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ABSTRACT

This paper proposes Prism, Private Verifiable Set Computation
over Multi-Owner Outsourced Databases, a secret sharing based
approach to compute private set operations (i.e., intersection and
union), as well as aggregates over outsourced databases belonging
to multiple owners. Prism enables data owners to pre-load the data
onto non-colluding servers and exploits the additive and multi-
plicative properties of secret-shares to compute the above-listed
operations in (at most) two rounds of communication between
the servers (storing the secret-shares) and the querier, resulting
in a very efficient implementation. Also, Prism does not require
communication among the servers and supports result verification
techniques for each operation to detect malicious adversaries. Ex-
perimental results show that Prism scales both in terms of the num-
ber of data owners and database sizes, to which prior approaches
do not scale.

1 INTRODUCTION

With the advent of cloud computing, database-as-a-service
(DaS) [34] has gained significant attention. Traditionally, the DaS
problem focused on a single database (DB) owner, submitting suit-
ably encrypted data to the cloud over which DB owner (or one of
its clients) can execute queries. A more general use-case is one in
which there are multiple datasets, each owned by a different owner.
Data owners do not trust each other, but wish to execute queries
over common attributes of the dataset. The query execution must
not reveal the content of the database belonging to one DB owner
to others, except for the leakage that may occur from the answer
to the query. The most common form of such queries is the private
set intersection (PSI) [27, 37, 42, 46, 59, 60, 62]. An example use-case
of PSI include syndromic surveillance, wherein organizations, such
as pharmacies and/or hospitals, share information (e.g., a sudden
increase in sales of specific drugs such as analgesics or anti-allergy
medicine, tele-health calls, and school absenteeism requests) to
enable early detection of community-wide outbreaks of diseases.
PSI is also a building block for performing joins across private
databases — it essentially corresponds to performing a semi-join
operation on the join attribute [43].

Private set computations over datasets owned by different DB
owners/organizations can, in general, be implemented using secure
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multiparty computation (SMC) [31, 52, 71], a well-known crypto-
graphic technique that has been prevalent since more than three
decades. SMC allows DB owners to securely execute any function
over their datasets without revealing their data to other DB owners.
However, SMC can be very slow, often by order of magnitude [48].
As a result, techniques that can be used to more efficiently compute
private set operations have been developed; particularly, in the
context of PSI [27, 37, 42, 59, 62] and private set union (PSU) [21, 45].
PSU refers to privately computing the union of all databases. Sev-
eral approaches using homomorphic encryption [14], polynomial
evaluation [27], garbled-circuit techniques [37], hashing [26, 59, 67],
hashing and oblivious pseudorandom functions (OPRF) [47], Bloom-
filter [55], and oblivious transfer [58, 61] have been proposed to
implement private set operations.

Recent work on private set operations has also explored perform-
ing aggregation on the result of PSI operations. For instance, [39]
studied the problem of private set intersection sum (PSI Sum), moti-
vated by the internet advertising use-case, where a party maintains
information about which customer clicked on specific advertise-
ments during their web session, while another has a list of trans-
actions about items listed in the advertisements that resulted in a
purchase by the customers. Both parties might wish to securely
learn the total sales that can be attributed to customers clicking on
advertisements, while neither would like their databases to be re-
vealed to the other for reasons including fair/competitive business
strategies.

Existing approaches on private set computation (including recent
work on aggregation) are limited in several ways:
• Work on PSI or PSU has largely focused on the case of two DB
owners, with some exceptions that address more than two DB
owners scenarios, e.g., [15, 27, 36, 38, 45, 48, 72]. There are sev-
eral interesting use-cases, where one may wish to compute PSI
over multiple datasets. For instance, in the syndromic surveil-
lance example listed above, one may wish to compute intersection
amongst several independently owned databases. Generalizing
existing two-party PSI or PSU approaches to the case of multiple
DB owners results in significant overhead [48]. For instance, [2],
which is designed for two DB owners, incurs (𝑛𝑚)2 communi-
cation cost, when extended to𝑚 > 2 DB owners, where 𝑛 is the
dataset size. Even recent work supporting multiple DB owners
incurred significant computational overhead; e.g., [38] took ≈12
seconds for PSI over 24 DB owners having 1024 values.
• Techniques to privately compute aggregation over set operations
have not been studied systematically. In the database literature,
aggregation functions [54] are typically classified as: summary

aggregations (such as count, sum, and average) or exemplary



Name Age Disease Cost

𝜏1 John 4 Cancer 100
𝜏2 Adam 6 Cancer 200
𝜏3 Mike 2 Heart 300

Table 1: Hospital 1.

Name Age Disease Cost

a1 John 8 Cancer 100
a2 Adam 5 Fever 70
a3 Bob 4 Fever 50

Table 2: Hospital 2.

Name Age Disease Cost

𝜌1 Carl 8 Cancer 300
𝜌2 John 4 Cancer 700
𝜌3 Lisa 5 Heart 500

Table 3: Hospital 3.

Note: 𝜏𝑖 , a𝑖 , and 𝜌𝑖 denote the 𝑖th tuples of tables.

aggregations (such as minimum, maximum, and median). Exist-
ing literature has only considered the problem of PSI Sum [39]
and cardinality determination, i.e., the size of the intersection
or union [21, 24]. Techniques for exemplary aggregations (and
even for summary aggregations) that may compute over multiple
attributes have not been explored.
• Many of the existing solutions do not deal with a large amount
of data, due to either inefficient cryptographic techniques or mul-
tiple communication rounds amongst DB owners. For instance,
recent work [48, 49, 72] dealt with data that is limited to sets of
size less than or equal to ≈1M in size.
This paper introduces Prism — a novel approach for comput-

ing collaboratively over multiple databases. Prism is designed for
both PSI and PSU, and it supports both summary, as well as, exem-
plar aggregations. Unlike existing SMC techniques (wherein DB
owners compute operations privately through a sequence of com-
munication rounds), in Prism, DB owners outsource their data in
secret-shared form to multiple non-colluding/(communicating)

public servers. As will become clear, Prism exploits the homomor-
phic nature of secret-shares (both additive and multiplicative) to
enable servers to compute private set operations independently (to
a large degree). These results are then returned to DB owners to
compute the final results. In Prism, any operator requires at most
two communication rounds between DB owners and servers, where
the first round finds tuples that are in the intersection or union of
the set, and the second round computes the aggregation function
over the objects in the intersection/union.

By using public servers for computation over secret-shared data,
Prism achieves the identical security guarantees as existing SMC
systems (e.g., Sharemind [7], Jana [4], and Conclave [68]). The key
advantage of Prism is that by outsourcing data in secret shared form
and exploiting homomorphic properties, Prism does not require
communication among server before/during/after the computation,
which allows Prism to perform efficiently even for large data sizes
and for a large number of DB owners (as we will show in experi-
ment section). Since Prism uses the public servers, which may act
maliciously, Prism supports oblivious result verification methods.

In summary, Prism offers the following benefits: (i) Information-

theoretical security: It achieves information-theoretical secu-
rity at the servers and prevents them to learn anything from
input/output/access-patterns/output-size. (ii) No communication

among servers: It does not require any communication among
servers, unlike SMC based solutions. (iii) No trusted entity: It does
not require any trusted entity that performs the computation on
the cleartext data, unlike the recent SMC system Conclave [68]. (iv)
Several DB owners and large-sized dataset: It deals with several DB
owners having a large-size dataset.
Outline. Different sections of this papers are organized as follows:

(1) §2 provides the definitions and examples of PSI, PSU, and aggre-
gation operations over PSI/PSU.

(2) §3.1 provides an overview of existing techniques (such Shamir’s
secret-sharing, additive sharing, cyclic group, permutation func-
tion, and pseudorandom number generator) that we will use in
developing our algorithms. §3.2 provides details about entities in-
volved in Prism. §3.3 provides an overview of Prism system. §3.4
provides security properties.

(3) §4 provides details of assumptions and parameters related to
different entities.

(4) §5.1 and §5.2 provide PSI algorithm and PSI output verification
algorithm, respectively.

(5) §6.1 and §6.1.1 provide PSI sum algorithm and PSI sum output ver-
ification algorithm, respectively. §6.2 extends PSI sum algorithm
for computing PSI average algorithm.

(6) §6.3 provides PSI maximum algorithms. §6.4 extends PSI maxi-
mum algorithm for computing PSI median algorithm.

(7) §6.5 provides PSI count and verification algorithms.
(8) §6.6 extends PSI algorithm of §5.1 for computing PSI over multiple

columns and proposes bucketization-based PSI.
(9) §5.1 provides PSU algorithm. Note: Aggregations queries over

PSU can be executed in a similar way and by following the meth-
ods of aggregation over PSI (§6). Also, using bucketization-based
method, PSU method can be executing over multiple columns.
Thus, we do not explicitly provide aggregation algorithm over
PSU and bucketization-based PSU.

(10) §8.1 provides experimental evaluation of Prism. §8.2 compares
Prism against existing PSI/PSU techniques.

2 PRIVATE SET OPERATIONS

We, first, define the set of operations supported by Prism. Let
DB1, . . . ,DB𝑚 be 𝑚 > 2 independent DBs owned by 𝑚 DB own-
ers DB1, . . . ,DB𝑚 . We assume that each DB owner is (partially)
aware of the schema of data stored at other DB owners. Particu-
larly, DB owners have knowledge of the attribute(s) of the data
stored at other DB owners on which the set-based operations (i.e.,
intersection or union) can be performed. Also, DB owners know
about the attributes on which aggregation functions (e.g., sum, min,
max) be supported. Such an assumption is needed to ensure that
PSI/PSU and aggregation queries are well defined. Other than the
above requirement, the schema of data at different databases may
be different.

Now, we define the private set operations supported by Prism for-
mally and their corresponding privacy requirements (corresponding
SQL statements are shown in Table 4). In defining the operators
(and in the rest of the paper), we will use the example tables shown
in Tables 1, 2, and 3 that are owned by three different DB owners
(in our case, hospitals).

(1) Private set intersection (PSI) (§5). PSI finds the common values
among 𝑚 DB owners for a specific attribute 𝐴𝑐 , i.e., DB1 .𝐴𝑐 ∩
. . .∩DB𝑚 .𝐴𝑐 . For example, PSI over disease column of Tables 1, 2,
and 3 will return {Cancer} as a common disease treated by all
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PSI SELECT 𝐴𝑐 FROM 𝑑𝑏1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

PSU SELECT 𝐴𝑐 FROM db1 UNION . . . UNION SELECT 𝐴𝑐 FROM db𝑚

PSI count SELECT COUNT(𝐴𝑐 ) FROM 𝑑𝑏1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

PSI \
\ ∈ (AVG, SUM,
MAX, MIN, Median)

CREATE VIEW CommonAc as SELECT 𝐴𝑐 FROM db1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

SELECT 𝐴𝑐 , \(𝐴𝑥 ) FROM (SELECT 𝐴𝑥 , 𝐴𝑐 FROM db1, CommonAc WHERE db1 .Ac = CommonAc .Ac UNION ALL . . .
UNION ALL SELECT 𝐴𝑥 , 𝐴𝑐 FROM db𝑚, CommonAc WHERE dbm .Ac = CommonAc .Ac) as inner_relation Group By 𝐴𝑐

Table 4: SQL syntax of operations supported by Prism.

hospitals. Note that a hospital computing PSI on disease should not

gain any information about other possible disease values (except

for the result of the PSI) associated with other hospitals.
(2) Private set union (PSU) (§7). PSU finds the union of values

among𝑚 DB owners for a specific attribute𝐴𝑐 , i.e., DB1 .𝐴𝑐 ∪ . . .∪
DB𝑚 .𝐴𝑐 . For example, PSU over disease column returns {Cancer,
Fever, Heart} as diseases treated by all hospitals. Again, a hospital
computing PSU over other hospitals must not gain information

about the specific diseases treated by other hospitals, or how many

hospitals treat which disease.
(3) Aggregation over private set operators (§6.) Aggregation

𝐴𝑐
G\ (𝐴𝑥 ) computes the aggregation function \ on the attribute

𝐴𝑥 (𝐴𝑐 ≠ 𝐴𝑥 ) for the groups corresponding to the output
of set-based operations (PSI or PSU) on attribute 𝐴𝑐 . For ex-
ample, the aggregation function sum on cost attribute corre-
sponding to PSI over disease attribute (i.e., diseaseG𝑠𝑢𝑚 (cost))
returns a tuple {Cancer,1400}. The same aggregation function
over PSU will return {⟨Cancer,1400⟩, ⟨Fever,120⟩, ⟨Heart,800⟩}.
Likewise, the output of aggregation diseaseG𝑚𝑎𝑥 (age) over PSI
would return {Cancer,8}, while the same over PSU would return
{⟨Cancer,8⟩, ⟨Fever,5⟩, ⟨Heart,5⟩}. Note that the count operation
does not require specifying an aggregation attribute 𝐴𝑥 and can
be computed over the attribute(s) associated with PSI or PSU. For
example, count over PSI (PSU) on disease column will return 1
(3) respectively. From the perspective of privacy requirement, in
case of PSI on disease column, a hospital executing an aggrega-
tion query (maximum of age or sum of cost) should only gain
information about the answer, i.e., elements in the PSI and the cor-

responding aggregate value. It should not gain information about
other diseases that are not in the intersection. Likewise, for PSU,
the hospital will gain information about all elements in the union

and their corresponding aggregate values, but will not gain any

specific information about which database contains which disease

values, or the number of databases with a specific disease.

3 PRELIMINARY

This section describes the cryptographic concepts that serve as
building blocks for Prism, provides an overview of Prism approach,
and discusses its security properties.

3.1 Building Blocks

Prism is based on additive secret-sharing (SS), Shamir’s secret-
sharing (SSS), cyclic group, and pseudorandom number generator.
We provide an overview of these techniques, below.
Additive Secret-Sharing (SS). Additive SS is the simplest type of
the SS. Let 𝛿 be a prime number. Let G𝛿 be an Abelian group under
modulo addition𝛿 operation. All additive shares are defined overG𝛿 .
In particular, the DB owner creates 𝑐 shares 𝐴(𝑠)1, 𝐴(𝑠)2, . . . , 𝐴(𝑠)𝑐

over G𝛿 of a secret, say 𝑠 , such that 𝑠 = 𝐴(𝑠)1 +𝐴(𝑠)2 + . . . +𝐴(𝑠)𝑐 .
The DB owner sends share 𝐴(𝑠)𝑖 to the 𝑖th server (belonging to a
set of 𝑐 non-communicating servers). These servers cannot know
the secret 𝑠 until they collect all 𝑐 shares. To reconstruct 𝑠 , the DB
owner collects all the shares and adds them. Additive SS allows
additive homomorphism. Thus, servers holding shares of different
secrets can locally compute the sum of those shares. Let 𝐴(𝑥)𝑖 and
𝐴(𝑦)𝑖 be additive shares of two secrets 𝑥 and 𝑦, respectively, at a
server 𝑖 , then the server 𝑖 can compute 𝐴(𝑥)𝑖 +𝐴(𝑦)𝑖 that enable
DB owner to know the result of 𝑥 + 𝑦. The precondition of additive
homomorphism is that the sum of shares should be less than 𝛿 .
Example. Let G5 = {0, 1, 2, 3, 4} be an Abelian group under the
addition modulo 5. Let 4 be a secret. The DB owner may create two
shares, such as 3 and 1 (since 4 = (3 + 1) mod 5), and sends them
to two servers.
Shamir’s Secret-Sharing (SSS) [65]. In SSS [65], the DB owner
randomly selects a polynomial of degree 𝑐 ′ with 𝑐 ′ random coeffi-
cients, i.e., 𝑓 (𝑥) = 𝑎0+𝑎1𝑥 +𝑎2𝑥2+· · ·+𝑎𝑐′𝑥𝑐

′ , where 𝑓 (𝑥) ∈ F𝑝 [𝑥],
𝑝 is a prime number, F𝑝 is a finite field of order 𝑝 , 𝑎0 = 𝑠 , and 𝑎𝑖 ∈ N
(1 ≤ 𝑖 ≤ 𝑐 ′). The DB owner distributes the secret 𝑠 into 𝑐 shares by
computing 𝑓 (𝑥) (𝑥 = 1, 2, . . . , 𝑐) and sends an 𝑖th share to the 𝑖th
server (belonging to a set of 𝑐 non-communicating servers). The
secret can be reconstructed using any 𝑐 ′ + 1 shares using Lagrange
interpolation [18].

SSS, also, allows additive homomorphism, i.e., if 𝑆 (𝑥)𝑖 and 𝑆 (𝑦)𝑖
are SSS of two secrets 𝑥 and 𝑦, respectively, at a server 𝑖 , then the
server 𝑖 can compute 𝑆 (𝑥)𝑖 + 𝑆 (𝑦)𝑖 , which will result in 𝑥 +𝑦 at DB
owner.
Cyclic group under modulo multiplication. Let [ be a prime
number. A groupG is called a cyclic group, if there exists an element
𝑔 ∈ G, such that all 𝑥 ∈ G can be derived as 𝑥 = (𝑔𝑖 ) (where 𝑖 in an
integer number Z) under modulo multiplicative [ operation. The
element 𝑔 is called a generator of the cyclic group, and the number
of elements in G is called the order of G. Based on each element
𝑥 of a cyclic group, we can form a cyclic subgroup by executing
𝑥𝑖 mod [.
Example. 𝑔 = 2 is a generator of a cyclic group under multiplication
modulo [ = 11 for the following group: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Note that the group elements are derived by 2𝑖 mod 11. By taking
the element 5 of this cyclic group, we form the following cyclic
subgroup {1, 3, 4, 5, 9}, under multiplication modulo [ = 11, by
5𝑖 mod 11.
Permutation functionPF . Let𝐴 be a set. A permutation function
PF is a bijective function that maps a permutation of 𝐴 to another
permutation of 𝐴, i.e., PF : 𝐴→ 𝐴.
Pseudorandom number generator PRG. A pseudorandom
number generator is a deterministic and efficient algorithm that
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generates a pseudorandom number sequence based on an input
seed [6, 30].

3.2 Entities and Trust Assumption

Prism assumes the following four entities:
(1) The𝑚 database (DB) owners (or users), who wish to execute

computation on their joint datasets. We assume that each DB
owner is trusted and does not act maliciously.

(2) A set of 𝑐 ≥ 2 servers that store the secret-shared data outsourced
by DB owners and execute the requested computation from au-
thenticated DB owners. The data transmission between a DB
owner and a server takes place in encrypted form or by using
anonymous routing [32] to prevent the locations of servers and
the shares from an adversary, eavesdropping on the communica-
tion channel between DB owners and servers.
We assume that servers do not maliciously communicate (i.e., non-
communicating servers) with each other in violation of Prism
protocols. Unlike other MPC mechanisms [7], (as will be clear
soon), Prism protocols do not require the servers to communicate
before/during/after the execution of the query. The security of
secret-sharing techniques requires that out of the 𝑐 servers, no
more than 𝑐 ′ < 𝑐 communicate maliciously or collude with each
other, where 𝑐 ′ is a minority of servers (i.e., less than half of 𝑐).
Thus, we assume that a majority of servers do not collude and
communicate with each other, and hence, a legal secret value
cannot be generated/inserted/updated/deleted at the majority of
the servers.
Also, note that the collusion of servers in violation of the protocol
is a general requirement for secret-sharing based protocols, and
a similar assumption is made by many prior work [7, 16, 65, 70].
This assumption is based on factors such as economic incentiviza-
tion (violation is against their economic interest), law (illegal
to collude), and jurisdictional boundaries. Such servers can be
selected on different clouds, which make the assumption more
realistic.
For the purpose of simplicity, we assume that none of the servers
collude with each other – that is they not communicate directly.
Thus, to reconstruct the original secret value from the shares,
two additive shares suffice. In the case of PSI sum (as will be
clear in §6.1), we need to multiply two shares (each of degree
one) and that increases the degree of the polynomial to two. To
reconstruct the secret value of degree two, we need at least three
multiplicative (Shamir’s secret) shares.
While we assume that servers do not collude, we will consider two
types of adversarial models for the servers in the context of the
computation that they perform: (i) Honest-but-curious (HBC)
servers that correctly compute the assigned task without tamper-
ing with data or hiding answers. It may, however, exploit side
information (e.g., the internal state of the server, query execution,
background knowledge, and output size) to gain as much infor-
mation as possible about the stored data/computation/results.
The HBC adversarial model is considered widely in many crypto-
graphic algorithms and in DaS model [12, 34, 69]. (ii) Malicious

adversarial servers that can delete/insert tuples from the relation,
and hence, is a stronger adversarial model than HBC.

(3) An initiator or oracle, who knows𝑚 DB owners and servers.
Before data outsourcing by DB owners, the initiator informs the
identity of servers to DB owners and vice versa. Also, the initiator
informs the desired parameters (e.g., a hash function, parameters
related to Abelian and cyclic groups, PF , and RRG) to servers
and DB owners. The initiator is an entity trusted by all other
entities and plays a role similar to the trusted certificate authority
in the public-key infrastructure. The initiator never knows the
data/results, since it does not store any data, or data/results are
not provided to servers via the initiator. The role of the initiator
has also been considered in existing PSI work [63, 73].

(4) An announcer S𝑎 that participates only in maximum, minimum,
and median queries to announce the results. S𝑎 communicates
(not maliciously) with servers and the initiator (and not with DB
owners).

Initiator

Announcer

Servers

DB Owners

Figure 1: Prism model.

3.3 Prism Overview

Let us first understand the working of Prism at the high-level.
Prism contains four phases (see Figure 1), as follows:
Phase 0: Initialization. The initiator sends desired parameters
(see details in §4) related to additive SS, SSS, cyclic group, PF , and
PRG to all entities and informs them about the identity of others
from/to whom they will receive/send the data.
Phase 1: Data Outsourcing by DB owners. DB owners create
additive SS or SSS of their data, by following the methods given
in §5 for PSI and PSU, §6.1 for PSI/PSU-sum, and §6.3 for PSI/PSU-
maximum/minimum. Then, they outsource their secret-shared date
to non-communicating servers. Note that for the purpose of ex-
planations, we will write the data outsourcing method with query
execution. However, it is not required to outsource the data at the
time of query.
Phase 2: Query Generation by the DB owner. A DB owner who
wishes to execute SMC over datasets of different DB owners, sends
the query to the servers. For generating secret-shared queries for
PSI, PSU, count, sum, maximum, and for their verification, the DB
owner follows the method given in §5, 6.
Phase 3: Query Processing. The servers process an input query
and respective verificationmethod in an obliviousmanner, such that
neither the query nor the results satisfying the query/verification
are revealed to the adversary. Finally, servers transfer their outputs
to DB owners.
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Algorithms Scan at a server Communication Interpolation at a DB owner
Rounds Cost Rounds Cost from server to a DB owner Round Cost

PSI §5.1, PSU §7, PSI/PSU count §6.5 1 𝑏 1 𝑏 1 𝑏

PSI verification §5.2, PSI/PSU count verification §6.5 1 2𝑏 1 2𝑏 1 2𝑏
PSI sum §6.1 † 2 𝑏 (𝑘 + 1) 1 𝑏𝑘 1 𝑏𝑘

PSI sum verification §6.1.1 † 2 2𝑏 (𝑘 + 1) 1 2𝑏 (𝑘 + 1) 1 2𝑏 (𝑘 + 1)
PSI average §6.2 † 2 𝑏 (2𝑘 + 1) 1 2𝑏𝑘 1 2𝑏𝑘
PSI average verification † 2 2𝑏 (2𝑘 + 1) 1 2𝑏 (2𝑘 + 1) 1 2𝑏 (2𝑘 + 1)
PSI maximum §6.3 2 𝑏 (𝑘 + 1) 2 𝑏 + 1 2 𝑏 + 2
PSI maximum identity revealing §6.3 2 𝑏 (𝑘 + 1) +𝑚 3 𝑏 +𝑚 + 2 2 𝑏 +𝑚 + 2
Notations. 𝑏 = Dom(𝐴𝑐 ) . 𝑘 = # columns involved in aggregation operations.𝑚 = # DB owners. †: Not including the communication cost for computing PSI, since it requires sending the output to only one
of the DB owners. This table shows data scanning rounds at the servers for executing the algorithms, data scanning rounds at the DB owner for interpolation of the results, and communication rounds
between a server and a DB owner. Also, this table shows the cost in terms of the number of values a server needs to read for algorithms’ execution, the number of values a DB owner needs to reads for
interpolation, and the number of values a server sends to a DB owner.

Table 5: Complexities of the algorithms.

Phase 4: Final processing at the DB owners. The DB owner
either adds the additive shares or performs Lagrange interpolation
on SSS to obtain the answer to the query.

The complexity of algorithms is presented in Table 5.

3.4 Security Property

Asmentioned in the adversarial setting in §3.2, an adversarial server
wishes to learn the (entire/partial) input and output data, while a
DB owner may wish to know the data of other DB owners. Hence,
a secure algorithm must prevent an adversary to learn the data
(i) from the ciphertext representation of the data, (ii) from query
execution due to access-patterns (i.e., the adversary can learn the
physical locations of tuples that are accessed to answer the query),
and (iii) from the size of the output (i.e., the adversary can learn
the number of tuples satisfy the query). The attacks on a dataset
based on access-patterns and output-size are discussed in [13, 40].
In order to prevent these attacks, our security properties are iden-
tical to the standard security definition as in [11, 12, 28]. An al-
gorithm is privacy-preserving if it maintains DB owners’ privacy,
data/computation privacy from the servers, and performs identical
operations regardless of the inputs.
Privacy from servers requires that datasets of DB owners must
be hidden from the server, before/during/after any computation. In
addition, two or more occurrences of a value in the dataset must
be different at the server to prevent frequency analysis.In PSI/PSU,
servers must not know whether a value is common or not, the
number of DB owners having a particular value in the result set.
In the case of aggregation operations, the output of aggregation
over an attribute 𝐴𝑥 corresponding to the attributes 𝐴𝑐 involved in
PSI or PSU should not be revealed to servers. Additionally, in the
case of maximum/median/minimum query, servers must not know
the maximum/minimum value and the idenity of the DB owner
who possesses such values. Further, the protocol must ensure that
the server’s behavior in reading/sending the data must be identical
for a particular type of query (e.g., PSI or PSU), thereby the server
should not learn anything from query execution (i.e., hiding access-
patterns and output-sizes).
DB owner privacy requires that the DB owners must not learn
anything other than their datasets and the final output of the com-
putation. For example, in PSI/PSU queries, DB owners must only
learn the intersection/union set, and they must not learn the num-
ber of DB owners that does not contain a particular value in their

datasets. Similarly, in the case of aggregation operations, DB own-
ers must only learn the output of aggregation operation, not the
individual values on which aggregation was performed.
Properties of verification. A verification method must be oblivi-
ous and find any misbehavior of servers when computing a query.
We follow the verification properties from [41] that the verification
method cannot be refuted by the majority of the malicious servers
and should not leak any additional information.

4 ASSUMPTIONS & PARAMETERS

Different entities in Prism protocols are aware of the following
parameters to execute the desired task, and commonly used param-
eters in this paper are presented in Table 6:
Parameters known to the initiator. The initiator knows all pa-
rameters used in Prism and distributes them to different entities
(only once) as they join in PRISM protocols. Note that the initiator
can select these parameters (such as [, 𝛿) to be large to support in-
creasing DB owners over time without updating parameters. Thus,
when new DB owners join, the initiator simply needs to inform DB
owners/servers about the increase in the number of DB owners in
the system, but does not need to change all parameters.

Additionally, the initiator does the following: (i) Selects a poly-
nomial (F (𝑥) = 𝑎𝑚+1𝑥𝑚+1 + 𝑎𝑚𝑥𝑚 + . . . + 𝑎1𝑥 + 𝑎0, where 𝑎𝑖 > 0)
of degree more than𝑚, where𝑚 is the number of DB owners, and
sends the polynomial to all DB owners. This polynomial will be
used during the maximum computation. Importantly, this polyno-
mial F (𝑥) generates values at different DB owners in an order-
preserving manner, as will be clear in §6.3, and the degree of the
polynomial must be more than 𝑚 to prevent an entity, who has
𝑚 different values generated using this polynomial, to reconstruct
the secret value (a condition similar to SSS); and beyond 𝑚 + 1,
the degree of the polynomial does not impact the security, in this
case. (ii) Generates a permutation function PF 𝑖 , and produces four
different permutation functions that satisfy Equation 1:

PF 𝑠1 ⊙ PF𝑑𝑏1 = PF 𝑠2 ⊙ PF𝑑𝑏2 = PF 𝑖 (1)
Here, the symbol ⊙ represents composition of the permutations,
and these functions can be selected over a permutation group. The
initiator provides PF 𝑠1 and PF 𝑠2 to all servers and PF𝑑𝑏1 and
PF𝑑𝑏2 to all DB owners.
Parameters known to the announcer. The announcer S𝑎 knows
𝛿 , a prime number used to define modulo addition for an Abelian
group (§3.1). The announcer helps in maximum and median algo-
rithms.
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Notation Meaning

𝐴𝑐 An attribute on which PSI/PSU executes
Dom(𝐴𝑐 ) domain of attribute𝐴𝑐

𝐴𝑥 An attribute used in aggregation
𝑚 Number of DB owners
DB𝑖 The 𝑖th DB owner
𝐴(𝑚)𝜙 𝜙 th additive share of the number𝑚
𝛿 A prime number defining modulo addition 𝛿 operation
G𝛿 Abelian group under modulo addition 𝛿 operation
𝑔 Generator of a cyclic group
[ A prime number defining modulo multiplicative [ operation
[′ [ × 𝛼 , where 𝛼 > 1
PRG Pseudo-random number generator
S𝑎 The announcer
S𝜙 A server 𝜙 , where 𝜙 ∈ {1, 2, 3}
PF𝑠1 , PF𝑠2 The permutation functions known to servers
PF𝑑𝑏1 , PF𝑑𝑏2 The permutation functions known to all DB owners.
PF𝑖 A permutation function known to the initiator
PF A permutation function known to both servers and DB owners
𝜒 = {𝑥1, 𝑥2, . . . , 𝑥𝑏 } A hash table at the 𝑗 th DB owner of length 𝑏 = |Dom(𝐴𝑐 ) |
𝐴(𝑥𝑖 )

𝜙

𝑗
The 𝜙 th additive share of an 𝑖th element of 𝜒 𝑗 of DB 𝑗

𝑥 𝑗 The complement value of 𝑥 𝑗
𝜒 𝑗 A table having the complement values of 𝜒 𝑗
𝐴(𝜒)𝜙

𝑗
The 𝜙 th additive share of the table 𝜒 𝑗

𝐴(𝜒)𝜙
𝑗

The 𝜙 th additive share of the table 𝜒 𝑗

output

S𝜙
𝑖

The output computed for the 𝑖-th value at server S𝜙
⊖ The modular subtraction operation
⊕ The modular addition operation

Table 6: Frequently used notations in the paper.

Parameters known to DB owners. All DB owners know the
following parameters: (i) 𝑚, i.e., the number of DB owners. (ii)
𝛿 > 𝑚, (iii) [, where [ is a prime number used to define modular
multiplication for a cyclic group (§3.1). Note that DB owners do
not know the generator 𝑔 of the cyclic group. (iv) A common hash
function. (v) The domain of the attribute 𝐴𝑐 on which they want
to execute PSI/PSU. Note that knowing the domain of the attribute
𝐴𝑐 does not reveal that which of the DB owner has a value of
the domain or not. (Such an assumption is also considered in prior
work [37].) (vi) Two permutation functions PF

db1
and PF

db2
. (vii)

The polynomial F (𝑥) given by the initiator. (viii) A permutation
function PF , and the same permutation function will also known
to servers.

PSI, PSU, sum, average, count algorithms are based on the as-
sumptions 1-5. PSI verification, sum verification, count, and count
verification algorithms are based on the assumptions 1-6. Maximum,
maximum verification, and median algorithms are based on the
assumptions 1-8.

Further, we assume that any DB owner or the initiator provides
additive shares of𝑚 to servers for executing PSI, and the DB owners
have only positive integers to compute the maximum. Since the
current PSI maximum method uses modular operations (as will
be clear in §6.3), we cannot handle floating point values directly.
Nevertheless, we can find the maximum for a large class of practical
situations, where the precision of decimal is limited, say 𝑘 > 0 digits
by simply multiplying each number by 10𝑘 and using the current
PSI maximum algorithm. For example, we can find the maximum
over {0.5, 8.2, 8.02} by computing the maximum over {50, 820, 802}.
Designing a more general solution that does not require limited
precision is non-trivial.
Parameters known to servers. Servers know the following pa-
rameters: (i) 𝑚, 𝛿 > 𝑚, the generator 𝑔 of the cyclic (sub)group
of order 𝛿 and [ ′ = 𝛼 × [ and 𝛼 > 1. Also, based on the group

theory, [ − 1 should be divisible by 𝛿 . Note that servers do not
know [. (ii) A permutation function PF , and recall that the same
permutation function is also known to DB owners. (iii) Two permu-
tation functions PF 𝑠1 and PF 𝑠2. (iv) A common pseudo-random
number generator PRG that generates random numbers between
1 and 𝛿 − 1. Note that PRG is unknown to DB owners. PSI, sum,
and average algorithms are based on the assumptions 1. Maximum,
maximum verification, and median algorithms are based on the
assumptions 1,2. Count and its verification are based on the assump-
tions 1,3. PSU and its verification are based on the assumptions
1,4.

5 PRIVATE SET INTERSECTION (PSI) QUERY

This section, first, develops a method for finding PSI among𝑚 > 2
different DB owners on an attribute𝐴𝑐 (which is assumed to exist at
all DB owners, §5.1) and presents a result verification method (§5.2).
Later in §6.6, we present a method to execute PSI over multiple
attributes and a method to reduce the communication cost of PSI.

5.1 PSI Query Execution

This section explains the method to execute PSI queries. Before
going into details of the method, we first describe our proposed
idea to compute PSI.
High-level idea. Each of𝑚 > 2 DB owners uses a publicly known
hash function to map distinct values of 𝐴𝑐 attribute in a table of
cells at most |Dom(𝐴𝑐 ) |, where |Dom(𝐴𝑐 ) | refers to the size of the
domain of 𝐴𝑐 . Thus, if a value 𝑎 𝑗 ∈ 𝐴𝑐 exists at any DB owner, all
DB owners must map 𝑎 𝑗 to an identical cell of the table. Then, all
values of the table are outsourced in the form of additive shares to
two non-communicating servers S𝜙 , 𝜙 ∈ {1, 2}, that obliviously find
the common items/intersection and return shared output vector
(of the same length as the length of the received shares from DB
owners). Finally, each DB owner adds the results to know the final
answer.
Construction. We create the following construction over the ele-
ments of a group under addition and the elements of a cyclic group
under multiplication. Note that we can select any cyclic group such
that [ > 𝑚.

(𝑥 + 𝑦) mod 𝛿 = 0, (𝑔𝑥 × 𝑔𝑦) mod [ = 1 (2)
Based on this construction, below, we explain PSI finding algorithm:
Step 1: DB owners. Each DB owner finds distinct values in an
attribute (𝐴𝑐 , which exists at all DB owners, as per our assumption
given in §4) and executes the hash function on each value 𝑎𝑖 to
create a table 𝜒 = {𝑥1, 𝑥2, . . . , 𝑥𝑏 } of length 𝑏 = |Dom(𝐴𝑐 ) |. The
hash function maps the value 𝑎𝑖 ∈ 𝐴c to one of the cells of 𝜒 , such
that the cell of 𝜒 corresponding to the value 𝑎𝑖 holds 1; otherwise
0. It is important that each cell must contain only a single one
corresponding to the unique value of the attribute𝐴𝑐 , and note that
if a value 𝑎𝑖 ∈ 𝐴𝑐 exists at any DB owner, then one corresponding
to 𝑎𝑖 is placed at an identical cell of 𝜒 at the DB owner. The table at
DB 𝑗 is denoted by 𝜒 𝑗 . Finally, DB 𝑗 creates additive secret-shares
of each value of 𝜒 𝑗 (i.e., additive secret-shares of either one or zero)
and outsources the 𝜙 th, 𝜙 ∈ {1, 2}, share to the server S𝜙 . We use
the notation 𝐴(𝑥𝑖 )𝜙𝑗 to refer to 𝜙 th additive share of an 𝑖th element
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of 𝜒 𝑗 ofDB 𝑗 . Recall that before the computation starts, the initiator
informs the locations of servers to DB owners and vice versa (§3.2).
Step 2: Servers. Each server S𝜙 (𝜙 ∈ {1, 2}) holds the 𝜙 th additive
share of the table 𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) of 𝑗 th (1 ≤ 𝑗 ≤ 𝑚) DB

owners and executes Equation 3:
output

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) ⊖𝐴(𝑚)𝜙 ) mod [ ′, (1 ≤ 𝑖 ≤ 𝑏) (3)

where ⊕ and ⊖ show the modular addition and modular subtraction
operations, respectively. We used the symbols ⊕ and ⊖ to distin-
guish them from the normal addition and subtraction. Particularly,
each server S𝜙 performs the following operations: (i) modular addi-
tion (under 𝛿) of the 𝑖th additive secret-shares from all𝑚 DB owners,
(ii) modular subtraction (under 𝛿) of the result of the previous step
from the additive share of𝑚 (i.e., 𝐴(𝑚)𝜙 ), (iii) exponentiation by 𝑔
to the power the result of the previous step and modulo by [ ′, and
(iv) sends all the computed 𝑏 results to the𝑚 DB owners.
Step 3: DB owners. From two servers, DB owners receive two vec-
tors, each of length 𝑏, and perform modular multiplication (under
[) of outputs output

S1
𝑖

and output
S2
𝑖

, where 1 ≤ 𝑖 ≤ 𝑏, i.e.,
fop𝑖 ← (𝑜𝑢𝑡𝑝𝑢𝑡

S1
𝑖
× 𝑜𝑢𝑡𝑝𝑢𝑡S2

𝑖
) mod [ (4)

This step results in an output array of 𝑏 elements, which may
contain any value. However, if an 𝑖th item of 𝜒 𝑗 exists at all DB
owners, then fop𝑖 must be one, since S𝜙 have added additive shares
of𝑚 ones at the 𝑖th element and subtracted from additive share of
𝑚 that results in (𝑔0 mod [ ′) mod [ = 1 at DB owner. Please see
the correctness argument below after the example.

Value Share 1 Share 2
1 4 -3
0 2 -2
1 3 -2
Table 7: DB1.

Value Share 1 Share 2
1 3 -2
1 4 -3
0 3 -3
Table 8: DB2.

Value Share 1 Share 2
1 2 -1
0 3 -3
1 4 -3
Table 9: DB3.

Example 5.1.Assume three DB owners:DB1,DB2, andDB3; see
Tables 1, 2, and 3. For answering a query to find the common disease
that is treated by each hospital, DB owners create their tables 𝜒
as shown in the first column of Tables 7, 8, and 9. For example, in
Table 8, ⟨1, 1, 0⟩ corresponds to cancer, fever, and heart diseases,
where 1 means that the disease is treated by the hospital. We select
𝛿 = 5, [ = 11, and [ ′ = 143. Hence, the Abelian group under
modulo addition contains {0, 1, 2, 3, 4}, and the cyclic (sub)group
(with 𝑔 = 3) under modulo multiplication contains {1, 3, 4, 5, 9}.
Assume additive shares of𝑚 = 3 = (1 + 2) mod 5.
Step 1: DB Owners. DB owners generate additive shares as shown in
the second and third columns of Tables 7, 8, and 9, and outsource all
values of the second and third columns to S1 and S2, respectively.
Step 2: Servers. The server S1 will return the three values 27, 27, 81,
by executing the following computation, to all three DB owners:

3( ( ( (4+3+2) mod 5)−1) mod 5) mod 143 = 27
3( ( ( (2+4+3) mod 5)−1) mod 5) mod 143 = 27
3( ( ( (3+3+4) mod 5)−1) mod 5) mod 143 = 81

The server S2 will return values 9, 1, and 1 to all three DB owners:
3( ( ( (−3−2−1) mod 5)−2) mod 5) mod 143 = 9
3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1
3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector ⟨1, 5, 4⟩, by
executing the following computation (see below). From the vector
⟨1, 5, 4⟩, DB owners learn that cancer is a common disease treated by
all three hospitals. However, the DB owner does not learn anything
more than this; note that in the output vector, the values 5 and 4
correspond to zero. For instance, DB1, i.e., hospital 1, cannot learn
whether fever and heart diseases are treated by hospital 2, 3, or not.

(27 × 9) mod 11 = 1
(27 × 1) mod 11 = 5
(81 × 1) mod 11 = 4 ■

Correctness.When we plug Equation 3 into Equation 4, we obtain:
fop𝑖 = (𝑔

(⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )1𝑗 ) ⊖𝐴(𝑚)1

× 𝑔 (⊕
𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )2𝑗 ) ⊖𝐴(𝑚)2 mod [ ′) mod [

= (𝑔 (⊕
𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗−𝑚) mod [ ′) mod [
We utilize the modular identity, i.e., (𝑥 mod 𝛼[) mod [ = 𝑥 mod

[; thus, fop𝑖 = 𝑔
(∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗−𝑚) mod [. Only when
∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗 =𝑚,
the result of above expression is one. Otherwise, it is a nonzero
number.
Information leakage discussion.Weneed to prevent information
leakage at the server and at the DB owners.

(1) Server perspective. The servers only know the parameters ⟨𝑔, 𝛿, [ ′⟩
and may utilize the relations between 𝑔 and [ to guess [ from [ ′.
However, it will not give any meaningful information to servers,
since the DB owner sends the elements of 𝜒 in additive shared
form, and since servers do not communicate with each other, they
cannot obtain the cleartext values of 𝜒 . Also, an identical operation
is executed on all shares of𝑚 DB owners. Hence, access-patterns
are hidden from servers, thereby the server cannot distinguish
between any two values based on access-patterns. Further, the
output of query is also in shared form and contains an identical
number of bits. Thus, based on the output size, the server cannot
know whether the value is common among DB owners or not.

(2) DB owner perspective. When all DB owners do not have one at the
𝑖th position of 𝜒 , we need to inform DB owners that there is no
common value and not to reveal that how many DB owners do
not have one at the 𝑖th position. Note that the DB owner can learn
this information, if they know 𝑔 and 𝛼 , since based on these values,
they can compute what the servers have computed. However, un-
awareness of 𝑔 and 𝛼 makes it impossible to guess the number of
DB owners that do not have one at the 𝑖th position of 𝜒 . We can
formally prove it as follows:
Lemma. A DB owner cannot deduce how many other DB owners
do not have one at the 𝑖th position of 𝜒 without knowing 𝑔.
Proof. According to the precondition, 𝑔 is a generator of a
cyclic group of order 𝛿 , where 𝛿 is a prime number. Thus, C =

{𝑔0, 𝑔, 𝑔2, . . . , 𝑔𝛿−1} represents all items in the cyclic group. As-
sume that the output of Equation 4 is a number other than one,
say 𝛽 . Thus, we have 𝛽 = 𝑔𝑥−𝑚 mod [, where 𝑥 represents the
number of one at the 𝑖th position of 𝜒 𝑗 , 1 ≤ 𝑗 ≤ 𝑚. When DB
owners wish to know 𝑥 , they must compute log𝑔 𝛽 . To solve it, they
need to know 𝑔. Note that based on the characteristic of the cyclic
group, there are less than 𝛿 − 1 generators of C and co-prime to
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𝛿 . Thus, 𝑔2, . . . , 𝑔𝛿−1 may also be generators of the cyclic group.
However, DB owners cannot distinguish which generator is used
by the servers. Thus, DB owners cannot deduce the value of 𝑥 ,
except knowing that 𝑥 ∈ [0,𝑚 − 1].1 ■

5.2 PSI Result Verification

A malicious adversary or a hardware/software bug may result in
the following situations, when computing PSI: (i) skip processing
the 𝑖th additive shares of all DB owners, (ii) replacing the result
of the 𝑖th additive shares by the computed result for 𝑗 th share, (iii)
injecting fake values, or (iv) falsifying the verification method. This
section provides a method for verifying the result of PSI.
High-level idea. Let 𝑔 be a generator of a cyclic group under
modulo multiplicative [ operation, and [ ′ = 𝛼 × [, 𝛼 > 1. Thus,
(𝑔𝑥 mod [) × (𝑔−𝑥 mod [) = 1, and the idea of PSI verification
lies in this equation. Recall that in PSI (§5.1), we used (𝑔𝑥 mod [),
whose value 1 shows that the item exists at all DB owners. Now, we
will use the term (𝑔−𝑥 mod [) for verification. Specifically, if the
servers has performed their computations correctly, then Equation 5
must hold to be true:
((𝑔 (⊕

𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 )−𝐴(𝑚)𝜙 mod [ ′) × (𝑔⊕
𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 mod [ ′)) mod [ = 1
(5)

where𝑚 is the number of DB owners, 𝑥 𝑗 is either 1 or 0 (as described
in §5.1), and 𝑥 𝑗 is the complement value of 𝑥 𝑗 . Below, we describe
the steps executed at the servers and DB owners.
Step 1: DB owners. On the distinct values of an attribute 𝐴c of
their relations, the DB owner DB 𝑗 executes a hash function to
create the table 𝜒 𝑗 that contains 𝑏 = |Dom(𝐴𝑐 ) | values (either 0 or
1). Further,DB 𝑗 creates a table 𝜒 𝑗 containing 𝑏 values, such that 𝑖th
value of 𝜒 𝑗 must be the complement of 𝑖th value of 𝜒 𝑗 . Then, DB 𝑗

permutes the values of 𝜒 𝑗 using a permutation function PF𝑑𝑏1
(known to all DB owners only) and creates additive shares of each
value of 𝜒 𝑗 and 𝜒 𝑗 , prior to outsourcing to servers. The reason of
using PF𝑑𝑏1 will be clear soon.
Step 2: Servers. Each server S𝜙 holds the 𝜙 th additive share of
𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) and 𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) of 𝑗 th DB owner

and executes the following operation:
output

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) ⊖𝐴(𝑚)𝜙 ) mod [ ′, (1 ≤ 𝑖 ≤ 𝑏) (6)

Vout

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 )) mod [ ′, (1 ≤ 𝑖 ≤ 𝑏) (7)

Equation 6 is used to find the common item at the server and is
identical to Equation 3, given in §5.1. In Equation 7, each server S𝜙
performs the following operations: (i) modular addition (under 𝛿) of
the 𝑖th additive shares of 𝜒 from𝑚 DB owners, (ii) exponentiation
by 𝑔 to the power the result of the previous step, under modulus
[ ′; and (iii) sends the computed results output

S𝜙 [] and Vout
S𝜙 []

to all DB owners.
Step 3: DB owners. From two servers, DB owners receive
output

S𝜙 [] and Vout
S𝜙 [] (each of length 𝑏), permute back the val-

ues of Vout
S𝜙 [] (using the reverse permutation function, since they

1Consider 𝑖th , 𝑗 th , and 𝑘 th values of 𝜒1 = {1, 0, 0}, 𝜒2 = {0, 1, 0}, 𝜒3 = {1, 1, 1}. Here, after
Step 3, DB owners will learn three random numbers, such that the first two random numbers will
be identical. Based on this, DB owner can only know that the sum of 𝑖th and 𝑗 th position of 𝜒 is
identical. However, it will not reveal how many positions have 0 or 1 at 𝑖th or 𝑗 th positions.

used PF𝑑𝑏1 on 𝜒 , which results in Vout
S𝜙 [] at servers) to obtain

pvout
S𝜙 [], and execute the following:

𝑟1 ← output
S1
𝑖
× output

S2
𝑖

mod [ (8)

𝑟2 ← pvout
S1
𝑖
× pvout

S2
𝑖

mod [ (9)
𝑟1 × 𝑟2 mod [ ? 1 (10)

If the DB owner finds the output of 𝑟1 × 𝑟2 equals to one for all 𝑏
values, it shows that the servers have executed the computation
correctly.

Value Share 1 Share 2
0 2 -2
1 0 1
0 1 -1
Table 10: DB1.

Value Share 1 Share 2
0 2 -2
0 3 -3
1 4 -3
Table 11: DB2.

Value Share 1 Share 2
0 4 -4
1 1 0
0 1 -1
Table 12: DB3.

Example 5.2.1. We verify PSI results of Example 5.1.1. Suppose
𝛿 = 5, [ = 11, and [ ′ = 143, as assumed in Example 5.1.1.
Step 1: DB owners. DB owners find the reverse of 𝜒 (as shown in the
first column of Tables 10, 11, and 12) and generate additive shares;
see the second and third columns of Tables 10, 11, and 12. Note that
here for simplicity, we do not permute the values or shares.
Step 2: Servers. The server S1 will return the three values 27, 81, 3,
by executing the following computation, to all three DB owners:

3( (2+2+4) mod 5) mod 143 = 27
3( (0+3+1) mod 5) mod 143 = 81
3( (1+4+1) mod 5) mod 143 = 3

The server S2 will return three values 7, 27, and 1 to all three DB
owners:

3( (−2−2−4) mod 5) mod 143 = 9
3( (1−3+0) mod 5) mod 143 = 27
3( (−1−3−1) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector ⟨1, 9, 8⟩, by
executing the following computation:

(27 × 9) mod 11 = 1
(81 × 27) mod 11 = 9
(3 × 1) mod 11 = 3

Now, the DB owner executes the following for verifying PSI
results, 1 × 1 mod 11 = 1, 5 × 9 mod 11 = 1, and 4 × 3 mod 11 = 1,
where 1, 5, 4 are the final output at DB owner in Example 5.1.1.
The output 1 indicates that the servers executed the computation
correctly. ■
Correctness. First, we need to argue that the processing at servers
works correctly. Assume that the DB owner does not implement
PF𝑑𝑏1 on elements of 𝜒 , and computation at servers is executed
in cleartext. Thus, on the values of 𝜒 , servers add 𝑖th value of each
𝜒 𝑗 = {𝑥𝑖 } (1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑏) and subtract the results from𝑚.
It will result in a number, say 𝑎 ∈ {−𝑚 + 1, 0}. On the other hand,
servers add 𝑖th values 𝜒 𝑗 , and it will result in a number, say 𝑏 ∈
{0,𝑚}, i.e., the number of ones at DB owners at the 𝑖th position of 𝜒 .
To hide the value of 𝑎 and 𝑏 from servers, they execute operations
on additive shares of 𝜒 and 𝜒 , and take a modulus exponent (i.e.,
𝑟1 ← 𝑔𝑎 and 𝑟2 ← 𝑔𝑏 ) to hide 𝑎 and 𝑏 from DB owners. Since
𝑎 = −𝑏 or 𝑎 = 𝑏 = 0, 𝑟1 × 𝑟2 mod [ = 1, and this shows that the
server executed the correct operation.

Now, we showwhy the verificationmethodwill detect any abnor-
mal computation executed by servers. Note that servers may skip to
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process all/some values of 𝜒 and 𝜒 . For example, servers may pro-
cess only 𝑥1 ∈ 𝜒 , 𝑥1 ∈ 𝜒 , and send the results corresponding to 𝑥1,
𝑥1 as the results of all remaining 𝑏−1 values. Such a malicious oper-
ation of servers will provide a legal proof (i.e., 𝑟1 × 𝑟2 mod [ = 1) at
DB owners that servers executed the computation correctly, (since
values of 𝜒 was not permuted). Thus, we used permutation over
the values of 𝜒 and/or additive shares of 𝜒 . Now, to break the veri-
fication method and to produce 𝑟1 × 𝑟2 mod [ = 1 for an 𝑖th value
of 𝜒 , servers need to find the correct value in 𝜒 corresponding to
an 𝑖th value of 𝜒 (among the randomly permuted shares). Hence,
the removal of any results from the output will be detected.

Now, we show why the verification method can detect fake data
insertion by servers. For a malicious server S1 to successfully inject
a fake tuple (i.e., undetected during verification), it should know the
correct position of some element in both 𝐴(𝜒)1

𝑗
and 𝐴(𝜒)1

𝑗
. Since

𝐴(𝜒)1
𝑗
is a permuted vector of size 𝑏 = |Dom(𝐴𝑐 ) |, the probability

of finding the correct element in𝐴(𝜒)1
𝑗
corresponding to an element

of 𝐴(𝜒)1
𝑗
will be 1/𝑏2. E.g., in our experiments, the domain size is

5M (or 20M) values, making the above probability infinitesimal
(< 10−13).2

Additional security. We implemented PF
db1

on the elements
of 𝜒 . We can, further, permute additive shares of both 𝜒 and 𝜒

using different permutation functions, to make it impossible for
both servers to find the position of a value in 𝐴(𝜒)𝜙

𝑗
and 𝐴(𝜒)𝜙

𝑗
,

𝜙 ∈ {1, 2}. Thus, servers cannot break the verification method, and
any malicious activities will be detected by DB owners.
Information leakages discussion. The verification method will
not reveal any non-desired information to servers and DB owners,
and arguments for information leakage follow the similar ways as
given for PSI computation in §5.1.

6 AGGREGATION OPERATION OVER PSI

Prism supports both summary and exemplar aggregations. Below,
we describe how Prism implements sum §6.1, average §6.2, max-
imum §6.3, median §6.4 and count operations §6.5. Also, in our
discussion below, we will consider set-based operation PSI on a
single attribute 𝐴𝑐 . §6.6 will extend the discussions to support PSI
over on multiple attributes and over a large-size domain.

6.1 PSI Sum Query

A PSI sum query computes the sum of values over an attribute
corresponding to common items in another attribute; see example
given in §2. This section develops a method based on additive, as
well as, multiplicative shares, where additive shares find common
items over an attribute 𝐴𝑐 and multiplicative shares (SSS) finds the
sum of shares of an attribute 𝐴𝑥 corresponding to the common
items in 𝐴𝑐 . This method contains the following steps:
Step 1: DB owners. DB 𝑗 creates their 𝜒 𝑗 table over the distinct
values of 𝐴𝑐 attribute by following Step 1 of PSI; see §5. Here,
𝜒 𝑗 = {⟨𝑥𝑖1, 𝑥𝑖2⟩}, where 1 ≤ 𝑖 ≤ 𝑏 and 𝑏 = |Dom(𝐴𝑐 ) |, i.e., the
𝑖th cell of 𝜒 𝑗 contains a pair of values, ⟨𝑥𝑖1, 𝑥𝑖2⟩, where (i) 𝑥𝑖1 = 1,
if a value 𝑎𝑖 ∈ 𝐴𝑐 is mapped to the 𝑖th cell, otherwise, 0; and (ii)
2If the domain size is small, we can increase its size by adding fake values to bind the probability of
adversary being able to inject fake data.

𝑥𝑖2 contains the sum of values of 𝐴𝑥 attribute corresponding to
𝑎𝑖 ; otherwise, 0. DB 𝑗 creates additive shares of 𝑥𝑖1 (denoted by
𝐴(𝑥𝑖1)𝜙𝑗 , 𝜙 = {1, 2}) and sends to two serversS1 andS2. Also,DB 𝑗

creates SSS of 𝑥𝑖2 (denoted by 𝑆 (𝑥𝑖2)𝜙𝑗 , 𝜙 = {1, 2, 3}) and sends to
three servers S1, S2, and S3.
Step 2: Servers. Servers S1 and S2 find common items using ad-
ditive shares by implementing Equation 3 and send all computed
𝑏 results to all DB owners. Since the result is in additive shared
form, it cannot be multiplied to SSS. Thus, servers send the output
of PSI to one of the DB owners selected randomly and wait to receive
multiplicative shares corresponding to common items. The reason
of randomly selecting only one DB owner is just to reduce the com-
munication overhead of sending/receiving additive/multiplicative
shares, and it does not impact the security. Note that all DB owners
can receive the PSI outputs and generate multiplicative shares.
Step 3: DB owners. On receiving 𝑏 values, the DB owner finds
the common items by executing Equation 4 and generates a vector
of length 𝑏 having 1 or 0 only, where 0 is obtained by replacing
random values of fop. Finally, the DB owner creates three SSS of
each of the 𝑏 value, denoted by 𝑆 (𝑧𝑖 )𝜙 , 𝜙 = {1, 2, 3}, and sends to
three servers.
Step 4: Servers. Servers S𝜙 ,𝜙={1,2,3} , execute the following:

sum

S𝜙
𝑖
← ∑𝑗=𝑚

𝑗=1 𝑆 (𝑥𝑖2)𝜙𝑗 × 𝑆 (𝑧𝑖 )
𝜙 , 1 ≤ 𝑖 ≤ 𝑏 (11)

Each server multiplies 𝑆 (𝑧𝑖 )𝜙 by 𝑆 (𝑥𝑖2)𝜙𝑗 of each DB owner, adds
the results, and sends them to all DB owners.
Step 5: DB owners. From three servers, all DB owners receive
three vectors, each of length 𝑏, and perform Lagrange interpolation
on each 𝑖th value of the three vectors. Thus, the DB owner knows
two things: (i) the common item in 𝐴𝑐 attribute, and (ii) the sum of
the value in 𝐴𝑥 corresponding to the common items in 𝐴𝑐 . §6.1.2
will extend this method in which we will reveal to DB owners only
the sum of the values corresponding to the common items, but not
the common items.
Example 6.1.1 Consider the three DB owners: DB1, DB2, and
DB3; see Tables 1, 2, and 3, and consider a query to find the sum
of the cost corresponding to the common disease that is treated
by each hospital. In this example, we select 𝛿 = 5, [ = 11, and
[ ′ = 143. Hence, the Abelian group under modulo addition contains
{0, 1, 2, 3, 4}, and the cyclic (sub)group (with 𝑔 = 3) under modulo
multiplication contains {1, 3, 4, 5, 9}. Assume additive shares of𝑚 =

3 = (1 + 2) mod 5.
Step 1: DB Owners. DB owners generate additive shares correspond-
ing to the diseases, as we did in Example 5.1, and shown in the
second and third columns of Tables 13, 14, and 15. Also, DB owners
find the cost group by diseases, as shown in the fourth column
of Tables 13, 14, and 15. Then, DB owners select polynomials of
the same degree and create three multiplicative shares of the cost,
as shown in sixth, seventh, and eighth columns of Tables 13, 14,
and 15. Additive shares and multiplicative shares are outsourced to
the servers.
Step 2: Servers. Servers S1 and S2 compute PSI as we did in Step 2
of Example 5.1 and send the output to one of the DB owners, say
DB1.
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Value Share 1 Share 2 Cost Polynomial CShare 1 CShare 2 CShare 3
1 4 -3 300 𝑥 + 300 301 302 303
0 2 -2 0 300𝑥 + 0 300 600 900
1 3 -2 300 2𝑥 + 300 302 304 306

Table 13: DB1 shares for PSI sum.

Value Share 1 Share 2 Cost Polynomial CShare 1 CShare 2 CShare 3
1 3 -2 100 2𝑥 + 100 102 104 106
1 4 -3 120 𝑥 + 120 121 122 123
0 3 -3 0 50𝑥 + 0 50 100 150

Table 14: DB2 shares for PSI sum.

Value Share 1 Share 2 Cost Polynomial CShare 1 CShare 2 CShare 3
1 2 -1 1000 𝑥 + 1000 1001 1002 1003
0 3 -3 10 10 + 𝑥 10 20 30
1 4 -3 500 𝑥 + 500 501 502 503

Table 15: DB3 shares for PSI sum.

Step 3: DB owner.DB1 finds PSI as we did in Step 3 of Example 5.1,
replaces random values (the output of Step 3 computation in Ex-
ample 5.1 by zero), and creates multiplicative of one and zero, as
shown in Table 16:

PSI output Polynomial PSIShare 1 PSIShare 2 PSIShare 3
1 1 𝑥 + 1 2 3 4
9 0 2𝑥 + 0 2 4 6
3 0 3𝑥 + 0 3 6 9

Table 16: DB1 creating multiplicative shares of PSI outputs.

Step 4: Servers. On receiving multiplicative shares of PSI outputs
from DB1, servers execute the following computations. S1 exe-
cutes the following computation and returns 2808, 862, 2559 to all
DB owners.

2 × (301 + 102 + 1001) = 2808
2 × (300 + 121 + 10) = 862
3 × (302 + 50 + 501) = 2559

S2 executes the following computation and returns 4224, 2968,
5436 to all DB owners.

3 × (302 + 104 + 1002) = 4224
4 × (600 + 122 + 20) = 2968
6 × (304 + 100 + 502) = 5436

S3 executes the following computation and returns 4224, 2968,
5436 to all DB owners.

4 × (303 + 106 + 1003) = 5648
6 × (900 + 123 + 30) = 6318
9 × (306 + 150 + 503) = 8631

Step 5: DB owner. DB owners perform Lagrange interpolation over
⟨2808, 4224, 5648⟩, ⟨862, 2968, 6318⟩, ⟨2559, 5436, 8631, and it results
in values 1400, 0, 0, i.e., the sum of the cost corresponding to the
common disease, i.e., cancer, is 1400. ■
Correctness. The correctness of PSI method can be argued simi-
larly as presented in §5. PSI operation produces one (if an item is
common at all DB owners) or random numbers (otherwise) that
will be replaced by zero. Such 0 or 1 values are converted into
multiplicative shares using SSS in Step 3. Since servers multiply
an 𝑖th SSS (which is zero or one, according to PSI output) in Step
4 to the 𝑖th SSS of 𝐴𝑥 and then add all 𝑖th values of 𝐴𝑥 , it will
result in either zero or the sum of shares over the 𝐴𝑥 attribute
(outsourced by DB owners). Thus, servers computes the sum of the
shares corresponding to only common items among DB owners.
Information leakage. Below we discuss what the servers and DB
owners should not learn during PSI sum query execution.

(1) Server perspective. Servers must not learn: (i) the actual values in
𝐴𝑥 attribute, and it is achieved since the values in the𝐴𝑥 attribute
are in SSS form. (ii) the common item by observing the multiplica-
tive shares received from one of the DB owners in Step 3, and

it is achieved since each server receives Dom(𝐴𝑐 ) multiplicative
shares regardless of the number of common items. (iii) the sum of
𝐴𝑥 ’s values corresponding to common items in the 𝐴𝑐 attribute,
and it is achieved since servers perform identical operations on
each SSS value (in Step 4) that prevent any information leakage
based on access-patterns. Thus, servers neither learn the common
item nor the sum of shares.

(2) DB owners perspective. DB owners must not learn anything more
than the sum of values over 𝐴𝑥 attribute corresponding to com-
mon items in 𝐴𝑐 attribute. Since DB owners receive the result
of multiplication of SSS values, any non-common value (which
is represented as zero in multiplicative share form after Step
3) in 𝐴𝑐 attribute results in zero as the sum of all the value in
𝐴𝑥 , while only common values (which are represented as one in
multiplicative share form after Step 3) produce the legal output.

Note: Sum of all the values corresponding to all common

items.Assume that there are multiple common values (e.g., diseases
such as cancer and flu are common diseases in our example), and
the DB owner wishes to know the sum of cost corresponding to all
common disease. It means that the DB owner wish to learn the sum
of the cost corresponding to cancer and flu. Note that for doing this
the DB owner does not first need to know the cost corresponding
of cancer and flu, and then, add the cost at their end. Of course,
it will reveal the cost corresponding to individual common items.
In our approach, the servers can add all the values (i.e., the sum
corresponding to the common diseases) after executing the above-
mentioned Step 4 and send the final output to the DB owners. After
interpolation, the DB owner will receive the desired answer under
complete security requirements, i.e., the DB owner will learn the
sum of the cost corresponding to cancer and flu. Note that such an
operation is possible because the cost is stored using multiplicative
sharing techniques that is also additive homomorphic.

6.1.1 PSI Sum Verification. PSI sum verification requires to verify
two things: the common items in 𝐴𝑐 and the sum of value of 𝐴𝑥

corresponding to the common items. We verify common items
using PSI verification method §5.2. For sum verification, we do the
following:
Step 1: DB owner.DB 𝑗 creates three vectors: (i) 𝜒 𝑗 = {⟨𝑥𝑖1, 𝑥𝑖2⟩}
as in Step 1 of PSI Sum, (ii) 𝜒 𝑗 = {⟨𝑥𝑖1⟩}, i.e., 𝜒 𝑗 contains comple-
ment of each value 𝑥𝑖1 in a permuted order using a permutation
function PF𝑑𝑏1, as we did in Step 1 of PSI verification, and (iii)
𝜒 ′
𝑗
= {⟨𝑝𝑥𝑖2⟩} that contain 𝑥𝑖2 of 𝜒 𝑗 in a permuted order using a

permutation function PF𝑑𝑏2. Recall that PF𝑑𝑏1 and PF𝑑𝑏2 are
only known to all DB owners. Here, 𝑥𝑖1 and 𝑥𝑖1 are used to verify

10



PSI, as explained in §5.2. The values 𝑥𝑖2 and 𝜒 ′
𝑗
are used to ver-

ify the sum. DB 𝑗 creates SSS of ⟨𝑥𝑖2, 𝑝𝑥𝑖2⟩ and additive shares of
⟨𝑥𝑖1, 𝑥𝑖1⟩.
Step 2: Servers. Servers find PSI, execute PSI verification method
by Equations 3,6,7, and send two output vectors each of length 𝑏 to
all DB owners.
Step 3: DB owners. DB owners verify PSI output using Equa-
tions 8-10. Additionally, only one of the DB owners generates two
vectors Γ1 and Γ2, each of length 𝑏 having 1 or 0 only, corresponding
to common items outputs. Also, it permutes Γ2 using PF𝑑𝑏2, and
creates SSS of each value in both vectors, prior to send to three
servers. We denote SSS of 𝛾𝑖 ∈ Γ1 by 𝑆 (𝛾𝑖 )𝜙 and SSS of 𝜌 ∈ Γ2 by
𝑆 (𝜌𝑖 )𝜙 .
Step 4: Servers. Servers S𝜙 ,𝜙={1,2,3} , execute the following:

sum

S𝜙
𝑖
← ∑𝑗=𝑚

𝑗=1 𝑆 (𝑥𝑖2)𝜙𝑗 × 𝑆 (𝛾𝑖 )
𝜙 , 1 ≤ 𝑖 ≤ 𝑏 (12)

vsum

S𝜙
𝑖
← ∑𝑗=𝑚

𝑗=1 𝑆 (𝑝𝑥𝑖2)𝜙𝑗 × 𝑆 (𝜌𝑖 )
𝜙 , 1 ≤ 𝑖 ≤ 𝑏 (13)

Step 5: DB owners. On receiving sum

S𝜙
𝑖

and vsum

S𝜙
𝑖

from three
servers, DB owners perform Lagrange interpolation on each 𝑖th

sum

S𝜙
𝑖

and on each 𝑖th vsum

S𝜙
𝑖

. This step will result in two output
vectors, say 𝑜1 and 𝑜2, each of length 𝑏. The values of the vector 𝑜2
are permuted back, using a function that was used by DB owners in
Step 1 above to permute the values of 𝜒 𝑗 . If all 𝑖th positions of both
the vectors match, it shows servers have executed the computation
correctly.
Correctness.We can argue PSI result verification, as in the case
of §5.2, using 𝑥𝑖1 values of the vector 𝜒 𝑗 and 𝜒 𝑗 . Recall that to
verify the sum, DB owners outsource two vectors each of size
𝑏 = Dom(𝐴𝑐 ), where the first vector contains multiplicative shares
𝑥𝑖2 (i.e., the sum of 𝐴𝑥 values corresponding to 𝑎𝑖 ∈ 𝐴𝑐 ) and the
another is 𝜒 ′

𝑗
containing all values of the first vector in a permuted

order. For a malicious server S1 to successfully inject fake sum of
values or executing a wrong computation (i.e., undetected during
verification), it should know the correct position of some elements
in both the first and second vectors. Due to the permuted second
vector, the probability of finding the correct element in the second
vector is 1/𝑏2. Also, a wrong computation or fake value insertion
at any position, say 𝑖 , will result in non-identical 𝑖th values of the
vectors 𝑜1 and 𝑜2 in Step 5 above.
Information leakage discussion. The verification method will
not reveal any non-desired information to servers and DB owners,
and arguments for information leakage follow the similar ways as
given for PSI sum computation in §6.1.

6.1.2 A Variant of PSI Sum. A variant of PSI sum problem is one
in which we wish to reveal only the sum of values in 𝐴𝑥 attribute
corresponding to the common items without revealing the common
item. For example, if we wish to find the only the cost of treatment
corresponding to the common disease treated by all hospitals (see
Table 1, 2, 3), then the output should be 1400, and the DB owner
must not learn that this amount is corresponding to cancer. Such a
problem has been motivated and considered in [39].

Our PSI sum method can be easily extended to support such a
query, as follows: In Step 2 of §6.1, severs S1 and S2 perform a

permutation function, say PF 𝑠1 on the output of Step 2 before
sending them to one of the DB owners. In Step 4, on receiving the
multiplicative shares from the DB owners, servers first permute
back the multiplicative shares and then execute the computation
given in Step 4 of §6.1. Finally, before sending the output of Step 4,
servers perform a permutation function, say PF 𝑠2. Thus, in Step
5 of §6.1, after executing Lagrange interpolation, DB owners only
learn the sum of values corresponding to the common items in 𝐴𝑐 .

6.2 PSI Average Query

A PSI average query on cost column corresponding to the common
disease in Tables 1-3 returns {Cancer, 280}. PSI average query
works in a similar way as PSI sum query. In short, DB 𝑗 creates
𝜒 𝑗 = {⟨𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3⟩}, where 1 ≤ 𝑖 ≤ 𝑏, 𝑏 = |Dom(𝐴𝑐 ) |, and 𝑥𝑖1, 𝑥𝑖2
are identical to the values we created in Step 1 of PSI sum (§6.1). The
new value 𝑥𝑖3 contains the number of tuples atDB 𝑗 corresponding
to 𝑥𝑖1 . For example, in case of Table 1, one of the values of 𝜒1 will
be {⟨Cancer, 300, 2⟩}, i.e., Table 1 has two tuples corresponding to
Cancer and cost 300. All values 𝑥𝑖3 are outsourced in multiplicative
share form. Then, we follow Steps 2 and 3 of PSI sum. In Step 4,
the servers also multiply the received 𝑖th SSS values corresponding
to the common value to 𝑥𝑖2, 𝑥𝑖3 and add the values. Finally, in Step
5, DB owners interpolate vectors corresponding to all 𝑏 values of
𝑥𝑖2, 𝑥𝑖3 and find the average by dividing the values appropriately.
Correctness: can be argued similar to PSI sum.
Information leakage: can be argued similar to PSI sum. Note that
here we reveal the total number of tuples and the sum of values
corresponding to the common values.

6.3 PSI Maximum Query

This section develops amethod for finding themaximum value in an
attribute 𝐴𝑥 corresponding to the common values in 𝐴𝑐 attribute;
refer to §2 for PSI maximum example. Here, our objective is to
prevent the adversarial server from learning: (i) the actualmaximum
values outsourced by each DB owner, (ii) what is the maximum
value among DB owners and which DB owners have the maximum
value. We allow all the DB owners to know the maximum value
and/or the identity of the DB owner(s) having the maximum value.
We use pick color to highlight the part that is used to reveal the
identity of DB owners having maximum to distinguish which part
of the algorithm can be avoided based on the security requirements.

In this method, each DB owner uses the polynomial F(𝒙)
given by the initiator; see §4 to find how we created F (𝑥). Note
that we use this polynomial to generate values at different DB
owners in an order-preserving manner by executing the following
Step 3 and Equation 14.

The method contains at most three rounds, where the first round
finds the common values in an attribute 𝐴𝑐 by using Steps 1-3,
the second round finds the maximum value in an attribute 𝐴𝑥

corresponding to common items in 𝐴𝑐 using Steps 4-5a, the last
round finds DB owners who have the maximum value using Steps
5b-7. Note that the third round is not always required, if (i)
we do not want to reveal the identity of the DB owner having the
maximum value, or (ii) values in 𝐴𝑥 column across all DB owners
are unique.
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Step 1 at DB owner and Step 2 at servers. These two steps
are identical to Step 1 and Step 2 of PSI query execution method
(given in §5).
Step 3: DB owner. On the received outputs (of Step 2) from
servers, DB owners find the common item in the attribute 𝐴𝑐 , as
in Step 3 of PSI query execution method (§5). Now, to find the
maximum value in the attribute 𝐴x corresponding to the common
item in 𝐴𝑐 , DB owners proceeds as follows:

For the purpose of simplicity, we assume that there is only one
common item, say 𝑦th item. DB𝑖 finds the maximum, sayM𝑖𝑦 , in
the attribute𝐴x of their relation corresponding to the common item
𝑦. Note that since we assume only one common element, we refer
to the maximum elementM𝑖𝑦 byM𝑖 . DB𝑖 executes Equation 14
to produce values at DB owners in an order-preserving manner:

𝑣𝑖 ← F (M𝑖 ) + 𝑟𝑖 (14)
DB𝑖 implements the polynomial F () onM𝑖 and adds a random
number 𝑟𝑖 (selected in a range between 0 andM𝑚

𝑖
), and it produces

a value 𝑣𝑖 . Finally, DB𝑖 creates additive shares of 𝑣𝑖 (denoted by
𝐴(𝑣)𝜙

𝑖
) and sends them to servers S𝜙 , 𝜙 = {1, 2}. Note that even

if 𝑘 ≥ 2 DB owners have the same maximum valueM𝑖 , by this
step, the value 𝑣 will be different at those DB owners, with a high
probability, 1 − 1

(M𝑖 ) (𝑘−1)𝑚
, (depending on the range of 𝑟𝑖 ). Also,

if any two numbersM𝑖 < M 𝑗 , then F (M𝑖 ) + 𝑟𝑖 < F (M 𝑗 ) will
hold.
Step 4: Servers. Each server S𝜙 executes the following operation:
input

S𝜙 [𝑖] ← 𝐴(𝑣)𝜙
𝑖
, 1 ≤ 𝑖 ≤ 𝑚; output

S𝜙 [] ← PF (input
S𝜙 [])

Server S𝜙 collects additive shares from each DB owner and places
them in an array (denoted by input

S𝜙 []), on which S𝜙 executes
the permutation function PF . Then, they send the output the
permutation function, i.e., output

S𝜙 [], to the announcer S𝑎 that
executes the following:

foutput
S𝑎 [𝑖] ← output

S1 [𝑖] + output
S2 [𝑖], 1 ≤ 𝑖 ≤ 𝑚 (15)

max, index ← FindMax (foutput
S𝑎 []) (16)

S𝑎 adds the 𝑖th outputs received from S1 and S2, and compares
all those numbers to find the maximum number (denoted by max).
Also,S𝑎 produces the index position (denoted by index) correspond-
ing to the maximum number in foutput

S3 []. Finally, S𝑎 creates
additive secret-shares of max (denoted by 𝐴(max

S𝜙 ), 𝜙 ∈ {1, 2}),
as well as, of index (denoted by 𝐴(index)S𝜙 ), and sends them to
S𝜙 (𝜙 ∈ {1, 2}) that forwards such additive shares to DB owners.
Note that if the protocol does not require to reveal the identity of the
DB owner having the maximum value, S𝑎 does not send additive
shares of index.
Step 5a: DB owner. Now, the DB owners’ task is to find the
maximum value and/or the identity of the DB owner who has the
maximum value. To do so, each DB owner performs the following:

max← 𝐴(max)S1 +𝐴(max)S2 (17)
index← 𝐴(index)S1 +𝐴(index)S2 , pos← RPF (index) (18)

The DB owner finds the identity of the DB owner having the maxi-
mum value by adding the additive shares and by implementing re-
verse permutation functionRPF . Note thatRPF works sincePF
is known to DB owners and servers (see Assumptions given in §4).
To find the maximum value, they implement F (𝑧) and F (𝑧+1) and

evaluate F (𝑧) ≤ max < F (𝑧 + 1), where 𝑧 ∈ {1, 2, . . .}.3 If this con-
dition holds to be true, then 𝑧 is the maximum value, and if 𝑧 =M𝑖 ,
then the 𝑖th DB owner knows that he/she holds the maximum value.
Obviously, if the 𝑖th DB owner does not hold the maximum value,
thenM𝑖 < F (M𝑖 ) + 𝑟𝑖 < F (M𝑖 + 1) ≤ F (𝑧) ≤ max.
Step 5b: DB owner. Note that by the end of Step 5a, the DB
owners know the maximum value and the identity of the DB owner
having the same maximum value, due to pos. However, if there are
more than one DB owner having the maximum value, the other
DB owners cannot learn about it. The reason is: the server S𝑎 can
find only the maximum value, while, recall that, if more than one
DB owners have the same maximum value, sayM, they produce
a different value, due to using different random numbers in Step
3 (Equation 14). Thus, we need to execute this step 5b to know all
DB owners having the maximum value.

After comparing its maximum values against max, DB𝑖 knows
whether it possesses the maximum value or not. Depending on this,
DB𝑖 generates a value 𝛼𝑖 = 0 or 𝛼𝑖 = 1, creates additive shares of
𝛼𝑖 , and sends to S𝜙 , 𝜙 ∈ {1, 2}.
Step 6: Servers. Server S𝜙 allocates the received additive shares
to a vector, denoted by fpos, and sends the vector fpos to all DB
owners, i.e., fpos

S𝜙 [𝑖] ← 𝐴(𝛼)S𝜙
𝑖

, 1 ≤ 𝑖 ≤ 𝑚.
Step 7: DB owner. Each DB owner adds the received additive
shares to obtain the vector fpos[].

fpos[𝑖] ← fpos
S1 [𝑖] + fpos

S2 [𝑖], 1 ≤ 𝑖 ≤ 𝑚 (19)
By fpos[], DB owners discover which DB owners have the max-
imum value, since, recall that in Step 5, DB𝑖 that satisfies the
condition (F (M𝑖 ) ≤ max < F (M𝑖 + 1)) requests S𝜙 to place
additive share of 1 at fpos

S𝜙 [𝑖].
Example 6.3.1. Assume [ = 5003. Refer to Tables 1-3, and consider
that all hospitals wish to find the maximum age of a patient corre-
sponding to the common disease and which hospitals treat such
patients. We assume that all hospitals know cancer as the common
disease.

In Step 3, all hospitals, i.e., DB owners, find their maximum
values in the attribute Age corresponding to common disease and
implement F (𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1, sent by the initiator.

F (6) = 1555 + 216 = 1771 = (5000 − 3229) mod 5003
F (8) = 4681 + 1 = 4682 = (5500 − 818) mod 5003
F (8) = 4681 + 319 = 5000 = (2500 + 2500) mod 5003

Further, they add random numbers (216, 1, 319) and create ad-
ditive shares, which are outsourced to S1 and S2. In Step 4, S1
holds ⟨5000, 5500, 2500⟩, permutes them, and sends to S𝑎 . S2 holds
⟨−3229,−818, 2500⟩, permutes them, and sends to S𝑎 .
S𝑎 obtains ⟨4682, 5000, 1771⟩ by adding the received shares from

S1, S2, and finds 5000 as the maximum value and ‘Hospital 2’
to which the value belongs. Finally, S𝑎 creates additive shares of
5000 = (4000 + 1000) mod 5003, additive shares of the identity of
the DB owner as 2 = (200−198) mod 5003, and sends to DB owners
via S1, S2.

In Step 5a, all hospitals will know the maximum value as 5000
(with random value added) and identity of the DB owner as 2 on
which they implement the reverse permutation function to obtain
3For reducing computation cost, we may select number 𝑧 similar to binary search method.
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the correct identity as ‘Hospital 3’. Then, ‘Hospital 1’ knows that
they do not hold the maximum, since F (6) + 216 < F (7) < 5000.
‘Hospital 2’ knows that they hold the maximum, since F (8) <

5000 < F (9). Also, ‘Hospital 3’ knows that they hold the maximum.
To know which hospitals have the maximum value, in Step 5b,
Hospitals 1, 2, 3’ create additive shares of 0, 1, 1, respectively, as:
0 = (200 − 200) mod 5003, 1 = (300 − 299) mod 5003, and 1 =

(200− 199) mod 5003, and send to S1 and S2. Finally, in Step 6, S1
and S2 send ⟨200, 300, 200⟩ and ⟨−200,−299,−199⟩ to all hospitals.
In Step 7, hospitals add received shares, resulting in ⟨0, 1, 1⟩. It
shows that ‘Hospitals 2, 3’ have the maximum value 8. ■
Correctness.We need to show the proposed method will allow: (i)
the DB owners to know the maximum value, and (ii) the identity
of the DB owners who have the maximum value.

First, before showing that the DB owners will know the maxi-
mum value, we need to show that the server will find the maximum
value. Recall that in Step 3, the random number addition to output
of F (∗) hides only the actual value from S𝑎 , (i.e., if 𝑎 < 𝑏, then
F (𝑎) + 𝑟 < F (𝑏) + 𝑟 ′ and if 𝑎 = 𝑏, then F (𝑎) + 𝑟 < F (𝑏) + 𝑟 ′ or
F (𝑎) + 𝑟 > F (𝑏) + 𝑟 ′ will hold at S𝑎 , where 𝑟 , 𝑟 ′ are random num-
bers). Also, observe that the execution of the permutation function
byS1 andS2 just hides the identity of DB owners fromS𝑎 and does
not affect the shares. Thus, in Step 5, S𝑎 will find the maximum
value (among the permuted shares, received from S1 and S2) and
provide additive shares of the maximum value and additive shares
of the identity of the DB owner.

Second, we show that each DB owner will know the maximum
value — by comparing her maximum value from the summation
of the maximum value’s additive shares, received from S1 and
S2. Consider three values 𝑎 < 𝑏 = 𝑐 at three DB owners DB1,
DB2, DB3, respectively, and these values become 𝑣1 < 𝑣2 < 𝑣3
using Step 3, Equation 14. Here, of course, S𝑎 will announce 𝑣3 as
the maximum value, and thus, on receiving additive shares of the
maximum value, viaS1 andS2,DB3 will know it has themaximum
values. Also, DB2 will know that it has the maximum value, since
F (𝑏) ≤ 𝑣3 < F (𝑏 + 1) (see Step 5a). Also, DB1 will know that it
does not hold the maximum value, since F (𝑎) < F (𝑎 + 1) ≤ 𝑣3.

Finally, once all DB owners will know whether they hold the
maximum value or not, using Steps 5a-7, they will also know the
identity of eachDB ownerwho has themaximumvalue, by checking
the value of fpos[] (Step 7), since DB𝑖 with the maximum value
has requestedS𝜙 to place additive shares of 1 at the fpos

S𝜙 [𝑖] (Step
5b).
Information leakage discussion.We discuss information leakage
at the servers and at the DB owner.

(1) Server perspective. Here, our objective is to hide: (i) the actual
values, (ii) the number of DB owners having the same value,
(iii) the maximum value and the identity of the DB owners who
have the maximum value from the servers, and (iv) S𝑎 cannot
reconstruct the actual value, since it receives the output of Step
3. In order to achieve the first two objectives, in Step 3, the DB
owners use a polynomial and add a random number to the output
of the polynomial. Thus, even if two or more DB owners have the
same or different value, their final output value will be different.
Since S𝑎 finds the maximum value and the identity over the
permuted values, S𝑎 cannot deduce that which value is related to

which DB owner. Since S𝑎 sends additive shares of the maximum
value and identity to S1 and S2, they cannot learn that which
DB owner has the maximum value. Thus, we achieve the third
objective.
In order to achieve the fourth objective, the DB owners use a
polynomial of degree more than𝑚, where𝑚 is the number of DB
owners. Thus, even collecting values from all𝑚 DB owners, S𝑎
cannot interpolate the received values to know the actual value.
Observe that this statement is akin to Shamir’s secret-sharing,
where an adversary cannot learn a secret, until collecting 𝑡 + 1
shares, if a polynomial of degree 𝑡 is used for creating shares of a
secret.

(2) DB owner perspective. DB owners’ objectives are (i) the servers
will not learn their actual valuesM, (ii) each DB owner will not
learn other DB owners’ values, except the maximum value, and
(iii) if they are not interested in learning the identity of the DB
owner having the maximum value, it should not be revealed. Due
to not revealing any valueM to S𝜙 = {1, 2} or S𝑎 , as argued
previously, we satisfy the first objective. Since S𝑎 sends only
additive shares of the maximum value, any DB owner cannot
learn other DB owner’s value, except the maximum value.

PSI Maximum Verification. Appendix A provides a method to
verify the maximum value.

6.4 PSI Median Query

A PSI median query over cost column corresponding to disease
column over Tables 1-3 returns {⟨Cancer, 300⟩}. Note that here
we first add the cost of treatment at each DB owner. However,
the approach can be extended to deal with individual tuples. For
solving PSI median, we extend the method of finding maximum by
executing all steps as specified in §6.3 with an additional process in
Step 2. Particularly, S𝑎 in Step 2 of §6.3 after adding shares, sorts
them, and finds the median value. If the number of DB owners is
odd (even), then S𝑎 finds the middle value (two middle values) in
the sorted shares.

6.5 PSI Count Query

We extend PSI method (§5) to only reveal the count of common
items among DB owners (i.e., the cardinality of the common item),
instead of revealing the common items. Recall that serversS𝜙 know
a permutation function PF 𝑠1 that is not known to DB owners.
The idea behind this is to find the common items over 𝜒 and to
permute the final output at servers before sending the vector (of
additive share form) to DB owners. Thus, when DB owners perform
computation on the vector received from servers to know the final
output, the position of one in the vector will not reveal common
items, while the count of one will reveal the cardinality of the
common items. Thus, PSI count method follows all steps of PSI as
described in §5.1 with an addition of the same permutation function
execution by both the servers (in Step 2 §5.1) before sending the
output to DB owners. Furthermore, DB owners execute the identical
computations as given in Step 3 §5.1, and then, count the ones to
know the answer.
Correctness. Correctness of PSI count can be argued identically
to the correctness of PSI method given in §5.1. In addition, since
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both servers use the same permutation function, it will produce the
correct answer at DB owner.
Information leakage discussion.We can argue information leak-
age at servers and DB owners like §5.1. Moreover, PSI count method
hides information about which item is common or not in the at-
tribute 𝐴𝐶 , among DB owners. Thus, DB owners will only know
the number of common items.

PSI Count Verification

While verifying PSI count, we cannot reveal the exact common
items. Thus, in this method, we use different permutations for
servers and for DB owners for hiding the exact position of the
common item in 𝜒 . Particularly, each server uses two permutation
functions PF 𝑠1 and PF 𝑠2, and each DB owner utilizes two permu-
tation functions PF𝑑𝑏1 and PF𝑑𝑏2. Recall that these permutation
function satisfy Equation 1. PSI count verification works as follows:
Step 1: DB owners. Like PSI verification, DB 𝑗 creates and sends
additive shares of two tables 𝜒 𝑗 and 𝜒 𝑗 to servers. Prior to sending
shares of 𝜒 𝑗 , DB 𝑗 executes PF𝑑𝑏2 on 𝜒 𝑗 .
Step 2: Servers. Severs execute Equations 6, 7 on additive shares of
𝜒 𝑗 and 𝜒 𝑗 , implementPF 𝑠1 on output

S𝜙 [] andPF 𝑠2 onVout
S𝜙 [],

and send permuted output vectors (each of length 𝑏) to all DB
owners.
Step 3: DB owners. Finally, DB 𝑗 implements PF𝑑𝑏1 on
output

S𝜙 [] and executes Equations 8-10 on permuted vector
output

S𝜙 [] and Vout
S𝜙 []. Note that due to the implementation

of Equation 1 (PF 𝑠1 ⊙ PF𝑑𝑏1 = PF 𝑠2 ⊙ PF𝑑𝑏2), any 𝑘 th value
of output

S𝜙 [] and Vout
S𝜙 [] will satisfy Equations 8-10, and thus,

we can verify PSI count.
Correctness. The correctness argument of PSI count verification
is similar to PSI result verification §5.2.
Information leakage discussion. Below we discuss what the
servers and DB owners must not learn during PSI count query
execution

(1) Server perspective. Servers must not know the linking between the
elements of 𝜒 and 𝜒 , which both are in additive share form at the
server. Since servers do not knowPF𝑑𝑏2, servers cannot permute
back the elements of 𝜒 . Further, information leakage arguments
can be followed as for PSI and PSI verification methods §5.1.

(2) DB owner perspective. DB owners must not learn the index of 𝜒
corresponding to the common item after the execution of the
above-mentioned Step 3. Since DB owners do not know PF 𝑖 or
PF 𝑠1 and PF 𝑠2 to permute back the output sent by the servers.
Thus, DB owners cannot link the final output to the original
elements of 𝜒 , which was formed in the above-mentioned Step 1.

6.6 Extending PSI over Multiple Attributes

In the previous sections, we explained PSI over a single attribute (or
a set). We can trivially extend it to multiple attributes (or multisets).
Particularly, such a query can be expressed in SQL as follows:

SELECT 𝐴𝑐, 𝐴𝑥 FROM 𝑑𝑏1 INTERSECT . . . INTERSECT
SELECT 𝐴𝑐, 𝐴𝑥 FROM db𝑚

Recall that in PSI findingmethod §5.1,DB 𝑗 sends additive shares
of a table 𝜒 𝑗 of length 𝑏 = |Dom(𝐴𝑐 ) |, where 𝐴𝑐 was the attributes
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Figure 2: Bucket tree for 16 values.

on which we executed PSI. Now, we can extend this method by
creating a table 𝜒 𝑗 of length 𝑏 = |Π𝑖>0Dom(𝐴𝑖 ) |, where 𝐴𝑖 are
attributes on which wewant to execute PSI. However, as the domain
size and the number of attributes increase, such a method incurs
the communication overhead. Thus, to apply the PSI method over a
large (and real) domain size, as well as, to reduce the communication
overhead, we provide a method, named as bucketization-based PSI.
Optimization: bucketization-based PSI. Before going to steps
of this method, let us consider the following example:
Example 6.6.1. Consider two attributes 𝐴 with |Dom(𝐴) | = 8 and
𝐵 with |Dom(𝐵) | = 2. Thus, DB owners can create 𝜒 𝑗 of 16 cells.
Assume that there are two DB owners: DB1 with 𝜒1 whose only
positions 4, 7, 8 have one; and DB2 with 𝜒2 whose only positions
1, 6, 8 have one. Thus, each DB owner sends/receives a vector of
length 16 from each server.

Now, to reduce communication, we create buckets over the cell
of 𝜒 and build a tree, called bucket-tree, of depth log^ |𝜒 |, where
^ is the number of the maximum number of child nodes that a
node can have. Bucket-tree in created in a bottom-up manner by a
non-overlap grouping of ^ nodes, and for each level of bucket-tree
a hash table (similar to 𝜒) is created. Notation 𝜒𝑖

𝑗
denotes this table

for 𝑖th level of bucket-tree at DB 𝑗 , and 𝜒𝑖
𝑗
[𝑘] = 1, if the 𝑘 th node

at the 𝑖th level has 1.
Figure 2 shows bucket-tree for DB 𝑗 , |𝜒 | = 16, and ^ = 4, with

appropriate one and zero in 𝜒𝑖1. Note that the second level shows
four nodes 𝐵21, 𝐵22, 𝐵23, 𝐵24 corresponding to 1 − 4, 5 − 8, 9 − 12,
and 13 − 16. Since DB1 has one at 4, 7, 8 leaf nodes, we obtain
𝜒21 = ⟨1, 1, 0, 0⟩, i.e., 𝐵21 = 1, 𝐵22 = 1, 𝐵23 = 0, 𝐵24 = 0. Here,
𝐵21 = 1, since its one of the child nodes has one. Now, when
computing PSI, DB 𝑗 can start the same computation as shown in
Step 2 of §5.1 over the specified 𝑖th levels’ 𝜒𝑖

𝑗
. Next, they continue

the computation only for those child nodes, whose parent nodes
resulted in one in Step 3 of §5.1.

For example, in Figure 2, DB 𝑗 can execute PSI for 𝜒2
𝑗
and know

that the only desired bucket nodes are 𝐵21 and 𝐵22 that contain
common items. Thus, in the next round, they execute PSI over
the first eight items of 𝜒1

𝑗
, i.e., child nodes of 𝐵21 and 𝐵22. Hence,

while we use two communication rounds, DB owners/servers send
4+8=12 numbers instead of 16 numbers.■

Bucketization-based PSI has the following steps:
Step 1a: DB owner. Build the tree as specified in Example 6.6.1.
Step 1b: DB owner. Outsource additive shares of 𝑖th level’s 𝜒𝑖

𝑗
.

Step 2: Servers. Servers compute PSI using Step 2 of §5.1 over 𝜒𝑖
𝑗

(1 ≤ 𝑗 ≤ 𝑚) and provide answers to DB owners.
Step 3: DB owner. DB 𝑗 computes results to find the common
items in 𝜒𝑖

𝑗
and discards all non-common values of 𝜒𝑖

𝑗
and their

child nodes. DB 𝑗 requests servers to execute the above Step 2 for
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𝜒𝑖−1
𝑗

that has values corresponding to all non-discarded nodes of
(𝑖 − 1)th level node.
Note: The role of DB owners in traversing the tree (i.e., the above
Step 3) can be eliminated by involving S𝑎 .
Open problem. In bucketization, we perform PSI at layers of the
tree for eliminating ranges where corresponding child nodes have
zero. However, if the data is dense (i.e., data covers most of the
domain values), then bucketization-based PSI may incur overhead,
since all nodes in the tree may correspond to one, leading to execute
PSI on all those nodes including leaf nodes. Nevertheless, if the
data is sparse (i.e., the domain is much larger than the data, as is
the case of the domain to be a cartesian product of domains of two
or more attributes), then higher-level nodes in the tree may have 0,
leading to eliminate ranges of domain on which PSI is performed.
Developing an optimal bucketization strategy that minimizes PSI
execution is an interesting open problem.

7 PRIVATE SET UNION (PSU) QUERY

This section develops a method for finding union (denoted by PSU)
among𝑚 > 1 different DB owners over an attribute 𝐴𝑐 (which is
assumed to exist at all DB owners.
High-level idea. Likewise PSI method (as presented in §5), each
DB owner uses a publicly known hash function to map distinct
values of 𝐴𝑐 attribute in a table of cells at most |Dom(𝐴𝑐 ) |, where
|Dom(𝐴𝑐 ) | refers to the size of the domain of 𝐴𝑐 , and outsources
each element of the table in additive share form to two servers S𝜙 ,
𝜙 ∈ {1, 2}. S𝜙 computes the union obliviously, thereby DB owners
will receive a vector of length |Dom(𝐴𝑐 ) | having either 0 or 1 of
additive shared form. After adding the share for an 𝑖th element,
DB owners only know whether the element is in the union or not;
nothing else.
Step 1: DB owner. This step is identical to Step 1 of PSI (§5.1).
Step 2: Server. Each server S𝜙 (𝜙 ∈ {1, 2}) holds the 𝜙 th additive
share of the table 𝜒 of𝑚 DB owners and executes the following
operation:

rand [] ← PRG(seed)

output

S𝜙
𝑖
← ((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) × rand [𝑖]) mod 𝛿
(20)

Each server S𝜙 performs the following operations: (i) generates 𝑏
pseudorandom numbers that are between 1 and 𝛿 − 1, (ii) performs
(arithmetic) addition of the 𝑖th additive secret-shares from all DB
owners, (iii) multiplies the resultant of the previous step with 𝑖th

pseudorandom number and then takes modulo, and (iv) sends 𝑏
results to all DB owners.
Step 3: DB owner. On receiving two vectors, each of length 𝑏,
from two servers, DB owners execute modular addition over 𝑖th
shares of both vectors to know the final answer (Equation 21). It
results in either zero or any random number, where zero shows
that the 𝑖th element of 𝜒 is not present at any DB owner, while a
random number shows the 𝑖th element of 𝜒 is present at one of the
DB owners.

fop𝑖 ← (output
S1
𝑖
+ output

S2
𝑖
) mod 𝛿 (21)

Example. Assume three DB owners: DB1, DB2, and DB3; see
Tables 1, 2, and 3. Also, assume that the domain of diseases contain

Value Share 1 Share 2
1 4 -3
0 2 -2
1 3 -2
0 1 -1
Table 17: DB1.

Value Share 1 Share 2
1 3 -2
1 4 -3
0 3 -3
0 2 -2
Table 18: DB2.

Value Share 1 Share 2
1 2 -1
0 3 -3
1 4 -3
0 3 -3
Table 19: DB3.

cancer, fever, heart, and kidney diseases. Three hospitals wish to
know the union of diseases treated by all hospitals, i.e., the name
of diseases treated by any hospital. We select 𝛿 = 5.
Step 1: DB Owners. DB owners create their table 𝜒 as shown in
the first column of Tables 17, 18, and 19. For example, ⟨1, 1, 0, 0⟩
in Tables 18 corresponds to cancer, fever, heart, and and kidney
diseases, where 1 means that the disease is treated by the hospital.
After that, DB owners generate additive shares as shown in the
second and third columns of Tables 17, 18, and 19, and outsource all
values of the second and third columns to S1 and S2, respectively.
Step 2: Servers. Assume the servers generate the following four
pseudorandom numbers: ⟨2, 3, 1, 4⟩. The server S1 will return the
four values 3, 2, 0, 4 by executing the following computation, to all
three DB owners:

4 + 3 + 2 = 9 × 2 = 18 mod 5 = 3
2 + 4 + 3 = 9 × 3 = 27 mod 5 = 2
3 + 3 + 4 = 10 × 1 = 10 mod 5 = 0
1 + 2 + 3 = 6 × 4 = 24 mod 5 = 4

Server S2 will return values 3, 1, 2, and 1 to all three DB owners:
−3 − 2 − 1 = −6 × 2 = −12 mod 5 = 3
−2 − 3 − 3 = −8 × 2 = −24 mod 5 = 1
−2 − 3 − 3 = −8 × 2 = −8 mod 5 = 2
−1 − 2 − 3 = −6 × 2 = −24 mod 5 = 1

Step 3: DB owners. The DB owner obtains a vector ⟨1, 3, 2, 0⟩, by
executing the following computation (see below). From the vector
⟨1, 3, 2, 0⟩, DB owners learn that cancer, fever, and heart are the
disease treated by at least one of the hospitals. However, the DB
owner does not learn anything more than this; i.e., they do not
learn whether any disease treated by all hospitals or any disease
treated by at least two hospitals.

3 + 3 = 6 mod 5 = 1
2 + 1 = 3 mod 5 = 3
0 + 2 = 2 mod 5 = 2
4 + 1 = 5 mod 5 = 0■

Correctness. When we plug Equation 20 into Equation 21, we
obtain:

fop𝑖 = ((((
∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )1𝑗 ) × rand [𝑖]) mod 𝛿)

+ (((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )2𝑗 ) × rand [𝑖]) mod 𝛿)) mod 𝛿

= (((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )1𝑗 ) × rand [𝑖])

+ ((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )2𝑗 ) × rand [𝑖])) mod 𝛿

= ((∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗 ) × rand [𝑖]) mod 𝛿
Thus, whenever the 𝑖th element of 𝜒 will present at any DB

owner, it will result in a random number; otherwise, zero due to∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗 = 0. Further, since servers generated random numbers
between 1 to 𝛿 − 1, any fop𝑖 that should be a random number, will
never be zero at DB owners, due to not using a random number 𝛿 ,
i.e., ((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) × 𝛿) mod 𝛿 .
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Information leakage discussion.Weneed to prevent information
leakage at servers and at DB owners.

(1) Server perspective. The servers only know 𝛿 . However, based on 𝛿 ,
an individual server cannot reconstruct 𝜒 that is sent by DB owners
in additive shared form. Servers execute an identical operation on
all shares of𝑚 DB owners; thus, access-patterns are hidden from
servers preventing them to know anything based on access-patterns.
Since each output contains an identical number of bits, it does not
reveal to the adversary based on the output size.

(2) DB owner perspective. We need to hide from all DB owners the fact
that how many DB owners do not have one at the 𝑖th position of
𝜒 . Revealing this can reveal the intersection of all elements in 𝜒

and provide additional information to DB owners. Note that DB
owners can learn such information, if they receive the following:
output

S𝜙
𝑖
← (∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) mod 𝛿 . Since servers multiply the
result of this by a random number, DB owner cannot learn the
actual number of ones at the 𝑖th position of 𝜒 , unless they know
the random number.

8 EXPERIMENTAL EVALUATION

This section evaluates the scalability of Prism on different-sized
datasets and a different number of DB owners. Also, we evaluate
the verification overhead and compare it against other MPC-based
systems. We used a 16GB RAMmachine with 4 cores for each of the
DB owners and three AWS servers of 32GB RAM, 3.5GHz Intel Xeon
CPU with 16 cores to store shares. The communication between
DB owners and servers were done using the scp protocol, and [, 𝛿
were 227, 113, respectively.

8.1 Prism Evaluation

Dataset generation. We used five columns (Orderkey (OK),
Partkey (PK), Linenumber (LN), Suppkey(SK), and Discount (DT))
of LineItem table of TPC-H benchmark. We experimented with
domain sizes (i.e., the number of values) of 5M and 20M for the OK
column on which we executed PSI and PSU. Further, we selected
at most 50 DB owners. To the best of our knowledge, this is the
first such experiment of multi-owner large datasets. OK column
is used for PSI/PSU, and other columns were used for aggregation
operations. To generate secret-shared dataset, each DB owner main-
tained a LineItem table containing at most 5M (20M) OK values. To
outsource the database, each DB owner did the following:

(1) Created a table of 11 columns, as shown in Table 20, in which the
first five columns contain the secret-shared data of LineItem table,
the next five columns contain the verification data for the first
five columns, and the last column (aOK) was used for computing
the average. All verification column names are prefixed with the
character ‘v.’

(2) First column of Table 20 was created over OK column of LineItem
table (by following Step 1 of §5.1) for executing PSI/PSU over OK.
vOK column was created to verify PSI results (by following Step
1 of §5.2).

(3) Columns PK and vPK were created using the following command:
select OK, sum(PK) from LineItem group by OK. Other
columns ⟨LN, SK, DT, vLN, vSK, vDT⟩ were created by using
similar SQL commands.

(4) Columns aOK was created using the following command: select
count(*) from LineItem group by OK.

(5) Finally, permute all values of verification columns and create
additive shares of ⟨OK and vOK⟩, as well as, multiplicative shares
of all remaining columns.

Real data column For verification Average
OK PK LN SK DT vOK vPK vLN vSK vDT aOK

Table 20: Table structure created by Prism.

Share generation time. The time to generate two additive shares
and three multiplicative shares of the respective first five columns
of Table 20 in the case of 5M (or 20M) OK domain size was 121s (or
548s). Furthermore, the time for creating each additional column
for verification took 20s (or 90s) in the case of 5M (or 20M) domain
values.
Exp 1. Prism performance on multi-threaded implementa-

tion at AWS. Since identical computations are executed on each
row of the table, we exploit multiple CPU cores by writing a parallel
implementation of Prism. The parallel implementation divides rows
into multiple blocks with each thread processing a single block. We
increased the number of threads from 1 to 5; see Figure 3, while
fixing DB owners to 10. Increasing threads more than 5 did not
provide speed-up, since reading/writing of data quickly becomes
the bottleneck as the number of threads increase. Observe that the
data fetch time from the database remains (almost) identical; see
Figure 3.
PSI and PSU queries. Figure 3 shows the time taken by PSI/PSU over
the OK column. Observe that as the number of values in OK column
increases (from 5M to 20M), the time increases (almost) linearly
from 4s to 18s, respectively.
Aggregation queries over PSI. We executed PSI count, average, sum,
maximum, and median queries; see Figure 3. Observe that the pro-
cessing time of PSI count is almost the same as that of PSI, since
it involves only one round of computation in which we permute
the output of PSI. In contrast, other aggregation operations (sum,
average, maximum, and median) incur almost twice processing cost
at servers, since they involve computing PSI over OK column in the
first round and, then, computing aggregation in the second round.
For this experiment, we computed sum only over DT column and
maximum/median over PK column. Table 21 shows the impact of
computing sum and maximum over multiple attributes (from 1 to
4). As we increase the number of attributes, the computation of
respective aggregation operation also increases, due to additional
addition/multiplication/modulo operations on additional attributes.

Data size
Sum over different attributes Max over different attributes

1 2 3 4 1 2 3 4

5M 8.2 12.1 15.9 20.4 10 14.6 19 23.5
20M 33.4 48.6 63.5 81.9 36.6 53.3 70 87.4

Table 21: Exp 1. Multi-column aggregation query perfor-

mance (time in seconds).

Exp 2. Impact of the number of DB owners. Since we developed
Prism to deal with multiple DB owners, we investigated the impact
of DB owners by selecting 10, 20, 30, 40, 50 DB owners, for two
different domain sizes of OK column. Figure 4 shows the server
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Figure 3: Exp 1. Prism performance on multi-threaded im-

plementation at AWS.

processing time for PSI, PSU, and aggregation over PSI. Note that
as the number of DB owners increases, the computation time at
the server increases linearly, due to linearly increasing number of
addition/multiplication/modulo operations; e.g., on 5M OK values,
PSI processing took 4.2s, 8.6s, 12.5s, 16.2s, and 20s in the case of 10,
20, 30, 40, 50 DB owners.
Exp 3. Result verification overheads. Figure 5 shows the over-
heads of the result verification approaches on 5M and 20M domain
values of OK column and 10 DB owners. PSI verification and PSI
count verification took almost twice processing time than respective
non-verification methods, due to executing additional operations
on the same amount of data for verification. PSI sum verification
took (≈20s on 5M) more than two times than non-verification based
PSI sum (≈7s on 5M), since we verified both PSI and sum.
Exp 4. DB owner processing time in result construction. Prism
requires DB owners to perform computation on additive or multi-
plicative shares. Table 22 shows the processing time at a DB owner
over 5M and 20M domain values for different operations. It is clear
that the DB owner processing time is significantly less than the
server processing time. In case of 5M (20M) OK values and 50 DB
owners, each DB owner took at most 4s (13s) in PSI Sum (PSI Sum)
query, while servers took at least 20s (72s) in PSI (PSI) query; see
Figure 4.

Data Size PSI Count Sum Avg Max PSU vPSI vCount vSum

5M 1.3 1.7 3.1 3.2 2.8 1.3 2.8 1.7 4.1
20M 4.8 5.4 10.3 10.3 9.5 4.8 11.6 5.6 13.2

Table 22: Exp 4. DB owner processing time in result construc-

tion (time in seconds).

Exp 5. Impact of communication cost. Prism protocols involve
at most two rounds, where servers send data of size equal to the
domain size in the first and second rounds of query execution.
Thus, it is required to measure the impact of communication cost,
since it may affect the overall performance. Among the proposed
protocols, themaximum amount of data flows formaximum/median
queries, due to first receiving the answers of PSI, then additive share
transmission from each DB owner to a server, and finally, receiving
the answer of the maximum query from a server to DB owners.
Here, the overall data was transmitted of size 60MB (240MB) in
the case of 5M (20M) OK values and took 1.2s (4.8s), 0.6s (2.4s),
0.1s (0.4s) on slow (50MB/s), medium (100MB/s), and fast (500MB/s)
speed of data transmission. To measure the communication cost,
we simulated network cost by finding appropriate delays in the

10 20 30 40 50
Number of DB Owners

0

10

20

30

40

Ti
m

e(
se

c)

(a) 5M OK domain size (1-5M).

10 20 30 40 50
Number of DB Owners

0

25

50

75

100

125

150

Ti
m

e(
se

c)

(b) 20M OK domain size (1-20M).

Figure 4: Exp 2. Prism dealing with multiple DB owners.
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transmission, where delay was determined by dividing data size by
the network speed.
Exp 6. Impact of bucketization. Figure 6 shows the reduction in
the number of values on which we need to execute PSI when using
bucketization technique (explained in §6.6). For our experiment, we
created a tree with fanout of 10, height 9 and 100M values at the leaf
level. In Figure 6, we refer to the percentage of leaf nodes of the tree
that containing one as fill factor. We use a term actual domain size

(in Figure 6) that refers to the number of items on which we execute
PSI. Note that actual domain size is different from real domain size

that refers to the domain values given to us, i.e., 100M. Note that
the actual domain size depends on the fill factor and impacts the
performance of PSI. Observe that when the fill factor is 100% (i.e.,
all leaf nodes have one, and thus, the entire tree has one), the actual
domain size was 111M. In contrast, if the fill factor was only 0.01%
of 100M values (i.e., 10K), then most of the tree contained zero; thus,
we run PSI only on actual domain size equal to 400K, instead of real
domain size of 100M. Note that for this experiment, we generated
the data randomly. If there is a correlation in the data (which is the
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Papers [44] & [53] [63] [2] [1] [42] [43] Jana [4]† SMCQL [5] Sharemind [7] Conclave [68]‡ Prism

Operations supported PSI PSI PSI PSI PSI PSI PSI, PSU,
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI, PSU,

aggrega-

tion

Verification Support × × × ✓ ✓ × × × × × ✓
Scalability based on

experiments reported

(dataset size & time)

N/A 32768
(≈50 m)

1 million
(≈2 h)

32768
(≈16m)

1 billion
(≈10 m)

1000 (≈9
m)

1 million
(≈1 h)

>23 million
(≈23 h)

30000 (>2 h) 4 million (8
m)

20 million

(At most 8

s)

Communication among

servers

N/A N/A N/A N/A N/A N/A Yes ∗ Yes ∗ Yes ∗ Yes ∗ No

Computational Com-

plexity

O(𝑛𝑚 ) O (𝛼𝑚𝑛) O (𝑛𝑚 ) O (𝑚𝑛2) O (𝑚𝑛) ‡‡ O(𝑛𝑚 ) O (𝑛𝑚 ) N/A ∗ O(𝑛𝑚 ) N/A ∗ O(𝒎𝑿)

Table 23: Comparison of existing cloud-based techniques against Prism. Notes. (i) The scalability numbers are taken from the respective papers. (ii) Results of
Sharemind [7] are taken from Conclave [68] experimental comparison. (ii) #DB owners were in each paper was reported two; thus, we executed Prism for two DB owners for this table. (iv) Only Jana, SMCQL,
Sharemind, and Conclave provide identical security like Prism. (v) h: hours. m: minutes. s: seconds. †: We setup Jana for two DB owners each with 1M values in our experiments. ‡: Conclave [68] uses a trusted
party. Yes: Requires communication among servers. No: No communication among servers. ∗: Based on MPC-based systems. ∗∗: N/A because executing operation in cleartext or at the trusted party.𝑚: #DB
owners. 𝑛: DB size.𝑋 : domain size. ‡‡: A insecure technique that reveals the size of the intersection, and hence fast. 𝛼 : The cost of Bilinear Map pairing technique.

case in most real-world datasets), bucketization results will be even
better.

8.2 Comparing with Other Works

We compare Prism against the state-of-the-art cloud-based indus-
trial MPC-based systems: Galois Inc.’s Jana [4], since it provides the
identical security guarantees at servers as Prism. To evaluate Jana,
we inserted two LineItem tables (each of 1M rows) having ⟨OK, PK,
LN, SK, DT⟩ columns and executed join on OK column. However,
the join execution took more than 1 hour to complete.

[1, 2, 42–44, 53, 63] provide cloud-based PSI/PSU/aggregation
techniques/systems. We could not experimentally compare

Prism against such systems, since none of them is not open
source.4 Thus, in Table 23, we report experimental results from
those papers, just for intuition purposes. With the exception of [42],
none of the techniques supports large-sized dataset, has qua-
dratic/exponential complexity or uses expensive cryptographic
techniques [63]. While [42] scales better, it does not support ag-
gregation and, moreover, reveals which item is in the intersection
set. For a fair comparison, we report Prism results only for two
DB owners in Table 23, since other papers do not provide exper-
imental results for more than two DB owners. Recall that in our
experiments (Figure 4a), Prism supports 50 DB owners and takes
at most ≈41 seconds on 5M values. Further note that, in the case of
1B values and two DB owners, Prism takes ≈ 7.3mins, unlike [42]
that took ≈10mins.

There are several non-cloud-based PSI approaches. However,
such approaches cannot be directly compared against Prism,
due to a different model used (in which DB owners communicate
amongst themselves and do not outsource data to the cloud) and/or
different security properties. Just to put some numbers in this con-
text, recent work [48] took 304s in the case of 14 DB owners each
with 1M values, and [39] took at least ≈400s for PSI sum on 100K
values.
Comparison with other PSI/PSU finding approaches. A sur-
vey of PSI protocols may be found in [58]. Existing PSI protocols
are based on homomorphic encryption [14], polynomial evalua-
tion [27], a special encryption technique for comparing value [51],
garbled-circuit techniques [37], hashing [26, 59, 67], hashing and
oblivious pseudorandom functions (OPRF) [47], a variant of OPRF
4None of these techniques have open sources implementations, except [5]. We installed [5] that
works for a very small data and incurs runtime errors. We have reported this issue to the author as
well.

known as programmable OPRF [48] Bloom-filter (for PSI and union
finding) [55], oblivious Bloom-filter [23], circuit evaluation (e.g.,
GMW [31] and [3]), and oblivious transfer [58, 61]. Polynomial
evaluation-based approach [27] can also be extended the model
to deal with multiple DB owners. However, these techniques may
suffer from one or more of the following problems: multiple com-
munication rounds, lack of support for multiple DB owners [17],
and/or incapable to execute computation like PSI-count or sum
queries (except [68] that uses a trusted third party and [39] that is
based on homomorphic encryption).

[42] proposed an encryption-based approach that deals with
a large-size dataset, but either reveals the size of the intersection
to the adversary or defer the intersection finding to only DB own-
ers. [1, 42] provided watermark-based verification approach for
encrypted datasets, where DB owners insert negotiated values
(among them) in the real dataset. [21] proposed Diffie Hellman
assumption-based PSI cardinality finding for two DB owners under
malicious server. [20] also proposed public-key encryption-based
PSI for malicious adversary, where one of the twoDB owners can be-
have maliciously during protocol execution. There are other works
under a similar model that consider one of the DB owners out of
at most three DB owners is malicious [29, 49, 62, 64] and provide
algorithms for PSI. Such a model is extended for multiple DB own-
ers using Bloom filter in [72] and using homomorphic encryption
in [36, 44, 45]. [50, 56] proposed information-theoretically secure
PSI for multiple DB owners, who communicate with each other
during the computation. [50, 56] require more than one round to
obtain the answer. However, all such techniques either do not sup-
port multiple DB owners [17], limited to PSI, or cannot be deployed
at the cloud (except [44]).

Only techniques given in [1, 2, 4, 5, 7, 42–44, 53, 63, 68] are
developed for the cloud settings; as we compared in Table 23.

In contrast, Prism is applicable to the cloud setting, deals with a
malicious adversarial cloud, provides result verification methods,
supports different aggregation operations, and requires at most
one round between the server and DB owner to answer PSI, PSU,
count. Prism requires at most two rounds in answering PSI sum,
maximum, and median queries.
Comparison with maximum/minimum finding approaches.

Since the classic Millionaire’s problem (for finding the maximum
number between two DB owners) has been proposed by Yao [71],
many schemes about comparison/maximum finding have been pro-
posed. [22] and [57] proposed bit-wise less than operation that
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may be used to find the maximum number. Sepia [10] modified the
approach of [57] for fining less than operation. [66] extended the ap-
proach of [25] and used Yao’s approach [71] for finding top-k items.
Similarly, [9] proposed top-k items finding approach based on [66].
Several SMC sorting algorithms have been proposed (e.g. [8, 35]),
such algorithmsmay also be used to find themaximumnumber. [19]
proposed a technique for confirming the maximum number, if the
maximum number is known; however, [19] cannot compute the
maximum/minimum. All such techniques show limitations: many
communication rounds, restricted to two DB owners, quadratic
computation cost at servers, not dealing with malicious adversaries
in the cloud setting, and/or no support for result verification.
Comparison between Prism and Obscure We compare Prism
and Obscure [33]. Both are based on secret-sharing; however, they
are significantly different from each other in terms of: (i) purposes:
Prism is for computing PSI/PSU queries overmulti-owner databases,
while Obscure is for query processing over outsourced data and
does not support PSI/PSU queries; (ii) implementation of secret-
sharing: Prism is based on domain-based representation, while
Obscure is based on unary representation; (iii) offered function-
alities: Prism provides aggregation over PSI/PSI, while Obscure
provides complex conjunctive and disjunctive aggregation queries;
and (iv) query execution complexities: Prism complexity is upper
bounded by𝑚 × Dom(𝐴𝑐 ), where𝑚 is the number of DB owners
and Dom(𝐴𝑐 ) is the domain of the attribute 𝐴𝑐 , while Obscure
complexity is upper bounded by 𝑛 × 𝐿, where 𝑛 is the number of
tuples and 𝐿 is the length of a value in unary representation. Thus,
a direct comparison between the two non-identical systems is

infeasible.

9 CONCLUSION

This paper describes Prism based on secret-sharing that allows mul-
tiple DB owners to outsource data to (a majority of) non-colluding
servers that can behave like honest-but-curious servers and ma-
licious servers in terms of the computation that they perform. It
exploits the additive and multiplicative homomorphic property of
secret-sharing techniques to implement both set operations and
aggregation functions efficiently. Experimental results show Prism
scales to both a large number of DB owners and to large datasets,
compared to existing systems. Future directions include dealing
with: (i) multiple attributes more efficiently than bucketization, (ii)
dealing with malicious DB owners, and (iii) a broader set of SQL
queries.
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A MAXIMUM VERIFICATION ALGORITHM

This section develops a method to verify the maximum query result
produced by servers. First, note that in this section, we will use blue
color to refer to steps and variables of PSI Maximum Query (§6.3)
and pick color to indicate steps for revealing DB owner identity.
Now, recall that during computation in Step 2 of §6.3, S1 or S2 may
do at least one of the following: (i) not implement the permutation
function, (ii) skip some values to permutate, (iii) skip some values
to send to S𝑎 , (iv) change the maximum value or the identity of the
DB owner having the maximum value by generating fake shares,
(v) skip some values to store in fpos

S𝜙 [] in §6.3. In addition, S𝑎
can do the following: (i) generate a fake maximum value with the
fake identity of the DB owner, and (ii) tries to prove that S1 and/or
S2 are not sending some/all values.

Thus, our objective is to verify that servers have executed the
protocol correctly. The verification process involves both additive
and multiplicative shares, and uses an additional server S3 (which
communicates with only S𝑎 and DB owners).
Part 1. The first part is used to verify the above-mentioned first
four tasks of S1 and/or S2, and to verify the above-mentioned
second task of S𝑎 .
Step 1: DB owner. The DB owners execute two tasks: (i) securely
find the sum of the maximum values at all DB owners, without
knowing the maximum values of others, and (ii) outsourcing data.
Securely finding sum of the maximum values. The 𝑖th DB owner ex-
ecutes the following:

ℓ𝑖 ← PF (id []), 𝛽𝑖 ← 𝑓 (M𝑖 ) + 𝑟𝑖 + ℓ𝑖 + rn𝑖 , rn𝑖 > 0 (22)
𝛾𝑖 ← 𝛽𝑖 + 𝛾𝑖−1, 𝛾0 = 0 (23)

DB𝑖 , first, executes the permutation function PF on identities of
DB owners to know the position (ℓ𝑖 ) on which its value’s shares
will be placed by S𝜙 (𝜙 ∈ {1, 2}) in Step 2 of §6.3. Then, DB𝑖
implements the same function (i.e., 𝑓 (M𝑖 ) + 𝑟𝑖 ) as executed in Step
1 of §6.3 and adds ℓ𝑖 with a random number rn𝑖 > 0. This step
produces a value 𝛽𝑖 .

Finally, the value 𝛾𝑖−1, i.e., the output of the same computation
at the previous (𝑖 − 1)th DB owner, is added to 𝛽𝑖 , and results in 𝛾𝑖
that is sent to (𝑖 + 1)th DB owner. Note that using rn𝑖 , DB𝑖 hides
its maximum value, since just sending 𝑓 (M𝑖 ) + 𝑟𝑖 + ℓ𝑖 to DB𝑖+1
may reveal the maximum value at DB𝑖 , especially, when 𝑖 = 1.

Consequently, the𝑚th DB owner knows the sum of themaximum
values (denoted by sum_max) at all DB owners with their added
random numbers. The𝑚th DB owner sends sum_max to all the DB
owner.
Outsourcing data. DB𝑖 outsources the following to S𝜙 , 𝜙 ∈ {1, 2}:
(i) its maximum value of the attribute𝐴𝑐 by following Step 1 of §6.3,
i.e., 𝐴(𝑣)𝜙

𝑖
, (ii) additive shares of rn𝑖 as 𝐴(rn)

S𝜙
𝑖

, (iii) multiplicative
share of 𝛽𝑖 using a polynomial of degree one (denoted by 𝑆 (𝛽1)𝜙

𝑖
)

and using a polynomial of degree two (denoted by 𝑆 (𝛽2)𝜙
𝑖
). (It will

be clear soon that degree one (or two) shares are used to verify S1
(or S2) working to permute additive shares and sends all shares to
S𝑎 .)
Step 2: Server. In addition to permute the shared maximum values
received from the DB owners (as in Step 2 of §6.3), S𝜙 (𝜙 ∈ {1, 2})
permutes the shared random values and sends both the permuted
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shared random numbers (output_rn
S𝜙 [], Equation 25) and per-

muted maximum values (output
S𝜙 []) to S𝑎 . Equation 24 is the

same Equation 6.3 to permute shared maximum value.
input

S𝜙 [𝑖] ← 𝐴(𝑣)𝜙
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

output
S𝜙 [] ← PF (input

S𝜙 [])
(24)

input_rn
S𝜙 [𝑖] ← 𝐴(rn)𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

output_rn
S𝜙 [] ← PF (input_rn

S𝜙 [])
(25)

Also, (in Equation 26) S1 permutes multiplicative shares of de-
gree one using a different permutation function PF ′ and sends
to S𝑎 , while S2 only adds multiplicative shares of degree one and
sends to all DB owners. Additionally, (in Equation 27) S2 permutes
multiplicative shares of degree two using a different permutation
function PF ′′ and sends to S𝑎 , while S1 only adds multiplicative
shares of degree two and sends to all DB owners.

in_deg1_share
S1 [𝑖] ← 𝑆 (𝛽1)1𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

out_deg1_share
S1 [] ← PF ′(in_deg1_share

S1 []),

sum_deg1_share
S2 ← ∑

1≤𝑖≤𝑚 𝑆 (𝛽1)2
𝑖
, 1 ≤ 𝑖 ≤ 𝑚.

(26)

sum_deg2_share
S1 ← ∑

1≤𝑖≤𝑚 𝑆 (𝛽2)1
𝑖
, 1 ≤ 𝑖 ≤ 𝑚,

in_deg2_share
S2 [𝑖] ← 𝑆 (𝛽2)2𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

out_deg2_share
S2 [] ← PF ′′(in_deg2_share

S2 []).

(27)

Proof creation for the received shares at S𝑎 . S𝑎 receives permuted
additive shares of the maximum values output

S𝜙 [], permuted ad-
ditive shares of random numbers output_rn

S𝜙 [], permuted mul-
tiplicative shares of 𝛽𝑖 (= 𝑓 (M𝑖 ) + 𝑟𝑖 + ℓ𝑖 + rn𝑖 ) of degree one
out_deg1_share

S1 [], and permuted multiplicative shares of 𝛽𝑖 of
degree two out_deg2_share

S1 []. Here, S𝑎 needs to create proof for
two things: (i) it has received 𝑘 ≤ 𝑚 shares from S1 and S2, and
(ii) it has not created/deleted any share received from S1 and S2.

To show that S𝑎 has received shares from servers S1 and S2, S𝑎
executes:
sum_max ← ∑

1≤𝑖≤𝑘 (𝑖 + output
S𝜙 [𝑖] + output_rn

S𝜙 [𝑖]), 𝑘 ≤ 𝑚
(28)

Then, S𝑎 creates additive and multiplicative shares of sum_max

(denoted by 𝐴(sum_max)S𝜙 and 𝑆 (SSsum_max)S𝜙 , respectively),
and sends it to S𝜙 (𝜙 ∈ {1, 2}), which, in turn, send them to all DB
owners.

Further, to show that S𝑎 has not created/deleted any share re-
ceived from S1 and S2, S𝑎 adds all multiplicative shares of degree
one with their position and sends the output to S1 that sends it
to all DB owners. Also, S𝑎 adds all multiplicative shares of degree
two with their position and sends the output to S2 that sends it to
all DB owners.

sum_deg1← ∑
1≤𝑖≤𝑘 (𝑜𝑢𝑡_𝑑𝑒𝑔1_𝑠ℎ𝑎𝑟𝑒S1 [𝑖]), 𝑘 ≤ 𝑚 (29)

sum_deg2 ← ∑
1≤𝑖≤𝑘 (𝑜𝑢𝑡_𝑑𝑒𝑔2_𝑠ℎ𝑎𝑟𝑒S2 [𝑖]), 𝑘 ≤ 𝑚5 (30)

Proof creation for the correct maximum value finding at S𝑎 . First,
S𝑎 needs to show that it is finding the correct maximum value (and
the identity of the DB owner). To do so, we discuss the approach
in Round 2 below. Second, S𝑎 , also, needs to make sure that if
the additive shares of maximum value (𝐴(max)S𝜙 , computed in
Step 2 of §6.3) and the index of the DB owner (𝐴(index)S𝜙 ) are

altered by S𝜙 , it will be deleted by the DB owners. To do so, S𝑎
also creates multiplicative secret-shares using SSS of max (denoted
by 𝑆 (SSmax)S𝜙 ), as well as, of index (denoted by 𝑆 (SSindex)S𝜙 ),
and sends them to DB owners via S𝜙 , 𝜙 ∈ {1, 2}.
Step 3: DB owner. DB owners receive the following from S1 and
S2:

(1) Additive and multiplicative shares of the maximum value
𝐴(max)S𝜙 and 𝑆 (SSmax)S𝜙 , respectively.

(2) Additive and multiplicative shares of the index 𝐴(index)S𝜙 and
𝑆 (SSindex)S𝜙 , respectively.

(3) Additive and multiplicative shares of sum of all additive shares for
maximum values and random numbers of DB owners with the cur-
rent positive in the index𝐴(sum_max)S𝜙 and 𝑆 (SSsum_max)S𝜙 ,
respectively.

(4) Sum of multiplicative shares of degree one sum_deg1 from S𝑎
and sum_deg1_share

S2 from S2.
(5) Sum of multiplicative shares of degree two sum_deg2 from S𝑎

and sum_deg2_share
S1 from S1. Now, we show how DB owners

will detect malicious behavior of S𝑎 or S𝜙 .
Case 1: S𝑎 and S𝜙 work honestly. In this case, sum_max =

𝐴(sum_max)S1 + 𝐴(sum_max)S2 , since the way sum_max com-
puted by DB owners and sum_max computed by S𝑎 is identical.
Thus, if S𝜙 , 𝜙 ∈ {1, 2} have executed the task correctly and S𝑎
receives all shares sent by S𝜙 , the above equation must be true.
Case 2: S𝑎 works honestly, but not S𝜙 . In this case,

sum_max ≠ 𝐴(sum_max)S1 + 𝐴(sum_max)S2 =

Interpolate(𝑆 (SSsum_max)S1 , 𝑆 (SSsum_max)S2 ), where
Interpolate() is a Lagrange interpolation function to recover the
secret value.
Case 3: S𝜙 works honestly, but not S𝑎 . In this case, while S𝑎 may
behave maliciously, it can try to prove malicious behavior of S𝜙 .
We divide this case into three subcases based on what S𝑎 can prove
the malicious behavior of S𝜙 , as follows:
Subcase 3.1: S𝜙 skips to send 𝑗 th ≤ 𝑚 share. In this case, S𝑎 need to
prove that

𝐴(sum_max)S1 + 𝐴(sum_max)S2 − ( 𝑗 + output
S𝜙 [ 𝑗] +

output_rn
S𝜙 [ 𝑗])

= (sum_deg1 − out_deg1_share
S1 [ 𝑗]) + (sum_deg1_share

S2 −
sum_deg1_share

S2 [ 𝑗])
= (sum_deg2 − out_deg2_share

S2 [ 𝑗]) + (sum_deg2_share
S1 −

sum_deg2_share
S1 [ 𝑗]).

Note that this condition is impossible to hold unless S𝜙={1,2}
behaves maliciously. The reason is: if S𝑎 has received all shares
from S𝜙 and S𝑎 tries to show not receiving 𝑗 th share, then S𝑎 can
trivially skip any 𝑗 th share from output

S𝜙 [] and output_rn
S𝜙 [].

However, S𝑎 cannot predict the multiplicative share 𝑆 (𝛽1)1
𝑗
from

out_deg1_share
S1 [] and 𝑆 (𝛽2)2

𝑗
from out_deg2_share

S2 []. Thus,
the above equation cannot be true.
Subcase 3.2: S1 skips to send 𝑗 th ≤ 𝑚 share. In this case, the
following condition needs to be true: 𝐴(sum_max)S1 +
𝐴(sum_max)S2 − ( 𝑗 + output

S1 [ 𝑗] + output_rn
S1 [ 𝑗]) =

(sum_deg1 − out_deg1_share
S1 [ 𝑗]) + (sum_deg1_share

S2 −
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sum_deg1_share
S2 [ 𝑗]). The argument for this equation can be

followed like subcase 3.1.
Subcase 3.3: S2 skips to send 𝑗 th ≤ 𝑚 share. In this case, the
following condition needs to be true: 𝐴(sum_max)S1 +
𝐴(sum_max)S2 − ( 𝑗 + output

S2 [ 𝑗] + output_rn
S2 [ 𝑗]) =

(sum_deg2 − out_deg2_share
S2 [ 𝑗]) + (sum_deg2_share

S1 −
sum_deg2_share

S1 [ 𝑗]). The argument for this equation can be
followed like subcase 3.1.
Verifying the shares of maximum values and positions that are sent by S𝑎 .
To verify that S1 and S2 forwarded the correct shares of the
maximum value and the DB owner’s identity, DB owners
compare Interpolate(𝑆 (SSmax)S1 , 𝑆 (SSmax)S2 ) against max and
Interpolate(𝑆 (SSindex)S1 , 𝑆 (SSindex)S2 ) against pos. If these
values are equal, it shows that S𝜙 has sent the shares that were
sent by S𝑎 .
Part 2. The second part verifies that the maximum value and the
identity of the DB owner having the maximum value, found by S𝑎

are correct.
Step 4: DB owners. DB owners who find they have larger value
compared to the announced maximum values max by S𝑎 (due
to Step 3 of §6.3), then they generate a value \ = 1; otherwise
\ = 0. Also, they generate an additional value Δ = 𝛽𝑖 − 1, if \ = 1;
otherwise, Δ = 𝛽𝑖 , where 𝛽 = 𝑓 (M𝑖 ) + 𝑟𝑖 + ℓ𝑖 + rn𝑖 ; computed
in Step 1 of verification; see Equation 22. Then, DB𝑖 creates the
following additive shares: (i) additive share of \𝑖 , denoted by𝐴(\ )𝜙𝑖 ,
(ii) additive shares of Δ𝑖 (denoted by 𝐴(Δ)𝜙

𝑖
). All shares are sent

to S𝜙 , 𝜙 ∈ {1, 2}. Also, DB𝑖 send additive shares 𝐴(𝛼)𝑖S𝜙 , where
𝛼𝑖 = 1 indicatesDB𝑖 has the maximum value and it was computed
in Step 4 of §6.3).

Also, DB owners to verify the identity of the DB owner having
the maximum value create a value, as follows: `𝑖 = 𝛽𝑖 − 1, if DB𝑖
has the maximum value according to Step 3 of §6.3; otherwise,
`𝑖 = 𝛽𝑖 . Then, DB𝑖 outsources additive shares of `𝑖 , denoted by
𝐴(`)S𝜙

𝑖
.

Step 5: Server. This step will generate proof to verify that whether
servers have eliminated any share or not, and whether it has pro-
cessed the shares as desired or not. Servers do the following two
tasks:
Task 1. Since server may skip all or some 𝑗 th shares, they need to
generate proofs to show all inputs form𝑚 DB owners are processed.
At the end of this task, they produce sum\ , sum𝛽proof , and sum\∆

and send to all DB owners.

sum\S𝜙 ← ∑
1≤𝑖≤𝑚 𝐴(\ )S𝜙

𝑖
, sum𝛽proof

S𝜙 ← ∑
1≤𝑖≤𝑚 𝐴(𝛽)S𝜙

𝑖
,

sum\∆
S𝜙 ← ∑

1≤𝑖≤𝑚 𝐴(\ )S𝜙
𝑖
+𝐴(Δ)S𝜙

𝑖
(31)

Task 2. In order to generate a proof for the maximum value and
identities of the DB owners having the maximum value, servers do
the following in addition to creating fpos

S𝜙 [] in Step 5 of §6.3:
fpos

S𝜙 [𝑖] ← 𝐴(𝛼)S𝜙
𝑖

, 1 ≤ 𝑖 ≤ 𝑚 (32)
sum_fpos

S𝜙 ← ∑
1≤𝑖≤𝑚 fpos[𝑖] (33)

fpos_proof
S𝜙 [𝑖] ← 𝐴(`)S𝜙

𝑖
, 1 ≤ 𝑖 ≤ 𝑚 (34)

Servers send fpos
S𝜙 [], fpos

S𝜙 [𝑖], and sum_fpos
S𝜙 .

Step 6: DB owner. In this step, DB owners verify: (i) S𝑎 has
not found a smaller or a larger value than the actual maximum
value among DB owners, and (ii) fpos

S𝜙 [] Step 5 of §6.3 is cor-
rect. DB owners receives the following from servers: sum\S𝜙 ,
sum𝛽proof

S𝜙 , sum\∆
S𝜙 , fpos

S𝜙 [], fpos
S𝜙 [𝑖], and sum_fpos

S𝜙 . Af-
ter adding both shares, it will result in sum\ , sum𝛽proof, sum\ ´,
fpos[], fpos_proof [], and sum_fpos.
Verifying that all inputs by𝑚 DB owners have been included. DB
owners will verify that servers have received all the𝑚 shares from
DB owners and sum\ is computed over all 𝑚 shares of 𝐴(\ )𝑖 . If
DB owners finds Equation 35 to be true, then it shows that servers
computed above-mentioned task 1 in Step 5 correctly, where
sum_max was computed in Step 1.

sum𝛽 + sum\ = sum\ ´ = sum_max (35)
Note that the adversary wishes not to inform about the actual
maximum value (say, 𝑐) to DB𝑖 that has a smaller value (say, 𝑎)
than the announced maximum value (say, 𝑏); i.e., 𝑎 < 𝑏 < 𝑐 . Thus,
if DB𝑖 obtains sum\ = 0, then DB𝑖 will consider 𝑏 as the actual
value. Thus, in this case, the verification method needs to produce
sum\ > 0 at DB𝑖 . However, for the adversary, it is hard create
shares of sum\ such that the result will be zero, since the adversary
is not aware of how many DB owners have sent \ = 1 and so
Δ = 𝛽 − 1. Thus, the adversary cannot create shares such that
sum𝛽 = sum\ ´ equals to sum_max. Hence, servers cannot skip
processing any 𝑗 th share or select any 𝑖th share to produce sum𝛽 ,
sum\∆, and sum\ .
Verifying max is not smaller than actual maximum value. If
sum\ > 0, then it shows that S𝑎 has found a value that is smaller
than the maximum value at one of the DB owners, since sum\

contains the number of DB owners that have a larger value than
max, announced value by S𝑎 .
Verifying max is not larger than actual maximum value. Note that
if sum\ = 0, then it does not ensure that S𝑎 has announced the
correct maximum value, since S𝑎 may announce a value that is
larger than the actual maximum value among DB owners. Note
that in this case, sum_fpos = 0, since no DB owner will find their
value as the maximum value. Note that S𝜙 may maliciously compute

sum_fpos
S𝜙 ; however, we can verify it using the same method we

used to verify sum\ in Equation 31.
Verifying max. Now, once the announced maximum is not smaller
or larger than the actual maximum value, the DB owner verifies
that he/she knows the correct maximum value.
Verifying fpos[]. If the maximum value is verified to be cor-
rect, then we verify the identity of DB owners having the max-
imum value. If DB owner finds:

∑
1≤𝑖≤𝑚 fpos[𝑖] + fpos_proof [𝑖] =

sum_max, then it shows servers correctly allocated𝐴(𝛼)𝑖 shares in
fpos[]. The correctness argument can be followed as we discussed
in Equation 35.
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