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Abstract

Location tracking accessories (or “tracking tags”) such as those sold by Apple, Samsung, and Tile,
allow owners to track the location of their property and devices via offline tracking networks. The
tracking protocols have been designed to ensure some level of user privacy against surveillance by the
vendor. Such privacy mechanisms, however, seem to be at odds with the phenomenon of tracker-based
stalking, where attackers use these very tags to monitor a target’s movements. Numerous such criminal
incidents have been reported, and in response, manufacturers have chosen to weaken privacy guarantees
in order to allow users to detect malicious stalker tags.

In this work we show how to achieve an improved trade-off between user privacy and stalker detection
within the constraints of existing tracking protocols. We implement our new protocol using families of
list-decodable error-correcting codes, and give efficient algorithms for stalker detection under realistic
conditions.

1 Introduction

Vendors such as Apple, Samsung, and Tile have recently begun to deploy large-scale offline finding networks
to monitor network-disconnected devices. These systems employ short-distance communications networks
such as Bluetooth Low Energy (BLE) or Ultra-Wideband (UWB) to transmit periodic advertisement mes-
sages to nearby receivers (such as smartphones). The receiving devices upload location reports to servers
controlled by the service provider.

While offline finding networks can be used to locate relatively powerful devices like phones and laptops, the
breakout product in this category is the location tracking accessory (LTA), colloquially known as a “tracking
tag.” Exemplified by Apple’s AirTag and Tile Trackers, these tags embed a transceiver, microprocessor, and
battery in a compact package that can be attached to physical objects. The popularity of tracking tags stems
from their low cost (typically under $30 USD) as well as the availability of large volunteer-operated tracking
networks that can detect them. As of this writing, the combined tag sales of Tile, Apple, and Samsung
exceed 100 million units [39].

Privacy and stalking risks. The widespread deployment of tracking networks exposes users to new privacy
and safety risks. On the one hand, LTAs can undermine the privacy of individuals who carry them: if an LTA
emits an unchanging identifier such as a static MAC address, then a tracking adversary such as the network
operator or a third-party RF tracking network [47, 45] can easily monitor individuals’ physical movements.
In response to these privacy concerns, manufacturers deploy sophisticated countermeasures: for example,
Apple’s Find My system employs a cryptographic protocol that rotates pseudonymous identifiers and uses
encrypted location reports to hide location information from third parties and from Apple itself [2].

On the other hand, the availability of inexpensive LTAs also enables tracker-based stalking [30], in which
attackers surreptitiously place a tag on a targeted person or vehicle and then monitor the target’s movements
via the offline finding network. These devices have been used in hundreds of criminal incidents, including
serious cases that culminated in physical assault and murder [8, 49, 23, 33, 15].
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Protocol Epoch Broadcasts Stalker Tracking Continuous Stalker
duration per epoch detection? privacy Proximity detection

Apple FindMy [2] / IETF [32]:

Near-owner mode 15 min 450 × n/a n/a

Separated mode 24 hrs 43,200 • n/a × 15-60 min†

This work (§4):
2-second epochs / 1-hour window 2 sec 1 • 40− 46 min∗ • 60 min
4-second epochs / 1-hour window 4 sec 1 • 39− 46 min∗ • 60 min
1-minute epochs / 1-hour window 60 sec 15 • 41− 47 min∗ • 60 min

Figure 1: We compare the detection and privacy guarantees of our scheme with various parameters to
existing tag protocols. Our goal in this work is to design a scheme that maximizes tracking privacy within
the stalker detection window. “Tracking privacy” indicates the duration that a tracking adversary may
receive broadcasts without de-anonymizing an LTA. “Stalking detection” indicates the minimum length of
time that broadcasts must be collected before a stalking LTA can be detected. Epoch duration indicates the
time between changes to an LTA identifier. Broadcasts/epoch indicates the number of repeated broadcasts
of the same identifier that an LTA will issue in this time. “Continuous Proximity” means that a tracking
adversary must be in the presence of an LTA for the entire unlinkability duration in order to de-anonymize
it. ∗The former number uses current BLE payload sizes, while the second assumes BLE v5. †Apple does not publish their
methodology, so this is an estimate.

Privacy vs stalker detection. Apple, Tile, Samsung and Google have adopted stalker-detection counter-
measures to alert users to the presence of an unrecognized tag that “moves with” a user for a pre-defined
length of time [4, 17, 46, 32, 31]. Victims can typically trigger an audio alert from the tag, obtain the tag’s
serial number using Near-Field Communication (NFC), and then query the provider’s servers to obtain par-
tial account information. Unfortunately, the ability to detect stalking tags may conflict with anti-tracking
countermeasures. To address this, manufacturers had to adopt compromises: for example, Apple AirTags
rotate their identifier every 15 minutes when within range of their owner devices, but reduce this rate to
once every 24 hours when out of range. This approach allows potential stalking victims to detect nearby
AirTags, but often at the cost of reducing privacy against tracking adversaries.1 Apple and Google have
jointly proposed an IETF draft [32] to standardize this approach.

As this solution illustrates, the goal of a stalker detection mechanism appears to be in direct conflict
with the goal of preserving privacy against a tracking adversary. Concretely, to defend against a tracking
adversary, tags must routinely change identifiers: this ensures that a listener cannot link a series of broadcasts
to a single emitting device. Yet, to detect stalkers, a potential victim must be able to determine that a series
of broadcasts belongs to a single device.

This raises the following question:

Is it possible to provide strong privacy protections against location tracking, while also enabling
the detection of stalker abuse?

In this paper we answer the question in the affirmative, designing new protocols that offer strong privacy
guarantees while ensuring that stalker tags can be reliably detected. Critically, our solutions operate in the
threat model of today’s systems and do not rely on the creation of new trusted parties or the placement of
additional trust in the service provider itself.

Contributions. Specifically, our contributions include:

1. We formalize and construct abuse-resistant private offline finding protocols that allow both privacy
against tracking adversaries and stalker detection by victim devices.

2. To obtain the above result, we define and construct a new cryptographic notion: multi-dealer secret
sharing (MDSS). MDSS extends standard secret sharing to admit multiple dealers with multiple secrets

1In practice, our experience shows that many users routinely carry AirTags in “separated mode”. This is due at least in part
to the fact that users often share physical property with other individuals, and AirTags cannot easily be paired with multiple
owner devices.
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while achieving new properties of unlinkability and multi-dealer correctness. We provide efficient con-
structions of MDSS by combining variants of Shamir secret sharing [48] with lattice-based algorithms
for list-decoding variants of Reed-Solomon codes.

3. We explore parameters for our constructions and demonstrate that existing tracking protocols can be
made substantially more private using our protocols, without sacrificing stalker detection.

4. We experimentally collect data on tag broadcasts in various real-world settings to inform our parameter
selection.

5. We propose several optimizations for realizing our protocols, including designing a new type of pseudo-
random function called a collision-aware PRF that allows for the detection of PRF collisions without
the need to keep large amounts of state.

6. Finally, we implement our algorithms and demonstrate that they are efficient in practice when running
on modest hardware, even when configured to provide a strong degree of privacy against tracking
adversaries.

Ethics and human-subjects research. In the course of this work, we conducted experiments to determine
the density of Apple LTA (AirTag) broadcasts in several public areas. Prior to conducting these experiments
we presented our experiments to an IRB and received a determination that our experiments do not constitute
human subjects research.

1.1 Technical intuition

To prevent unauthorized tracking of LTAs, protocols such as Apple’s FindMy [1] rotate the content of LTA
transmissions periodically: each LTA contains a secret key that it uses to generate a sequence of pseudony-
mous identifiers,2 where each identifier can be computed as a function of the key and a monotonically-
increasing epoch counter [29]. An authorized owner who retains a copy of the secret key can re-derive this
sequence and query the service provider on all identifiers to obtain location reports. Unauthorized users
(such as tracking adversaries) should find it difficult to link the identifiers sent by an LTA across distinct
epochs.3

While these changing identifiers provide a degree of privacy for users, they cause difficulty for stalker-
detection algorithms. A potential stalking victim must determine whether an LTA has remained in close
proximity for a pre-determined period of time, or over a series of distinct geographic locations. If an LTA
rotates its identifier during this period, the resulting sequence of broadcasts may be difficult to link to a
single emitting device. As previously noted, current anti-stalking proposals address this problem by reducing
the rate of identifier rotation and maintaining a static identifier for many hours [32, 29].

This solution is suboptimal, even when only used in “separated mode”, since users often carry LTAs out-
side the range of paired devices. Given the increasing sophistication of tracking solutions, LTA deployments
should increase the rate of identifier rotation in the future to improve the privacy offered by these devices.
Unfortunately, a recent attempt to standardize Apple’s approach [32] may enshrine an arbitrary upper bound
on the level of privacy that future tags can ever achieve, even if future hardware improvements allow for more
frequent identifier rotation. More interestingly, the tradeoff Apple has adopted highlights a core challenge
we address in this work: the goal of a stalking victim is nearly identical to that of the tracking adversary. It
seems intrinsically difficult to develop systems that allow the former to succeed without providing a useful
advantage to the latter.

2In the Find My protocol, these pseudonyms double as public encryption keys. This public key can be used by volunteer
devices to encrypt their GPS location as part of the reporting process, ensuring that the network operator does not learn device
locations.

3This approach may not eliminate every vector that could be used to track or link devices (for example, it does not address
side channels such as timing, signal analysis or RF-hardware fingerprinting [24].) We consider these concerns to be out of scope
for this discussion.
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Figure 2: Illustration of two passive detection scenarios. Left: a static tracking adversary sees many
broadcasts from different LTAs, including LTA “A” (blue). However, because “A” is mobile, the adversary
is not in continuous range to receive its broadcasts and does not receive enough to enable tracking of the
LTA. “A” broadcasts cannot be distinguished from any other broadcasts. Right: a stalking victim receives
broadcasts from many LTAs including a stalking LTA “A”. The victim is continuously within range of the
stalking device and receives all of its broadcasts, which is enough to enable stalker detection: it can identify
which broadcasts belong to LTA “A” and recover a password to communicate with the device.

Separating stalking victims from tracking adversaries. While tracking adversaries must solve a
problem that is similar to that of a stalking victim, the two parties are not identical. Indeed, we can expect
that in many instances tracking adversaries will be more limited in their access to broadcasts from a given
LTA. For example, stalking victims are (by definition) guaranteed to be in close proximity to a stalking LTA
for a relatively long period. In contrast, a tracking adversary may only have brief or intermittent access to a
given tag’s broadcasts (e.g., as owners enter and leave the physical locations of tracking receivers.) Figure 2
illustrates an example of the two different scenarios.

Our goal is to design a scheme that provides strong cryptographic privacy against a tracking adversary
that sees a large subset of an LTA’s broadcasts, and yet allows full linking (and thus stalker detection)
when the receiver obtains a more complete series of broadcasts. Simultaneously, our scheme must handle
broadcasts sent by unrelated tags in the vicinity, that is, be robust to substantial “noise”. We refer to this
goal as abuse-resistant private offline finding.

Our approach. Rather than broadcast a constant identifier, we propose to transmit frequently-changing
and unlinkable broadcast identifiers as a means to maximize privacy. Unlike existing solutions, we structure
our broadcasts so that a stalking victim can detect the stalker by linking the relevant series of broadcasts once
the victim has observed “enough” broadcasts from the stalker, even in the presence of many non-stalker tags.
However, to a tracking adversary who observes fewer broadcasts, the content of a single LTA’s broadcasts
will be unlinkable: that is, cryptographically indistinguishable from a series of broadcasts sent by many
different tags.

Our goal is to construct a broadcast pattern that allows detection by a victim that has received (nearly)
all broadcasts sent by an LTA during a pre-defined detection window time period. At the same time, we
wish to ensure that tracking adversaries cannot link identifiers broadcast by an LTA unless they have also
received a similarly-complete pattern of broadcasts.

A simple solution. As a warm-up, we first consider a construction that provides privacy against a tracking
adversary who receives broadcasts within any ℓ-sized set of consecutive broadcast periods, but allows identi-
fiers to be linked by a victim who receives any transmissions immediately beyond this period: for example,
any two broadcasts from periods T, T + ℓ.

Such a solution can be easily realized in the following manner: each LTA simply constructs its identifiers
sequence such that no identifier repeats during any cycle of ℓ consecutive broadcasts, and yet is guaranteed
to contain one pair of repeated identifiers in any consecutive list of ℓ + 1 broadcasts. We formalize such a
scheme in Appendix §D. While this scheme achieves some notion of unlinkability, we note that the privacy
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offered is quite fragile. A tracking adversary that encounters a given LTA at any broadcast epochs T and
T + ℓ (i.e., that receives only two broadcasts from the LTA) can immediately link these broadcasts together,
even if the LTA has not remained in proximity to the detector for the intervening ℓ− 1 broadcasts.

This construction highlights subtle difficulties in even defining the property we want. We would like
detection to imply that an LTA has been in continuous proximity to a given target, not merely that they
have seen two related broadcasts in distant broadcast periods. More formally, we wish to ensure that a
tracking adversary who receives an ϵ-fraction of broadcasts during a detection window will have no advantage
in linking those broadcasts, while a victim who receives only a slightly greater fraction can efficiently link
(and detect) the stalker.

A tool: Multi-Dealer Secret Sharing. To obtain a better solution, we instead use secret sharing [48].
In a classical secret sharing scheme, a single dealer shares a secret into multiple shares structured so that the
original secret can be recovered from a subset of the shares. In our proposal each LTA periodically samples
a secret tag identifier. Then, at each epoch, it will output a pseudonym similar to the one used in Apple’s
scheme, along with a share of the secret. By changing the pseudonym and using a different secret share at
each epoch, the tag can thus preserve its privacy against tracking adversaries who receive only a fraction
(or a limited absolute number) of the tag’s emitted secret shares. At the same time, a stalking victim who
receives a more complete set of shares will be able to recover the tag’s identifier and communicate with the
tag. The exact parameters to determine both privacy and the stalker-detection threshold are determined by
the chosen parameters of the secret sharing scheme, as well as the broadcast traffic.

This proposal runs into several challenges. Broadcasts emitted by a stalking LTA will often be intermin-
gled with broadcasts from other LTAs in the vicinity: this includes both ephemeral LTAs that a victim is
only briefly in range of, as well as additional LTAs that remain persistently near the victim. Detecting a
stalker in this setting requires robust secret recovery in the presence of multiple dealers, where these addi-
tional broadcasts will often comprise a majority of the broadcasts that any victim receives. In other uses of
secret sharing [9, 21, 22] this problem is addressed by simply identifying (or labeling) all shares transmitted
by a given dealer to identify which shares correspond to which set. In our work, we cannot label these secret
shares, as shares must remain unlinkable until the victim receives a certain threshold.

We formally model this new setting for secret sharing as multi-dealer secret sharing (MDSS) and we
show how to instantiate it for threshold access structures by combining variants of Shamir’s secret sharing
with efficient algorithms for list-decoding Reed-Solomon codes [44]. The novel aspects we address here are
both theoretical and practical. From a theoretical perspective, we provide new definitions that capture
unlinkability of shares in the setting of multiple dealers and properly define the necessary reconstruction
properties. More practically, we require constructions that can efficiently reconstruct collections of thousands
of shares from many dealers, even on memory-constrained devices such as smartphones. This requirement
rules out the use of “out of the box” list decoding algorithms. Instead, we modify prior work on lattice-based
decoding algorithms to enable simultaneous list decoding in seconds on hundreds or thousands of distinct
shares per hour.

2 Preliminaries

Notation and algorithms. Let λ be a security parameter. We use ∥ to denote concatenation, and the
notation a ∈R A to indicate that a is a uniformly sampled element from the set A. Our schemes will make
use of pseudorandom functions PRFi = (KeyGen,Eval). We will define CCA = (KeyGen,Enc,Dec) to be a
CCA-secure PKE scheme, and use KeyGen(1λ; r ∈ {0, 1}λ) to indicate that the random coins for the key
generation algorithm are provided explicitly.4 Finally, we define H to be a collision-resistant hash function.
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Figure 3: Apple FindMy alerts when an unrecognized AirTag is detected. The rightmost two images are
presented on a website launched from the alert screen.

2.1 Offline finding networks

An offline finding network, illustrated in Figure 4, is a crowdsourced system designed to locate lost or stolen
devices. In these systems, users purchase location-tracking accessories (LTAs) that run a tracking protocol
with the network and service provider. Deployed networks typically work as follows: to enroll the device, the
user pairs the LTA to a client device (such as a smartphone or computer) and optionally registers the LTA
with a service provider (SP) that controls the network. LTAs typically operate in two modes: in near-owner
mode the LTA is in range of the owner’s device and communicates directly with it. The LTA switches to
separated mode when it is out of range of the owner device. In this work we focus primarily on the behavior
of devices in separated mode, the typical setting for stalking attacks.

LTA
(near-owner mode)

Tracking NetworkOwner Device

LTA
(separated mode)

Service Provider (SP)

BLE/
UWB

BLE/
UWB Internet

Internet

pairing relationship 

Figure 4: Components of a location-tracking network.

In separated mode, the LTA periodically emits RF-based broadcasts that can be detected by volunteer
devices in the offline finding network. These volunteer devices construct location reports that combine the
LTA broadcast data with the encrypted GPS coordinates of the volunteer device and upload these reports
to the service provider’s servers. An owner device with the necessary identifiers (and other credentials) can
query the service provider to obtain past and present location reports for a given LTA.

2.2 Offline finding protocols

The devices in an offline finding network jointly conduct an offline finding protocol. Our protocols will
implement both privacy (anti-tracking) and abuse-detection features. We now present high-level algorithmic
definitions and security notions for a privacy-preserving abuse-resistant tracking protocol, using notation
inspired by Mayberry et al. [34].

A note on the security model. While stalking is inherently a malicious activity, the LTA devices used in
these attacks are typically honest, in the sense that they correctly execute the tracking network protocol.

4Note that in practice we can stretch {0, 1}λ into a larger sequence using an appropriate PRG, so this requirement does not
limit our choice of encryption schemes.
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Abuse-resistant Offline Finding Protocol

KeyGen(1λ, cfg)→ ktag given a set of implementation-specific scheme parameters cfg,
generates a secret key ktag

Beacon(ktag, iepoch, aux)→ B on input the tag key, the index of the current anonymity
epoch, and auxiliary data aux (e.g., battery status), generates a broadcast message B

GetTagID(ktag, iepoch)→ idtag is a helper algorithm used by the LTA and owner device to
find the current identifier for the LTA.

GenReport(B, loc)→ R on input a tag broadcast B and time/GPS coordinates loc, it
produces a report R

Detect(cfg, {(B1, loc1), . . . , (Bn, locn)})→ {idtagi} on input a set of broadcasts, outputs
one or more identifiers idtag

RetrieveReports(Owner(ktag, iepoch),SP(D)) a protocol executed between two parties.
Owner provides a tag key ktag and an epoch iepoch and SP uses a database D. The
output to Owner is potentially a list of reports and SP’s output is ⊥.

Figure 5: Algorithms for abuse-resistant offline finding protocol.

This is due to the fact that many attackers use legitimate (non-counterfeit) devices produced by the original
manufacturer. In this work we will focus on the case where all LTAs honestly execute the protocol, and
consider extensions to address counterfeit/malicious LTA devices in §8.

Definition 2.1. An abuse-resistant (privacy-preserving) offline-finding protocol is a tuple of algorithms
(KeyGen,Beacon,GetTagID,GenReport,Detect) and a protocol RetrieveReports as specified in Figure 5.

To use an offline-finding protocol, each LTA executes the KeyGen algorithm with a set of deployment-
specific parameters, and shares the resulting key with an owner device.5 The LTA then initializes an
anonymity epoch counter that increases monotonically whenever the identifier is to be rotated (we refer
to this period as the epoch duration.) At the start of each epoch, the LTA executes the Beacon algorithm
on the current epoch counter and transmits the output one or more times.6 Volunteer devices collect the
resulting broadcasts and use the GenReport algorithm to generate encrypted location reports for the service
provider. An owner device executes the RetrieveReports protocol with the service provider to obtain reports
collected by the network. Victim devices can pass all received LTA broadcasts to the Detect algorithm to
detect the presence of nearby stalking LTAs.

Correctness and security. An abuse-resistant tracking scheme must satisfy several correctness and security
properties as defined below.

Correctness. An authorized Owner should be able to obtain location information on their LTA, provided a
volunteer device sees at least one of its emitted broadcasts.

Definition 2.2 (Correctness). A privacy preserving tracking protocol satisfies correctness if for all authorized
owners Owner and compliant service providers SP, ∀loc, aux and allowed anonymity epochs iepoch, and ∀D
provided by SP,

5For simplicitly we have outlined a definition with a single static tag key: we note that that some constructions may also
incorporate forward-secrecy requirements, where tag keys are “ratcheted” forward with each call to Beacon. We discuss this
extension in §8.

6If the broadcast interval is longer than the epoch duration, then the LTA may transmit the same data multiple times.
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Tag Detectability Experiment

Q := ∅;L := [];Blist := []; st = ⊥
∀j ∈ [1, o = poly(λ)] :

(id, i, aux, loc, st)← A(st, “query”)
If (id, ∗) /∈ L :

ktag ← KeyGen(1λ, cfg)

L := L ∪ {(id, ktag)}
find ktag so that (id, ktag) ∈ L

B ← Beacon(ktag, i, aux)

Blist := Blist ∪ {(B, loc)}
Q := Q ∪ {(id, i)}

out← Detect(Blist)

b = 1

∀(id, ktag) ∈ L,

If P ′(cfg, Q, id) = 1,

b′ = (∃i, (id, i) ∈ Q ∧
GetTagID(ktag, i) ∈ out)

b = b ∧ b′

return b

Figure 6: Experiment ExpDet,P ′

A (λ, cfg).

Pr


ktag ← KeyGen(1λ, cfg);
B ← Beacon(cfg, ktag, iepoch, aux);
R← GenReport(B, loc);
D′ := D ∪ {R};
out← RetrieveReports(Owner(ktag),SP(D′)) :
∃m ∈ out,m = (loc, aux)

= 1

Detectability. A stalking LTA should be detectable by a victim. This detection should occur when a potential
victim device sees a sufficient number (or pre-specified pattern) of beacon broadcasts from the stalking LTA.
Because the pattern may differ between constructions, we capture this notion using a predicate P ′ that is
passed as a parameter to the experiment. If the received beacons implicate a particular LTA as a stalker,
then an appropriate identifier from the LTA must appear in the output.

Definition 2.3 (Detectability). A privacy preserving tracking protocol is detectable for predicate P ′ if ∀ valid
cfg values, ∀n.u.p.p.t algorithms A, ∃ a negligible function negl(λ) so that Pr[ExpDet,P ′

A (λ, cfg) = 0] ≤ negl(λ),

where ExpDet,P ′

A (λ, cfg) appears in Figure 6.

Tag indistinguishability. A tracking adversary who receives fewer broadcasts (or a different broadcast pat-
tern) than that of a stalking victim should not be able to distinguish a given LTA’s broadcasts from those of
other LTAs. In order to allow maximal flexibility for different stalker-detection mechanisms, our definitions
capture the latter condition via a predicate P that is provided as a parameter to our experiment: this func-
tion evaluates the broadcast pattern that a receiver obtains, and outputs 1 if and only if indistinguishability
should hold over the pattern. We provide the formal definition below.
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Tag Indistinguishability Experiment

Q := ∅; st = ⊥
∀i ∈ {0, 1} :

ki
tag ← KeyGen(1λ, cfg)

∀j ∈ [1, o = poly(λ)] :

(id, i, aux, st)← A(st, “query”)
Q := Q ∪ {(id, i)}

B ← Beacon(kid
tag, i, aux)

st← A(st, “query response”, B)

(i∗0, i
∗
1, aux, st)← A(st, “challenge”)

Q := Q ∪ {(0, i∗0), (1, i∗1)}

B∗ ← Beacon(kb
tag, i

∗
b , aux)

b̂← A(st, “challenge response”, B∗)

If P (cfg, Q) = 1 output b̂, else output 0

Figure 7: Experiment ExpTag,P,b
A (λ, cfg).

Definition 2.4 (Tag Indistinguishability). A privacy preserving offline finding protocol is tag indistinguish-
able for predicate P if ∀ valid cfg values, ∀n.u.p.p.t adversaries A, ∃ a negligible function negl(λ) so that

|Pr[ExpTag,P,0
A (λ, cfg) = 1]− Pr[ExpTag,P,1

A (λ, cfg) = 1]| ≤ negl(λ)

where ExpTag,P,b
A (λ, cfg) is given in Figure 7.

We note that the game presented in Figure 7 only guarantees indistinguishability when aux is the same
across both challenge broadcasts. A stronger security definition might allow the adversary to choose different
aux values for each tag key, provided they have the same length. Although we do not present this solution in
our protocols (and it does not appear to be implemented in existing deployments) our schemes could satisfy
such a definition by changing the Beacon algorithm to encrypt aux using a symmetric-key encryption scheme
that achieves key privacy.

Location indistinguishability. Mayberry et al. [34] identify several additional properties that must be present
in an offline finding system. For example, it must be the case that the service provider cannot determine
the location of LTAs or volunteer devices from the encrypted location reports it receives. Our schemes in
§4 achieves this property in much the same way as the constructions of [34]. Since this paper is mainly
concerned with the interaction between stalking tags and victims we omit this analysis here.

3 Multi-Dealer Secret Sharing
In a secret sharing scheme [48], a dealer divides a secret into shares such that a subset of the shares can be
used to recover the initial secret. In this work, we consider a setting where multiple dealers may emit shares
of different secrets, such that a receiver can recover these secrets from a set of mixed shares. We investigate
new security and functionality requirements for this setting.

• Unlinkability: This property requires that given a set of shares, an adversary cannot determine whether
two or more shares are associated with the same secret (or dealer). Since it is always possible to link
shares via reconstruction, we require that the share set does not contain too many shares of the same
secret. We emphasize that unlinkability is a stronger property than the standard notion of privacy for
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secret sharing which only guarantees that an adversary cannot recover the secret without obtaining a
sufficient set of shares.

• MD-Correctness: This property requires that, given shares for one or more secrets, a receiver can
reconstruct all secrets for which they have received a sufficient number of shares.

In this work, we study multi-dealer secret sharing schemes for threshold access structures. Such a scheme is
parameterized by four variables:

• trec, the number of shares required to recover a secret.
• tpriv, the number of shares one can emit before privacy and unlinkability are broken.
• d, the number of dealers the scheme is able to tolerate.
• max, the maximum number of shares that can be input to the reconstruction algorithm.

We consider a setting analogous to the ramp setting of Blakley and Meadows [11], where we allow for a
gap between trec and tpriv larger than one. Further, we note that our notion of multi-dealer secret sharing
has connections with robust secret sharing [43] which we discuss in §9. We now formally define multi-dealer
secret sharing.

Definition 3.1 (Multi-dealer secret sharing scheme). A (trec, tpriv, d,max)-multi-dealer secret sharing scheme
(MDSS) is defined over a secret space S and an index space I, and consists of the following PPT algorithms:

• Share(s, I ′; r)→ {shi}i∈I′ , takes as input a secret s ∈ S, a set of indices I ′ ⊆ I, and some randomness
r, and outputs a set of shares {shi}i∈I′ .

• Reconstruct({sh1, . . . , shw}) → {s1, . . . , sm}, takes as input a set of shares {sh1, . . . , shw} where w ≤
max, and outputs a (potentially empty) set of secrets {s1, . . . , sm}.

In the above, the tuple (trec, tpriv, d,max) is an implicit input to both algorithms. For convenience we will
sometimes use a stateful variant of the Share algorithm with different syntax. For a single index i ∈ I, the
stateful algorithm Share(s, i; r) outputs only shi, the share of s at index i.

A multi-dealer secret sharing scheme must satisfy three properties: privacy, unlinkability, andMD-Correctness.
These properties are defined below.

Definition 3.2 (Privacy). We say that a (trec, tpriv, d,max)-MDSS with secret space S and index space I is
tpriv-private if for any s, s′ ∈ S and I ′ ⊆ I such that |I ′| ≤ tpriv:

ShareI′(s) ≈ ShareI′(s′)

Unlinkability. Notions of unlinkability appear in the cryptography literature in the context of primitives
such as ring signatures and anonymous credentials [20, 3, 7]. These works consider unbounded unlinkability,
where the property holds regardless of the sample size given to the adversary. In contrast, our notion
of unlinkability is necessarily in the bounded setting, where the adversary is permitted to see an a priori
bounded number (tpriv) of shares of a secret.

Definition 3.3 (Unlinkability). We say that a (trec, tpriv, d,max)-MDSS with secret space S and index space
I is tpriv-unlinkable if for all adversaries A,

|Pr[ExpLink0A(λ) = 1]− Pr[ExpLink1A(λ) = 1]| ≤ negl(λ),

where ExpLinkbA is described in Figure 8.

Unlinkability v.s. Privacy. tpriv-unlinkability is a strictly stronger notion than tpriv-privacy. Specifically,
while tpriv-unlinkability can be seen to imply tpriv-privacy via a straightforward hybrid argument, the reverse
is not true. Consider the following modification to a private secret sharing scheme: to share a secret, first
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MDSS Unlinkability Experiment

r0, r1 ∈R {0, 1}λ;L := ∅
(s0, st)← A(“init”)
∀j ∈ [tpriv − 1] :

(i, st)← A(st, “query”)
L := L ∪ {i}
st← A(st, “query response”,Share(s0, i; r0))

(s1, i
∗
0, i

∗
1, st)← A(st, “challenge”)

If i∗0 ∈ L: end and output 0

b̂← A(st, “challenge response”, Share(sb, i
∗
b ; rb))

Output b̂

Figure 8: Experiment ExpLinkbA(λ)

sample a random value r and then append r to each share computed using the private secret sharing scheme.
Clearly this modified scheme is still private. However, the shares of a secret are trivially linkable by comparing
their suffixes.

MD-Correctness. To define MD-Correctness we require that the Reconstruct algorithms outputs all the
secrets shared by sufficient dealers, while handling “noise” shares output by insufficient ones. Additionally,
we consider the setting where trec shares of a secret may not be sufficient for reconstruction with some
probability ϵ. Our correctness requirement stipulates that Reconstruct should output all secrets s for which
there are at least trec shares in the input, and for which s could be reconstructed from just those trec shares.
As this is equivalent to requiring that a secret can be reconstructed under ideal conditions, we refer to this
“noiseless” reconstruction algorithm as IdealReconstruct.

We use IdealReconstruct to define the idea of consistency. We say that a secret s is consistent with a set
of shares if at least trec of the shares could have been output by a sharing of s, and those trec shares are
sufficient for reconstructing s. Similarly, we define the consistent set for a set of shares to be the set of all
consistent secrets.

Definition 3.4 (Consistent Set). For a set of shares {sh1, . . . , shn} and an ideal reconstruction algorithm
IdealReconstruct,

Consistent({sh1, . . . , shn}) =
{s|∃r, I ′ s.t. |Share(s, I ′; r) ∩ {sh1, . . . , shn}| ≥ trec

and IdealReconstruct(Share(s, I ′; r)) = s}

We use this definition of consistency in two ways: first, for a game representing the honest case, in which
all shares given to the Reconstruct algorithm are generated by Share, and second in the stronger adversarial
case, where the shares are generated arbitrarily. We can now formally define our notions of correctness.

Definition 3.5 (Weak-MD-Correctness). We say that a (trec, tpriv, d,max)-MDSS is ϵ-weakly-correct with
respect to an ideal reconstruction algorithm IdealReconstruct if for all sets DS = {(s1, I1), . . . , (sd, Id)} and
NS = {(s′1, I ′1), . . . , (s′m, I ′m)} where ∀j ∈ [d], |Ij | ≥ trec and ∀k ∈ [m], |I ′k| < trec and

∑
j∈[d] |Ij | +∑

k∈[m] |Im| ≤ max:

Pr[ExpWCorDS,NS(λ) = 1] ≤ negl(λ)

and for all s ∈ S and sets I ′ ⊂ I where |I ′| = trec:

Pr[IdealReconstruct(Share(s, I ′)) ̸= s] ≤ ϵ
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Weak MD-Correctness Experiment

S := ∅
∀(s, I′) ∈ DS ∪ NS :

S = S ∪ Share(s, I′)
If Reconstruct(S) ̸= Consistent(S),

output 1, else output 0

Figure 9: Experiment ExpWCorDS,NS(λ)

Strong MD-Correctness Experiment

{sh1, . . . , shmax} ← A()
If Reconstruct({sh1, . . . , shmax}) ̸=
Consistent({sh1, . . . , shmax}), output 1, else output 0

Figure 10: Experiment ExpSCorA(λ)

Where ExpWCorDS,NS(λ) is defined in Figure 9.

Definition 3.6 (Strong-MD-Correctness). We say that a (trec, tpriv, d,max)-MDSS is ϵ-strongly-correct with
respect to an ideal reconstruction algorithm IdealReconstruct if for all adversaries A:

Pr[ExpSCorA(λ) = 1] = 0

and for all s ∈ S and sets I ′ ⊂ I where |I ′| = trec:

Pr[IdealReconstruct(Share(s, I ′)) ̸= s] ≤ ϵ

Where ExpSCorA(λ) is defined in Figure 10.

3.1 Constructing MDSS

A natural choice for constructing MDSS begins with the secret-sharing construction of Shamir [48]. In
Shamir’s scheme, a secret s is an element of a finite field F: to share s, one samples a random polynomial
p ∈ F[z] with degree tpriv with the constraint that p(0) = s. A secret share is a pair (r, p(r)) where r ∈ F \ 0
is a chosen evaluation point.

Achieving unlinkability. In typical uses of Shamir’s secret sharing, the evaluation points are set to fixed
numbers, say 1 to n for generating n shares. This, however, violates unlinkability: given a set of shares, any
pair of shares with the same evaluation point r must correspond to different secrets. To achieve unlinkability,
we therefore deviate from this approach. Specifically, we sample each evaluation point uniformly at random
from F. If F has size super-polynomial in the security parameter λ, any two evaluation points collide with
probability negligible in λ. Crucially, this probability is the same for any two shares, irrespective of whether
they correspond to the same or different secrets.

Achieving MD-correctness. We observe that a collection of Shamir secret shares can be viewed as a
Reed-Solomon codeword [36]. Recovering a secret from a collection of Shamir secret shares in the presence
of noise is equivalent to the problem of Reed-Solomon decoding.

Given this, a natural choice for the reconstruction algorithm is to use a Reed-Solomon decoding algorithm.
Unfortunately, the classical bounds for decoding Reed-Solomon codes leave a large gap between the number
of shares required to recover a secret and the privacy threshold in the presence of realistic error rates. These
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Algorithm 1: CH∗

Input : λ, k, n, {(αi, βi,1, . . . , βi,c)}ni=1

Output: None,Multiple, or a single solution (p1 . . . pc)
1 forall j ∈ [c] do
2 fj(z) = LagrInterpol({(α1, β1,j), . . . , (αn, βn,j)})
3 end
4 N(z) =

∏n
i=1(z − αi)

5 construct the matrix M ∈ F[z](c+1)×(c+1)
:

6

M =


zk f1(z) f2(z) . . . fc(z)

N(z)
N(z)

. . .

N(z)


7 Mred ← LatticeReduce(M)
8 if there is one shortest vector v⃗ = (v0 . . . vc) that has a length ≤ λ then
9 return (v1 · zk/v0, . . . , vc · zk/v0)

10 end
11 if there are multiple vectors with the shortest length and the shortest length ≤ λ then
12 return Multiple
13 else
14 return None
15 end

Figure 11: The CH∗ sub-algorithm of our CH∗-MDSS inputs a set of evaluation points and parameters, and
either returns a set of polynomials pi ∈ F[x] matching the evaluation points or returns a flag indicating that
there are no solutions or multiple matching solutions. The matrix M is a lattice basis given in row vector
format. λ is an upper bound on the length of our target vector.

bounds can be improved somewhat by using the list-decoding algorithm of Guruswami and Sudan [26]. While
this construction achieves fully rigorous strong-md-correctness, the running time and memory requirements
scale poorly, and the asymptotic bounds still leave a large gap.

Our construction: Multiple polynomial evaluations. In order to achieve a better tradeoff and more
efficient decoding algorithms, we use a construction inspired by interleaved Reed-Solomon (IRS) codes [19,
12]. Rather than sampling a single polynomial p, a dealer samples c polynomials p1, . . . , pc with the secret
s subdivided across the constant term of each, and shares the values (r, p1(r), . . . , pc(r)).

There are numerous decoding algorithms for interleaved Reed-Solomon codes and other closely related
noisy curve reconstruction problems in the literature [42, 52]. Unfortunately, many of these algorithms are
not efficient enough (both in terms of RAM and computation) to operate on limited devices at the parameter
sets we require. To address this, we adopt an IRS decoder based on a dual form of a lattice-based decoding
algorithm proposed by Cohn and Heninger [18], which we call CH∗-MDSS. We describe this decoder in detail
below.

Polynomial lattice preliminaries. See [18] for a background on polynomial lattices and lattice reduction.
Let F[z] be the ring of polynomials over variable z with coefficients in F. Let F(z) be the field of rational
functions u(z)/d(z), u(z), d(z) ∈ F[z]. For a polynomial f ∈ F[z], its degree is deg(f); for a rational function
f(z) = u(z)/d(z) in lowest terms, its degree is deg(u)− deg(d). Consider a matrix B ∈ F(z)n×n with entries
that are rational functions; let the rows of B be n-dimensional vectors bi ∈ F(z)n. The polynomial lattice
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Algorithm 2: CH∗-MDSS Construction

Input : k, t, n, {(αi, βi,1, . . . , βi,c)}ni=1

Output: a list {(pi1 . . . pic)}zi=1 or ⊥
1 solns := [], ws := [n], fail := False
2 while |ws| ≥ t and not fail do
3 res← CH∗(k + (|ws| − t), k, n, {(αi, βi,1 . . . βi,c)}i∈ws).
4 if res = None then
5 return solns
6 else if res = Multiple then

7 s← ⌊ |ws|t ⌋, found← False
8 while not found: do

// randomly remove points until a single solution is found

9 pts← ws.pop(2(s− 1))
10 res← CH∗(k + (|ws| − t), k, n, {(αi, βi,1 . . . βi,c)}i∈ws)
11 ws← ws ∪ pts
12 if res can be parsed as (p1 . . . pc) then
13 found← True
14 add (p1 . . . pc) to solns, remove agreeing points from ws

15 end

16 endw

17 else
18 parse res as (p1 . . . pc), add (p1 . . . pc) to solns, remove agreeing points from ws
19 end

20 endw
21 return solns

Figure 12: Our CH∗-MDSS construction. We iteratively apply the CH* algorithm to recover solution vectors
with the largest number of agreeing points in our sample until there are no more solutions. If the CH∗ algo-
rithm indicates that there are multiple valid solutions, we randomly remove coordinates until the algorithm
succeeds. pop(x) randomly removes and returns x values from a set.
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generated by basis B is the set of vectors L(B) = {v | v =
∑n

i=1 aibi, ai ∈ F[z]}. That is, the lattice consists
of vectors over F(z) that are F[z] (polynomial) linear combinations of basis vectors. We define the length of
a vector v = (v1, v2, . . . , vn), vi ∈ F(z) to be |v| = maxi deg(vi). Define the determinant detL(B) = detB.
For a full-rank n-dimensional polynomial lattice L(B), there is a polynomial-time algorithm to compute a
so-called reduced basis B′ for L(B) given a basis B [38]. Such a reduced basis is guaranteed to contain a
vector of length |v| ≤ (deg detL(B))/n, and (unlike in the case of integer lattices) is guaranteed to contain
a shortest vector of the lattice. For two vectors v, w ∈ F(z)n define the inner product ⟨v, w⟩ =

∑
i vi · wi.

Finally, for any lattice L(B) one can define the dual lattice L∗(B) = {w ∈ F(z)n | ⟨w, v⟩ ∈ F[z]∀v ∈ L(B)}.
Given a basis B for a full-rank lattice L(B), (B−1)T is an explicit basis for the dual L(B)∗.

A description of CH∗-MDSS. We now provide a brief description of our lattice-based recovery algorithm.
Throughout this section, we will say an ordered set of polynomials (p1 . . . pc) ∈ F[z]c agrees with a point
(α, β1, . . . , βc) ∈ Fc+1 if ∀j ∈ [c], βj = pj(α). Given a set of input points {(αi, βi,1, . . . , βi,c)}ni=1, (p1 . . . pc)
may be called a solution or a solution set if it agrees with at least t input points. The main intuition behind
our technique is to use the linear variant of [18] (with degree and multiplicity one) but instead of looking
through the coefficient lattice, we use the dual lattice.

The decoding algorithm of Cohn and Heninger constructs a polynomial lattice whose basis vectors are
weighted polynomial coefficient vectors in F[z] of multivariate polynomials Q(x1 . . . xc) ∈ F[z, x1, . . . , xc].
They then compute a reduced basis of this lattice, map short vectors back to multivariate polynomials, and
solve the polynomial system. The solution vp = (p1 . . . pc) is heuristically shown to be a solution of the
system by construction.

One downside of the Cohn-Heninger algorithm is the need to extract many short vectors from the reduced
basis and solve a system of polynomials. This incurs additional computational cost.

We observe that a target vector corresponding to any solution p1 . . . pc is present in the dual of the lattice
constructed by Cohn and Heninger, because its dot product with any vector in the primal is a multiple of
the syndrome polynomial by construction. We also know that this target vector is short because we have
degree bounds on the pi. If the target vector is the shortest vector in this dual lattice, then it will appear
in a reduced basis. We give the explicit construction of this lattice and describe how to recover candidate
solutions from the corresponding reduced basis in Figure 11; we call this algorithm CH*. The lattice basis
M constructed in Figure 11 is the dual lattice of the coefficient lattice with degree and multiplicity one,
re-scaled by a factor of N(z) · zk where N(z) =

∏
i(z − αi) and k is an upper bound on the desired degree

of the solution polynomials pi so that all entries are in F[z] rather than F(z) for ease of computation.
First, we make a correctness claim regarding when the algorithm succeeds when given input corresponding

to at most one solution with a bounded amount of random noise. This claim is heuristic based on the
conjecture that the lattice M from Figure 11 behaves like a random lattice with a planted target vector
corresponding to the solution.

Heuristic Assumption 1. The non-target vectors in lattice M as described in Figure 11 behave like a
random lattice when M is instantiated from evaluations {(αi, βi,1, . . . , βi,c)}ni=1 of Reed-Solomon codes with
distinct αi and errors are chosen uniformly at random.

Claim 3.0.1. Under Heuristic Assumption 1, instantiating Figure11 with target vector length λ = 1
c+1 (k +

cn)− 1 will recover, if it exists, a solution set (p1 . . . pc) that agrees with t ≥ 1
c+1 (ck + n) + 1 input points.

Proof Sketch. For a fully random lattice, we expect the length of the shortest vector v in L(B) to satisfy
|v| = ⌊(deg detL(B))/(dimL(B))⌋. Thus if our target vector vp is smaller than this bound, we expect it to
be the shortest vector in the lattice and thus to be present in a reduced basis.

By construction, we have |vp| = k + (n− t)7, and

deg(b⃗1) ≤
deg(det(B))

dim(B)
=

k + c · n
c+ 1

(1)

7The target vector corresponding to a solution (p1, . . . pc) will have the form (zk ·E(z), p1(z) ·E(z), . . . , pc(z)) ·E(z)) in the
scaled dual lattice, where E(z) is an error locator polynomial
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In particular, since the degree of a polynomial must be a non-negative integer,

deg(b⃗1) ≤
⌊
k + c · n
c+ 1

⌋
Solving for t, we expect the algorithm to succeed when t ≥ 1

c+1 (ck + n) + 1.

We note that the way the parameter t is set in Claim 3.0.1 guarantees that the length of the target vector,
λ, is always less than the shortest vector in a random lattice with determinant corresponding to our chosen
parameters. Empirically, we observed that the algorithm presented in Figure 11 does succeed sometimes
even when we set t so that these vectors have the same length. Let m = k + cn (mod c+ 1). We observed
that our target vector was the shortest in the lattice when m = 1. When m ̸= 1, there were c+1−m vectors
in the reduced basis achieving the shortest vector length. While none of the short vectors equaled our target
vector, they did contain information that could be used to find it: the construction presented in Appendix
F utilizes this information to achieve a slightly better bound8.

Using Claim 3.0.1 and the preceding empirical results, the construction in Figure 11 can achieve t ≥
1

c+1 (ck + n) + c
c+1 , when setting λ = 1

c+1 (c(n − 1) + k). We experimentally verified this version of the
algorithm on 10,000 randomly selected inputs for various configurations of n, k, t and c and observed that it
succeeds in practice for these non-adversarially constructed cases where this is at most one unique solution
and bounded random noise.

Handling additional solutions The approach given in the algorithm we call CH∗ works when there is
exactly one solution set. We need to extend the above algorithm to cases where there are multiple valid
solutions, if we want an MDSS construction tolerating d > 1 dealers. The “natural” way to recover multiple
solutions in this approach would be to examine the dual of the lattice corresponding to the higher degree and
multiplicity construction given in [18]. Unfortunately, increasing these parameters results in an exponential
increase in the lattice dimension, and the corresponding algorithm running times quickly grow too large for
our application.

Experimentally, we observe that the CH∗ algorithm with λ set to 1
c+1 (c(k + 1) + n can recover a single

solution set even when the input distribution includes multiple solution sets, as long as one set agrees with
two more evaluation points than any other set. In particular, the shortest vector corresponds to the solution
with the most agreeing points. We can then remove the points associated with this set from the original
input, and run the algorithm again to find another solution, provided that it too has two more agreeing
points than any solution sets left. This idea, extended to recover all solutions, is formalized below.

Experimental Observation 3.0.1. Let {(αi, βi,1, . . . , βi,c)}ni=1 be a set of input points with distinct αi, such
that there exists polynomial sets P1 . . . Ph where ∀ℓ ∈ [h], Pℓ = (pℓ,1, . . . pℓ,c) ∈ F[z]c, ∀j ∈ [c],deg(pℓ,j) ≤ k,
and ∃Tℓ ⊂ [n], |Tℓ| ≥ 1

c+1 (c(k + 1) + n) s.t. ∀w ∈ Tℓ,∀j ∈ [c], pℓ,j(αw) = βw,j. Let S = [n] \ ∪hi=1Ti.
If it is the case that for all pairs Ti, Tj, the difference between |Ti| and |Tj | is at least 2, S consists of
input points that are random and those which correspond to a polynomial set P = (p1 . . . pc) with less than
1

c+1 (c(k+1)+n) agreeing input points, and all polynomial sets P are chosen independently at random, then
repeated application of the algorithm in Figure 11, with removal of points corresponding to each found Pi,
recovers P1, . . . Ph with high probability.

Unfortunately, when two input solution sets have numbers of agreeing points that differed by one or zero
points, the reduced lattice basis did not contain any target vectors. Interestingly, the lengths of the vectors
in the reduced basis give us a method of distinguishing from the case of no solutions: in the multiple solution
case, the shortest vector in the reduced basis has a length less than our target vector length of k + (n− t).
Recall that when no solution exists, the shortest vector length is the floor of the bound in Equation 1.

We have two approaches to recover solutions in this aberrant case of nearly equal solution sets:

1. The simplest method is to delete points at random and re-try the decoding algorithm until it succeeds;
we expect to re-try the algorithm a small number of times until one solution has two more points

8In particular, the algorithm achieves t ≥ 1
c+1

(ck + n)
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MDSS Construction

Share(s, I′) :
Sample c polynomials p1, . . . , pc, where s =
p1(0)||...||pc(0)
Sample |I′| field elements x1, . . . , x|I′|

$←− F
return {(xi, p1(xi), . . . , pc(xi))}i∈I′

Reconstruct({sh1, . . . , shmax}) :
return CH∗-MDSS({sh1, . . . , shw})

Figure 13: Our MDSS construction. A share consists of a random evaluation point xi together with evalua-
tions of a collection of c randomly generated polynomials at that point.

than any other solution set. This random deletion algorithm is probabilistic polynomial time and the
running time varies depending on how many solution sets must be recovered. We have tested this
algorithm on more than 20,000 instances sampled from distributions corresponding to up to three valid
polynomial solution sets for a number of different n, k, t and c values where each input has distinct
x-coordinates. Throughout these tests, we have had no failures. This is the method we use for our
experimental timings.

2. A second method recovers a single solution as a short polynomial linear combination of vectors in our
reduced basis or by applying a second lattice reduction; we describe this method in Appendix F. This
approach is more efficient since it requires fewer lattice reductions and achieves a better bound than the
randomized deletion algorithm. We tested this approach on 5,000 inputs sampled from distributions
corresponding to up to five valid polynomial solution sets with no failures.

We put together the above techniques in the algorithm described in Figure 12 to solve the MDSS problem.
We repeatedly apply the CH* algorithm to the collected set of points. This algorithm will either return a
valid solution vector, indicate that there are multiple solutions, or indicate that there are no valid solutions.
If there are multiple solutions, we use one of the above methods to recover the solutions.

The following claim summarizes the bounds for which we expect the algorithm to work for randomly
constructed problem instances.

Claim 3.0.2. Let {(αi, βi,1, . . . , βi,c)}ni=1 be a set of input points with distinct αi, such that there exists
polynomial sets P1 . . . Ph where ∀ℓ ∈ [h], Pℓ = (pℓ,1, . . . pℓ,c) ∈ F[z]c, ∀j ∈ [c],deg(pℓ,j) ≤ k, and ∃Tℓ ⊂
[n], |Tℓ| ≥ 1

c+1 (c(k + 1) + n) s.t. ∀w ∈ Tℓ,∀j ∈ [c], pℓ,j(αw) = βw,j. Let S = [n] \ ∪hi=1Ti. If S consists of
input points that are random and those which correspond to a polynomial set P = (p1 . . . pc) with less than
1

c+1 (c(k+ 1)+ n) agreeing input points and all polynomial sets P are chosen independently at random, then
CH∗-MDSS recovers P1, . . . Ph with high probability.

On adversarial channels. As one final note, the channels that we consider in our setting are not fully
adversarial. For one, x-coordinates must be unique as our algorithm only accomplishes the task of list-
decoding and not list-recovery. But even in this more limited setting, we only consider input distributions
where other polynomials are chosen uniformly at random and independent of other input. We do not,
for example, handle input points that correspond to multiple solution sets. This happens exceedingly rarely
when polynomial sets are chosen uniformly and independently of one another, but we have no such assurances
if the channel is fully adversarial. We leave the exploration of what can be achieved under these types of
channels to future work.

Putting all the previously described pieces together brings us to our main construction, which can be
seen in Figure 13.

Claim 3.0.3. For all c ≥ 1 and finite fields F such that |F| ≈ 2λ, construction 13 satisfies unlinkability.
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The proof of Claim 3.0.3 is a straightforward extension of the proof of privacy for traditional Shamir
sharing, and can be found in Appendix B.

Claim 3.0.4. For all sets of parameters satisfying trec ≥ 1
c+1 (max+ c · (tpriv + 1)) and finite fields F such

that |F| ≈ 2λ, construction 13 heuristically satisfies ϵ-weak-md-correctness for a negligible ϵ.

Heuristic reconstruction. Our reconstruction algorithm CH∗-MDSS is only heuristic. We experimentally
validated its performance for random noise and develop algorithmic approaches that experimentally cope
well with adversarial noise patterns.

Using small fields. A suitable choice of field is required to achieve practical unlinkability and efficiency.
If a dealer randomly samples the same evaluation point twice and produces two identical shares, then
unlinkability is compromised. While this will occur with negligible probability if fields are large enough,
in practice small fields are often best to minimize bandwidth and decoding complexity. Simply avoiding
the repeated evaluation points does not address this problem, since the absence of collisions also weakens
unlinkability. To address this concern, we propose a stateful variant of our construction in which dealers
keep track of previously sampled evaluation points and emit noise shares (comprising random elements in
place of the polynomial evaluation) whenever an x-coordinate is repeated. This preserves unlinkability at
the cost of decreasing the number of “useful” shares passed to the reconstruction algorithm, and thereby
increasing the probability of reconstruction failure.9

MDSS from alternative codes. We considered numerous candidate MDSS constructions, including
other families of Reed-Solomon codes and insertion codes. All other potential constructions had properties
rendering them undesirable for our setting.

List-Decodable Reed-Solomon Codes. There is rich existing literature on list-decoding of Reed-Solomon codes
[19, 41, 25, 26]. Some of these codes lead to constructions that have a non-optimal relationship between trec
and tpriv [19, 26] or only perform well for unlikely ambient noise regimes [41]. In particular, for c = 1—which
is simply Reed-Solomon encoding—we know of no explicit, efficient decoders beyond the Johnson radius.10

Reed Solomon codes that achieve this bound [26] can be used in an MDSS construction but the Johnson
bound imposes a large gap between tpriv and trec where trec >

√
tprivmax. Note that our preference is to

construct MDSS schemes where trec > tpriv. Different variants of IRS codes have been proposed that have
smaller gaps between these parameters but have their own problematic elements [41, 19, 25]. Parvaresh-
Vardy codes [41]are only an improvement over [26] when at very low message rates (which translates in our
setting to situations where max≫ tpriv). Coppersmith-Sudan [19] is inefficient at optimum parameter sets,
and even at optimum can at best achieve trec > 2tpriv. It also does not handle multiple dealers. In theory
[25] could work well for our setting, but it is also not concretely efficient for optimum values of trec and tpriv.
There are currently no public existing implementations of their decoding algorithm either, to the best of our
knowledge. The works of [18] and [22] suggest a possible efficient lattice-based decoder for general IRS codes
but neither considers the equivalent of a multi-dealer setting.

Insertion/deletion Codes. Finally, we considered other codes that may have properties that are desirable in
our setting. The channel we consider in this work is one that injects and deletes symbols at random locations
rather than substituting existing symbols (which is the normal setting for Reed-Solomon codes). Codes exist
in the insertion/deletion setting which can tolerate any polynomially bounded number of insertion errors
[27]. Unfortunately, current constructions of these codes rely on a labeling technique that conflicts with our
desired unlinkability property. We leave the exploration of the applicability of these codes to multi-dealer
secret sharing schemes for future work.

9We show unlinkability is not compromised for this change in Appendix B.2, as well has how to select parameters to achieve
a target reconstruction success rate in Appendix G. If deployment parameters are chosen so that the number of such collisions
is small, this will have only a modest effect on efficiency.

10The Johnson radius is a bound that every code can be list-decoded up to while retaining small (polynomial) list size. Some
codes can be decoded efficiently beyond this bound.
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KeyGen(cfg) :

k1 ← PRF1.KeyGen(1
λ), k2 ← PRF2.KeyGen(1

λ)

k3 ← PRF3.KeyGen(1
λ)

return (k1, k2, k3, cfg)

Beacon(ktag, iepoch, aux) :

(k1, k2, k3, cfg)← ktag

(E,L)← cfg

(pk, )← CCA.KeyGen(1λ;PRF1.Eval(k1, i))

idtag ← GetTagID(ktag, iepoch)

e← ⌊ iepoch
L
⌋, i← iepoch (mod L)

I := {0, . . . , L− 1}
she

0 . . . sh
e
L−1 ← Share(idtag, I;PRG(PRF2.Eval(k2, e)))

return pk ∥ she
i ∥ aux

GenReport(B, loc) :

pk∥sh∥aux← B

ct← CCA.Enc(pk, loc∥aux), h← H(pk)
return h ∥ ct

RetrieveReports(Owner(ktag, iepoch),SP(D)) :

Owner parses ktag as (k1, k2) and derives key:

(pk, sk)← CCA.KeyGen(1λ;PRF1.Eval(k1, iepoch))

Owner sends H(pk) to SP

SP searches D for values with key H(pk) and adds

them to C, which is sent to Owner

Owner decrypts reports in C:

out := []

for c ∈ C:

(loc, aux)← CCA.Dec(sk, c)

append (loc, aux) to out

Owner outputs out, SP outputs ⊥

Detect(cfg, {Bj}) :

S := {sh | (∗∥sh∥∗) ∈ {Bj}}
remove duplicate values in the set S

return Π.Reconstruct(S)

GetTagID(ktag, iepoch) :

k1, k2, k3, cfg← ktag

e← ⌊ i
L
⌋, i← iepoch (mod L)

return PRF3.Eval(k3, e)

Figure 14: Main construction for abuse-resistant offline finding. This protocol assumes the existence of three
pseudorandom functions PRFi for i ∈ [3] where the co-domain of PRF1.Eval and PRF2.Eval is {0, 1}λ and
the codomain of PRF3.Eval is Fq. PRG outputs a sufficient number of bits for the Share algorithm. CCA is
a CCA-secure PKE scheme, H a collision resistant hash function and Π a (trec, tpriv, d,max)-MDSS sharing
scheme.

4 Abuse-resistant Private Offline Finding

We now describe our main contribution: an offline finding protocol that achieves strong privacy while also
admitting stalker detection.

The core algorithms of our protocol are presented in Figure 14. A good deal of the complexity present is
due to FindMy 11: this includes any use of k1 and the CCA-secure encryption scheme. The RetrieveReports
algorithm is very close to the original one presented by Apple. The sole purpose of k2 and k3 is to prevent
our construction from being stateful. In practice, one may wish to securely sample and cache the current
idtag and the shares sh0 . . . shL−1.

Achieving stalker detection. To enable stalker detection, our protocol makes several critical additions to
the basic protocol described above. First, each LTA maintains a detection period consisting of L consecutive
time epochs. At the start of each detection period, the LTA generates a secret tag identifier idtag. It then
secret-shares idtag using an MDSS scheme configured with appropriate parameters. With each call to Beacon,
the LTA generates the current pseudonym and appends one secret share to be broadcast by the LTA.

Critically, volunteer devices in the offline finding network do not transmit these secret shares to the service
provider: they are kept locally and used only to enable stalker detection. To do this, each device maintains

11See Appendix A for a more in-depth description of FindMy
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Example 1: Anonymity epoch = broadcast interval Example 2: Anonymity epoch >> broadcast interval

anonymity epoch anonymity epoch

Figure 15: Illustration of the effect of de-duplicating repeated LTA broadcasts: both examples contain the
same pattern of transmissions, but use different anonymity epoch durations. Filled circles represent fresh
shares, hollow circles represent duplicate shares. Left: The anonymity epoch is short: persistent tags (Tag
1, Tag 2) produce the majority (32/43) of the unique broadcasts processed by the Detect algorithm. Right:
The anonymity epoch is long: once duplicates are removed, the persistent tags (Tag 1, Tag 2) represent a
minority (2/5) of the unique broadcasts processed by the decoding algorithm.

a set of all shares received from nearby LTAs during a time window specified in the deployment parameters.
Periodically, the victim device executes the Detect algorithm to perform secret sharing recovery. If this
collection contains at least trec shares emitted by one LTA (or a similar set from multiple LTAs), then the
MDSS recovery algorithm will recover each idtag for the devices. Each LTA can be configured to respond
to interactive connections containing idtag, which enables the victim to contact and physically locate any
stalking LTAs.

Security. We provide formal theorems and proofs of security for our construction in Appendix E. Briefly,
the construction provides strong privacy (in the sense of Definition 2.4) under the condition that a tracking
adversary receives fewer than tpriv total broadcasts within a given L-epoch detection period. This guarantee
follows naturally from the unlinkability property of the underlying MDSS. The conditions for detection
require that at least trec shares are received from a victim device, although in practice this threshold can
be subject to specific conditions about the noise rate and the number of stalkers that we will discuss in the
next section.

4.1 Implementation Considerations

We now discuss particular implementation choices that a designer must grapple with if they wish to use the
scheme presented in Figure 14.

De-duplication and filtering. The duration of the anonymity epoch (i.e., the time between identifier
changes) is an important deployment consideration in our scheme. A shorter interval is clearly desirable to
improve privacy against tracking adversaries. However, the duration of the anonymity epoch will also affect
the efficiency of stalker detection. To illustrate these considerations we consider two candidate configurations.

Configuration 1: anonymity epoch ≈ broadcast interval. This is our recommended configuration, which
maximizes privacy against tracking adversaries by minimizing the duration of the anonymity epoch. In the
best case, this will result in a new pseudonym (via a call to Beacon) with every broadcast that the LTA emits.
For systems with a similar broadcast rate to existing LTA deployments, this would imply an anonymity epoch
duration of 2-4 seconds,12 producing between 900 to 1800 hourly unique secret shares from each LTA device.
Our experiments in §7 show that this traffic rate can be efficiently decoded by our algorithms.

Configuration 2: anonymity epoch≫ broadcast rate. Current LTA deployments do not change the pseudonym
with each broadcast.13 This decision is likely motivated by computational costs and battery limitations. In
these deployments, the LTA will re-broadcast each pseudonym many times. Applying the same logic to our
protocol, these LTAs would also re-broadcast the same secret share.

12This is based on analysis of Apple’s FindMy, where LTAs broadcast every 2 seconds [29, 28]. Our implementation transmits
twice as much broadcast data at each interval, and so we propose to split each broadcast B into two separate transmissions
each sent at the same 2-second broadcast interval (see §6).

13For example, Apple’s Find My rotates the pseudonym every 450 broadcasts (15 minutes) in near-owner mode.
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Tag 1:

Tag 2:
Tag 3:
Tag 4:
Tag 5:

anonymity epoch 1 anonymity epoch 2 anonymity epoch 3 anonymity epoch 4

Tag 6:
Tag 7:

candidate stalker broadcasts

Example 3: Anonymity epoch >> broadcast interval, pre-filtering heuristic applied

Figure 16: Illustration of a pre-filtering heuristic when the anonymity epoch is longer than the broadcast
interval. Hollow circles represent duplicate broadcasts sent by each LTA. In this example, only the broad-
casts identified within the dotted rectangle are candidates to be emitted by stalking tags (and hence their
broadcasts passed to Detect), since only these LTAs transmit repeated identifiers for a large fraction of each
epoch.

Since duplicate secret shares do not aid in reconstruction, they are removed (de-duplicated) as part of
the Detect algorithm. We note that this de-duplication procedure can produce some counter-intuitive effects
on the noise rate. For example, LTAs that remain within range of a victim device for long periods of time
(e.g., stalking tags) will see proportionally more duplicate broadcasts removed, as compared to ephemeral
LTAs that only briefly enter receive range of a victim device (see Figure 15.) On the positive side, these
repeated broadcasts dramatically reduce the impact of erasures caused by RF-layer issues.

Pre-filtering. To compensate for the over-representation of non-stalking LTAs, systems with long-duration
anonymity epochs can apply a pre-filtering heuristic prior to executing Detect. This heuristic takes advan-
tage of the fact that ephemeral (non-stalking devices) are likely to exhibit broadcast behavior that can be
recognized and filtered out prior to running Detect. For example, LTAs that remain in close proximity to the
victim device for a period of time will transmit many duplicate broadcasts. Focusing detection exclusively
on these broadcasts will reduce the number of noise shares processed by the MDSS recovery algorithm.

Secret re-generation and detection window. In our construction, each LTA re-generates its tag identi-
fier and secret-sharing polynomials every L epochs. This mechanism is intended to prevent tracking adver-
saries from correlating shares sent by the same LTA over longer periods. However, this periodic change of
secrets poses a challenge for stalker detection: during periods where an LTA changes its secret, the victim
may not receive a sufficient number of shares to detect a stalker. This problem is similar to the “midnight
problem” that affects existing LTA deployments in which identifiers change once every day.14 To address
this, we propose two possible deployment options:

Use long re-generation periods. The most straightforward solution is to re-generate secrets relatively rarely.
For example, L can be selected so that re-generation occurs once per 24-hour period, given a deployment
with a 1-hour detection window. This approach ensures that detection issues will only occur during
one hour of each day.

Use multiple secrets simultaneously. Each LTA can maintain two tag identifiers (with corresponding secret-
sharing polynomials) at all times, emitting one share of each identifier during every broadcast period.
To ensure that stalker detection is never interrupted, the LTA can stagger its regeneration period to
ensure that stalker detection will always operate for at least one identifier within the given detection
window. For example, using a 1-hour detection window each tag could re-generate one of its two secrets
every hour.

14For example in Apple’s FindMy, the LTA pseudonym changes once every 24 hours in separated mode, which means that
stalker detection may be more challenging close to this changeover time.
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5 Selecting MDSS Parameters
Deploying our main construction of §4 requires us to identify reasonable secret sharing parameters. The
challenge is to optimize privacy while also enabling efficient secret sharing recovery in the face of reasonable
noise rates. We first present an overview of our chosen parameters, and then in the following sections we
discuss the process of deriving these parameters.

Overview and recommendations. We identify four high-level configuration parameters: (1) the (min-
imum) number of minutes of continuous broadcasting after which a victim device must be able to detect
a stalker LTA, (2) the duration of the anonymity epoch (i.e., the time between pseudonym rotation), (3)
the frequency of LTA secret/polynomial updates, and (4) the bandwidth available for transmitting each
secret share. These parameters, along with assumptions about broadcast rate and worst-case noise rates,
will determine the privacy guarantees of the scheme as well as the MDSS parameters.

For the purposes of this analysis we made several exemplary choices for the above parameters, and note
that these can be adjusted for specific deployments. Concretely:

1. We configure stalker detection to operate after an LTA has been in proximity to a victim device
for 1 hour.

2. We consider three epoch durations inspired by existing LTA networks: 2 seconds, 4 seconds and 1
minute.

3. We determine that LTAs will change their LTA-specific secret (and secret sharing polynomials) every
24-hour period, to ensure that broadcasts cannot be correlated over longer time periods.

4. We consider a worst-case lost broadcast rate of up to 5% for transmissions sent by stalking LTAs.15

5. We assume that at most three persistent (“stalker”) LTAs will be in proximity to the victim at any
given time.

6. We derive a bandwidth limit for current-generation LTAs of 248 bits, based on the available payload
space in BLE (pre-v5 advertisement messages.) For BLEv5 deployments we assume a higher bandwidth
limit of up to 400 bits.

From these choices, we then optimize our MDSS scheme parameters to provide privacy for the longest period
possible, while ensuring > 99% decoding success in the presence of missed broadcasts (for further discussion
on this see Appendix G). We present two sets of parameter choices in Table 1: a recommended set given
current deployment bandwidth limitations (based on widely-deployed versions of BLE), as well as a future
recommendation for LTAs that support versions of BLEv5 with higher bandwidth limits.
We now give more details on parameter derivation.

Bandwidth, epoch duration, number of polynomials. To determine available bandwidth and broad-
cast rate we examined existing LTA deployments, focusing on Apple’s FindMy [28, 29]. Apple’s LTAs use a
broadcast interval of 2 seconds and an anonymity epoch duration (i.e., rotation period for the LTA identifier)
of 15 minutes in near-owner mode, or 24 hours in separated mode. The 2-second broadcast interval gives a
lower bound on the anonymity epoch duration.

The legacy BLE protocol provides up to 25 bytes for payload in each advertisement, but FindMy extends
this by using 46 bits of the MAC address field [29].16 This leaves 246 available bits for the protocol to
transmit data.17 Nearly all of this bandwidth is needed to transmit a 225-bit pseudonym/public key pk used
for reporting. Since our protocols must also transmit a similar pk in addition to a secret share, we propose
to divide the required beacon broadcasts into two consecutive broadcasts, a first broadcast containing pk
and auxiliary info and a second containing only a secret share. These broadcasts can be emitted every

15In our laboratory experiments we did not observe loss rates this extreme for nearby devices: we chose this pessimistic
assumption to anticipate more challenging real-world conditions.

16Two bits must remain unused to conform to the BLE standard.
17Future LTAs may use BLEv5, which supports up to 255 bytes of advertisement payload.
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Epoch Detect Max L Fp c
Share Privacy

trec tpriv max
duration time stalkers (= 24 hrs) (bits) (bits) time

Recommended parameters (compatible with current LTA bandwidth limits):
2 sec 60 min 3 43,200 22 10 242 40 min 1652 1186 6300
4 sec 60 min 3 21,600 22 10 242 39 min 825 591 3150
1 min 60 min 3 1,440 24 9 240 41 min 59 41 210

Future parameters (compatible with BLE v5 bandwidth limits):
2 sec 60 min 3 43,200 22 17 396 46 min 1652 1377 6300
4 sec 60 min 3 21,600 22 17 396 46 min 825 687 3150
1 min 60 min 3 1,440 26 14 390 47 min 59 47 210

Table 1: Recommended and possible future parameters for the MDSS construction of §4, instantiated with
CH∗-MDSS. We consider three different anonymity epoch durations to support LTAs with different capabil-
ities, and assume “ambient” noise equal to half a stalker’s number of broadcasts. Privacy times are rounded
to the nearest minute.

period, doubling the number of broadcasts but maintaining the original broadcast rate. Alternatively we
can alternate broadcasts and reduce the broadcast period to 4 seconds.

As described in Section 3.1, our secret sharing construction includes a number of polynomial evaluations
in each secret share (denoted by c). The available bandwidth and the size of the field used place an upper
bound on c. Using a field Fp with a 22-bit representation allows us to set c = 10. A field Fp with a 24-bit
representation gives c = 9.18

Empirically measuring LTA broadcast noise. A major consideration is the amount of noise that
the Detect algorithm must be robust to. This value determines the parameters (and performance) of the
underlying MDSS scheme. In practice we anticipate two sources of noise:

1. Broadcasts transmitted by ephemeral (non-stalking) LTAs. These broadcasts will likely correspond to
the insufficient dealers in the underlying MDSS scheme, and will therefore appear as random points.

2. Broadcasts transmitted by additional persistent (and possible stalking) LTAs, corresponding to the
sufficent dealers in the underlying MDSS.

In Spring 2023 we conducted some limited experiments on Apple’s Bluetooth-based FindMy network
to measure the background (ephemeral) broadcasts sent by deployed LTAs and determine the number of
separated-mode AirTag broadcasts encountered in major metropolitan areas.

Experimental Setup. To collect AirTag broadcasts we configured a Raspberry Pi 4 with an external
GPS receiver. We configured the Pi to record all Bluetooth packets that match the separated-mode AirTag
FindMy advertisement format as described by Heinrich et al. [28], and recorded each received broadcast
along with the current time and GPS coordinates.

Experiments. Using the Pi configured as described above, we walked through densely-populated areas of
three major North American cities: New York City, USA (NYC), Toronto, Canada, and Washington DC,
USA, logging all FindMy traffic received by the Pi. Table 2 presents statistics of the data collected in our
experiments.

Discussion. Our experiments observed many separated-mode AirTag broadcasts from AirTags deployed
outside of the range of an owner device and suggest some rough lower-bounds on the ephemeral LTA noise
rate for our later experiments. We express these noise calculations in terms of the number of LTAs in range
of the receiver averaged over some time period. (For example, a receiver standing next to a single LTA would
be within range of 1 LTA, or 1800 broadcasts per hour.)

In the experiment with the largest number of transmissions (Washington, DC), we measured an average
of 0.07 LTAs within range of our receiver over the entire experimental run. However we noted bouts of

18We select prime fields Fp with p chosen as the largest prime of the specified bit-length.
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Location Duration # total # duplicate Unique Average LTAs Average LTAs
broadcasts broadcasts LTAs in range in range (5 min)

NYC 1 Hour 126 74 50 0.06 0.17
Toronto 1 Hour 21 9 12 0.01 0.08

Washington, DC 2.5 Hours 322 267 49 0.07 0.35

Table 2: FindMy (AirTag) advertisement collection. This table shows the statistics gathered during three
data collection experiments. Headers represent: total number of broadcasts detected, total number of
duplicate broadcasts, total number of unique LTAs encountered, the average number of devices within range
of the receiver at any instant over the entire collection period (1 is equivalent to a single AirTag broadcasting
continuously), and the average number of devices in range during the 5-minute period with the heaviest
broadcast traffic.

increased broadcast density over five-minute periods that peaked at the equivalent of 0.35 LTAs. We stress
that the FindMy network is growing rapidly, and so these numbers likely represent a lower bound on future
noise rates.

Establishing privacy bounds. A main challenge in MDSS is minimizing the gap (or “ramp”) between
the number of shares tpriv, where privacy is no longer guaranteed for the sender, and trec, the number of
shares a receiver must obtain in order to recover the secret. This ramp depends on external conditions like
the noise rate of the channel and is larger when we wish to tolerate higher noise rates.

Accounting for noise and missed broadcasts. There are four parameters that determine achievable tpriv and
trec values:

• The number of persistent LTAs (candidate “stalkers”) within range who contribute a sufficient set of
shares.

• The number of non-stalker ephemeral LTA broadcasts.

• The expected fraction of erasures, i.e., broadcasts lost due to radio interference or x-coordinate colli-
sions.

• The total number of shares collected and passed to the Detect algorithm by victim devices.

We account for erasures by lowering the number of broadcasts needed to detect an LTA. Based off the
epoch duration and detection window, we can calculate the number of unique shares, T , which would be
broadcast by a persistent LTA if they were present for the whole window. From these parameters and an
upper bound on the noise that should be tolerated (from both persistent and ephemeral LTAs) it is possible
to derive an upper bound on the number of broadcasts E lost due to collisions and deletions. trec is then
set to T − E to account for these losses.

Illustrating privacy. We now attempt to give intuition for how the identified parameters affect the achievable
privacy of our scheme.

Increasing c. We begin with the bound enforced by CH∗-MDSS: trec ≥ 1
c+1 (c · (tpriv + 1) + max). As c

increases, this bound approaches trec ≥ tpriv + 1, although diminishing returns set in fairly early, around
c = 20. This affect is illustrated for a concrete choice of parameters in Figure 17.

Increasing Tolerable Noise. Our scheme can be configured to tolerate larger amounts of noise (from
both persistant and ephemeral LTAs) by increasing max. This increase corresponds to a decrease in tpriv
by the CH∗-MDSS bound. Figure 18 shows how the achievable privacy degrades linearly with noise, with
the amount of noise represented in terms of the maximum number of concurrent stalkers tolerated by the
scheme.

Field Size and Accounting For Deletions. As explained above, we account for deletions by decreasing
trec, which in turn decreases tpriv and the maximum achievable privacy. The more deletions we need to

24



0 20 40 60 80 100
c

0

10

20

30

40

50

60

M
ax

pr
iv
ac
y
(m

in
)

Theoretical Achievable Privacy

Figure 17: Shows achievable privacy, in terms of minutes, as the number of interleaved polynomials (c)
increases. Here we assume an epoch duration of 4 seconds, with 3 stalkers and non-stalker broadcasts equal
to half those sent by a single stalker. Note that this graph does not consider the impact of field size or
collisions in the x-coordinate.

tolerate, the lower the achievable privacy. Deletions can come from two sources: physical layer issues and
x-coordinate collisions. In practice we assume that physical layer issues are minimal, configuring our schemes
to tolerate up to a 5% physical drop rate. More impactful are the x-coordinate collisions, which can cause
shares to be dropped in two possible ways.

1. As discussed in Section 3.1, LTAs output “noise shares” when they sample an x-coordiante that collides
with one previously sampled. As noise shares do not aid in recovery, they have the same effect as a
dropped share.

2. CH∗-MDSS cannot tolerate inputs in which the shares have colliding x-coordinates. Therefore, shares
that collide with the broadcasts of other LTAs must be dropped before the recovery algorithm is run.

For both cases as the field size increases the rate of collisions goes down, leading to a drop in the number of
deletions the scheme needs to tolerate, and therefore an increase in achievable privacy. This relationship is
shown in Figure 19

Accounting for system constraints. While high c and |F| is usually preferable as shown above, because
of bandwidth considerations, i.e. the extremely small size of current BLE packets, we cannot have both be
high simultaneously; for example, the more polynomials we use, the smaller the field must be, increasing the
probability of collision and decreasing the amount of privacy we can achieve. On the other hand, increasing
|F| will decrease c and thus also decrease privacy. For the current limitations on BLE packets, we choose
our parameters to maximize the amount of privacy by ensuring that we are not increasing c for almost no
benefit or losing too many points to collisions.

Limitations of our overall approach. First, we note that the detection window provides a strict upper
bound on the privacy we can guarantee. Second, our scheme requires us to estimate the maximum noise level
that stalking victims will encounter. If actual noise exceeds this estimate, recovery may fail and a stalking
tag will not be detected. Such a failure could occur from either a significantly larger than expected number
of ephemeral LTAs, or a stalker deliberately using enough LTAs to overwhelm the system. We attempt to
mitigate these potential failures by setting parameters so that the former is unlikely to happen in practice
and the latter is economically unlikely: rather than purchase sufficient LTAs a potential stalker would be
more likely to purchase a more sophisticated tracker.
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Figure 18: Impact of interleaving RS polynomials (c). Achievable privacy, in terms of minutes, for our
construction (§4) using different values of c, assuming an epoch duration of 4 seconds. The horizontal axis
shows the ephemeral noise rate measured as a percentage of a single LTA’s output. Each point is computed
using the CH∗-MDSS bound of trec ≥ 1

c+1 (c · (tpriv + 1) +max). Note that this graph does not consider the
impact of field size, or collisions in the x-coordinate.
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The Effect of Field Size on Privacy

c = 9, log2(|F|) = 15

c = 9, log2(|F|) = 22

c = 17, log2(|F|) = 15

c = 17, log2(|F|) = 22

Figure 19: Impact of collisions in the x coordinate. Achievable privacy, in terms of minutes, for
our construction (§4) for c ∈ {9, 17} and field sizes Fp of 15 and 22 bits. This calculation assumes that
polynomials are re-generated every 24 hours, and the epoch duration is 4 seconds.
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Epoch Avg. nearby # Unique Detection runtime Detection runtime Polynomial recovery
duration LTAs bxs received (no stalkers) (stalkers present) (all stalkers)

2 sec
1 2700 2.35 4.42 sec 5.82 sec
2 4500 5.29 sec 30.67 sec 39.45 sec
3 6300 9.43 sec 103.25 sec 162.62 sec

4 sec
1 1350 1.37 sec 1.06 sec 2.14 sec
2 2250 2.13 sec 7.28 sec 10.08 sec
3 3150 3.23 sec 25.89 sec 39.71 sec

60 sec
1 90 0.97 sec 0.03 sec 0.98 sec
2 150 0.97 sec 0.08 sec 1.04 sec
3 210 0.98 sec 0.20 sec 1.24 sec

Table 3: Benchmarks for our Detect algorithm (Figure 14 using the CH∗-MDSS decoding algorithm with the
recommended parameters of Table 1.

6 Implementation

We now describe our implementation of our construction in §4, including optimizations and deployment
choices.

Implementing the Detect algorithm. We implemented our algorithms using SageMath [50], a Python-
based computer algebra system that includes fast C implementations for many algorithms. Our decoder for
CH∗-MDSS is around 400 lines of Python and is the bulk of our Detect algorithm implementation. For each
parameter set in Table 1, e.g., c = 10 with a field size of 22 bits, the decoding matrix requires less than
10 MB, even for the largest values of max. This is compatible with available application RAM on current
smartphones.

A production deployment will need to store received broadcasts with the corresponding time and GPS
coordinates. These can be used to display candidate stalker tag locations on a map for the user, or used to
implement more sophisticated heuristics.

Implementing the Beacon algorithm. For ease of comparison, we adopt the algorithmic choices used by
Apple’s FindMy scheme: our implementation uses ECIES public keys [5] over the NIST P-224 curve. During
each call to Beacon we define a subroutine GeneratePublicKey to pseudorandomly generate a new pseudonym
pk from the master key.

To implement the secret sharing scheme we use the recommended parameters from Table 1, and we
further optimize the Beacon algorithm to divide it into two stateful subroutines. At the beginning of each
detection period (every L epochs), we execute GeneratePolynomials to sample polynomials p1, . . . , pc, and
cache these polynomials during the entire period. The tag password (idtag) is the concatenation of the con-
stant terms of each polynomial. During every call to Beacon we execute the subroutine GenerateSecretShare
to pseudorandomly generate r ∈ F and compute a secret share. As described in Section 21 if r has not been
previously generated during the detection period, we emit the share (r, p1(r), . . . , pc(r)). If x has previously
been used, we emit (r, s1, . . . , sc) where s1, . . . , sc are pseudorandom field elements.

An optimization: using a collision-aware PRF. A challenge in our implementation is the need for each dealer
to detect when x has been repeated. Implemented naively this can require a non-trivial amount of memory.
Although we do not implement it for our current encoder, it may be desirable to sample x pseudorandomly
in a manner that does not require us to keep track of all past x coordinates. To accomplish this, we propose
a novel symmetric-key cryptographic primitive that we refer to as a collision-aware PRF (CA-PRF). We
present the details in Appendix C.

Detection in practice. Since we will be executing detection on resource-constrained devices, we propose
that devices should continuously collect shares from the environment into a ring buffer containing the most
recent N minutes of shares. N is chosen to correspond to a detection window that ensures that trec shares
will be received from any nearby LTAs, given a δ broadcast loss rate. The Detect algorithm can be run
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every few minutes once the buffer is full. This strategy will provides a relatively timely warning of stalking
behavior and can be adjusted to account for computational resources.

Note that the decoding time of CH∗-MDSS is variable. Detecting whether any sufficient share-set is
present requires exactly one lattice reduction. If d ≥ 1 sufficient share-sets are present, then the lattice
reduction will need to be repeated at least d + 1 times to recover each polynomial. Once a polynomial
has been recovered, future shares from the same LTA can be efficiently detected (and filtered out) prior to
running the decoder again. Hence, although polynomial recovery is relatively more expensive than basic
detection, this optimization ensures that it will only be used rarely: i.e., when new persistent LTAs are
present.

7 Experiments

In this section we evaluate the empirical runtime of our stalker-detection and encoding algorithms. Our
experiments were conducted on a single core of a 2020 MacBook computer with an M1 chip and 16 GB of
RAM running MacOS Ventura 13.3.1 (a).

Stalker detection. To conduct this analysis we ran our CH∗-MDSS-based Detect algorithm on simulated
broadcasts. We split the experiments into two cases:

1. Decoding when stalkers are present, i.e. at least trec shares originate from the same LTA.

2. Decoding when no stalkers are present, the common case for most users, when no single (unknown)
LTA contributes trec shares to the input.

We split these cases further to test three different anonymity epochs: 2 seconds, 4 seconds, and 60
seconds. More concretely, we performed the following experiment:

1. For each anonymity epoch (2 sec, 4 sec, 60 sec), and for each number of stalkers (1, 2, 3), we determine
the maximum number of shares our decoder could receive (e.g. for a 4 second epoch and 2 stalkers,
the decoder could receive a maximum of (3600/4) ∗ (2 + 0.5) = 2250 shares).

2. We then run two experiments: first where that number of shares is generated by a combination of
stalkers and ephemeral LTAs, and second where the shares are entirely ephemeral. We average the
runtimes of each experiment over 500 iterations.

For each experiment, we generated the data so that all broadcasts have a unique x-coordinate in order
to evaluate a fixed number of points passed to the decoding algorithm and produce an upper bound on the
projected runtime. Our decoder was implemented as described in §6 and configured according to Table 1.
Table 3 presents our running times, which for common cases take seconds.

Encoding. In our implementation, the time required to generate a secret share is dominated by public-key
generation, which takes well under a second. We benchmarked the relative running times of key generation,
secret share generation and polynomial rotation and present the results in Table 4.

8 Extensions

In this section we briefly discuss some extensions to the constructions in this work.

Adding forward secrecy. For simplicity in our proofs, the construction of §4 uses a single fixed key across
all invocations of the Beacon algorithm. While this simplifies our presentation, in practical deployments
this design may leave LTAs vulnerable to attacks in which an attacker compromises an LTA to learn past
outputs. This attack can be prevented by including a mechanism to periodically update the secret key in an
irreversible manner (e.g., by computing a new key using the output of a PRF), in a manner similar to the
Apple FindMy protocol [28, 29].
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Algorithm tpriv (epoch dur.) Runtime

GeneratePublicKey 480 µs

GeneratePolynomials 41 (60 sec) 350 µs
GenerateSecretShare 41 (60 sec) 10 µs

GeneratePolynomials 591 (4 sec) 5070 µs
GenerateSecretShare 591 (4 sec) 80 µs

GeneratePolynomials 1652 (2 sec) 10,490 µs
GenerateSecretShare 1652 (2 sec) 160 µs

Table 4: Runtime average over 10,000 iterations for the GeneratePublicKey, GenerateSecretShare and
GeneratePolynomials subroutines of the Beacon algorithm (see §6). Secret sharing uses the 22-bit field with
c = 10 for the 2 second and 4 second epochs, and the 24-bit field with c = 9 for the 60 second epoch. For
secret sharing (only), the runtime also depends on the polynomial degree tpriv.

Permissioned stalker detection. The protocols in this work assume a model of operation in which
any victim device can execute stalker detection with no assistance from the service provider. A possible
alternative design would involve the service provider (SP). In principle permissioned detection could allow
service providers to authorize stalking-detection capability to legitimate users, while rejecting assistance to
unauthorized tracking adversaries. Such capabilities can be achieved by encrypting each secret share under
a key held by the service provider, and employing a two-party assisted decryption protocol to decrypt these
values for victim devices. We leave the details to future work.

Malicious/counterfeit tags. Our constructions assume that stalker LTAs will execute the Beacon protocol
honestly. This is reasonable when stalkers purchase unmodified manufacturer LTAs. However, as users
become more familiar with anti-abuse countermeasures, attackers may opt to use counterfeit (or modified)
tags that do not honestly execute the protocol. The primary risk in this setting is that a counterfeit LTA
may improperly compute the secret share sent with each broadcast message. For example, a dishonest LTA
can simply output a random value in this position, guaranteeing that a stalker tag will not be detected.

Mayberry et al. [34] proposed an extension to the Apple FindMy protocol that uses blind signatures with
auxiliary data to pre-authenticate tag broadcast messages using a key held by the service provider. Briefly,
this protocol requires the service provider to blindly sign each beacon message at provisioning time. LTAs
then broadcast each messages and the corresponding signature: only signed data is relayed via the service
provider, ensuring that counterfeit tags cannot use the offline finding network.

A similar approach can be used to ensure the validity of data generated by the Beacon algorithm in our
construction of §4. This protocol would use a two-party signing procedure to (1) commit to the output of
Beacon, (2) prove in zero-knowledge that the committed data (including secret shares) has been correctly
formulated using the per-LTA secret key, and finally (3) obtain a blind signature from the service provider
over the data itself. We defer development of the complete protocol to a future full version.

9 Related Work

Offline finding. Several works have considered the privacy and integrity of the offline finding (tracker)
ecosystem. Heinrich, Bittner and Hollick [28] evaluated the anti-stalking mechanism use in FindMy. Heinrich,
Stute, Kornhuber and Hollick [29] also considered the privacy of Apple’s FindMy protocol. Mayberry et
al. [35] considered ways to bypass tracking alerts in AirTag devices, and in a separate work Mayberry, Blass
and Fenske [34] devised protocols to protect against counterfeit tags.

Secret sharing. Many schemes use secret sharing for privacy applications: here we focus on some recent
works closely related to ours. The Apple PSI system of Bhowmick et al. [9] defines the notion of a detectable
hash function based on interleaved Reed-Solomon codes [12] for secret sharing. Similarly, the STAR protocol
of Davidson et al. [21] emits shares of (multiple) secrets for private telemetry reporting: unlike our work,
that protocol assumes that the decoder can recognize all shares from a dealer and so noise and unlinkability
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concerns are not considered. Finally, the literature on robust secret sharing (RSS) and cheater detection is
itself robust, and considers many different models see [43, 13, 14, 37, 51, 40, 16].

A key difference between the classical RSS setting and our setting is that in RSS there is exactly one
dealer and thus RSS does not incorporate the notion of unlinkability that is required by our protocols.

10 Conclusion and Future Work

In this work we considered the problem of constructing privacy-preserving tracking protocols that enable
efficient abuse detection. We demonstrate that the use of secret sharing enables privacy-preserving offline
finding while also admitting efficient algorithms for detecting stalkers. This work leaves several open questions
for future work:

1. Enhanced security against malicious tags. While we present one approach to detecting/preventing
malicious (counterfeit) tag broadcasts in §8, this solution provides only limited security against a so-
phisticated attacker. Devising more powerful detection strategies remains a problem for future work.

2. Realizing improved MDSS schemes. The MDSS notion we realize in this work likely has many
applications in privacy-preserving protocols. Although the instantiations we decribe in this paper are
efficient, developing improved constructions remains an open problem. Such schemes may employ
different codes, which can benefit from more performant list decoding algorithms.

3. General access structures. The constructions in this work consider two different broadcast patterns
for enabling stalker detection. Future works may expand this consideration to other patterns, including
general access structures.

4. Alternative applications. The schemes described in this work may have applications to other areas
where privacy-preserving protocols can benefit from selective de-anonymization. These include tools
such as bounded group signatures (where overuse of a single signing key would de-anonymize the signer)
as well as other applications to private transactions.
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[42] Sven Puchinger and Johan Rosenkilde né Nielsen. Decoding of interleaved reed-solomon codes using
improved power decoding. In 2017 IEEE International Symposium on Information Theory (ISIT), pages
356–360. IEEE, 2017.

[43] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, page
73–85, New York, NY, USA, 1989. Association for Computing Machinery.

[44] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 8(2):300–304, 1960.

[45] RetailNext. RetailNext Announces General Availability of Au-
rora Sensor. Available at https://retailnext.net/press-release/

retailnext-announces-general-availability-of-aurora-sensor, 2023.

[46] Nat Rubio-Licht. Tile adds anti-stalking feature after AirTag backlash. Protocol, March 2022.

[47] SensorMatic. ShopperTrak Traffic Insights. Available at https://www.sensormatic.com/

shoppertrak-retail-traffic-insights, 2023.

[48] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November 1979.

[49] Jonathan Stempel. Apple is sued by women who say AirTag lets stalkers track victims. Reuters,
December 2022.

[50] The SageMath Developers. SageMath, June 2023.

[51] Martin Tompa and Heather Woll. How to share a secret with cheaters. In Proceedings on Advances in
Cryptology—CRYPTO ’86, page 261–265, Berlin, Heidelberg, 1987. Springer-Verlag.

[52] Jiun-Hung Yu and Hans-Andrea Loeliger. Simultaneous partial inverses and decoding interleaved reed–
solomon codes. IEEE Transactions on Information Theory, 64(12):7511–7528, 2018.

A Details of Apple’s FindMy Protocol

The Apple FindMy protocol has been extensively reverse-engineered by Heinrich et al. [29]. Here we briefly
summarize some relevant findings.

Privacy, device types, separated mode. As discussed in §2.1, the FindMy protocol operates differently
for LTA and non-LTA devices such as phones and tablets. Non-LTA devices maintain a single identifier
that rotates every 15 minutes. AirTags maintain two separate identifiers: the near-owner identifier and
the separated mode identifier. When the LTA is in range of a paired owner device, it emits the near-owner
identifier which changes every 15 minutes to enable privacy. When the LTA is not in range of the owner
device, it continues to evolve the near-owner identifier every 15 minutes but it only broadcasts a single byte
of that identifier. For the remaining bytes of output it transmits the separated-mode identifier, which is
updated only once per 24-hour period.

While Apple did not initially document the reasoning behind its AirTag design, a recent IETF draft by
Apple and Google [32] does explicitly state a motivation for this decision (emphasis added):

when in a separated state, the accessory SHALL rotate its resolvable and private address every
24 hours. This duration allows a platform’s unwanted tracking algorithms to detect that the same
accessory is in proximity for some period of time, when the owner is not in physical proximity.

Even without this explicit motivation, Apple’s decision to continuously update the AirTag near-owner
identifier at all times strongly indicates that power consumption is not the motivation for this decision, since
total computational effort remains the same in both modes.
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KeyGen(cfg) :

k1 ← PRF1.KeyGen(1
λ)

( , sk)← CCA.KeyGen(1λ)

return (sk, k1, cfg)

Beacon(ktag, iepoch, aux) :

(sk, k1, cfg)← ktag

k ← k1

for j ∈ [iepoch]:

k ← PRF.Eval(k, “update”)

(pk, )← CCA.ReRandomize(sk;PRF.Eval(k, “bx”))

return pk ∥ aux

GenReport(B, loc) :

pk∥aux← B

ct← CCA.Enc(pk, loc∥aux), h← H(pk)
return h ∥ ct

RetrieveReports(Owner(ktag, iepoch), SP(D)) :

Owner parses ktag as (sk, k1) and derives key:

k ← k1

for j ∈ [iepoch]:

k ← PRF.Eval(k, “update”)

(pk∗, sk∗)← CCA.ReRandomize(sk;PRF1.Eval(k, “bx”))

Owner sends H(pk∗) to SP

SP searches D for values with key H(pk∗) and adds them

to C, which is sent to Owner

Owner decrypts reports in C:

out := []

for c ∈ C:

(loc, aux)← CCA.Dec(sk∗, c)

append (loc, aux) to out

Owner outputs out, SP outputs ⊥

Figure 20: Apple’s FindMy Scheme.

A.1 Cryptography of the FindMy protocol

The Apple FindMy protocol implements an offline finding protocol that achieves perfect unlinkability at the
cost of no ability to detect stalkers19. We provide the full details here for completeness, based on the reverse-
engineering work of Heinrich et al. [28, 29]. At a high level, Apple’s protocol has the LTA pseudorandomly
generate public keys for a CCA secure encryption scheme. These public keys are used by volunteer devices to
encrypt location reports. A hash of the public key along with the reports are given to a database controlled
by the service provider. The owner - because it shares state with the LTA - can re-derive expected public
keys and corresponding secret keys, query on the hash of the public keys, and decrypt location reports.
Rather than generate fresh public/private key pairs, they choose to use an encryption scheme that admits
key re-randomization. This is implemented by an extra algorithm CCA.ReRandomize that takes as input
a secret key and randomness, and derives a new public, private key pair. The Beacon algorithm uses the
output of the pseudorandom function evaluation to produce randomness for calling CCA.ReRandomize on
input sk0. The resulting public key is used to construct the broadcast and the PRF key is updated to a new
PRF key through evaluation of the old key by evaluating a KDF on a constant value: this provides forward
secrecy in the event that a device is stolen and its keys extracted (and mirrors our discussion in §8.). A
non-forward secure variant of the scheme is shown in Figure 20. To achieve forward secrecy, the Beacon
algorithm should not use the variable k and instead update k1 with a single PRF evaluation every time iepoch
increments before using it in ReRandomize.

19This property can be weakened, as Apple suggests, by just emitting the same identifier for longer. In practice, this has
meant allowing parties to be trackable for a time window of 24 hours
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B Proofs for MDSS schemes

B.1 Proof of Claim 3.0.3

For an unlinkability adversary A, let U be the event that the share A receives as a response to its “challenge”
query in ExpLinkbA(λ) has a unique x coordinate. We now prove Claim 3.0.3.

Claim B.0.1.
Pr[ExpLink0A(λ) = 1|U] = Pr[ExpLink1A(λ) = 1|U]

Proof. Before the “challenge” stage of the game the distribution that A sees is identical. We can focus on
the response A sees to the challenge query. When the challenge response x coordinate is unique and b = 0,
A sees the tprivth point from c degree tpriv polynomials, which is equivalent to a uniformly random value of
Fc+1. When b = 1, A sees a uniform random value of Fc+1. Therefore, since the distribution passed to A is
identical in both cases, its behavior in the games must be identical.

Claim B.0.2. Pr[!U] ≤ tpriv
|F|

Proof. Pr[!U] is equivalent to the probability that the x coordinate A receives in the challenge phase collides
with the x coordinate of a previously received share. As there are at most tpriv previously received shares,

and each x coordinate is sampled uniformly, we have Pr[!U] =
tpriv
|F| .

Claim B.0.3.
|Pr[ExpLink0A(λ) = 1]− Pr[ExpLink1A(λ) = 1]| ≤ negl(λ)

Proof. Let ZL be the event that ExpLink0A(λ) = 1, and OW be the event that ExpLink1A(λ) = 1. Then,

|Pr[ZL]− Pr[OW]|
=|Pr[ZL|U] Pr[U] + Pr[ZL|!U] Pr[!U]− Pr[OW|U] Pr[U]
− Pr[OW|!U] Pr[!U]|

=|Pr[ZL|!U] Pr[!U]− Pr[OW|!U] Pr[!U]| (Claim B.0.1)

≤Pr[ZL|!U] Pr[!U] + Pr[OW|!U] Pr[!U]
≤2Pr[!U]

=2
tpriv
|F|

(Claim B.1)

=negl(λ) (|F| ≈ 2λ)

B.2 Proof of Unlinkability for Small Field Construction

Proof Sketch. This result extends the proof of unlinkability for large fields. Before the challenge phase, if
the challenger responds with shares with colliding x-coordinates, tpriv-unlinkability implies x-unlinkability
for all x ≤ tpriv. If the x-coordinate of the challenge collides with a previous share, it is equally likely to
have come from either secret, since both are sampled from the uniform distribution. The y-coordinates also
have the same distribution: if b = 0 the value is a c-tuple of random field elements, and when b = 1 it is the
evaluation of c polynomials of degree tpriv which is indistinguishable from a random c-tuple. The analysis
for unique x coordinates is the same as in B.0.1.
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IdealReconstruct

IdealReconstruct({sh1, . . . , shtrec}) :
Parse {sh1, . . . , shtrec} as {(αi, βi,1, . . . , βi,c)}i∈trec

If ∃i, j ∈ [trec] s.t. i ̸= j and αi = αj , end and output
⊥.
∀j ∈ [c], set pj to be the unique tpriv-degree polynomial
defined by {(αi, βi,j)}i∈trec .
output p1(0)|| . . . ||pc(0)

Figure 21: The IdealReconstruct algorithm

B.3 Ideal Reconstruct

In this section we define an IdealReconstruct algorithm for Construction 13 and bound its probability of
failure. Figure 21 illustrates the IdealReconstruct algorithm.

Claim B.0.4. For the Share algorithm defined in construction 13, and for all s ∈ S and I ′ ⊂ I where
|I ′| = trec,

Pr[IdealReconstruct(Share(s, I ′)) ̸= s] ≤ trec(trec − 1)

2|F|

Proof. It is clear that correct reconstruction is guaranteed when ∀i, j ∈ [trec], αi ̸= αj .
IdealReconstruct thus fails when two shares have the same x-coordinate. This probability is given by the

birthday bound of (trec(trec − 1))/(2|F|) with trec balls and |F| bins.

We note that for a non-heuristic construction of MDSS, for example using the Guruswami-Sudan [26]
list-decoding algorithm for Reed-Solomon codes, claim B.0.4 combined with the algorithm guarantees results
in an MDSS construction that can be formally proved to satisfy ϵ-strong-md-correctness. We defer a formal
treatment to the full version.

C Collision-Aware PRFs

Realizing our constructions over small fields poses an implementation challenge: to protect the unlinkability
of a given dealer, the evaluation point x for each secret share must be sampled uniformly. At the same time,
our secret sharing protocols require that a dealer must emit noise shares when evaluating a secret share on
duplicate coordinates. The naive approach to solving this problem requires each dealer to keep a list of past
evaluation points; unfortunately this may force the dealer to retain a substantial amount of state.

Here we propose an alternative approach: rather than recording past evaluation points, each dealer will
sample the evaluation point pseudorandomly using a specialized PRF construction that we refer to as a
collision-aware PRF. The novel feature of this PRF construction is that it signals the presence of a collision.
More concretely, when presented with an input i and some compact state computed from past queries, this
function produces both a pseudorandom element in F as well as a separate collision-detection signal: this
signal will equal 1 iff there exists some input j < i such that F (i) = F (j). In practice, a caller can evaluate
this function sequentially on inputs {0, 1, 2, . . . } to produce a sequence of evaluation points, and can respond
to collision signals as required by the secret sharing protocol.

Formalizing CA-PRFs. We now provide definitions of the CA-PRF notion.

Definition C.1 (CA-PRF). Let D,R be two sets, where D is an ordered set of size polynomial in the key
length. A collision-aware PRF (CA-PRF) family is a function F : K ×D × Z+ → R× {0, 1}
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We will consider the case where D = R, and notationally we will assume that elements in D can be
represented by an integer position in the set. We will use the notation FK(i,Mi) → (x, b) to represent a
query specifying the ith element of D and a non-negative integer count Mi. This query produces an element
x ∈ D as well as a bit b ∈ {0, 1} that indicates whether there is a collision with some “earlier” input to the
function.

Properties. We define a well-formed query as one that takes as input a pair (i,Mi) where Mi represents
the number of unique x values produced by queries on earlier elements of the domain. More precisely, we
define M0 = 0, and for 0 < i < |D|, we inductively define Mi to be the total number of (unique) elements in
the set {xj}j∈[0,i−1] where (xj , bj)← FK(j,Mj).

A CA-PRF must possess two main properties: collision-correctness and pseudorandomness. We describe
these below:

Collision-correctness. This property holds that for all keys K and input tuples where (i,Mi) are well-
formed, the query (xi, bi)← FK(i,Mi) will output bi = 1 iff there exist an integer 0 ≤ j < i such that
well-formed (xj , bj)← FK(j,Mj) has xi = xj .

(Non-adaptive) pseudorandomness. This is identical to the standard pseudorandomness notion for
PRFs, with two caveats: (1) we consider only adversaries who evaluate the oracle non-adaptively on a
fixed polynomial set of well-formed queries 0, . . . , q− 1, and (2) pseudorandomness applies only to the
output string x, and not to the collision bit b.

C.1 A construction for a CA-PRF

We now propose a concrete CA-PRF with domain and range {0, . . . , p − 1} where p is prime, and p is
polynomial in the key length. Our construction is built from a standard PRF F̄ and some small domain
PRP P . We note that such permutations can be constructed from a standard PRF via the techniques
of [10, 6].

Let F̄ be a PRF family with domain and range {0, 1}λ, and let P be a small-domain PRP over the domain
{0, . . . , p− 1}. Our construction is described as follows:

1. Key generation. To generate a key, sample key kP for the PRP P and key kF̄ for the PRF F̄ .
Output K = (kP , kF̄ ).

2. Evaluation. On input a key K, an element i ∈ [0, p− 1] and an integer count Mi ≥ 0:

(a) Parse K as (kP , kF̄ ).
(b) Compute (j′, b)← SampleProb(kF̄ , i,Mi, p).
(c) If b = 0, output (PkP

(Mi), 0).
(d) Otherwise if b = 1, output (PkP

(j′), 1).

3. SampleProb(k, i,Mi, p) → (j′, b). If i = 0 this subroutine returns (0, 0). Otherwise it performs the
following steps:

(a) Compute a sequence of pseudorandom coins r ←
(
F ′
kF ′ (i∥Mi∥p∥0)∥ . . . ∥F ′

kF ′ (i∥Mi∥p∥ℓ)
)
, for

some ℓ large enough that |r| is sufficient to perform the remaining steps.

(b) Use the coins r to sample a bit b such that b = 1 with probability Mi

p (over the given coins.)

(c) If b = 0 set j′ ← 0, and if b = 1 use the remaining coins from r to uniformly sample an integer j′

in the range [0,Mi − 1].

(d) Return (j′, b).
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Correctness. We observe that collision-correctness holds trivially following query i = 0. Let i, 0 < i < p
be the smallest query where the conditions of collision-correctness do not hold. Written explicitly, this
implies one of two possibilities: either (1) bi = 0 and yet xi = xj where xj is the output of some previous
query 0 ≤ j < i, or (2) bi = 1 and yet xi ̸= xj for all 0 ≤ j < i. Since i is the smallest value to violate
collision-correctness, we can assume that collision-correctness holds for every query 0 ≤ i′ < i. We consider
these two cases separately and show that either case implies a contradiction.

In case (1) then there must exist some query j < i such that xi = xj and bj = 0. (If there exists such
a j where bj = 1 then, under our stipulation that all queries j < i satisfy the conditions of collision-
correctness, there must be an even earlier query j satisfying xi = xj where b = 0 and hence we need
only consider the earlier query.) And yet recall that if bj = 0 and query j satisfies the conditions of
collision-correctness, then xj = PkP

(Mj) and the count Mi > Mj since the response xj will necessarily
have increased the number of unique values by at least one. Given that PkP

is a permutation and
Mi ̸= Mj it cannot be the case that xi = xj because that would imply PkP

(Mi) = PkP
(Mj). This

contradicts the assumption.

In case (2) we have that bi = 1 and yet xi ̸= xj for any 0 ≤ j < i. Here the construction returns xi = PkP
(j′)

where j′ ∈ [0,Mi − 1]. For the condition xi ̸= xj to be true, it would have to be the case that some
value in the range [0,Mi − 1] has not been queried to the permutation and returned by some previous
query. And yet recall that all previous queries 0 ≤ i′ < i satisfy the conditions of collision-correctness:
this means that the count must have increased by at most one following any query where bi′ = 0,
and did not increase at all for queries where bi′ = 1. Since for each query where bi′ = 0 the response
xi′ = PkP

(Mi′) and such queries will encompass each Mi′ ∈ [0,Mi − 1] then there must exist at least
one past query j < i such that xj = PkP

(j′) for j′ ∈ [0,Mi − 1], contradicting the assumption.

Security. We now sketch a brief analysis to consider the pseudorandomness of the above construction.
Recall that we consider only an adversary who issues well-formed queries. Moreover, p is polynomial in
|K| and hence w.l.o.g. we can restrict our consideration to adversaries that query FK on all input values
{0, . . . , p − 1} in sequence. Our analysis begins with the real protocol described above, and then proceeds
via a series of hybrids.

Hybrid 1. In a first hybrid, we re-implement the construction above while replacing the functions F̄kF̄
and

PkP
with a random function (RF) and a random permutation (RP) respectively, each with the appropriate

input/output behavior. Clearly an adversary who distinguishes this hybrid from the real protocol with
non-negligible advantage implies a distinguisher for one of these two pseudorandom objects.

Hybrid 2. In a second hybrid, we replace the coins r sampled within the SampleProb procedure with a sequence
of uniformly-random coins of the same length. Since the input sequence (i∥Mi∥p∥0), . . . , (i∥Mi∥p∥ℓ) does
not repeat and RF is a random function, it is easy to see that the resulting coins are distributed identically
in this hybrid, and hence the adversary’s advantage is identical to the previous hybrid.

Hybrid 3. Here we change the description of the random permutation RP oracle to an equivalent one.
Consider the permutation RP to be implemented by a lazy oracle that operates as follows: when queried on
each input Mi (in sequence) the oracle first samples xi ∈ [0, p− 1] uniformly and then checks a table to see
if past queries (on inputs Mi′ < Mi) have returned xi. If not, the RP returns xi. Otherwise it samples a
new xi and repeats the test above until it finds an xi that is not in the table. This re-sampling process will
occur S′

i times to find xi. Clearly this oracle has the same distribution as a standard random permutation
and so the adversary’s advantage is identical to the previous hybrid.

Hybrid 4. We now combine the construction of F and RP as follows. When F is queried on input i
(recalling that duplicate queries are not permitted) it samples xi ∈ [0, p − 1] uniformly and examines the
table of previous responses from RP to see if xi represents the response to a previous query RP (Mi′) where
Mi′ < Mi. If so it sets bi = 1 and otherwise sets bi = 0. If bi = 0 then it now simulates RP as follows: it
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Figure 22: Illustration of broadcast identifiers in the window-based scheme (Appendix §D) for window size
ℓ = 4. id represents the identifier for the current epoch, and prev id represents the identifier from ℓ epochs
previous. For id and prev id each unique color/number combination represent a distinct pseudonymous
identifier. Circled/uncircled letters of the same color represent matching secret shares.

writes xi into the table for the RP at position Mi. If bi = 1 it does not modify the table for RP . In all cases
it returns (xi, bi) as the response from F .

This hybrid requires more analysis. Let (xi, bi) = FK(i) be the ith query response. Observe that on
query i = 0 this hybrid samples a uniform xi ∈ [0, p − 1] and sets b = 0, which is identical behavior to the
previous hybrid. As i increases monotonically we must consider two cases.

1. When bi = 1: For i > 0 any query F (i) will return b = 1 with probability Mi/p, exactly as in the
previous hybrid. This occurs because Mi is the number of unique elements in the table RP (equivalent
to the number of previous unique responses from F ) and a uniform xi ∈ [0, p− 1] will collide with at
least one element with exactly that probability. Moreover, let us consider j′ to be the index of that
collision (if there are multiple j′, we can select one at random from the options): then j′ in this hybrid
will be uniform in [0,Mi − 1] exactly as in the previous hybrid, and the identity xi = RP (j′) will be
preserved.

2. When bi = 0: For i > 0 any query F (i) will return b = 0 with probability 1− (Mi/p) as in the previous
hybrid. Let i′ < i be the most recent query in which bi′ = 0, and define Si = i − i′ as the number of
times a value x ∈ [0, p− 1] has been sampled since the i′th query, including sampling of the current xi.
Observe that Si is determined by a process of sampling values in [0, p− 1] and comparing them to the
existing table RP which has size Mi, which is precisely the process that determines S′

i in the previous
hybrid. Hence statistically these terms will be identical, and thus the process of sampling xi will be as
well.

Hence it holds that the statistical distribution of this hybrid is identical to that of the previous hybrid.
Critically, this final hybrid returns uniformly random values xi ∈ [0, p− 1] from F for each query. It is easy
to see that this function has behavior identical to a random function. Hence by summation across all hybrids
we show that all adversaries must distinguish the real protocol from a random function with probability at
most negligible. This ends the sketch.

D A Window-based construction

As a separate contribution, we describe a simple window-based construction. This construction preserves the
unlinkability of LTA broadcasts against recipients who remain in the presence of an LTA for for a well-defined
and limited number of consecutive broadcasts. Simultaneously it allows detection when a receiver is exposed
to the tag for a longer period. The benefit of this scheme is its simplicity and ease of implementation.
Unfortunately it offers relatively limited privacy guarantees, as we discuss further below.

Intuition. This scheme can be viewed as a simple extension of a basic FindMy-like protocol. The core idea
is to augment the LTA to output an extra auxiliary pseudonymous identifier. Unlike the main identifier used
in the FindMy scheme (which may be sent to the service provider), these auxiliary identifiers are used only
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Beacon(cfg, ktag, iepoch, aux) :

ℓ← cfg
pk ← BaseProto.Beacon(ktag, iepoch)
For epoch ∈ {cur, prev}:

If epoch = cur, a← 1, Else a← 0
TKepoch ← PRF.Eval(ktag, STK∥⌊iepoch/ℓ⌋+ a)
{shepoch

0 , shepoch
1 } ← Share{0,1}(TKepoch)

idepoch ← PRF.Eval(TKepoch, iepoch mod ℓ)
return (pk, aux, idcur, idprev, sh

cur
0 , shprev

1 )

Figure 23: The Beacon and Detect algorithms for our window-based abuse-resistant tracking protocol. STK

is a constant. KeyGen and RetrieveReports are identical to those in BaseProto. The GenReport algorithm
simply parses pk from each broadcast and otherwise operates as in BaseProto.

by edge devices and are not relayed to the service provider. More critically, these additional identifiers are
repeated in the broadcast that occurs exactly ℓ epochs later. The value ℓ here defines a stalker detection
window, and should be chosen carefully so that it provides privacy for a reasonable time period. The nature
of these broadcasts is such that a receiver who remains within range of an LTA during any series of ℓ − 1
epochs (T, . . . , T+(ℓ−1)) should have no substantial advantage in linking the beacon advertisements sent by
the LTA, because the identifiers are pseudorandom and do not repeat during this period. At the same time,
a potential stalking victim who receives advertisements sent at any pair of epochs (T, T +ℓ) will immediately
detect the repeated auxiliary identifier in the second broadcast, and can thus trace both signals to a single
LTA. An illustration of the broadcast pattern is shown in Figure 22.

Of course, linking only two broadcasts is not sufficient to realize a full stalker-detection algorithm. A more
complete detection procedure requires the victim to recover the tag ID, and also to consider the locations
and pattern of many broadcasts sent during the detection window. To allow the victim to identify these
intermediate broadcasts, we incorporate a second mechanism: each broadcast also includes one share of a
key used to re-generate the full sequence of auxiliary identifiers used within the current detection window,
as well as a matching share for the previous window. Given two such shares (e.g., the broadcasts sent at
epochs T, T + ℓ) a victim can recover the key used to generate all of the identifiers in the window containing
T : it can then use this key to re-generate and identify the intervening broadcasts. In a complete system this
key can also be used to derive a tag identifier idtag for communicating with the LTA.

For space reasons we leave a formal description of the scheme and security proofs to a future full version
of this work.

Privacy limitations of the window-based scheme. While the scheme above meets reasonable notions
of privacy and abuse-detection, it is also quite fragile. The main limitation of this approach is that a tracking
adversary may be able to link (de-anonymize) a tag even in situations where the tag has not been in proximity
to the receiver for a significant fraction of the detection window. For example, a tracking adversary may
be able to de-anonymize an LTA that even briefly enters its receive range during two consecutive detection
windows. This is very different from our desired functionality, which is that receivers can only de-anonymize
LTAs that remain consistently within range during (a large fraction of) the detection window. In the next
section we propose a different construction that achieves a more robust functionality.

D.1 Proofs of Tag Indistinguishability and Detectability

D.1.1 Tag Indistinguishability

In the 2-linkable scheme we have a variable ℓ that specifies the length of a stalker detection window. Broad-
casts are structured in such a way that the if a device never sees a broadcast for a pair of epochs (T, T + ℓ),
for any T , then recovery is not possible. We can describe this more formally as a predicate P :

P (cfg, Q) =“For id ∈ {0, 1}, for all epochs T , if (id, T ) ∈ Q, then (id, T + ℓ) /∈ Q and Q is not a multi-set”
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Theorem D.1. The 2-linkable construction presented in 23 satisfies tag indistinguishability for predicate P .

Proof Sketch. For this scheme, we provide a description of the hybrids and the claims we need to make, as
the overall proof idea is very straightforward. Because we never need to answer Beacon queries for a specific
identity id on epoch T and T +ℓ, the PRF key TKepoch is not recoverable for any epoch. As A is a polynomial
time adversary, they will make at most a polynomial number of queries q(λ) including the challenge query.
For each query, we have four hybrids: the first two change the additive shares to be shares of random values
(not the PRF keys used to construct idepoch, for epoch ∈ (cur, prev)). The latter two replace PRF evaluations
with random values. We note that the first two are based off of information theoretic assumptions while the
latter are computational.

After this is done, it is easy to argue indistinguishability, since all values that are uniformly random and
not at all related to the bit b chosen by the challenger. If details are omitted from a hybrid, it is assumed
they are the same as the previous hybrid. The notation ExpTag,P,b,Hi

A denotes the tag indistinguishability
experiment with predicate P and using bit b with the changes included from Hi.
H0 = The tag indistinguishability game, with predicate P for the scheme in figure 23 and using bit b = 0.
A sequence of hybrids k ∈ {0, . . . , q′(λ)}, j ∈ {0, . . . , 3}, Hk,j = All of the next lines apply to query k. If

j = 0, replace shcur
0 with a random value. If j = 1, replace shprev

1 with a random value. If j = 2, replace idcur
with a random value from the PRF’s co-domain. If j = 3, replace idprev with a random value from the PRF’s
co-domain.

We note that H0 = H0,0 = . . . = H0,3 (we consider all queries to be one indexed, not zero indexed).
Consider the chain of hybrids H0,0 . . .H0,3,H1,0, . . .H1,3, . . .Hq′(λ),0, . . .Hq′(λ),3, re-indexed by j from 1

to 4(q′(λ) + 1).

Claim D.1.1. ∀j ∈ {0, . . . 4(q′(λ)+1)−1}, if the PRF is secure, then there exists a negligible function negl,

s.t. Pr
[
Exp

Tag,P,0,Hj

A (λ) = 1
]
− Pr

[
Exp

Tag,P,0,Hj+1

A (λ) = 1
]
≤ negl(λ)

Now that all queries receive random values, not based on the bit b, it is easy to switch the bit.

Claim D.1.2. Pr
[
Exp

Tag,P,0,H4(q′(λ)+1)

A (λ) = 1
]
= Pr

[
Exp

Tag,P,1,H4(q′(λ)+1)

A (λ) = 1
]

The rest of this argument would be symmetric and so we end the proof sketch here.

D.1.2 Detectability

Detectability in the case of our 2-linkable scheme is simply related to seeing at least two Beacon calls that
are precisely ℓ epochs apart from the same device. To put it more precisely,

P ′(cfg, Q, id) =“ ∃id, T s.t. Q contains (id, T ) ∈ Q and (id, T + ℓ) ∈ Q ”

We note that detectability is easily satisfied for this construction: the detection algorithm simply looks for

two broadcasts B = (pk, idcur, idprev, sh
cur
0 , shprev

1 ), B′ = (pk′, id′cur, id
′
prev, sh

cur′

0 , shprev′

1 ) where idcur = id′prev.

We recover TK as Recover{0,1}(sh
prev′

1 , shcur
0 ) and identify all Beacon values sent by the LTA in the detection

window.

E MDSS-based construction theorems and proofs (§4)
This appendix contains security arguments for the tracking protocol of §4. Throughout this section, we use
two variables ianon and e. Both of these are defined from the epoch iepoch = i that is queried on and a
parameter L - which is a part of cfg - as ianon = i mod L and e = ⌊ i

L⌋.
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E.1 Tag-Indistinguishability

Recall that in the k-linkable scheme an LTA broadcasts shares for L from the same polynomial. If an observer
sees ≤ tpriv unique shares from these epochs they should not be able to identify the LTA. More formally,

P (cfg, Q) = “for id ∈ {0, 1}, ∀e, |{(id, i) ∈ Q | e = ⌊ i
L⌋}| ≤ tpriv and Q is not a multi-set”

Proof. We will make a standard hybrid argument, reducing to the tpriv-unlinkability of the MDSS scheme.
When hybrids are described, if details are omitted, it is assumed that they are the same as described in

the previous hybrid. ExpTag,P,Hi

A denotes the output of modified experiment suggested by Hi.
H0 = The tag indistinguishability game for predicate P , as described in figure 7, for the construction in

Figure 14, with the bit b = 0

In our first hybrid, we try to guess the abuse epoch that A will query on. Because A is a polynomial
time adversary, they can only make at most a polynomial number of queries. Meaning the advantage we
lose from this step is at most 1

poly(λ) . To be more precise,

H1 = Let q(λ) be an upper bound on the number of queries that A will make. Guess both of queries q
which first introduce the abuse epochs that will be challenged on (note: this could be the challenge query
itself and the abuse epochs that are challenged on might be the same for both tag keys). If the guess is
incorrect, output 0.

Claim E.0.1. Pr
[
ExpTag,P,H1

A (λ) = 1
]
= 1

q(λ)2
Pr

[
ExpTag,P,H0

A (λ) = 1
]

The proof of this claim is straightforward, as the chance that the challenger samples correct guesses for
both epochs - when sampling independently and uniformly at random - is equal to what is in the claim,
regardless of A’s query pattern. Let e∗,b and i∗,banon be the respective values defined at the start of this section
for b ∈ {0, 1} in the challenge query.

We now state a series of hybrids that all have an almost identical argument, switching out PRF evaluations
with varous keys for random values. This is not complicated mainly because all PRF keys are independent
of one another and no other function of the keys is given out.
Hi,j = Replace PRF evaluations using ki with sampling random values for kjtag

There are six such hybrids, for i ∈ {1, 2, 3} and j ∈ {0, 1}. Choose some ordering, and re-label these
hybrids as H2, . . . ,H6 (no particular ordering will be necessary for the claim to follow).

Claim E.0.2. ∀j ∈ [2, 6], if the PRF is secure, then there exists a negligible function negl, s.t. |Pr
[
Exp

Tag,P,Hj

A (λ) = 1
]
−

Pr
[
Exp

Tag,P,Hj−1

A (λ) = 1
]
| ≤ negl(λ)

We will not provide all hybrid arguments and just give an exemplary one for H2,0. Let j
∗ ∈ [2, 6] be the

location of H2,0 in the ordering from earlier. Recall that
H2,0 = Replace PRF evaluations using k2 with sampling random values for k0tag

We construct an adversary B that succeeds with non-negligible advantage in the PRF security game if A
performs non-negligibly better in either Hj∗−1 or Hj∗ .

Description of B:

• Generate k0tag and k1tag using KeyGen(cfg).

• Let i be an epoch associated with k0tag that B must respond on (either from a non-challenge query

where id = 0 or from the challenge query from A). Calculate e = ⌊ i
Z ⌋ and ask the PRF challenger for

evaluation at e, receiving r. Use r to construct she
iepoch

, construct pk as normal.

• Let the output of A be b′. Output b′.
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Analysis:
Let ExpPrf,bB be the experiment for the PRF security game.

|Pr
[
ExpPrf,1B (λ) = 1

]
− Pr

[
ExpPrf,0B (λ) = 1

]
|

= |Pr [A outputs 1 in Hj∗ ]− Pr [A outputs 1 in Hj∗−1] |

= |Pr
[
Exp

Tag,P,Hj∗

A (λ) = 1
]
− Pr

[
Exp

Tag,P,Hj∗−1

A (λ) = 1
]
|

≤ negl(λ)

We now describe a sequence of hybrids that will allow us to use inconsistent randomness to share secrets.
Doing this is okay, because - up to the tpriv threshold - it is not possible to tell if shares are using the same
randomness or not. Thus, for this chain of arguments, we will rely on the tpriv-unlinkability of the MDSS
scheme. We now describe the hybrids in general:
Hb

7,j = For query tpriv − j to id = b with ⌊ i
L⌋ = e∗,b from A, change the response to provide a share that

uses new randomness (i.e if sb is the secret that is being used to construct Beacon, sample r ∈R {0, 1}λ ,
compute sh← Share(sb, i

∗,b
anon; r) and use sh for responding to A)

Hb
7,0 corresponds to changing the challenge query for id = b.

Claim E.0.3. If the MDSS scheme is tpriv-unlinkable, then there exists a negligible function, negl s.t.

∀b ∈ {0, 1},∀j ∈ [tpriv − 1], |Pr
[
Exp

Tag,P,Hb
7,j+1

A (λ) = 1

]
− Pr

[
Exp

Tag,P,Hb
7,j

A (λ) = 1

]
| ≤ negl(λ)

We consider the following adversary B against ExpLink.
Description of B :

• Generate kbtag ← KeyGen(cfg), sb
$←− S for e∗,b, b ∈ {0, 1}

• When answering A’s queries directed to id = b, calculate ianon = i (mod L), e = ⌊ i
L⌋. If e ̸= e∗,b,

proceed as normal. Otherwise, letm be the number of queries made to e∗,b already. Ifm+1 = (tpriv−j)
(and j ̸= 0), query B’s challenger i times to get to the challenge query. For the challenge query send
(sb, ianon, ianon). Receive sh

∗ and use sh∗ to construct the query response to A. Ifm < (tpriv−j), then B
queries the challenger on ianon, receives sh and uses this to construct the response. If m+1 > (tpriv−j),
choose r ∈R {0, 1}λ, calculate sh← Share(sb, ianon; r) and use this to structure responses.

• For the challenge query, if j = 0, id = b = 0, and the number of queries is less than tpriv − 1, query
up to tpriv − 1 random values. Then query on (s0, ianon, ianon) where ianon = i (mod L) where i is the
epoch that was received. Use this to construct a response. Otherwise, calculate a random share of sb
and use this instead.

• Receive b̂ from A and output b̂

Analysis:
Let ExpLinkbB be the experiment for unlinkability using the bit b.

|Pr
[
ExpLink1B(λ) = 1

]
− Pr

[
ExpLink0B(λ) = 1

]
|

= |Pr
[
A outputs 1 in Hb

7,j+1

]
− Pr

[
A outputs 1 in Hb

7,j

]
= Pr

[
Exp

Tag,P,Hb
7,j+1

A (λ) = 1

]
− Pr

[
Exp

Tag,P,Hb
7,j

A (λ) = 1

]
≤ negl(λ)
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While these hybrid chains (for b ∈ {0, 1}) have been described in parallel they can be chained sequentially.
We also would like to comment that this same argument holds for showing that the experiments defined by
H6 and H0

7,0 are indistinguishable. We consider the last in this sequence to be H7 i.e. H7 = H1
7,tpriv−1. We

now may finally switch the challenger’s bit b in H7 by relying on the the fact that unlinkability does not
allows us to distinguish shares made from different secrets.
H8 = Switch the challenge bit b from 0 to 1.

Claim E.0.4. If the MDSS scheme is tpriv-unlinkable, then there exists a negligible function, negl s.t.

|Pr
[
ExpTag,P,H8

A (λ) = 1
]
− Pr

[
ExpTag,P,H7

A (λ) = 1
]
| ≤ negl(λ)

Description of B

• Generate k0tag and k1tag from KeyGen. Choose s0, s1 ← S for the challenge epochs e∗,0, e∗,1. Initialize
B’s challenger with s0.

• For each non-challenge query, i, id, aux, calculate ianon = i (mod L), e = ⌊ i
L⌋. If e ̸= e∗,b for either b = 0

or b = 1, proceed as normal. Otherwise, calculate r ∈R {0, 1}λ and compute sh ← Share(sb, ianon; r)
and use sh.

• For the challenge query, calculate i∗,0anon and i∗,1anon from the input. Send tpriv − 1 random queries to the
challenger and then send the challenge query (s1, i

∗,0
anon, i

∗,1
anon). Receive sh and use this to structure the

reply to A.

• If A outputs b̂, output b̂

Analysis:

|Pr
[
ExpLink1B(λ) = 1

]
− Pr

[
ExpLink0B(λ) = 1

]
|

= |Pr [A outputs 1 in H8]−
Pr [A outputs 1 in H7] |

= |Pr
[
ExpTag,P,H8

A (λ) = 1
]
− Pr

[
ExpTag,P,H7

A (λ) = 1
]
|

≤ negl(λ)

We end here with our analysis, as the rest is simply symmetric backwards steps to the original experiment
with the bit b = 1. This concludes our proof.

E.2 Detectability

In our k-linkable solution, recovery is possible only when we see at least trec beacons from a key associated
with an id in a single “abuse epoch” e. We need to meet the additional restriction that we cannot receive
too many values in an abuse epoch. We give a precise formulation:

P ′(cfg, Q, id) =“ ∃ e such that |{(id, i) ∈ Q | e = ⌊ i
L⌋}| ≥ trec and |{(∗, i) ∈ Q | e = ⌊ i

L⌋}| ≤ max”

Detectability holds via the properties of the list decoding algorithms. When we use heuristic algorithms,
detectability correctness is only heuristic.

F An Alternative CH∗-MDSS

In Section 3.1, we noted that the lattice of Figure 11 appears to contain a wealth of information about the
structure of existing solutions, that we could potentially use to come up with a more efficient list-decoding
algorithm. Here we explore such a possibility. We first state a few key observations we made from looking
at the reduced lattice basis on “hard” input instances (e.g. there are three solution sets, two agreeing with
X input points, one with X − 1 or one solution set agreeing with X, the other two X − 1) .
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1. When there is one solution set that has more agreeing points than any other set, adding the shortest
vectors in M produces the vector associated with this solution set.

2. When multiple solutions have the maximum number of agreeing points, v0 contains factors (z − αi)
∀i ∈ [n] that do not agree with those solution sets.

We observed that using 1 (adding the shortest vectors instead of just assuming the shortest vectors will
directly be solutions) allows us to even change the threshold for the single valid solution case: t ≥ 1

c+1 (c·k+n)
suffices. More importantly, it reduces the class of hard instances: we now only need to worry when there
are inputs that have the same amount of agreeing points. With 2, we have a way to identify all points that
correspond to the multiple solution sets. If we can identify the points associated with a single solution from
this set, then we could possibly develop an iterative procedure which produces all solutions. The main insight
we make is that we know the form of our solutions vectors: they must look like E(z), E(z)p1(z), . . . , E(z)pc(z)
for some E, p1 . . . , pc of appropriate degree where E is an error locator polynomial. We choose a point α that
corresponds to one of the multiple solutions and construct a lattice problem to try and find those vectors
in M that are multiples of (z − α). We know that, if there are x solutions, there are x − 1 such solutions
that will have this form. When we sum the shortest vectors in M that come from this lattice problem,
we obtain a vector (r0 . . . rc) and associated rational functions R = (r1/r0, . . . rc/r0) which agree with all
points associated with x − 1 solution sets excluding the points from the solution set that agrees with α.
Doing lagrangian interpolation on the excluded points produces the polynomial set (p1 . . . pc) agreeing with
α. Moreover, if x = 2, R is directly equal to the other solution set. As an optimization, we check for this
scenario every time we run the second reduction to prevent unnecessarily doing lattice reductions. The whole
algorithm is depicted in Figure 24.

G Calibrating Correctness for Parameter Selection

First, we determine the probability that a share broadcast from a stalking LTA may be dropped due to a
collision in the x-coordinate. This can happen for two reasons: either when a separate LTA broadcasts a
share with the same x-coordinate, or when the LTA itself had previously sampled the x-coordinate within
the detection period and therefore must output a noise share. Therefore, for a point to survive, all other
shares broadcast within the detection window must have distinct x-coordinates. Additionally, it must be the
case that at no point previously in the detection period did the LTA sample the x-coordinate, and therefore
be forced to output a noise share. In the worst case there have been L−1 previous detection windows. Thus,
the probability p that a share is dropped is:

p ≤ 1−
(
|F| − 1

|F|

)(L−1+max)∗n−1

Given p, let Pi be the probability that exactly i shares from a single stalking LTA are dropped due to
collisions. To achieve the target success rate, we find the smallest z such that:

z∑
i=0

Pi > 0.995

We then repeat the process for channel deletions. Let b be the number of times each share is broadcast.
Then, assuming a channel deletion rate of 0.05, the probability p′ that a share is never received by a stalking
victim is p′ = (0.05)b. Let P ′

i be the the probability that exactly i shares from a single stalking LTA are

dropped due to channel issues. We then find the smallest z′ such that
∑z′

i=0 P
′
i > 0.995. Finally, we set

trec = n− z − z′, and given trec set tpriv to the maximum allowable value under the bounds of the decoding
algorithm.
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For a stalking LTA let chd and cld be random variables representing the number of shares that are
dropped by channel issues and collisions respectively. Following this, we have:

Pr[decoding fails] = Pr[n− chd− cld < trec]

= Pr[chd+ cld > z′ + z]

≤ Pr[chd > z′ ∨ cld > z]

≤ Pr[chd > z′] + Pr[cld > z]

≤ 0.01

as desired.
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Algorithm 3: An Alternative CH∗-MDSS

Input : k, t, n, {(αi, βi,1, . . . , βi,c)}ni=1

Output: a list {(pi1 . . . pic)}zi=1 or ⊥
1 solns := [],ws := [n], fail := False
2 while |ws| ≥ t and not fail do
3 ∀j ∈ [c], fj(z) = LagrInterpol({(αi, βi,j)}i∈ws), N(z) =

∏
i∈ws(z − αi)

4 construct the matrix M ∈ F[z](c+1)×(c+1)
:

5

M =


zk f1(z) f2(z) . . . fc(z)

N(z)
N(z)

. . .
N(z)


6 Mred ← LatticeReduce(M)
7 if the shortest vector in Mred is larger than k + (|ws| − t) then
8 set fail to True
9 else

10 find all vectors in Mred with the shortest length, denoted as v⃗1, . . . v⃗h
11 v⃗ ← v⃗1 + . . .+ v⃗h, (v0, . . . , vc)← v⃗

12 if ∀i ∈ [c], v0|(vi · zk) then
13 add (v1 · zk/v0, . . . , vc · zk/v0) to solns, remove agreeing points in ws
14 else
15 if the shortest vector in Mred has length exactly equal to k + (|ws| − t) then
16 set fail to True
17 else
18 choose i ∈ ws, s.t. (z − αi) ∤ v0
19 let b⃗1, . . . , b⃗m be row vectors from Mred where ∀i,Norm(b⃗i) ≤ k + (|ws| − t) and

b⃗i = (bi0, . . . b
i
c), construct the matrix S ∈ Fq[z]

(m+1)×(c+1+m):
20

S =


z|ws| · b10 b11 . . . b1c

... Im
z|ws| · bm0 bm1 . . . bmc

z|ws| · (z − αi) 0 . . . . . . . . . . . . 0


21 Sred ← LatticeReduce(S)
22 find all vectors in Sred with the shortest length, denoted as s⃗1, . . . s⃗h, construct vectors

r⃗1, . . . r⃗h as ri =
∑m−1

j=0 sic+1+j b⃗j

23 r⃗ ← r⃗1 + . . .+ r⃗h, (r0, . . . , rc)← r⃗, R← (r1 · z|ws|/r0, . . . , rc · z|ws|/r0)
24 if all polynomials in R have degree ≤ k and ∀i ∈ [c], r0 | z|ws|ri then
25 add R to solns, remove agreeing points in ws
26 (q1, . . . , qc)← R, M ← {i | ∀j ∈ [c], qj(αi) = βi,j}, I ← {i ∈ ws | (z − αi) ∤ v0},

L← I \M
27 ∀j ∈ [c], pj ← LagrInterpol({(αi, βi,j)}i∈L)
28 if (p1 . . . pc) agree with at least t points and each pj has degree k then
29 add (p1 . . . pc) to solns, remove agreeing points from ws
30 endw
31 return solns

Figure 24: An alternative construction of CH∗-MDSS. LatticeReduce is an algorithm for lattice reductions
on polynomial lattices.
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