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Abstract

We propose two generic constructions of public-key encryption (PKE) with tight simulation-based
selective-opening security against chosen-ciphertext attacks (SIM-SO-CCA) in the random oracle model.
Our constructions can be instantiated with a small constant number of elements in the ciphertext, ig-
noring smaller contributions from symmetric-key encryption. That is, they have compact ciphertexts.
Furthermore, three of our instantiations have compact public keys as well.

Known (almost) tightly SIM-SO-CCA secure PKE schemes are due to the work of Lyu et al. (PKC
2018) and Libert et al. (Crypto 2017). They have either linear-size ciphertexts or linear-size public
keys. Moreover, they only achieve almost tightness, namely, with security loss depending on the security
parameter.

In contrast to them, our schemes are the first ones achieving both tight SIM-SO-CCA security and
compactness. More precisely, our two generic constructions are:
From Pseudorandom KEM: Our first generic construction is from a key encapsulation mechanism

(KEM) with pseudorandom ciphertexts against plaintext-checking attacks. Such a KEM can be
constructed directly from the Strong Diffie-Hellman (StDH), Computational DH (CDH), and Deci-
sional DH assumptions. Both their ciphertexts and public keys are compact. Their security loss is
a small constant. Interestingly, our CDH-based construction is the first scheme achieving all these
advantages based on a weak search assumption. Furthermore, we also give a generic construction
of such a KEM, which yields an efficient tightly SIM-SO-CCA PKE from lattices.

From Lossy Encryption: Our second scheme is the well-known Fujisaki-Okamoto transformation. We
show that it can turn a lossy encryption scheme into a tightly SIM-SO-CCA secure PKE. This
transformation preserves both tightness and compactness of the underlying lossy encryption, which
is in contrast to the non-tight proof of Heuer et al. (PKC 2015).

Keywords: Selective-opening security, public-key encryption, tight security, random oracle model.

∗This article is the full version of an earlier article in ASIACRYPT 2022 [PZ22], and it has significantly improved the earlier
one. More information is given in Section 1.3.
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1 Introduction
Selective-opening (SO) security is a strong security notion for encryption schemes. It considers encryption
security in the multi-challenge setting. More precisely, an adversary is given multiple challenge ciphertexts
and it is allowed to corrupt some of them to get the corresponding randomness. SO security guarantees that
even with this additional capability an adversary still cannot learn any information about the remaining
‘unopened’ messages. The motivation of constructing SO secure encryption is that deleting cryptographic
secrets is hard and expensive in practice, and adversaries can break into a user’s computer and reveal the
randomness used for generating a ciphertext. In some scenarios, users may even be required to reveal the
randomness to publicly verify their computation.
Definitions of Selective-Opening Security. Definitions for SO security come in two flavors. Namely,
there are indistinguishability-based (IND-based) definitions (weak-IND-SO and full-IND-SO) [BHY09, BHK12],
and there is a simulation-based (SIM-based) one (SIM-SO) [BHY09]. These two notions are not polynomial-
time equivalent. The strong notion of SIM-SO security requires that the output of every SO adversary can be
efficiently simulated by a simulator that sees only the opened messages. The SIM-SO notion is the most com-
mon one to study [LP15, HJKS15, HJR16, HP16, LLHG18], since it does not require the message distribution
to be efficiently conditionally resamplable (cf. [BHY09]). Moreover, previous works showed that SIM-SO-
CCA and full-IND-SO-CCA notions are the strongest SO security notions [BHK12, BDWY12, HJR16].
Tight Reductions. When we prove the security of a cryptographic scheme Π, we construct a reduction to
show that breaking the security of Π implies breaking the underlying assumption Γ. For concrete security,
we argue that if an adversary A has advantage ϵ against Π then we have another adversary B that breaks
Γ with advantage ϵ′ = ϵ/L. The factor L is called the security loss. A scheme is called tightly secure
if L is a small constant, assuming that the running time of A is approximately the same as B (up to a
constant factor). A tight reduction can give quantitatively higher guarantees than a loose one. From a more
practical perspective, a tight reduction allows shorter key-length recommendations based on the best known
attacks against the underlying assumption. This can potentially yield more efficient schemes. Currently, our
community aims to reduce the cost for tight security and construct efficient and tightly secure cryptographic
schemes (such as the signature scheme in [DGJL21]). Hence, efficient schemes with tight security are highly
desired.
Our Goal: Compact PKE with Tight SIM-SO-CCA Security. In this work, we aim for efficient and
tightly SIM-SO-CCA secure public-key encryption (PKE) schemes, with compact ciphertexts and public keys.
Here, ‘compact’ means constant-size, and SIM-SO-CCA security refers to security against chosen-ciphertext
attacks in the SIM-SO setting. Next, we summarize the state of the art for this goal.
(Almost) Tight, yet Non-Compact Schemes. While there are compact and tightly IND-CCA secure
PKE schemes [GHK17, HLLG19], known tightly SIM-SO-CCA PKE schemes [LSSS17, LLHG18] are still
non-compact wrt. either ciphertext size or public key size. Moreover, the security reductions in both schemes
are not fully tight, but almost tight (in the terminology of [CW13]). Namely, the security loss depends on
the message bit-length, which is polynomial in the security parameter. Although almost tightness is already
interesting, our goal is to achieve a security loss with small constants, which was unknown even with random
oracles.

To provide more details, the scheme of Lyu et al. [LLHG18] is a recent PKE scheme with tight
SIM-SO-CCA security, and its ciphertexts consist of O(|m|) group elements, where |m| is the bit-length
of the message. In a nutshell, their construction is a generic construction that tightly turns a IND-CCA
secure key encapsulation mechanism (KEM) to a SIM-SO-CCA secure PKE, and their technique is to en-
crypt the message “bit-by-bit”. Hence, their resulting construction does not preserve the compactness of the
underlying KEM in terms of ciphertext overhead. Namely, even if we instantiate it with a compact KEM, it
cannot give us a compact PKE with tight SIM-SO-CCA. We note that such a bit-wise approach is used in
many SIM-SO secure schemes [BHY09, FHKW10, LP15].

While the scheme of Libert et al. [LSSS17] has compact ciphertexts, its public keys are not compact.
Besides the large public key, their encryption algorithm needs to homomorphically evaluate the evaluation
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circuit of a PRF over GSW [GSW13] ciphertexts that encrypts a PRF key. This makes their scheme very
inefficient.
Compact, yet Non-Tight Schemes. The work of Heuer et al. [HJKS15] is an exception to the bit-wise
approach. It is the first work that proves SIM-SO-CCA security of practical PKE schemes, such as DHIES
[ABR01], OAEP [BR95], and Fujisaki-Okamoto (FO) [FO13], in the random oracle model [BR93]. All these
schemes have compact ciphertexts. However, their security reduction is not tight, due to a guessing strategy.
For instance, their proof for the FO transformation loses a factor of O(µ ·Qh), where µ and Qh are numbers
of challenge ciphertexts and random oracle queries, respectively.

Finally, we stress that, even though there exist compact and (almost) tightly SIM-SO-CPA secure schemes
from [BHY09, HJR16], it is not known how to transform them into SIM-SO-CCA by preserving its tightness
and compactness. This is the case even in the random oracle model, given the non-tight bounds from the
work of Heuer et al. [HJKS15].

1.1 Our Contribution
We construct the first compact PKE schemes with tight SIM-SO-CCA security in the random oracle model
(ROM). More precisely, we propose two different generic constructions for SIM-SO-CCA secure PKE from
pseudorandom key encapsulation mechanism (KEM) in the multi-challenge setting and lossy encryption
schemes, respectively. Both constructions preserve the compactness and tightness of the underlying primitives.
In particular, the three Diffie-Hellman-based instantiations of our first generic construction achieve tight
SIM-SO-CCA security and compact ciphertexts and compact public keys at the same time. Table 1 compares
our schemes with other known SO secure PKE schemes based on the Diffie-Hellman assumption.

Scheme Security Ass. Loss |pk| |m| |c| − |m| RO?
BHY [BHY09] IND-SO-CPA DDH 1 2|G| |G| |G| No
HJR [HJR16] SIM-SO-CPA DDH O(ℓ) (ℓ+ 1)2|G| ℓ |G| No
LLHG [LLHG18] SIM-SO-CCA DDH O(ℓ) 6|G| ℓ 3ℓ|G| No
DHIES proved in [HJKS15] SIM-SO-CCA StDH O(µ) |G| ℓ |G| Yes
FO proved in [HJKS16] SIM-SO-CCA DDH O(µQh) |G| ℓ |G| Yes
PKEStDH (Figures 7 and 15) SIM-SO-CCA StDH 10 |G| ℓ 2|G| Yes
PKETDH (Figures 7 and 18) SIM-SO-CCA CDH 10 2|G| ℓ 2|G| Yes
PKEDDH (Figures 7 and 19) SIM-SO-CCA DDH 10 |G| ℓ 4|G| Yes
FO1 (Figure 30) IND-SO-CCA DDH 2 2|G| ℓ |G| Yes
FO2 (Figure 31) SIM-SO-CCA DDH O(ℓ) (ℓ+ 1)2|G| ℓ |G| Yes

Table 1: Comparison of our constructions with other SO secure PKE schemes. We ignore schemes that
are non-tight and significantly less efficient than ours. |G| is the bit-length of group G. ℓ is the message
bit-length, which is independent of the group size, and it can be any polynomial in the security parameter
λ. µ and Qh are numbers of challenge ciphertexts and random oracle queries, respectively. The SO security
losses of DHIES and FO can be found in [HJKS15, Theorem 6] and [HJKS16, Theorem 6].

Generic Construction from Pseudorandom KEM. Our first generic construction PKE1 (in Figure 7)
is based on a KEM that has multi-challenge pseudorandomness under plaintext-checking attacks (mPR-PCA
security) and an explainable ciphertext space. The tight security proof is done in the random oracle model.
In a nutshell, mPR-PCA security requires the ciphertexts of a KEM to be pseudorandom even if an adversary
is provided a plaintext-checking oracle Pcopr(c, ψ). This oracle returns 1 if and only if the decapsulation of c
is ψ. Here (c, ψ) is not allowed to be a challenge ciphertext-key pair. Essentially, this notion is an extension
of the PCA security in [OP01, CHJ+02]. Furthermore, our construction requires KEM’s ciphertexts to be
explainable. Namely, a ciphertext can be “obliviously” sampled without running the encryption algorithm
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and the sampling randomness can be explained. This is the same as the notion of efficiently samplable and
explainable domains in [FHKW10].

The underlying KEM can be constructed directly from the strong Diffie-Hellman (StDH) assumption
[ABR01] (cf. KEMStDH in Figure 15). We then use the twinning technique from [CKS08] to remove the decision
oracle in the StDH assumption and construct our second tight KEM (cf. KEMTDH in Figure 18) based on
the twin DH (TDH) assumption. The TDH assumption is tightly implied by the standard computational
DH (CDH) assumption. Hence, when combined with our generic construction PKE1, this yields the first
tightly SIM-SO-CCA secure PKE based on such a standard search assumption. Both schemes have very
short ciphertexts and public keys. Concretely, there are two group elements in the ciphertext overhead for
PKEStDH (instantiating PKE1 with KEMStDH) and PKETDH (instantiating PKE1 with KEMTDH), and one element
for PKEStDH’s public key and two for PKETDH.

We also show that the decision oracle in the proof of KEMStDH can be removed using the decisional DH
assumption. However, the resulting scheme PKEDDH has longer ciphertexts than the previous two, although
it is still compact. All these schemes have small-constant security loss, compact ciphertexts, and compact
public keys.

Finally, we show that a mPR-PCA secure KEM can be constructed generically and tightly from mPR-CPA
secure public-key encryption in the ROM. The natural notion of mPR-CPA security states that ciphertexts
are pseudorandom under chosen-plaintext attacks. We note that several well-known public-key encryption
schemes achieve mPR-CPA security. For example, we show that Regev’s scheme [Reg05] is tightly mPR-CPA
secure, which yields an efficient lattice-based SIM-SO-CCA secure PKE, tightly. This affirmatively answers
the open problem in our previous version [PZ22] about how to extend our approach to the lattice setting.
Generic Construction from Lossy Encryption. Our last contribution is to prove that a lossy encryp-
tion [BHY09] can be transformed to a PKE with tight SO security via the well-known Fujisaki-Okamoto (FO)
transformation [FO13]. The transformation preserves the tightness (up to a small constant) and compactness
of the underlying lossy encryption.

Roughly speaking, a lossy encryption scheme has normal and lossy keys. Under normal keys, the scheme
behaves as a normal PKE. But under lossy keys, there exists an opener that can explain a ciphertext to
any message by outputting the suitable randomness. An opener is not necessarily efficient. Especially, if
the lossy encryption does not have an efficient opener (e.g., the BHY scheme [BHY09]), then we can only
show tight IND-SO-CCA security of the FO transformation. However, if the lossy encryption has an efficient
opener (e.g., the HJR scheme [HJR16]), then it yields tight SIM-SO-CCA security of the FO transformation.

Our result implies that tight IND-SO-CCA and SIM-SO-CCA security can be achieved from any as-
sumption that has a suitable lossy encryption. For comparison, we implement our generic construction with
DDH-based lossy encryption schemes from [BHY09, HJR16]. They both have only one group element in
the ciphertext (cf. Table 1). Our proof for the FO transformation is compactness- and tightness-preserving.
Hence, for SIM-SO-CCA security, since the HJR scheme has non-compact public keys, it is also the case for
our scheme. Similarly, the HJR scheme has only almost tightness, so has ours. We suppose that the size
of ciphertexts is more critical than that of public keys, since ciphertexts have to be sent frequently over the
internet for each communication, while public keys are stored on a server and can be used for a long time.
Similar to the first generic construction, we also implement our generic construction with lattice-based lossy
encryption in Section 5.4.
Efficiency Comparison among Diffie-Hellman-based Schemes. We focus on schemes based the Diffie-
Hellman assumptions and compare their efficiency. We instantiate our generic constructions with suitable
DH assumptions. In Table 2 we estimate the concrete efficiency of ours and compare it with other known
SO secure schemes. Our comparison ignores schemes that are non-tight and significantly less efficient than
ours (e.g., [Hof12]). We estimate the efficiency of all schemes using the same NIST P256 curve. According
to the corresponding security proofs, we also consider the security level achieved by those schemes.

Our schemes significantly reduce the cost for tight SIM-SO-CCA, compared to LLHG. Moreover, our
schemes are comparable to the practical PKE schemes, such as FO and DHIES. For instance, our FO2 has
the same ciphertext size, but it achieves a higher level of security, thanks to the tight security proof. Both
PKEStDH and PKETDH are comparable to DHIES.
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Scheme Security Ass. Bit Security |pk| |m| |c| − |m|
BHY [BHY09] IND-SO-CPA DDH 128 64 32 32
HJR [HJR16] SIM-SO-CPA DDH 120 2113568 32 32
LLHG [LLHG18] SIM-SO-CCA DDH 120 192 32 24576
DHIES proved in [HJKS15] SIM-SO-CCA StDH 96 32 32 64
FO proved in [HJKS16] SIM-SO-CCA CDH 64 32 32 32
PKEStDH (Figures 7 and 15) SIM-SO-CCA StDH 124 32 32 96
PKETDH (Figures 7 and 18) SIM-SO-CCA CDH 124 64 32 96
PKEDDH (Figures 7 and 19) SIM-SO-CCA DDH 124 32 32 160
FO1 (Figure 30) IND-SO-CCA DDH 127 64 32 32
FO2 (Figure 31) SIM-SO-CCA DDH 120 2113568 32 32

Table 2: Concrete security and efficiency comparison. All schemes are instantiated with P256, and we
consider µ = 232, qH = 232, |m| = 32 bytes, and the output length of hash is 32 bytes. We consider the
concrete security loss in the “Bit Security”. All sizes are in bytes.

Practical Relevance. When an RO-based scheme is implemented in practice, one would instantiate the
RO with a hash function, such as SHA-3. For SIM-SO-CCA PKE schemes in the ROM (including the
previous work of Heuer et al. [HJKS15] and ours), we should be more careful and pay extra attention to the
impossibility result of Bellare et al. [BDWY12]. More precisely, it shows that if a PKE scheme is binding
then it cannot be SIM-SO secure. In a nutshell, it uses the binding property to construct an adversary such
that there is no appropriate simulator for SIM-SO security. Hence, in the programmable ROM, the work
of Heuer et al. and our schemes can all bypass it, since they are not binding according to the definition in
[BDWY12].

However, if one simply replaces the RO with, for instance, SHA-3, the situation becomes rather complex.
For our construction from lossy encryption, it is not binding and the security results remain, since it uses lossy
encryption and it allows us to generate encryption collisions. This is also the reason why [BDWY12] does not
apply to lossy encryption schemes. For the scheme of Heuer et al. and our first generic constructions, they
will become binding in this case. Hence, the impossibility result of Bellare et al. applies, and they cannot
have SIM-SO-CCA security. But the attack in [BDWY12] does not imply an adversary breaking IND-SO
security, which means the scheme of Heuer et al. and our first constructions can have IND-SO-CCA security.
An alternative solution could be finding a suitable programmable hash function in the standard model to
instantiate our first three direction constructions. We leave constructing compact and tight SIM-SO-CCA
secure PKE in the standard model as an interesting open problem.

1.2 Technical Overview
We use the Diffie-Hellman-based scheme as an example to give intuition behind our two generic constructions.
Technical Goal: Openability and Tightness. Selective-opening security is difficult to achieve. This
is because the simulator S has to be able to ‘open’ any challenge ciphertext by producing the corresponding
message and randomness. An adversary can verify whether a ciphertext has been correctly opened using
the public encryption algorithm. It is not entirely trivial how to provide this openability efficiently. During
the security proof, the simulator needs to embed a problem instance into the unopened ciphertexts, since
usually it cannot open a ciphertext with a problem instance. Even worse, achieving tightness introduces an
additional layer of complexity, as this opening procedure should be done in a tight fashion.

The work of Heuer et al. provides efficient openability by reprogramming the random oracle (RO) and
guessing one unopened ciphertext. Then, the reduction embeds a problem challenge into this unopened
ciphertext. We recall Heuer et al.’s strategy [HJKS15] of proving DHIES as an example to illustrate the
aforementioned challenges in achieving tight SIM-SO-CCA security. The work of Heuer et al. is also the
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starting point of our work.
We consider the DHIES scheme with the one-time pad for symmetric encryption. Let G := ⟨g⟩ be a

cyclic group with order p, and pk := gx be a public key. A ciphertext C of DHIES has the form

C := (R := gr, d := K ⊕m,MACk(R, d)) ,

where (K, k) := H(R, pkr) and H is modeled as an RO. MACk produces a MAC tag using k.
To prove its SIM-SO-CCA security, we use the strong Diffie-Hellman (StDH) assumption which states

that given a StDH instance (X = gx, Y ) and oracle access to dhpX , it is hard to compute Y x. Here,
dhpX(Ŷ , Ẑ) outputs whether Ẑ = Ŷ x. The reduction for SIM-SO-CCA security of DHIES first defines
pk := X and guesses that the i∗-th ciphertext will not be opened (i∗ $← [µ]). Then Y is embedded into Ci∗
by Ri∗ := Y . By using the dhpX oracle and the RO patching technique [HJKS15], the reduction simulates
the whole security game without knowing the secret x. We can prove that the adversary cannot get any
information about (Ki∗ , ki∗) = H(Y, Y x) unless it computes Y x, which breaks the StDH assumption. Thus,
di∗ is uniformly random and independent of Ri∗ . This idea will be generalized by the mPR-PCA security in
our paper.

Unfortunately, the guessing step in above strategy impedes a tight security proof. Concretely, the security
bound depends on the number of challenge ciphertexts. One may consider using the random self-reducibility
of StDH and embedding a randomized instance into challenge ciphertext Ci as Ri := Y · gsi where si $← Zp
(for all i ∈ [µ]). However, after doing so, one cannot open any ciphertext, since the discrete logarithm of Y
is unknown.
Our Solution I: DHIES with Double Randomness and Its Generalization. Our first solution is
a direct improvement on the DHIES scheme by doubling the randomness R in the ciphertext.

More precisely, we modify the generation of ciphertexts in DHIES: Instead of sampling a single r, we
firstly choose a random bit b $← {0, 1}, and then we choose rb $← Zp and R1−b

$← G (without knowing R1−b’s
discrete logarithm). Our modified DHIES scheme has ciphertexts with form:

C = (R0, R1, d = K ⊕m, h(k,R0, R1, d)) ,

where (K, k) := H(b,R0, R1, pkrb), H is an RO, and h is a collision-resistant hash function. We note that
sampling a random group element without knowing its discrete logarithm can be done in many widely-used
groups like a subgroup of Z∗q where q is a safe prime and prime-order elliptic curves.

After this modification, a ciphertext can have two valid randomness, namely, (b, rb, R1−b) and (1 −
b, r1−b, Rb), in the view of an adversary, by carefully programming the RO H. Based on this, our simulator
can embed the StDH instances to all challenge ciphertexts and open any ciphertext. This property is
generalized by the notion of explainable ciphertext spaces in our first generic construction.
Our Solution II: Lossy Encryption. The idea of having multiple valid randomness can also be imple-
mented using a lossy encryption, since under its lossy keys a ciphertext can be explained to different messages.
Based on this, we use the lossy encryption as a tool to revise the security proof for the Fujisaki-Okamoto
transformation and give a tight proof for its SIM-SO-CCA security. Another view of our second solution
is that we transform the lossy-encryption-based SIM-SO-CPA secure PKE to a SIM-SO-CCA secure one,
tightly.
Open Problem. We leave constructing (almost) tightly SIM-SO-CCA secure PKE with compact ciphertexts
and compact public keys in the standard model as an interesting open problem.

1.3 History of This Paper
A preliminary version of this paper was published at Asiacrypt 2022 [PZ22]. After the publication, we
generalized our three direct constructions in [PZ22] with mPR-PCA security as in Section 3. Our previous
direct constructions can be obtained by instantiating our generic construction in Section 3.2 with the direct
Diffie-Hellman instantiations of mPR-PCA security in Section 3.3. Our new generic construction yields an
efficient tightly SIM-SO-CCA secure PKE from lattices. This part of the work was done with Benedikt
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Wagner, while he was visiting NTNU. Hence, he was invited to the author list. We also introduce the
lattice-based lossy encryption in Section 5.4 that also gives us another lattice-based tight construction. All
these together improve our preliminary version significantly. Given these new contributions, we rewrote the
abstract and introduction accordingly.

2 Preliminaries
Let n be an integer. By [n] we denote the set {1, ..., n}. Let A be an algorithm. If A is probabilistic, then
y ← A(x) means that the variable y is assigned to the output of A on input x. If A is deterministic, then
we write y := A(x). We write AO to indicate that A has access to oracle O. By A ⇒ out we denote the
event that A outputs out. Unless we state it explicitly, all our algorithms are probabilistic polynomial-time
(PPT) and all relations considered in this paper can be decided in polynomial time (namely, PPT relations).
Further, all reductions have the same running time as the adversary, up to a constant factor. Therefore, we
omit specifying running times in our theorems. Throughout this paper, λ is the security parameter. The
terms such as ‘PPT’ and ‘negligible’ are defined wrt λ. Let X be a finite set, x $← X means that x is sampled
at uniformly random from X .
Games. We use the code-based games [BR06] to define and prove security. We implicitly assume that
Boolean flags are initialized to false, numerical types are initialized to 0, sets are initialized to ∅, while
strings are initialized to the empty string ϵ. The term Pr[GA ⇒ 1] denotes the probability that the final
output GA of game G running an adversary A is 1. Let Event be an event. We write Pr[Event : G] to
denote the probability that Event occurs during the game G.
Random Oracles. We use lazy sampling to simulate random oracles in this paper. Let X and Y be two
finite sets and H : X → Y be a random oracle in a security game G. During the simulation of G, we use
a list LH to record all query-response pairs of H. On query x, the game samples y $← Y, sets LH[x] := y
(which means that now H(x) = y), and then returns y as the response. We say x has been queried, or simply
x ∈ LH, if and only if LH[x] = y for some y ∈ Y. For x /∈ LH, we always have LH[x] = ⊥ /∈ Y.

2.1 Diffie-Hellman Assumptions
Let G be an cyclic group with a generator g and prime order p. Let X = gx and Y = gy for some x, y ∈ Zp.
The CDH value of X and Y is written as cdh(X,Y ) := gxy. Here we assume that (G, g, p) is a public
parameter.

Definition 2.1 (Multi-Instance DDH (mDDH)). We say the mDDH problem is hard on G if for any A, the
mDDH advantage of A against G

AdvmDDH
G (A) :=

∣∣∣Pr
[
A(g1, (gri

0 , g
ri
1 )i∈[µ])⇒ 1

]
− Pr

[
A(g1, (gri

0 , g
r′

i
1 )i∈[µ])⇒ 1

]∣∣∣
is negligible, where µ is the number of challenges, g0 := g, g1 := gω0 for some ω $← Zp, and ri, r

′
i

$← Zp for
some i ∈ [µ].

By the random self-reducibility of DDH [EHK+13], the mDDH assumption is tightly equivalent to DDH
assumption (i.e., single-instance version of mDDH).

Definition 2.2 (Strong Diffie-Hellman (StDH) Problem [ABR01]). For a fixed X ∈ G, let dhpX be the gap
oracle that given (Y ′, Z ′) ∈ G2 outputs whether cdh(X,Y ′) = Z ′ or not. We say the StDH problem is hard
on G if for any A, the StDH advantage of A against G, AdvStDH

G (A), is negligible, where

AdvStDH
G (A) := Pr

[
(X,Y ) $← G2,AdhpX (·,·)(X,Y )⇒ cdh(X,Y )

]
.
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Definition 2.3 (Twin Diffie-Hellman (TDH) Problem [CKS08]). For fixed X0, X1 ∈ G, let 2dhpX0,X1 be
an oracle that on input (Y ′, Z ′0, Z ′1) ∈ G3, determines whether cdh(X0, Y

′) = Z ′0 and cdh(X1, Y
′) = Z ′1. We

say the TDH problem is hard on G if for any A, the TDH advantage of A against G

AdvTDH
G (A) := Pr

[
A2dhpX0,X1 (·,·,·)(X0, X1, Y )⇒ (cdh(X0, Y ), cdh(X1, Y ))

]
is negligible, where X0, X1, Y

$← G.

The StDH and TDH problems can be extended to multi-instance versions.

Definition 2.4 (Multi-Instance StDH (mStDH)). Let µ be the number of instances. We say the mStDH prob-
lem is hard on G if for any A, given X,Y1, ..., Yµ

$← G, the mStDH advantage of A against G, AdvmStDH
G (A),

is negligible, where

AdvmStDH
G (A) := Pr

[
AdhpX (·,·)(X, (Yi)i∈[µ])⇒ cdh(X,Yi) for some i ∈ [µ]

]
.

Definition 2.5 (Multi-Instance TDH (mTDH)). Let µ be the number of instances. We say the mTDH
problem is hard on G if for any A, given X0, X1, Y1, ..., Yµ

$← G, the mTDH advantage of A against G,
AdvmStDH

G (A), is negligible, where

AdvmTDH
G (A) := Pr

[
A2dhpX0,X1 (·,·,·)(X0, X1, (Yi)i∈[µ])⇒ (cdh(X0, Yi), cdh(X1, Yi)) for some i ∈ [µ]

]
.

Definition 2.6 (Multi-Instance CDH (mCDH), [GJ18, Theorem 1] ). Let µ be the number of instances. We
say the mCDH problem is hard on G if for any A, given X,Y1, ..., Yµ

$← G, the mCDH advantage of A against
G, AdvmCDH

G (A), is negligible, where

AdvmCDH
G (A) := Pr

[
A(X, (Yi)i∈[µ])⇒ cdh(X,Yi) for some i ∈ [µ]

]
.

The mStDH and mTDH assumptions are tightly implied by the StDH and TDH assumption, respectively.
This follows naturally from the random self-reducibility of the Diffie-Hellman assumption.

Lemma 2.7 (StDH tight−−−→ mStDH). For any mStDH adversary A, there exists an StDH adversary B such
that AdvmStDH

G (A) ≤ AdvStDH
G (B).

Lemma 2.8 (TDH tight−−−→ mTDH). For any mTDH adversary A, there exists an TDH adversary B such that
AdvmTDH

G (A) ≤ AdvTDH
G (B).

Proof. StDH =⇒ mStDH: Given an mStDH adversary A0, we construct an StDH adversary B0 as follows:
B0’s input is a StDH problem instance (G, X, Y ), and it also has access to dhpX . It needs to simulate a
mStDH instance and dhpX for A0. Let µ be the number of challenge. Figure 1 shows the construction of
B0. If A0 output cdh(X,Yi∗) for some i∗ ∈ [µ], then we have cdh(X,Y ) = cdh(X,Yi∗) · X−ri . Therefore,
AdvmStDH

GGen (A0) ≤ AdvStDH
GGen(B0).

TDH =⇒ mTDH: The argument is similar to StDH =⇒ mStDH. Given an mTDH adversary A1, we
construct an TDH adversary B1 (in Figure 1). We have AdvmTDH

GGen (A1) ≤ AdvTDH
GGen(B1).

2.2 Lattices
Let s > 0 be a parameter. The discrete Gaussian distribution over Z with parameter s, denoted by DZ,s, is
defined to be the distribution proportional to ρs(x) := exp(−π∥x∥2/s2), restricted to Z. We recall the LWE
assumption [Reg05] and some well-known regularity lemmas and tail bounds about Gaussian distributions
[MR04, GPV07].
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BdhpX
0 (G, X, Y )

01 for i ∈ [µ]
02 ri

$← Zp, Yi := Y gri

03 Z $← AdhpX
0 (X,Y1, ..., Yµ)

04 Finds i∗ ∈ [µ]
05 s.t. dhpX(Yi∗ , Z) = 1
06 Z′ := Z ·X−ri

07 return Z′

B2dhpX0,X1
1 (G, X0, X1, Y )

08 for i ∈ [µ]
09 ri

$← Zp, Yi := Y gri

10 (Z0, Z1) $← A2dhpX0,X1
1 (X0, X1, Y1, ..., Yµ)

11 Finds i∗ ∈ [µ] s.t. 2dhpX0,X1 (Yi∗ , Z0, Z1) = 1
12 Z′

0 := Z0 ·X−ri
0 , Z′

1 := Z1 ·X−ri
1

13 return Z′

Figure 1: Reductions in the proofs of Lemmata 2.7 and 2.8

Definition 2.9 (LWE Assumption). Let n ∈ N and m ∈ N be positive integers and q be a prime. Let χ be
a distribution over Z. All of these are implicitly parameterized by the security parameter λ. We say that
the LWEn,m,q,χ assumption holds, if for every algorithm B, the following advantage is negligible in λ:

AdvLWEn,m,q,χ(B) := |Pr[B(A,b) = 1 | A $← Zn×mq ,b $← Zmq ]
−Pr[B(A,A⊤s + e) = 1 | A $← Zn×mq , s $← Znq , e← χm]|.

Lemma 2.10 Consider positive integers n,m ∈ N and a prime q at least polynomial in n. Assume m ≥
2n log q and s ≥ ω(

√
logm). Then, for all but a negligible fraction of all matrices A ∈ Zn×mq the distribution

of Ae with e← Dm
Z,s is within negligible statistical distance to the uniform distribution over Znq .

Lemma 2.11 For any s ≥ ω(
√

logm), and x← Dm
Z,s, the probability that ∥x∥ > s

√
m is at most 2−m+1.

2.3 Public-Key Encryption
In this section, we recall the syntax of public-key encryption (PKE) and several security notions, including
notions for selective opening security.

Definition 2.12 (Public-Key Encryption). A PKE scheme PKE consists of three algorithms (KG,Enc,Dec)
and a message spaceM, a randomness space R, and a ciphertext space C. KG outputs a public and secret key
pair (pk, sk). The encryption algorithm Enc, on input pk and a message m ∈M, outputs a ciphertext c ∈ C.
We also write c := Enc(pk,m; r) to indicate the randomness r ∈ R explicitly. The decryption algorithm Dec,
on input sk and a ciphertext c, deterministically outputs a message m′ ∈M or a rejection symbol ⊥ /∈M.

Correctness of PKE. Some of our PKE schemes do not have perfect correctness, and the correctness
bound of PKE might depend on some computational bound, e.g., the collision bound of hash function and
the maximal number of queries to random oracle. Following [HHK17], we use a game COR to define PKE
correctness.

GAME CORA
PKE

01 (pk, sk)← PKE.KG
02 m← AO(pk, sk)
03 c← Enc(pk,m)
04 if Dec(sk, c) ̸= m : return 1
05 return 0

Figure 2: The COR game for a PKE scheme PKE and A. A might have access to some oracle O (e.g., random
oracles, decryption oracles). It depends on the specific reduction.
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Definition 2.13 (PKE Correctness). Let PKE := (KG,Enc,Dec) be a PKE scheme with message space M
and A be an adversary against PKE. The COR advantage of A is defined as

AdvCOR
PKE (A) := Pr

[
CORAPKE ⇒ 1

]
,

where the COR game is defined in Figure 2. If there exists a constant δ such that for all adversary A,
AdvCOR

PKE (A) ≤ δ, then we say PKE is (1− δ)-correct.

Multi-challenge PR-CPA Security. Let PKE := (KG,Enc,Dec) be a public-key encryption scheme
with message space M and ciphertext space C. We define mPR-CPA (multi-challenge pseudorandomness
under chosen-plaintext attacks) security in Figure 3.

GAME mPR-CPAA,µPKE,b

01 (pk, sk)← KG
02 (m, st)← A(pk)
03 for i ∈ [µ]:
04 c0[i]← Enc(pk,m[i])
05 c1[i] $← C
06 b′ ← A(st, cb)
07 return b′

Figure 3: Security game mPR-CPA for PKE scheme PKE.

Definition 2.14 Let µ be the number of challenge ciphertexts and A be an adversary against PKE. Consider
the games mPR-CPAA,µPKE,b (b ∈ {0, 1}) defined in Figure 3. We define the mPR-CPA advantage function

AdvmPR-CPA
PKE (A, µ) :=

∣∣∣Pr
[
mPR-CPAA,µPKE,0 ⇒ 1

]
− Pr

[
mPR-CPAA,µPKE,1 ⇒ 1

]∣∣∣ .
PKE is mPR-CPA secure if AdvmPR-CPA

PKE (A, µ) is negligible for any A.

Selective Opening Security of PKE. Selective Opening (SO) security preserves confidentiality even if
an adversary opens the randomnesses of some ciphertexts. We consider two types of SO security: Simulation-
based SO security against Chosen-Ciphertext Attacks (SIM-SO-CCA, Definition 2.15) and the weak version
of Indistinguishability-based SO security against Chosen-Ciphertext Attacks (IND-SO-CCA, Definition 2.16).

GAME REAL-SO-CCAA
PKE

01 (pk, sk)← KG
02 (Ma, st)← ADec

0 (pk)
03 for i ∈ [µ] :
04 m[i] := mi ←Ma

05 ri ←R
06 c[i] := Enc(pk,mi; ri)
07 out $← AOpen,Dec

1 (st, c)
08 return Rel(Ma,m, I, out)

Dec(c) // for c /∈ c
09 m := Dec(sk, c)
10 return m

GAME IDEAL-SO-CCAS
PKE

11 (Ma, st)← S0
12 for i ∈ [µ] :
13 m[i] := mi

$←Ma

14 m′′[i] := |mi|
15 out← SOpen

1 (st,m′′)
16 return Rel(Ma,m, I, out)

Open(i) // i ∈ [µ]

17 I := I ∪ {i}
18 return (mi, ri) // REAL-SO-CCAPKE
19 return mi // IDEAL-SO-CCAPKE

Figure 4: The SO security games for PKE schemes. S1 only learn the lengths of challenge messages mi

instead of the challenge ciphertexts.
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Definition 2.15 (SIM-SO-CCA security). Let PKE be a PKE scheme with message space M and random-
ness space R and A := (A0,A1) be an adversary against PKE. Let µ be the number of challenge ciphertexts
Let Rel be a relation. We consider two games defined in Figure 4, where A is run in REAL-SO-CCAPKE and
a SO simulator S := (S0,S1) in IDEAL-SO-CCAPKE. Ma is a distribution over M chosen by A0. We define
the SIM-SO-CCA advantage function

AdvSIM-SO-CCA
PKE (A,S, µ,Rel) :=

∣∣∣ Pr
[
REAL-SO-CCAAPKE ⇒ 1

]
− Pr

[
IDEAL-SO-CCASPKE ⇒ 1

]∣∣∣,
PKE is SIM-SO-CCA secure if, for every adversary A and every PPT relation Rel, there exists a simulator
S such that AdvSIM-SO-CCA

PKE (A,S, µ,Rel) is negligible.

Definition 2.16 (IND-SO-CCA security). Let PKE be a PKE scheme with message space M and ran-
domness space R and A := (A0,A1,A2) be an adversary against PKE. Let µ be the number of challenge
ciphertext.

We consider the game defined in Figure 5. Samp and ReSamp are efficient algorithms output by A0, where
Samp outputs µ messages according to some distribution (determined by A0) over M, and ReSamp(I,m0)
resamples m0[i] for i /∈ I according to the same distribution of Samp and then outputs m1. For i ∈ I,
m0[i] = m1[i]. We define the IND-SO-CCA advantage function

AdvIND-SO-CCA
PKE (A, µ) :=

∣∣∣Pr
[
IND-SO-CCAAPKE,0 ⇒ 1

]
− Pr

[
IND-SO-CCAAPKE,1 ⇒ 1

]∣∣∣.
PKE is IND-SO-CCA secure if AdvIND-SO-CCA

PKE (A, µ) is negligible for any A.

GAME IND-SO-CCAA
PKE,b

01 (pk, sk) $← KG
02 (Samp,ReSamp, st0)← A0(pk)
03 m0 ← Samp
04 for i ∈ [µ] :
05 ri

$←R
06 c[i] := Enc(pk,m0[i]; ri)
07 st1 ← AOpen,Dec

1 (c, st0)
08 for i ∈ [µ]\I :
09 m1[i] := ReSamp(I,m0)
10 b′ ← ADec

2 (st1,mb)
11 return b′

Dec(c) // for c /∈ c
12 m := Dec(sk, c)
13 return m

Open(i) // i ∈ [µ]

14 I := I ∪ {i}
15 return (mi, ri)

Figure 5: The SO security games for PKE schemes. S1 only learn the lengths of challenge messages mi instead
of the challenge ciphertexts. For i ∈ I,m0[i] = m1[i], and for i ∈ [µ]\I, m0[i] has the same distribution with
m1[i] but not necessary to be the same.

3 Generic Construction I: SO from mPR-PCA
This section is new to our proceedings version [PZ22], and it generates our direct constructions in [PZ22,
Section 3] with a mPR-CPA secure KEM that has a explainable ciphertext space.

3.1 Definition of mPR-PCA secure KEM
In this section, we focus on multi-challenge pseudorandom key encapsulation mechanisms. This notion will
be essential for our first generic construction. Here, we formally define the notion.
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Definition 3.1 (Key Encapsulation Mechanism). A KEM KEM consists of three algorithms (KG,Encaps,Decaps)
and a ciphertext space C, a randomness space R, and a KEM key space Ψ. KG outputs a public and secret
key pair (pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a ciphertext c ∈ C. We also
write c := Encaps(pk; r) to indicate the randomness r ∈ R explicitly. The decapsulation algorithm Decaps,
on input sk and a ciphertext c, deterministically outputs a KEM key ψ ∈ Ψ or a rejection symbol ⊥ /∈ Ψ.

The correctness definition of KEM schemes is given in Definition 3.2. Here we do not use a game to
define it because in this paper, all KEM constructions have statistically negligible correctness error.

Definition 3.2 (KEM Correctness). Let KEM := (KG,Encaps,Decaps) be a KEM scheme and A be an
adversary against KEM. We say KEM is (1− δ)-correct if

Pr
(pk,sk)←KG

(c,ψ)←Encaps(pk)

[ψ ̸= Decaps(sk, c)] ≤ δ.

Multi-challenge PR-PCA Security. Let KEM := (KG,Encaps,Decaps) be a KEM scheme with ran-
domness space R and ciphertext space C. We define mPR-PCA (multi-challenge pseudorandomness under
plaintext-checking attacks) security for KEM in Definition 3.3.

GAME mPR-PCAA,µKEM,b

01 (pk, sk)← KG
02 for i ∈ [µ] :
03 (c[i],ψ[i])← Encaps(pk) // b = 0
04 c[i] $← C,ψ[i] $← Ψ // b = 1
05 b′ ← APcopr (pk, c,ψ)
06 return b′

Oracle Pcopr(c, ψ ∈ Ψ)
07 if ∃i ∈ [µ] s.t. (c, ψ) = (c[i],ψ[i])
08 return ⊥
09 return ψ =? Decaps(sk, c)

Figure 6: Security game mPR-PCA for KEM scheme KEM.

Definition 3.3 (mPR-PCA security). Let µ be the number of challenge ciphertexts and A be an adversary
against KEM. Consider the games mPR-PCAA,µKEM,b (b ∈ {0, 1}) defined in Figure 6. We define the mPR-PCA
advantage function

AdvmPR-PCA
KEM (A, µ) :=

∣∣∣Pr
[
mPR-PCAA,µKEM,0 ⇒ 1

]
− Pr

[
mPR-PCAA,µKEM,1 ⇒ 1

]∣∣∣ .
We say that KEM is mPR-PCA secure if AdvmPR-PCA

KEM (A, µ) is negligible for any A.

In this paper, we require the ciphertext spaces of KEM schemes to be explainable. The formal definition
is given in Definition 3.4, which can be viewed as a special case of the definition of ESE domains in [LLHG18].

Definition 3.4 (C-Explainable). Let PKE (resp., KEM) be a PKE (resp., KEM) scheme with ciphertext
space C. We say PKE (resp., KEM) is C-explainable (or has explainable ciphertext space C) if there exist two
algorithms SampleC and Sample−1

C and a randomness domain RSampleC such that

• The algorithm SampleC , on input R̂, outputs an element from C, such that the following distribution
is the uniform distribution over C: {

SampleC(R̂)
∣∣∣ R̂ $←RSampleC

}
.

• The algorithm Sample−1
C , on input x ∈ C, outputs an element R̂ such that for any fixed x ∈ C, the

following distributions are the same:{
R̂

∣∣∣ R̂← Sample−1
C (x)

}
and

{
R̂

∣∣∣ R̂ $← {R̂ ∈ RSampleC | x = SampleC(R̂)}
}
.
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3.2 From mPR-PCA secure KEM to SO
Let KEM := (KG,Encaps,Decaps) be a key encapsulation mechanism scheme with randomness space R,
ciphertext space C, and key space Ψ. We also let KEM be C-explainable (cf. Definition 3.4) with two
algorithms (SampleC ,Sample−1

C ). Let H : {0, 1} × C2 × Ψ → M× {0, 1}l and h : {0, 1}l × C2 → {0, 1}ℓ be
random oracles. We construct a PKE scheme PKE1 := (KG1,Enc1,Dec1) with message space M based on
KEM, where KG1 := KG, Enc1 and Dec1 are shown in Figure 7.

Enc1(pk,m ∈M)
01 b $← {0, 1}
02 rb

$←R, R̂ $←RSampleC
03 (cb, ψb) := Encaps(pk; rb)
04 c1−b := SampleC(R̂)
05 (K, k) := H(b, c0, c1, ψb)
06 d := K ⊕m
07 T := h(k, c0, c1, d)
08 return (c0, c1, d, T )

Dec1(sk, (c0, c1, d, T ))
09 m := ⊥
10 for b ∈ {0, 1}:
11 ψb := Decaps(sk, cb)
12 (Kb, kb) := H(b, c0, c1, ψb)
13 Tb := h(kb, c0, c1, d)
14 if Tb = T : m := d⊕Kb

15 if T0 = T1 : m := ⊥
16 return m

Figure 7: Our generic construction of SIM-SO-CCA secure PKE schemes PKE1 := (KG1 = KG,Enc1,Dec1).

Correctness. The correctness of PKE1 is implied by the correctness of KEM and the collision bounds of h
and H. More precisely, there are two kinds of decryption errors:

• KEM cannot decrypt a ciphertext correctly (cf. Definition 3.2).

• A PKE1 ciphertext (c0, c1, d, T ) is generated using b but Tb = T1−b, where Tb = h(kb, c0, c1, d) and
T1−b = h(k1−b, c0, c1, d). In this case, Dec1 outputs ⊥. Tb = T1−b means

– either kb = k1−b, then we have (b, c0, c1, ψb) ̸= (1 − b, c0, c1, ψ1−b) and H(b, c0, c1, ψb)[2] = kb =
k1−b = H(1 − b, c0, c1, ψ1−b)[2] (where “[2]” means the second half of the hash function output),
which is a truncation collision pair of H1,

– or h(kb, c0, c1, d) = h(k1−b, c0, c1, d) and kb ̸= k1−b, then we find a collision for h.

Hence, the correctness error AdvCOR
PKE1

(A) is the sum of KEM’s decryption error, the probability of truncation
collision for H, and the probability of collision for h. In this paper H and h are modeled as random oracles,
and thus AdvCOR

PKE1
(A) ≤ q2

h+q2
H

2ℓ + δKEM for any adversary A, where δKEM is the error bound of KEM. In
practice, we require h to have collision resistance and H to have truncation collision resistance.

Theorem 3.5 PKE1 in Figure 7 is SIM-SO-CCA secure (Definition 2.15) if H and h are modeled as random
oracles and KEM is mPR-PCA secure and C-Explainable. For any SIM-SO-CCA adversary A and relation
Rel, there exists a simulator S and adversaries BPR and Ahash such that:

AdvSIM-SO-CCA
PKE1

(A,S, µ,Rel) ≤ 5AdvmPR-PCA
KEM (BPR, µ) + 5µqH

|Ψ|
+ 2

(
µ2 + q2

H

|M|
+ µ2 + q2

H + q2
h

2l

)
,

where qH and qh are the numbers of A’s queries to H and h, respectively, and µ is the number of challenge
ciphertexts.

Proof. The theorem is proved by the game sequences in Figures 8, 9 and 12. We assume that there is no
collision among all Ki’s, ki’s, and the outputs of random oracles. This adds µ2+q2

H

|M| + µ2+q2
H +q2

h

2l to our security
bound, and we have∣∣∣ Pr

[
REAL-SO-CCAAPKE1

⇒ 1
]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ µ2 + q2
H

|M|
+ µ2 + q2

H + q2
h

2l
.
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GAME G0-G2
01 (pk, sk)← KG
02 (Ma, st)← ADec,H,h

0 (pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 bi
$← {0, 1}

06 ri,bi
$←R

07 (ci,bi , ψi,bi )← Encaps(pk; ri,bi )
08 ci,1−b ← SampleC
09 (Ki, ki) := H(bi, ci,0, ci,1, ψi,bi )
10 R̂i,bi ← Sample−1

C (ci,bi )
11 R̂i,1−bi ← Sample−1

C (ci,1−bi )
12 di := mi ⊕Ki

13 Ti := h(ki, ci,0, ci,1, di)
14 c[i] := (ci,0, ci,1, di, Ti)
15 out← AOpen,Dec,H,h

1 (st, c)
16 return Rel(Ma,m, I, out)

Dec(c) // c /∈ c
17 parse (c0, c1, d, T ) =: c
18 if ∃i ∈ [µ] s.t. T = Ti: return ⊥ // G1-G2
19 m := ⊥
20 for b ∈ {0, 1} :
21 ψb := Decaps(sk, cb) // G0-G1
22 (Kb, kb) := H(b, c1, c0, ψb) // G0-G1
23 if ∃ψ s.t. (b, c0, c1, ψ) ∈ Lval // G2
24 (Kb, kb) := Lval[b, c0, c1, ψ] // G2
25 else if (b, c0, c1) ∈ Ldec // G2
26 (Kb, kb) := Ldec[b, c0, c1] // G2
27 else // G2
28 (Kb, kb) $←M× {0, 1}l // G2
29 Ldec[b, c0, c1] := (Kb, kb) // G2
30 Tb := h(kb, c0, c1, d)
31 if Tb = T : m := d⊕Kb

32 return m

Open(i)

33 I := I ∪ {i}
34 rand := (bi, ri,bi , R̂i,1−bi )
35 return (mi, rand)

H(b, c0, c1, ψ)

36 if LH[b, c0, c1, ψ] = ⊥: // G0-G1
37 (K, k) $←M× {0, 1}l // G0-G1
38 LH[b, c0, c1, ψ] := (K, k) // G0-G1
39 return LH[b, c0, c1, ψ] // G0-G1
40 if (b, c0, c1) ∈ Ldec // G2
41 and ψ = Decaps(sk, cb) // G2
42 (K, k) := Ldec[bi, c0, c1] // G2
43 Lval[bi, c0, c1, ψ] := (K, k) // G2
44 Ldec[bi, c0, c1] := ⊥ // G2
45 if (b, c0, c1, ψ) ∈ LvalH // G2
46 return LvalH[b, c0, c1, ψ] // G2
47 else if (b, c0, c1, ψ) ∈ LinvH // G2
48 return LinvH[b, c0, c1, ψ] // G2
49 else // G2
50 (K, k) $←M× {0, 1}l // G2
51 if ψ = Decaps(sk, cb) // G2

Lval[b, c0, c1, ψ] := (K, k) // G2
52 else Linv[b, c0, c1, ψ] := (K, k) // G2
53 return (K, k) // G2

Figure 8: Games G0-G2 for proving Theorem 3.5. The random oracle h is simulated in the standard way,
so here we ignore the details.

Game G1: We modify the Dec oracle. When A queries Dec on c = (c0, c1, d, T ), where T is the hash
value of one of the challenge ciphertexts (i.e., T = Ti for some i ∈ [µ]), then Dec returns ⊥.
A notices this change if it queries Dec on (c0, c1, d, T ) where (c0, c1, d, T ) /∈ c, T = Ti(i ∈ [µ]), and

Dec(c0, c1, d, T ) ̸= ⊥. For such (c0, c1, d, T ), by the definition of Dec, we have (c0, c1, d) ̸= (ci,0, ci,1, di)
and Ti = T = h(k′, c0, c1, d) where k′ is either k0 or k1. Here we know the secret key sk and thus can check
which of the previous equations holds by computing k0 and k1. So, if A queries such (c0, c1, d, T ), we have
h(k′, c0, c1, d) = h(ki, ci,0, ci,1, di) and ((k′, c0, c1, d), (ki, ci,0, ci,1, di)) is a collision for h. Since this collision
event of RO h has been excluded in G0, we have

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
.

Game G2: In this game, we simulate Dec by searching for the corresponding decapsulated keys from
the random oracle queries. Intuitively, this does not change the view of A, since a ciphertext is valid if A

1Truncation collision resistance was defined in [JK18]. We do not recall it here, but compute the probability directly, since
we model our hash functions as random oracles.
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has asked the corresponding random oracle queries before. Otherwise, the ciphertext is invalid and Dec will
output ⊥.

Concretely, G2 use three lists LvalH,LinvH, and Ldec to keep track of the oracle queries to H, and each of
them stores a particular type of oracle queries, namely:

• (b, c0, c1, ψ) ∈ LvalH if A has queried H on (b, c0, c1, ψ) and ψ = Decaps(sk, cb). We call this type of
hash queries valid.

• (b, c0, c1, ψ) ∈ LinvH if A has queried H on (b, c0, c1, ψ) and ψ ̸= Decaps(sk, cb). We call this type of
hash queries invalid.

• (b, c0, c1) ∈ Ldec if A has queried Dec with (c0, c1) as parts of a ciphertext and there does not exist a
ψ such that (b, c0, c1, ψ) ∈ LvalH.
We have LinvH ∩ LvalH = ∅ and if (b, c0, c1, ψ) ∈ LvalH then (b, c0, c1) /∈ Ldec.

Oracles H and Dec in G2 are simulated in the following ways: Dec searches decapsulated key ψ and
(K, k) from LvalH. If it fails, then it returns a random (K, k) and records it in Ldec. H maintains LvalH and
LinvH so that its outputs are consistent with the outputs of Dec. For more details, we refer to Lines 23 to 29
and Lines 40 to 52. We note that the use of these three lists is internal but the outputs of H and Dec are
the same as in G1. Thus,

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
.

Game G3: We generate µ KEM keys (ψ1,1−b1 , . . . , ψµ,1−bµ) uniformly at random (cf. Line 09) and we
abort if A’s queries to H include ψi,1−bi(i ∈ [µ]) (cf. Lines 27 to 28 in Figure 9), then G3 aborts. Let
FlipQry be the event that A queries H on ψi,1−bi

(i ∈ [µ]) before opening c[i], and FlipQry′ be the event
that A queries H on ψi,1−bi

(i ∈ [µ]) after opening c[i]. Let FlipQryj and FlipQry′j(3 ≤ j ≤ 5) be the
events that FlipQry and FlipQry′ happen in Gj , respectively.

We distinguish whether A queries H on ψi,1−bi before opening c[i] (i.e., FlipQry) or after opening c[i]
(i.e., FlipQry′), because in the later game, FlipQry′ will no longer cause the game to abort, while FlipQry
will still abort the game.

If FlipQry3 and FlipQry′3 do not happen, then G3 and G2 proceed identically. Since these random
KEM keys ψi,1−bi

’s are uniformly random and independent of c[i]’s, we have∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ Pr [FlipQry3] + Pr
[
FlipQry′3

]
≤ µqH
|Ψ|

.

Game G4: We modify the generation of ci,1−bi . In this game, we generate ci,1−bi by choosing ri,1−bi

and computing (ci,1−bi
, ψi,1−bi

) := Encaps(pk; ri,1−bi
) (cf. Lines 10 to 11 in Figure 9), instead of sampling

ci,1−bi
by running SampleC .

We use the mPR-PCA security of KEM to bound the probability difference between G3 and G4. The
game simulators of G4 does not need ri,1−bi

to respond Open queries, so we can construct a mPR-PCA
adversary B1 that simulates G3 or G4 for A.
B1 is constructed in Figure 10. If B1 is interacting with game mPR-PCAB1,µ

KEM,1, then it is simulating
G3, since in this case, ci,1−bi

$← C and ψi,1−bi

$← Ψ (which is the same as ψi,1−bi
← SampleC if KEM is

C-Explainable) for all i ∈ [µ]. Otherwise, B1 is simulating G4 since now (ĉi, ψ̂i) := Encaps(pk; ri,1−bi
) for

some unknown ri,1−bi

$← R for all i ∈ [µ]. When simulating the H oracle, B1 uses Pcopr oracle to check
if ψ = Decaps(sk, cb). By the abort event introduced in G3 (Lines 27 to 28 in Figure 9), A cannot query
ψ∗i (1 ≤ i ≤ µ). Therefore, B1 perfectly simulates G3 or G4, and we have∣∣Pr

[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ AdvmPR-PCA
KEM (B1, µ).

We also need to bound Pr
[
FlipQry′4

]
because it will be used later. The modification introduced in G4

change the probability that FlipQry′ happens in G4. By changing G3 (resp., G4) such that it outputs 1 if
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GAME G2-G8
01 (pk, sk)← KG
02 (Ma, st)← ADec,H,h

0 (pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 bi
$← {0, 1}

06 ri,bi
$←R

07 (ci,bi , ψi,bi )← Encaps(pk; ri,bi )
08 ci,1−bi ← SampleC // G2-G3
09 ψi,1−bi ← Ψ // G3
10 ri,1−bi

$←R // G4-G8
11 (ci,1−bi , ψi,1−bi )

← Encaps(pk; ri,1−bi ) // G4-G8
12 (Ki, ki) := H(bi, ci,0, ci,1, ψi,bi ) // G2-G6
13 (Ki, ki) $← K × {0, 1}l // G7-G8
14 R̂i,bi ← Sample−1

C (ci,bi )
15 R̂i,1−bi ← Sample−1

C (ci,1−bi )
16 di := mi ⊕Ki

17 Ti := h(ki, ci,0, ci,1, di)
18 c[i] := (ci,0, ci,1, di, Ti)
19 out← AOpen,Dec,H,h

1 (st, c)
20 return Rel(Ma,m, I, out)

Open(i)

21 I := I ∪ {i}
22 rand := (bi, ri,bi , R̂i,1−bi )
23 LvalH[bi, ci,0, ci,1, ψi,bi ] := (Ki, ki) // G7
24 rand := (1− bi, ri,1−bi , R̂i,bi ) // G8
25 LvalH[1− bi, ci,0, ci,1, ψi,1−bi ]

:= (Ki, ki) // G8
26 return (mi, rand)

H(b, c0, c1, ψ)

27 if ∃i ∈ [µ] s.t. ψ = ψi,1−bi // G3-G4
28 abort // G3-G4
29 if ∃i ∈ [µ]\I s.t. ψ = ψi,1−bi // G5-G8
30 abort // G5-G8
31 if ∃i ∈ [µ]\I s.t. ψ = ψi,bi // G6-G8
32 abort // G6-G8
33 if (b, c0, c1) ∈ Ldec
34 and ψ = Decaps(sk, cb)
35 (K, k) := Ldec[bi, c0, c1]
36 Lval[bi, c0, c1, ψ] := (K, k)
37 Ldec[bi, c0, c1] := ⊥
38 if (b, c0, c1, ψ) ∈ LvalH
39 return LvalH[b, c0, c1, ψ]
40 else if (b, c0, c1, ψ) ∈ LinvH
41 return LinvH[b, c0, c1, ψ]
42 else
43 (K, k) $←M× {0, 1}l

44 if ψ = Decaps(sk, cb)
Lval[b, c0, c1, ψ] := (K, k)

45 else Linv[b, c0, c1, ψ] := (K, k)
46 return (K, k)

Figure 9: Games G2-G7 for proving Theorem 3.5. The decryption oracle Dec is the same as the one in G2
in Figure 8. The random oracle h is simulated in the standard way, so here we ignore the details.

FlipQry′3 (resp., FlipQry′4) happens, then the reduction B1 also bound the probability difference between
Pr

[
FlipQry′3

]
and Pr

[
FlipQry′4

]
. That is, we have∣∣Pr

[
FlipQry′3

]
− Pr

[
FlipQry′4

]∣∣ ≤ AdvmPR-PCA
KEM (B1, µ).

Game G5: We change the abort condition introduced in G3. Now FlipQry′ will no longer make the
game abort. A notices this modification if FlipQry′4 happens. We have∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣ ≤ Pr
[
FlipQry′4

]
≤

∣∣Pr
[
FlipQry′4

]
− Pr

[
FlipQry′3

]∣∣ + Pr
[
FlipQry′3

]
≤ AdvmPR-PCA

KEM (B1, µ) + µqH
|Ψ|

.

Game G6: We introduce a new abort condition in the H oracle: If A queries H on ψi,bi
for some i ∈ [µ],

then G6 aborts (cf. Lines 31 to 32). Let Qry be this event and Qryj be the event that Qry happens in
Gj . The adversary cannot detect this modification unless it triggers Qry6. We have∣∣∣Pr

[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣∣ ≤ Pr [Qry6] .

Here we cannot bound Pr [Qry6] using mPR-PCA security of KEM , since if the adversary queries
Open(i), then the simulator has to return ri,bi

, which is unknown to the reduction from mPR-PCA. We
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BPcopr
1 (pk, (c∗

1, ..., c∗
µ), (ψ∗

1 , ..., ψ
∗
µ))

01 (Ma, st)← ADec,H,h
0 (pk)

02 for i ∈ [µ]
03 m[i] := mi ←Ma

04 bi
$← {0, 1}

05 ri,bi
$←R

06 (ci,bi , ψi,bi )← Encaps(pk; ri,bi )
07 ci,1−bi

:= c∗
i , ψi,1−bi

:= ψ∗
i

08 (Ki, ki) := H(bi, ci,0, ci,1, ψi,bi )
09 R̂i,bi ← Sample−1

C (ci,bi )
10 R̂i,1−bi ← Sample−1

C (ci,1−bi )
11 di := mi ⊕Ki

12 Ti := h(ki, ci,0, ci,1, di)
13 c[i] := (ci,0, ci,1, di, Ti)
14 out← AOpen,Dec,H,h

1 (st, c)
15 b′ := Rel(Ma,m, I, out)
16 return b′

H(b, c0, c1, ψ)

17 if ∃i ∈ [µ] s.t. ψ = ψi,1−bi

18 b′ := 0
19 Aborts the game and returns b′

20 if (b, c0, c1) ∈ Ldec

21 and Pcopr(cb, ψ) = 1
22 (K, k) := Ldec[b, c0, c1]
23 Lval[b, c0, c1, ψ] := (K, k)
24 Ldec[b, c0, c1] := ⊥
25 if (b, c0, c1, ψ) ∈ LvalH
26 return LvalH[b, c0, c1, ψ]
27 else if (b, c0, c1, ψ) ∈ LinvH
28 return LinvH[b, c0, c1, ψ]
29 else
30 (K, k) $←M× {0, 1}l

31 if Pcopr(cb, ψ) = 1
Lval[b, c0, c1, ψ] := (K, k)

32 else Linv[b, c0, c1, ψ] := (K, k)
33 return (K, k)

Figure 10: mPR-PCA adversary B1 in bounding the difference between G3 and G4. The simulation of Dec
and Open is the same as in Figure 9. The highlight codes show how B1 use its inputs and oracles to simulate
G3 or G4. If A queries H on ψ∗i (1 ≤ i ≤ µ), B1 aborts and outputs 0.

will bound it later. Our strategy is to decouple c[i] with H(bi, ci,0, ci,1, ψi,bi
) and then use the randomness

(1 − bi, ri,1−bi
, R̂i,bi

) to explain c[i], where R̂i,bi
← Sample−1

C (c[i]) (and thus we do not need ri,bi
and can

construct reduction from mPR-PCA).

Game G7: The difference to G6 is that when generating c[i], we choose random key pairs (Ki, ki)
independent of H(bi, ci,0, ci,1, ψi,bi), and when A opens c[i], we define H(bi, ci,0, ci,1, ψi,bi) as (Ki, ki) (cf.
Line 23).

By the abort condition in H, H(bi, ci,0, ci,1, ψi,bi
) will not be defined before c[i] is opened. Hence, this

modification does not change A’s view, we have

Pr
[
GA6 ⇒ 1

]
= Pr

[
GA7 ⇒ 1

]
,Pr [Qry6] = Pr [Qry7] .

Game G8: We modify the simulation of Open: When A opens c[i], we sets H(1−bi, ci,0, ci,1, ψi,1−bi) :=
(Ki, ki). Instead of returning the actual randomness (bi, ri,bi , R̂i,1−bi), we return its complement, (1 −
bi, ri,1−bi , R̂i,bi) (cf. Lines 24 to 25).

We argue that if Qry8 does not occur, then the view of A in G8 is the same as in G7. This is
because G8 does not abort means that A has queried neither H(bi, ci,0, ci,1, ψi,bi

) for any i ∈ [µ]\I nor
H(1− bi, ci,0, ci,1, ψi,1−bi

) for any i ∈ [µ]\I. Hence, A has no information about these two values, and, as a
result, A cannot see the change in Open. We have

Pr
[
GA7 ⇒ 1

]
= Pr

[
GA8 ⇒ 1

]
,Pr [Qry7] = Pr [Qry8] .

Now we can bound Pr [Qry8] by constructing a reduction B2 against the mPR-PCA security of KEM. It
simulates G8 for A. B2 has a similar structure with B1 in Figure 10 except that now B2 embeds (c∗i , ψ∗i )
into (ci,bi

, ψi,bi
). The construction of B2 is shown in Figure 11.

We analyze the mPR-PCA advantage of B2 and bound Pr [Qry8]. If B2 is playing the game mPR-PCAB2,µ
KEM,0,

then it perfectly simulates G8, and it outputs 1 if Qry8 does not happen. So, we have

Pr
[
mPR-PCAB2,µ

KEM,0 ⇒ 1
]

= 1− Pr [Qry8] .
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BPcopr
2 (pk, (c∗

1, ..., c∗
µ), (ψ∗

1 , ..., ψ
∗
µ))

01 b′ := 1
02 (Ma, st)← ADec,H,h

0 (pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 bi
$← {0, 1}

06 ri,1−bi
$←R

07 (ci,1−bi , ψi,1−bi )← Encaps(pk; ri,1−bi )
08 ci,bi

:= c∗
i , ψi,bi

:= ψ∗
i

09 (Ki, ki) $←M× {0, 1}l

10 R̂i,bi ← Sample−1
C (ci,bi )

11 R̂i,1−bi ← Sample−1
C (ci,1−bi )

12 di := mi ⊕Ki

13 Ti := h(ki, ci,0, ci,1, di)
14 c[i] := (ci,0, ci,1, di, Ti)
15 out← AOpen,Dec,H,h

1 (st, c)
16 return b′

Open(i)

17 rand := (1− bi, ri,1−bi , ci,bi )
18 LvalH[1− bi, ci,0, ci,1, ψi,1−bi ] := (Ki, ki)
19 return (mi, rand)

H(b, c0, c1, ψ)

20 if ∃i ∈ [µ]\I s.t. ψ = ψi,1−bi

21 Aborts the game and returns b′

22 if ∃i ∈ [µ]\I s.t. ψ = ψi,bi

23 b′ := 0 //A triggers Qry8
24 Aborts the game and returns b′

25 if (b, c0, c1) ∈ Ldec

26 and Pcopr(cb, ψ) = 1
27 (K, k) := Ldec[bi, c0, c1]
28 Lval[bi, c0, c1, ψ] := (K, k)
29 Ldec[bi, c0, c1] := ⊥
30 if (b, c0, c1, ψ) ∈ LvalH
31 return LvalH[b, c0, c1, ψ]
32 else if (b, c0, c1, ψ) ∈ LinvH
33 return LinvH[b, c0, c1, ψ]
34 else
35 (K, k) $←M× {0, 1}l

36 if Pco(cb, ψ) = 1
Lval[b, c0, c1, ψ] := (K, k)

37 else Linv[b, c0, c1, ψ] := (K, k)
38 return (K, k)

Figure 11: mPR-PCA adversary B2 in bounding Pr [Qry8]. The simulation of Dec is the same as in Figure 9.
The highlight codes show how B2 use its inputs and oracles to simulate G8. If A queries H on ψi,1−bi

for
some i /∈ [µ]\I, then B2 aborts the simulation and return 1 (the same as if the game ends in normal). If A
triggers Qry8 (i.e., A queries H on ψi,bi

for some i /∈ [µ]\I), then B2 returns 0, which indicates that it is
interacting with mPR-PCAB2,µ

KEM,0.

If B2 is playing the game mPR-PCAB2,µ
KEM,1, then ψ∗1 , ..., ψ

∗
µ are uniformly at random, which means that B2

outputs 1 with probability at least 1− µqH

|Ψ| . Therefore, we have

Pr [Qry8] ≤
∣∣∣Pr

[
mPR-PCAB2,µ

KEM,0 ⇒ 1
]
− Pr

[
mPR-PCAB2,µ

KEM,1 ⇒ 1
]∣∣∣ + µqH

|Ψ|

= AdvmPR-PCA
KEM (B2, µ) + µqH

|Ψ|
,

and we also have

Pr [Qry6] = Pr [Qry7] = Pr [Qry8] ≤ AdvmPR-PCA
KEM (B2, µ) + µqH

|Ψ|∣∣∣Pr
[
GA5 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣∣ ≤ AdvmPR-PCA
KEM (B2, µ) + µqH

|Ψ|
.

Game G9: We rewrite G8 in Figure 12 with some conceptual modifications. The simulator only chooses
bi

$← {0, 1} when A opens c[i] (cf. Line 32). Moreover, the two abort conditions in H are rewritten so that
both of them are independent of bi.

We argue that G9 is equivalent to G8. In G8, all challenge ciphertexts are encrypted by random keys
(Ki, ki), and thus c[i] is independent of bi, and the simulator can specify bi when A opens c[i]. Hence, the
abort conditions of H are actually independent of bi, and thus can be rewritten independent of bi in both
G8 and G9. Therefore, we have

Pr
[
GA8 ⇒ 1

]
= Pr

[
GA9 ⇒ 1

]
.

Game G10: We undo all the abort conditions in H. A cannot detect this change unless it triggers one
of the abort events in H in G9. We construct an mPR-PCA adversary B3 to bound this difference.

19



GAME G9-G11
01 (pk, sk)← KG
02 (Ma, st)← ADec,H,h

0 (pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 for b ∈ {0, 1} :
06 ri,b

$←R
07 (ci,b, ψi,b)← Encaps(pk; ri,b)
08 R̂i,b ← Sample−1

C (ci,b)
09 (Ki, ki) $←M× {0, 1}l

10 di := mi ⊕Ki

11 Ti := h(ki, ci,0, ci,1, di)
12 c[i] := (ci,0, ci,1, di, Ti)
13 out← AOpen,Dec,H,h

1 (st, c)
14 return Rel(Ma,m, I, out)

Dec(c) // c /∈ c
15 parse (c0, c1, d, T ) =: c
16 if ∃i ∈ [µ] s.t. T = Ti

return ⊥ // G9-G10
17 m := ⊥
18 for b ∈ {0, 1} :
19 if ∃ψ s.t. (b, c0, c1, ψ) ∈ Lval // G9-G10
20 (Kb, kb) := Lval[b, c0, c1, ψ] // G9-G10
21 else if (b, c0, c1) ∈ Ldec // G9-G10
22 (Kb, kb) := Ldec[b, c0, c1] // G9-G10
23 else // G9-G10
24 (Kb, kb) $←M× {0, 1}l // G9-G10
25 Ldec[b, c0, c1] := (Kb, kb) // G9-G10
26 ψb := Decaps(sk, cb) // G11
27 (Kb, kb) := H(b, c1, c0, ψb) // G11
28 Tb := h(kb, c0, c1, d)
29 if Tb = T : m := d⊕Kb

30 return m

Open(i)

31 I := I ∪ {i}
32 bi

$← {0, 1}
33 rand := (bi, ri,bi , ci,1−bi )
34 LvalH[bi, ci,0, ci,1, ψi,bi ] := (Ki, ki) // G9-G10
35 LH[bi, ci,0, ci,1, ψi,bi ] := (Ki, ki) // G11
36 return (mi, rand)

H(b, c0, c1, ψ)

37 if ∃i ∈ [µ]\I s.t. ψ = ψi,0 // G9
38 abort // G9
39 if ∃i ∈ [µ]\I s.t. ψ = ψi,1 // G9
40 abort // G9
41 if (b, c0, c1) ∈ Ldec // G9-G10
42 and ψ = Decaps(sk, cb) // G9-G10
43 (K, k) := Ldec[bi, c0, c1] // G9-G10
44 Lval[bi, c0, c1, ψ] := (K, k) // G9-G10
45 Ldec[bi, c0, c1] := ⊥ // G9-G10
46 if (b, c0, c1, ψ) ∈ LvalH // G9-G10
47 return LvalH[b, c0, c1, ψ] // G9-G10
48 else if (b, c0, c1, ψ) ∈ LinvH // G9-G10
49 return LinvH[b, c0, c1, ψ] // G9-G10
50 else // G9-G10
51 (K, k) $←M× {0, 1}l // G9-G10
52 if ψ = Decaps(sk, cb) // G9-G10

Lval[b, c0, c1, ψ] := (K, k) // G9-G10
53 else

Linv[b, c0, c1, ψ] := (K, k) // G9-G10
54 return (K, k) // G9-G10
55 if LH[b, c0, c1, ψ] = ⊥: // G11
56 (K, k) $←M× {0, 1}l // G11
57 LH[b, c0, c1, ψ] := (K, k) // G11
58 return LH[b, c0, c1, ψ] // G11

Figure 12: Games G9-G11 for proving Theorem 3.5. The random oracle h is simulated in the standard way.

In B3’s construction, we embed (c∗i , ψ∗i ) into (ci,0, ψi,0) or (ci,1, ψi,1) randomly (cf. Lines 05 to 06), and
specify bi as 1− b̂i. When A opens c[i], we explain c[i] by using the (1− b̂i)-randomness (cf. Line 20). Note
that b̂i is independent of A’s view before it opens c[i], and thus the distribution of bi in B3’s construction
is the same as the one in G9. If A triggers one of the abort events in H oracle, then B3 outputs 0 with
probability 1

2 , since b̂i is sampled independently in uniformly random. Similar to the arguments in bounding
Pr [Qry8], we have ∣∣∣Pr

[
GA9 ⇒ 1

]
− Pr

[
GA10 ⇒ 1

]∣∣∣ ≤ 2AdvmPR-PCA
KEM (B3) + 2µqH

|Ψ|
.

Game G11: We undo the modifications of G2 and G1. We have

Pr [G10 ⇒ 1] = Pr [G11 ⇒ 1] .

Now we can construct a SIM-SO-CCA simulator S that simulates G10 for A and interacts with the
IDEAL-SO-CCAPKE1 game to conclude the proof. The construction of simulator is shown in Figure 14.
S samples di uniformly fromM and computes Ki as di⊕mi (when A opens c[i]), which is equivalent to

sampling Ki firstly and then computing di := Ki ⊕mi. Therefore, S perfectly simulates G10. Note that at
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BPcopr
3 (pk, (c∗

1, ..., c∗
µ), (ψ∗

1 , ..., ψ
∗
µ))

01 b′ := 1
02 (Ma, st)← ADec,H,h

0 (pk)
03 for i ∈ [µ]
04 m[i] := mi ←Ma

05 b̂i
$← {0, 1}

06 ci,b̂i
:= c∗

i , ψi,b̂i
:= ψ∗

i

07 ri,1−b̂
$←R

08 (ci,1−b̂i
, ψi,1−b̂i

)
09 ← Encaps(pk; ri,1−b̂i

)
10 R̂i,0 ← Sample−1

C (ci,0)
11 R̂i,1 ← Sample−1

C (ci,1)
12 (Ki, ki) $←M× {0, 1}l

13 di := mi ⊕Ki

14 Ti := h(ki, ci,0, ci,1, di)
15 c[i] := (ci,0, ci,1, di, Ti)
16 out← AOpen,Dec,H,h

1 (st, c)
17 return b′

Open(i)

18 I := I ∪ {i}
19 bi := 1− b̂i

20 rand := (bi, ri,bi , R̂i,1−bi )
21 LvalH[bi, ci,0, ci,1, ψi,bi ] := (Ki, ki)
22 return (mi, rand)

H(b, c0, c1, ψ)

23 if ∃i ∈ [µ]\I s.t. ψ = ψi,0
24 if b̂i = 0: b′ := 0 // Guess right
25 else b′ := 1 // Guess wrong
26 Aborts the game and returns b′

27 if ∃i ∈ [µ]\I s.t. ψ = ψi,1
28 if b̂i = 1: b′ := 0 // Guess right
29 else b′ := 1 // Guess wrong
30 Aborts the game and returns b′

31 if (b, c0, c1) ∈ Ldec

32 and Pcopr(cb, ψ) = 1
33 (K, k) := Ldec[bi, c0, c1]
34 Lval[bi, c0, c1, ψ] := (K, k)
35 Ldec[bi, c0, c1] := ⊥
36 if (b, c0, c1, ψ) ∈ LvalH
37 return LvalH[b, c0, c1, ψ]
38 else if (b, c0, c1, ψ) ∈ LinvH
39 return LinvH[b, c0, c1, ψ]
40 else
41 (K, k) $←M× {0, 1}l

42 if Pcopr(cb, ψ) = 1
Lval[b, c0, c1, ψ] := (K, k)

43 else Linv[b, c0, c1, ψ] := (K, k)
44 return (K, k)

Figure 13: mPR-PCA adversary B3 in bounding |Pr
[
GA9 ⇒ 1

]
− Pr

[
GA10 ⇒ 1

]
|. The simulation of Dec is

the same as in Figure 12. The highlighted codes show how B3 uses its inputs and oracles to simulate G10.
Specifically, for every i ∈ [µ], B3 embeds the challenge into the b̂i-ciphertexts, and expects A will trigger the
abort event of such b̂i-ciphertexts.

the start of the proof we assume that there is no collision among all Ki’s, ki’s, and the outputs of H. This
introduces some collision bounds here. That is,∣∣∣ Pr

[
GA11 ⇒ 1

]
− Pr

[
IDEAL-SO-CCASPKE1

⇒ 1
]∣∣∣ ≤ µ2 + q2

H

|M|
+ µ2 + q2

H + q2
h

2l
.

By combining all the probability bounds and viewing B1,B2,B3, and B4 as an adversary BPR (choose the
one with highest mPR-PCA advantage), we have

AdvSIM-SO-CCA
PKE1

(A,S, µ,Rel)

:=
∣∣∣ Pr

[
REAL-SO-CCAAPKE1

⇒ 1
]
− Pr

[
IDEAL-SO-CCASPKE1

⇒ 1
]∣∣∣

≤ 5AdvmPR-PCA
KEM (BPR, µ) + 5µqH

|Ψ|
+ 2

(
µ2 + q2

H

|M|
+ µ2 + q2

H + q2
h

2l

)
,

as stated in Theorem 3.5.

3.3 Direct Diffie-Hellman-based Constructions for mPR-PCA secure KEM
We propose three Diffie-Hellman-based constructions of mPR-PCA secure KEM. Throughout this section,
we let Ψ be a KEM key space and H : {0, 1}∗ → Ψ be a random oracle. Let G be a p-order group with
generator g. All constructions in this section have perfect correctness (Figure 2).
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SOpen′

01 (pk, sk)← KG
02 (Ma, st)← ADec,H,h

0 (pk)
03 Outputs Ma and receives m′′ //S0
04 for i ∈ [µ]
05 m[i] := mi ←Ma

06 for b ∈ {0, 1} :
07 ri,b

$←R
08 (ci,b, ψi,b)← Encaps(pk; ri,b)
09 R̂i,b ← Sample−1

C (ci,b)
10 (di, ki) $←M× {0, 1}l

11 Ti := h(ki, ci,0, ci,1, di)
12 c[i] := (ci,0, ci,1, di, Ti)
13 out← AOpen,Dec,H,h

1 (st, c)
14 return out //S1

Open(i)

15 Queries Open′ on i
16 Receives mi

17 Ki := di ⊕mi

18 bi
$← {0, 1}

19 rand := (bi, ri,bi , R̂i,1−bi )
20 LH[bi, ci,0, ci,1, ψi,bi ] := (Ki, ki)
21 return (mi, rand)

Dec(c) // c /∈ c
22 parse (c0, c1, d, T ) =: c
23 m := ⊥
24 for b ∈ {0, 1} :
25 ψb := Decaps(sk, cb)
26 (Kb, kb) := H(b, c1, c0, ψb)
27 Tb := h(kb, c0, c1, d)
28 if Tb = T : m := d⊕Kb

29 return m

Figure 14: SIM-SO-CCA simulator S that simulates G11 to conclude the proof of Theorem 3.5. S simulates
ROs h and H in the standard way.

A Construction based on strong DH. In Figure 15, we construct a mPR-PCA KEM, KEMStDH, from
the multi-instance strong Diffie-Hellman assumption (Definition 2.4). The ciphertext space of KEMStDH is G
and the randomness space is Zp. KEMStDH is essentially the hashed ElGamal KEM [ABR01, CKS08].

KG
01 x $← Zp

02 X := gx

03 pk := X
04 sk := x
05 return (pk, sk)

Encaps(pk)
06 r $← Zp

07 R := gr ∈ G
08 ψ := H(R,Xr)
09 c := R
10 return (c, ψ)

Decaps(sk, c)
11 parse R =: c
12 ψ := H(R,Rx)
13 return ψ

Figure 15: Our direct construction of mPR-PCA secure KEM schemes from the mStDH assumption,
KEMStDH = (KG,Encaps,Decaps).

KEMStDH is G-explainable (Definition 3.4) if G can be sampled (uniformly at random) without using
generator and exponent. A concrete example is as follow: Let p be a prime s.t. q = rp + 1 is also a prime
for some r. Let G be a subgroup of Z∗q and with order p. Canetti et al. [CF01, Section 4.3.2] showed how to
sample a group element from such G without knowing exponent. We can design SampleG and Sample−1

G that
works similarly with the sample and fake processes in [CF01, Section 4.3.2], respectively. Such technique can
also be used in some widely-used elliptic-curve groups, such as NIST P256, NIST P384, and Curve25519.

Theorem 3.6 KEMStDH in Figure 15 is mPR-PCA secure (Definition 3.3) if the mStDH problem is hard on
G and H is modeled as a random oracle. For any adversary A and relation Rel, there exists an adversary B
such that

AdvmPR-PCA
KEMStDH

(A, µ) ≤ 2AdvmStDH
G (B) + µ2

|G|
+ µ2 + q2

H + 2qH
|Ψ|

,

where qH is the number of A’s queries to H and µ is the number of challenge ciphertexts.

Proof. We prove Theorem 3.6 by the games sequence in Figure 16. We assume that there is no collision
among all Ri’s, ψi’s, and the outputs of H. This assumption adds collision bounds µ2

|G| +
µ2+q2

H

|Ψ| to the bound
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GAME G0,b-G3,b, b ∈ {0, 1}
01 (X,x)← KG
02 for i ∈ [µ] :
03 ri

$← Zp, Ri := gri // G0,b-G2,b
04 ψi := H(Ri, Xri) // G0,b-G1,b
05 ψi

$← Ψ // G2,b-G3,b
06 Ri

$← G // G3,b
07 c[i] := Ri,ψ[i] := ψi // b = 0
08 c[i] $← G,ψ[i] $← Ψ // b = 1
09 b← AH,Pcopr (X, c,ψ)
10 return b

H(R,Z)
11 if ∃i ∈ [µ] s.t. Z = Rxi // G2,b-G3,b
12 abort // G2,b-G3,b
13 if LH[R,Z] = ⊥
14 LH[R,Z] := ψ $← Ψ
15 return LH[R,Z]

Pcopr(R,ψ)
16 if ∃i ∈ [µ] s.t. (R,ψ) = (c[i],ψ[i])
17 return ⊥
18 Z := Rx // G0,b
19 ψ := H(R,Z) // G0,b
20 return ψ′ =? ψ // G0,b
21 if ∃Z ∈ G s.t. // G1,b-G3,b
22 LH[R,Z] = ψ ∧Rx = Z // G1,b-G3,b
23 return 1 // G1,b-G3,b
24 else return 0 // G1,b-G3,b

Figure 16: Games G0,b-G3,b(b ∈ {0, 1}) for proving Theorem 3.6.

of our proof. For b ∈ {0, 1}, GA0,b is equivalent to mPR-PCAA,µKEMStDH,b
, so we have

Pr
[
mPR-PCAA,µKEMStDH,b

⇒ 1
]

= Pr
[
GA0,b ⇒ 1

]
.

Game G1,b: We change the simulation of Pcopr. In this game, Pcopr does not follow the decapsulation
algorithm Decaps of KEMStDH. Instead, on query (R,ψ), the game simulator checks whether (R,ψ) corresponds
to a Z such that A has queried H(R,Z) = ψ and Z = Rx. If such Z does not exist, then it returns 0.
Otherwise, it returns 1.

If Pcopr(R,ψ) returns 1 in G0, then ψ = H(R,Rx), and thus Pcopr(R,ψ) also returns 1 in G1 except
that A never queried H(R,Rx) but finds ψ = H(R,Rx). Since H is a RO, the probability that A gets
H(R,Rx) without querying H is qH

|Ψ| . So, we have∣∣∣ Pr
[
GA0,b ⇒ 1

]
− Pr

[
GA1,b ⇒ 1

]∣∣∣ ≤ qH
|Ψ|

.

Game G2,b: We introduce an abort condition in the H oracle and change the generation of ψi. If A’s
H query include Rxi (i ∈ [µ]), then the game simulator aborts. Moreover, in this game, ψi is generated by
uniformly sampling instead of by computing H(Ri, Rxi ).

Let QryDHb be the event that A queries H on (Ri, Rxi ) (i ∈ [µ]) in Game G2,b. We claim that if
QryDHb does not happen, then G2,b is equivalent to G1,b. This is because, to distinguish G1,b and G2,b,
A needs to queries H on (Ri, Rxi ) for some i ∈ [µ], namely, triggers the event QryDHb. If this event does
not happen, then G2,b does not abort and A cannot learn H(Ri, Rxi ), which assures that ψi is uniformly
distributed in A’s view, and thus it is equivalent to computing ψi uniformly at random. We have∣∣∣ Pr

[
GA1,b ⇒ 1

]
− Pr

[
GA2,b ⇒ 1

]∣∣∣ ≤ Pr [QryDHb] .

We construct an mStDH adversary Bb to bound Pr [QryDHb]. In Bb’s construction, we embed (Yi)1≤i≤µ
into Ri, and use dhpX to determine if Rx = Z. Bb perfectly simulates G2,b. If QryDH happens, namely,
A queried H on Rxi , then by using dhpX , Bb can determine such Rxi and output it as its mStDH solution.
Therefore, we have

Pr [QryDHb] ≤ AdvmStDH
G (Bb).
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BdhpX

b (X,Y1, Y2, ..., Yµ), b ∈ {0, 1}
01 for i ∈ [µ] :
02 Ri := Yi
03 ψi

$← Ψ
04 c[i] := Ri,ψ[i] := ψi
05 b← AH,Pcopr (X, c,ψ)
06 return b

H(R,Z)
07 if ∃i ∈ [µ] s.t. dhpX(Ri, Z) = 1
08 Abort the simulation and output Z
09 if LH[R,Z] = ⊥
10 LH[R,Z] := ψ $← Ψ
11 return LH[R,Z]

Pcopr(R,ψ)
12 if ∃i ∈ [µ] s.t. (R,ψ) = (c[i],ψ[i])
13 return ⊥
14 if ∃Z ∈ G s.t.
15 LH[R,Z] = ψ∧ dhpX(R,Z) = 1
16 return 1
17 else return 0

Figure 17: mStDH adversary Bb in bounding QryDHb in the proof of Theorem 3.6. Highlighted codes show
how to use the dhp oracle to simulate G2,b.

Game G3,b: We generate c[i] by uniformly sampling instead of following KEMStDH.Encaps. The change is
conceptual, because in G2,b, we generate c[i] by computing Ri := gri ∈ G, which is equivalent to sampling
Ri from G. Moreover, in G3,b, the game simulator no longer uses ri to generate ψi. Therefore, we have

Pr
[
GA2,b ⇒ 1

]
= Pr

[
GA3,b ⇒ 1

]
.

Now G3,0 is equivalent to G3,1, so we have Pr
[
GA3,0 ⇒ 1

]
= Pr

[
GA3,1 ⇒ 1

]
. Combining all the probability

differences in the games sequence, and combining B0 and B1 as one adversary B, we have

AdvmPR-PCA
KEMStDH

(A, µ) :=
∣∣∣ Pr

[
mPR-PCAA,µKEMStDH,0 ⇒ 1

]
− Pr

[
mPR-PCAA,µKEMStDH,1 ⇒ 1

]∣∣∣
≤ 2AdvmStDH

G (B) + µ2

|G|
+ µ2 + q2

H + 2qH
|Ψ|

.

A Construction based on Twin DH. Using the twinning technique from [CKS08], we can remove the
use of StDH assumption in KEMStDH and have a scheme KEMTDH based on the standard CDH assumption at
the cost of being less efficient. KEMTDH is shown in Figure 18. The ciphertext space and randomness space
of KEMTDH are the same as those of KEMStDH.

KG
01 (x0, x1) $← Zp

02 X0 := gx0 , X1 := gx1

03 pk := (X0, X1)
04 sk := (x0, x1)
05 return (pk, sk)

Encaps(pk)
06 let (X0, X1) := pk
07 r $← Zp

08 R := gr ∈ G
09 ψ := H(R,Xr

0 , X
r
1 )

10 c := R
11 return (c, ψ)

Decaps(sk, c)
12 let R := c
13 let (x0, x1) := sk
14 ψ := H(R,Rx0 , Rx1 )
15 return ψ

Figure 18: Our Direct Construction of mPR-PCA secure KEM schemes from the mTDH assumption,
KEMTDH = (KG,Encaps,Decaps).

Similar to KEMStDH, KEMTDH is G-explainable (Definition 3.4) if G can be sampled without using generator
and exponent. Theorem 3.7 shows that if mTDH is hard on G, then KEMTDH is mPR-PCA secure. The proof
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idea of Theorem 3.7 is the same as the one of Theorem 3.6. The only difference is that, instead of using the
dhp oracle, here we use the 2dhp oracle to check whether the adversary queried (Xri

0 , X
ri
1 ). By [CKS08,

Theorem 3], the TDH problem is tightly equivalent to the CDH problem, so we also have Corollary 3.8.

Theorem 3.7 KEMTDH in Figure 18 is mPR-PCA secure (Definition 3.3) if the mTDH problem is hard on
G and H is modeled as a random oracle. For any adversary A and relation Rel, there exists an adversary B
such that

AdvmPR-PCA
KEMTDH

(A, µ) ≤ 2AdvmTDH
G (B) + µ2

|G|
+ µ2 + q2

H + 2qH
|Ψ|

,

where qH is the number of A’s queries to H and µ is the number of challenge ciphertexts.

Corollary 3.8 KEMTDH in Figure 18 is mPR-PCA secure (Definition 3.3) if the mCDH problem is hard on
G and H is modeled as a random oracle. For any adversary A and relation Rel, there exists an adversary B
such that

AdvmPR-PCA
KEMTDH

(A, µ) ≤ 2AdvmCDH
G (B) + 2(qH + qPco) + µ2

|G|
+ µ2 + q2

H + 2qH
|Ψ|

,

where qH and qPco are the numbers of A’s queries to H and Pcopr, respectively, and µ is the number of
challenge ciphertexts.

A Construction based on DDH. In Figure 19, we construct a mPR-PCA KEM, KEMDDH, from the multi-
instance decisional Diffie-Hellman assumption (Definition 2.1). Let g0 := g and g1 := gω where ω $← Z∗p. g1
is also a generator of G. The ciphertext space of KEMStDH is G2 and the randomness space is Zp. Similar
to KEMStDH, KEMDDH is G2-explainable (Definition 3.4) if G can be sampled without using generator and
exponent.

KG
01 (x0, x1) $← Zp

02 X := gx0
0 gx1

1
03 pk := X
04 sk := (x0, x1)
05 return (pk, sk)

Encaps(pk)
06 let X := pk
07 r $← Zp

08 (R0, R1) := (gr
0 , g

r
1) ∈ G2

09 ψ := H(R0, R1, X
r)

10 c := (R0, R1)
11 return (c, ψ)

Decaps(sk, c)
12 let (x0, x1) := sk
13 let (R0, R1) := c
14 ψ := H(R0, R1, R

x0
0 Rx1

1 )
15 return ψ

Figure 19: Our direct construction of mPR-PCA secure KEM schemes from the DDH assumption, KEMDDH =
(KG,Encaps,Decaps).

KEMDDH has an identical structure with the DDH-based KEM in [JKRS21, Theorem 4], which is essentially
based on a DDH-based hash proof system [CS02]. Theorem 3.9 shows that if multi-instance DDH (mDDH)
is hard on G, then KEMDDH is mPR-PCA secure.

KEMDDH is essentially based on a DDH-based hash proof system [CS02]. Theorem 3.9 shows that if
multi-instance DDH (mDDH) is hard on G, then KEMDDH is mPR-PCA secure.

Theorem 3.9 KEMDDH in Figure 18 is mPR-PCA secure (Definition 3.3) if the mDDH problem is hard on
G and H is modeled as a random oracle. For any adversary A and relation Rel, there exists an adversary B
such that

AdvmPR-PCA
KEMDDH

(A, µ) ≤ 2AdvmDDH
G (B) + 4µ2 + µ

|G|
+ µ2 + q2

H + µqHqPco
|Ψ|

,

where qH is the number of A’s queries to H and µ is the number of challenge ciphertexts.
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GAME G0-G3

01 (X, (x0, x1))← KG
02 for i ∈ [µ] :
03 ri

$← Zp // G0-G1
04 (Ri,0, Ri,1) := (gri

0 , g
ri
1 ) // G0-G1

05 (Ri,0, Ri,1) $← G2 // G2-G3
06 Zi := Xri // G0
07 Zi := Rx0

i,0R
x1
i,1 // G1-G3

08 ψi := H(Ri,0, Ri,1, Zi) // G0-G2
09 ψi

$← Ψ // G3
10 c[i] := Ri,ψ[i] := ψi
11 b← AH,Pcopr (X, c,ψ)
12 return b

Pcopr(R0, R1, ψ)
13 if ∃i ∈ [µ] s.t. (R,ψ) = (c[i],ψ[i])
14 return ⊥
15 ψ′ := H(R0, R1, R

x0
0 Rx1

1 )
16 return ψ =? ψ

′

H(R0, R1, Z)
17 if LH[R0, R1, Z] = ⊥
18 LH[R0, R1, Z] := ψ $← Ψ
19 return LH[R0, R1, Z]

Figure 20: Games G0-G3 for proving Theorem 3.9.

Proof. The games sequence for proving Theorem 3.9 is given in Figure 20. We assume that there is no collision
among all Ri,0’s, Ri,1, ψi’s, and the outputs of H. This assumption adds collision bounds 4µ2

|G| + µ2+q2
H

|Ψ| to
the bound of our proof. GA0 is equivalent to mPR-PCAA,µKEMDDH,0, so we have

Pr
[
mPR-PCAA,µKEMDDH,0 ⇒ 1

]
= Pr

[
GA0 ⇒ 1

]
.

Game G1: We change the generation of Zi. In this game, we generate Z := Rx0
i,0R

x1
i,1 instead of Z := Xri .

This change is conceptual since Rx0
i,0R

x1
i,1 = Xri . We have

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
.

Game G2: We generate Ri,0’s and Ri,1’s uniformly at random instead of using exponents ri’s. To bound∣∣Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣, we construct a direct reduction B from MDDH. Reduction B works as follows:
On input (g1, (R′1,0, R′1,1), ..., (R′µ,0, R′µ,1)), B generates X and (x0, x1) as in G2 and sets (Ri,0, Ri,1) :=
(R′i,0, R′i,1). Then it simulates challenge ciphertexts, Pcopr oracle, and H oracle as in G2. If the input
of B is

(
g1, (gri

0 , g
ri
1 )i∈[µ]

)
, then B perfectly simulates G1; Otherwise, the input of B is

(
g1, (gri

0 , g
r′

i
1 )i∈[µ]

)
,

which means that Ri,0 and Ri,1 are independently and uniformly random and thus B perfectly simulates G2.
Therefore, we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ AdvmDDH

G (B).

Game G3: ψi’s are generated independently and uniformly at random. A notices this modification only
if it queries H on one of Zi’s. By using a standard argument of DDH-based hash proof system (e.g., [JKRS21,
Theorem 4]), one can show that Zi = Rx0

i,0R
x1
i,1 is independently random (if (x0, x1) is random). Here we just

give a simple explanation: Since g1 = gω0 where ω $← Z∗p, X does not reveal information about (x0, x1) since
loggX = x0 +ωx1. The responses of Pcopr also reveal nothing about (x0, x1) since these responses are from
the output of RO H. So, (x0, x1) is unknown in A’s view. Moreover, let gri,0

0 := Ri,0 and g
ri,1
1 := Ri,1 for

some ri,0 ̸= ri,1, we have [
loggX
logg Zi

]
= M

[
x0
x1

]
, where M :=

[
1 ω
ri,0 ωri,1

]
.

If ri,0 ̸= ri,1, then det(M) ̸= 0, which implies that Zi is uniformly random and independent of X. The
probability that ri,0 = ri,1 for some i ∈ [µ] is upper bounded by µ

|G| . By a union bound and a simple hybrid
argument, one can also show that the probability that A queries H on Zi for some i ∈ [µ] is upper bounded
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by µqHqPco/|Ψ|. We have

Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]
≤ µ

|G|
+ µqHqPco

|Ψ|
.

Now G3 is equivalent to mPR-PCAA,µKEMDDH,1 if we undo the modifications of G2 and G1. By combining all
the probability bounds, we have

AdvmPR-PCA
KEMDDH

(A, µ) =
∣∣∣Pr

[
mPR-PCAA,µKEM,0 ⇒ 1

]
− Pr

[
mPR-PCAA,µKEM,1 ⇒ 1

]∣∣∣
≤ 2AdvmDDH

G (B) + 4µ2 + µ

|G|
+ µ2 + q2

H + µqHqPco
|Ψ|

.

4 Generic Construction for mPR-PCA secure KEM
Besides the direct constructions for mPR-PCA secure KEM in Section 3.3, we construct a mPR-PCA secure
KEM tightly and generically from any mPR-CPA secure public-key encryption (PKE) scheme. In combina-
tion with the generic construction in the previous section, this shows that SIM-SO-CCA secure PKE can
be constructed tightly from any mPR-CPA secure PKE with explainable ciphertexts. Many existing PKE
achieve this security notion, which means our construction can be implemented from a variety of assumptions,
including LWE.

4.1 Construction
Let PKE0 = (KG0,Enc0,Dec0) be a PKE scheme with message space M′, randomness space R′, and cipher-
text space C′. Let S be some efficiently sampleable set (e.g., set of fix-length bit strings). Let G :M′ →R′
and H :M′×C′ → {0, 1}L be hash functions. We construct a KEM (with randomness spaceM′, ciphertext
space C′, and KEM key space Ψ := {0, 1}L) in Figure 21. Theorem 4.1 shows that if PKE0 is mPR-CPA
secure, and G,H, and F are modeled as random oracles, then KEM is mPR-PCA secure, and the reduction
is tight.

The KEM scheme in Figure 21 has the same structure with the U⊥ ◦T transformation in Hofheinz et al’s
work [HHK17]. Their transformation focuses on constructing IND-CCA KEM from OW-CPA PKE. In this
paper, we focus on ciphertext pseudorandomness, and thus we cannot use their result directly and need a
new security reduction to prove Theorem 4.1.

KG
01 (pk, sk)← KG0
02 return (pk, sk)

Encaps(pk)
03 m $←M′

04 r := G(m)
05 c := Enc0(pk,m; r)
06 ψ := H(m, c)
07 return (c, ψ)

Decaps(sk, c)
08 m′ := Dec0(sk, c)
09 if m′ = ⊥: return ⊥
10 r′ := G(m′)
11 c′ := Enc0(pk,m′; r′)
12 if c′ = c: ψ′ := H(m′, c)
13 else return ⊥

Figure 21: Our Generic Construction of mPR-PCA secure KEM schemes KEM = (KG,Encaps,Decaps) from
PKE scheme PKE0 = (KG0,Enc0,Dec0).

Correctness of KEM. Given (pk, sk)← KG0, for a KEM ciphertext-key pair (c, ψ), there exists m such that
c = Enc0(pk,m;G(m)) and ψ = H(m, c). Suppose that Decaps(sk, c) does not output⊥. Let m′ := Dec0(sk, c).
If ψ = H(m, c) ̸= H(m′, c) = ψ′, then m ̸= m′, which means that we have a m that makes the game CORPKE0

return 1. if PKE0 is (1 − δ)-correct, then such event happens within probability less than δPKE0 . Moreover,
if Decaps(sk, c) outputs ⊥, then we also have m′ ̸= m. Therefore, if PKE0 is (1− δ)-correct, then KEM is also
(1− δ)-correct.
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Theorem 4.1 KEM in Figure 21 is mPR-PCA secure (Definition 3.3) if G,H, and F are modeled as random
oracles and PKE0 is (1− δ)-correct and mPR-CPA secure. For any mPR-PCA adversary A, there exists an
adversary BPR such that:

AdvmPR-PCA
KEM (A, µ) ≤ 3AdvmPR-CPA

PKE0
(B′, µ) + 2µ(qG + qH)

|Ψ|
+

(
2qG · δ + µ2 + q2

G

|R|
+ 2qPco + µ2 + q2

H

|Ψ|

)
,

where qG, qH , qF , and qPco are the numbers of A’s queries to G,H,F , and Pcopr oracles, respectively, and
µ is the number of challenge ciphertexts.

Proof. Theorem 4.1 is proved by the game sequences in Figure 22. We assume that there is no collision
among all ri’s, ψi’s, and the outputs of random oracles. This assumption adds collision bounds

µ2 + q2
G

|R|
+ µ2 + q2

H

|Ψ|

to the final bound of our proof. Except for that, we have

Pr
[
mPR-PCAA,µKEM,0 ⇒ 1

]
= Pr

[
GA0 ⇒ 1

]
.

Games G0-G7

01 (pk, sk)← KG
02 for i ∈ [µ] :
03 mi

$←M′
04 ri := G(mi) // G0-G3
05 ri

$←R′ // G4-G7
06 ci := Enc0(pk,mi; ri) // G0-G5
07 ci $← C // G6-G7
08 ψi := H(ci,mi) // G0-G3
09 ψi

$← {0, 1}L // G4-G7
10 c[i] := ci,ψ[i] := ψi
11 b← AG,H,F,Pcopr (pk, c,ψ)
12 return b

H(m, c)
13 if ∃i ∈ [µ] s.t. m = mi // G3-G4
14 abort // G3-G4
15 if Enc0(pk,m;G(m)) = c // G1-G6
16 return h1(c) // G1-G6
17 if LH[m, c] = ⊥
18 LH[m, c] := ψ $← Ψ
19 return LH[m, c]

Pcopr(c, ψ)
20 m′ := Dec0(sk, c) // G0-G1,G7
21 if m′ = ⊥ // G0-G1,G7
22 return 0 // G0-G1,G7
23 else // G0-G1,G7
24 r′ := G(m′) // G0-G1,G7
25 c′ := Enc0(pk,m′; r′) // G0-G1,G7
26 if c′ = c ∧ ψ = H(m′, c) // G0-G1,G7
27 return 1 // G0-G1,G7
28 else // G0-G1,G7
29 return 0 // G0-G1,G7
30 if h1(c) = ψ // G2-G6
31 return 1 // G2-G6
32 else return 0 // G2-G6

G(m)
33 if ∃i ∈ [µ] s.t. m = mi // G3-G4
34 abort // G3-G4
35 if LG[m] = ⊥
36 LG[m] := r $←R
37 return LG[m]

Figure 22: Games G0-G7 for proving Theorem 4.1.

Game G1: Let h1 : C → Ψ be an internal random oracle. In G1, if A queries H on (m, c) such that
Enc(pk,m;G(m)) = c, then the oracle returns h1(c) instead of H(m, c).

If Enc(pk, ·;G(·)) is an injection, then G1 is identical to G0. So, A cannot distinguish G1 from
G0 if it cannot find collisions of Enc(pk, ·;G(·)). Suppose that A finds messages m′0 ̸= m′1 such that
Enc(pk,m′0;G(m′0)) = Enc(pk,m′1;G(m′1)), then A breaks the correctness of PKE0 (see Definition 2.13),
since it finds a message m (= m′0 or m′1) that the decryption of Enc(pk,m) is not m. Therefore, if PKE0 is
(1− δ)-correct and G is a random oracle, then we have∣∣∣ Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣∣ ≤ qG · δ.
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B′
1(pk)

01 b′ := 1
02 for i ∈ [µ] :
03 m[i] := mi

$←M′

04 Outputs m
05 Receives (c∗

1, ..., c∗
µ)

06 for i ∈ [µ] :
07 c[i] := c∗

i

08 ψ[i] $← Ψ
09 b← AG,H,Pcopr (pk, c,ψ)
10 return b′

Pcopr(c, ψ)

11 if h1(c) = ψ
12 return 1
13 else return 0

H(m, c)

14 if ∃i ∈ [µ] s.t. m = mi

15 b′ := 0
16 Aborts the game and returns b′

17 if Enc0(pk,m;G(m)) = c
18 return h1(c)
19 if LH[m, c] = ⊥
20 LH[m, c] := ψ $← Ψ
21 return LH[m, c]

G(m)

22 if ∃i ∈ [µ] s.t. m = mi

23 b′ := 0
24 Aborts the game and returns b′

25 if LG[m] = ⊥
26 LG[m] := r $←R
27 return LG[m]

Figure 23: mPR-CPA adversary B′1 in bounding Pr [Query4]. The highlight codes show how B′1 use the
challenge ciphertexts to simulate G4. If A triggers Qry4, then B′1 returns 0. Otherwise, B′1 returns 1.

Game G2: We modify the Pcopr oracle. When A queries Pcopr(c, ψ), it returns 1 if and only if ψ = h1(c)
(see Lines 30 to 32).

Here we claim that Pcopr’s output distribution in G2 is the same as in G1 except with negligible
probability. To prove this, for any A’s Pcopr queries (c, ψ), let m′ := Dec0(sk, c), and we consider two cases:

• m′ = ⊥ or c ̸= Enc0(pk,m′;G(m′)). Pcopr in G1 always returns 0 in this case. In G2, Pcopr returns
1 only if h1(c) = ψ. So, to make Pcopr in G2 behaves differently, A needs to know h1(c). However,
the only way for A to get h1(c) is to query H(m′, c) where c = Enc0(pk,m′;G(m′)). Therefore, in this
case, h1(c) is uniformly random in A’s view, and A makes Pcopr returns 1 in G2 with probability at
most qPco/|Ψ|.

• m′ ̸= ⊥ and c = Enc0(pk,m′;G(m′)). Pcopr has the same outputs in G1 and G2, since in this case,
H(m′, c) = h1(c).

So, we have ∣∣∣ Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣∣ ≤ qPco
|Ψ|

.

Game G3: We add two abort conditions in G and H. If A queries G or H on m where m = mi for some
i ∈ [µ], then the game aborts. Let Query be this querying event and Queryj be the event that Query
happens in Gj . The adversary cannot detect this modification unless it triggers Query3, so we have∣∣∣ Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣∣ ≤ Pr [Query3] .

Game G4: We change the generation of randomnesses and KEM keys. In G4 ri’s and ψi’s are generated
at uniformly random and independent of mi’s (see Lines 05 and 09). This modification does not change A’s
view if Query does not happen in G3 and G4. Therefore, we have

Pr
[
GA3 ⇒ 1

]
= Pr

[
GA4 ⇒ 1

]
,Pr [Query3] = Pr [Query4] .

Since in G4, ci can be viewed as being generated via ci ← Enc0(pk, ci) (without specifying the independent
and uniform randomness ri, we can construct an adversary B′1 that simulates G4 for A to bound Pr [Query4].
B′1 is shown in Figure 23.
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If B′1 is playing the game mPR-CPAB
′
1,µ

PKE0,0, then it perfectly simulates G4, and it outputs 1 if Query4
does not happen. So we have

Pr
[
mPR-CPAB

′
1,µ

PKE0,0 ⇒ 1
]

= 1− Pr [Query4] .

If B′1 is playing the game mPR-CPAB
′
1,µ

PKE0,1, then (c∗1, ..., c∗µ) are uniformly random and independent of
(m1, ...,mµ), which means that B′1 outputs 1 with probability at least 1− µ(qG+qH )

|Ψ| . Therefore, we have

Pr [Query4] ≤ AdvmPR-CPA
PKE0

(B′1, µ) + µ(qG + qH)
|Ψ|

.

Game G5: We undo the abort conditions in H and G. Similar to the argument in bounding G3 and
G4, if Query4 does not happen, then G5 proceeds identically with G4. Therefore, we have∣∣∣ Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣∣ ≤ Pr [Query4] ≤ AdvmPR-CPA
PKE0

(B′1, µ) + µ(qG + qH)
|Ψ|

.

Game G6: We change the generation of challenge ciphertext. In G6, c is generated by uniform sampling
from C′ instead of by encrypting mi (see Line 07).

Since in G6, the game simulator does not need sk to simulate Pcopr, ri’s and ψi’s are independent of
mi’s, and there is no abort event related to mi’s, we can construct a direct reduction to mPR-CPA security
of PKE0. That is, there exists an mPR-CPA adversary B′2 such that∣∣∣ Pr

[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣∣ ≤ AdvmPR-CPA
PKE0

(B′2, µ).

Game G7: We undo all the modifications did in G1 and G2. Now GA7 is identical to the game
mPR-PCAA,µKEM,1. We have∣∣∣ Pr

[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ qG · δ + qPco
|Ψ|

, Pr
[
GA7 ⇒ 1

]
= Pr

[
mPR-PCAA,µKEM,1 ⇒ 1

]
.

By combining all the probability bounds and viewing B′1 and B′2 as an adversary B′, we have

AdvmPR-PCA
KEM (A, µ) :=

∣∣∣Pr
[
mPR-PCAA,µKEM,0 ⇒ 1

]
− Pr

[
mPR-PCAA,µKEM,1 ⇒ 1

]∣∣∣
≤ 3AdvmPR-CPA

PKE0
(B′, µ) + 2µ(qG + qH)

|Ψ|
+

(
2qG · δ + µ2 + q2

G

|R|
+ 2qPco + µ2 + q2

H

|Ψ|

)

4.2 An Instantiation from LWE
We show that Regev’s lattice-based encryption [Reg05] have mPR-CPA security and the explainable prop-
erty (Definition 3.4). Combining with the generic construction from Section 3, it yields the first tightly
SIM-SO-CCA secure PKE from lattices.
Scheme. Our construction is the multiple-message-bit version of Regev encryption [Reg05, PVW08]. The
message space and ciphertext space of the scheme are {0, 1}ℓ and Znq × Zℓq, respectively. In lattice-based
encryption schemes, a message m ∈ {0, 1}ℓ has to be encoded on encryption and decoded on decryption. We
firstly define the following algorithms:

• Algorithm Encode(m) computes a vector m⊤ ∈ Zℓq. The ith coordinate of m⊤ is given as ⌊q/2⌉ ·mi for
each i ∈ [ℓ].
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• Algorithm Decode(m⊤) computes a message m ∈ {0, 1}ℓ by componentwise rounding. That is, for all
i ∈ [ℓ], it sets mi = 0 if mi is closer to 0 than to ⌊q/2⌉. Otherwise, it sets mi = 1.

The scheme is shown in Figure 24. We set up the parameters n,m, q (prime), t, g ∈ N, s, s′, s′′ ∈
R, s, s′, s′′ > 0 used in the scheme such that they satisfy the following conditions:

• n = Θ(λ), m ≥ 2(n+ ℓ) log q (for Lemma 2.10)

• s, s′ ≥ ω(
√

logm) (for Lemmata 2.10 and 2.11)

• ss′m ≤ q/4 (for correctness)

These conditions can be satisfied. For example, given a security parameter λ and message length ℓ = n, a
non-optimized instantiation would be n := λ, n3 < q ≤ n4, m := 4n log q, and s := s′ := logm.

KG
01 sk := S $← Zn×ℓq , E← Dm×ℓ

Z,s
02 A $← Zn×mq

03 Y := S⊤A + E⊤ ∈ Zℓ×mq

04 pk := (A,Y)
05 return (pk, sk)

Enc(pk = (A,Y),m)
06 x← Dm

Z,s′

07 c := Ax
08 v := Yx + Encode(m)⊤
09 return c := (c,v)

Dec(sk = S, c = (c,v))
10 m := v− S⊤c
11 return Decode(m⊤)

Figure 24: The LWE-based mPR-CPA secure PKE scheme PKELWE := (KG,Enc,Dec). The scheme is the
Regev encryption scheme [Reg05] extended to multiple message bits as in [PVW08].

Lemmata 4.2 and 4.3 show that PKELWE has negligible correctness error and is mPR-CPA secure based
on the LWE assumption.

Lemma 4.2 The scheme PKELWE in Figure 24 is (1− δ)-correct, for negligible δ.

Proof. We follow the standard arguments in [Reg05, GPV08] to prove the correctness. One can easily see
that decryption Dec correctly decrypt a ciphertext (Ax,Yx + Encode(m)⊤) as long as |e⊤x| < q/4 for any
column e of E. By Lemma 2.11 and our parameter setting about s, s′,m, and q, we have

|e⊤x| ≤ ∥e∥∥x∥ ≤ ss′m < q/4

with overwhelming probability.

Lemma 4.3 If the LWEn,m,q,DZ,s
assumption holds, then the scheme PKELWE is mPR-CPA secure. Namely,

for any algorithm A, there is a algorithm B such that the running time of B is about that of A and

AdvmPR-CPA
PKELWE

(A) ≤ ℓ · AdvLWEn,m,q,DZ,s (B) + negl(λ)

Proof. The statement follows from the LWE assumption and Lemma 2.10. We firstly apply the LWE assump-
tion to each row of matrix pk = Y (totally ℓ LWE instances). Then, since A and Y are uniformly random,
we can apply Lemma 2.10 to argue that (Ax,Yx) is statistically close to uniform, which also means that
the ciphertext (Ax,Yx + Encode(m)⊤) is statistically close to uniform.

Explainable Ciphertexts. We show that PKELWE is (Znq ,Zℓq)-explainable (namely, the ciphertext space
of PKELWE is (Znq ,Zℓq)), since one can simply let Sample(Zn

q ,Zℓ
q) and Sample−1

(Zn
q ,Zℓ

q) be identity functions and
the randomness domain RSample(Zn

q ,Zℓ
q)

be the same as the ciphertext space (Znq ,Zℓq). Namely, Sample(Zn
q ,Zℓ

q)

works as follows: On input (c,v) ∈$ (Znq ,Zℓq), it simply outputs (c,v). Similarly, Sample−1
(Zn

q ,Zℓ
q)(c,v) outputs

(c,v). Such Sample(Zn
q ,Zℓ

q) and Sample−1
(Zn

q ,Zℓ
q) satisfy Definition 3.4.
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5 Generic Construction II: SO from Lossy Encryption
In this section, we prove tight SO security of Fujisaki-Okamoto’s (FO) transformation [FO13] assuming
that the underlying PKE is a lossy encryption [BHY09]. More precisely, if the lossy encryption scheme has
efficient opener (e.g., the one from [HJR16]), then FO is SIM-SO-CCA-secure. If the lossy encryption does
not have efficient opener (e.g., the one from hash proof systems [HLOV11, BHY09]), then FO is IND-SO-CCA
secure.

5.1 Definition of Lossy Encryption
Before we turn to the construction, we first recall the notion of lossy encryption. We slightly modify the
definition of lossy encryption in [BHY09].

Definition 5.1 (Lossy Encryption). Let PKE0 := (KG0,Enc0,Dec0) be a PKE scheme with message space
M and randomness space R. PKE0 is lossy if it has the following properties:

• PKE0 is correct according to Definition 2.13.
• Key indistinguishability: We say PKE0 has key indistinguishability if there is an algorithm LKG such

that, for any adversary B, the advantage function

Advkey-ind
PKE0

(B) := |Pr [B(pk)⇒ 1]− Pr
[
B(pk′)⇒ 1

]
|

is negligible, where (pk, sk)← KG0 and (pk′, td)← LKG.
• Lossiness: Let m,m′ be arbitrary messages in M′, the statistical distance between the two following

distributions is negligible.

D :=
{(

pk′, td, c
) ∣∣∣ (pk′, td)← LKG, c← Enc0(pk′,m)

}
D′ :=

{(
pk′, td, c′

) ∣∣∣ (pk′, td)← LKG, c′ ← Enc0(pk′,m′)
}

• Openability: Let (pk′, td)← LKG, m and m′ be arbitrary messages, and r be arbitrary randomness. For
ciphertext c := Enc0(pk′,m; r), there exists an algorithm open such that open(td, pk′, c, r,m′) outputs
a uniformly random r′ ∈ R such that c = Enc0(pk′,m′; r′). Here open can be inefficient.

We extend the above lossiness definition to a multi-challenge setting. The multi-challenge lossiness is
implied by the single-challenge one using hybrid argument. Since it is only a statistical property, the hybrid
argument will not affect tightness of the computational advantage.

Definition 5.2 (Multi-Challenge Lossiness). PKE0 has multi-challenge lossiness if for any messages m1,m′1,
. . . ,mµ,m′µ in M′, the statistical distance between the distributions

D :=
{(

pk′, td, c1, . . . , cµ
) ∣∣∣ (pk′, td)← LKG,∀i ∈ [µ] : ci = Enc0(pk′,mi)

}
and

D′ :=
{(

pk′, td, c′1, . . . , c′µ
) ∣∣∣ (pk′, td)← LKG,∀i ∈ [µ] : c′i = Enc0(pk′,m′i)

}
is negligible. We denote the distance by εm-enc-los

PKE0
.

We require γ-spreadness for our construction.

Definition 5.3 (γ-Spreadness). Let PKE0 := (KG0,Enc0,Dec0) be a PKE scheme with message space M,
randomness space R, and ciphertext space C. Given a pk, we define a function

E(pk) := max
m∈M,c∈C

Pr
r

$←R
[c = Enc0(pk,m; r)]

We say PKE0 is γ-spread if
E

(pk,sk)←KG0

[E(pk)] ≤ 2−γ
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5.2 From Lossy Encryption to SO
Let PKE0 := (KG0,Enc0,Dec0) be a lossy encryption scheme with message space M′ and randomness space
R′. Let H : M′ → M and G : M′ ×M → R′ be two hash functions. The FO transformation FO :=
(KG,Enc,Dec) is defined in Figure 25. Here we use the one-time pad as the symmetric part to encrypt the
message. The randomness space of FO is R′.

KG
01 (pk, sk)← KG0
02 return (pk, sk)

Enc(pk,m)
03 r ←M′

04 K := H(r)
05 d := K ⊕m
06 R := G(r, d)
07 e := Enc0(pk, r;R)
08 return (e, d)

Dec(sk, (e, d))
09 m′ := ⊥
10 r′ := Dec0(sk, e)
11 R′ := G(r′, d),K′ := H(r′)
12 if e = Enc0(pk, r′;R′)
13 m′ := d⊕K′

14 return m′

Figure 25: Fujisaki-Okamoto’s transformation FO with lossy encryption PKE0.

As shown in [HHK17], if PKE0 is (1 − δ)-correct and G is modeled as a random oracle, then FO is
(1− qGδ)-correct where qG is the number of queries to G.

We show that FO is tightly SIM-SO-CCA secure if the underlying lossy encryption is efficiently openable
(cf. Theorem 5.4). Otherwise, it is tightly IND-SO-CCA secure (cf. Theorem 5.5).
SIM-SO-CCA Security. We show SIM-SO-CCA security, assuming efficient openability.

Theorem 5.4 FO in Figure 25 is SIM-SO-CCA secure if G and H are modeled as random oracles, and
PKE0 is a lossy encryption with efficient openability and γ-spreadness. Concretely, for any SIM-SO-CCA
adversary A and relation Rel, there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO (A,S, µ,Rel) ≤ Advkey-ind

PKE0
(B) + 2εm-enc-los

PKE0
+ µnDec

2γ
+ 2n2

H

|M|
+ 2n2

G

|R′|
+ 4µ2 + 5µ(qG + qH)

|M′|
,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec, respectively, µ is the number of
challenge ciphertexts, and nG = µ+nDec + qH and nH = µ+nDec + qG are the number of queries (including
the simulator) to G and H, respectively.

Proof. We prove Theorem 5.4 by a game sequence as shown in Figure 26. Game G0 is the original game
except that we use lazy sampling to simulate ROs G and H. We assume that, from G0 to G9, there is no
collision among ri’s and the outputs of H and G. Let nG and nH be the number of queries to G and H,
respectively. By the security game in Figure 26, nG = µ+ nDec + qG and nH = µ+ nDec + qH . We have∣∣∣ Pr

[
REAL-SO-CCAAFO ⇒ 1

]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|
.

Game G1: We modify Dec. Instead of using sk to simulate Dec, we use the randomness recorded in
G to decrypt given ciphertexts (see Lines 40 to 42). This simulation method is exact the same as the one in
the original FO transformation [FO13]. By the argument in [FO13], if PKE0 is γ-spread, then we have∣∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣∣ ≤ µ · nDec

2γ
.

Game G2: We switch the public key to lossy mode by (pk′, td) $← LKG. Since in this game the decryption
oracle are simulated without using sk, we can simulate G2 with pk′. By the key indistinguishability of the
lossy encryption, we get ∣∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣∣ ≤ Advkey-ind
PKE0

(B0).
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Games G0-G7
01 (pk, sk)← KG0 // G0-G1
02 (pk′, td)← LKG // G2-G7
03 (pk, sk) := (pk′, td) // G2-G7
04 (Ma, st)← AH,G

0 (pk)
05 for i ∈ [µ]
06 m[i] := mi ←Ma

07 ri
$←M′

08 r′
i

$←M′ // G3-G7
09 Ki := H(ri)
10 Ki

$←M // G5
11 di := mi ⊕Ki

12 di
$←M // G6-G7

13 Ki := di ⊕mi // G6-G7
14 Ri := G(ri, di)
15 Ri

$←R′ // G5-G7
16 ei := Enc0(pk, ri;Ri)
17 c[i] := (ei, di)
18 out← AOpen,H,G

1 (st, c)
19 return Rel(Ma,m, I, out)

H(r)

20 if ∃i ∈ [µ]\I s.t. r = r′
i // G3-G7

21 abort // G3-G7
22 if ∃i ∈ [µ]\I s.t. r = ri // G4-G7
23 abort // G4-G7
24 if H[r] = ⊥
25 H[r] := K $←M
26 return H[r]

Open(i)

27 G[ri, di] := Ri // G5-G7
28 H[ri] := Ki // G5-G7
29 R′

i := open(sk, pk, ei, Ri, r
′
i) // G7

30 G[r′
i, di] := R′

i // G7
31 H[r′

i] := Ki // G7
32 I := I ∪ {i}
33 return (mi, ri)

Dec(c) // c /∈ c
34 parse (e, d) := c
35 m′ := ⊥
36 r′ := Dec0(sk, e) // G0
37 R′ := G(r′, d),K′ := H(r′) // G0
38 if e = Enc0(pk, r′;R′) // G0
39 m′ := d⊕K′ // G0
40 if ∃(r′, R′) s.t. G[r′, d] = R′

and e = PKE0(pk, r′;R′) // G1-G7
41 K′ := H(r′) // G1-G7
42 m′ := d⊕K′ // G1-G7
43 return m′

G(r, d)

44 if ∃i ∈ [µ]\I s.t. r = r′
i // G3-G7

45 abort // G3-G7
46 if ∃i ∈ [µ]\I s.t. r = ri // G4-G7
47 abort // G4-G7
48 if G[r, d] = ⊥
49 G[r, d] := R $←R′

50 return G[r, d]

Figure 26: Games G0-G7 for proving Theorem 5.4.

Game G3: This is a preparation step. We choose some internal randomness r′i for the opening queries
in the next games. We abort G3 if A queries either H or G with r′i before opening c[i]. Since r′i (for i ∈ [µ])
are internal and never revealed to A, the probability that A queries r′i for some i is qH +qG

|M′| . We also require
all r′i’s are different. By the union bound and collision bound, we have∣∣∣Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣∣ ≤ µ · (qH + qG)
|M′|

+ µ2

|M′|
.

Game G4: We further modify the abort rules in H and G. If A queries H or G with ri and c[i] is
unopened, then G4 aborts. Let Queryj be the event that such abort event occurs in Gj , i.e., A queries H
(resp., G) on ri (resp, (ri, di)) where c[i] is unopened. Then we have∣∣∣Pr

[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣∣ ≤ Pr [Query4] .

Here we cannot bound Pr [Query4] directly yet, since all ei are correlated to H(ri) and G(ri, di). We
will bound Pr [Query4] later. Our strategy for that is to decouple ei with G(ri, di) and H(ri). In the end,
A can query ri for i ∈ [µ]\I (i.e., c[i] is unopened) with negligible probability.

Game G5: We modify the generation of Ri and Ki. In this game, Ri and Ki are chosen uniformly,
instead of using H and G. Moreover, upon Open(i), we set H(ri) := Ki and G(ri, di) := Ri. By the abort
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rules in G and H, A can learn neither H(ri) nor G(ri, di) before opening c[i]. Thus, we have

Pr
[
GA4 ⇒ 1

]
= Pr

[
GA5 ⇒ 1

]
, Pr [Query4] = Pr [Query5] .

Game G6: We further modify the computation of di and Ki. In this game, di are chosen uniformly at
random, and Ki are computed as Ki := di ⊕mi. In G5, Ki is distributed uniformly at random. Hence, this
modification is only conceptual, and we get

Pr
[
GA5 ⇒ 1

]
= Pr

[
GA6 ⇒ 1

]
, Pr [Query5] = Pr [Query6] .

Game G7: Upon Open(i), we compute the opened randomness R′i with respect to r′i and ei using the
open algorithm (see Line 29), and then set G(r′i, di) := R′i and H(r′i) := Ki. Looking ahead, this modification
is necessary for the later modification that c[i] = (ei, di) can be claimed to r′i. A detects this modification
if it queries H(r′i) or G(r′i, di). This modification does not affect the occurring probability of Query7, since
r′i is perfectly hidden and independent of ri. Therefore,∣∣∣Pr

[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]∣∣∣ ≤ µ(qG + qH)
|M′|

, Pr [Query6] = Pr [Query7] .

In G7, we have the following observation: Before A opens i, Ri are independent of ri, r′i,Ki, and di, so ei
can be viewed as a ciphertext that ei := PKE0(pk′, ri;Ri) where the randomness Ri is sampled independently
and uniformly. Therefore, by the lossiness of pk′, we can replace PKE0(pk′, ri;Ri) as another ciphertext
PKE0(pk′, r′′i ;R′′i ) where r′′i and R′′i are sampled independently and uniformly, and A cannot distinguish
such replacement except with εm-enc-los

PKE0
. We move the description of G7-G9 to Figure 27.

Game G8: We modify the generation of ciphertext ei and simulation of Open. In this game, ei is an
encryption of a randomly chosen r′′i with randomness R′′i (see Line 14) which are independent of ri, r′i, Ri, di.
When A opens c[i] = (ei, di), the game simulator reprograms H and G so that c[i] can be “explained” by
message mi and randomness r′i (i.e., Enc(pk,mi; r′i) = c[i]), and returns (mi, r

′
i). By the lossiness of PKE0,

the statistical distance between {PKE0(pk′, ri)}i∈[µ] and {PKE0(pk′, r′′i )}i∈[µ] is εm-enc-los
PKE0

. Hence, we have∣∣Pr
[
GA7 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣ ≤ εm-enc-los
PKE0

, |Pr [Query7]− Pr [Query8]| ≤ εm-enc-los
PKE0

.

Now Pr [Query8] can be bounded. Since ri and r′i are chosen uniformly and independent of c[i] (for
i ∈ [µ]), we have

Pr [Query8] ≤ µ(qG + qH)
|M′|

, Pr[Query7] ≤ εm-enc-los
PKE0

+ µ(qG + qH)
|M′|

.

Since now r′i are independent of ei before opening, and ri is redundant in the simulation, we withdraw
all the abort events defined in H and G, and no longer reprogram H(ri) and G(ri, di).

Game G9: the aborts event defined in H and G are withdraw, and we no longer generate ri and
reprogram H(ri) and G(ri, di) when c[i] is opened. Since in G9, for i ∈ [µ], ri are independent of c[i], and
r′i are independent of c[i] before opening, the probability that A can detect this modification is 2µ(qG+qH )

|M′| .
Note that we have assumed that there is no collision among r′is. So, we have

∣∣Pr
[
GA8 ⇒ 1

]
− Pr

[
GA9 ⇒ 1

]∣∣ ≤ 2µ(qG + qH)
|M′|

+ µ2

|M′|
.
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Games G7-G9
01 (pk′, td)← LKG
02 (pk, sk) := (pk′, td)
03 (Ma, st)← ADec,H,G

0 (pk)
04 for i ∈ [µ]
05 m[i] := mi ←Ma

06 ri
$←M′ // G7-G8

07 r′
i

$←M′

08 di
$←M

09 Ki := di ⊕mi

10 Ri
$←R′

11 ei := Enc0(pk, ri;Ri) // G7
12 r′′

i
$←M′ // G8-G9

13 R′′
i

$←R′ // G8-G9
14 ei ← Enc0(pk, r′′

i ;R′′
i ) // G8-G9

15 c[i] := (ei, di)
16 out← AOpen,Dec,H,G

1 (st, c)
17 return Rel(Ma,m, I, out)

H(r)

18 if ∃i ∈ [µ]\I s.t. r = r′
i // G7-G8

19 abort // G7-G8
20 if ∃i ∈ [µ]\I s.t. r = ri // G7-G8
21 abort // G7-G8
22 if H[r] = ⊥
23 H[r] := K $←M
24 return H[r]

Open(i)

25 R′
i := open(sk, pk, ei, Ri, r

′
i) // G7

26 R′
i := open(sk, pk, ei, R

′′
i , r

′
i) // G8-G9

27 G[r′
i, di] := R′

i

28 H[r′
i] := Ki

29 H[ri] := Ki // G7-G8
30 G[ri, di] := Ri // G7-G8
31 I := I ∪ {i}
32 return (mi, ri) // G7
33 return (mi, r

′
i) // G8-G9

Dec(c) // c /∈ c
34 parse (e, d) := c
35 m′ := ⊥
36 if ∃(r′,K′) s.t. G[r′, d] = R′

and e = PKE0(pk, r′;R′)
37 K′ := H(r′)
38 m′ := d⊕K′

39 return m′

G(r, d)

40 if ∃i ∈ [µ]\I s.t. r = r′
i // G7-G8

41 abort // G7-G8
42 if ∃i ∈ [µ]\I s.t. r = ri // G7-G8
43 abort // G7-G8
44 if G[r, d] = ⊥
45 G[r, d] := R $←R′

46 return G[r, d]

Figure 27: Games G7-G9 for proving Theorem 5.4.

SOpen′

01 (pk′, td)← LKG
02 (pk, sk) := (pk′, td)
03 (Ma, st)← ADec,H,G

0 (pk)
04 Outputs Ma and receives m′′ //S0
05 for i ∈ [µ]
06 di

$←M
07 r′′

i
$←M′, R′′

i
$←R′

08 ei
$← Enc0(pk, r′′

i lR
′′
i )

09 c[i] := (ei, di)
10 out← AOpen,Dec,H,G

1 (st, c)
11 return out //S1

Open(i)

12 r′
i

$←M′

13 Queries Open′(i)
14 Receives and records mi

15 Ki := di ⊕mi

16 R′
i := open(sk, pk, ei, R

′′
i , r

′
i)

17 G[r′
i, di] := R′

i

18 H[r′
i] := Ki

19 return (r′
i,mi)

Figure 28: SIM-SO-CCA simulator S that simulates G9 to conclude the proof of Theorem 5.4. Here we
ignore the details about simulation of H, G, and Dec which are the same as in Figure 27.

Now we can construct a simulator S that interacts with the IDEAL-SO-CCA game and simulate G9 for A.
The construction of S is shown in Figure 28. The main difference between G9 and S is that r′i is sampled
uniformly and Ki is computed when A queries Open(i), which is conceptual. We have assumed that all r′i’s
and all K’s are pair-wise distinct, and the outputs of ROs H and G are different. Hence, we have∣∣∣ Pr

[
GA9 ⇒ 1

]
− Pr

[
IDEAL-SO-CCASFO ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|
.

36



Combining all the above difference, we conclude Theorem 5.4 as∣∣∣ Pr
[
REAL-SO-CCAAFO ⇒ 1

]
− Pr

[
IDEAL-SO-CCASFO ⇒ 1

]∣∣∣
≤ Advkey-ind

PKE0
(B) + 2εm-enc-los

PKE0
+ µnDec

2γ
+ 2n2

H

|M|
+ 2n2

G

|R′|
+ 4µ2 + 5µ(qG + qH)

|M′|
.

IND-SO-CCA Security. We show IND-SO-CCA of the construction. For that, we do not have to assume
efficient openability.
Theorem 5.5 FO in Figure 25 is IND-SO-CCA secure (Definition 2.16) if G and H are modeled as random
oracles, and PKE0 is a lossy encryption and γ-spreadness. Concretely, for any IND-SO-CCA adversary A,
there exists B such that:

AdvIND-SO-CCA
FO (A, µ) ≤ 2

(
Advkey-ind

PKE0
(B) + 2εm-enc-los

PKE0
+ µnDec

2γ
+ n2

H

|M|
+ n2

G

|R′|
+ 3µ2 + 5µ(qG + qH)

|M′|

)
,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec, respectively, µ is the number of
challenge ciphertexts, and nG = µ+nDec + qH and nH = µ+nDec + qG are the number of queries (including
the simulator) to G and H, respectively.
Proof. The proof idea of Theorem 5.5 is the same as the one of Theorem 5.4. In G10 of the proof of
Theorem 5.4 (see Figure 27), m[i] is independent of c[i] if c[i] is unopened. Therefore, we can resample m[i]
for i ∈ [µ]\I, and finally change the game from IND-SO-CCAAPKE0,0 to IND-SO-CCAAPKE0,1. Note that now
the algorithm open does not need to be efficient, since we do not need to construct an efficient simulator in
IND-SO-CCA.

The games of the proof is shown in Figure 29. Similar to the argument in Theorem 5.4, we assume that
from G0 to G9, there is no collision among all ri’s, Ri’s, all K’s, and the outputs of ROs G and H. We have∣∣∣ Pr

[
IND-SO-CCAAPKE0,0 ⇒ 1

]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ n2
H

|M|
+ µ2

|M′|
+ n2

G

|R′|
The game transitions from G0 to G8 in Figure 29 are exactly the same as the transitions in the proof of

Theorem 5.4. Therefore, we have∣∣ Pr
[
GA0 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]∣∣ ≤ Advkey-ind
PKE0

(B0) + 2εm-enc-los
PKE0

+ µnDec

2γ
+ 2µ2

|M′|
+ 5µ(qG + qH)

|M′|
Game G9: We resample m[i] for all i ∈ [µ]\I. Since in G8, c[i] is independent of m[i] if i ∈ [µ]\I, this

modification does not change A’s view. So we have

Pr
[
GA8 ⇒ 1

]
= Pr

[
GA9 ⇒ 1

]
.

Now G9 is the same as IND-SO-CCAAPKE0,1 if we undo all modifications made in G8-G0. For simplicity,
we ignore the details. We have∣∣∣Pr

[
GA10 ⇒ 1

]
− Pr

[
IND-SO-CCAAPKE0,1 ⇒ 1

]∣∣∣
≤ Advkey-ind

PKE0
(B0) + 2εm-enc-los

PKE0
+ µnDec

2γ
+ n2

H

|M|
+ n2

G

|R′|
+ 3µ2 + 5µ(qG + qH)

|M′|
Combining all the above probability difference, we conclude Theorem 5.5 as∣∣∣ Pr

[
IND-SO-CCAAPKE0,0 ⇒ 1

]
− Pr

[
IND-SO-CCAAPKE0,1 ⇒ 1

]∣∣∣
≤ 2

(
Advkey-ind

PKE0
(B0) + 2εm-enc-los

PKE0
+ µnDec

2γ
+ n2

H

|M|
+ n2

G

|R′|
+ 3µ2 + 5µ(qG + qH)

|M′|

)
.
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Games G0-G9
01 (pk, sk)← KG0 // G0-G1
02 (pk′, td)← LKG // G2-G9
03 (pk, sk) := (pk′, td) // G2-G9
04 (Samp,ReSamp, st0)← A0(pk)
05 m← Samp
06 for i ∈ [µ]
07 ri

$←M′

08 r′
i

$←M′ // G3-G9
09 Ki := H(ri)
10 Ki

$←M // G5
11 di := mi ⊕Ki

12 di
$←M // G6-G9

13 Ki := di ⊕mi // G6-G9
14 Ri := G(ri, di)
15 Ri

$←R′ // G5-G7
16 ei := Enc0(pk, ri;Ri) // G0-G7
17 r′′

i
$←R′ // G8-G9

18 ei ← Enc0(pk, r′′
i ) // G8-G9

19 c[i] := (ei, di)
20 st1 ← AOpen,Dec,G,H

1 (c, st0)
21 m := ReSamp(I,m) // G9
22 b′ ← ADec,G,H

2 (st1,m)
23 return b′

H(r)

24 if ∃i ∈ [µ]\I s.t. r = r′
i // G3-G9

25 abort // G3-G9
26 if ∃i ∈ [µ]\I s.t. r = ri // G4-G9
27 abort // G4-G9
28 if H[r] = ⊥
29 H[r] := K $←M
30 return H[r]

Open(i)

31 G[ri, di] := Ri // G5-G8
32 H[ri] := Ki // G5-G8
33 R′

i := open(sk, pk, ei, r
′
i) // G7-G9

34 G[r′
i, di] := R′

i // G7-G9
35 H[r′

i] := Ki // G7-G9
36 I := I ∪ {i}
37 return (ri,mi) // G0-G7
38 return (r′

i,mi) // G8-G9

Dec(c) // c /∈ c
39 parse (e, d) := c
40 m′ := ⊥
41 r′ := Dec0(sk, e) // G0
42 R′ := G(r′, d),K′ := H(r′) // G0
43 if e = Enc0(pk, r′;R′) // G0
44 m′ := d⊕K′ // G0
45 if ∃(r′, R′) s.t. G[r′, d] = R′

and e = PKE0(pk, r′;R′) // G1-G9
46 K′ := H(r′) // G1-G9
47 m′ := d⊕K′ // G1-G9
48 return m′

G(r, d)

49 if ∃i ∈ [µ]\I s.t. r = r′
i // G3-G9

50 abort // G3-G9
51 if ∃i ∈ [µ]\I s.t. r = ri // G4-G9
52 abort // G4-G9
53 if G[r, d] = ⊥
54 G[r, d] := R $←R′

55 return G[r, d]

Figure 29: Games G0-G9 for proving Theorem 5.4.

5.3 Two Instantiations from DDH
We instantiate FO using the DDH-based lossy encryption from Bellare et al. [BHY09] and Hofheinz et al.
[HJR16]. The one from Bellare et al. does not have efficient openability and hence it only gives us
An Instantiation with Bellare et al.’s Lossy Encryption [BHY09]. We use Bellare et al.’s DDH-
based lossy encryption to instantiate the generic construction FO. Let G be a group with prime order p and
generator g, H : G → M and G : G ×M → Z2

p be hash functions. The resulting scheme FO1 is shown
in Figure 30. Bellare et al.’s DDH-based lossy encryption does not have efficient opener [BHY09], and it is
log(p)-spread, thus by Theorem 5.5 , the resulting scheme FO1 in Figure 30 has tight IND-SO-CCA security.

Corollary 5.6 FO1 in Figure 30 is IND-SO-CCA secure (Definition 2.16) if the DDH problem is hard on G
and G and H are random oracles. Concretely, for any IND-SO-CCA adversary A, there exists B such that:

AdvIND-SO-CCA
FO1

(A, µ) ≤ 2(AdvDDH
G (B) + 2µ

p
+ µnDec

p
)

+ 2n2
H

|M|
+ 2n2

G

p2 + 6µ2 + 5µ(qG + qH)
p

,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec, respectively, µ is the number of
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KGfo
1

01 (x, ω) $← Z2
p

02 g0 := g,X := gx
0

03 g1 := gω, h := gx
1

04 pk := (X, g1, h)
05 sk := x
06 return (pk, sk)

Encfo
1 (pk,m)

07 s← G
08 K := H(s)
09 d := K ⊕m
10 (r0, r1) := G(s, d)
11 R0 := gr0

0 gr1
1

12 R1 := Xr0hr1 · s
13 return ((R0, R1), d)

Dec(sk, ((R0, R1), d))
14 m′ := ⊥
15 s′ := R1/R

x
0

16 (r′
0, r

′
1) := G(s′, d)

17 K′ := H(s′)
18 R′

0 := g
r′

0
0 g

r′
1

1
19 R′

1 := Xr′
0hr′

1 · s′

20 if (R′
0, R

′
1) = (R0, R1)

21 m′ := d⊕K′

22 return m′

Figure 30: Scheme FO1 from instantiating FO using the DDH-based lossy encryption in [BHY09].

challenge ciphertexts, and nG = µ+ nDec + qH and nH = µ+ nDec + qG are the number of queries to G and
H, respectively.

An Instantiation with Hofheinz et al.’s Lossy Encryption [HJR16]. We use Hofheinz et al.’s DDH-
based lossy encryption to instantiate FO. Following the notation in [HJR16], we use the matrix Diffie-Hellman
notation [EHK+13] to describe this scheme. Let G be a group with prime order p and generator g. Let
A := (ai,j)(i,j)∈[l]×[k] be a matrix in Zl×kp , then the group representation of A, denoted as [A], is defined as
(gai,j )(i,j)∈[l]×[k]. Given r and [A], one can efficiently compute [Ar] (if their sizes match). We refer [EHK+13]
for more details.

Let N be a positive integer. Let H : {0, 1}N →M and G : {0, 1}N ×M→ ZN+1
p be two hash functions.

Let h : G → {0, 1} be a universal hash function. The instantiated PKE scheme FO2 is shown in Figure 31.
Hofheinz et al.’s DDH-based lossy encryption has efficient opener, and it is log(p)-spread, thus by Theorem 5.4,
FO2 has tight SIM-SO-CCA security.

KGfo
2

01 A0
$← Z1×(N+1)

p

02 T $← ZN×1
p

03 A1 := TA0 ∈ ZN×(N+1)
p

04 pk := ([A0], [A1])
05 sk := T
06 return (pk, sk)

Encfo
2 (pk,m)

07 s← {0, 1}N

08 K := H(s)
09 d := K ⊕m
10 r := G(s, d) ∈ ZN+1

p

11 [R0] := [A0r] ∈ G
12 [Z] := [A1r] ∈ GN

13 for i ∈ [N ]
14 ci := h([Z]i)⊕ si

15 c := c0c1...cN

16 return (([R0], c), d)

Decfo
2 (sk, ([R0], c), d)

17 m′ := ⊥
18 [Z′] := [TR0]
19 c1c2...cN =: c
20 for i ∈ [N ]
21 s′

i := ci ⊕ h([Z′]i)
22 s′ := s′

1s
′
2...s

′
N

23 K′ := H(s′), r′ := G(s′, d)
24 if [R0] = [A0r′]
25 m′ := d⊕K′

26 return m′

Figure 31: Scheme FO2 from instantiating FO using the DDH-based lossy encryption with efficient opener as
in [HJR16].

Corollary 5.7 FO2 in Figure 31 is SIM-SO-CCA secure (Definition 2.15) if the DDH problem is hard on G.
Concretely, for any SIM-SO-CCA adversary A and relation Rel, there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO2

(A,S, µ,Rel) ≤ N · AdvDDH
G (B) + 2µ

p
+ µnDec

p

+ 2n2
H

|M|
+ 2n2

G

pN+1 + 4µ2 + 5µ(qG + qH)
2N

,

where qH , qG, and nDec are the numbers of A’s queries to G,H, and Dec, respectively, µ is the number of
challenge ciphertexts, and nG = µ+nDec + qH and nH = µ+nDec + qG are the number of queries (including
the simulator) to G and H, respectively.
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5.4 An Instantiation from LWE
We give an instantiation based on the LWE assumption. For that, the reader may recall the lattice background
introduced in Section 4.2. The well-known Regev encryption scheme [Reg05] and its extension to multiple
message bits from [PVW08] is a lossy encryption. We already presented this scheme in Section 4.2. In
Figure 32, we present the scheme that results from applying our second transformation to it.

KGfo
LWE

01 sk := S $← Zn×ℓ
q

02 E← Dm×ℓ
Z,s

03 A $← Zn×m
q

04 Y := S⊤A + E⊤ ∈ Zℓ×m
q

05 pk := (A,Y)
06 return (pk, sk)

Encfo
LWE(pk,m)

07 r ← {0, 1}ℓ

08 K := H(r)
09 d := K ⊕m
10 R := G(r, d)
11 x := SampG(s′,m;R)
12 c := Ax
13 v := Yx + Encode(r)⊤

14 return ((c,v), d)

Decfo
LWE(sk = S, ((c,v), d))

15 m′ := ⊥
16 r′ := Decode(v⊤ − c⊤S)
17 R′ := G(r′, d),K′ := H(r′)
18 x := SampG(s′,m;R′)
19 if c = Ax ∧ v = Yx + Encode(r′)⊤

20 m′ := d⊕K′

21 return m′

Figure 32: Scheme PKEfo
LWE instantiating FO using the multi-bit extension of the Regev encryption

scheme [Reg05, PVW08]. Here, SampG(s′,m;R) is an algorithm that samples x ← Dm
Z,s′ using random

coins R.

In Section 4.2, we already showed correctness, and the proof of Lemma 4.3 implicitly shows key indistin-
guishability and lossiness. It remains to sketch spreadness and openability. We start with spreadness. Fix
any public key pk = (A,Y) ∈ Zn×mq ×Zℓ×mq , any ciphertext (c0,v0) ∈ Znq ×Zmq , and any message m ∈ {0, 1}ℓ.
Then, taking the probability over the random coins of the encryption algorithm Enc we have

Pr [Enc(pk,m) = (c0,v0)] = Pr
x←Dm

Z,s′

[
(Ax,Yx + Encode(m)⊤) = (c0,v0)

]
≤ Pr

x←Dm
Z,s′

[Ax = c0] .

For all but a negligible fraction of matrices A, the distribution of Ax is close to uniform (see Lemma 2.10),
and therefore above probability is (up to a negligible difference) 1/qn. This shows γ-spreadness for some
γ ≥ ω(log λ), which is sufficiently large. Next, we sketch the openability of the scheme. For openability, we
are allowed to set up the public key pk = (A,Y) with a trapdoor. The public key should be statistically close
to uniform, if we recall the lossiness argument implicitly contained in the proof of Lemma 4.3. Using our
trapdoor, it should be possible to open a ciphertext c = (c,v) to any message m by giving a randomness with
which m encrypts to c. In our setting, we can set up the matrix [A⊤,Y⊤]⊤ with a lattice trapdoor [GPV08,
MP12], which allows us to efficiently sample Gaussian preimages with respect to [A⊤,Y⊤]⊤. The randomness
x that we have to provide to open a ciphertext should be Gaussian and satisfy[

c
v

]
−

[
0

Encode(m)⊤
]

=
[
A
Y

]
x.

A lattice trapdoor for [A⊤,Y⊤]⊤ lets us sample such an x efficiently, if we make appropriate minor adjust-
ments to the parameters given in Section 4.2.

One may think we are finished here. However, if we look more closely, we need to sample the random
coins for the encryption algorithm. This is not x, but rather the uniformly random coins R going into
the algorithm that samples x ← Dm

Z,s′
2. As in Line 11, we call this algorithm SampG(s′,m;R). Let us

sketch how we can efficiently sample correctly distributed coins R, if SampG is implemented appropriately.
Concretely, we consider the implementation of SampG using rejection sampling as suggested in [GPV08].
The implementation samples each coordinate x of x independently as follows:

2This is because in the proof of SIM-SO-CCA security, we would open the ciphertext and then program the random oracle
G (see Line 10 in Figure 32) accordingly. If we can only sample a suitable x, we would have to rely on a non-standard random
oracle that outputs Gaussian vectors instead of uniform strings.
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1. Set i = 0.

2. Repeat the following until the first xi is accepted:

(a) Set i = i+ 1.
(b) Sample uniformly at random an xi $← Z∪[−d, d]. Here, d is a bound that depends on the Gaussian

parameter s′. It satisfies that with overwhelming probability, a Gaussian with parameter is in
Z ∪ [−d, d].

(c) Let k/l be a rational number statistically close to ρ(xi) ∈ [0, 1], where ρ is a function that only
depends on s′.

(d) Accept xi with probabilility k/l. In other words, sample an integer ri $← [l] and accept xi if and
only if ri ≤ k.

3. Return xi of ⊥ if no xi was accepted within a maximal number of iterations.

We refer to this algorithm as the actual sampler. Now, given a Gaussian x, we can sample uniformly random
coins R = ((xi)i, (ri)i), conditioned on x being sampled from SampG, as follows:

1. If x /∈ Z ∪ [−d, d], return ⊥. This occurs with negligible probability.

2. Run the sampling algorithm to determine a number L of iterations.

3. For i = 1 to L− 1, repeat the following:

(a) Sample uniformly at random an xi
$← Z ∪ [−d, d].

(b) Let k/l be a rational number negligibly close to ρ(xi).
(c) Sample an integer ri $← {k + 1, . . . , l}.

4. Let k/l be a rational number negligibly close to ρ(x).

5. Sample an integer rL $← [k] and set xL := x.

6. Return R :=
(
(xi)Li=1, (ri)Li=1

)
.

We refer to this algorithm as the inverse sampler. Now, we briefly explain why for a Gaussian x the
distribution of (x,R) output by this inverse sampler is the same as the distribution of (x,R) in the actual
sampler conditioned on the event that the actual sampler outputs x. For that, first notice that the number of
iterations L in both algorithms is distributed exactly the same. Conditioning on a fixed number of iterations
L and on the output being x, consider the distributions of the ri and xi. First, consider i < L. Here, xi is
sampled from the same distribution in both samplers. Since i < L, we know that xi is not accepted in the
actual sampler, meaning that ri is distributed uniformly over {k + 1, . . . , l}, as it is in the inverse sampler.
Finally, consider i = L. Here, as we condition on the output being x, we know that in the actual sampler
we have xL = x. The same holds in the inverse sampler. Further, as xL is accepted, the distribution of rL
in the actual sampler is uniform over [k], and so it is in the inverse sampler.

Corollary 5.8 PKEfo
LWE in Figure 32 is IND-SO-CCA secure (Definition 2.16) if the LWEn,m,q,DZ,s

assump-
tion holds and G and H are random oracles. Concretely, for any SIM-SO-CCA adversary A and relation
Rel, there exists a simulator S and B such that:

AdvIND-SO-CCA
PKEfo

LWE
(A,S, µ,Rel) ≤ ℓ · AdvLWEn,m,q,DZ,s (B) + negl(λ).
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