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Abstract

We propose a generic construction of password-based authenticated key exchange (PAKE) from
key encapsulation mechanisms (KEM). Assuming that the KEM is oneway secure against plaintext-
checkable attacks (OW-PCA), we prove that our PAKE protocol is tightly secure in the Bellare-
Pointcheval-Rogaway model (EUROCRYPT 2000). Our tight security proofs require ideal ciphers
and random oracles. The OW-PCA security is relatively weak and can be implemented tightly with
the Diffie-Hellman assumption, which generalizes the work of Liu et al. (PKC 2023), and “almost”
tightly with lattice-based assumptions, which tightens the security loss of the work of Beguinet et
al. (ACNS 2023) and allows more efficient practical implementation with Kyber. Beyond these, it
opens an opportunity of constructing tight PAKE based on various assumptions.
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1 Introduction
While authenticated key exchange (AKE) protocols require a PKI to certify user public keys, password-
based AKE (PAKE) protocols allow a client and a server to establish a session key, assuming that both
parties share a password in advance. A password is chosen from a small set of possible strings, referred
as a dictionary. Thus, a password has low-entropy and can be memorized by humans. Hence, it is very
convenient, and the design and analysis of PAKE protocols have drew a lot of attention in the past few
years.

After the introduction of Encrypted-Key-Exchange (EKE) protocol by Bellovin and Merritt [BM92],
many PAKE protocols have been proposed based on variants of the Diffie-Hellman assumptions, including
the well-known SPEKE [Jab96], SPEKE2 [AP05], J-PAKE [HR10], and CPace [HL19]. There are only
a few exception where PAKE is constructed based on post-quantum assumptions, such as lattices [KV09,
BBDQ18, ZY17] and group actions [AEK+22].
Security of PAKE. The security requirements on a PAKE protocol are resistance against offline
(where an adversary performs an exhaustive search for the password offline) and online (where an active
adversary tries a small number of passwords to run the protocol) dictionary attacks. Similar to the clas-
sical AKE, forward secrecy is required as well, where the session keys remain secure, even if the password
is corrupted at a later point in time, and also leakage of a session key should not affect other session
keys. Their security is formalized by either the indistinguishability-based (IND-based) model [BPR00]
or the universal composability (UC) framework [CHK+05].

Usually, the advantage of a PAKE protocol εPAKE has the form of:

εPAKE ≤ S/|PW| + L · εProblem, (1)

where S is the number of protocol sessions, PW is the set of all possible passwords, εProblem is the
advantage of attacking the underlying cryptographic hard problem, and L is called the security loss.
Here we ignore the additive statistical negligible probability in Equation (1) for simplicity. Essentially,
S/|PW| is the success probability of online dictionary attacks and Equation (1) shows that the best attack
on the PAKE protocol is performing an online dictionary attack. This can be eliminated by restricting
the online password guess in practice.
Tight Security. We say a security proof for PAKE tight if L is a small constant. All the aforementioned
PAKE protocols are non-tight. For instance, according to the analysis of [BCP+23], we estimate that
the security loss L for the EKE protocol is O(qD · (S + qD)), where qD is the number of the adversary’s
queries to an ideal cipher. The security bound for the group-action-based protocol Com-GA-PAKEℓ in
[AEK+22] is even worse, and it contains a square root of the advantage of the underlying assumption (cf.
[AEK+22, Theorem 2]), due to the Reset Lemma [BP02]. This means even if we set up the underlying
assumption with 128-bit security, Com-GA-PAKEℓ in [AEK+22] has only less1 than 64-bit.

We note that X-GA-PAKEℓ in [AEK+22, Section 6] has tight security by restricting to weak forward
secrecy, where an adversary is not allowed to perform active attacks before password corruptions. This
is a rather weak security model.

In this paper, we are interested in tightly secure PAKE with perfect forward secrecy (PFS), namely,
adversaries can perform active attacks before password corruptions. From a theoretical perspective, it is
interesting to analyze the possibility of constructing tightly secure PAKE and under which cryptographic
assumption it is possible. From a practical perspective, it is very desirable to have tightly secure PAKE
(or AKE in general), since these protocols are executed in a multi-user, multi-instance scenario. In today’s
internet, the scenario size is often large. A non-tight protocol requires a larger security parameter to
compensate the security loss and results in a less efficient protocol. Even if we cannot achieve full
tightness, a tighter security proof is already more beneficial than a less tight one of the same protocol,
since the tighter proof offers higher security guarantees.
Our Goal: Tight PAKE beyond Diffie-Hellman (DH). There are a few exceptions that con-
struct tight PAKE protocols with PFS, and they are all based on the DH assumption. Becerra et
al. [BIO+17] proved tight security of the three-move PAK protocol [Mac02] using the Gap DH (GDH)
assumption [OP01a] in the IND-based model, where the GDH assumption states that the Computational

1This is because of the additional multiplicative loss factor depending on S and the length of a password in [AEK+22,
Theorem 2].
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DH (CDH) assumption is hard even if the Decisional DH (DDH) assumption is easy. Lately, Abdalla et
al. [ABB+20] proved tight security of two-move SPAKE2 in the relaxed UC framework under the GDH
assumption. Very recently, Liu et al. [LLHG23] carefully used the twinning technique [CKS08] to remove
the GDH assumption and proved a variant of the EKE protocol tightly based on the CDH assumption.

Our goal is to construct tightly secure PAKE protocols from post-quantum assumptions, beyond
the DH assumptions. Lattice-based assumptions are the promising post-quantum ones, and it seems
inherent that they do not have any Gap-like assumption or twinning techniques, since the Decisional and
Computational variants of, for instance, Learning-With-Errors (LWE) assumption [Reg05] are equivalent.

Regarding the assumption based on group actions, as we discussed earlier, the Com-GA-PAKEℓ pro-
tocol in [AEK+22] needs to rewind an adversary to argue PFS, and by using the Reset Lemma it leads
to a very loose bound. Apart from that, Com-GA-PAKEℓ applies the group action in a “bit-by-bit” (wrt
the bit-length of a password) fashion and sends out the resulting element, and thus it is quite inefficient
in terms of both computation and communication complexity.

Finally, we note that Liu et al. [LLHG23] did not provide a formal proof on the PFS of their protocol,
but rather an informal remark. In [AEK+22], we note a huge gap between the security loss of a weak
FS protocol and a PFS one. Hence, in this paper we will prove the PFS of our protocol concretely.

1.1 Our Contribution
We propose a generic construction of tightly secure PAKE protocols from key encapsulation mechanisms
(KEMs) in the ideal cipher and random oracle models. We require the underlying KEM to have the
following security:

• Oneway plaintext-checking (OW-PCA) security in the multi-user, multi-challenge setting, namely,
adversary A’s goal is to decapsulate one ciphertext out of many given ones, and furthermore, A is
given an oracle to check whether a key k is a valid decapsulation of a ciphertext c under some user
j. It is a (slight) multi-user, multi-challenge variant of the original OW-PCA [OP01b].

• Anonymous ciphertexts under PCA, namely, the challenge ciphertexts do not leak any information
about the corresponding public keys.

• Fuzzy public keys, namely, the generated public keys are indistinguishable from a random key from
all the possible public keys.

Such a KEM can be tightly constructed:
• either generically from pseudorandom PKE against chosen-plaintext attacks in the multi-user,

multi-challenge setting (PR-CPA security2), which states that the given challenge ciphertexts are
pseudorandom. This means, as long as we have a PR-CPA secure PKE, we have a PAKE protocol
that preserves the tightness of the PKE. With lattices, we do not know a tightly PR-CPA PKE,
but only a scheme (i.e. Regev’s encryption [Reg05]) tightly wrt. the number of challenges, not
wrt. the number of users. This already results in a tighter PAKE protocol than the analysis from
Beguinet et al. [BCP+23]. More details will be provided in “Comparison using Kyber”.

• or directly from the strong DH (stDH) assumption in a prime-order group [ABR01]. Under this
stronger assumption, our resulting PAKE protocol has O(λ) (which corresponds to the bit-length
of a group element) less than the 2DH-EKE protocol of Liu et al. [LLHG23] in terms of protocol
transcripts. In fact, using the twinning technique of Cash et al. [CKS08], we can remove the
strong oracle and have our protocol under the CDH assumption, which is the same protocol as the
2DH-EKE protocol of Liu et al.. Essentially, our direct instantiation abstracts the key ideas of Liu
et al., and our proof for PFS gives a formal analysis of Liu et al.’s protocol.

Different to other PAKE protocol from group actions [AEK+22] and lattices as in [BBDQ18], our construc-
tion is compact and does not use “bit-by-bit” approaches. Figure 1 briefly summarizes our approaches.

Our proofs are in the IND-based model (aka, the so-called Bellare-Pointcheval-Rogaway (BPR) model
[BPR00]) for readability. We are optimistic that it is tightly secure in the UC framework and briefly
sketch the ideas about how to lift our proofs in the BPR model to the UC framework in Supp. Mat. C.
Comparison using Kyber [SAB+20]. There are only a few efficient PAKE protocols from lattices.
We focus our comparison on the very efficient one by implementing the CAKE in [BCP+23] with Kyber.

2Our security notions are in the multi-user, multi-challenge setting. Hence, for simplicity, we do not write the ‘m’ in
the abbreviations.
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stDH

OW-PCA KEM PAKE

PR-CPA PKE

Sec. 5.1
abstracts [LLHG23]

Sec. 4

Sec. 5.2

Figure 1: Overview of our construction. All implications are tight, and the blue ones are done via
generic constructions. OW-PCA security is the core for our “KEM-to-PAKE” transformation. Please
find additional requirements on the KEM in the text.

The reason of not using OCAKE in [BCP+23] is because OCAKE do not have PFS, but weak FS. Our
protocol is similar to CAKE, but ours has tight reductions from the KEM security.

Unfortunately, by implementing with Kyber, our protocol does not have tight security, since we
cannot prove tight PR-CPA security for Kyber, but in practice one will consider using Kyber than
otherwise. Our security loss is O(S · (S + qD)) to the Module-LWE assumption, while the security loss of
CAKE is O(qD · (S + qD)), where qD is the number of decryption queries to the ideal cipher. In practice,
qD is the number of adversary A evaluating the symmetric cipher offline and can be large. We assume
qD = 240.

Very different to the standard AKE, in the PAKE setting S should be very small, since S corresponds
to how many attempts an adversary can perform online dictionary attacks. We usually will limit it. We
assume S ≤ 100 ≈ 26. Hence, although our security bound with Kyber is not tight, it is still much
smaller than CAKE, since S ≪ qD. In fact, we have doubt on the security proof of CAKE in handling
reply attacks3, namely, A can reply the first round message. To fix it, we need to introduce another
multiplicative factor S, but since S is relatively small we ignore it in our comparison.

Hence, implementing with Kyber-768 (corresponding to AES-192), our protocol provides about 152-
bit security, while CAKE about 112-bit security.
Open Problem. We are optimistic that our protocol can be proven tightly in the weaker and more
efficient randomized half-ideal cipher model [SGJ23], and we leave the formal proof for it as an open
problem.

2 Preliminaries
For an integer n, we define the notation [n] := {1, . . . , n}. Let X and Y be two finite sets. The notation
x $← X denotes sampling an element x from X uniformly at random.

Let A be an algorithm. If A is probabilistic, then y ← A(x) means that the variable y is assigned to
the output of A on input x. If A is deterministic, then we may write y := A(x). We write AO to indicate
that A has classical access to oracle O, and A|O⟩ to indicate that A has quantum access to oracle O All
algorithms in this paper are probabilistic polynomial-time (PPT), unless we mention it.
Games. We use code-based games [BR06] to define and prove security. We implicitly assume that
Boolean flags are initialized to false, numerical types are initialized to 0, sets and ordered lists are
initialized to ∅, and strings are initialized to the empty string ϵ. The notation Pr[GA ⇒ 1] denotes the
probability that the final output GA of game G running an adversary A is 1. Let Ev be an (classical)
event. We write Pr[Ev : G] to denote the probability that Ev occurs during the game G. In our security
notions throughout the paper, we let N, µ be numbers of users and challenges, respectively, which are
assumed to be polynomial in the security parameter λ. For simplicity, in this paper, we do not write λ
explicitly. Instead, we assume every algorithm’s input includes λ.

2.1 Key Encapsulation Mechanism
Definition 2.1 (Key Encapsulation Mechanism). A KEM KEM consists of four algorithms (Setup, KG,
Encaps, Decaps) and a ciphertext space C, a randomness space R, and a KEM key space K. On input

3More precisely, the argument in [BCP+23, page 41] under “Analysis” may not hold true for reply attacks.
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GAME OW-PCA(N,µ),A
KEM

01 par← Setup
02 for i ∈ [N ]
03 (pk, sk)← KG(par)
04 (pk[i], sk[i]) := (pk, sk)
05 for j ∈ [µ] :
06 (c, k)← Encaps(pk[i])
07 (c[i, j], k[i, j]) := (c, k)
08 (i, j, k∗)← APco(pk, c)
09 return k∗ == Decaps(sk[i], c[i, j])

GAME OW-rPCA(N,µ),A
KEM

10 par← Setup
11 for i ∈ [N ]
12 (pk[i], sk[i]) := (pk, sk)← KG(par)
13 for j ∈ [N · µ] :
14 c[j] := c $← C
15 (i, j, k∗)← APco(pk, c)
16 return k∗ == Decaps(sk[i], c[j])

Oracle Pco(i, c, k)

17 if pk[i] = ⊥
18 return ⊥
19 return k == Decaps(sk[i], c)

Figure 2: Security games OW-PCA and OW-rPCA for KEM scheme KEM.

security parameters, Setup outputs a system parameter par. KG(par) outputs a public and secret key pair
(pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a ciphertext c ∈ C. We also write
c := Encaps(pk; r) to indicate the randomness r ∈ R explicitly. The decapsulation algorithm Decaps, on
input sk and a ciphertext c, outputs a KEM key k ∈ K or a rejection symbol ⊥ /∈ K. Here Encaps and
Decaps also take par as input, but for simplicity, we do not write explicitly.

Definition 2.2 (KEM Correctness). Let KEM := (Setup, KG, Encaps, Decaps) be a KEM scheme and A
be an adversary against KEM. We say KEM is (1− δ)-correct if

Pr [(c, k)← Encaps(pk) ∧ k ̸= Decaps(sk, c)] ≤ δ,

where par← Setup, (pk, sk)← KG(par).

Definition 2.3 (Implicit Rejection [BP18]). A KEM scheme KEM = (Setup, KG, Encaps, Decaps) has
implicit rejection if Decaps(sk, ·) behaves as a pseudorandom function when the input ciphertext is
invalid, where par← Setup, (pk, sk)← KG, and sk is the key of the pseudorandom function. That is, if an
input ciphertext c is invalid, then Decaps(sk, c) will output a pseudorandom key k instead of a rejection
symbol ⊥. A concrete example is shown in Figure 17.

OW-PCA Security. Let KEM = (Setup, KG, Encaps, Decaps) be a KEM scheme with ciphertext space
C. In Definitions 2.4 and 2.5, we define two variants of one-wayness under plaintext-checking attacks
(OW-PCA) security for KEM [OP01b] in the multi-user, multi-challenge setting. They will be used for
the tight security proof of our PAKE protocol and can be instantiated tightly from the Diffie-Hellman as-
sumption and Learning-With-Errors assumption. Instead of writing ‘m’ in the abbreviation, we mention
the explicit numbers of users and challenge ciphertexts as N and µ in the abbreviation of security.

Definition 2.4 (Multi-user-challenge OW-PCA security). Let N and µ be the numbers of users and
challenge ciphertexts per user, respectively. Let A be an adversary against KEM. We define the (N, µ)-
OW-PCA advantage function of A against KEM

Adv(N,µ)-OW-PCA
KEM (A) := Pr

[
OW-PCA(N,µ),A

KEM ⇒ 1
]

,

where the game OW-PCA(N,µ),A
KEM is defined in Figure 2. We say KEM is OW-PCA secure if Adv(N,µ)-OW-PCA

KEM (A)
is negligible for any A.

Definition 2.5 (OW-PCA security under random ciphertexts). Let N and µ be the number of users
and the number of challenge ciphertexts per user, respectively. Let A be an adversary against KEM. We
define the (N, µ)-OW-rPCA advantage function of A

Adv(N,µ)-OW-rPCA
KEM (A) := Pr

[
OW-rPCA(N,µ),A

KEM ⇒ 1
]

,

where OW-rPCA(N,µ),A
KEM is defined in Figure 2. KEM is OW-rPCA secure if Adv(N,µ)-OW-rPCA

KEM (A) is negli-
gible for any A.
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GAME ANO-PCA(N,µ),A
KEM,b

01 par← Setup
02 for i ∈ [N ]
03 (pk[i], sk[i]) := (pk, sk)← KG(par)
04 for j ∈ [µ] :
05 (c, k)← Encaps(pk[i])
06 (c0[i, j], k[i, j]) := (c, k)
07 c1[i, j] $← C
08 b′ ← APco(par, pk, cb)
09 return b′

GAME FUZZYN,A
KEM,b

10 par← Setup
11 for i ∈ [N ]
12 (pk0[i], sk[i]) := (pk, sk)← KG(par)
13 pk1[i] := pk $← PK
14 b′ ← A(par, pkb)
15 return b′

Figure 3: Security games FUZZY and ANO-PCA for KEM scheme KEM. The Pco oracle of ANO-PCA
is the same as the one of OW-PCA (and OW-rPCA) in Figure 2.

Definition 2.6 (Fuzzy public keys). Let N be the number of users. Let A be an adversary against KEM.
We define the advantage function of A against the fuzzyness of KEM

AdvN-FUZZY
KEM (A) :=

∣∣∣Pr
[
FUZZYN,A

KEM,0 ⇒ 1
]
− Pr

[
FUZZYN,A

KEM,1 ⇒ 1
]∣∣∣ ,

where the game FUZZYN,A
KEM,b(b ∈ {0, 1}) is defined in Figure 3. We say KEM has fuzzy public keys if

AdvN-FUZZY
KEM (A) is negligible for any A.

Definition 2.7 (Anonymous ciphertexts under PCA attacks). Let N and µ be the numbers of users
and challenge ciphertexts per user, respectively. Let A be an adversary against KEM. We define the
advantage function of A against the ciphertext anonymity (under PCA attacks) of KEM

Adv(N,µ)-ANO
KEM (A) :=

∣∣∣Pr
[
ANO-PCA(N,µ),A

KEM,0 ⇒ 1
]
− Pr

[
ANO-PCA(N,µ),A

KEM,1 ⇒ 1
]∣∣∣ ,

where the game ANO-PCA(N,µ),A
KEM,b (b ∈ {0, 1}) is defined in Figure 3. We say KEM has anonymous

ciphertexts under PCA attacks (or simply, anonymous ciphertexts) if Adv(N,µ)-ANO
KEM (A) is negligible for

any A.

It is easy to see that if KEM is OW-PCA secure and has anonymous ciphertexts under PCA attacks,
then it is also OW-rPCA secure, as stated in Lemma 2.8

Lemma 2.8 (OW-PCA + ANO-PCA⇒ OW-rPCA). Let N and µ be the numbers of users and challenge
ciphertexts per user, respectively. Let A be an adversary against KEM. We have

Adv(N,µ)-OW-rPCA
KEM (A) ≤ Adv(N,µ)-OW-PCA

KEM (A) + Adv(N,µ)-ANO
KEM (A)

2.2 Public-Key Encryption

Public-Key Encryption. A PKE scheme PKE consists of four algorithms (Setup, KG, Enc, Dec) and a
message space M, a randomness space R, and a ciphertext space C. Setup outputs a system parameter
par. KG(par) outputs a public and secret key pair (pk, sk). The encryption algorithm Enc, on input pk
and a message m ∈ M, outputs a ciphertext c ∈ C. We also write c := Enc(pk, m; r) to indicate the
randomness r ∈ R explicitly. The decryption algorithm Dec, on input sk and a ciphertext c, outputs a
message m′ ∈M or a rejection symbol ⊥ /∈M.

Definition 2.9 (PKE Correctness). Let PKE := (Setup, KG, Enc, Dec) be a PKE scheme with message
space M and A be an adversary against PKE. The COR advantage of A is defined as

AdvCOR
PKE (A) := Pr

[
CORA

PKE ⇒ 1
]

,

where the COR game is defined in Figure 4. If there exists a constant δ such that for all adversary A,
AdvCOR

PKE (A) ≤ δ, then we say PKE is (1− δ)-correct.
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GAME CORA
PKE

01 par← Setup
02 (pk, sk)← KG(par)
03 m← AO(par, pk, sk)
04 c← Enc(pk, m)
05 if Dec(sk, c) ̸= m : return 1
06 return 0

Figure 4: The COR game for a PKE scheme PKE and A. A might have access to some oracle O (e.g.,
random oracles). It depends on the specific reduction.

We define fuzzyness for PKE, which is essentially the same as the one for KEM (cf. Definition 2.6).

Definition 2.10 (Fuzzy public key). Let N be the number of users. We say PKE has fuzzy public keys
if for any A, the advantage function of A against the fuzzyness of PKE

AdvN-FUZZY
PKE (A) :=

∣∣∣Pr
[
FUZZYN,A

PKE,0 ⇒ 1
]
− Pr

[
FUZZYN,A

PKE,1 ⇒ 1
]∣∣∣

is negligible. The game FUZZYN,A
PKE,b(b ∈ {0, 1}) is defined in Figure 3.

Pseudorandom ciphertext. Let PKE := (KG, Enc, Dec) be a public-key encryption scheme with mes-
sage space M and ciphertext space C. We define PR-CPA (multi-challenge pseudorandomness under
chosen-plaintext attacks) security in Figure 5.

Definition 2.11 (Multi-user-challange PR-CPA security). Let N and µ be the numbers of users and
challenge ciphertexts per user. Let A = (A0,A1) be an adversary against PKE. Consider the games
PR-CPA(N,µ),A

PKE,b (b ∈ {0, 1}) defined in Figure 5. We define the (N, µ)-PR-CPA advantage function

Adv(N,µ)-PR-CPA
PKE (A) :=

∣∣∣Pr
[
PR-CPA(N,µ),A

PKE,0 ⇒ 1
]
− Pr

[
PR-CPA(N,µ),A

PKE,1 ⇒ 1
]∣∣∣ .

PKE is PR-CPA secure if Adv(N,µ)-PR-CPA
PKE (A) is negligible for any A.

GAME PR-CPA(N,µ),A
PKE,b

01 par← Setup
02 for i ∈ N
03 (pki, ski)← KG(par), pk[i] := pki

04 (m, st)← A0(par, pk) // m has N × µ messages
05 for i ∈ [N ]:
06 for j ∈ [µ]
07 c0[i, j]← Enc(pk[i], m[i, j]), c1[i, j] $← C
08 b′ ← A1(st, cb)
09 return b′

Figure 5: Security game PR-CPA for PKE scheme PKE.

3 Password-based Authenticated Key Exchange
3.1 Definition of PAKE
A two-message PAKE protocol PAKE := (Setup, Init, Resp, TerInit) consists of four algorithms. The setup
algorithm Setup, on input security parameter 1λ, outputs global PAKE protocol parameters par. For
simplicity, we ignore the input of Setup and write par← Setup.

Let U be a user, S be a server, and pw be the password shared between U and S. Since we consider
the client-server setting, to initiate a session, U will send the first protocol message. U runs the client’s
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initialization algorithm Init, which takes the identities U, S and password pw as inputs and outputs a
client message MU and session state st, and then U sends MU to S. On receiving MU, S runs the servers
derivation algorithm Resp, which takes identities U and S and the received message MU as input, together
with the password pw, to generate a server message MS and a session key SKS. S sends MS to U. Finally,
on receiving MS, U runs the clients derivation algorithm TerInit which inputs U, S, the session state st
generated before, the received message MS, and password pw, to generate a session key sk′

U. In two-
message PAKE protocols, the server does not need to save session state since it can compute the session
key right after receiving the user’s message.

User U(pw) Server S(pw)

(MU, st)← Init(U, S, pw) MU

(MS, SKS)← Resp(S, U, MU, pw)MS

SKU ← TerInit(U, S, st, MS, pw)

st

Figure 6: Illustration for a two-message PAKE protocol execution between a user U and a server S.

We define the correctness of PAKE protocols, stating that an honestly execution between user U and
server S (with the same password pwU,S) as in Figure 6 will produce the same session key SKU = SKS.

Definition 3.1 (PAKE Correctness). Let PAKE := (Setup, Init, Resp, TerInit) be a PAKE protocol and
let U and S be a user-server pair with password pw. We say PAKE is ρ-correct, if for any PAKE system
parameter par← Setup, the following probability is at least ρ.

Pr

 SKU = SKS

∣∣∣∣∣∣
(MU, st)← Init(U, S, pw)

(MS, SKS)← Resp(S, U, MU, pw)
SKU ← TerInit(U, S, st, MS, pw)


3.2 Security Model of PAKE
We consider indistinguishability(IND)-based security of PAKE protocols. In this section, we define
the multi-test variant of the Bellare-Pointcheval-Rogaway model [BPR00, AFP05, AB19]. We simply
denoted it as the BPR model.

In the BPR model, we consider a name space of users U and a name space of servers S, which are
assumed to be disjoint. Oracles provided in this model rejects queries inconsistent withe these name
spaces.

We denote the session key space by SK. Password are bit strings of ℓ and the password space is defined
as PW ⊊ {0, 1}ℓ. Each pair of user and server U× S ∈ U × S holds a shared password pwU,S ∈ PW.

Let P denotes a party (either a user or server). Each party in U∪S has multiple instances πi
P (i is some

index) and each instance has its internal state. The state of an instance πi
P is a tuple (e, tr, key, acc)

where

• e is the ephemeral secret chosen by P.

• tr is the trace of the instance, i.e., the names of user and server involved in the instance and the
messages sent and received by P in the instance.

• key is the accepted session key of πi
P.

• acc is a Boolean flag that indicates whether the instance has accepted the session key. As long as
the instance did not receive the last message, acc = ⊥ (which means undefined).

• test is a Boolean flag that indicates whether the instance has been queried to the Test oracle
(which will be defined later).

To access individual components of the state, we write πi
P.(e, tr, key, acc). We define partnership via

matching instance trace.

9



Definition 3.2 (Partnering). A user instance πt0
U and a server instance πt1

S are partnered if and only if

πt0
U .acc = true = πt1

S .acc and πt0
U .tr = πt1

S .tr

Two user instances are never partnered, neither are two server instances. We define a partnership
predicate Partner(πt0

U , πt1
S ) which outputs true if and only if πt0

U and πt1
S are partnered.

Security Game. The security game is played with an adversary A. The experiment draws a random
challenge bit β ← {0, 1}, generates the public parameters, and outputs the public parameters to A. A
is allowed to query the following oracles:

• Execute(U, t1, S, t2): This oracle outputs the protocol messages of an honest protocol execution
between instances πt1

U and πt2
S . By querying this oracle, the adversary launches passive attacks.

• SendInit,SendResp,SendTerInit: These oracles model active attacks. By querying these ora-
cles, the adversary sends protocol messages to protocol instances. For sake of simplicity, we assume
that the adversary does not use these oracles to launch passive attacks (which are already captured
by the Execute oracle).

• Reveal(P, t): By this oracle, the adversary reveals the session key of πt
P.

• Test(P, t): If πt
P is fresh (which will be defined later), then, depending on the challenge bit β,

the oracle outputs either the session key of πt
P or a uniformly random key. Otherwise, the oracle

outputs ⊥. After this query, the flag πt
P.test will be set as true.

We denote the game by BPRPAKE. The pseudocode is given in G0 in Figure 8, instantiated with
our PAKE protocol. Before defining PAKE security, we define freshness to avoid trivial attacks in this
model.

Definition 3.3 (Freshness). An instance πt
P is fresh if and only if

1. πt
P is accepted.

2. πt
P was not queried to Test or Reveal before.

3. At least one of the following conditions holds:

(a) πt
P accepted during a query to Execute.

(b) There exists more than one (not necessarily fresh) partner instance4.
(c) A unique fresh partner instance exists.
(d) No partner instance exists and the password of P was not corrupted prior to πt

P is accepted.

By these definitions, we are ready to define the security of PAKE protocols.

Definition 3.4 (Security of PAKE). Let PAKE be a PAKE protocol and A be an adversary. The
advantage of A against PAKE is defined as

AdvBPR
PAKE(A) :=

∣∣∣∣Pr
[
BPRA

PAKE ⇒ 1
]
− 1

2

∣∣∣∣
A PAKE protocol is considered secure if the best the adversary can do is to perform an online dictionary
attack. Concretely, PAKE is secure if for any adversary A, AdvBPR

PAKE(A) is negligibly close to S
|PW| when

passwords in the security game are drawn independently and uniformly from PW. Here S is the number
of send queries made by A (i.e., the number of sessions during the game BPRPAKE).

4This essentially forces a secure PAKE protocol not to have more than one partner instances.
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4 Our Generic Construction of PAKE

Construction. Let KEM = (Setup, KG, Encaps, Decaps) be a KEM scheme with public key space PK,
ciphertext space C, and KEM key space K. We also require KEM to have implicit rejection. Let
IC1 = (E1, D1) be a symmetric encryption with key space PW, plaintext space PK, and ciphertext space
E1. Let IC2 = (E2, D2) be a symmetric encryption with key space PW, plaintext space C, and ciphertext
space E2.

We construct our two-message PAKE protocol Π = (Init, Resp, TerInit) as shown in Figure 6, where
SK is the session key space of PAKE and H : {0, 1}∗ → SK is a hash function which is used to derive the
session key. The system parameter par is generated by par← Setup.

Alg Init(U, S, pw)
01 (pk, sk)← KG(par)
02 e1 := E1(pw, pk)
03 st := (pk, sk, e1)
04 return (e1, st)

Alg TerInit(U, S, st, e2, pw)
05 let (pk, sk, e1) := st
06 c := D2(pw, e2)
07 k := Decaps(sk, c)
08 ctxt := (U, S, e1, e2)
09 SK := H(ctxt, pk, c, k, pw)
10 return SK

Alg Resp(S, U, e1, pw)
11 pk := D1(pw, e1)
12 (c, k)← Encaps(pk)
13 e2 := E2(pw, c)
14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pw)
16 return (e2, SK)

Figure 7: Our PAKE protocol Π.

The correctness of Π is dependent on KEM. In Figure 7, one honest execution of Π includes one KEM
encapsulation and decapsulation. So, if KEM is (1− δ)-correct, then Π is also (1− δ)-correct.

Theorem 4.1 Let H be random oracle and IC1 and IC2 be ideal ciphers. If KEM is (1−δ)-correct and has
implicit rejection, fuzzy public keys, anonymous ciphertexts, OW-PCA security, and OW-rPCA security
(cf. Definitions 2.4 to 2.7), then the PAKE protocol Π in Figure 7 is secure (wrt Definition 3.4).

Concretely, for any A against Π, there are adversaries B1-B6 with T(A) ≈ T(Bi)(1 ≤ i ≤ 6) and

AdvBPR
Π (A) ≤ S/|PW|+ Advq1-FUZZY

KEM (B1) + Adv(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv(S,1)-OW-PCA
KEM (B2) + Adv(S+q2,S)-OW-PCA

KEM (B5)

+ Adv(S,1)-ANO
KEM (B3) + Adv(S+q1,S)-ANO

KEM (B6) + S · δ

+ S2(ηpk + ηct) + (q2
1 + S2)
|E1|

+ (q2
2 + S2)
|E2|

+ q2
1

|PK|
+ q2

2
|C|

+ (q2
H + S2)
|SK|

,

where q1, q2, qH are the numbers of A queries to IC1, IC2, and H respectively. S is the number of sessions A
established in the security game. ηpk and ηct are the collision probabilities of KG and Encaps, respectively.

Remark 4.2 (Implementation of Ideal Ciphers.). The implementation of IC1 and IC2 depends on the
concrete instantiation of the underlying KEM scheme KEM. Beguinet et al. provides an implementation
if KEM is instantiated with the Kyber KEM [SAB+20] in [BCP+23, Section 5.2]. More implementation
for group-based schemes and lattice-based schemes can be found in [SGJ23].

Remark 4.3 We require KEM to have implicit rejection (cf. Definition 2.3) because this simplifies our
security proof. More concretely, if the underlying KEM KEM has implicit rejection, then we only require
OW-PCA security to finish our tight proof. Otherwise, we need the OW-PCVA (cf. [HHK17, Definition
2.1]) security to detect whether the c is valid in the proof.

4.1 Proof of Theorem 4.1
Let A be an adversary against PAKE in the BPR game, where N is the number of parties. Every user-
server pair (U, S) ∈ U ×S is associated with a password pwU,S. The game sequences G0-G12 of the proof
are given in Figures 8, 9, 11 and 14. The full description of the final game G12 is given in Figure 21.

During the game sequences in this proof, we exclude the collisions of outputs of KG and Encaps in
Execute,SendInit,SendResp, and SendTerInit. We also exclude the collisions of outputs of ideal
ciphers and random oracle, i.e., IC1 = (E1, D1), IC2 = (E2, D2), and H. If such a collision happens at any
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Game G0-G1

01 par← Setup
02 for (U, S) ∈ U × S
03 pwU,S ← PW
04 C := ∅
05 β ← {0, 1}
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle Reveal(P, t)
08 if πt

P.acc ̸= true or πt
P.test = true

09 return ⊥
10 if ∃P′ ∈ U ∪ S, t′ s.t.
11 Partner(πt

P, πt′

P′ ) = true
12 and πt′

P′ .test = true
13 return ⊥
14 for ∀(P′, t′) s.t. πt′

P′ .tr = πt
P.tr // G1

15 πt′

P′ .fr := false // G1
16 return πt

P.key

Oracle Test(P, t)
17 if Freshness(πt

P) = false // G0
18 if πt

P.fr = false // G1
19 return ⊥
20 SK∗

0 := Reveal(P, t), SK∗
1

$← SK
21 if SK∗

0 = ⊥: return ⊥
22 πt

P.test := true
23 return SK∗

β

Oracle Corrupt(U, S)
24 if (U, S) ∈ C: return ⊥
25 C := C ∪ {(U, S)}
26 return pwU,S

Oracle E1(pw, pk)
27 if ∃(pw, pk, e1, ∗) ∈ L1: return e1
28 e1

$← E1\T1,L1 := L1 ∪ {e1}
29 L1 := L1 ∪ (pw, pk, e1, enc)
30 return e1

Oracle E2(pw, c)
31 if ∃(pw, c, e2, ∗) ∈ L2: return e2
32 e2

$← E2\T2, T2 := T2 ∪ {e2}
33 L2 := L2 ∪ (pw, c, e2, enc)
34 return e2

Oracle D1(pw, e1)
35 if ∃(pw, pk, e1, ∗) ∈ L1: return pk
36 pk $← PK,L1 := L1 ∪ (pw, pk, e1, dec)
37 return pk

Oracle D2(pw, e2)
38 if ∃(pw, c, e2, ∗) ∈ L2: return c
39 c $← C,L2 := L2 ∪ (pw, c, e2, dec)
40 return c

Oracle Execute(U, t1, S, t2)
41 if πt1

U ̸= ⊥ or πt2
S ̸= ⊥

42 return ⊥
43 let pw := pwU,S
44 (pk, sk)← KG(par), e1 := E1(pw, pk)
45 (c, k)← Encaps(pk), e2 := E2(pw, c)
46 ctxt := (U, S, e1, e2)
47 SK := H(ctxt, pk, c, k, pw)
48 πt1

U := ((pk, sk, e1), ctxt, SK, true)
49 πt2

S := ((c, k, e2), ctxt, SK, true)
50 (πt1

U .fr, πt2
S .fr) := (true, true) // G1

51 return (U, e1, S, e2)

Oracle SendInit(U, t1, S)
52 if πt1

U ̸= ⊥: return ⊥
53 (pk, sk)← KG(par)
54 e1 := E1(pwU,S, pk)
55 πt1

U := ((pk, sk, e1), (U, S, e1,⊥),⊥,⊥)
56 πt1

U .fr := false // G1
57 return (U, e1)

Oracle SendResp(S, t2, U, e1)
58 πt2

S ̸= ⊥: return ⊥
59 if (U, S) ∈ C: πt2

S .fr := false // G1
60 else πt2

S .fr := true // G1
61 pk := D1(pwU,S, e1)
62 (c, k)← Encaps(pk)
63 e2 := E2(pwU,S, c)
64 ctxt := (U, S, e1, e2)
65 SK := H(ctxt, pk, c, k, pwU,S)
66 πt2

S := ((c, k, e2), ctxt, SK, true)
67 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)
68 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

69 return ⊥
70 let (pk, sk, e1) := πt1

U .e
71 c := D2(pw, e2), k := Decaps(sk, c)
72 if ∃t2 s.t. πt2

S .fr = true // G1
73 and πt2

S .tr = (U, S, e1, e2) // G1
74 πt1

U .fr := true // G1
75 else if (U, S) /∈ C: πt1

U .fr := true // G1
76 else πt1

U .fr := false // G1
77 ctxt := (U, S, e1, e2)
78 SK := H(ctxt, pk, c, k, pwU,S)
79 πt1

U .(tr, key, acc) := (ctxt, SK, true)
80 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)
81 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
82 SK $← SK
83 LH[U, S, e1, e2, pk, c, k, pw] := SK
84 return LH[U, S, e1, e2, pk, c, k, pw]

Figure 8: Games in proving Theorem 4.1. A has access to the set of PAKE oracles {Execute,SendInit,
SendResp,SendTerInit,Corrupt,Reveal,Test}, random oracle H, and ideal ciphers IC1 = (E1, D1)
and IC2 = (E2, D2).
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time, then we abort the game. For readability, we do not explicitly define such collision events in the
codes of games sequences.

By the assumption of Theorem 4.1, the collision probabilities of the outputs of KG and Encaps are ηpk

and ηct, and S is the number of sessions generated (i.e., the total number of queries to Execute,SendInit,
SendResp, and SendTerInit) during the game and q1, q2, and qH are the numbers of queries to IC1,
IC2, and H, respectively. By birthday bounds and union bounds, such collision events happen within
probability S2(ηpk + ηct) + (q2

1+S2)
|E1| + (q2

2+S2)
|E2| + q2

1
|PK| + q2

2
|C| + (q2

H+S2)
|SK| . Game G0 is the same as BPRPAKE

except that we define such collision events in G0, we have∣∣∣Pr
[
BPRA

PAKE ⇒ 1
]
− Pr

[
GA

0 ⇒ 1
]∣∣∣

≤ S2(ηpk + ηct) + (q2
1 + S2)
|E1|

+ (q2
2 + S2)
|E2|

+ q2
1

|PK|
+ q2

2
|C|

+ (q2
H + S2)
|SK|

Moreover, excluding these collisions imply that different instances have different traces and each
instance (user’s or server’s) has at most one partnering instance. By the construction of PAKE, differ-
ent instances will have different session keys, since the hash function H take the trace of instance as input.

Game G1. Instead of using the Freshness procedure in the Test oracle, we assign an additional variable
fr to each instance π to explicitly indicate the freshness of π. Whenever A issues an oracle query related
to π, we will update π.fr in real time according to the freshness definition (cf. Definition 3.3). This
change is conceptual, so we have

Pr
[
GA

0 ⇒ 1
]

= Pr
[
GA

1 ⇒ 1
]

To save space, for games G2 to Gx, instead of presenting the whole codes of the game, we only
present the codes of changed oracles.

Oracle Execute(U, t1, S, t2)
01 if πt1

U ̸= ⊥ or πt2
S ̸= ⊥

02 return ⊥
03 pw := pwU,S
04 (pk, sk)← KG(par), e1 := E1(pw, pk) // G1-G4
05 (c, k)← Encaps(pk), e2 := E2(pw, c) // G1-G3
06 c $← C, e2 := E2(pw, c) // G4
07 e1

$← E1\T1, T1 := T1 ∪ {e1} // G5
08 e2

$← E2\T2, T2 := T2 ∪ {e2} // G5
09 ctxt := (U, S, e1, e2)
10 SK := H(ctxt, pk, c, k, pw) // G1-G2
11 SK $← SK // G3-G5
12 πt1

U := ((pk, sk, e1), ctxt, SK, true) // G1-G3
13 πt2

S := ((c, k, e2), ctxt, SK, true) // G1-G3
14 πt1

U := ((⊥,⊥, e1), ctxt, SK, true) // G4-G5
15 πt2

S := ((⊥,⊥, e2), ctxt, SK, true) // G4-G5
16 (πt1

U .fr, πt2
S .fr) := (true, true)

17 return (U, e1, S, e2)

Oracle D1(pw, e1)
18 if ∃(pw, pk, e1, ∗) ∈ L1
19 return pk
20 pk $← PK // G1
21 (pk, sk)← KG // G2-G5
22 Lkey := Lkey ∪ {(pk, sk)} // G2-G5
23 L1 := L1 ∪ {(pw, pk, e1, dec)}
24 return pk

Figure 9: Oracles Execute and D1 in the games sequence G1-G5.

Game G2. We change the output of D1. When A queries D1(pw, e1) where e1 is not generated from
E1(pw, ·), we generate pk via (pk, sk) ← KG instead of pk $← PK. Such (pk, sk) is recorded in Lkey. cf.
Lines 20 to 22.

The difference between G1 and G2 can be bounded by using the fuzzyness of KEM. The bound is
given in Lemma 4.4. For readability, we continue the proof of Theorem 4.1 and postpone the proof of
Lemma 4.4 to Supp. Mat. A.

Lemma 4.4 With notations and assumptions from G1 and G2 in the proof of Theorem 4.1, there is an
adversary B1 with T(B1) ≈ T(A) and∣∣Pr

[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣ ≤ Advq1-FUZZY

KEM (B1)

13



After this change, all pk generated by querying D1 (i.e., there exists (pw, e1) s.t. (pw, pk, e1, dec) ∈ L1)
will always have a secret key sk such that (pk, sk) ∈ Lkey. This fact is crucial for our later simulation.

Game G3. In this game, session keys of instances generated in Execute are all uniformly at random
and independent of H (cf. Lines 10 to 11).

Let Queryexec be the event that A queries the hash input of the session key of an instance generated
in Execute. Since H is a random oracle, if Queryexec does not happen, then A cannot detect the
modification made in G3. We have∣∣Pr

[
GA

2 ⇒ 1
]
− Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec]

We construct an adversary B2 against the OW-PCA security of KEM in Figure 10 such that T(B2) ≈
T(A) and Pr [Queryexec] ≤ Adv(S,1)-OW-PCA

KEM (B2). Concretely, B2 inputs a OW-PCA challenge (par, pk, c)
and has access to a plaintext checking oracle Pco. Since A’s number of queries to Execute is S and
there is only one KEM ciphertext generated per query to Execute, we need at most S challenge public
keys and one challenge ciphertexts per public key.

Reduction BPco(·,·,·)
2 (par, pk, c)

01 cnt := 0,LE := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 Queryexec := false
04 for (U, S) ∈ U × S
05 pwU,S ← PW
06 C := ∅, β ← {0, 1}
07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle H(U, S, e1, e2, pk, c, k, pw)
09 ctxt := (U, S, e1, e2)
10 if ∃i′ s.t. (ctxt, (pk, i′), c, pw) ∈ LE
11 and Pco(cnt∗, c, k) = 1
12 Queryexec := true
13 (i∗, j∗, k∗) := (i′, 1, k)
14 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
15 SK $← SK
16 LH[U, S, e1, e2, pk, c, k, pw] := SK
17 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle Execute(U, t1, S, t2)
18 if πt1

U ̸= ⊥ or πt2
S ̸= ⊥

19 return ⊥
20 pw := pwU,S, cnt := cnt + 1
21 pk := pk[cnt], e1 := E1(pw, pk)
22 c := c[cnt, 1], e2 := E2(pw, c)
23 ctxt := (U, S, e1, e2)
24 LE := LE ∪ {(ctxt, (pk, cnt), c, pw)}
25 SK $← SK
26 πt1

U := ((pk,⊥, e1), tr, SK, true)
27 πt2

S := ((c,⊥, e2), tr, SK, true)
28 (πt1

U .fr, πt2
S .fr) := (true, true)

29 return (U, e1, S, e2)

Figure 10: Reduction B2 in bounding the probability difference between G2 and G3. Highlighted parts
show how B2 uses Pco and challenge input to simulate G3. All other oracles (except Execute and H)
are the same as in G2.

B2 uses (i∗, j∗, k∗) to store its OW solution and uses LE to record the intended hash input of session
keys generated in Execute (cf. Line 24). Although B2 does not have secret keys of pk and KEM keys
of c, it can still simulate G3 since this information is not required in simulating Execute. Moreover,
B2 uses LE and Pco to determine whether Queryexec happens (cf. Lines 10 to 13).

If A queried H(U, S, e1, e2, pk, c, k, pw), where (U, S, e1, e2, pk, c, k, pw) is the intended hash input of a
session key SK generated in Execute, then by the construction of PAKE and Lines 21 to 24, there exists
cnt∗ ∈ [S] such that (U, S, e1, e2, (pk, cnt∗), c, pw) ∈ LE, c = c[cnt∗, 1], and k = Decaps(sk, c), where sk is
the secret key of pk[cnt∗]. This means that k is the OW solution of c[cnt∗, 1], and thus B2 records the
OW solution (cf. Line 13) and returns it when the game ends. Therefore, we have∣∣Pr

[
GA

2 ⇒ 1
]
− Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec] ≤ Adv(S,1)-OW-PCA

KEM (B2).

Game G4. We change the generation of c in Execute (cf. Line 06). In this game, c is sampled from
C uniformly at random instead of using Encaps. Moreover, we no longer store the information about pk,
sk, c, and k in the outputting instances from Execute (cf. Lines 14 to 15). The later modification is
conceptual since the game does not need this information to simulate Execute.
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The difference between G3 and G4 can be bounded by using the ciphertext anonymity of KEM.
The bound is given in Lemma 4.5. We continue the proof of Theorem 4.1 and postpone the proof of
Lemma 4.5 to Supp. Mat. A.

Lemma 4.5 With notations and assumptions from G3 and G4 in the proof of Theorem 4.1, there is an
adversary B3 with T(B3) ≈ T(A) and∣∣Pr

[
GA

3 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]∣∣ ≤ Adv(S,1)-ANO

KEM (B3)

Game G5. We postpone the generation of pk and c in Execute. Concretely, when A issues a query
(U, t1, S, t2) to Execute, we sample e1 and e2 uniformly at random (cf. Lines 07 to 08) and postpone the
generation of pk and c and usage of IC1 and IC2 to the time that A queries D1(pwU,S, e1) or D2(pwU,S, e2),
respectively. The change made in G2 ensures that pk output by D1(pwU,S, e1) is generated using KG,
and the change made in G4 ensures that c output by D2(pwU,S, e2) is generated via uniformly sampling
over C. Therefore, G5 is conceptually equivalent to G4, which means

Pr
[
GA

4 ⇒ 1
]

= Pr
[
GA

5 ⇒ 1
]

Game G6. We rewrite the codes of SendInit, SendResp, and SendTerInit in Figure 11. In this game,
SendResp and SendTerInit compute session keys based on the freshness of instances. SendResp in
G6 is equivalent to the one in G5. For SendTerInit in G6, if the user instance πt1

U has a matching
server instance and such instance is fresh, then we make these two instances have the same session key
(cf. Line 46). These changes are for further game transitions and they are conceptual if KEM has perfect
correctness. Here we need to consider the correctness error of KEM since now we directly set up πt1

U ’s
session key without decapsulation. There are at most S queries to SendTerInit, by a union bound, we
have ∣∣Pr

[
GA

5 ⇒ 1
]
− Pr

[
GA

6 ⇒ 1
]∣∣ ≤ S · δ.

Game G7. We use two flags Guessuser and Guessser (which are initialized as false) to indicate whether
the following events happen:

• When A queries SendResp(S, t2, U, e1), if (U, S) is uncorrupted, e1 is not generated from U’s
instance (cf. Line 37), and ∃pk such that e1 is generated via querying E1(pwU,S, pk), then we set
Guessser as true (cf. Lines 23 to 24).

• When A queries SendTerInit(U, t1, S, e2), if πt1
U does not have matching session, (U, S) is uncor-

rupted, e2 is not generated from S’s instance (cf. Line 30), and ∃c such that e2 is generated via
querying E2(pwU,S, c), then we set Guessuser as true (cf. Lines 53 to 54).

These two flags are internal and do not influence the game, and thus G7 is equivalent to G6.

Pr
[
GA

6 ⇒ 1
]

= Pr
[
GA

7 ⇒ 1
]
.

This step is crucial for our proof. Looking ahead, A triggered Guessuser (or Guessser, similarly) means
that A queried E1(pwU,S, pk) for some pk without corrupting pwU,S. In this case, such pk is controlled by
A (i.e., not output by the security game), and thus we cannot embed challenge public key into such pk
when constructing reduction. Such events happen means that the adversary performs a successful online
dictionary attack. We delay the analysis of the happening probability of such events.

Game G8. Fresh user instances that do not have matching session and do not trigger Guessuser will
generate uniformly random session keys. Concretely, when A queries SendTerInit(U, t1, S, e2), if πt1

U
does not have matching instance, (U, S) is uncorrupted, and e2 does not trigger Guessuser, then we sample
the session key uniformly at random and independent of H (cf. Lines 55 to 56).

Since session keys in G7 are generated via random oracle H, to distinguish G8 and G7, A needs to
query one of the intended hash inputs of such random session keys. Let Querysend be such querying event.
To bound the happening probability of Querysend, we construct an reduction B4 with T(A) ≈ T(B4) in
Figure 12 which attacks OW-rPCA security of KEM. B4 works as follows:
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Game G6-G10

01 par← Setup
02 for (U, S) ∈ U : pwU,S ← PW
03 C := ∅, β ← {0, 1}
04 Guessuser := false // G7-G10
05 Guessser := false // G7-G10
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle SendResp(S, t2, U, e1)
08 πt2

S ̸= ⊥: return ⊥
09 if (U, S) ∈ C
10 πt2

S .fr := false
11 pk := D1(pwU,S, e1)
12 (c, k)← Encaps(pk)
13 e2 := E2(pwU,S, c)
14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pwU,S)
16 else
17 πt2

S .fr := true
18 pk := D1(pwU,S, e1)
19 (c, k)← Encaps(pk)
20 e2 := E2(pwU,S, c)
21 ctxt := (U, S, e1, e2)
22 SK := H(ctxt, pk, c, k, pwU,S)
23 if e1 /∈ LU

1 and ∃pk s.t.
(pwU,S, pk, e1, enc) ∈ L1 // G7-G10

24 Guessser := true // G7-G10
25 else
26 SK $← SK // G9-G10
27 c $← C, e2 := E2(pwU,S, c) // G10

28 πt2
S .(e, tr) := ((c, k, e2), ctxt)

29 πt2
S .(key, acc) := (SK, true)

30 LS
2 := LS

2 ∪ {e2} // G7-G10
31 return (S, e2)

Oracle SendInit(U, t1, S)
32 if πt1

U ̸= ⊥: return ⊥
33 (pk, sk)← KG(par), e1 := E1(pwU,S, pk)
34 e1

$← E1\T1, T1 := T1 ∪ {e1} // G9-G10
35 pk := D1(pwU,S, e1) // G9-G10
36 Retrieve sk s.t. (pk, sk) ∈ Lkey // G9-G10
37 LU

1 := LU
1 ∪ {e1} // G7-G10

38 πt1
U := ((pk, sk, e1), (U, S, e1,⊥),⊥,⊥)

39 πt1
U .fr := false

40 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)
41 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

42 return ⊥
43 (pk, sk, e1) := πt1

U .e
44 if ∃t2 s.t. πt2

S .fr = true
45 and πt2

S .tr = (U, S, e1, e2)
46 πt1

U .fr := true, SK := πt2
S .key

47 else
48 ctxt := (U, S, e1, e2)
49 if (U, S) /∈ C
50 πt1

U .fr := true
51 c := D2(pwU,S, e2), k := Decaps(sk, c)
52 SK := H(ctxt, pk, c, k, pwU,S)
53 if e2 /∈ LS

2 and ∃c s.t.
(pwU,S, c, e2, enc) ∈ L2 // G7-G10

54 Guessuser := true // G7-G10
55 else // G8-G10
56 SK $← SK // G8-G10
57 else
58 πt1

U .fr := false
59 c := D2(pwU,S, e2), k := Decaps(sk, c)
60 SK := H(ctxt, pk, c, k, pwU,S)
61 πt1

U .(tr, key, acc) := (ctxt, SK, true)
62 return true

Figure 11: Oracles SendInit,SendResp, and SendTerInit in games G6-G10. For any user U, LU
1

records all e1 sent by U. Similarly, LS
2 records all e2 sent by server S. All these lists are initialized as ∅.

1. On input a OW-rPCA challenge (par, pk, c), B4 embeds public keys in pk into queries to SendInit
(cf. Line 02) and embeds challenge ciphertexts in D2 (cf. Line 15). Counter cnt1 and cnt2 are used
to record the indexes of embedded public keys and ciphertexts, respectively.

2. Since B4 does not have secret keys of challenge public keys (cf. Line 02), it cannot decrypt KEM
ciphertexts and thus cannot directly compute session keys of user instances or determine whether
A has queried the hash input of such session keys (even if these keys are not fresh). To deal with
it, we use RO patching technique to make the simulation consistent.
Concretely, we define a procedure Patch which uses Pco oracle to determine if A has queried the
intended hash input of the session key of some specific user instances. If so, it returns the recorded
session key. Otherwise, it samples a random session key, records this session key in L′

SK, and
returns it. Later, if A’s RO query matches a recorded session key, then B4 patches the RO and
returns this key (cf. Lines 20 to 22).
When A queries SendTerInit(U, t1, S, e2), where πt1

U does not have fresh matching instance and
either e2 triggers Guessuser or (U, S) is corrupted, B4 uses the procedure to compute the session key
(cf. Lines 42 and 49).

3. When A queries SendTerInit(U, t1, S, e2), if πt1
U does not have fresh matching instance, (U, S) is

corrupted, and e2 does not trigger Guessuser, then e2 is not generated by querying E2(pwU,S, e2),
which means that c = D2(pwU,S, e2) is one of the embedded ciphertext (cf. Line 15). B4 records
such query in LSK (cf. Line 46) to determine whether Querysend happens.
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Reduction BPco4 (par, pk, c)
01 cnt1 := 0, cnt2 := 0,Lct := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 for (U, S) ∈ U : pwU,S ← PW
04 C := ∅, β ← {0, 1}
05 Guessuser := false, Guessser := false
06 Querysend := false
07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendInit(U, t1, S)
09 if πt1

U ̸= ⊥: return ⊥
10 cnt1 := cnt1 + 1, pk := pk[cnt1]
11 e1 := E1(pwU,S, pk),LU

1 := LU
1 ∪ {e1}

12 πt1
U := ((pk, cnt1, e1), (U, S, e1,⊥),⊥,⊥)

13 return (U, e1)

Oracle D2(pw, e2)
14 if ∃(pw, c, e2, ∗) ∈ L2: return c
15 cnt2 := cnt2 + 1, c := c[cnt2]
16 Lct := Lct ∪ {(c, cnt2)}
17 L2 := L2 ∪ (pw, c, e2, dec)
18 return c

Oracle H(U, S, e1, e2, pk, c, k, pw)
19 ctxt := (U, S, e1, e2)
20 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK
21 and Pco(i, c, k) = 1
22 LH[U, S, e1, e2, pk, c, k, pw] := SK
23 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK
24 and Pco(i, c, k) = 1
25 (i∗, j∗, k∗) := (i, j, k), Querysend := true
26 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
27 LH[U, S, e1, e2, pk, c, k, pw] := SK $← SK
28 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle SendTerInit(U, t1, S, e2)
29 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

30 return ⊥
31 (pk, i, e1) := πt1

U .e
32 if ∃t2 s.t. πt2

S .fr = true
33 and πt2

S .tr = (U, S, e1, e2)
34 πt1

U .fr := true, SK := πt2
S .key

35 else
36 ctxt := (U, S, e1, e2), c := D2(pw, e2)
37 if (U, S) /∈ C
38 πt1

U .fr := true
39 c := D2(pw, e2)
40 if e2 /∈ LS

2 and ∃c s.t.
(pwU,S, c, e2, enc) ∈ L2

41 Guessuser := true
42 SK := Patch(ctxt, pk, i, c)
43 else
44 Retrieve j s.t. (c, j) ∈ Lct
45 SK $← SK
46 LSK := LSK ∪ (ctxt, (pk, i), (c, j))
47 else
48 πt1

U .fr := false
49 SK := Patch(ctxt, pk, i, c)
50 πt1

U .(tr, key, acc) := (ctxt, SK, true)
51 return true

Procedure Patch(ctxt, pk, i, c)
52 (U, S, e1, e2) := ctxt, pw := pwU,S
53 if ∃k s.t. Pco(i, k, c) = 1
54 and LH[ctxt, pk, c, k, pw] ̸= ⊥
55 SK := LH[ctxt, pk, c, k, pw]
56 else
57 SK $← SK
58 L′

SK := L′
SK ∪ (ctxt, (pk, i), c, pw, SK)

59 return SK

Figure 12: Reduction B4 in bounding the probability difference between G7 and G8. Highlighted parts
show how B4 uses Pco and challenge input to simulate G8. A4 also uses a procedure Patch to patch
H. List L′

SK is used for recording random session keys that may be patched, and list LSK is used to
determine whether Querysend happens. All other oracles not shown in the figure are the same as in G8
(cf. Figures 8, 9 and 11).

When A queried H(U, S, e1, e2, pk, c, k, pwU,S), if this query match one record in LSK and k is the
decapsulated key of a embedded challenge ciphertext c (cf. Line 23), then this RO query is the
intended hash input of one of the session keys recorded in Line 46. In this case, Querysend will be
triggered, and B4 will use (i∗, j∗, k∗) to record the OW solution of c (cf. Line 25).

Since A’s numbers of queries to Init and D2 are S and q2, respectively, B4 needs at most S challenge
public keys and (q2+S) challenge ciphertexts per public keys during the simulation. If Querysend happens,
then B4 finds the OW solution of one of the challenge ciphertexts. Therefore, we have∣∣Pr

[
GA

7 ⇒ 1
]
− Pr

[
GA

8 ⇒ 1
]∣∣ ≤ Pr [Querysend] ≤ Adv(S,q2+S)-OW-rPCA

KEM (B4)

Game G9. We change SendInit and SendResp.

1. In SendInit, instead of generating (pk, sk) ← KG and e1 := E1(pwU,S, pk), we firstly sample e1
uniformly at random and then generate (pk, sk) by querying D1(pwU,S, e1) (cf. Lines 34 to 36).

2. Fresh server instances that do not trigger Guessser will generate uniformly random session keys.
Concretely, when A queries SendResp(S, t2, U, e1), if (U, S) is uncorrupted and e1 does not trigger
Guessser, then we sample the session key uniformly at random and independent of H (cf. Lines 25
to 26).
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Similar to our argument in bounding G7 and G8, to distinguish G8 and G9, A needs to query one
of the intended hash inputs of such random session keys. Let Queryresp be such querying event. We
construct an reduction B5 with T(A) ≈ T(B5) in Figure 12 to bound the happening probability of
Queryresp. B5 attacks OW-PCA security of KEM and works as follows:

Reduction B5(par, pk, c)
01 cnt1 := 0, i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
02 for (U, S) ∈ U
03 pwU,S ← PW,LU

1 := ∅,LS
2 := ∅

04 C := ∅, β ← {0, 1}
05 Guessuser := false, Guessser := false
06 Queryresp := false
07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendTerInit(U, t1, S, e2)
09 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

10 return ⊥
11 (pk, i, e1) := πt1

U .e, c := D2(pw, e2)
12 if ∃t2 s.t. πt2

S .fr = true
13 and πt2

S .tr = (U, S, e1, e2)
14 πt1

U .fr := true, SK := πt2
S .key

15 else
16 ctxt := (U, S, e1, e2)
17 if (U, S) /∈ C
18 πt1

U .fr := true
19 if e2 /∈ LS

2 and ∃c s.t.
(pwU,S, c, e2, enc) ∈ L2

20 Guessuser := true
21 SK := Patch(ctxt, pk, i, c)
22 else SK $← SK
23 else
24 πt1

U .fr := false
25 SK := Patch(ctxt, pk, i, c)
26 πt1

U .(tr, key, acc) := (ctxt, SK, true)
27 return true

Oracle D1(pw, e1)
28 if ∃(pw, pk, e1, ∗) ∈ L1
29 return c
30 cnt2[cnt1] := 0, cnt1 := cnt1 + 1
31 pk := pk[cnt1],Lkey := Lkey ∪ {(pk, cnt1)}
32 L2 := L2 ∪ (pw, pk, e1, dec)
33 return c

Oracle SendResp(S, t2, U, e1)
34 πt2

S ≠ ⊥: return ⊥
35 pk := D1(pwU,S, e1)
36 if (U, S) ∈ C
37 πt2

S .fr := false
38 (c, k)← Encaps(pk), e2 := E2(pwU,S, c)
39 ctxt := (U, S, e1, e2)
40 SK := H(ctxt, pk, c, k, pwU,S)
41 else
42 πt2

S .fr := true
43 if e1 /∈ LU

1 and ∃pk s.t.
(pwU,S, pk, e1, enc) ∈ L1

44 Guessser := true
45 (c, k)← Encaps(pk), e2 := E2(pwU,S, c)
46 SK := H(ctxt, pk, c, k, pwU,S)
47 else
48 Retrieve i s.t. (pk, i) ∈ Lkey
49 cnt2[i] := cnt2[i] + 1, j := cnt2[i]
50 c := c[i, j], e2 := E2(pwU,S, c)
51 LSK := LSK ∪ {(ctxt, (pk, i), (c, j))}
52 SK $← SK
53 LS

2 := LS
2 ∪ {e2}

54 πt2
S := ((c, k, e2), ctxt, SK, true)

55 return (S, e2)
Oracle H((U, S, e1, e2), pk, c, k, pw)
56 ctxt := (U, S, e1, e2)
57 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK and Pco(i, c, k) = 1
58 LH[U, S, e1, e2, pk, c, k, pw] := SK
59 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK and Pco(i, c, k) = 1
60 (i∗, j∗, k∗) := (i, j, k), Queryresp := true
61 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
62 LH[U, S, e1, e2, pk, c, k, pw] := SK $← SK
63 return LH[U, S, e1, e2, pk, c, k, pw]

Figure 13: Reduction B5 in bounding the probability difference between G8 and G9. Highlighted parts
show how B5 uses Pco and challenge input to simulate G9. List L′

SK is used for recording random
session keys that may be patched, and list LSK is used to determine whether Querysend happens. All
other oracles not shown in the figure are the same as in G8 (cf. Figures 8, 9 and 11). Procedure Patch
is the same as the one shown in Figure 12.

1. On input a OW-PCA challenge (par, pk, c), B5 embeds challenge public keys pk into queries to D1
(cf. Line 31). By Lines 34 to 36, public keys generated in SendInit are also from pk. Similar
to B4, B5 uses the Patch procedure in Figure 12 to compute the session keys of user instances.
Counter cnt1 and vector of counters cnt2 are used to record the indexes of embedded public keys
and ciphertexts, respectively.

2. When A queries SendResp(S, t2, U, e1), if πt2
S is fresh (which means that (U, S) is uncorrupted)

and e1 does not trigger Guessser, then by our definition of Guessser, e1 is not generated by querying
E1(pwU,S, pk). This means that pk = D1(pwU,S, e1) is one of the embedded public key (cf. Line 31).
In this case, B5 embeds one challenge ciphertext with respect to pk (cf. Line 50) and records such
query in LSK (cf. Line 51) to determine whether Queryresp happens.
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When A queried H(U, S, e1, e2, pk, c, k, pwU,S), if this query match one record in LSK and k is the
decapsulated key of a embedded challenge ciphertext c (cf. Line 59), then this RO query is the
intended hash input of one of the session keys recorded in Line 51. In this case, Queryresp will
be triggered, and B5 will use (i∗, j∗, k∗) to record the OW solution of the embedded challenge
ciphertext c (cf. Line 60).

Since A’s numbers of queries to (SendInit,SendResp) and D2 are S and q2 respectively, B5 needs
at most S + q2 challenge public keys and S challenge ciphertexts per public keys during the simulation.
If Queryresp happens, then B5 finds the OW solution of one of challenge ciphertexts in c. Therefore, we
have ∣∣Pr

[
GA

8 ⇒ 1
]
− Pr

[
GA

9 ⇒ 1
]∣∣ ≤ Pr

[
Queryresp

]
≤ Adv(S+q2,S)-OW-PCA

KEM (B5)

Game G10. We sample KEM ciphertext uniformly at random for server instances that are fresh and do
not trigger Queryresp (cf. Line 27). Similar to the argument of bounding G3 and G4 (cf. Lemma 4.5),
We can use the ciphertext anonymity of KEM to upper bound the probability difference between G9 and
G10. The bound is given in Lemma 4.6. We continue the proof of Theorem 4.1 and postpone the proof
of Lemma 4.6 to Supp. Mat. A.

Lemma 4.6 With notations and assumptions from G9 and G10 in the proof of Theorem 4.1, there is
an adversary B6 with T(B6) ≈ T(A) and∣∣Pr

[
GA

9 ⇒ 1
]
− Pr

[
GA

10 ⇒ 1
]∣∣ ≤ Adv(S+q1,S)-ANO

KEM (B6)

In game transition G10-G12 (shown in Figure 14), we bound the happening probabilities of Guessser
and Guessuser.

Game G11. We do not use passwords to simulate the protocol messages of fresh instances that do
not trigger Guessser and Guessuser. Concretely, we change SendInit,SendResp, and SendTerInit as
follows:

• In SendResp, if the server instance πt2
S is fresh and does not trigger Guessser, then we sample e2

uniformly at random and without using pwU,S and c (cf. Lines 33 to 34). Moreover, we only store
e2 as the ephemeral secret of πt2

S (cf. Line 41). These changes are conceptual since we do not need
c to compute the session key and if A queries D2(pwU,S, e2) later, then we will return random c
(which are the same as in G10).

• Similarly, in SendInit, we generate e1 uniformly at random and without using pwU,S and pk (cf.
Lines 49 to 52) and only store e1 as the ephemeral secret of πt1

U (cf. Lines 52 to 53 and Line 59).
Later, if A corrupts (U, S) and queries SendTerInit to finish the user instance πt1

U , we retrieve
necessary information to compute the session key (cf. Lines 82 to 83). These changes are also
conceptual, since session keys of such instances are independently and uniformly random. We have

Pr
[
GA

10 ⇒ 1
]

= Pr
[
GA

11 ⇒ 1
]

Game G12. We postpone the generation of passwords and the determination of whether Guessuser or
Guessser happen. For simplicity, we define event GUESS as Guessuser ∨ Guessser.

1. We generate passwords as late as possible. passwords are generated only when A issues Corrupt
queries or after A ends with output b′ (cf. Lines 06, 07 and 15).

2. Since the passwords of uncorrupted parties do not exist before A terminates, we cannot determine
whether GUESS happens when A is running. To deal with it, we postpone such determination.
When A issues SendResp or SendTerInit queries, we records all potential passwords that may
match the actual password of the specific user-server pair (cf. Lines 37 to 38 and Lines 76 to 78).
After A outputs b′, the passwords of uncorrupted user-server pairs are generated, and then we use
these passwords to determine whether Guessuser or Guessser happen (cf. Lines 06 to 11).

3. Now all fresh instances will accept random session keys independent of H and passwords (Lines 40
and 79).
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Game G10-G12

01 par← Setup
02 for (U, S) ∈ U : pwU,S ← PW // G10-G11
03 C := ∅, β ← {0, 1}
04 Guessuser := false, Guessser := false
05 b′ ← AO,H,IC1,IC2 (par)
06 for (U, S) ∈ U × S // G12
07 if (U, S) /∈ C: pwU,S ← PW // G12
08 if ∃S′ s.t. pwU,S′ ∈ Lpw // G12
09 Guessuser := true // G12
10 if ∃U′ s.t. pwU′,S ∈ Lpw // G12
11 Guessser := true // G12
12 return β == b′

Oracle Corrupt(U, S)
13 if (U, S) ∈ C: return ⊥
14 C := C ∪ {(U, S)}
15 pwU,S ← PW // G12
16 return pwU,S

Oracle SendResp(S, t2, U, e1)
17 πt2

S ̸= ⊥: return ⊥
18 if (U, S) ∈ C
19 πt2

S .fr := false
20 pk := D1(pwU,S, e1), (c, k)← Encaps(pk)
21 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)
22 SK := H(ctxt, pk, c, k, pwU,S)
23 else
24 πt2

S .fr := true
25 if e1 /∈ LU

1 and ∃pk s.t.
(pwU,S, pk, e1, enc) ∈ L1 // G10-G11

26 Guessser := true // G10-G11
27 pk := D1(pwU,S, e1) // G10-G11
28 (c, k)← Encaps(pk) // G10-G11
29 e2 := E2(pwU,S, c) // G10-G11
30 ctxt := (U, S, e1, e2) // G10-G11
31 SK := H(ctxt, pk, c, k, pwU,S)

// G10-G11
32 else // G10-G11
33 c← C, e2 := E2(pwU,S, c) // G10
34 e2

$← E2\T2, T2 := T2 ∪ {e2} // G11
35 SK $← SK // G10-G11
36 if e1 /∈ LU

1 // G12
37 for (pw, pk) s.t.

(pw, pk, e1, enc) ∈ L1 // G12
38 Lpw := Lpw ∪ {pw} // G12
39 e2

$← E2\T2, T2 := T2 ∪ {e2} // G12
40 SK $← SK // G12
41 πt2

S .(e, tr) := ((c, k, e2), ctxt) // G10

42 πt2
S .(e, tr) := ((⊥,⊥, e2), ctxt) // G11-G12

43 πt2
S .(key, acc) := (SK, true)

44 LS
2 := LS

2 ∪ {e2}
45 return (S, e2)

Oracle SendInit(U, t1, S)
46 if πt1

U ̸= ⊥: return ⊥
47 e1

$← E1\T1,L1 := L1 ∪ {e1}
48 LU

1 := LU
1 ∪ {e1}

49 pk := D1(pwU,S, e1) // G10
50 Retrieve sk s.t. (pk, sk) ∈ Lkey // G10
51 πt1

U := ((pk, sk, e1),
(U, S, e1,⊥),⊥,⊥) // G10

52 πt1
U .e := (⊥,⊥, e1) // G11-G12

53 πt1
U .tr := (U, S, e1,⊥) // G11-G12

54 πt1
U .fr := false

55 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)
56 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

57 return ⊥
58 (pk, sk, e1) := πt1

U .e // G10

59 (⊥,⊥, e1) := πt1
U .e // G11

60 if ∃t2 s.t. πt2
S .fr = true

61 and πt2
S .tr = (U, S, e1, e2)

62 πt1
U .fr := true, SK := πt2

S .key
63 else
64 ctxt := (U, S, e1, e2)
65 if (U, S) /∈ C
66 πt1

U .fr := true
67 if e2 /∈ LS

2 and ∃c s.t.
(pwU,S, c, e2, enc) ∈ L2 // G10-G11

68 pk := D1(pwU,S, e1) // G11
69 Retrieve sk s.t.

(pk, sk) ∈ Lkey // G11
70 Guessuser := true // G10-G11
71 c := D2(pwU,S, e2) // G10-G11
72 k := Decaps(sk, c) // G10-G11
73 SK := H(ctxt, pk, c, k, pwU,S)

// G10-G11
74 else // G10-G11
75 SK $← SK // G10-G11
76 if e2 /∈ LS

2
77 for (pw, c) s.t.

(pw, c, e2, enc) ∈ L2 // G12
78 Lpw := Lpw ∪ {pw} // G12
79 SK $← SK // G12
80 else
81 πt1

U .fr := false
82 pk := D1(pwU,S, e1) // G11-G12
83 Retrieve sk s.t.

(pk, sk) ∈ Lkey // G11-G12
84 c := D2(pwU,S, e2)
85 k := Decaps(sk, c)
86 SK := H(ctxt, pk, c, k, pwU,S)
87 πt1

U .(tr, key, acc) := (ctxt, SK, true)
88 return true

Figure 14: Oracles SendInit,SendResp, and SendTerInit in games G10-G12.
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If GUESS does not happen in both game, then these changes are conceptual. We have

Pr
[
GA

11 ⇒ 1 | ¬GUESS in GA
11

]
= Pr

[
GA

12 ⇒ 1 | ¬GUESS in GA
12

]
We claim that GUESS happens in G11 if and only if it happens in G12. It is straightforward to see

that GUESS happens in G11 then it also happens in G12, since in G12 we records all potential passwords
in Lpw that may trigger GUESS in G11. If GUESS happens in G12, then there exists pwU,S ∈ Lpw.
Moreover, pwU,S is recorded in Lpw only if (U, S) is uncorrupted. By (cf. Lines 37 to 38 and Lines 76
to 78), pwU,S ∈ Lpw means that there exists (pk, e1) (resp., (c, e2)) such that e1 /∈ LU

1 (resp., e2 /∈ LS
2)

and (pwU,S, pk, e1, enc) ∈ L1 (resp., (pwU,S, c, e2, enc) ∈ L2), and thus either Guessuser or Guessser will be
triggered in G11. Therefore, if GUESS happens in G12, then GUESS also happens in G11. Now we have

∣∣Pr
[
GA

11 ⇒ 1
]
− Pr

[
GA

12 ⇒ 1
]∣∣ ≤ Pr

[
GUESS in GA

11
]

= Pr
[
GUESS in GA

12
]

Furthermore, we claim that every query to SendResp or SendTerInit will add at most one password
into Lpw. That is, at most one password will be recorded in Lpw in every execution of Lines 37 to 38
or Lines 76 to 78. To see this, suppose that there are two passwords pw and pw′ are recorded during a
execution of Lines 37 to 38. By Line 37, we have (pw, c, e2, enc) ∈ L2 and (pw′, c′, e2, enc) ∈ L2 for some
c and c′. This means that e2 is generated by querying E2(pw, c) and E2(pw′, c′), which is impossible since
we simulate E2 in a collision-free way. Similar argument applies for Lines 76 to 78. Therefore, every
query to SendResp or SendTerInit will add at most one password into Lpw.

Now we can bound the happening probability of GUESS in G12. A clean description of G12 is given
in Figure 21. In G12, passwords of uncorrupted user-server pairs are undefined before A issues Corrupt
queries or ends with output b′. Moreover, oracles Execute,SendInit,SendResp, and SendTerInit
can be simulated without using uncorrupted passwords. Therefore, uncorrupted passwords are perfectly
hidden from A’s view. Since A issues S queries to SendResp and SendTerInit, we have |Lpw| ≤ S
and

Pr
[
GUESS in GA

12
]
≤ S

|PW|

All fresh instances in G12 will accept independently and uniformly random session keys, so we also
have

Pr
[
GA

12 ⇒ 1
]

= 1
2

Combining all the probability differences in the games sequence, we have

AdvBPR
Π (A) ≤ S

|PW|
+ Advq1-FUZZY

KEM (B1) + Adv(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv(S,1)-OW-PCA
KEM (B2) + Adv(S+q2,S)-OW-PCA

KEM (B5)

+ Adv(S,1)-ANO
KEM (B3) + Adv(S+q1,S)-ANO

KEM (B6) + S · δ

+ S2(ηpk + ηct) + (q2
1 + S2)
|E1|

+ (q2
2 + S2)
|E2|

+ q2
1

|PK|
+ q2

2
|C|

+ (q2
H + S2)
|SK|

5 Instantiations of the Underlying KEM
5.1 Direct Diffie-Hellman-based Constructions

Diffie-Hellman Assumptions. We recall the multi-user and multi-challenge strong Diffie-Hellman
assumption. Let G be a group generation algorithm that on input security parameters outputs a group
description (G, g, p), where p is an odd prime and G is a p-order group with generator g.

Definition 5.1 (Multi-Instance stDH [ABR01]). Let N and µ be integers. We say the stDH problem is
hard on G, if for any A, the (N, µ)-stDH advantage of A against G

Adv(N,µ)-stDH
G (A) := Pr

[
stDH(N,µ),A

G ⇒ 1
]
.
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GAME stDH(N,µ),A
G

01 par := (G, g, p)← G
02 for i ∈ [N ]
03 xi

$← Zp, X[i] := Xi := gxi

04 for j ∈ [µ] :
05 yj

$← Zp, Y[j] := Yj := gyj

06 (i∗, j∗, Z∗)← AstDH(par, X, Y)
07 return Z∗ = Y

xi∗
j∗

Oracle Pco(i, Y, Z)

08 if X[i] = ⊥
09 return ⊥
10 return Z == Y xi

Figure 15: Security games OW-PCA and OW-rPCA for KEM scheme KEM.

is negligible, where stDH(N,µ),A
G is defined in Figure 15.

Construction based on strong DH. In Figure 16, we construct a KEM scheme KEMstDH with plain-
text space G and ciphertext space of G. KEMstDH is essentially the hashed ElGamal KEM [ABR01,
CKS08].

KG1

01 x $← Zp

02 X := gx

03 pk := X
04 sk := (x, pk)
05 return (pk, sk)

Encaps1(pk)
06 r $← Zp

07 R := gr ∈ G
08 k := H(pk, R, Xr)
09 c := R
10 return (c, k)

Decaps1(sk, R)
11 parse (x, pk) =: sk
12 parse R =: c
13 k := H(pk, R, Rx)
14 return k

Figure 16: KEM scheme KEMstDH = (Setup1, KG1, Encaps1, Decaps1).

KEMstDH has perfect public key fuzzyness and ciphertext anonymity (even under PCA). This is
because X $← G is equivalent to (x $← Zp, X := gx). Therefore, we have

Adv(N,µ)-ANO
KEMstDH

(A) = 0, AdvN-FUZZY
KEMstDH

(A) = 0

for any integers N and µ, and adversary A (even unbounded).
It is well-known that the hash ElGamal KEM is tightly IND-CCA secure (which implies OW-PCA

security) if the (1, 1)-stDH assumption holds [Bha20]. By using the random self-reducibility of Diffie-
Hellman assumption, one can show that the (N, µ)-OW-PCA security can be tightly reduced to the
(N, µ)-stDH assumption.

5.2 Generic Constructions
Let PKE0 = (KG0, Enc0, Dec0) be a PKE scheme with public key space PK, message space M, random-
ness space R, and ciphertext space C. Let ℓ and L be integers. Let G : PK×M→ R, H : PK×M×C →
{0, 1}L, and H′ : PK × {0, 1}ℓ × C → {0, 1}L be hash functions. Let PKE0 = (Setup0, KG0, Enc0, Dec0)
be a PKE scheme. In Figure 17, we define a generic transformation for KEM schemes. We denote such
transformation as KEM = TU ̸⊥[PKE0, G, H, H′]. TU ̸⊥ is essentially a combination of the T transformation
and the U ̸⊥ transformation in [HHK17]. KEM has the same public key space and ciphertext space with
PKE0. The Setup algorithm of KEM is the same as the one of PKE0.
Correctness of KEM. We follow the correctness proof of [HHK17, Theorem 3.1]. Decaps has decap-
sulation error if its input is c = Enc0(pk, m′; G(pk, m′)) for some m′ and Dec0(sk, c) ̸= m′. If PKE0 is
(1− δPKE0)-correct, such event happens within probability qG · δPKE0 if we treat G as a random oracle and
assume G will be queried at most qG times. Therefore, KEM is (1− qG · δPKE0)-correct.
Security. In Theorems 5.2 to 5.4, we show if PKE0 has fuzzy public keys and PR-CPA security, then
KEM has fuzzy public keys, anonymous ciphertexts (under PCA attacks), and OW-(r)PCA security.

It is easy to see TU ̸⊥ transformation preserves the public key fuzzyness of the underlying PKE.
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KG(par)
01 (pk, sk)← KG0(par)
02 s $← {0, 1}ℓ

03 sk′ := (pk, sk, s)
04 return (pk, sk′)

Encaps(pk)
05 m $←M′

06 r := G(pk, m)
07 c := Enc0(pk, m; r)
08 k := H(pk, c, m)
09 return (c, k)

Decaps((pk, sk, s), c)
10 m′ := Dec0(sk, c)
11 if m′ ̸= ⊥
12 and c = Enc0(pk, m′; G(pk, m′))
13 k := H(pk, c, m′)
14 else k := H′(pk, c, s)
15 return k

Figure 17: KEM scheme KEM = (Setup, KG, Encaps, Decaps) from the generic transformation
TU ̸⊥[PKE0, G, H, H′], where G, H, and H′ are hash functions, PKE0 = (Setup0, KG0, Enc0, Dec0) is a PKE
scheme, and Setup = Setup0.

Theorem 5.2 Let N be the number of users. If PKE0 has fuzzy public keys, then KEM = TU ̸⊥[PKE0, G, H, H′]
in Figure 17 also has fuzzy public keys. Concretely, for any adversary A against KEM, there exists an
adversary B with T(A) ≈ T(B) and

AdvN-FUZZY
KEM (A) ≤ AdvN-FUZZY

PKE0
(B)

Theorems 5.3 and 5.4 show shat if PKE0 is PR-CPA secure, then KEM = TU̸⊥[PKE0, G, H, H′] has
OW-CPA security and ciphertext anonymity under PCA attacks. For readability, we postpone their
proofs to Supp. Mat. B.

Theorem 5.3 Let N and µ be the numbers of users and challenge ciphertexts per user. If PKE0 is
PR-CPA secure and (1−δ)-correct and G, H, and H′ be random oracles, then KEM = TU̸⊥[PKE0, G, H, H′]
has anonymous ciphertext under PCA attacks (cf. Definition 2.7).

Concretely, for any A against KEM, there exists B = (B0,B1) with T(A) ≈ T(B) and

Adv(N,µ)-ANO
KEM (A) ≤ 2Adv(N,µ)-PR-CPA

PKE0
(B) + 2NqG · δ + NµqG

|M|

+ 2N(qH′ + qPco)
2ℓ

+ N2µ2 + q2
G

|R|
+ 2N2µ2 + q2

H + q2
H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G, H, H′, and Pco.

Theorem 5.4 Let N and µ be the numbers of users and challenge ciphertexts per user. If PKE0 is
PR-CPA secure and G, H, and H′ be random oracles, then KEM = TU̸⊥[PKE0, G, H, H′] is OW-PCA
secure.

Concretely, for any A against KEM’s (N, µ)-OW-PCA security, there exists B with T(A) ≈ T(B) and

Adv(N,µ)-OW-PCA
KEM (A) ≤ 2Adv(N,µ)-PR-CPA

PKE0
(B) + 2NqG · δ + Nµ(qG + qH)

|M|

+ 2N(qH′ + qPco)
2ℓ

+ N2µ2 + q2
G

|R|
+ 2N2µ2 + q2

H + q2
H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G, H, H′, and Pco.

By combining Lemma 2.8 and Theorems 5.3 and 5.4, we have Theorem 5.5.

Theorem 5.5 Let N and µ be the numbers of users and challenge ciphertexts per user. If PKE0 is
PR-CPA secure and G, H, and H′ be random oracles, then KEM = TU̸⊥[PKE0, G, H, H′] is OW-rPCA
secure.

Concretely, for any A against KEM’s (N, µ)-OW-rPCA security, there exists B with T(A) ≈ T(B)
and

Adv(N,µ)-OW-rPCA
KEM (A) ≤ 4Adv(N,µ)-PR-CPA

PKE0
(B) + 4NqG · δ + Nµ(2qG + qH)

|M|

+ 4N(qH′ + qPco)
2ℓ

+ 2(N2µ2 + q2
G)

|R|
+ 2(2N2µ2 + q2

H + q2
H′)

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G, H, H′, and Pco.
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5.3 Lattice-based Instantiations
We discuss two lattice-based instantiations of the PAKE protocol Π (Figure 7). The first one is the well-
known Regev’s encryption [Reg05, PVW08] which is based on learning with error (LWE) assumption.
The second one is the Kyber.PKE scheme [SAB+20], which is based on the module LWE (MLWE)
assumption. For simplicity, we only discuss the security loss of these schemes (from their assumptions)
and the final security loss of Π instantiated with these schemes. For more background about lattices,
please refer to [Reg05, PVW08, GPV08, SAB+20].

Let λ the security parameter. Let S and qIC be the number of session and the number of A’s queries
to ideal ciphers (IC1, IC2) in Figure 7. Let ϵLWE and ϵmlwe be the best computational advantage against
the LWE and MLWE assumptions, respectively. We use negl(λ) to denote negligible (about λ) statistical
terms. Such terms do not influence tightness.
Regev Encryption. We use the multi-bit version of Regev’s encryption, denoted as PKERegev, in
[PVW08]. As shown in [PVW08, Lemma 7.3, Lemma 7.4], the public keys of this scheme are indis-
tinguishable from random by using a LWE problem instance, and the ciphertexts are pseudorandom
under random public keys. Suppose this scheme encrypts Θ(λ) bits, then we have

AdvN-FUZZY
PKERegev

(A) ≤ O(Nλ) · ϵLWE, Adv(N,µ)-PR-CPA
PKERegev

(A) ≤ O(Nλ) · ϵLWE + negl(λ)

We can use the TU ̸⊥ transformation to transform PKERegev into a KEM scheme and then use the
KEM scheme to instantiate Π (Figure 7). By plugging these bounds into Theorems 5.3 to 5.5 and then
Theorem 4.1, we have

AdvBPR
Π[PKERegev](A) ≤ O(λ · (qIC + S)) · ϵLWE

Kyber PKE. We consider the Kyber.CPAPKE scheme (denoted as PKEkyber) in [SAB+20]. The pseudo-
randomness and fuzzyness proofs of PKEkyber are the same as in [BCP+23, Lemmata 1 and 2, Corollary
1]. Since the MLWE assumption does not have random self-reducibility, we can use a standard hybrid
argument to extend such proofs to multi-user-challenge setting. We have

AdvN-FUZZY
PKERegev

(A) ≤ N · ϵmlwe, Adv(N,µ)-PR-CPA
PKERegev

(A) ≤ Nµ · 2ϵmlwe

By using the TU̸⊥ transformation, we can transform PKEkyber into a KEM scheme. Then we use the
KEM scheme to instantiate Π (Figure 7). By Theorems 4.1 and 5.3 to 5.5, we have

AdvBPR
Π[PKEkyber

(A) ≤ O(S · (qIC + S)) · ϵmlwe
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Supporting Material

A Omitted Proofs in Section 4.1
Lemma 4.4. To upper bound

∣∣Pr
[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣, we construct a direct reduction B1 from

the fuzzyness of KEM in Figure 18. B1 uses the input pk to simulate the outputs of D1 (cf. Line 11).
Since A’s number of queries to D1 is q1, we need at most q1 public keys from the fuzzyness game.

Reduction B1(par, pk)
01 cnt := 0
02 for (U, S) ∈ U × S
03 pwU,S ← PW
04 C := ∅
05 β ← {0, 1}
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle D1(pw, e1)
08 if ∃(pw, pk, e1, ∗) ∈ L1
09 return pk
10 cnt := cnt + 1
11 pk := pk[cnt]
12 Lkey := Lkey ∪ {(pk,⊥)}
13 L1 := L1 ∪ (pw, pk, e1, dec)
14 return pk

Figure 18: Reduction B1 in proving Lemma 4.4. Highlighted parts show how we use the challenge input
to simulate G1 or G2 for A. All other oracles, except D1, are the same as shown in Figure 8.

If pk is generated from uniformly sampling from PK, then B1 simulates G1. If pk is generated from
KG, the then B1 simulates G2. B1 does not need secret keys of pk to simulate these games. Therefore,
we have ∣∣Pr

[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣ ≤ Advq1-FUZZY

KEM (B1)

Lemma 4.5. We construct a direct reduction B3 to upper bound the probability difference between G3
and G4. B3 plays ANO-PCA(S,1)

KEM,b (cf. Figure 19).

Reduction B3(par, pk, c)
01 cnt := 0
02 for (U, S) ∈ U × S
03 pwU,S ← PW
04 C := ∅
05 β ← {0, 1}
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle Execute(U, t1, S, t2)
08 if πt1

U ̸= ⊥ or πt2
S ̸= ⊥: return ⊥

09 cnt := cnt + 1, pw := pwU,S
10 pk := pk[cnt], e1 := E1(pw, pk)
11 c := c[cnt, 1], e2 := E2(pw, c)
12 ctxt := (U, S, e1, e2), SK $← SK
13 πt1

U := ((⊥,⊥, e1), ctxt, SK, true), πt1
U .fr := true

14 πt2
S := ((⊥,⊥, e2), ctxt, SK, true), πt2

S .fr := true
15 return (U, e1, S, e2)

Figure 19: Reduction B3 in proving Lemma 4.5. Highlighted parts show how we use the challenge input
to simulate G3 or G4 for A. All other oracles, except Execute, are the same as shown in G3 (cf.
Figure 8 and Figure 9).

B3 uses the inputs pk and c to simulate Execute (cf. Line 11). Since A’s issues S queries to
Execute, we need at most S public keys from the ciphertext anonymity security game. If B3 plays
ANO-PCA(S,1)

KEM,0, then c is generated by uniform sampling from C, which means that B3 is simulating
G3. Otherwise, c is generated from encapsulating pk and B3 simulates G4. B3 does not need secret
keys of pk and decapsulated keys of c (and thus does not need to Pco oracle) to simulate these games.
Therefore, we have

∣∣Pr
[
GA

3 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]∣∣ ≤ Adv((S,1))-ANO

KEM (B3) + S2

|C|
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Game B6(par, pk, c)
01 for (U, S) ∈ U : pwU,S ← PW
02 C := ∅, β ← {0, 1}
03 Guessuser := false, Guessser := false
04 b′ ← AO,H,IC1,IC2 (par)
05 return β == b′

Oracle SendTerInit(U, t1, S, e2)
06 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

07 return ⊥
08 (pk, i, e1) := πt1

U .e, c := D2(pw, e2)
09 if ∃t2 s.t. πt2

S .fr = true
10 and πt2

S .tr = (U, S, e1, e2)
11 πt1

U .fr := true, SK := πt2
S .key

12 else
13 ctxt := (U, S, e1, e2)
14 if (U, S) /∈ C
15 πt1

U .fr := true
16 if e2 /∈ LS

2 and ∃c s.t.
(pwU,S, c, e2, enc) ∈ L2

17 Guessuser := true
18 SK := Patch(ctxt, pk, i, c)
19 else SK $← SK
20 else
21 πt1

U .fr := false
22 SK := Patch(ctxt, pk, i, c)
23 πt1

U .(tr, key, acc) := (ctxt, SK, true)
24 return true

Oracle D1(pw, e1)
25 if ∃(pw, pk, e1, ∗) ∈ L1
26 return c
27 cnt2[cnt1] := 0, cnt1 := cnt1 + 1
28 pk := pk[cnt1],Lkey := Lkey ∪ {(pk, cnt1)}
29 L1 := L1 ∪ (pw, pk, e1, dec)
30 return c

Oracle SendResp(S, t2, U, e1)
31 πt2

S ̸= ⊥: return ⊥
32 pk := D1(pwU,S, e1)
33 if (U, S) ∈ C
34 πt2

S .fr := false
35 (c, k)← Encaps(pk), e2 := E2(pwU,S, c)
36 ctxt := (U, S, e1, e2)
37 SK := H(ctxt, pk, c, k, pwU,S)
38 else
39 πt2

S .fr := true
40 if e1 /∈ LU

1 and ∃pk s.t.
(pwU,S, pk, e1, enc) ∈ L1

41 Guessser := true
42 (c, k)← Encaps(pk), e2 := E2(pwU,S, c)
43 SK := H(ctxt, pk, c, k, pwU,S)
44 else
45 Retrieve i s.t. (pk, i) ∈ Lkey
46 cnt2[i] := cnt2[i] + 1, j := cnt2[i]
47 c := c[i, j], e2 := E2(pwU,S, c)
48 SK $← SK
49 LS

2 := LS
2 ∪ {e2}

50 πt2
S := ((c, k, e2), ctxt, SK, true)

51 return (S, e2)

Figure 20: Reduction B6 in bounding the probability difference between G9 and G10. Highlighted parts
show how B6 uses Pco and challenge input to simulate G10. All other oracles not shown in the figure are
the same as in G8 (cf. Figures 8, 9 and 11). Procedure Patch is the same as the one shown in Figure 12.

Lemma 4.6. We construct a reduction B6 to upper bound the probability difference between G9 and G10.
B6 is less straight-forward than B3 since here B6 needs to use the Pco oracle to simulate the session keys
of user instances (as we did in constructing B5, cf. Figure 13).

On input (par, pk, c), B6 embeds challenge public keys pk into queries to D1 (cf. Line 28). By
Lines 34 to 36, public keys generated in SendInit are also from pk. Similar to B4 and B5, B6 uses the
Patch procedure in Figure 12 to compute the session keys of user instances. Counter cnt1 and vector of
counters cnt2 are used to record the indexes of embedded public keys and ciphertexts, respectively.

Since A’s numbers of queries to (SendInit,SendResp) and D2 are S and q2 respectively, B5 needs
at most S + q2 challenge public keys and S challenge ciphertexts per public keys from the cipher-
text anonymity security game. The challenge ciphertexts c are embedded in Line 47. If B6 plays
ANO-PCA(S+q1,S)

KEM,0 , then c is generated by uniform sampling from C, which means that B6 is simulating
G10. Otherwise, c is generated from encapsulating pk and B6 simulates G9. We have∣∣Pr

[
GA

9 ⇒ 1
]
− Pr

[
GA

10 ⇒ 1
]∣∣ ≤ Adv((S+q1,S))-ANO

KEM (B6)
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Game G12

01 par← Setup
02 C := ∅, β ← {0, 1}
03 Guessuser := false, Guessser := false
04 b′ ← AO,H,IC1,IC2 (par)
05 for (U, S) ∈ U × S
06 if (U, S) /∈ C: pwU,S ← PW
07 if ∃S′ s.t. pwU,S′ ∈ Lpw
08 Guessuser := true
09 if ∃U′ s.t. pwU′,S ∈ Lpw
10 Guessser := true
11 return β == b′

Oracle Reveal(P, t)
12 if πt

P.acc ̸= true or πt
P.test = true

13 return ⊥
14 if ∃P′ ∈ U ∪ S, t′ s.t.
15 Partner(πt

P, πt′

P′ ) = true
16 and πt′

P′ .test = true
17 return ⊥
18 for ∀(P′, t′) s.t. πt′

P′ .tr = πt
P.tr

19 πt′

P′ .fr := false
20 return πt

P.key

Oracle Test(P, t)
21 if πt

P.fr = false: return ⊥
22 SK∗

0 := Reveal(P, t), SK∗
1

$← SK
23 if SK∗

0 = ⊥: return ⊥
24 πt

P.test := true
25 return SK∗

β

Oracle Corrupt(U, S)
26 if (U, S) ∈ C: return ⊥
27 C := C ∪ {(U, S)}
28 pwU,S ← PW
29 return pwU,S

Oracle E1(pw, pk)
30 if ∃(pw, pk, e1, ∗) ∈ L1: return e1
31 e1

$← E1\T1, T1 := T1 ∪ {e1}
32 L1 := L1 ∪ (pw, pk, e1, enc)
33 return e1

Oracle E2(pw, c)
34 if ∃(pw, c, e2, ∗) ∈ L2: return e2
35 e2

$← E2\T2, T2 := T2 ∪ {e2}
36 L2 := L2 ∪ (pw, c, e2, enc)
37 return e2

Oracle D1(pw, e1)
38 if ∃(pw, pk, e1, ∗) ∈ L1
39 return pk
40 (pk, sk)← KG
41 Lkey := Lkey ∪ {(pk, sk)}
42 L1 := L1 ∪ {(pw, pk, e1, dec)}
43 return pk

Oracle D2(pw, e2)
44 if ∃(pw, c, e2, ∗) ∈ L2: return c
45 c $← C,L2 := L2 ∪ (pw, c, e2, dec)
46 return c

Oracle Execute(U, t1, S, t2)
47 if πt1

U ̸= ⊥ or πt2
S ̸= ⊥

48 return ⊥
49 e1

$← E1\T1, T1 := T1 ∪ {e1}
50 e2

$← E2\T2, T2 := T2 ∪ {e2}
51 ctxt := (U, S, e1, e2), SK $← SK
52 πt1

U := ((⊥,⊥, e1), ctxt, SK, true)
53 πt2

S := ((⊥,⊥, e2), ctxt, SK, true)
54 (πt1

U .fr, πt2
S .fr) := (true, true)

55 return (U, e1, S, e2)

Oracle SendInit(U, t1, S)
56 if πt1

U ̸= ⊥: return ⊥
57 e1

$← E1\T1, T1 := T1 ∪ {e1},LU
1 := LU

1 ∪ {e1}
58 πt1

U := ((⊥,⊥, e1), (U, S, e1,⊥),⊥,⊥)
59 πt1

U .fr := false
60 return (U, e1)

Oracle SendResp(S, t2, U, e1)
61 πt2

S ̸= ⊥: return ⊥
62 if (U, S) ∈ C
63 πt2

S .fr := false
64 pk := D1(pwU,S, e1), (c, k)← Encaps(pk)
65 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)
66 SK := H(ctxt, pk, c, k, pwU,S)
67 else
68 πt2

S .fr := true, SK $← SK
69 if e1 /∈ LU

1
70 for (pw, pk) s.t. (pw, pk, e1, enc) ∈ L1
71 Lpw := Lpw ∪ {pw}
72 e2

$← E2\T2, T2 := T2 ∪ {e2}
73 πt2

S := ((⊥,⊥, e2), ctxt, SK, true)
74 LS

2 := LS
2 ∪ {e2}

75 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)
76 if πt1

U = ⊥ and πt1
U .tr ̸= (U, S, ∗, ∗)

77 return ⊥
78 if ∃t2 s.t. πt2

S .fr = true
79 and πt2

S .tr = (U, S, e1, e2)
80 πt1

U .fr := true, SK := πt2
S .key

81 else
82 ctxt := (U, S, e1, e2)
83 if (U, S) /∈ C
84 πt1

U .fr := true, SK $← SK
85 if e2 /∈ LS

2
86 for (pw, c) s.t. (pw, c, e2, enc) ∈ L2
87 Lpw := Lpw ∪ {pw}
88 else
89 πt1

U .fr := false
90 pk := D1(pwU,S, e1)
91 Retrieve sk s.t. (pk, sk) ∈ Lkey
92 c := D2(pwU,S, e2), k := Decaps(sk, c)
93 SK := H(ctxt, pk, c, k, pwU,S)
94 πt1

U .(tr, key, acc) := (ctxt, SK, true)
95 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)
96 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
97 LH[U, S, e1, e2, pk, c, k, pw] := SK $← SK
98 return LH[U, S, e1, e2, pk, c, k, pw]

Figure 21: Game G12 in proving Theorem 4.1.
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Games G0-G7

01 par← Setup
02 Query := false // G4-Gx

03 for i ∈ [N ]
04 (pk[i], sk[i]) := (pk, sk) ←
KG(par)
05 si

$← {0, 1}ℓ

06 for j ∈ [µ] :
07 mi,j

$←M′

08 ri,j := G(pk, mi,j)
09 ri,j

$←R // G4-Gx

10 ci,j := Enc0(pk, mi,j ; ri,j)
11 ci,j

$← C // G5-Gx

12 k := H(pki,j , ci,j , mi,j)
13 c[i, j] := c
14 b′ ← APco,G,H,H′

(par, pk, c)
15 return b′

G(pk, m)

16 if ∃(i, j) s.t. m = mi,j // G4-Gx

17 Query := true // G4-Gx

18 abort // G4-Gx

19 return g(pk, m)

Pco(i, c, k)

20 pk := pk[i]
21 m′ := Dec0(sk, c) // G0
22 if m′ ̸= ⊥ // G0
23 and c = Enc0(pk, m′; G(pk, m′))
// G0

24 k′ := H(pk, c, m′) // G0
25 k′ = h∗(pk, c) // G1-G2
26 else // G0-G2
27 k′ := H′(pk, c, si) // G0-G1
28 k′ := h∗(pk, c) // G2
29 k′ := h∗(pk, c) // G3-Gx

30 return k = k′

H′(pk, c, s)

31 return h′(pk, c, s)

H(pk, c, m)

32 if c = PKE0(pk, m; G(pk, m)) // G1-Gx

33 return h∗(pk, c) // G1-Gx

34 return h(pk, c, m)

Figure 22: Games G0-G6 for proving Theorem 5.3.

B Omitted Proofs in Section 5.2
Theorem 5.3. Theorem 5.3 is proved by the game sequences in Figure 22. Slightly different from the
previous proofs, in this proof, we do not use lazy sampling to simulate random oracles G, H, H′. Instead,
we assume that the game simulator has access to internal random oracles g, h, and h′ and it uses these
internal oracles to simulate G, H, and H′, respectively. This assumption is without loss of generality, since
such internal oracles can be simulated by lazy sampling.

We also assume that there is no collision among all ri,j ’s and the outputs of random oracles. This
assumption adds collision bounds N2µ2+q2

G
|R| + 2N2µ2+q2

H+q2
H′

2L to the final bound of our proof. We have

Pr
[
ANO-PCA(N,µ),A

KEM,0 ⇒ 1
]

= Pr
[
GA

0 ⇒ 1
]

Game G1. Let h∗ be an internal random oracle. IfA queries H on (pk, c, m) such that Enc(pk, m; G(pk, m)) =
c, then the oracle returns h∗(pk, c) instead of h(pk, c, m) (cf. Lines 32 to 33 and Line 25).

If Enc0 has a perfect correctness, then Enc0(pk, ·; G(pk, ·)) is injective and H in G1 still behaves as
an random oracle. To distinguish G1 and G0, A needs to find collisions of Enc0(pk, ·; G(pk, ·)) foe some
pk ∈ pk. If A finds messages (m0, m1) such that Enc0(pk, m0; G(pk, m0)) = Enc0(pk, m1; G(pk, m1)),
then either m0 or m1 makes A win the CORPKE (i.e., break the correctness of PKE0 (cf. Definition 3.1).
Since A queries G at most qG times and there are N public keys during the game, we have∣∣Pr

[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]∣∣ ≤ NqG · δ

Game G2. If A queries Pco on (i, c, k) where c is invalid ciphertext with respect to pk[i], then we return
h∗(pk[i], c) instead of H′(pk[i], c, si) (cf. Lines 27 to 28). A detects this change only if it queries H′ on
(pk, c, si) for some i ∈ [N ]. Since si is sampled at uniformly at random and the numbers of A’s queries
to H′ and Pco are qH′ , qPco, respectively, by a union bound, we have∣∣Pr

[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣ ≤ N(qH′ + qPco)

2ℓ

Game G3. We change Pco so that it computes k′ := h∗(pk[i], c) regardless of the validity of c and
then compares with the query k (cf. Line 29). This change is conceptual, so we have Pr

[
GA

2 ⇒ 1
]

=
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Pr
[
GA

3 ⇒ 1
]
.

Game G4. We add an abort event Query and change the generation of c. If A queries G(pk, m) wherer
m is the plaintext of one of challenge ciphertexts c, then we set the flag Query as true and abort the
game (cf. Lines 16 to 18). Moreover, we generate c using uniform randomnesses independent of G (cf.
Line 09). Let Queryi be the event that Query is set as true in Gi. If Query4 does not happen, then G4
is equivalent to G5, so we have∣∣Pr

[
GA

3 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]∣∣ ≤ Pr [Query4]

Game G5. We change the generation of challenge ciphertexts. In this game, c is sampled uniformly at
random from C (cf. Line 11).

To upper bound the difference between G4 and G5, we construct a direct reduction B := (B0,B1) in
Figure 23 to attack the PR-CPA security of PKE0.

Reduction B0(par, pk)

01 Query := false
02 for (i, j) ∈ [N ]× [µ]
03 m[i, j] := mi,j

$←
M′

04 st := (par, pk, m)
05 return (c, st)

Reduction B1(st, c)

06 Query := false
07 parse (par, pk, m) :=
st
08 b′ ← AO(par, pk, c)
09 return b′

G(pk, m)

10 if ∃(i, j) s.t. m = m[i, j]
11 Query := true
12 abort
13 return g(pk, m)

H(pk, c, m)

14 if c =
PKE0(pk, m; G(pk, m))
15 return h∗(pk, c)
16 return h(pk, c, m)

Pco(i, c, k)

17 pk := pk[i]
18 k′ := h∗(pk, c)
19 return k == k′

H′(pk, c, s)

20 return h′(pk, c, s)

Figure 23: Reduction B in bounding the probability difference between G4 and G5 in the proof of
Theorem 5.3. A has access to O := {Pco, G, H, H′}.

If B plays PR-CPA(N,µ),A
PKE0,0 , then c generated by encrypting m, and thus B simulates G4 for A. Oth-

erwise, c is uniformly random, and B simulates G5 for A. Therefore, we have∣∣Pr
[
GA

4 ⇒ 1
]
− Pr

[
GA

5 ⇒ 1
]∣∣

=
∣∣∣Pr

[
PR-CPA(N,µ),B

PKE0,0 ⇒ 1
]
− Pr

[
PR-CPA(N,µ),B

PKE0,1 ⇒ 1
]∣∣∣ = Adv(N,µ)-PR-CPA

PKE0
(B)

Similarly, we can change B that it outputs 1 if Query is set as true (which can be efficiently deter-
mined), so we also have

|Pr [Query4]− Pr [Query5]| = Adv(N,µ)-PR-CPA
PKE0

(B)

Moreover, in G5, mi,j ’s are independent of A’s view, by a union bound, we have

Pr [Query5] ≤ NµqG/|M|

Now GA
5 is equivalent to ANO-PCA(N,µ),A

KEM,1 if we undo the changes made in G1-G4. By combining all
probability differences, we have

Adv(N,µ)-ANO
KEM (A) ≤ 2Adv(N,µ)-PR-CPA

PKE0
(B) + 2NqG · δ + NµqG

|M|

+ 2N(qH′ + qPco)
2ℓ

+ N2µ2 + q2
G

|R|
+ 2N2µ2 + q2

H + q2
H′

2L
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Theorem 5.4. The proof of Theorem 5.3 can be adapted to OW-PCA security proof of KEM. This is
because, to break the anonymity of KEM, the adversary needs to invert the challenge ciphertext and
find the plaintext (which breaks the PR-CPA security of PKE0). Similarly, if we model H as a random
oracle, then to break the OW-PCA security of KEM, the adversary also needs to invert the challenge
ciphertext. Concretely, in G4 (Figure 22), we can add similar abort event in oracle H. This only change
the happening probability of Query5, which will become Pr [Query5] ≤ Nµ(qG + qH)/|M|. Therefore, we
have Theorem 5.4.
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Ideal Functionality: Fpake

Session Initialization: Pi inputs (NewSession, ssid, pw, Pi, Pj).
// This interface allows a user to initialize a session to a server using pw.

− If this is the first NewSession query, or if it is the second NewSession query and there is a record
(NewSession, Pj , Pi, pw′, ∗) ∈ L, then record (ssid, Pi, Pj , pw, fresh) ∈ L.
− Sends (NewSession, ssid, , Pi, Pj) to S

Key Generation: S inputs (NewKey, ssid, Pi, SK), where SK ∈ SK.
// This interface allows parties to have a session key consistent with the state of their records. If S

performed successfully active attack on the password of Pi and ssid, then this query allows it to set up the
session key on its choice. Otherwise, this query only sets up a random session key for ssid.
− If there is a record of the form (ssid, Pi, Pj , pw, status) ∈ L, for any value status, and this is the first
NewKey query for Pi.

1. If status = compromised, or if one of the parties Pi or Pj is corrupted, then send (ssid, SK) to Pi;
2. If status = fresh and there is a record (ssid, Pj , Pi, pw′, status′) with pw′ = pw, and a session key SK′

has been set to Pj , that was fresh at that time, then send (ssid, SK′) to Pi;
3. Else, choose a random key SK′ $← SK and send (ssid, SK′) to Pi.

− Update the record as completed.

Active attack: S inputs (TestPW, ssid, Pi, pw′).
// This query model online dictionary attacks.

− If there exists record (ssid, Pi, Pj , pw, fresh) ∈ L, do:
1. If pw = pw′, then mark the record as compromised and reply to S with "correct".
2. If pw ̸= pw′, then mark the record as interrupted and reply to S with "wrong".

Figure 24: Functionality Fpake

C On the Universal Composability of Π
In this section, we discuss how to extend the BPR security proof in Section 4.1 to prove the universal
composability (UC) of Π. We use the PAKE functionality Fpake in [BCP+23, Figure 3]. For simplicity, we
only give the description of Fpake (Figure 24) and only consider static corruptions. Please refer [BCP+23]
for full details and adaptive corruptions model.

Informally, to prove Π securely emulates Fpake, we need to show that, for any PPT adversary A, there
exists an simulator such that for any PPT environment Z, the advantage of Z that distinguishes whether
it is interacting with A in the real world or it is interacting with S in the ideal world is negligible. In
the ideal world, S only interacts with Z and Fpake.

Normally, to prove the UC security, we need to construct a simulator S that can simulate a real
world game for the adversary A by only using the information from the ideal functionality. Since ideal
functionality only has trivial information (in most cases), S simulates a real world game means that
running the protocol in the real world does not reveal too much meaningful information to the adversary
(and thus the protocol is secure). For full understanding of universal composability, please refer to
[Can01].

Now we sketch how to extend our BPR proof to a UC one. Give an adversary A, our goal is to
construct a simulator S that, it only uses the information from Fpake to simulate a real world game for A.
Actually, the game G12 in Figure 21 has a similar idea. In G12, the game simulator simulates all oracles
without knowing passwords (unless A issues Corrupt queries or outputs final bit b′). We construct a
simulator S that has some similar behaviors with G12.

• S simulates H, IC1 = (E1, D1), and IC2 = (E2, D2) as in G12 in Figure 21. Specifically, if a fresh
query to D1 will generate a key pair (pk, sk), as we did in Lemma 4.4.

• Upon receiving (NewSession, ssid, U, S) from Fpake, where (U, S) is a user-server pair: S sends a
fresh e1 to A and records it. This is similar to the simulation of SendInit in Figure 21.

• Upon server S receiving e1 from A on behalf of U with session id ssid. S does the following checks:

34



– If there exists pw such that (pw, pk, e1, enc) ∈ L1, S sends (TestPW, ssid, S, pw) to Fpake. If
Fpake replies "correct", then this means that S performs a successful online attack and recover
pwU,S. This corresponds to the event that Guessser is triggered in Figure 14. In this case, S
honestly generates e2 and computes the session key SK as we did in Lines 25 to 31 in Figure 14.
Then, S sends e2 to A and sends (NewKey, ssid, S, SK) to Fpake (which can correctly set up
the session key).

– In other cases, then S sends (NewKey, ssid, S, SK) to Fpake, where SK is sampled uniformly at
random.

• Upon user U receiving e2 from A on behalf of S with session id ssid, S does the following:

– If there exists pw such that (pw, c, e2, enc) ∈ L1, S sends (TestPW, ssid, U, pw). If Fpake replies
"correct", then this means that S correctly guesses pwU,S. This corresponds to the event that
Guessuser is triggered in Figure 14. In this case, S honestly computes the session key SK as we
did in Lines 67 to 75. Then, S sends (NewKey, ssid, U, SK) to Fpake (which can correctly set
up the session key). Here we need to use the argument in the proof of Theorem 4.1 to show
that at most one such pw exists in ∈ L1

– In other cases, then S sends (NewKey, ssid, U, SK) to Fpake, where SK is sampled uniformly at
random.

This is a very high-level description. The key idea here is that we translate the checking of Guessuser
and Guessser to active attacks on Fpake. We believe that we can tightly construct such simulator by our
proof technique used in Theorem 4.1.
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