
Fine-Grained Secure Attribute-Based Encryption∗

Yuyu Wang 1 Jiaxin Pan 2 Yu Chen 3,4,5

September 6, 2023

1 University of Electronic Science and Technology of China, Chengdu, China
wangyuyu@uestc.edu.cn

2 Department of Mathematical Sciences,
NTNU - Norwegian University of Science and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no
3 School of Cyber Science and Technology, Shandong University, Qingdao 266237, China

4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Qingdao 266237, China
yuchen@sdu.edu.cn

Abstract
Fine-grained cryptography is constructing cryptosystems in a setting where an adversary’s resource

is a-prior bounded and an honest party has less resource than an adversary. Currently, only simple
form of encryption schemes, such as secret-key and public-key encryption, are constructed in this
setting.

In this paper, we enrich the available tools in fine-grained cryptography by proposing the
first fine-grained secure attribute-based encryption (ABE) scheme. Our construction is adaptively
secure under the widely accepted worst-case assumption, NC1 ( ⊕L/poly, and it is presented in a
generic manner using the notion of predicate encodings (Wee, TCC’14). By properly instantiating
the underlying encoding, we can obtain different types of ABE schemes, including identity-based
encryption. Previously, all of these schemes were unknown in fine-grained cryptography. Our main
technical contribution is constructing ABE schemes without using pairing or the Diffie-Hellman
assumption. Hence, our results show that, even if one-way functions do not exist, we still have ABE
schemes with meaningful security. For more application of our techniques, we construct an efficient
(quasi-adaptive) non-interactive zero-knowledge (QA-NIZK) proof system.

Keywords: Fine-grained cryptography, Identity-based encryption, Attribute-based encryption,
Quasi-adaptive non-interactive zero-knowledge proof.

1 Introduction
1.1 Motivation
Modern cryptography bases the security of schemes on assumptions, including the basic ones (such as
the existence of one-way functions (OWFs)), the more advanced ones (such as the hardness of factoring,
discrete logarithms, and some lattice problems), and the much more exotic ones (such as the existence of
generic groups [30, 25] or algebraic groups [16]). Although there is some analysis on these assumptions, it
is less desirable. We are interested in how to construct cryptography based on much mild assumptions or
which form of security cryptography can be achieved if all classical assumptions (such as the existence of
OWFs) do not hold.

Fine-grained cryptography is a direction in approaching the aforementioned problems. It aims at
cryptography with weaker security in a setting where adversaries have only bounded resources and honest
users have less resources than the adversaries. Under this setting it is possible to make the underlying
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assumption extremely mild, for instance, assuming NC1 ( ⊕L/poly. This is a widely accepted worst-case
assumption. As ⊕L/poly is the class of languages with polynomial-sized branching programs and all
languages in NC1 have polynomial-sized branching programs of constant width [3], this assumption holds
if there exists one language having only polynomial-sized branching programs of non-constant width.
This is different from assuming the existence of OWFs which is an average-case assumption. It requires
that the OWF be hard to invert on a random input. Hence, NC1 ( ⊕L/poly is more likely to be true.

The study on fine-grained cryptography was initialized by Merkle [26]. In the recent years, we are
interested in which kind of cryptosystems can be constructed in this setting. We highlight the recent
constructions of OWFs [8], symmetric-key and (leveled fully homomorphic) public-key encryption [13, 9],
verifiable computation [9], hash proof systems (HPS) [14], and non-interactive zero-knowledge (NIZK)
proof systems [2]. However, due to the restriction on running resources, many important primitives
remain unknown. Surprisingly, digital signature schemes are among them, although they are implied by
OWFs in the classical setting.
Our goal: fine-grained secure ABEs. We focus on constructing attribute-based encryption (ABE)
schemes [18] with fine-grained security, since it has many applications and implies important primitives,
including digital signatures. In an ABE scheme, messages are encrypted under descriptive values x, secret
keys are associated with values y, and a secret key decrypts the ciphertext if and only if p(x, y) = 1 for
some boolean predicate p. Here the predicate p may express arbitrary access policy. This is in contrast
to traditional public-key encryption (PKE) schemes without access control on data. Identity-based
encryption [29, 6, 12] is a simplified version of ABE, where p is the equality predicate, and it implies
signatures in a natural manner (even in the fine-grained setting).

In general, it is challenging to construct ABEs. For instance, in the classical setting, it is shown
that IBEs cannot be constructed using trapdoor permutations (TDP) or CCA-secure PKE schemes in a
black-box manner [7]. Moreover, many pairing-based constructions of ABE and IBE (for instance, [10, 5])
heavily rely on the algebraic structures of pairing groups. These necessary structures are not available in
fine-grained cryptography. Thus, in this paper, we develop new techniques to improve on the state of the
art of fine-grained cryptography, which only provides primitives related to TDP and CCA-secure PKE.

1.2 Our Contributions
We construct the first fine-grained secure ABE scheme. In particular, our scheme is computable in AC0[2]
and secure against adversaries in NC1. Note that AC0[2] ( NC1 [28, 31]. Similar to several existing NC1

fine-grained primitives [13, 9, 14], the security of our scheme is based on the same worst-case assumption
NC1 ( ⊕L/poly. This is a widely accepted, weak assumption. For simplicity, we consider fine-grained
cryptography as schemes with NC1 honest users and adversaries and security based on NC1 ( ⊕L/poly in
the rest of this paper.

Previously, fine-grained cryptography can only achieve symmetric-key and public-key encryption
and HPS. Our work enriches its available tools and brings fine-grained cryptography closer to classical
cryptography in terms of functionality.

In particular, our construction is presented in a generic manner using predicate encodings [36, 10].
Hence, by suitably instantiating the underlying encoding, we directly obtain a fine-grained IBE scheme
(which in turn implies a fine-grained signature scheme), fine-grained ABEs for inner-product encryption,
non-zero inner-product encryption, spatial encryption, doubly spatial encryption, boolean span programs,
and arithmetic span programs, and also fine-grained broadcast encryption and fuzzy IBE schemes. Prior
to this work, it was unknown whether these primitives can be constructed in NC1 based on a worst-case
complexity assumption.

Finally, we use our technique to construct an efficient quasi-adaptive NIZK [22] with fine-grained
security. Here “quasi-adaptive” means that common reference strings (CRSs) may depend on the language
of the NIZK system.
Applications of security against NC1. Other than only relying on weak assumptions and running
with low complexity, our results have the following applications.

Since security against NC1 captures adversaries with limited parallel running-time, our constructions
are well-suited for systems where attacks make sense only if they succeed in a short period of time. For
example, our ABEs (and other fine-grained encryption primitives) can be used to protect messages that
are only valuable in a short period of time, and that can be published or deleted later. As another
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example, the fine-grained signature (implied by our fine-grained IBE) and fine-grained QA-NIZK prevent
adversaries from forging signatures and proofs with the running-time of an honest user, thereby ensuring
security by letting the system reject users who have timed out when attempting to generate signatures or
proofs. Moreover, as noted in [13], combining fine-grained primitives with standard ones immediately
yield hybrids that are secure against NC1 adversaries under NC1 ( ⊕L/poly and secure against polynomial
time adversaries under stronger assumptions.

1.3 Technique Overview
We borrow the frameworks of the pairing-based constructions of IBEs in [5] and ABEs in [10] to upgrade
the available fine-grained techniques [21, 1, 14] in achieving our goal. In a nutshell, we transform a
suitable symmetric-key primitive to an ABE in the fine-grained setting.

Previous frameworks in [5, 10] use pairings and the Diffie-Hellman assumptions. In contrast to them,
our work develops new techniques to build ABEs without pairings or the Diffie-Hellman assumptions, but
only under the mild assumption that NC1 ( ⊕L/poly. For simplicity, we mostly focus on our techniques
in the context of IBE here, and give some ideas about how they can be extended to construct ABEs. In
this paper, we consider adaptive security where adversaries can adaptively request user secret keys and a
challenge ciphertext.
The approach of Blazy, Kiltz, and Pan, and its limitations in NC1. The “MAC→IBE” transfor-
mation of BKP [5] is an abstraction of the Chen-Wee (CW) IBE scheme [11], and it also implements
the “PRF→Signature” framework by Bellare and Goldwasser (BG) [4] in the IBE context. The BKP
transformation requires an “affine MAC”, namely, a MAC whose verification is done by checking a
particular system of affine equations. Variables in these affine equations are included in the MAC
secret key, and the (public) coefficients are derived from the message (which will be the identity of the
resulting IBE scheme) to be signed. Such a MAC scheme can be constructed based on the Diffie-Hellman
assumption which is generalized as the MDDH assumption.

We give some ideas about how an affine MAC can be turned into an IBE scheme. The master public
key of an IBE scheme, pk = Com(skMAC), is a commitment of the MAC secret key, skMAC. A user secret
key usk[id] of an identity id consists of a BG signature, namely, a MAC tag τid on the message id and a
NIZK proof of the validity of τid w.r.t. the secret key committed in pk.

Since the MAC verification consists of only affine equations, after implementing the aforementioned
commitments and NIZK proofs with a (tuned) Groth-Sahai (GS) proof system [19]1, the BKP IBE
ciphertext ctid can be viewed as a randomized linear combination of pk w.r.t. id. This is the key
observation of BKP. The BKP framework can be further improved and extended to construct ABEs using
predicate encodings [36] as in the CGW framework [10] by Chen, Gay, and Wee.

The MDDH assumption and the pairing-based GS proofs are two key ingredients for the BKP
framework which are not available in fine-grained cryptography. One direction to resolve this is to develop
a fine-grained GS proof system, but it is not clear what the counterpart of “pairing-product equations”
will be. Instead, we achieve our goal with a simpler and more direct approach.
A hard subset membership problem for NC1 circuits. We first need to find a counterpart of the
MDDH assumption in NC1, since the separation assumption NC1 ( ⊕L/poly does not directly give us
tools in constructing cryptographic schemes. In the work of [21, 1], it is shown that, if NC1 ( ⊕L/poly
holds, then the following two distributions are indistinguishable for NC1 circuits:

{M0 ∈ {0, 1}n×n : M0
$← ZeroSamp(n)}︸ ︷︷ ︸

=D0

and {M1 ∈ {0, 1}n×n : M1
$← OneSamp(n)}︸ ︷︷ ︸

=D1

where n = n(λ) is some polynomial in security parameter λ, and the randomized sampling algorithms
ZeroSamp and OneSamp output matrices with rank n− 1 and full rank, respectively. Concrete definitions
of these algorithms are given in Section 2.2, and they are not relevant in this section.

This indistinguishability implies a hard subset membership problem in NC1 implicitly given by
Egashira, Wang, and Tanaka [15] for their HPS: Given a matrix M> from D0 and a random vector t in

1Essentially, the BKP framework used the GS proof for linear equations and replaced the GS commitment with the
Pedersen commitment.
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two specific distributions represented by M, the task of the problem is to tell whether t is in the span of
M.
Our IBE in NC1. Our main technical contribution is a new approach of using the subset membership
problem to transform an affine MAC to IBEs in the fine-grained setting. Our starting point is constructing
a secure affine MAC in NC1. We prove that, if the subset membership problem is hard in NC1, then our
MAC is secure for NC1 adversaries.

Next, we propose a generic construction of IBE based on affine MACs, following the BKP framework.
In stark contrast to the BKP, our construction does not require pairings. Essentially, we develop a
Groth-Sahai-like proof system in NC1 to prove the validity of our affine MAC. This proof system allows
us to show that if our affine MAC is secure then our resulting IBE is secure in NC1. At the core of our
proof system is a new commitment scheme in NC1, for which we achieve the hiding property by exploiting
the concrete structure of matrices in D0.

We give more details about the security proof. Firstly, the zero-knowledge property allows us to
generate user secret keys for adversaries without knowing the MAC secret key. Secondly, we show that if
an adversary can break the adaptive security of our IBE, then we can construct a reduction to break the
security of our affine MAC. This is a crucial step, and we require some extractability of the proof system
to extract the MAC forgery from the IBE adversary. In the BKP framework, this extractability can be
achieved by computing the inversion of some matrix A ∈ Zk×kq for some positive integer k. However, in
our setting, inverting a matrix in {0, 1}n×n is impossible, otherwise, this will lead to a distinguisher for
the subset membership problem in NC1. Also, there is no known way to sample a matrix with its inverse
efficiently [14]. To solve it, our proof system develop a new method in achieving this extractability without
inverting any matrix. Our core idea is to prove that with a fresh random string r $← {0} × {0, 1}n−1, it is
possible to extract the forgery from our NC1-commitments by switching the distribution of the public
parameter A ∈ D0 twice (from D0 to D1 and then back to D0) and changing the distribution of r during
the switching procedure.
Dual system methodology in NC1 and ABE. Our techniques for IBE can also be viewed as the dual
system encryption methodology [35] in NC1, which is an alternative interpretation of our approach. In
our proof, there are two important technical steps, switching ciphertexts to invalid and randomizing
MAC tags in the user secret keys. These correspond to switching ciphertexts and user secret keys from
functional to semi-functional in the dual system encryption methodology [35, 24, 5, 10]. Dual system
methodology is very useful in constructing predicate encryption and it was only known with pairings.
Our work is for the first time implementing the dual system methodology without pairings.

Similar to the extension from BKP-IBE [5] to CGW-ABE [10], we further extend our techniques in
constructing ABEs. We first use (part of) a predicate encoding scheme [36, 10] to generalize the notion
of affine MAC and make it useful for constructing ABEs. After that, we upgrade our IBE techniques,
and transform the generalized affine MAC to an adaptively secure ABE in NC1 via the rest part of the
predicate encoding scheme. Here, the predicate encoding scheme is to construct ABEs in a modular
and generic way, in particular, it can generalize the encoding of different ABEs (such as identity-based
encryption and inner-product encryption).
More extension and open problem. We are optimistic that our approach can yield many more new
public-key schemes in fine-grained cryptography. In particular, we show that our techniques can also be
used to construct an efficient QA-NIZK in NC1 with adaptive soundness in Appendix B. Roughly, we use
the technique for proving the hiding property of the underlying commitment scheme in our IBE scheme
to achieve adaptive soundness.

Also, we are optimistic that our approach can be used to construct hierarchical IBE [17, 20]. We leave
a detailed treatment of it as an open problem.

1.4 Comparison with the Proceedings Version
This is the full version of the paper appeared at Crypto 2021 [34]. In this full version, we give the full
proof for the security of the fine-grained IBE scheme in Section 4.2. Additionally, we give the proof of
Theorem 2.13, the definition, constructions, and security proofs of the fine-grained QA-NIZKs (with the
comparison to previous and subsequent fine-grained NIZKs [2, 32, 33]), and the instantiations of predicate
encodings, in Appendices A to C.
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2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this work. Namely, all arithmetic
computations are performed with a modulus of 2. We write a $← A(b) (respectively, a = A(b)) to denote
the random variable outputted by a probabilistic (respectively, deterministic) algorithm A on input b. By
x $← S we denote the process of sampling an element x from a set or distribution S uniformly at random.
By x ∈ {0, 1}n we denote a column vector with size n and by, say, x ∈ {1} × {0, 1}n−1 we mean that the
first element of x is 1. By [n] we denote the set {1, · · · , n}. By xi (respectively, xi) we denote the ith
element of a vector x (respectively, x). By negl we denote an unspecified negligible function.

For a matrix A ∈ {0, 1}n×t with rank t′ < n, we denote the sets {y|∃x s.t. y = Ax} and {x|Ax = 0}
by Im(A) (i.e., the span of A) and Ker(A) respectively. By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix
consisting of n− t′ linear independent column vectors in the kernel of A>. Note that for any y /∈ Im(A),

we have y>A⊥ 6= 0. By (aij)i∈[l],j∈[m] we denote the matrix

a11 · · · a1m
... . . .

...
al1 · · · alm

. Let A = (aij)i∈[l],j∈[m] be

an l×m matrix and B = (Bij)i∈[m],j∈[n] be a large matrix consisting of m×n matrices Bij for all i ∈ [m]
and j ∈ [n]. By h�A we denote (h · aij)i∈[l],j∈[m] and by A�B we denote

(
m∑
k=1

aik �Bkj)i∈[l],j∈[n].

By Mn
0 , Mn

1 , and Nn, we denote the following n× n matrices:

Mn
0 =



0 · · · 0 0
1 0 0

0 1 . . . ...
...

... . . . 0
0 · · · 0 1 0

 , Mn
1 =



0 · · · 0 1
1 0 0

0 1 . . . ...
...

... . . . 0
0 · · · 0 1 0

 , Nn =


0 · · · 0
... 0 · · · 0

0 . . . ...
1 0 · · · 0

 ,

and by 0 we denote a zero vector (0, · · · , 0)>.
Games. We follow [5] to use code-based games for defining and proving security. A game G contains
procedures Init and Finalize, and some additional procedures P1, . . . ,Pn, which are defined in pseudo-
code. All variables in a game are initialized as 0, and all sets are empty (denote by ∅). An adversary
A = {aλ}λ∈N is executed in game G w.r.t. the security parameter λ (denote by Gaλ) if aλ first calls Init,
obtaining its output. Next, it may make arbitrary queries to Pi (according to their specification) and
obtain their output. Finally, it makes one single call to Finalize(·) and stops. We use Gaλ ⇒ d to denote
that G outputs d after interacting with aλ, and d is the output of Finalize.

2.1 Function Families
In this section, we recall the definitions of function families, NC1 circuits, AC0[2] circuits, and ⊕L/poly.
Note that AC0[2] ( NC1 [28, 31].

Definition 2.1 (Function Family). A function family is a family of (possibly randomized) functions
F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and a range Rfλ.

Definition 2.2 (NC1). The class of (non-uniform) NC1 function families is the set of all function families
F = {fλ}λ∈N for which there is a polynomial p(·) and constant c such that for each λ, fλ can be computed
by a (randomized) circuit of size p(λ), depth c log(λ), and fan-in 2 using AND, OR, and NOT gates.

Definition 2.3 (AC0[2]). The class of (non-uniform) AC0[2] function families is the set of all function
families F = {fλ}λ∈N for which there is a polynomial p(·) and constant c such that for each λ, fλ can be
computed by a (randomized) circuit of size p(λ), depth c, and unbounded fan-in using AND, OR, NOT,
and PARITY gates.
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One can see that multiplication of a constant number of matrices can be performed in AC0[2], since it
can be done in constant depth with PARITY gates.

Definition 2.4 (⊕L/poly). ⊕L/poly is the set of all boolean function families F = {fλ}λ∈N for which
there is a constant c such that for each λ, there is a non-deterministic Turing machineMλ such that for
each input x with length λ,Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the
number of accepting paths ofMλ(x).

2.2 Sampling Procedure
We now recall the definitions of four sampling procedures LSamp, RSamp, ZeroSamp, and OneSamp in
Figure 1. Note that the output of ZeroSamp(n) is always a matrix of rank n − 1 and the output of

LSamp(n):
For all i, j ∈ [n] and i < j:
ri,j

$← {0, 1}
Return

1 r1,2 · · · r1,n−1 r1,n
0 1 r2,3 · · · r2,n

0 0
. . .

...
...

...
. . . 1 rn−1,n

0 · · · 0 0 1



RSamp(n):
For i = 1, · · · , n− 1
ri

$← {0, 1}
Return

1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1



ZeroSamp(n):
R0

$← LSamp(n) ∈ {0, 1}n×n
R1

$← RSamp(n) ∈ {0, 1}n×n
Return R0Mn

0 R1 ∈ {0, 1}n×n

OneSamp(n):
R0

$← LSamp(n)
R1

$← RSamp(n)
Return R0Mn

1 R1 ∈ {0, 1}n×n

Figure 1: Definitions of LSamp, RSamp, ZeroSamp, and OneSamp. n = n(λ) is a polynomial in the
security parameter λ.

OneSamp(n) is always a matrix of full rank [13].
We now recall several assumptions and lemmata on ZeroSamp and OneSamp given in [13].

Definition 2.5 (Fine-grained matrix linear assumption [13]). There exists a polynomial n = n(λ) in the
security parameter λ such that for any family A = {aλ}λ∈N in NC1, we have

|Pr[aλ(M) = 1 |M $← ZeroSamp(n)]−
Pr[aλ(M′) = 1 |M′ $← OneSamp(n)]| ≤ negl(λ).

Lemma 2.6 (Lemma 4.3 in [13]). If NC1 ( ⊕L/poly, then the fine-grained matrix linear assumption
holds.

Remark. Notice that for any polynomial n = n(λ), we have {fn}λ∈N ∈ NC1 iff {fλ}λ∈N ∈ NC1 since
O(log(n(λ))) = O(log(λ)). Hence, in the above lemma, we can also set n(·) as an identity function, i.e.,
n = λ. For simplicity, in the rest of the paper, we always let ZeroSamp(·) and OneSamp(·) take as input λ.
Moreover, we note that we adopt the stronger notion of the assumption NC1 ( ⊕L/poly (mentioned in the
second paragraph in Remark 3.1 in [13]) for simplicity. Specifically, we assume the existence of functions
in ⊕L/poly that are not computable in NC1 for all (sufficiently large) security parameter. If we adopt the
infinitely-often version of NC1 ( ⊕L/poly, which only assumes that the above hold for an infinitely large
number of values of λ, one can see that our primitives achieve security in an infinitely-often sense (see
the first paragraph in Remark 3.1 in [13]). The same argument can also be applied to the fine-grained
primitives in [15, 32].

The following lemma implies that for a matrix M> sampled by ZeroSamp(λ), there is a unique
non-zero vector with the first (respectively, last) element being 1 in the kernel of M (respectively, M>).

Lemma 2.7 (Lemma 3 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it holds that Ker(M>) =
{0,k} where k is a vector such that k ∈ {0, 1}λ−1 × {1}.

Lemma 2.8 (Lemma 4 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it holds that Ker(M) = {0,k}
where k is a vector such that k ∈ {1} × {0, 1}λ−1.
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The following lemma indicates a simple relation between the distributions of the outputs of ZeroSamp(λ)
and OneSamp(λ).

Lemma 2.9 (Lemma 7 in [15]). For all λ ∈ N, the distributions of M + Nλ and M′ are identical, where
M> $← ZeroSamp(λ) and M′> $← OneSamp(λ).

We now give two lemmata showing that when sampling a random vector w from {0, 1}λ, the first
element of w does not affect the distribution of Mw for M> ∈ ZeroSamp(λ).

Lemma 2.10 (Lemma 5 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it holds that

Im(M) = {x|w ∈ {0} × {0, 1}λ−1,x = Mw} = {x|w ∈ {1} × {0, 1}λ−1,x = Mw}.

Lemma 2.11 For all λ ∈ N and all M> ∈ ZeroSamp(λ), the distributions of x and x′ are identical,
where w $← {0} × {0, 1}λ−1, w′ $← {1} × {0, 1}λ−1, x = Mw, and x′ = Mw′.

Proof. According to Lemma 2.8, for any M> ∈ ZeroSamp(λ), there exists k ∈ Ker(M) such that
k ∈ {1} × {0, 1}λ−1. Therefore, the distributions of (w + k), where w $← {0} × {0, 1}λ−1, and w′ $←
{1} × {0, 1}λ−1 are identical. Moreover, we have Mw = M(w + k). Hence, the distributions of Mw and
Mw′ are identical, completing the proof of Lemma 2.11.

Below we recall the a theorem implicitly given in [15] as the subset membership problem for an HPS.
Roughly, it shows that for M> $← ZeroSamp(λ), a vector sampled from the span of M is indistinguishable
from one sampled outside the span of M for any adversary in NC1. The proof of this theorem is given in
Appendix A for completeness.

Definition 2.12 (Fine-grained subset membership problem [15]). Let SY = {SampYesλ}λ∈N and SN =
{SampNoλ}λ∈N be function families described in Figure 2. For all λ ∈ N, all M> ∈ ZeroSamp(λ), and
all x ∈ SampNoλ(M), we have x ∈ {0, 1}λ \ Im(M), then for M> $← ZeroSamp(λ) and any adversary
A = {aλ}λ∈N ∈ NC1, we have

|Pr[aλ(x,M) = 1 | x $← SampYesλ(M)]−
Pr[aλ(x,M) = 1 | x $← SampNoλ(M)]| ≤ negl(λ).

SampYesλ(M ∈ {0, 1}λ×λ):
w $← {1} × {0, 1}λ−1

Return x = Mw

SampNoλ(M) ∈ {0, 1}λ×λ):
w $← {1} × {0, 1}λ−1

Return x = (M + Nλ)w.

Figure 2: Definitions of SY and SN. Note that SY,SN ∈ AC0[2], since they only involve operations
including sampling random bits and multiplication of a matrix and a vector.

Theorem 2.13 ([15]). If NC1 ( ⊕L/poly, then the fine-grained subset membership problem (see Defini-
tion 2.12) holds.

Remark. Note that the subset membership problem in [15] gives a stronger result additionally showing
that the output distributions of SampYesλ(M) and SampNoλ(M) are identical to the uniform distributions
over Im(M) and {0, 1}λ \ Im(M) respectively. We only need a weak form of it in this work.

2.3 Predicate Encodings
We now recall the definition of predicate encodings. As in [10], our resulting construction of ABE is
generally based on a predicate encoding. By exploiting various types of encodings, we can achieve a broad
class of ABEs.

Our definitions are slightly different from the original definition in [10], in that our definition is over
GF (2) rather than GF (p), and we require that the encodings are performed in a circuit class C1.

7



Definition 2.14 (Predicate Encoding [10]). Let P = {pλ}λ∈N with pλ : X × Y → {0, 1} be a predicate,
where X and Y are polynomial-sized spaces associated with λ. An C1-predicate encoding for P is a function
family PE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈ C1 with

• rEλ : Y × {0, 1}` → {0, 1}η,
• kEλ : Y × {0, 1} → {0, 1}η,
• sEλ : X × {0, 1}` → {0, 1}ζ ,
• sDλ : X × Y × {0, 1}ζ → {0, 1},
• rDλ : X × Y × {0, 1}η → {0, 1},

where ` = `(λ), η = η(λ), and ζ = ζ(λ) are polynomials in λ.
Linearity is satisfied is for all λ ∈ N and all (x, y) ∈ X × Y, rEλ(y, ·), kEλ(y, ·), sEλ(x, ·), sDλ(x, y, ·),

and rDλ(x, y, ·) are {0, 1}-linear. Namely, for any y ∈ Y, any w0,w1 ∈ {0, 1}`, and any c ∈ {0, 1}, we
have rEλ(y,w0 + w1 · c) = rEλ(y,w0) + rEλ(w1) · c, and the same argument can be made for kEλ, sEλ,
sDλ, and rDλ.

Restricted α-reconstruction is satisfied if for all λ ∈ N, all (x, y) ∈ X × Y such that pλ(x, y) = 1, all
w ∈ {0, 1}`, and all α ∈ {0, 1}, we have

rDλ(x, y, rEλ(y,w)) = sDλ(x, y, sEλ(x,w)) and rDλ(x, y, kEλ(y, α)) = α.

α-privacy is satisfied if for all λ ∈ N, all (x, y) ∈ X × Y such that pλ(x, y) = 0, and all α ∈ {0, 1}, the
following distributions are identical:

(x, y, α, sEλ(x,w), rEλ(y,w) + kEλ(y, α)) and (x, y, α, sEλ(x,w), rEλ(y,w)),

where w $← {0, 1}`.

Intuitively, in a modularly designed attribute-based encryption (ABE) scheme, the attribute value in
the user’s key is encoded by rEλ and kEλ, while that in the ciphertext is encoded by sEλ. The decryption
algorithm uses the associated decoding algorithms rDλ and sDλ to decode (rEλ, kEλ) and sEλ respectively.
The difference between the decoding results of rDλ and sDλ for (rEλ, kEλ) and sEλ is the decoding result
of rDλ for kEλ only, which is used to yield the session key. These encoding algorithms can be instantiated
according to the predicates of different types of ABEs, thus allowing for a modular and generic approach
to ABE construction. Namely, different ABE schemes can be constructed by plugging in different encoding
algorithms, based on the desired access structure for the scheme.
Remark on notions for predicate encodings. Similar to [10], we abuse the notion

rEλ(x,W) where W = (wij)i∈[l],j∈[m] and wij ∈ {0, 1}`

for all i, j to denote the matrix
(rEλ(x,wij))i∈[l],j∈[m].

The same argument is made for (kEλ, sEλ, sDλ, rDλ).
Encoding for equality. We now give an example of predicate encoding PEeq for equality Peq in
Figure 3. By instantiating our ABKEM given later in Section 5 with this encoding, we immediately
achieve an IBKEM. Linearity is straightforward. Restricted α-reconstruction follows from the fact that
u+ x>w = u+ y>w when x = y, and α-privacy follows from the fact that u+ x>w and u+ y>w are
pairwise independent if x 6= y.

X = {0, 1}n, Y = {0, 1}n
` = (1 + n), η = 1, ζ = 1

pλ(x,y):
Return 1 iff x = y

sEλ(x, (u,w>)>) = u+ x>w
rEλ(y, (u,w>)>) = u+ y>w
kEλ(y, α) = α
sDλ(x,y, c) = c
rDλ(x,y, d) = d

Figure 3: Definitions of Peq = {pλ}λ∈N and PEeq = {rEλ, kEλ, sEλ, sDλ, rDλ}.
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2.4 Attribute-Based Key Encapsulation
We now give the definition of fine-grained ABKEM, the instantiation of which can be easily converted
into ABEs by using a one-time symmetric cipher.

Definition 2.15 (Attribute-Based Key Encapsulation). A C1-attribute-based key encapsulation (ABKEM)
scheme for a predicate P = {pλ}λ is a function family ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N ∈ C1
with the following properties.

• Genλ returns the (master) public/secret key (pk, sk). We assume that pk implicitly defines value
spaces X and Y, a key space K, and a ciphertext space C.

• USKGenλ(sk, y) returns a user secret-key usk[y] for a value y ∈ Y.
• Encλ(pk, x) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C w.r.t. x ∈ X .
• Decλ(usk[y], y, x, ct) deterministically returns a decapsulated key K ∈ K or the reject symbol ⊥.
Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all y ∈ Y, all x ∈ X , all

usk[y] ∈ USKGenλ(sk, y), and all (K, ct) ∈ Encλ(pk, x), if pλ(x, y) = 1, we have

Pr[Decλ(usk[y], y, x, ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plaintext and attribute
attacks (PR-AT-CPA) defined as follows.

Definition 2.16 (PR-AT-CPA Security for ABKEM). Let k(·) and l(·) be functions in λ. ABKEM is
C2-(k, l)-PR-AT-CPA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is allowed to make k rounds of
adaptive queries to USKGen(·) and each round it queries l inputs, we have

|Pr[PR-AT-CPAaλreal ⇒ 1]− Pr[PR-AT-CPAaλrand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Figure 4.

Init:
(pk, sk) $← Genλ
Return pk

USKGen(y):
//k(λ)× l(λ) queries
Qy

$← Qy ∪ {y}
Return usk[id] $← USKGenλ(sk, y)

Enc(x):
//one query
(K∗, ct∗) $← Encλ(pk, x)
K∗ $← K
Return (K∗, ct∗)

Finalize(β):
If (pλ(x, y) 6= 1 for all y ∈ Qy, return β
Else return 0

Figure 4: Security Games PR-AT-CPAreal and PR-AT-CPArand for defining PR-AT-CPA security for
ABKEM. The boxed statement redefining K∗ is only executed in game PR-AT-CPArand.

3 Generalized Affine MAC
In this section, we give the definition of generalized affine MAC, which generalizes the notion of standard
affine MAC [5] by using predicate encodings, and show how to construct it in the fine-grained setting
under the assumption NC1 ( ⊕L/poly.

3.1 Definitions
The definition of generalized affine MAC is as follows.

Definition 3.1 (Generalized Affine MAC). Let PE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈ C1 be a predicate
encoding for P = {pλ}λ∈N, where rEλ : Y × {0, 1}` → {0, 1}η, kEλ : Y × {0, 1} → {0, 1}η, and sEλ :
X × {0, 1}` → {0, 1}ζ .

A C1-generalized affine message authentication code for PE is a function family MACGA = {GenMACλ,Tagλ,
VerMACλ}λ∈N ∈ C1.
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1. GenMACλ returns skMAC containing (B,X, x′), where B> ∈ ZeroSamp(λ), X ∈ {0, 1}λ×`, and
x′ ∈ {0, 1}.

2. Tagλ(skMAC,m ∈ Y) returns a tag τ = (t,u) ∈ {0, 1}λ × {0, 1}η, computed as

t $← SampYesλ(B) (1)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η. (2)

3. VerMACλ(skMAC,m, τ = (t,u)) verifies if equation (2) holds.
Correctness is satisfied if for any skMAC ∈ GenMACλ, m ∈ Y, and τ ∈ Tagλ(skMAC,m), we have

1 = VerMACλ(skMAC,m, τ).

The security requirement we consider is psedorandomness against chosen message attacks (PR-CMA)
defined as follows.

Definition 3.2 (PR-CMA Security). Let k = k(λ) and l = l(λ) be polynomials in λ. MACGA is C2-(k, l)-
PR-CMA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is allowed to make k rounds of adaptive queries
to Eval(·) and each round it queries l inputs, we have

Pr[PR-CMAaλreal ⇒ 1]− Pr[PR-CMAaλrand ⇒ 1] ≤ negl(λ),

where the experiments are defined in Figure 5.

Init:
skMAC = (B,X, x′) $← GenMACλ(par)
Return ε

Eval(m): // k(λ)× `(λ) queries
Qm = Qm ∪ {m}
Return (t,u) $← Tagλ(skMAC,m)

Chal(m∗): //one query
h0 = sEλ(m∗,X>) ∈ {0, 1}ζ×λ
h1 = x′ ∈ {0, 1}
h1

$← {0, 1}
Return (h0, h1)

Finalize(β ∈ {0, 1}):
If pλ(m∗,m) 6= 1 for all m ∈ Qm, return β
Else return 0

Figure 5: Games PR-CMAreal and PR-CMArand for defining PR-CMA security. The boxed statement
redefining h1 is only executed in game PR-CMArand.

Roughly, the PR-CMA security says that in the presence of many tags and a challenge token (h0, h1),
an adversary cannot tell whether the h1 is honestly generated or randomness.
Standard Affine MAC. Let X = (x0,x1, · · · ,xn) $← {0, 1}λ×(n+1). When pλ(·) is an identity function,
u is computed as

u = x>0 t +
n∑
i=1

mix>i t + x′ ∈ {0, 1} (3)

in Equation (2), and h0 is computed as

h0 = h · (x>0 +
n∑
i=1

m∗ix>i ) ∈ {0, 1}1×λ (4)

in Figure 5, i.e., the predicate encoding is the one for equality (see Figure 3), the above definition becomes
exactly the same as that of affine MAC given in [5] for the HPS based IBKEM, except that we only
consider computations over GF (2) and t is sampled by SampYesλ. We give the definition as below.

Definition 3.3 (Affine MAC [5]). A Generalized affine MAC for the predicate Peq and encoding PEeq
defined as in Figure 3 is said to be an affine MAC.

10



GenMACλ(par):
B> $← ZeroSamp(λ)
X $← {0, 1}λ×`
x′ $← {0, 1}
Return skMAC = (B,X, x′)

Tagλ(skMAC,m ∈ Y):
t $← SampYesλ(B)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η
Return τ = (t,u)

VerMACλ(skMAC,m ∈ Y, τ):
If u = rEλ(m,X>t) + kEλ(m, x′) return 1
Else return 0

Figure 6: Definition of MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N.

3.2 Construction
In this section, we give our construction of AC0[2]-generalized affine MAC based on NC1 ( ⊕L/poly. It is
a natural extension of the standard affine MAC from an HPS in [5].

Theorem 3.4 If NC1 ( ⊕L/poly and PE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈ AC0[2] is a predicate encoding,
where rEλ : Y × {0, 1}` → {0, 1}η, kEλ : Y × {0, 1} → {0, 1}η, and sEλ : X × {0, 1}` → {0, 1}ζ , then
MACGA is an AC0[2]-generalized affine MAC that is NC1-(k, l)-PR-CMA secure, where k is any constant
and l = l(λ) is any polynomial in λ.

Init: // Games G0-G2

B> $← ZeroSamp(λ), x′ $← {0, 1}
For X $← {0, 1}λ×`
Return ε

Chal(m∗ ∈ X ): //Games G0-G1,Q+1, G2

h0 = sEλ(m∗,X>) ∈ {0, 1}ζ×λ
h1 = x′ ∈ {0, 1}
h1

$← {0, 1}
Return (h0, h1)

Finalize(β ∈ {0, 1}): // Games G0-G2

If pλ(m∗,m) 6= 1 for all m ∈ Qm
return β

Else return 0

Eval(m): //Game G2

Qm = Qm ∪ {m}
t $← SampNoλ(B)
u = rEλ(m,X>t) ∈ {0, 1}η
Return (t,u)

Eval(m): // Game G0

Qm = Qm ∪ {m}
t $← SampYesλ(B)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η
Return (t,u)

Eval(m): // Games G1,i, G′1,i
Qm = Qm ∪ {m} // Let m be the c-th query
(1 ≤ c ≤ k · l)
If c < i then

t $← SampNoλ(B)
u = rEλ(m,X>t) ∈ {0, 1}η

If c > i then
t $← SampYesλ(B)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η

If c = i then
t $← SampYesλ(B)
t $← SampNoλ(B)

u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η
Return (t,u)

Figure 7: Games G0, (G1,i,G′1,i)1≤i≤k·l,G1,k·l+1,G2 for the proof of Theorem 3.4.

Proof. First, we note that ({GenMACλ}λ∈N, {Tagλ}λ∈N, {VerMACλ}λ∈N) are computable in AC0[2], since
they only involve operations including sampling random bits and multiplication of a constant number
of matrices, which can be done in constant depth with PARITY gates. Also, it is straightforward that
MACGA satisfies correctness.

We now prove that MACGA is NC1-(k, l)-PR-CMA secure by defining a sequence of intermediate games
as in Figure 7.

Let A = {aλ}λ∈N ∈ NC1 be any adversary against the PR-CMA-security of MACGA. Game G0 is the
real attack game. In games G1,i, the first i− 1 queries to the Eval oracle are answered with (t,u), where
t $← SampNoλ(B) and u contains no information on kEλ(m, x′), and the remaining are answered as in
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the real scheme. To interpolate between G1,i and G1,i+1, we also define G′1,i, which answers the i-th query
to Eval by picking t $← SampNoλ(B). By definition, we have G0 = G1,1.

Lemma 3.5 Pr[PR-CMAaλreal ⇒ 1] = Pr[Gaλ0 ⇒ 1] = Pr[Gaλ1,1 ⇒ 1].

Lemma 3.6 There exists an adversary B1,i = {b1,i
λ }λ∈N ∈ NC1 such that b1,i

λ breaks the fine-grained subset
membership problem (see Definition 2.12), which holds under NC1 ( ⊕L/poly according to Theorem 2.13,
with probability

|Pr[G′aλ1,i ⇒ 1]− Pr[Gaλ1,i ⇒ 1]|.

Proof. Games G1,i and G′1,i only differ in the distribution of t returned by the Eval oracle for its i-th
query. We build b1,i

λ as follows.
The distinguisher b1,i

λ runs in exactly the same way as the challenger in G1,i except that for its i-th
query, it obtains t which is sampled as t $← SampYesλ(B) or t $← SampNoλ(B). When aλ outputs
β ∈ {0, 1}, bλ outputs β if no m such that pλ(m∗,m) = 1 was queried to Eval. Otherwise, bλ outputs 0.

Since aλ only makes constant rounds of queries, all the operations in bλ are performed in NC1. Hence,
we have B1,i ∈ NC1.

When t is sampled as t $← SampYesλ(B) (respectively, t $← SampNoλ(B)), the view of aλ is exactly the
same as its view in G1,i (respectively, G′1,i). Thus the advantage of b1,i

λ in breaking the subset membership
problem is |Pr[G′aλ1,i ⇒ 1]− Pr[Gaλ1,i ⇒ 1]|, completing this part of proof.

Lemma 3.7 Pr[Gaλ1,i+1 ⇒ 1] = Pr[G′aλ1,i ⇒ 1].

Proof. Let m be the i-th query to Eval such that pλ(m∗,m) 6= 1 and let (t,u) be its tag. We have
t /∈ Im(B) due to Theorem 2.13. We use an information-theoretic argument to show that in G′1,i, u does
not reveal any information on x′. Information-theoretically, aλ may learn B>X from each c-th query with
c > i. Thus, for X $← {0, 1}λ×` and w $← {0, 1}`×1, aλ information-theoretically obtains the distribution
of  X>B

h0 = h� sEλ(m∗,X>)
u = rEλ(m,X>t) + kEλ(m, x′)


=

 (X> + wB⊥>)B
h0 = sEλ(m∗,X> + wB⊥>)

u = rEλ(m, (X> + wB⊥>)t) + kEλ(m, x′)


=

 X>B
h0 = sEλ(m∗,X>) + sEλ(m∗,wB⊥>)

u = rEλ(m,X>t) + rEλ(m,w) + kEλ(m, x′)

 (∵ t /∈ Im(B)).

This distribution is identical to the distribution of X>B
h0 = sEλ(m∗,X>) + sEλ(m∗,wB⊥>)

u = rEλ(m,X>t) + rEλ(m,w)

 ,

since the distribution of
(m∗,m, x′, sEλ(m∗,w), rEλ(m,w) + kEλ(m, x′)

and
(m∗,m, x′, sEλ(m∗,w), rEλ(m,w)),

are identical due to the α-privacy of PE, completing this part of proof.

Lemma 3.8 Pr[Gaλ2 ⇒ 1] = Pr[Gaλ1,k·l+1 ⇒ 1].

Proof. Note that aλ can ask at most k · l-many Eval queries. In both G1,k·l+1 and G2, all the answers of
Eval are independent of x′. Hence, h1 from G1,k·l+1 is uniform in the view of aλ.
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We now do all the previous steps in the reverse order as in Figure 8. Then, by using the above
arguments in a reverse order, we have the following lemma.

Lemma 3.9 There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the fine-grained subset
membership problem with probability at least

(|Pr[PR-CMAaλrand ⇒ 1]− Pr[Gaλ2 ⇒ 1]|)/(k · l).

Init: // Games H0-H2

B> $← ZeroSamp(λ); x′ $← {0, 1}
X $← {0, 1}λ×`
Return ε

Chal(m∗): //Games H0-H2

h0 = sEλ(m∗,X>) ∈ {0, 1}ζ×λ
h1

$← {0, 1}
Return (h0, h1)

Finalize(β ∈ {0, 1}): // Games H0-H2

If pλ(m∗,m) 6= 1 for all y ∈ Qm
return β

Else return 0

Eval(m): //Game H0

Qm = Qm ∪ {m}
t $← SampNoλ(B)
u = rEλ(m,X>t) ∈ {0, 1}η
Return (t,u)

Eval(m): // Games H1,i, H′1,i
Qm = Qm ∪ {m} // Let m be the c-th query
(1 ≤ c ≤ k · l)
If c > i then

t $← SampNoλ(B)
u = rEλ(m,X>t) ∈ {0, 1}η

If c < i then
t $← SampYesλ(B)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η

If c = i then
t $← SampNoλ(B)
t $← SampYesλ(B)

u = rEλ(m)X>t + kEλ(m, x′) ∈ {0, 1}η
Return (t,u)

Eval(m): // Game H2

Qm = Qm ∪ {m}
t $← SampYesλ(B)
u = rEλ(m,X>t) + kEλ(m, x′) ∈ {0, 1}η
Return (t,u)

Figure 8: Games H0, (H1,i,H′1,i)1≤i≤k·l,H1,k·l+1,H2 for the proof of Lemma 3.9.

Putting all above together, Theorem 3.4 immediately follows.

An affine MAC. By instantiating the underlying predicate encoding in Figure 6 with the encoding
for equality (see Figure 3), we immediately obtain an affine MAC MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N
as in Figure 9 for message space {0, 1}`, which will be used to construct an IBE scheme in NC1 later.
Formally, we have the following corollary derived from Theorem 3.4.

GenMACλ(par):
B> $← ZeroSamp(λ)
x0, . . . ,x` $← {0, 1}λ
x′ $← {0, 1}
Return skMAC = (B,x0, . . . ,x`, x′0)

Tagλ(skMAC,m ∈ {0, 1}`):
t $← SampYesλ(B)
u = (x>0 +

∑`

i=1 mi · x>i )t + x′ ∈ {0, 1}
Return τ = (t, u)

VerMACλ(skMAC, τ,m):
If u = (x>0 +

∑`

i=1 mi · x>i )t + x′ return 1
Else return 0

Figure 9: Definition of MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N.

Corollary 3.10 If NC1 ( ⊕L/poly, then MAC is an AC0[2]-affine MAC that is NC1-(k, l)-PR-CMA secure,
where k is any constant and l = l(λ) is any polynomial in λ.

13



4 Fine-Grained Secure Identity-Based Encryption
In this section, we present our fine-grained IBE scheme, which captures the core techniques of our ABE
scheme given later in Section 5.

4.1 Definition
We now give the definition of fine-grained IBKEM, which is a special case of fine-grained ABKEM (see
Definition 2.15) where the boolean predicate is restricted to be the equality predicate.

Definition 4.1 (Identity-Based Key Encapsulation). A C1-identity key encapsulation (IBKEM) scheme
is a function family IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N ∈ C1 with the following properties.

• Genλ returns the (master) public/secret key (pk, sk). We assume that pk implicitly defines an
identity space ID, a key space K, and a ciphertext space C.

• USKGenλ(sk, id) returns a user secret-key usk[id] for an identity id ∈ ID.
• Encλ(pk, id) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C w.r.t. id ∈ ID.
• Decλ(usk[id], id, ct) deterministically returns a decapsulated key K ∈ K or the reject symbol ⊥.
Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all id ∈ ID, all usk[id] ∈

USKGenλ(sk, id), and all (K, ct) ∈ Encλ(pk, id), we have

Pr[Decλ(usk[id], id, ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plaintext and identity
attacks (PR-ID-CPA) defined as follows.

Definition 4.2 (PR-ID-CPA Security for IBKEM). Let k(·) and l(·) be functions in λ. IBKEM is C2-
(k, l)-PR-ID-CPA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is allowed to make k rounds of adaptive
queries to USKGen(·) and each round it queries l inputs, we have

|Pr[PR-ID-CPAaλreal ⇒ 1]− Pr[PR-ID-CPAaλrand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Figure 10.

Procedure Init:
(pk, sk) $← Genλ
Return pk

Procedure USKGen(id):
//k(λ)× l(λ) queries
Qid

$← Qid ∪ {id}
Return usk[id] $← USKGenλ(sk, id)

Procedure Enc(id∗):
//one query
(K∗, ct∗) $← Encλ(pk, id∗)
K∗ $← K
Return (K∗, ct∗)

Procedure Finalize(β):
Return (id∗ 6∈ Qid) ∧ β

Figure 10: Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-security for IBKEM.
The boxed statement redefining K∗ is only executed in game PR-ID-CPArand.

4.2 Construction
Let MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ NC1 be an affine MAC over {0, 1}λ with message space
ID in Figure 9. Our IBKEM IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N for key-space K = {0, 1} and
identity space {0, 1}` is defined as in Figure 11. 2

Theorem 4.3 Under the assumption NC1 ( ⊕L/poly and the NC1-(k, l)-PR-CMA security of MAC,
where k is any constant and l = l(λ) is any polynomial in λ, IBKEM is an AC0[2]-IBKEM that is
NC1-(k, l)-PR-ID-CPA secure against NC1.

2The IBKEM can be straightforwardly extended to one with large key space as we will discuss later in this section.

14



Genλ:
A> $← ZeroSamp(λ)
skMAC = (B,x0, . . . ,x`, x′) $← GenMACλ(par)
For i = 0, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ

Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ
y′ $← {0, 1}λ−1

z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)0≤i≤`, z′)
sk = (skMAC, (Yi)0≤i≤`,y′)
Return (pk, sk)

USKGenλ(sk, id ∈ {0, 1}`):
(t, u) $← Tagλ(skMAC, id)
v = t>(Y>0 +

∑`

i=1 idi �Y>i ) + y′> ∈ {0, 1}1×(λ−1)

Return usk[id] = (t, u,v)

Encλ(pk, id):
r $← {0} × {0, 1}λ−1

c0 = Ar ∈ {0, 1}λ

c1 = (Z0 +
∑`

i=1 idi � Zi)r ∈ {0, 1}λ
K = z′ · r ∈ {0, 1}.
Return K and ct = (c0, c1)

Decλ(usk[id], id, ct):
Parse usk[id] = (t, u,v)
Parse ct = (c0, c1) ∈ {0, 1}λ × {0, 1}λ
K = (v|u)c0 − t>c1
Return K

Figure 11: Definition of our IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N with identity space {0, 1}` and
key space {0, 1}. idi denotes the ith bit of id for all i ∈ [`].

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and {Decλ}λ∈N are computable in
AC0[2], since they only involve operations including multiplication of a constant number of matrices,
sampling random bits, and running MAC ∈ AC0[2].

Correctness follows from the fact that by Equation (3) in Section 3.1, we have

(v||u)c0 = (t>(Y>0 +
∑̀
i=1

idi �Y>i ) + y′>||t>(x0 +
∑̀
i=1

idi � xi) + x′)Ar

t>c1 = t>(Y>0 ||x0 +
∑̀
i=1

idi � (Y>i ||xi))Ar

and the difference of the two elements yields K = (y′>||x′)Ar = z′ · r.
Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-ID-CPA security of IBKEM. We now

prove the NC1-(k, l)-PR-ID-CPA security by defining a sequence of games G0-G6 as in Figure 12. Roughly,
in the first four games, we show how to extract a challenge token for MAC from the challenge session key
and ciphertext by switching the distribution of A twice and changing the distribution of the randomness
r during the switching procedure. In the last two games, we show that the commitments Zi and z′
perfectly hide the secrets, and the answers of queries made by aλ reveal no useful information other than
the tags and token for MAC.

Lemma 4.4 Pr[PR-ID-CPAaλreal ⇒ 1] = Pr[Gaλ1 ⇒ 1] = Pr[Gaλ0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗0, c∗1 and K∗ in Enc(id∗) by
substituting Zi and z′ with their respective definitions and substituting A with A + Nλ. Since we have

Nλr=


0 · · · 0
... 0 · · · 0

0 . . . ...
1 0 · · · 0




0
r2
...
rλ

 = 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof.

Lemma 4.5 There exists an adversary B1 = {b1
λ}λ∈N such that b1

λ breaks the fine-grained matrix linear
assumption (see Definition 2.5), which holds under NC1 ( ⊕L/poly according to Lemma 2.6, with
advantage

|Pr[Gaλ2 ⇒ 1]− Pr[Gaλ1 ⇒ 1]|.
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Init: //Games G0-G1, G2-G3 , G4 , G5-G6

A> $← ZeroSamp(λ), A> $← OneSamp(λ) , A> $← ZeroSamp(λ)

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),R0

$← LSamp(λ),A> = R0Mλ
0 R1

skMAC = (B,x0, . . . ,x`, x′) $← GenMACλ(G)
For i = 0, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ, Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ

Di = Y>i + xi · r̃> ∈ {0, 1}λ×(λ−1),Zi = (0||Di)R>0 ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1, z′ = (y′>||x′)A ∈ {0, 1}1×λ

d′ = y′> + x′ · r̃> ∈ {0, 1}1×(λ−1), z′ = (0||d′)R>0 ∈ {0, 1}1×λ

pk = (A, (Zi)0≤i≤`, z′)
sk = (skMAC, (Yi)0≤i≤`,y′)
Return pk

Finalize(β): //Games G0-G6

Return (id∗ 6∈ Qid) ∧ β

USKGen(id): //Games G0-G4, G5-G6

Qid = Qid ∪ {id}, (t, u) $← Tagλ(skMAC, id)
v = t>(Y>0 +

∑`

i=1 idi �Y>i ) + y′> ∈ {0, 1}1×(λ−1)

v = t>(D0 +
∑`

i=1 idi �Di) + d′ − u · r̃> ∈ {0, 1}1×(λ−1)

usk[id] = (t, u,v)
Return usk[id]

Enc(id∗): //Games G0, G1-G4 , G3-G4 , G5 , G6

r $← {0} × {0, 1}λ−1, r $← {1} × {0, 1}λ−1

c∗0 = Ar ∈ {0, 1}λ, c∗0 = (A + Nλ)r

c∗1 = Z0r +
∑`

i=1 id∗i � Zir ∈ {0, 1}λ

c∗1 = (Y>0 | x0)(A + Nλ)r +
∑`

i=1 id∗i � (Y>i | xi)(A + Nλ)r

c∗1 = Z0r + x0 +
∑`

i=1 id∗i � (Zir + xi)

K∗ = z′ · r ∈ {0, 1}, K∗ = (y′> | x′)(A + Nλ)r , K∗ = z′ · r + x′

K∗ $← {0, 1}

Return K∗ and ct∗ = (c∗0, c∗1)

Figure 12: Games G0-G6 for the proof of Theorem 4.3.
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Proof. G1 and G2 only differ in the distribution of A, namely, A> $← ZeroSamp(λ) or A> $← OneSamp(λ),
and we build the distinguisher b1

λ as follows.
b1
λ runs in exactly the same way as the challenger of G1 except that in Init, instead of generating

A by itself, it takes as input A> generated as A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own
challenger. When aλ outputs β, b1

λ outputs β as well if id∗ was not queried to USKGen. Otherwise, b1
λ

outputs 0.
If A is generated as A> $← ZeroSamp(λ) (respectively, A> $← OneSamp(λ)), the view of aλ is the

same as its view in G1 (respectively, G2). Hence, the probability that b1
λ breaks the fine-grained matrix

linear assumption is
|Pr[Gaλ2 ⇒ 1]− Pr[Gaλ1 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b1
λ are performed in NC1.

Hence, we have B1 = {b1
λ}λ∈N ∈ NC1, completing this part of proof.

Lemma 4.6 Pr[Gaλ3 ⇒ 1] = Pr[Gaλ2 ⇒ 1].

Proof. In this game, we sample r in Enc(id∗) as r $← {1} × {0, 1}λ−1 instead of r $← {0} × {0, 1}λ−1.
According to Lemma 2.9, the distribution of A+Nλ in G2 and G3 is identical to that of a matrix sampled
from ZeroSamp. Then this lemma follows from Lemma 2.11 immediately.

Lemma 4.7 There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the fine-grained matrix
linear assumption with advantage

|Pr[Gaλ4 ⇒ 1]− Pr[Gaλ3 ⇒ 1]|.

Proof. G3 and G4 only differ in the distribution of A, namely, A> $← OneSamp(λ) or A> $← ZeroSamp(λ),
and we build the distinguisher b2

λ as follows.
b2
λ runs in exactly the same way as the challenger of G3 except that in Init, instead of generating

A by itself, it takes as input A> generated as A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own
challenger. When aλ outputs β, b2

λ outputs β as well if id∗ was not queried to USKGen. Otherwise, b2
λ

outputs 0.
If A is generated as A> $← OneSamp(λ) (respectively, A> $← ZeroSamp(λ)), the view of aλ is the

same as its view in G3 (respectively, G4). Hence, the probability that b2
λ breaks the fine-grained matrix

linear assumption is
|Pr[Gaλ4 ⇒ 1]− Pr[Gaλ3 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b2
λ are performed in NC1.

Hence we have B2 = {b2
λ}λ∈N ∈ NC1, completing this part of proof.

Lemma 4.8 Pr[Gaλ5 ⇒ 1] = Pr[Gaλ4 ⇒ 1].

Proof. In G5, we do not use (Yi)`i=0 and y′ in USKGen(id) or Enc(id∗) any more. We give the sampling
procedure for A in an explicit way and change the simulation of Zi, z′, v, c∗1, and K∗ as in Figure 12.
We now show that all the changes are purely conceptual.

In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ) and R0

$← LSamp(λ), and
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setting A> = R0Mλ
0 R1. This is exactly the “zero-sampling” procedure, in which case, we have

Zi = (Y>i ||xi)A = (Y>i ||xi)R>1 Mλ
0
>R>0

= (Y>i ||xi)
(

Iλ−1 0
r̃> 1

)


0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (Y>i + xi · r̃>||xi)



0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (0||Y>i + xi · r̃>)R>0 = (0||Di)R>0
and

c∗1 =
∑̀
i=1

id∗i � (Y>i | xi)(A + Nλ)r =
∑̀
i=1

id∗i � (Zir + xi).

Hence, the distributions of Zi and c∗1 in G5 remain the same, and the distributions of z′ and K∗ can be
analyzed in the same way. The distribution of v does not change as well since

v = t>(Y>0 +
∑̀
i=1

idi �Y>i ) + y′>

= t>(Y>0 + x0 · r̃> +
∑̀
i=1

idi � (Y>i + xi · r̃>)) + (y′> + x′ · r̃>)

− (t>(x0 +
∑̀
i=1

idi � xi) + x′) · r̃>

= t>(D0 +
∑̀
i=1

idi �Di) + d′ − u · r̃>.

Putting all above together, Lemma 4.8 immediately follows.

Lemma 4.9 There exists an adversary B3 = {b3
λ}λ∈N ∈ NC1 such that b3

λ breaks the NC1-(k, l)-PR-CMA-
security of MAC with advantage

|Pr[Gaλ6 ⇒ 1]− Pr[Gaλ5 ⇒ 1]|.

Proof. The challenger of G6 answers the Enc(id∗) query by choosing random K∗. We build b3
λ as in

Figure 13 to show that the differences between G6 and G5 can be bounded by the advantage of breaking
the PR-CMA security of MAC.

b3
λ runs in the same way as the challenger of G5 except that it samples Di and d′ uniformly at random

from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively. This does not change the view of aλ since Yi and y′
were uniformly sampled in G5. Moreover, every time on receiving a query id to USKGen, b3

λ forwards
id to its evaluation oracle Eval to obtain the answer (t, u), and on receiving the query id∗ to Enc, b3

λ

forwards id∗ to its challenge oracle Chal and uses the answer (h0, h1) to simulate r, c∗1, and K∗ as in
Figure 13. When aλ outputs β, b3

λ outputs β as well if id∗ was not queried to USKGen. Otherwise, b3
λ

outputs 0.
If h1 is uniform (i.e., b3

λ is in Game PR-CMArand) then the view of aλ is identical to its view in G6. If
h1 is real (i.e., b3

λ is in Game PR-CMAreal), then the view of aλ is identical to its view in G5. Thus the
advantage of b3

λ is exactly
|Pr[Gaλ6 ⇒ 1]− Pr[Gaλ5 ⇒ 1]|.
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Init:

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),

R0
$← LSamp(λ),A> = R0Mλ

0 R1
For i = 0, . . . , ` :

Di
$← {0, 1}λ×(λ−1)

Zi = (0||Di)R>0 ∈ {0, 1}λ×λ
d′ $← {0, 1}1×(λ−1)

z′ = (0||d′)R>0 ∈ {0, 1}1×λ

Return pk = (A, (Zi)0≤i≤`, z′)

USKGen(id):
Qid = Qid ∪ {id}
(t, u) $← Eval(id)
v = (D0 +

∑`

i=1 idi �Di)>t + d′> − r̃ · u ∈ {0, 1}λ−1

Return usk[id] = (t, u,v)

Enc(id∗): //one query
(h0, h1) $← Chal(id∗)
r2, · · · , rn $← {0, 1}
r = (1, r2, · · · , rn)>
c∗0 = (A + Nλ)r ∈ {0, 1}λ

c∗1 = Z0r +
∑`

i=1 id∗i � Zir + h>0 ∈ {0, 1}λ
K∗ = z · r + h1 ∈ {0, 1}
Return K∗ and ct∗ = (c∗0, c∗1)

Finalize(β):
Return (id∗ 6∈ Qid) ∧ β

Figure 13: Description of B3 = {b3
λ}λ∈N (having access to the oracles InitMAC,Eval,Chal,FinalizeMAC

of the PR-CMAreal/PR-CMArand games of Figure 5 (instantiated with the encoding for equality predicate))
for the proof of Lemma 4.9.

Moreover, since all operations in b3
λ are performed in NC1, we have B3 = {b3

λ}λ∈N ∈ NC1, completing
this part of proof.

We now do all the previous steps in the reverse order as in Figure 14. Note that the view of the
adversary in H0 (respectively, H4) is identical to its view in G6 (respectively, PR-ID-CPArand). By using
the above arguments in a reverse order, we have the following lemma.

Lemma 4.10 There exists an adversary B4 = {b4
λ}λ∈N ∈ NC1 such that b4

λ breaks the fine-grained matrix
linear assumption with advantage

(|Pr[Haλ4 ⇒ 1]− Pr[Haλ0 ⇒ 1]|)/2.

Putting all above together, Theorem 4.3 immediately follows.

Extension to IBKEM with large key space. The key space of the above IBKEM is {0, 1}, while by
running it in parallel, we can easily extend it to an IBKEM with large key space. The resulting scheme
can still be performed in AC0[2] since running in parallel does not increase the circuit depth. The same
extension can be also made for our fine-grained secure ABKEM given later in Section 5.
Extension to QA-NIZK. Our techniques for proving the hiding property of the underlying commitment
scheme in our IBKEM can also be used to construct an efficient fine-grained QA-NIZK in NC1 with
adaptive soundness. We refer the reader to Appendix B for details.

5 Fine-Grained Secure Attribute-Based Encryption
In this section, we generalize our IBE scheme as a fine-grained ABE scheme by using predicate encodings
[36, 10]. By instantiating the underlying encodings in different ways, we can achieve ABEs for inner
product, non-zero inner product, spatial encryption, doubly spatial encryption, boolean span programs, and
arithmetic span programs, and also broadcast encryption and fuzzy IBE schemes, which are computable
in AC0[2] and secure against NC1 under NC1 ( ⊕L/poly. We refer the reader to Appendix C for several
instances of the encodings and also to [10] for more instances. We note that the encodings in [10] are
defined over GF (p), while the ours are over GF (2). However, the proofs for encodings in [10] can be
adopted in our case, since the linearity and α-reconstruction properties hold in GF (p) also hold in GF (2)
and by the standard linear-independence arguments in GF (2), the α-privacy also holds in our case.
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Init: //Games H0, H1-H2 , H3 − H4

A> $← ZeroSamp(λ), A> $← OneSamp(λ) , A> $← ZeroSamp(λ)

skMAC = (B,x0, . . . ,x`, x′) $← GenMACλ(G)
For i = 0, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ, Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1, z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)0≤i≤`, z′)
sk = (skMAC, (Yi)0≤i≤`,y′)
Return pk

Finalize(β): //Games H0-H4

Return (id∗ 6∈ Qid) ∧ β

USKGen(id): //Games H0-H4

Qid = Qid ∪ {id}, (t, u) $← Tagλ(skMAC, id)
v = t>(Y>0 +

∑`

i=1 idi �Y>i ) + y′> ∈ {0, 1}1×(λ−1)

usk[id] = (t, u,v)
Return usk[id]

Enc(id∗): //Games H0-H1, H2-H3 , H4

r $← {1} × {0, 1}λ−1, r $← {0} × {0, 1}λ−1

c∗0 = (A + Nλ)r ∈ {0, 1}λ, c∗0 = Ar
c∗1 = (Y>0 | x0)(A + Nλ)r +

∑`

i=1 id∗i � (Y>i | xi)(A + Nλ)r ∈ {0, 1}λ

c∗1 = Z0r +
∑`

i=1 id∗i � Zir
K∗ $← {0, 1}
Return K∗ and ct∗ = (c∗0, c∗1)

Figure 14: Games H0-H4 for the proof of Theorem 4.3.
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Let PE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈ AC0[2] be a predicate encoding for P = {pλ}λ∈N with rEλ :
Y×{0, 1}` → {0, 1}η, kEλ : Y×{0, 1} → {0, 1}η, sEλ : X×{0, 1}` → {0, 1}ζ , sDλ : X×Y×{0, 1}ζ → {0, 1},
and rDλ : X × Y × {0, 1}η → {0, 1}. Let MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ AC0[2] be a PE-
generalized affine MAC over {0, 1}λ with message space Y. Our ABKEM ABKEM = {Genλ,USKGenλ,
Encλ,Decλ}λ∈N is defined as in Figure 15.

Genλ:
A> $← ZeroSamp(λ)
skMAC = (B,X, x′) $← GenMACλ(par)
For X = (x1, · · · ,x`) and i = 1, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ

Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ
y′ $← {0, 1}(λ−1)

z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′)
sk = (skMAC, (Yi)1≤i≤`,y′)
Return (pk, sk)

USKGenλ(sk, y ∈ Y):
(t,u) $← Tagλ(skMAC, y)

v = rEλ(y,

t>Y>1
...

t>Y>`

)

+ kEλ(y,y′>) ∈ {0, 1}η×(λ−1)

Return usk[y] = (t,u,v)

Encλ(pk, x ∈ X ):
r $← {0} × {0, 1}λ−1

c0 = Ar ∈ {0, 1}λ

C1 = sEλ(x,

r>Z>1
...

r>Z>`

) ∈ {0, 1}ζ×λ

K = z′ · r ∈ {0, 1}.
Return K and ct = (c0,C1)

Decλ(usk[y], y, x, ct):
Parse usk[y] = (t,u,v)
Parse ct = (c0,C1)
K = rDλ(x, y,v||u)c0

− sDλ(x, y,C1t) ∈ {0, 1}
Return K

Figure 15: Construction of ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N.

Theorem 5.1 Under the assumption NC1 ( ⊕L/poly and the NC1-(k, l)-sEλ-PR-CMA-security of MACGA,
where k is any constant and l = l(λ) is any polynomial in λ, ABKEM is an AC0[2]-ABKEM that is
NC1-(k, l)-PR-AT-CPA secure against NC1.

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and {Decλ}λ∈N are computable in
AC0[2], since they only involve operations including multiplication of a constant number of matrices,
sampling random bits, and running MACGA ∈ AC0[2].

By Equation (2) in Section 3.1, we have

rDλ(x, y,v||u)c0

=rDλ(x, y, rEλ

y,

t>Y>1
...

t>Y>`

+ kEλ(y,y′>)||

t>x1
...

t>x`

+ kEλ(y, x′)

Ar

and

sDλ(x, y,C1t) = sDλ(x, y, sEλ

x,

t>(Y>1 ||x1)
...

t>(Y>` ||x`)


)Ar.

Then, due to restricted α-reconstruction (see Definition 2.14), the difference of the above equations yields
K = (y′>||x′)Ar = z′ · r, i.e., correctness is satisfied.

Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-AT-CPA security of ABKEM. We now
prove the NC1-(k, l)-PR-AT-CPA security by defining a sequence of games G0-G6 as in Figure 16. Roughly,
in the first four games, we show how to extract a challenge token for MACGA from the challenge session key
and ciphertext by switching the distribution of A twice and changing the distribution of the randomness
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r during the switching procedure. In the last two games, we show that the commitments Zi and z′
perfectly hide the secrets, and the answers of queries made by aλ reveal no useful information other than
the tags and token for MAC.

Lemma 5.2 Pr[PR-AT-CPAaλreal ⇒ 1] = Pr[Gaλ1 ⇒ 1] = Pr[Gaλ0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗0, C∗1 and K∗ in Enc(x) by
substituting Zi and z′ with their respective definitions and substituting A with A + Nλ. Since we have

Nλr=


0 · · · 0
... 0 · · · 0

0 . . . ...
1 0 · · · 0




0
r2
...
rλ

 = 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof.

Lemma 5.3 There exists an adversary B1 = {b1
λ}λ∈N ∈ NC1 such that b1

λ breaks the fine-grained matrix
linear assumption (see Definition 2.5), which holds under NC1 ( ⊕L/poly according to Theorem 2.13,
with advantage

|Pr[Gaλ2 ⇒ 1]− Pr[Gaλ1 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A> $← ZeroSamp(λ) or A> $← OneSamp(λ),
and we build the distinguisher b1

λ as follows.
b1
λ runs in exactly the same way as the challenger of G1 except that in Init, instead of generating

A by itself, it takes as input A> generated as A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own
challenger. When aλ outputs β, b1

λ outputs β as well if no y such that pλ(x, y) = 1 was queried to
USKGen. Otherwise, b1

λ outputs 0.
If A is generated as A> $← ZeroSamp(λ) (respectively, A> $← OneSamp(λ)), the view of aλ is the

same as its view in G1 (respectively, G2). Hence, the probability that b1
λ breaks the fine-grained matrix

linear assumption is
|Pr[Gaλ2 ⇒ 1]− Pr[Gaλ1 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b1
λ are performed in NC1.

Hence, we have B1 = {b1
λ}λ∈N ∈ NC1, completing this part of proof.

Lemma 5.4 Pr[Gaλ3 ⇒ 1] = Pr[Gaλ2 ⇒ 1].

Proof. In this game, we sample r in Enc(x) as r $← {0, 1}λ instead of r $← {0} × {0, 1}λ−1. According
to Lemma 2.9, the distributions of A + Nλ in both G2 and G3 are identical to that of a matrix sampled
from ZeroSamp. Then this lemma follows from Lemma 2.11 immediately.

Lemma 5.5 There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the fine-grained matrix
linear assumption with advantage

|Pr[Gaλ4 ⇒ 1]− Pr[Gaλ3 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A> $← OneSamp(λ) or A> $← ZeroSamp(λ),
and we build the distinguisher b2

λ against Lemma 2.6 as follows.
b2
λ runs in exactly the same way as the challenger of G3 except that in Init, instead of generating

A by itself, it takes as input A> generated as A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own
challenger. When aλ outputs β, b2

λ outputs β as well if no y such that pλ(x, y) = 1 was queried to
USKGen. Otherwise, b2

λ outputs 0.
If A is generated as A> $← OneSamp(λ) (respectively, A> $← ZeroSamp(λ)), the view of aλ is the

same as its view in G3 (respectively, G4). Hence, the probability that b2
λ breaks the fine-grained matrix

linear assumption is
|Pr[Gaλ4 ⇒ 1]− Pr[Gaλ3 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b2
λ are performed in NC1.

Hence, we have B2 = {b2
λ}λ∈N ∈ NC1, completing this part of proof.
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Init: //Games G0-G1, G2-G3 , G4 , G5-G6

A> $← ZeroSamp(λ), A> $← OneSamp(λ) , A> $← ZeroSamp(λ)

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),R0

$← LSamp(λ),A> = R0Mλ
0 R1

skMAC = (B,X, x′) $← GenMACλ(G)
For X = (x1, · · · ,x`) and i = 1, . . . , `:

Yi
$← {0, 1}(λ−1)×λ,Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ

Di = Y>i + xi · r̃> ∈ {0, 1}λ×(λ−1),Zi = (0||Di)R>0 ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1, z′ = (y′>||x′)A ∈ {0, 1}1×λ

d′ = y′> + x′ · r̃> ∈ {0, 1}1×(λ−1), z′ = (0||d′)R>0 ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′), sk = (skMAC, (Yi)1≤i≤`,y′)
Return pk

Finalize(β): //Games G0-G6

If (pλ(x, y) 6= 1 for all y ∈ Qy, return β
Else return 0

USKGen(y): //Games G0-G4, G5-G6

Qy = Qy ∪ {y}, (t,u) $← Tagλ(skMAC, y)

v = rEλ(y,

t>Y>1
...

t>Y>`

) + kEλ(y,y′>) ∈ {0, 1}η×(λ−1)

v = rEλ(y, (D>1 t, · · · ,D>` t)>) + kEλ(y,d′)− u · r̃> ∈ {0, 1}η×(λ−1)

usk[y] = (t,u,v)
Return usk[y]

Enc(x): //Games G0 G1-G4 , G3-G4 , G5 , G6

r $← {0} × {0, 1}λ−1, r $← {1} × {0, 1}λ−1

c∗0 = Ar ∈ {0, 1}λ, c∗0 = (A + Nλ)r

C∗1 = sEλ(x,

r>Z>1
...

r>Z>`

) ∈ {0, 1}ζ·λ

C∗1 = sEλ(x, ((Y>1 ||x1)(A + Nλ)r, · · · , (Y>` ||x`)(A + Nλ)r)>)

C∗1 = sEλ(x, (Z1r, · · · ,Z`r)>) + sEλ(x, (x1, · · · ,x`)>)

K∗ = z′ · r ∈ {0, 1}, K∗ = (y′> | x′)(A + Nλ)r , K∗ = z′ · r + x′

K∗ $← {0, 1}

Return K∗ and ct∗ = (c∗0,C∗1)

Figure 16: Games G0-G6 for the proof of Theorem 5.1.
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Lemma 5.6 Pr[Gaλ5 ⇒ 1] = Pr[Gaλ4 ⇒ 1].

Proof. In G5, we do not use (Yi)`i=1 and y′ in USKGen(y) or Enc(x) any more. We give the sampling
procedure for A in an explicit way and change the simulation of Zi, z′, v, C∗1, and K∗ as in Figure 16.
We now show that all the changes are purely conceptual.

In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ) and R0

$← LSamp(λ), and

setting A> = R0Mλ
0 R1. This is exactly the “zero-sampling” procedure, in which case, we have

Zi = (Y>i ||xi)A = (Y>i ||xi)R>1 Mλ
0
>R>0

= (Y>i ||xi)
(

Iλ−1 0
r̃> 1

)


0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (Y>i + xi · r̃>||xi)



0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (0||Y>i + xi · r̃>)R>0 = (0||Di)R>0

and

C∗1 =sEλ(x, ((Y>1 | x1)(A + Nλ)r, · · · , (Y>` | x`)(A + Nλ)r)>)
=sEλ(x, (Z1r + x1, · · · ,Z`r + x`)>)
=sEλ(x, (Z1r, · · · ,Z`r)>) + sEλ(x, (x1, · · · ,x`)>).

Hence, the distributions of Zi in G5 remain the same, and the distributions of z′ and K∗ can be analyzed
in the same way. The distribution of v does not change as well since

v = rEλ(y, (Y1t, · · · ,Y`t)>) + kEλ(y,y′>)
= rEλ(y, ((Y1 + r̃ · x>1 )t, · · · , (Y` + r̃ · x>` )t)>) + kEλ(y,y′> + x′ · r̃>)
− (rEλ(y, (r̃ · x>1 · t, · · · , r̃ · x>1 · t)>) + kEλ(y, x′ · r̃>))
= rEλ(y, (D>1 t, · · · ,D>` t)>) + kEλ(y,d′)− u · r̃>.

Putting all above together, Lemma 5.6 immediately follows.

Lemma 5.7 There exists an adversary B3 = {b3
λ}λ∈N ∈ NC1 such that b3

λ breaks the NC1-(k, l)-PR-CMA
security of MACGA with advantage

|Pr[Gaλ6 ⇒ 1]− Pr[Gaλ5 ⇒ 1]|.

Proof. The challenger of G6 answers the Enc(x) query by choosing random K∗. We build b3
λ as in Figure

17 to show that the differences between G6 and G5 can be bounded by its advantage of breaking the
PR-CMA security of MACGA.

b3
λ runs in the same way as the challenger of G5 except that it samples Di and d′ uniformly at random

from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively. This does not change the view of aλ since Yi and y′
were uniformly sampled in G5. Moreover, every time on receiving a query y to USKGen, b3

λ forwards
y to its evaluation oracle Eval to obtain the answer (t,u), and on receiving the query x to Enc, b3

λ

forwards x to its challenge oracle Chal and uses the answer (h,h0, h1) to simulate r, C∗1, and K∗ as
in Figure 17. When aλ outputs β, b3

λ outputs β as well if no y such that pλ(x, y) = 1 was queried to
USKGen. Otherwise, b3

λ outputs 0.
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Init:

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),

R0
$← LSamp(λ),A> = R0Mλ

0 R1
For i = 1, . . . , ` :

Di
$← {0, 1}λ×(λ−1)

Zi = (0||Di)R>0 ∈ {0, 1}λ×λ
d′ $← {0, 1}1×(λ−1), z′ = (0||d′)R>0 ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′)
Return pk

USKGen(y):
Qy = Qy ∪ {y}
(t,u) $← Eval(y)
v = rEλ(y, (D>1 t, · · · ,D>` t)>)+kEλ(y,d′)−u·r̃> ∈ {0, 1}η×(λ−1)

usk[y] = (t,u,v)
Return usk[y]

Enc(x): //one query
(h0, h1) $← Chal(x)
r2, · · · , rn $← {0, 1}
r = (1, r2, · · · , rn)>
c∗0 = (A + Nλ)r ∈ {0, 1}λ

C∗1 = sEλ(x,

r>Z>1
...

r>Z>`

) + h0 ∈ {0, 1}ζ×λ

K∗ = z′ · r + h1 ∈ {0, 1}
Return K∗ and ct∗ = (c∗0,C∗1)

Finalize(β):
If (pλ(x, y) 6= 1 for all y ∈ Qy

return β
Else return 0

Figure 17: Description of B3 = {b3
λ}λ∈N (having access to the oracles InitMAC,Eval,Chal,FinalizeMAC

of the PR-CMAreal/PR-CMArand games of Figure 5) for the proof of Lemma 5.7.

If h1 is uniform (i.e., b3
λ is in Game PR-CMArand) then the view of aλ is identical to its view in G6. If

h1 is real (i.e., b3
λ is in Game PR-CMAreal) then the view of A is identical to its view in G5. Hence, the

advantage of b3
λ in breaking the PR-CMA security is

|Pr[Gaλ6 ⇒ 1]− Pr[Gaλ5 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b3
λ are performed in NC1.

Hence, we have B3 = {b3
λ}λ∈N ∈ NC1, completing this part of proof.

We now do all the previous steps in the reverse order as in Figure 18. Note that the view of the
adversary in H0 (respectively, H4) is identical to its view in G6 (respectively, PR-AT-CPArand). By using
the above arguments in a reverse order, we have the following lemma.

Lemma 5.8 There exists an adversary B4 = {b4
λ}λ∈N ∈ NC1 such that b4

λ breaks the fine-grained matrix
linear assumption with advantage

(|Pr[Haλ4 ⇒ 1]− Pr[Haλ0 ⇒ 1]|)/2.

Putting all above together, Theorem 5.1 immediately follows.
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Init: //Games H0, H1-H2 , H3 − H4

A> $← ZeroSamp(λ), A> $← OneSamp(λ) , A> $← ZeroSamp(λ)

skMAC = (B,X, x′) $← GenMACλ(G)
For X = (x1, · · · ,x`) and i = 1, . . . , `:

Yi
$← {0, 1}(λ−1)×λ,Zi = (Y>i ||xi)A ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1, z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′), sk = (skMAC, (Yi)1≤i≤`,y′)
Return pk

Finalize(β): //Games H0-H4

If (pλ(x, y) 6= 1 for all y ∈ Qy, return β
Else return 0

USKGen(y): //Games H0-H4

Qy = Qy ∪ {y}, (t,u) $← Tagλ(skMAC, y)

v = rEλ(y,

t>Y>1
...

t>Y>`

) + kEλ(y,y′>) ∈ {0, 1}η×(λ−1)

usk[y] = (t,u,v)
Return usk[y]

Enc(x): //Games H0-H1, H2-H3 , H4

r $← {1} × {0, 1}λ−1, r $← {0} × {0, 1}λ−1

c∗0 = (A + Nλ)r ∈ {0, 1}λ, c∗0 = Ar
C∗1 = sEλ(x, ((Y>1 ||x1)(A + Nλ)r, · · · , (Y>` ||x`)(A + Nλ)r)>)

C∗1 = sEλ(x,

r>Z>1
...

r>Z>`

) ∈ {0, 1}ζ·λ

K∗ $← {0, 1}
Return K∗ and ct∗ = (c∗0,C∗1)

Figure 18: Games H0-H4 for the proof of Theorem 5.1.
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Init: //Games G0, G1-G3 , G2-G5 , G3-G4 , G4-G5 , G5

M> $← ZeroSamp(λ) M> $← OneSamp(λ) M> $← ZeroSamp(λ)

w $← {1} × {0, 1}λ−1 w $← {0} × {0, 1}λ−1 w $← {1} × {0, 1}λ−1

x $←Mw x $← (M + Nλ)w

Finalize(β ∈ {0, 1}):
Return β.

Figure 19: Games G0-G5 for the proof of Proposition A.2.

Appendices

A The Proof of Theorem 2.13
Proof. We prove Theorem 2.13 by the following two propositions.

Proposition A.1 For all M> ∈ ZeroSamp(λ) and x ∈ SampNoλ(M), we have x ∈ {0, 1}λ \ Im(M).

of Proposition A.1. According to Lemma 2.10, we have Im(M) = {x |w ∈ {0} × {0, 1}λ−1, x = Mw}.
Since Nλw = 0 for any w ∈ {0}×{0, 1}λ−1, we have Im(M) = {x |w ∈ {0}×{0, 1}λ−1, x = (M+Nλ)w}.
3 Moreover, (M + Nλ) is of full rank according to Lemma 2.9. Hence, for any w ∈ {1} × {0, 1}λ−1

and any x ∈ Im(M), we have (M + Nλ)w 6= x. Namely, for any w ∈ {1} × {0, 1}λ−1, we have
(M + Nλ)w ∈ {0, 1}λ \ Im(M>), completing the proof of Proposition A.1.

Proposition A.2 For any A = {aλ} ∈ NC1,

|Pr[aλ(M,x0) = 1]− Pr[aλ(M,x1) = 1]| ≤ negl(λ)

where M> $← ZeroSamp(λ), x0
$← SampYesλ(M), and x1

$← SampNoλ(M).

of Proposition A.2. Let A = {aλ} be any adversary in NC1. We give intermediate games in Figure 19 to
show that the advantage of A in breaking Proposition A.2 is negligible.

Lemma A.3 Pr[Gaλ1 ⇒ 1] = Pr[Gaλ0 ⇒ 1].

Proof. In G1 we sample w $← {0} × {0, 1}λ−1 instead of w $← {1} × {0, 1}λ−1. Then Lemma A.3 follows
from the fact that the distributions of x = Mw and x′ = Mw′ are identical where M> $← ZeroSamp(λ),
w $← {1} × {0, 1}λ−1, and w′ $← {0} × {0, 1}λ−1, according to Lemma 2.11.

Lemma A.4 Pr[Gaλ2 ⇒ 1] = Pr[Gaλ1 ⇒ 1].

Proof. In G2, we compute x as x = (M + Nλ)w instead. Then Lemma A.4 follows from the fact that for
any w ∈ {0} × {0, 1}λ−1, we have Nλw = 0.

Lemma A.5 There exists an adversary B1 = {b1
λ} ∈ NC1 such that b1

λ breaks Definition 2.5, which holds
under NC1 ( ⊕L/poly according to Lemma 2.6, with advantage

|Pr[Gaλ3 ⇒ 1]− Pr[Gaλ2 ⇒ 1]|.

Proof. G2 and G3 only differ in the distribution of M, namely, M> $← ZeroSamp(λ) or M> $← OneSamp(λ),
and we build the distinguisher b1

λ as follows.
b1
λ runs in exactly the same way as the challenger of G2 except that in Init, instead of generating

M by itself, it takes as input M> generated as M> $← ZeroSamp(λ) or M> $← OneSamp(λ) from its
own challenger. When aλ outputs β, b1

λ outputs β as well. If M is generated as M> $← ZeroSamp(λ)
3See Section 2 for the notion of Nλ.
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(respectively, M> $← OneSamp(λ)), the view of aλ is the same as its view in G2 (respectively, G3). Hence,
the probability that b1

λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ3 ⇒ 1]− Pr[Gaλ2 ⇒ 1]|.

Moreover, since all operations in b1
λ are performed in NC1, we have B1 = {b1

λ}λ∈N ∈ NC1, completing
this part of proof.

Lemma A.6 Pr[Gaλ4 ⇒ 1] = Pr[Gaλ3 ⇒ 1].

Proof. In G4 we sample w $← {1} × {0, 1}λ−1 instead of w $← {0} × {0, 1}λ−1.
Let M> $← OneSamp(λ). The distribution of M + Nλ is identical to the output distribution

of ZeroSamp(λ) according to Lemma 2.9. Therefore, according to Lemma 2.11, the distributions of
x = (M + Nλ)w and x′ = (M + Nλ)w′ are identical for w $← {1} × {0, 1}λ−1 and w′ $← {0} × {0, 1}λ−1,
completing this part of proof.

Lemma A.7 There exists an adversary B2 = {b2
λ}λ∈N such that b2

λ breaks the fine-grained matrix linear
assumption with advantage

|Pr[Gaλ5 ⇒ 1]− Pr[Gaλ4 ⇒ 1]|.

Proof. G5 and G4 only differ in the distribution of M, namely, M> $← OneSamp(λ) or M> $← ZeroSamp(λ),
and we build the distinguisher b2

λ as follows.
b2
λ runs in exactly the same way as the challenger of G2 except that in Init, instead of generating

M by itself, it takes as input M> generated as M> $← OneSamp(λ) or M> $← ZeroSamp(λ) from its
own challenger. When aλ outputs β, b2

λ outputs β as well. If M is generated as M> $← OneSamp(λ)
(respectively, M> $← ZeroSamp(λ)), the view of aλ is the same as its view in G4 (respectively, G5). Hence,
the probability that b2

λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ5 ⇒ 1]− Pr[Gaλ4 ⇒ 1]|.

Moreover, since all operations in b2
λ are performed in NC1, we have B2 = {b2

λ}λ∈N ∈ NC1, completing
this part of proof.

Then Proposition A.2 follows from the fact that G0 and G5 are the real games of Proposition A.2,
where the values x are sampled from SampYesλ and SampNoλ respectively.

Putting all above together, Theorem 2.13 immediately follows.

B Fine-grained Secure Quasi-Adaptive NIZK
In this section, we construct fine-grained QA-NIZK with adaptive soundness. We first give the definition
of NC1-QA-NIZK with adaptive soundness. Then we prove an NC1 version of the Kernel Matrix Diffie-
Hellman assumption [27], based on which we give a warm-up QA-NIZK in NC1 with relatively low
efficiency. Finally, we show how to achieve a more efficient construction.

B.1 Definitions
We now recall the definition of fine-grained QA-NIZK. Let Dλ be a probability distribution over a
collection of relations R = {RM}M∈Dλ parametrized by a matrix M ∈ {0, 1}n×t of rank t′ < n generated
as (M>,M⊥) $← Dλ with the associated language

LM = {t : ∃w ∈ {0, 1}t, s.t. t = Mw}.

Witness sampleability. Notice that similar to witness sampleable distribution in the classical world [22],
we require that Dλ additionally outputs a non-zero matrix M⊥ ∈ {0, 1}n×(n−t′) in the kernel of M>. An
example of sampleable distribution is ZeroSamp(n), which can additionally sample a non-zero vector in
the kernel of its output. 4

4In fact, the rightmost vector (r1, · · · , rn−1, 1)> of the intermediate matrix generated by RSamp(n) (see Figure 1) forms
a vector in the kernel of M>. See the proof of Lemma 3 in [15] for more details
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Init(M):
(crs, td) $← Genλ(M)
Return crs.

Finalize(y∗, π∗):
If y∗ /∈ LM then
return Verλ(crs,y∗, π∗)

Else return 0

Figure 20: The AS security game for QANIZK.

Definition B.1 (Quasi-adaptive non-interactive zero-knowledge proof). A C1-quasi-adaptive non-interactive
zero-knowledge proof (QA-NIZK) for a set of language distributions {Dλ}λ∈N is a function family
QANIZK = {Genλ,Proveλ,Verλ,Simλ}λ∈N ∈ C1 with the following properties.

• Genλ(M) returns a CRS crs and a simulation trapdoor td.
• Proveλ(crs,y,w) returns a proof π.
• Verλ(crs,y, π) deterministically returns 1 (accept) or 0 (reject).
• Simλ(crs, td,y) returns a simulated proof π.
Perfect completeness is satisfied if for all (M>,M⊥) ∈ Dλ, all vectors (y,w) such that y = Mw, all

(crs, td) ∈ Genλ(M), and all π ∈ Proveλ(crs,y,w), we have

Verλ(crs,y, π) = 1.

Perfect zero knowledge is satisfied if for all λ, all (M>,M⊥) ∈ Dλ, all (y,w) with y = Mw, and all
(crs, td) ∈ Genλ(M), the following two distributions are identical:

Proveλ(crs,y,w) and Simλ(crs, td,y).

Definition B.2 (Adaptive soundness for QANIZK). QANIZK is said to satisfy C2-adaptive soundness if
for any adversary A = {aλ}λ∈N ∈ C2,

Pr[ASaλ ⇒ 1] ≤ negl(λ),

where Game AS is defined in Figure 20.

We note that in the above definition, the term “quasi-adaptive” means that the construction of the
CRS depends on the statement M. On the other hand, “adaptive” in the context of adaptive soundness
means that in the soundness experiment, the adversary can choose the statement adaptively after seeing
the CRS.

B.2 A Warm-up Construction

A new lemma. We now prove the following lemma under the assumption NC1 ( ⊕L/poly, based on
which we can achieve adaptively sound QA-NIZKs in NC1. It can be thought of as the counterpart of the
Kernel Matrix Diffie-Hellman assumption [27] in NC1.

Definition B.3 (Fine-grained kernel matrix assumption). If NC1 ( ⊕L/poly, then for all λ ∈ N and any
adversary A = {aλ}λ∈N ∈ NC1, we have

Pr[c>M = 0 ∧ c 6= 0|c $← aλ(M)] ≤ negl(λ),

where M> $← ZeroSamp(λ).

Lemma B.4 If NC1 ( ⊕L/poly, then the fine-grained kernel matrix assumption (see Definition B.3)
holds.

Proof. Let A = {aλ}λ∈N ∈ NC1 be an adversary such that aλ breaks the fine-grained kernel matrix
assumption with probability ε, we construct another adversary B = {bλ}λ∈N ∈ NC1 such that bλ breaks
the fine-grained subset membership problem (see Definition 2.12), which holds under NC1 ( ⊕L/poly
according to Theorem 2.13, with the same probability as follows.

On input (M,u) where M> $← ZeroSamp(λ) and u $← SampYesλ(M) or u $← SampNoλ(M), bλ
forwards M to aλ. When aλ outputs c, bλ outputs 1 iff the last element in c is 1, c>M = 0, and c>u = 0.
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When u $← SampYesλ(M), the probability that bλ outputs 1 is ε. The reason is that when aλ succeeds,
we must have c>u = 0 when c>M = 0, and the last element of c must be 1 according to Lemma 2.7.
Moreover, when u $← SampNoλ(M), we have u = (M + Nλ)w for some w ∈ {1}×{0, 1}λ−1. If c>M = 0,
we have c>u = c>Nλw = c>(0, · · · , 0, 1)>, i.e., either c>u = 1 or the last element of c is 0. Hence, bλ
outputs 0 anyway when u $← SampNoλ(M). Therefore, we have

|Pr[bλ(x) = 1 | x $← SampYesλ(λ)]− Pr[bλ(x) = 1 | x $← SampNoλ(λ)]| = ε.

Moreover, since all operations in bλ are performed in NC1, we have B = {bλ}λ∈N ∈ NC1, completing
the proof of Lemma B.4.

Constructing QA-NIZK based on Lemma B.4. Based on the above lemma, we can easily achieve
NC1-QA-NIZKs with adaptive soundness, one-time simulation soundness, and unbounded simulation
soundness against NC1 by adopting the techniques in [23]. 5 Specifically, we only have to move the
algorithms in [23] from GF (p) for a large prime p to GF (2), change the matrix Diffie-Hellman distributions
to SampYesλ(λ), and generate a large number of proofs in parallel to bound the advantage of the adversary.
We now give an adaptively sound QA-NIZK QANIZK0 w.r.t. a set of (sampleable) distributions {Dλ}λ∈N
in Figure 21 as an instance. 6

Genλ(M ∈ {0, 1}n×t):
A> $← ZeroSamp(λ)
For i = 1, · · · , `

Ki
$← {0, 1}n×λ

Pi = M>Ki ∈ {0, 1}t×λ
Ci = KiA ∈ {0, 1}n×λ

Return crs = (A, (Pi,Ci)`i=1) and td = (Ki)`i=1

Proveλ(crs,y ∈ {0, 1}n,x ∈ {0, 1}t):
For i = 1, · · · , `
πi = x>Pi ∈ {0, 1}1×λ

Return π = (πi)`i=1

Simλ(crs, td,y):
For i = 1, · · · , `
πi = y>Ki ∈ {0, 1}1×λ

Return π = (πi)`i=1

Verλ(crs,y, π):
If πiA = y>Ci for i = 1, · · · , `
return 1

Else return 0

Figure 21: Definition of QANIZK0 = {Genλ,Proveλ,Verλ,Simλ}λ∈N. We require that 2`(·) is some super-
polynomial in λ.

Theorem B.5 If NC1 ( ⊕L/poly, then QANIZK0 is an AC0[2]-QA-NIZK that is NC1-adaptively sound
for all M in the distributions {Dλ}λ∈N (see Appendix B.1 for the definition of {Dλ}λ∈N).

Proof. First, we note that {Genλ}λ∈N, {Proveλ}λ∈N, {Simλ}λ∈N, and {Verλ}λ∈N are computable in AC0[2],
since they only involve operations including multiplication of a constant number of matrices and sampling
random bits.

Perfect correctness and perfect zero-knowledge follow from the fact that for all y = Mx and Pi =
M>Ki, we have

x>Pi = x>M>Ki = y>Ki.

Let A = {aλ}λ∈N be an adversary breaking the adaptive soundness of QANIZK0 with advantage ε, we
have the following lemma.

Lemma B.6 There exists an adversary B = {bλ}λ∈N ∈ NC1 such that bλ breaks the fine-grained kernel
matrix assumption (see Definition B.3), which holds under NC1 ( ⊕L/poly according to Lemma B.4, with
probability ε− 1/2`.

5One-time (respectively, unbounded) simulation soundness prevents the adversary from proving a false statement after
seeing a single simulated proof for a statement (respectively, multiple simulated proofs for statements) of its choice. We
refer the reader to [23] for the formal definitions.

6We do not exploit the sampleability of the distribution for this construction.
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Proof. We construct bλ as follows.
bλ on input A samples (M>,M⊥) $← Dλ and Ki

$← {0, 1}n×λ, and sets Pi = M>Ki and Ci = KiA
for all i ∈ [`]. Then it sends crs = (A, (Pi,Ci)`i=1) to aλ. When aλ outputs (π = (πi)`i=1,y), bλ searches
j such that

πjA = y>Cj = y>KjA

and
πj − y>Kj 6= 0.

If the searching procedure fails, bλ aborts. bλ then outputs πj − y>Kj .
When aλ succeeds, we have πjA = y>Cj for all j and y /∈ Im(M). Let â be a fixed non-zero vector

such that â /∈ Im(A). For each i, since aλ learns no information on Ki other than M>Ki and KiA,
y>Kiâ is information-theoretically hidden in the view of aλ, i.e., the probability that there exists j such
that πj â − y>Kj â 6= 0 is at least 1/2`. Since πj â − y>Kj â 6= 0 implies πj − y>Kj 6= 0, the probability
that bλ breaks the fine-grained kernel matrix assumption is at least ε − 1/2`, completing this part of
proof.

Since the fine-grained kernel matrix assumption holds if NC1 ( ⊕L/poly according to Lemma B.4,
putting all above together, Theorem B.5 immediately follows.

B.3 A More Efficient Construction
A disadvantage of the scheme in Appendix B.2 is that we have to generate a large number of proofs
in parallel. In this section, we give a more efficient NC1-adaptively sound QA-NIZK QANIZK1 =
{Genλ,Proveλ,Verλ,Simλ}λ∈N w.r.t. a set of distributions {Dλ}λ∈N in Figure 22. As in Definition B.1, we
require that Dλ be witness sampleable, i.e., it outputs a matrix M ∈ {0, 1}n×t of rank t′ < n additionally
with a matrix (or vector) M⊥ ∈ {0, 1}n×(n−t′) with rank n− t′ in its kernel.

The proof size of this construction is (λ− 1) · (n− t′). Since M (or M>) is usually a combination of
matrices sampled from ZeroSamp(λ) in NC1, n− t′ is typically a constant number. For instance, when
proving that two ciphertexts of the PKE scheme in [13] correspond to the same message or proving the
validity of a public key of the PKE scheme in [15], the proof size is only λ− 1 in contrast to λ · ` for a
large number ` in the warm-up construction.

Genλ(M ∈ {0, 1}n×t):
A> $← ZeroSamp(λ)
For i = 1, · · · , n− t′

Ki
$← {0, 1}n×(λ−1)

Pi = M>Ki ∈ {0, 1}t×(λ−1)

Ci = (Ki||0)A ∈ {0, 1}n×(λ−1)

Return crs = (A, (Pi,Ci)n−t
′

i=1 ) and td = (Ki)n−t
′

i=1

Proveλ(crs,y ∈ {0, 1}n,x ∈ {0, 1}t):
For i = 1, · · · , n− t′
πi = x>Pi ∈ {0, 1}1×(λ−1)

Return π = (πi)n−t
′

i=1

Simλ(crs, td,y):
For i = 1, · · · , n− t′
πi = y>Ki ∈ {0, 1}1×(λ−1)

Return π = (πi)n−t
′

i=1

Verλ(crs,y, π):
If (πi||0)A = y>Ci for i = 1, · · · , n− t′, return 1
Else return 0

Figure 22: Definition of QANIZK1 = {Genλ,Proveλ,Verλ,Simλ}λ∈N.

Theorem B.7 If NC1 ( ⊕L/poly, then QANIZK1 is an AC0[2]-QA-NIZK that is NC1-adaptively sound
for all M in the distributions {Dλ}λ∈N (see Appendix B.1 for the definition of {Dλ}λ∈N).

Proof. First, we note that {Genλ}λ∈N, {Proveλ}λ∈N, {Simλ}λ∈N, and {Verλ}λ∈N are computable in AC0[2],
since they only involve operations including multiplications of a constant number of matrices and sampling
random bits.
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Perfect correctness and perfect zero-knowledge follow from the fact that for all y = Mx and Pi =
M>Ki, we have

x>Pi = x>M>Ki = y>Ki.

Let A = {aλ}λ∈N ∈ NC1 be any adversary against the NC1-adaptive soundness of QANIZK1. We now
show that QANIZK1 is adaptively sound against NC1 via a sequence of hybrid games as in Figure 23.
The crucial step is to use the technique exploited by our IBKEM to switch (Ki||0)A to (0||Ki)R>0 , and
then switch it back to (K′i||M⊥ei)A for Ki = K′i + M⊥ei · r̃>, where R0 and r̃ are intermediate values
generated during the sampling procedure for A.

Init: // Games G0, G1-G2 , G2-G3 , G3

A> $← ZeroSamp(λ)

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),R0

$← LSamp(λ),A> = R0Mλ
0 R1

For i = 1, · · · , n− t′
Ki

$← {0, 1}n×(λ−1)

K′i $← {0, 1}n×(λ−1),Ki = K′i + M⊥ei · r̃>

Pi = M>Ki ∈ {0, 1}t×(λ−1) Pi = M>K′i
Ci = (Ki||0)A ∈ {0, 1}n×λ Ci = (0||Ki)R>0 Ci = (K′i||M⊥ei)A

Return crs = (A, (Pi,Ci)n−t
′

i=1 ), td = (Ki)n−t
′

i=1

Finalize(z,y): // Games G0-G2

For i = 1, · · · , n− t′
If (πi||0)A = y>Ci

return 1

Figure 23: Games G0,G1,G2 for the proof of Theorem B.7. ei ∈ {0, 1}n−t
′ denotes the vector with the

ith element being 1 and the others being 0.

Lemma B.8 Pr[ASaλ ⇒ 1] = Pr[Gaλ1 ⇒ 1] = Pr[Gaλ0 ⇒ 1].

Proof. In G1, we generate A by sampling R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ) and R0

$← LSamp(λ), and

setting A> = R0Mλ
0 R1. Moreover, for all i, we replace Ci = (Ki||0)A by Ci = (0||Ki)R>0 .

The view of A in this game is identical to its view in G0 since the way we generate A is exactly the
“zero-sampling” procedure, and we have

Ci = (Ki||0)A = (Ki||0)R>1 Mλ
0
>R>0

= (Ki||0)
(

Iλ−1 0
r̃> 1

)


0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (Ki||0)



0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (0||Ki)R>0 .
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Lemma B.9 Pr[Gaλ2 ⇒ 1] = Pr[Gaλ1 ⇒ 1].

Proof. In G2, for all i, instead of generating Ki as a uniformly random matrix, we generate Ki by
randomly sampling K′i $← {0, 1}n×(λ−1) and setting Ki = K′i + M⊥ei · r̃>, where ei ∈ {0, 1}n−t

′ denotes
the vector with the ith element being 1 and the other bits being 0. Since the distribution of Ki is still
uniform, the view of A remains the same.

Lemma B.10 Pr[Gaλ3 ⇒ 1] = Pr[Gaλ2 ⇒ 1].

Proof. This lemma follows from the fact that for all i, we have

MKi = M(K′i + M⊥ei · r̃>) = MK′i

and

Ci = (0||K′i + M⊥ei · r̃>)R>0

= (K′i + M⊥ei · r̃>||M⊥ei)



0 1 0 · · · 0

0 0 1 . . . ...
...

...
... . . .

0 · · · 0 1
0 · · · 0

R>0

= (K′i||M⊥ei)
(

Iλ−1 0
r̃> 1

)
Mλ

0
>R>0

= (K′i||M⊥ei)A

Lemma B.11 There exists an adversary B = {bλ}λ∈N ∈ NC1 such that bλ breaks the fine-grained kernel
matrix assumption (see Definition B.3), which holds under NC1 ( ⊕L/poly according to Lemma B.4, with
probability Pr[Gaλ3 ⇒ 1].

Proof. We construct bλ as follows.
bλ on input A samples (M>,M⊥) $← Dλ and K′i $← {0, 1}n×(λ−1), and sets Pi = M>(K′i||0)

and Ci = (K′i||M⊥ei)A for all i. Then it sends crs = (A, (Pi,Ci)n−t
′

i=1 ) to aλ. When aλ outputs
(π = (πi)n−t

′

i=1 ,y), bλ searches j such that

(πj ||0)A = y>Cj = y>(K′j ||M⊥ej)A

and
πj ||0− y>(K′j ||M⊥ej) 6= 0.

If the searching procedure fails, bλ aborts. b then outputs πj ||0− y>(K′j ||M⊥ej).
Since all the operations performed by bλ are in NC1, we have B ∈ NC1.
When aλ succeeds, we have (πj ||0)A = y>Cj for all j and y /∈ Span(M). In this case, y>M⊥ 6= 0,

i.e., there must exists j such that y>M⊥ei = 1. Hence the probability that bλ breaks the fine-grained
kernel matrix assumption is exactly Pr[Gaλ3 ⇒ 1], completing this part of proof.

Putting all above together, Theorem B.7 immediately follows.

Concurrent fine-grained NIZKs. Assuming NC1 ( ⊕L/poly, our work presents an efficient QA-NIZK
that achieves perfect zero-knowledge and can handle languages expressible as linear subspaces. Below we
compare our QA-NIZK to other existing fine-grained NIZKs [2, 32, 33].

Ball, Dachman-Soled, and Kulkarni [2] previously constructed a NIZK for circuit satisfiability against
NC1 adversaries in the uniform random string (URS) model, where the setup only samples public
coins. Their scheme achieves offline zero-knowledge, meaning that the distribution of honest URSs
and proofs is computationally indistinguishable from that of the output of a simulator drawn from a
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specific distribution. However, their construction is not in the fully fine-grained setting, since their prover
requires more computational resources than NC1 (even for statements represented as NC1 circuits). This
requirement is inherent in their construction, since the underlying NIZK for ⊕L/poly in their construction
requires computing the determinant of a matrix, which cannot be done in NC1.

More recently, Wang and Pan [32] proposed a fully fine-grained NIZK protocol for circuit satisfiability
in NC1, where all algorithms (including the CRS generator, prover, verifier, and simulator) are in NC1.
Their scheme can achieve either perfect soundness or perfect zero-knowledge and can be converted
into a NIZK in the URS model and a non-interactive zap. Notably, their underlying NIZK for linear
languages supports the same class of languages as our QA-NIZK. However, their construction has larger
proving/verification cost and proof size than ours. Especially, their proof size is dependent of the statement
size, while ours is not.

Another fine-grained NIZK is recently proposed by Wang and Pan [33] in a different fine-grained
setting under no assumption. Specifically, it treats adversaries in AC0 and requires that all algorithms
run in AC0.

C Instantiations of Encodings
In this section, other than the one in Figure 3, we give several examples of predicate encodings in Figures
24, 25, and 26. By instantiating our resulting ABE in Section 5 with these encodings, we immediately
achieve ABEs for inner product, non-zero inner product, and boolean span programs. All the encodings
can be performed in AC0[2] since they only involve multiplication of a constant number of matrices.

X = {0, 1}n, Y = {0, 1}n
` = (1 + n), η = 1, ζ = n

pλ(x,y):
Return 1 iff x>y = 0

sEλ(x,
(
u
w

)
) = x · u+ w

rEλ(y,
(
u
w

)
) = y>w

kEλ(y, α) = α
sDλ(x,y, c) = c>y
rDλ(x,y, d) = d

Figure 24: Definitions of the predicate and encoding of an ABE scheme for inner product (with short
secret keys).

X = {0, 1}n, Y = {0, 1}n
` = n, η = n, ζ = 1

pλ(x,y):
Return 1 iff x>y = 1

sEλ(x,w) = x>w
rEλ(y,w) = w
kEλ(y, α) = yα
sDλ(x,y, c) = c · (x>y)
rDλ(x,y,d) = (x>y)x>d

Figure 25: Definitions of the predicate and encoding of an ABE scheme for non-zero inner product (with
short secret ciphertexts).
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