝑔
𝑘,2 [𝑖] |.

(6)

Aside from the sampling budget assigned to uniform random
sampling as explained in Section 5.1, we equally distribute the
remaining budget between the two GMMs explained above.

5.2 Simulation
Recall that the optimization module learns from the feedback pro-
vided by the simulation module. Figure 6 represents the abstract
steps in our simulation module. The simulation module is responsi-
ble for executing a sequence of concrete transactions for any given
block number, and returning the value accrued to the validator.
Our experiments in this work are geared towards the Ethereum
blockchain which has the most active and mature DeFi ecosystem.
To be able to simulate transactions for any given block number,
we utilize an Ethereum archive node which stores the complete
state after execution of every block in the blockchain. Transactions
are simulated on a local node instantiated by any Ethereum smart
contract development tool (e.g., Hardhat [24] and Foundry [32]).
The local node works on a private fork of the blockchain state at a
given block height by fetching it from the archive node. We modify

Learning-based 
Optimizer

Simulator- Block 
Height (H)

Fork Blockchain State at H

Snapshot the intermediate state

Get All Tokens for 
"Validator Address"

Sell on DEX for 
ETH

Use ETH Prices 
from CEX

Sequence of 
Concrete 

Transactions

EV 
(in ETH)

Setup accounts and contracts

Figure 6: Abstract steps of Simulator

this state to give the validator a certain initial capital (details in
Section 6) in the native currency ETH. In order to simulate a given
ordered sequence of transactions, we send these transactions in
the particular order to the local node and mine a block in the “fifo”
order. This configuration disregards the default ordering of mined
transactions in the Ethereum protocol according to their gas fees,
and instead mines them in the order in which they are received.
Note that the development tool allows us to simulate the next block
on demand, without waiting for any time period for block produc-
tion as in the Ethereum protocol. Once the next block is mined,
we query the state from the local node to obtain the validator’s
balance in ETH. The value accrued to the validator is simply the
final balance less the initial capital given to the validator.
Better feedback to the optimization module. The value ac-
crued to the validator could be in ETH and/or any other currency
which could be exchanged for ETH. While the feedback given to
the optimization module could be only the ETH balance, in line
with our definition of the objective function (Section 3.1), we find
that a feedback based on the total value accrued to the validator—
including both the ETH balance as well as that of any other currency
/ token—leads to faster convergence of our optimization algorithm.
For this purpose, we therefore compute a single scalar representing
the equivalent total value denominated in ETH. While computing
the best equivalent value of other currencies in terms of ETH is
itself a non-trivial problem, a reasonable estimate, as described be-
low, suffices for our purposes. We derive the value of each non-ETH
asset 𝑥 in terms of ETH by either swapping it for ETH on the DEX
(UniswapV2/UniswapV3/Sushiswap) which offers the best price for
the 𝑥-ETH pool, or using prices from a centralized exchange for
the 𝑥-ETH pair (assuming no slippage on the centralized exchange).
We then add this equivalent value of each non-ETH asset to the
final ETH balance to get the total value accrued to the validator.
Improving transaction simulation speed. To enhance the speed
of performing numerous simulations with different orderings of
transactions, we optimize the simulation workflow using the fol-
lowing techniques. Because the Ethereum blockchain state is large
in size, the local node only fetches entries in the historical state
whenever needed and caches them to minimize the number of
queries to the archive node. Actions such as the initialization of the
validator’s capital, token approvals, any contract deployment etc.
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are identical across different simulations so we keep a snapshot of
the state after this step. For each simulation, we reset the state of
the local node to the snapshot. Additionally, operations by the local
node that are irrelevant to the Ethereum Virtual Machine should
be disabled. For example, we don’t need to verify the signature or
user nonce in a transaction because only valid transactions are fed
as input. There’s no need to append the mined block to the local
chain either because it doesn’t affect the resulting EV.

6 EVALUATION
While the techniques of our work are general, our evaluation fo-
cuses specifically on Ethereum as it houses the largest and most
mature DeFi ecosystem today. Our aim is to experimentally answer
the following questions:

(1) How effective is Lanturn at measuring the cryptoeconomic
security of smart contracts in the context of real-world user
activity? Specifically, for a validator, how much MEV is un-
covered by Lanturn at any given block height?

(2) What are the patterns and strategies that Lanturn learns?
Can it not only discover existing well-known strategies but
also discover new ones?

(3) How does Lanturn perform relative to the computation and
time budgets available to it?

We conduct extensive experiments with Lanturn on the histori-
cal data from the Ethereum blockchain for three popular AMMs:
UniswapV2, Sushiswap and UniswapV3 and one of the most popular
lending protocol: AaveV2. Note that we use the same hyperparam-
eters across all our experiments, i.e. Lanturn’s learning algorithm
is not tuned to a specific smart contract.
Setup. All our experiments are run on an AMD Ryzen Threadrip-
per 3960X with 48 CPU threads, 128 GB RAM and SSD storage. We
use the Erigon client as our archive node for serving the blockchain
state at any historical block height. For our local node, we utilize
the Hardhat software and run 44 parallel instances of it (utilizing
all but 4 CPU threads on our server). The optimization module ex-
ploits this parallelism to simultaneously simulate multiple concrete
transaction sequences that are sampled in the same iteration.

In the remainder of this section, we first describe our dataset
(Section 6.1). We then report the MEV extracted by Lanturn (Sec-
tion 6.2) for each contract both in isolation and when composed.
We then analyze the strategies discovered by Lanturn (Section 6.3),
report the effectiveness of Lanturn as a function of time and com-
putation budget available (Section 6.4) and finally discuss some
implementation considerations(Section 6.5).

Our implementation along with scripts needed to reproduce ex-
periments can be found at https://github.com/lanturn-defi/lanturn.
The repository also contains the link to download our dataset.

6.1 Dataset Collection

Flashbots baseline. For a perspective on the MEV extracted by
Lanturn, we first establish a baseline for MEV extracted in the wild.
It is very challenging to determine an accurate number for the total
MEV extracted by all the players in the wild, as MEV activity can
look indistinguishable from benign activity. However, thanks to
Flashbots, we can arrive at a reasonably tight lower bound. Recall

that Flashbots hosts MEV auctions where any strategic agent can
bid for MEV opportunities by submitting bundles of transactions.
By May 2021, 84% of the Ethereum mining power was plugged into
the Flashbots ecosystem [11], and the MEV auctions had become
extremely competitive, with bots routinely bidding away more
than 95% of their MEV profits [10]. The transactions in each bundle,
along with their bids, are available via the Flashbots API: https:
//blocks.flashbots.net. We treat these bids as a reasonable tight
lower bound for MEV extracted in the wild. For AMM experiments,
we obtain our baseline of MEV extracted in the wild by summing up
the bids for all the bundles that are a subset of the transactions we
feed into Lanturn. For the lending protocol experiment, we obtain
our baseline of MEV by summing up the bids for all the bundles that
have at least one transaction performing a liquidation on AaveV2.
Note that after Ethereum’s upgrade to the “Merge” hardfork [4]
(Block#15,537,351) in Sept 2022, Flashbots shifted to auctioning off
entire blocks. This update prevents us from computing the baseline
from the bundle-level data for our experiments, and hence we report
our experimental results only for blocks before Block#15,537,351.
Data for Lanturn. We first describe our data collection for AMMs.
We use our Ethereum archive node to collect data for every swap
and liquidity event on UniswapV2, Sushiswap and UniswapV3. In
total, we collected ≈ 23×106 number of swaps, and liquidity events.
We then identify the interesting blocks to explore for Lanturn. We
first filter the blocks which have significant activity for the DeFi
contract of interest — trades and liquidity events of over 500 ETH
for Sushiswap and UniswapV2, and over 1000 ETH for UniswapV3
(as it has significantly higher volume than the other two AMMs).
This criterion gives us a large—yet not too large—dataset (16,942
blocks) of potentially opportunistic blocks for the validator. For our
AaveV2 experiments , we collected data for every liquidation event
on AaveV2, as liquidations are the primary MEV activity on lending
protocols. In total, we collected 27,961 such events. We then filter
those events where the collateral is in the native currency (ETH),
obtaining a total of 11,889 events across 7,323 blocks.

We finally filter out the blocks for which we have the aforemen-
tioned baseline data. At the end, we obtain a total of 8,128 blocks.
For Centralized Exchange (CEX) prices of cryptocurrencies, we uti-
lize a free API from Binance to obtain minute-level historical prices
for all USD-based markets. We use the price at the tick nearest to
the given block number’s timestamp in our simulation module.

6.2 MEV uncovered by Lanturn
We conduct several experiments with AMMs and the lending pro-
tocol at different block heights to understand the effectiveness of
Lanturn in uncovering MEV and associated strategies in various
contexts. We give the validator a starting balance of 1000 ETH
(or WETH8), unless specified otherwise. Table 1 summarizes our
various experiments and documents the strategies (re)discovered
by Lanturn. In exploring the MEV extracted from interaction with
AMMs, we divide our experiments into two categories: the first
category where Lanturn only inserts transactions that interact with
a single AMM, and the second category of experiments where Lan-
turn is allowed to insert transactions that interact with multiple

8WETH or Wrapped Ether is an ERC20 complaint form of ETH, and allows for more
flexible interactions with smart contracts
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Experiment Strategies
Single AMM - Trading Frontrunning, Sandwiching, Lazarus, Gas-leeching

Single AMM - Trading and Providing liquidity All of the above, Frontrunning + Just-In-Time (JIT) Liquidity
Composition of AMMs All of the above, Arbitrage

Lending Protocol Backrunning Price Oracle

Table 1: Summary of experiments and strategies discovered by Lanturn. Strategies highlighted in green are previously undocu-
mented(Section 6.3). ‘+’ denotes combination of the two strategies.

AMMs. We also compare the results from these two categories to
empirically show the effect of composition on the cryptoeconomic
security of smart contracts.
Input to Lanturn. Recall that Lanturn requires three inputs: the
blockchain state, the user transactions available for reordering, and
the templates for validator insertions along with any constraints
on the template-variables. A given block 𝐵 specifies the blockchain
state to Lanturn. While we could theoretically feed all the transac-
tions appearing in 𝐵 to Lanturn, most transactions have no effect on
the specific smart contracts of our interest. Therefore, the transac-
tions provided to Lanturn are a subset of the transactions appearing
in 𝐵, thereby reducing the search space of reorderings. To obtain
this subset of transactions, we start with the set of transactions in
𝐵 that interact with the particular smart contract of interest. We
then repeatedly expand this set (until the point it no longer grows)
by adding transactions from 𝐵 which interact with the accounts
that also interact with the transactions already present in the set.
This is done so that we include all the transactions that directly or
indirectly affect the smart contracts of interest9. The pseudocode
for this procedure is given in Appendix B. Note that the transac-
tions input to Lanturn can contain transactions from MEV bots or
other transactions privately communicated to the validator, both of
which can be exploited by Lanturn in our experiments.While our
Flashbots baseline does not capture this exploitation, it still serves as
a useful lower bound for giving a perspective on the MEV uncovered
by Lanturn.We specify the template symbolic transactions along
with each experiment below.

Figure 7: Per block MEV extracted by Lanturn versus the
flashbots baseline on UniswapV2.

9Reordering of transactions affects their dynamic execution and consequently the
accounts with which they interact. Our method is a middle ground between covering
all the possibly relevant transactions and including irrelevant transactions which cause
a blowup in the search space

Figure 8: Per block MEV extracted by Lanturn versus the
flashbots baseline on Sushiswap.

Figure 9: Per block MEV extracted by Lanturn versus the
flashbots baseline on UniswapV3.

Trading on a single AMM. We evaluate Lanturn for a valida-
tor making trades on each AMM in isolation. Figures 7, 8 and 9
show theMEV uncovered by Lanturnwhile trading with Sushiswap,
UniswapV2 and UniswapV3 respectively. Lanturn consistently un-
covers higher MEV than the baseline for MEV extracted on each
AMM. This is due to Lanturn learning the popular sandwiching [45]
and frontrunning [37] strategies as well as some new strategies that
we discuss in Section 6.3. For each pool (market for exchanging, say,
token0 and token1) appearing in the user transactions, Lanturn
makes use of two template insertions—thus allowing the validator
to swap in either direction. Figure 10 shows one of these templates
for both UniswapV2 and UniswapV3 (Sushiswap smart contracts
are similar to UniswapV2). The template-variable 𝛼1 represent the
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UniswapV2 Swap
"from" : Validator, "to" : UniswapV2Router(0x7a250...2488D),
"value": 𝛼1, "function":swapExactETHForTokens, "calldata":
{"amountOutMin":0, "path":[token0,token1], "to":Validator,
"deadline":INT_MAX}
UniswapV3 Swap:
"from" : Validator, "to" : UniswapV3Router(0xE5924...61564),
"value": 0, "function":exactInputSingle, "calldata":
{"tokenIn":token0, "tokenOut": token1, "fee": fee, "recipient":
Validator, "deadline": INT_MAX, "amountIn": 𝛼1, "amountOut-
Minimum":0, "sqrtPriceLimitX96":0}

0 ≤ 𝛼1 : int ≤ 1000 × 1018

UniswapV3 Provide Liquidity:
"from" : Validator, "to" : PositionManager, "value": 0,
"function":addLiquidity, "calldata": {"tokenIn":token0, "toke-
nOut": token1, "fee": fee, "liquidity": 𝛼2, "tickLower": 𝛼3, "tick-
Upper": 𝛼4, }

0 ≤ 𝛼2 : int ≤ 1025
−887272 ≤ 𝛼3, 𝛼4 : int ≤ 887272

AaveV2 LiquidationCall:
"from" : Validator, "to" : AaveV2LendingPool, "value": 0,
"function":liquidationCall, "calldata": {"collateralAsset": ETH,
"debtAsset": token0, "user": user, "debtToCover": 𝛼5, "re-
ceiveAToken": false }

0 ≤ 𝛼5 : int ≤ 1025

Figure 10: Template transaction insertion for each AMM

amount of token0 traded by the validator in exchange for a quan-
tity of token1. The domain of 𝛼1 reflects the initial capital available
to the validator (measured in wei, 1 ETH = 1018 wei).
Trading and providing liquidity on a single AMM. UniswapV3
allows a Liquidity Provider (LP) to control the price range in which
she is providing her liquidity, in contrast to first generation AMMs
(like UniswapV2), which fixed the price range to (0,∞). This policy
allows an LP to more effectively target her liquidity, but at the same
time requires an LP to be more strategic as her profits crucially
depend on her choice of range [15]. We conduct experiments that
evaluate Lanturn when the validator is not only able to trade but
also provide liquidity on UniswapV3. Because liquidity provision-
ing is a capital-intensive action, we grant the validator a higher
working capital of 10,000 ETH. For UniswapV3, Figure 13 shows the
additional MEV uncovered by Lanturn through liquidity provision-
ing and trading on top of the MEV uncovered only through trading.
The positive value indicates additional MEV which results from
Lanturn learning a lesser-known arbitrage strategy called “Just-In-
Time (JIT) Liquidity”. Here, the validator injects large amounts of
liquidity just before users’ trades, and withdraws the capital imme-
diately in the same block. In the process, the validator is able to earn
a disproportionate share (compared to other LPs) of the fees paid
by the users. Recall that LP’s profits are determined not only by the
revenue earned from the fees but also the loss incurred due to price
deviations. We observe that Lanturn learns a sophisticated strategy:
it combines multiple users’ trades (in opposite directions) such that

Figure 11: Per block MEV extracted by Lanturn on Sushiswap
versus combination of Sushiswap and UniswapV2.

the price deviation for the validator (and thus the loss) is minimized.
We also observe that Lanturn combines the JIT strategy with sand-
wiching and frontrunning strategies. Figure 10 shows the template
insertion for providing liquidity. Template insertion for removing
liquidity is similar, and shares all the three template-variables of
the liquidity provision transaction. Template-variable 𝛼2 influences
the liquidity provided (or removed) by the validator, whereas 𝛼3
and 𝛼4 determine the price range in which the validator’s liquidity
is active. The domain of 𝛼2 covers the initial capital available with
the validator in our experiments, while the domain of 𝛼3 and 𝛼4 is
the widest possible range allowed by UniswapV3.
Composition of AMMs. We additionally evaluate Lanturn on
composed smart contracts. Lanturn in this case explores a space of
actions by the validator that may include transactions affecting any
of the composed contracts of interest. This is achieved by giving
Lanturn the user transactions interacting with any of the com-
posed contracts and also allowing Lanturn to insert transactions
based on templates of all the composed contracts. Figure 11 shows
the MEV uncovered by Lanturn when Sushiswap is composed
with UniswapV2 as opposed to only interacting with Sushiswap.
Similarly, Figure 12 shows the MEV uncovered by Lanturn when
UniswapV2 is composed with UniswapV3 as opposed to only inter-
acting with UniswapV2. Clearly, the composition of smart contracts
unlocks huge MEV opportunities. We see that Lanturn, without
encoding the specific strategies, learns to exploit arbitrage opportu-
nities across AMMs, acquire assets from the cheapest AMM, provide
and remove liquidity strategically across AMMs, etc.
Lending Protocol. We evaluate Lanturn on the composition of
lending protocol AaveV2 and AMMs to demonstrate that Lanturn
can generalize beyond AMMs. Recall that the primary MEV activ-
ity on lending protocols involves performing a liquidation, which
involves paying the debt (usually denominated in stablecoins) of an
undercollateralized position and obtaining the underlying collateral
(usually denominated in ETH) at a discount. We compose AaveV2
with Sushiswap and UniswapV3 so that the validator can acquire
the stablecoins or other non-native tokens from the AMMs and
use them to pay off the debt on AaveV2 during a liquidation call.
Because liquidations are capital intensive, we grant the validator a
higher initial capital of 10,000 ETH. Figure 10 shows the liquidation
template for Aave2, wherein the template-variable 𝛼5 represents
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Figure 12: Per blockMEV extracted by Lanturn onUniswapV2
versus combination of UniswapV2 and UniswapV3.

Figure 13: UniswapV3: AdditionalMEVuncovered by Lanturn
through liquidity provisioning and trading on top of theMEV
uncovered only through trading. A positive value indicates
profits due to the JIT-liquidity strategy, while a zero value
indicates no additional profits from liquidity provisioning.

the debt paid off by the validator. Finally, in order to focus our
results on MEV activity on AaveV2 and not include purely AMM
activity such as arbitrage, we only include the AMM templates that
swap in one direction: swaps from ETH to stablecoins/non-native
tokens. We remove any user transactions that perform swaps or
provide/remove liquidity on the AMMs, so that the validator does
not engage in frontrunning or sandwiching.

Figure 14 shows the MEV uncovered by Lanturn for the compo-
sition of AaveV2 with Sushiswap and UniswapV3. Lanturn is able
to consistently uncover higher MEV than the baseline. We observe
that Lanturn learns the popular backrunning strategy for lending
protocols: a transaction that updates the price oracle and causes a
debt position to not be sufficiently collateralized is backrun with the
inserted liquidation transaction from the validator. The validator, as
a result, profits by obtaining the liquidated collateral at a discount.

6.3 Discovering new MEV Strategies
Besides re-discovering known strategies, Lanturn also discovers
novel, previously undocumented strategies for extracting MEV. An
agent can even hard-code these strategies (and emergent heuristics)
discovered during the offline exploration of Lanturn into strategy-
specific bots that can be run in real-time much more efficiently.

Figure 14: Per block MEV extracted by Lanturn versus the
flashbots baseline, evaluated on a combination of Sushiswap,
UniswapV3, and AaveV2 transactions.

Lazarus10 Strategy. User transactions interacting with a DEX usu-
ally throw an error (“revert”) when they do not get their minimum
desired price. These transactions appear in a block as reverted trans-
actions, and include payment of fees to the validator. For example,
one transaction that surfaced in our experiments, 0x367e86...08cc33,
was sent to the mempool11 by an MEV bot (0x793FF6...cD24E1).
This transaction interacts with UniswapV3 pools, but appears as
reverted (in block 14954940) because the bot did not get the desired
price. On discovering such failed transactions, Lanturn reorders
them to a different position in the block so that the transaction
succeeds (brings the transaction “back to life”), but it then also fron-
truns the very same transaction to extract value for the validator.
Gas-leeching. Gas-leeching is a previously undocumented strat-
egy in which the validator exploits a lack of safeguards in some
bots’ smart contract to receive significantly high transaction fees
from the bot. Recall that bots extract MEV primarily by submit-
ting ordered sequences (“bundles”) of transactions to validators via
an auction mechanism hosted by relayers such as Flashbots. It is
known that “unbundling” bots’ transactions opens up the bots to
being a victim of frontrunning and sandwiching attacks themselves
by the validator. Note that the trust in Flashbots and validators
allows bots to take this risk. However, in a notable recent attack [6],
the validator “unbundled” bots’ transactions and executed sandwich
attacks on them to extract more than $20 million.

We find that, contrary to popular belief, frontrunning and sand-
wiching is NOT the only strategy available to the validator after
unbundling the bots’ transactions. Lanturn uncovers a new strategy
called Gas-leeching, which we now explain through an example.

One such instance of Gas-leeching uncovered during our experi-
ments exploits a popular sandwiching bot 0x000000...416B40. When
the transactions submitted by this bot are reordered, the transac-
tions themselves run into an infinite loop and end up consuming
all the available gas. Combine this behaviour with the fact that the
bot routinely sets an unusually high gas price (as the MEV auction
is based on the effective gas price [9]), and the result is the bot
10Reference to the New Testament figure Lazarus, who is restored to life after death.
Lanturn figures out a strategy that brings a dead transaction back to life.
11It is not uncommon for MEV bots to send transactions to the mempool, instead of
sending it the host of the MEV auction, usually for flying under the radar of different
players involved the MEV auction
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paying the validator significant transaction fees while also leaving
the original opportunity for the validator to exploit. This example
also highlights the weakness of the trust-based MEV auctions.

6.4 Performance
Lanturn can be adapted to execute within a specific budget of
computation and/or wall-clock time. To demonstrate the effect of
limiting resources devoted to Lanturn, we measure the progress
over time of MEV discovery (as a percentage of the final value
Lanturn converges to) for each of the blocks in our experiments .
Figure 15 shows this progress in Lanturn for different quartiles of
blocks. We see that half of the Lanturn executions uncover more
than 95% of their MEV in less than 100 seconds. While we run 44
parallel simulation instances for our experiments on a 24-core (48
CPU threads) server, we observe a near linear speedup in our per-
formance as we increase the number of cores available to Lanturn
on our server (a speedup of 2X as we increase the cores from 5
to 10, and a further speedup of 1.7X as we increase the cores to
20). The performance of Lanturn can be further increased with
higher parallelism, thanks to the many independent samples in
each iteration of Lanturn’s adaptive learning algorithm.

We now briefly outline how Lanturn can be used in real-time
for MEV extraction. In all our experiments above, we simulated the
samples of template-variables (44 such samples in one iteration)
from the inner loop concurrently, but executed the reordering sam-
ples (at least 10 in one iteration) from the outer loop sequentially.
This indicates a straightforward 10X improvement in performance
with 10 servers, each of which independently evaluates one reorder-
ing sample. Observe that this gain amounts to uncovering 95% of
our final MEV in less than 10 seconds on a majority of the blocks.
A latency of 10 seconds is sufficient to bid in MEV auctions in
real-time on Ethereum today [3], which has an inter-block interval
of 12 seconds. Note that it is straightforward for Lanturn to also
include any newly arriving transactions on the fly. Additionally,
while we utilized a stable albeit slower javascript-based simulation
library, there are significant performance gains to be unlocked from
utilizing a lower latency backend such as the Rust-based REVM12,
which is under active development.
Efficiency of Lanturn as templates grow. The performance
of our implementation is bottlenecked by the simulation of the
concrete transactions (simulation module), while the time taken
in sampling by the optimization module is negligible. Hence, the
marginal impact of increasing the number of template transactions
on efficiency is dictated by the number of template transactions as
a fraction of the total number of transactions. In a majority of our
experiments, user transactions are more than 40 and the validator
transactions based on templates are between 2 to 9, and hence, the
performance degradation from adding more templates is graceful.
The template-variables are sampled independently and efficiently.
Hence increasing their number mimimally impacts efficiency.

6.5 Implementation Considerations
Interplay among dimensions. It is not uncommon for multiple
template-variables in a transaction to have mutual dependencies.

12https://github.com/bluealloy/revm

Figure 15: Convergence time of Lanturn adaptive learning to
different percentiles of the maximum MEV. Each line shows
the different quartiles across the optimizations runs for our
experiments run using 44 CPU threads. Lines on the left
represent the segments of the problems that converge faster
than the segments represented by lines on the right.

For example, consider the liquidity addition transaction in Figure 10.
A valid transaction must have 𝛼3 < 𝛼4 for a valid price range.
While we do not encode these contract-specific relationships, we
see that Lanturn quickly learns relationships among the template-
variables thanks to the adaptive distribution kernels G (Section 5.1)
in Lanturn’s optimizer. However, the initial exploration of Lanturn
can bemademore efficient if the template-variables can be rewritten
into independent dimensions. For example, 𝛼4 can be rewritten
as 𝛼3 + 𝛼 ′4, where 𝛼

′
4 denotes the width of the range. The new

template-variables 𝛼3 and 𝛼 ′4 can now be explored efficiently again
by independent sampling.
Automating template specification. Templates for a smart con-
tract can in principle be derived automatically by inspecting the
signature of the public non-view functions in the smart contract
interface. However, certain parameter types such as “bytes” and
“address” in some method signatures cannot be meaningfully sam-
pled automatically from the complete domain, without introducing
a heuristic, such as sampling addresses from a set of known recent
addresses. Further research is required to automate the template
generation in a general way. While the need to design templates
manually is currently a limitation of Lanturn, templates need to
be designed only once for a contract and can be shared (perhaps
by the contract developers themselves) among all practitioners of
Lanturn across the ecosystem.
Limitations due to learning. Like any learning algorithm, Lan-
turn requires at least mild regularity conditions in the search space.
Smart contracts are Turing complete programs, and can, in theory,
be crafted to have arbitrary irregular surface for cryptoeconomic
security in terms of the variables of optimization. Fortunately, how-
ever, smart contracts for the DeFi applications used in practice have
relatively continuous, or even smooth surfaces with respect to MEV
exposure, i.e., cryptoeconomic security, due to their underlying al-
gorithmic nature. For example, AMMs owe their smooth surface to
the underlying bonding curve, such as the constant product curve
in Uniswap.
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7 RELATEDWORK
Qin et al. [35] investigated the concept of optimizing a blockchain at-
tacker’s profits through constrained optimization. The optimization
was performed using the Sequential Least Squares Programming
(SLSQP) algorithm from the SciPy library. The focus of this work
was on optimizing a particular known ordered sequence of transac-
tions already carried out by an attacker on the Ethereum blockchain.
The objective function was manually derived for this sequence of
transactions in terms of the transaction parameters.

Prior works such as [44] optimize the attacker’s profits efficiently
for a specific class of arbitrage strategy based on currency-price
differentials. The solution is to find the most profitable cycle com-
prising of currency swaps in DEX markets.

Bartoletti et al. [17] have given an efficient optimal procedure for
maximizing profits on constant-function market makers (without
concentrated liquidity). The model in this work is purely theoretical
and does not consider practical aspects of blockchain execution
such as gas costs, which play a crucial role in arriving at profitable
strategies that can be executed on the blockchain.

There is a plethora of work [27] applying learning techniques
to traditional finance. However, the main goal in this line of litera-
ture is to predict the price movements from market structure and
external signals. Smart contracts have a crucial difference: Their
execution is deterministic and transparent, thus allowing a strategic
agent to precisely control and determine future execution results.

8 CONCLUSION
In this work, we have introduced Lanturn—a general purpose,
learning-based framework to measure the cryptoeconomic secu-
rity of smart contracts. Lanturn works in tandem with the native
blockchain environment, and its outputs can be executed on the
blockchain as is, without modification. Thanks to our formulation
of the cryptoeconomic-security problem as an optimization prob-
lem with an accompanying adaptive learning algorithm, Lanturn is
scalable with respect to both problem size and the complexity of
the smart contracts involved.

We have shown experimentally that Lanturn consistently dis-
covers significant MEV compared to a baseline derived from the
value extracted by strategic agents in the wild. Lanturn can also
not only discover existing strategies, but entirely new ones that
are previously undocumented. Lanturn empowers developers to
understand the cryptoeconomic behavior of their smart contracts
in isolation, as well as when composed with other applications.
Blockchain researchers can utilize Lanturn to better understand the
incentives of consensus participants, developers can use Lanturn
to design MEV-minimizing contracts, and users can benefit from
Lanturn by learning (and perhaps reducing) the extractable value
exposed in their transactions.
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A DECENTRALIZED FINANCE, CONSTANT
FUNCTION MARKET MAKERS AND
LENDING PROTOCOLS

DeFi, is a term used to denote the ecosystem of financial smart-
contracts and protocols on (permissionless) blockchains (such as
Ethereum). DeFi protocols have already been deployed for a wide
range of use cases, and allow users to borrow, lend, exchange, or
trade assets on a blockchain. An especially popular class of DeFi
protocols are decentralized exchangees (DEXes), which enable users
to swap cryptocurrency tokens without requiring a trusted inter-
mediary. While a DEX can be designed in several ways, the most
successful design is called an Automated Market Maker (AMM). We
provide a brief background on the workings of AMMs, and specially
focus on the most popular AMMs – Sushiswap, UniswapV2 and
UniswapV3, which collectively hold more than $4.5 billion in their
smart contracts as of April 2023.

AMM. An AMM consists of different markets (called “pools”) for
facilitating exchange between (usually a pair of) cryptocurrencies
(called “tokens”). For each pool, Liquidity Providers (LPs) provide
liquidity to the AMM pool by depositing the involved cryptocur-
rencies in a certain proportion into the underlying smart contract.
Unlike Central Limit Order Books (CLOBs [1]) in traditional ex-
changes, AMMs do not require LPs to specify a fixed price for which
their assets can be offered to a trader. Rather, AMMs allow for pas-
sive liquidity provision – the underlying smart contract determines
the appropriate price at which the liquidity is made available to a
trader, and credits the fees from the trader to the LP.We now discuss
relevant details of this price mechanism and liquidity provision.

UniswapV2 and Sushiswap. The token exchange rate for a liq-
uidity pool in popular AMMs such as UniswapV2 and Sushiswap
is determined programmatically by a constant-product curve [13].
Specifically, if the pool contains 𝑥 tokens of 𝑋 and 𝑦 tokens of 𝑌
(𝑥 and 𝑦 are called pool’s “reserves”), then across all trades the

invariant 𝑥𝑦 = 𝑐 will hold for some constant 𝑐 . For instance, when
a trader sells Δ𝑥 tokens of 𝑋 to the contract, she will receive Δ𝑦
tokens of𝑌 such that (𝑥+Δ𝑥) (𝑦−Δ𝑦) = 𝑐 . The price for exchanging
an infinitesimal amount of 𝑋 for 𝑌 is 𝑦𝑥 , and can range from (0,∞).
Liquidity providers can add tokens to the pool for users to swap
against and earn fees based on their fraction of the pool’s total
liquidity. LPs incur a loss (called “impermanent loss” [15]) if the
price moves away from the price at which they locked in liquidity
into the contract. The profits of an LP are thus determined by these
losses from price deviations and revenue from the earned fees. For
details, we refer the reader to [15].
UniswapV3. An updated version—UniswapV3—was published in
May 2021 and currently is the dominant DEX, with monthly vol-
umes as high as $50 billion. UniswapV3, while maintaining the
constant product curve as its core mechanism, mainly changes the
operation of liquidity provisioning. Instead of requiring liquidity to
be provided in the (0,∞) range, UniswapV3 allows for concentrated
liquidity—i.e., liquidity that is active only if the price is inside the
LP’s chosen interval [𝑝𝑎, 𝑝𝑏 ]. This results in a “shifted” price curve
given by (𝑥 +

√︁
𝑐/𝑝𝑏 ) · (𝑦 +

√︁
𝑐/𝑝𝑎) = 𝑐 . For a more detailed de-

scription, we refer the reader to [13, 14]. The main consequence of
interest to our work is that the fees earned by the LP now depend
directly on her chosen price interval.
Lending Protocol: AaveV2. AaveV2 [12] is a liquidity protocol
which allows lenders to pool their assets through a smart contract
and allows borrowers to borrow these assets after locking suffi-
cient collateral in the smart contract. A portion of the interest paid
by the borrowers accrues to the lenders through the interest rate
mechanism [12]. A borrower’s position becomes available for liqui-
dation when the value of the locked collateral falls below a certain
threshold relative to the value of its debt and interest charges. Once
a position is available for liquidation, anyone can repossess the col-
lateral by repaying the position’s debt at a discounted rate. In order
to determine the value of collateral and debt assets, the protocol
utilizes an external price feed from a price oracle.

B FILTERING USER TRANSACTIONS

Algorithm 2 Identifying user transactions for input to Lanturn
Inputs: Block 𝐵, Contracts 𝐶
Outputs: User transactions 𝑇
1: 𝑇 = ∅
2: A = ∅ ⊲ Interacting addresses
3: S = Transactions in 𝐵 whose execution trace intersections

with 𝐶 ⊲ Seed transactions
4: while A grows in size do
5: A .𝑎𝑑𝑑 (set of sender and destination addresses of

transactions in the set S)
6: for 𝑡𝑥 ∈ 𝐵.transactions do
7: if 𝑡𝑥 .sender ∈ A or 𝑡𝑥 .destination ∈ A then
8: S.𝑎𝑑𝑑 (𝑡𝑥)
9: for 𝑡𝑥 ∈ 𝐵.transactions do
10: if 𝑡𝑥 .sender ∈ A or 𝑡𝑥 .destination ∈ A then
11: 𝑇 .𝑎𝑑𝑑 (𝑡𝑥)
12: return 𝑇
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We now give the pseudocode for our procedure to filter user
transactions input to Lanturn. The aim of this procedure is to iden-
tify all the transactions from a given block that directly or indirectly
affect the state of the given smart contracts. Due to the dynamic
nature of execution of blockchain transactions, it is not possible to
statically determine all the transactions that affect the state of the

smart contracts in any of the possible reorderings that Lanturnmay
explore. Therefore, our procedure is designed to strike a balance
between identifying all the possibly relevant transactions and yet,
not include too many transactions that have no bearing on the state
of the smart contracts.

Algorithm 2 shows the pseudocode for our procedure.

16


	Abstract
	1 Introduction
	1.1 Lanturn Overview and Contributions

	2 Background
	2.1 Decentralized Finance and Contracts
	2.2 MEV

	3 Model
	3.1 MEV Formalism
	3.2 Threat Model

	4 Lanturn Architecture
	4.1 Problem Formulation
	4.2 Applications of Lanturn

	5 Lanturn Methodology
	5.1 Adaptive Learning
	5.2 Simulation

	6 Evaluation
	6.1 Dataset Collection
	6.2 MEV uncovered by Lanturn
	6.3 Discovering new MEV Strategies
	6.4 Performance
	6.5 Implementation Considerations

	7 Related Work
	8 Conclusion
	References
	A Decentralized Finance, Constant Function Market Makers and Lending Protocols
	B Filtering User Transactions

