
Practical Privacy-Preserving Machine Learning using Fully
Homomorphic Encryption

Michael Brand
School of Computing Technologies, RMIT University

Melbourne, Vic, Australia
INCERT GIE

Leudelange, Luxembourg
michael.brand@rmit.edu.au

Gaëtan Pradel∗
Royal Holloway, University of London

Information Security Group
Egham, United Kingdom

INCERT GIE
Leudelange, Luxembourg

gpradel@incert.lu

ABSTRACT
Machine learning is a widely-used tool for analysing large datasets,
but increasing public demand for privacy preservation and the
corresponding introduction of privacy regulations have severely
limited what data can be analysed, even when this analysis is for
societal benefit. Homomorphic encryption, which allows compu-
tation on encrypted data, is a natural solution to this dilemma,
allowing data to be analysed without sacrificing privacy. Because
homomorphic encryption is computationally expensive, however,
current solutions are mainly restricted to use it for inference and
not training.

In this work, we present a practically viable approach to privacy-
preserving machine learning training using fully homomorphic
encryption. Our method achieves fast training speeds, taking less
than 45 seconds to train a binary classifier over thousands of sam-
ples on a single mid-range computer, significantly outperforming
state-of-the-art results.

KEYWORDS
Privacy, Fully Homomorphic Encryption, Machine Learning Train-
ing, Support Vector Machines

1 INTRODUCTION
In recent years, Machine Learning (ML) techniques have become
increasingly popular for analysing and extracting insights from
large and complex datasets. With the rise of powerful computing
systems and the availability of vast amounts of data from various
domains, ML has found applications in numerous fields such as
healthcare, finance, biometric recognition, surveillance and many
others. As examples, ML is used in the medical field to analyse
patient data to help with disease diagnosis and treatment, while in
finance, it is used for fraud detection, risk assessment, and trading
strategies [2, 48].

However, the use of such techniques on sensitive data has raised
significant concerns regarding data privacy [3, 36]. For example,
medical data contains highly sensitive personal information and

∗Corresponding author

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–15
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

financial data includes confidential transactional details that require
protection. In response, privacy-related regulations such as the
General Data Protection Regulation (GDPR) [22] in the European
Union and the Health Insurance Portability and Accountability Act
(HIPAA) [12] in the United States of America have been enacted,
which require data holders to preserve the privacy of sensitive or
personally-identifiable data.

Numerous techniques have been explored for enhancing privacy
in data processing and analysis. These include cryptography, differ-
ential privacy, federated learning, and the use of secure enclaves
[36, 56], with many tasks requiring a combination of such tools
[39, 54].

In our work, we chose to tackle the privacy challenge using
homomorphic encryption (HE) [40]. Introduced in 1978 by Rivest et
al. [52], HE enables computations to be performed on encrypted
data without requiring decryption, so that the privacy of the data
can be preserved throughout the entire analysis process, i.e. both
while the data is at rest and in use. Specifically, our goal was to use
HE in order to enable privacy in Machine Learning, by introducing
practical tools that will allow the training of newMachine Learning
models to be performed over encrypted data.

The idea of Privacy Preserving Machine Learning (PPML) is,
itself, not new [1]. However, despite numerous notable advance-
ments made over the past two decades (see [36] for a survey), PPML
remains computationally challenging. As an example, consider re-
cent results by Chillotti et al. [19] that presented PPML inference
using the Concrete library [18] which implements a fast variant
of the CGGI scheme [17], a fully homomorphic encryption (FHE)
scheme. Despite great efforts by the designers to render FHE prac-
tical, the private inference performed by their PPML models of
various complexity still impose a significant computational burden.
On a standard personal computer, using 128-bit equivalent security,
the computation time required for even a single FHE-encrypted
inference ranged from over 100 seconds to almost 500 seconds,
representing a non-trivial computational expense. Furthermore,
their most complex algorithm for performing FHE-encrypted infer-
ence still exhibits degradation of more than 10% in classification
accuracy, compared to inference on unencrypted data.

Moreover, similar to other related works, Chillotti et al. solely
addresses the use of encrypted data for ML inference. Training is
done exclusively in plaintext. This is because training ML models
is a far more computationally-intensive task than inference, and
performing it on encrypted data is unavoidably much slower and

1

https://orcid.org/0000-0001-9447-4933
https://orcid.org/0000-0002-1458-7848
https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

more resource-intensive still, rendering it impractically slow under
most current approaches.

In this work, we focus exclusively on tackling the practicality of
the much-heavier model training phase. We investigate training ML
models on encrypted data using levelled FHE, which is a relatively
light flavour of FHE computation. (See Section 2.1 for an explanation
of levelled FHE and its relation to other types of HE computation.)

Levelled FHE can be used whenever the desired algorithm’s
multiplicative depth can be bounded in advance. We show how
such bounding is always possible to do in the context of PPML
training, and how we were able to design our algorithms so as to
minimise the computational depth required for such training.

To demonstrate our technique in a simple ML context, we se-
lected the Support Vector Machine (SVM) learning algorithm as our
underlying ML model to be trained.

SVM is a widely used algorithm for classifying data in machine
learning due to its ability to handle complex datasets and produce
robust predictions.

Here, we show how to train a linear SVM, although the same
basic technique can also be applied to more complex models.1

In order to demonstrate practically feasible model training under
FHE, overcoming the computational challenges involved, we em-
ploy a well-established technique known as the client-assisted (CA)
computation model. The existing approaches for CA are reviewed
in Section 1.3, and our own flavour of it is explained in Section 1.4.

In this paper, we show that CA computation can be used to both
significantly enhance the speed of PPML and to expand the scope
of what can be performed under levelled FHE, to the extent that
training machine learning models over encrypted data becomes
practical and scalable.

1.1 Problem statement
1.1.1 Motivating example. Consider the following scenario from
the medical world, in which a research institute wants to develop
a new tool for diagnosing a particular condition, a tool which the
research institute then intends to sell to hospitals. The hospitals
are expected to perform various tests in order to measure multiple
patient attributes, and the tool will use the test results in order
to determine the likelihood that the patient is suffering from the
condition in question. This will offer the hospitals better diagnoses,
and enable them to be more judicious in the choice of follow-up
tests, thus eliminating more invasive testing where it is superfluous
and improving patient care.

For this, the research institute wants to develop a new ML model
that will drive the diagnosis tool. To train such a model, the research
institute would optimally need access to the widest possible patient
population. For each patient, the research institute would need both
the patient’s initial test results and their final diagnosis. The test
results will form the attributes fed into the model, and the final
diagnosis will be the model’s target variable.

Hospitals have access to all this information. However, due to
privacy regulations, the hospitals cannot share it with the research
institute.

1During research, we also trained our SVM with non-linear features, but these did not
improve overall accuracy, so we do not report the results here.

The patients themselves have access to their own information,
but while they may entrust their own health providers with han-
dling it, not all of them will wish to entrust the research institute
with the same data.

One can imagine here three potential populations of patients. The
first is the patients who do not want to assist the research institute
in building its models. For them, privacy regulation ensures that
the data is theirs, and cannot be used without their consent. The
second is the patients who feel free to provide their data (including
both test results and final diagnosis) to the research institute, for the
purpose of developing the model. This is the group that traditionally
models were built on, and, in our scenario, can still be used, e.g., as
a verification group and to provide various types of sanity-checking
for the newly-developed model.

We believe that this still leaves out, however, a large portion of
the population. This is namely the population of patients who do
wish to assist in the development of the new diagnosis tool, but do
not wish to expose for this their personal details. They wish their
details to remain private, and wish their participation in the model
training population to remain anonymous.

It is this third group that our research results aim to cater for.
Our PPML paradigm allows these patients to contribute their data
to potentially-life-saving research, without having to sacrifice for
this their privacy. Similar instances of this problem, which can be
tackled with our methods, appear also beyond medical research,
wherever data analysis is done with the ultimate goal of powering
societal benefits. Allowing this third group of participants into such
models will enable models to be trained on larger training sets, and
ones less biased by participant self-selection.

1.1.2 Privacy model. The motivating example above dictates the
privacy model that our solution must work under. This privacy
model is somewhat more nuanced than typically used in cryp-
tography, in that parties are not simply considered “trusted” or
“untrusted”. Rather, each of the actors in our model is considered
trusted in certain dimensions by certain other actors.

To describe the privacy model explicitly, let us first introduce
the relevant actors.

Client: This is the research institute in our motivating example. It
is the party building the new model.

Model users: These are the hospitals in our example. They ulti-
mately receive the model and use it. In our example, hospitals
use the model in order to diagnose their own new patients,
after the model is fully developed.

Data Owners: These are the patients in our motivating example.
They own their own data, which the model is then trained
on.

Cloud: This final actor is introduced here for the first time. It was
not mentioned in our motivating example because this actor
is not part of our problem scenario. Instead, it is part of
our solution design. The Cloud performs the majority of the
processing in computing the newmodel. In our example, this
role would presumably be taken by a cloud service provider
hired by the research institute for this purpose.

Because the data being processed in this problem scenario be-
longs to the Data Owners, they are the party that determines, for

2

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

the most part, who is trusted to what. Specifically, the trust mapping
of the various actors is as follows.

Client: The Data Owners are willing to have their data used for
the purpose of building a new ML model. The end model
will be visible to the Client, and the Data Owners are equally
willing to share with the Client also other non-identifiable
statistics for this purpose. As a general rule, if a value is the
sum of a particular statistic, computed symmetrically over
the data of each Data Owner, it is usually considered non-
identifiable, and permitted for the Client to see. The Client
must not be exposed to personal data, however, including
both personal attributes (e.g., test results), and the value of
the target variable for each participant. In particular, the
Client does not know who is participating in their model
build.

Model users: The Model Users receive the model only once it is
fully constructed. It is at this point no longer considered
privacy sensitive from a Data Owner point of view. Model
users use the derived model in plaintext: when a new patient
is treated at a hospital, the treating doctors are expected to
know both their test results and any diagnoses in order to
provide optimal treatment. (New patients will consent to
this, as is the case in any medical treatment.)

Data Owners: Data Owners are clearly exposed to their own data.
However, Data Owners have no trust relationship with any
other Data Owner. Whether a person participates as a Data
Owner in the construction of any new diagnosis tool, and
what data they contribute, is entirely their own private in-
formation.

Cloud: The trust model for the Cloud is the most nuanced. Data
Owners do not trust the Cloud with any of their personal
data, and not even with general statistics about their data.
However, for the Cloud to be able to process Data Owners’
data, the Data Owners must trust the Cloud in two important
ways. First, Data Owners (and by extension also the rest
of this data ecosystem) must trust the Cloud to truthfully
process their data as per the instructions given to the Cloud
by the Client. The Cloud is expected to not maliciously plant
bad data into the model. Second, Data Owners must trust
the Cloud not to collude with the Client against the wishes
of the Data Owners. In both cases, this is on a par with the
trust that one normally extends to cloud hosting services,
and underpins much of the viability of the Internet economy
at large.

As can be seen, in this problem scenario it is only model training
that requires a privacy-preserving implementation. Once the model
is trained, it can be viewed in plaintext by the Client, which allows
the Client to package it as efficiently-running software for large-
scale deployment. It will be run on plaintext data, and will return
plaintext results. It is still possible that the Client, when packag-
ing the model in software, may choose to use various software,
hardware and/or legal protections in order to protect the Client’s
investment and prevent the model from being, e.g., exploited by
commercial competitors, but any such protection is beyond the
scope of our present work.

1.2 General solution design
Homomorphic encryption typically involves the generation of a
key triplet. This key triplet is composed of a secret key used for
decryption, a public key for encryption, and an evaluation key for
manipulating the encrypted data such as by performing on it arith-
metic operations (but not enabling encryption or decryption).

In our general solution design, which addresses the above prob-
lem statement, it is the Client who generates the key triplet. While
the secret key is kept solely by the Client, the public key is made
public (and by this reaches any Data Owners who may wish to par-
ticipate in the model build), and the evaluation key is shared with
the Cloud. This is the only case of direct communication between
the Client and the Data Owners.

Data Owners who wish to participate can now do so by encrypt-
ing their data and sending it directly to the Cloud for processing.
Because the Cloud has no access to the decryption key, their privacy
is preserved.2

In principle, the Cloud could have at this point performed all
processing under homomorphic encryption, sending only the final
output to the Client, for the Client to decrypt. In our solution,
however, we show that far better results can be obtained by use
of a client-assisted computation model. In this model, the Cloud
can communicate information to and from the Client. We show
that despite the fact that all such communication is required to be
encrypted, privacy non-sensitive general statistics, it can still be
used effectively to speed up the work of the Cloud.

1.3 Related work
1.3.1 Privacy during inference. Cryptographic privacy-enhancing
technologies (PETS) are many, including, e.g., such tools as func-
tional encryption and garbled circuits [56]. The following is a review
of literature related specifically to HE-powered PPML, which we
use to introduce some of the techniques we have built upon. Within
this literature, it is notable that several works employ distributed
computation in conjunction with HE to maintain privacy.

We begin by presenting the research efforts that concentrate
solely on the inference phase of PPML, which employ FHE for
encryption without incorporating distributed computation.

A pioneering work in this field was Gilad-Baschrach et al.’s
CryptoNets [24], from 2016. Here, a neural network model that
was previously trained on clear data was shown to be usable for
prediction over new encrypted inputs, by using FHE encryption for
the data and performing the prediction under this encryption. The
solution was applied on the MNIST dataset [34], demonstrating a
99% accuracy for a throughput of 59, 000 predictions per hour.

One of the main challenges that Gilad-Baschrach et al. had to ad-
dress in order to use HE in neural networks is that all homomorphic
operations that are enabled even by FHE are polynomial evalua-
tions on the encrypted inputs. This makes it difficult to compute in
the encrypted domain even such common functions as taking the
square root of a number, comparing numbers, or even testing for
equality. [11].

2Technologies that hide, e.g., Data Owners’ IP addresses when such data is uploaded
to the Cloud are beyond the scope of the present paper, but can certainly be used to
ensure that Data Owners do not need to reveal any of their private identifiers to the
Cloud for this purpose.

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

Unfortunately, such functions form a fundamental part of neural
networks, e.g. appearing in typical neuron activation functions [44].

The solution used by CryptoNets was polynomial substitution.
Namely, the (non-polynomial) sigmoid activation function of the tar-
get neural network was replaced by squaring, a simple-to-compute,
low-degree polynomial function.

An alternative method to compute a non-polynomial function
over encrypted data in HE-powered PPML is to prepare in advance
a look-up table for the function over a discrete set of values. A
solution of this type was presented by Crawford et al. [21].

Another commonly used technique, which is the one we applied
in our work, is low-degree polynomial approximation. This has
been used, e.g., by Chabanne et al. [13] to extend CryptoNets. Their
neural network architecture was implemented with a ReLU activa-
tion function that was approximated using a polynomial function to
support computation over encrypted data. In this paper, we present
a novel method that enabled us to approximate the ReLU function
significantly more accurately, however.

An important component in effective use of low-degree polyno-
mial approximations is batch normalisation, a technique that aligns
the distribution of inputs to the approximated function, thus guard-
ing against function evaluations outside the well-approximated
domain. This, too, is a technique employed by Chabanne et al. that
our paper incorporates as well.

The authors achieved a model with minimal accuracy degra-
dation between private and non-private inference. However, no
timing results were reported.

In 2019, Hesamifard et al. [28] presented another work based
on the use of polynomial approximations of the ReLU function. A
range of approximation techniques was evaluated in the paper,
including the application of numerical approximation, the Taylor
series method, Chebyshev polynomials (in both a standard and a
modified form) and an approach based on the derivative of the ReLU
function. They found that the more successful approach is the latter,
which is based on the observation that the derivative of the ReLU
function is a step function, and that the sigmoid function can be
used as a smooth approximation to it. Thus, they approximated
the sigmoid function with a polynomial and then integrated it to
obtain an approximation of the ReLU function. By contrast, our
method is based on approximating the “second derivative” of the
ReLU function using Chebyshev polynomials, and then integrating
it twice. Despite using only a low-degree polynomial approximation,
Hesamifard et al. achieved 99% accurary on the MNIST dataset, and
were able to run at a throughput of 164, 000 predictions per hour,
outperforming CryptoNets, even with Chabanne et al.’s extensions.

In 2022, Lee et al. [35] introduced privacy-preserving ML infer-
ence that uses RNS-CKKS [15], a bootstrapped variant of the CKKS
scheme [16]. CKKS was itself an important milestone in PPML, in
that it was the first HE scheme that could perform floating point
computation, thus being practically applicable for defining ML al-
gorithms. While the accuracy of the model on encrypted data was
high, at three hours per classification it was still much too slow to be
practically usable, highlighting the limitations of using unqualified,
non-levelled FHE schemes for ML.

Similar to the works on neural networks, PPML inference using
FHE has also been implemented over SVM models [6, 30]. Most
recently, Badawi et al. [5] employed CKKS with 128-bit equivalent

security parameters for SVM prediction. The authors reached an
execution time of 1.25 seconds per prediction on a multi-core CPU
platform without accuracy degradation due to the use of FHE.

All solutions presented so far, despite tackling only the inference
phase on encrypted data, remain relatively slow. As discussed, one
option is to partner HE and distributed computation in order to
enhance the overall performance and get closer to real-world appli-
cability.While this can be done via standard parallelisationmethods,
other alternatives, with their own advantages and disadvantages,
exist.

An example is Secure Multi-Party Computation (MPC) [25]. MPC
methods rely on the separation of computation in a way that each
party individually is not exposed to private information, but a col-
lusion of all parties breaks any privacy preservation. Such methods
are typically characterised by much lighter computations, as com-
pared with FHE methods, but heavy communication loads.

MPC methods were first typically restricted to only work under
partial homomorphic encryption (PHE) schemes. These are schemes
that support only one type of group operation on encrypted data,
are not universal in their computation capabilities, and have been
shown to not be resilient against quantum attacks [8]. PHE is dis-
cussed in greater detail in Section 2.

The earliest works combining HE with MPC are Barni et al. [7]
and Orlandi et al. [45], who managed to execute the inference phase
of a small neural network in around 10 seconds. These performance
results were obtained thanks to an interactive protocol involving a
server and a client, and utilise an additive PHE scheme.

Even without MPC, the use of PHE instead of FHE has been
a popular avenue for obtaining speed increases, and this due to
the significantly more lightweight nature of PHE operations. So-
lutions such as MiniONN [37], Chameleon [51] and Gazelle [32]
all introduced increasingly performant methods compared to their
predecessors. However, all were ultimately limited by their reliance
on PHE.

The use of FHE becomes necessary for computing more complex
operations over encrypted data, or when quantum resilience is an
issue: most FHE schemes used in the literature are quantum-safe
[4].

In 2020, Boemer et al. [9] presented a hybrid FHE-MPC frame-
work called MP2ML for ML inference in the encrypted domain
using the CKKS scheme, extending the nGraph-HE compiler [10].
They obtained similar results compared to state-of-the-art work
but with stronger security properties.

1.3.2 Privacy during model training. All work presented so far
addresses only the inference phase of ML on encrypted data and
does not cover the training phase. The training of ML models poses
greater computational challenges than the inference phase, and
only few works have endeavoured to address it.

In 2019, Nandakumar et al. [43] showed that it is possible to train
a neural network on encrypted data without any form of distributed
computation. They used the HElib library [27] to implement a Sto-
chastic Gradient Descent (SGD)-based training of a neural network,
and demonstrated that the computational efficiency of encrypted
training can be improved using several techniques such as simplify-
ing the network, selecting an appropriate data representation, and
optimising data packing within the ciphertexts.

4

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

The results of Vizitiu et al. [59] are presently the best in class
in terms of speed. They performed both training and inference of
deep learning-based applications on encrypted data also without
relying on either MPC or CA. A customized version of the MORE
encryption scheme [33] was employed by the authors, which was
specifically designed to operate on floating-point data in order
to accommodate ML applications. In this way, they were able to
obtain the same accuracy as in the unencrypted domain at the
cost of a 30-fold increase in training time (which is a remarkably
small factor). However, their solution comes with some caveats:
the MORE encryption scheme is subject to some security concerns
[57, 58] which do not apply to the CKKS scheme, the algorithm we
use in this work.

Nevertheless, most works in the field use either MPC or CA, and
attain by this results that are an order of magnitude faster than
those of Nandakumar et al..

One such work is SecureML by Mohassel and Zhang [41]. They
showed how to perform ML training and inference in a privacy-
preserving way in a two-party computation model, i.e. one where
Data Owners share their sensitive data in encrypted form among
two non-colluding servers that share the computational work. In
their study, the authors achieved model training times on the or-
der of several thousand seconds in offline settings, and hundreds
of seconds online. The difference between their work and our ap-
proach is two-fold. First, they did not use FHE, as we do, but rather
a combination of garbled circuits and PHE. Second, they use MPC
rather than the CA model.

In 2018, Hesamifard et al. [29] presented CryptoDL, a solution
for both PPML training and inference, using FHE. This solution
is much closer to our approach in that it employs levelled FHE, is
built over CA computation instead of MPC, only uses client-server
communication when necessary (rather than at each operation, as
SecureML does), and relies on polynomial approximations. They
used amore sophisticated neural network than us, which they tested
on three small datasets. However, they used only 80-bit equivalent
security, which enabled them to utilise much faster homomorphic
operations, and they parallelised model training over the cores of
a twelve-cores machine, allowing them significantly more CPU
power. Even so, our 128-bit equivalent results obtained on a dataset
with almost double the number of features were still 55% faster
(when accounting for the dataset size differences), and showed
better accuracy.

Park et al. [47] presented for the first time SVM training using
FHE. (See also [46].) They used the CKKS scheme and its SIMD
architecture in their implementation, and performed PPML training
on various datasets, including the Wisconsin Breast Cancer (WBC)
dataset [60], which we also trained on. Although their approach
was similar to ours, we were able to achieve significantly better
performance, reducing per-iteration times by a factor of 4.6 and
reaching convergence in 40% less iterations, despite working on
more features and attaining better model accuracy.

1.4 Contributions
We present a practically viable PPML training method that uses
FHE in the CA computational model.

The method reaches practical speeds in running privacy-preser-
ving model training: less than 45 seconds were necessary to train a
binary classifier on 8, 000 samples, each with 30 numerical features,
when running on a single computer (we used a Dell XPS 15 laptop
and an Ubuntu workstation), without any use of parallelisation or
GPU acceleration. Training complexity is linear in the number of
features and the number of ciphertexts necessary to hold all samples.
In our design, one ciphertext vector can hold 8,192 samples, so only
a single vector was required for each feature.

When training on a public medical dataset, the WBC dataset,
we show that such training on encrypted data yields a model with
99% accuracy. (As per our problem statement, actually running the
classification under encryption was not a goal of this project, so
this 99% was evaluated in plaintext on a held out set.)

To obtain our results, we incorporated a set of carefully chosen
techniques and design considerations that prioritise pragmatic con-
cerns related to computational efficiency and processing capacity:

State-of-the-art cryptography: We opted for the levelled version
of the CKKS FHE scheme. CKKS competes with state-of-the-
art time-performance [31] and is able to process floating-
point data directly.

Vectorised computations: CKKS operates in a SIMD architecture,
allowing for the processing of multiple operands in a single
instruction. Our algorithm has been optimised with SIMD
operations in mind, further improving overall performance.

Client-assisted computational model: We carefully partitioned
the computation so that all “heavy lifting” is done by the
Cloud, which mass-processes data under encryption. Flow
control and the computation of run-state parameters, how-
ever, are all relegated to the Client. In this way, not only
does each party in the computation lean on its strengths, the
overall communication between them is also minimised.

Frugality in the polynomial approximations: We used only
low-degree polynomial approximations of the non-linear
functions necessary for the machine learning training. This
allowed us to work with low CKKS parameters that support
only a small multiplication-depth but translate to fast FHE
operations and small-sized ciphertexts, without compromis-
ing on security strength. (Our parameters were set for 128-bit
equivalent security.) A novel approximation technique us-
ing Chebyshev polynomials allowed us to obtain sufficiently
accurate approximations even under the degree constraint.

Normalisation: Polynomial approximations might only be valid
on a certain interval. To keep the data within the target
interval and mitigate precision issues and overflows, we
used a batch normalisation technique on the data.

Application of rapid convergence methods: We used a re-
stricted version of Newton iterations to speed-up the conver-
gence of our training algorithm, in order to be able to work
with less algorithm iterations and obtain an overall-faster
implementation. This is as opposed to gradient descent or
SGD methods.

The selection and use of these techniques and methods serve
as the principal contributions of this paper, providing a blueprint
for developing practical PPML training through FHE within the
client-assisted computational model.

5

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

1.5 Outline of the paper
The rest of this paper is organised as follows.

Section 2 introduces the necessary notions in homomorphic
encryption and machine learning. Section 3 presents the technical
details of our approach. Section 4 describes our experimental setup
and results. Lastly, a short conclusions section follows.

2 PRELIMINARIES
2.1 Homomorphic encryption
Homomorphic encryption is a type of encryption that enables com-
putations over encrypted data without ever decrypting it. It has
been considered since 1978 [52] as the Holy Grail of cryptography
[26].

The first HE schemes, such as RSA [53], allowed only a single
type of operation, typically either addition or multiplication, to be
computed on encrypted data. Such systems are known as partially
homomorphic encryption (PHE) schemes. While holding the promise
for enabling practical computation on encrypted data [49], PHE
schemes are inherently limited. A PHE scheme that only supports
addition and subtraction, for example, can only ever compute linear
functions over its inputs, which is insufficient for general-purpose
computing, or even for the training of the simplest of ML models.

To address the limitations of PHE schemes and support Turing-
complete computation over encrypted data, HE schemes have been
developed that support full ring operations (i.e., both additions and
multiplications) over encrypted data. Such schemes are called fully
homomorphic encryption (FHE) schemes.

Many FHE schemes support any number of additions but only
computations of up to a predefined multiplication depth. These are
known as levelled FHE schemes. Despite this apparent restriction,
levelled FHE schemes demonstrate great performance, particularly
when compared to unqualified FHE schemes that support unlimited
computations over encrypted data.

Such unlimited FHE schemes were pioneered by Gentry [23] in
2009, through a technique known as bootstrapping. The fundamental
concept behind bootstrapping is that the decryption algorithm for a
given ciphertext can be executed as an algorithm under levelled FHE.
This enables the ciphertext to be “refreshed”, effectively removing
the limitation on what can be computed over encrypted data, but at
the cost of transforming each homomorphic operation into a heavy
bootstrapping process.

For the most part, the availability of an unlimited number of
multiplication operations is not necessary: if one knows in advance
what computation one is attempting, one only needs to set the
levelled-FHE parameters so as to allow the desired number of mul-
tiplications, and this usually results in order-of-magnitude time
savings.

In our implementation, we broke up the computation of Newton
iterations so that each homomorphic computation only needs to
calculate one step of the iteration. As a result, the total needed
computation depth is known in advance, regardless of the number
of iterations. We were consequently able to utilise fast, levelled-
homomorphic operations.

Specifically, we use the CKKS FHE scheme in its levelled version.
CKKS is a new type of FHE scheme, considered as the precursor of
the “fourth-generation” [40] of FHE. The security of this scheme is

based on the hardness of the Ring variant of the Learning With Er-
rors (RLWE) problem [38, 50]. RLWE has been proven to be at least
as hard as certain worst-case lattice problems. These problems are
considered to be computationally hard problems for both classical
and quantum computers.

Unlike its predecessors, CKKS is suited for non-integer compu-
tation, supporting approximate arithmetic over encrypted real and
complex numbers: its arithmetic is performed on block floating
point [42] numbers. This crucial property makes CKKS a highly
suitable option for implementing ML algorithms, which typically
work with floating-point data.

In addition to its natural compatibility with the floating-point
domain, the CKKS scheme incorporates a SIMD architecture. This
allows the scheme to perform computations on multiple data points
at once, greatly enhancing its processing speed and efficiency for
computations that can be formulated as vectorised operations.

2.2 Machine learning
Supervised learning is a process in which ML models are trained to
map vectors of input features into output labels based on a training
set that contains examples of features-label pairs, known as samples.
During training, the ML algorithm learns from the labelled samples
a model that can predict the output label for new, unseen input
feature vectors. The process of training ML models involves finding
a set of parameters that optimises (in some sense) the performance
of the model on the training data. Once the model has been trained,
it can be applied to new, unseen data to make predictions about the
output label.

Training such an ML model typically involves defining a loss
function that measures the difference between the predicted output
of the model and the true output, and then using an optimisation
algorithm to minimise this loss. Such a loss function may also
encapsulate other factors. For example, it may include penalties,
known as regularisation terms, that are meant to keep the model
from overfitting its training data (thus reducing its usefulness on
new data), e.g. by penalising models for their complexity.

To test the usefulness of the model on new data and validate
that it did not overfit its training data, the labelled dataset available
is commonly separated into a training set and a test set. The main
idea is then to minimise the ML model’s loss over the training set
and then evaluate how well it performs on the test set.

Even though classification accuracy can be a simple binary “cor-
rect” or “incorrect”, the loss functions used in ML training are
usually smooth, or at least differentiable, functions. This allows for
efficient optimisation using gradient-based methods, such as gradi-
ent descent. In the absence of local optima, gradient-based methods
can be used to find the optimal model parameters, even for general
models.

Viewed in this context, our work can be seen as an exploration
into efficient methods to perform function optimisation under HE,
with general applicability across many ML model types.

The specific classifier that we use in this paper as an example is
the linear binary classifier. This can be viewed as a linear Support
Vector Machine (SVM) [20], although it can also be viewed as the
training of a perceptron, which is the simplest example of a neural
network.

6

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

In all cases, the purpose of training is to find a vector of weights,
(𝑤1, · · · ,𝑤𝑛), and a bias, 𝑏, such that given a vector of inputs
(𝑥1, · · · , 𝑥𝑛), the sign of

𝑛∑︁
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏

best predicts the class label associated with the input vector.
In vector notation, the equation for the separating hyperplane

can be written as

x ·w + 𝑏 = 0, (1)

where w is the normal to the hyperplane.

3 PPML TRAINING
Let 𝑥𝑖 𝑗 ∈ R, with 𝑖 ∈ [1,𝑚] and 𝑗 ∈ [1, ℓ], be the value of feature 𝑗

of the 𝑖th training sample. These values will be arranged in a matrix
x, such that x𝑖∗ is a row vector of the entire 𝑖th sample and x∗𝑗 is a
column vector of the 𝑗 th feature. Let y, a column vector of length𝑚,
be the target variable, encoding for each sample a class designation
as either 1 or −1.

We use the following notation to describe the algorithm’s execu-
tion in the CA model: values that are computed by the Client and
sent to the Cloud will be denoted in double brackets (“⟦𝑥⟧”). All
such communication will be in ciphertext, each value transmitted
in its own, separate ciphertext, and each such ciphertext storing
the communicated value across every one of its elements.

When elements of ciphertext vectors that are stored by the Cloud
are summed together by the Cloud and sent to the Client, this will
be denoted by the function “SUM()”. Such summation is performed
by Algorithm 1. In the algorithm, “|𝑣 |” indicates the element length
of the vector 𝑣 , and “𝑠 ≪ 𝑖” indicates cyclic shift.

Algorithm 1: Vector summation algorithm.
Input :A ciphertext vector, 𝑣 .
Output :Ciphertext vector 𝑠 , where each element contains∑

𝑖 𝑣𝑖 .
𝑠 ← 𝑣

𝑖 ← 1
while 𝑖 < |𝑣 | do

𝑠 ← 𝑠 + (𝑠 ≪ 𝑖)
𝑖 ← 2𝑖

return 𝑠

In our computing model, this is the only type of information
that is allowed to be communicated from the Cloud to the Client.
If the number of training samples exceeds what can be packed
into a single vector, all vectors are first summed together, and then
Algorithm 1 is run on the result. The output value, 𝑠 , is returned
to the Client as a ciphertext vector, and the Client decrypts it and
extracts its value (from any element).

Operations outside brackets, meaning that they are executed
by the Cloud, can only be linear operations. In order to visually
distinguish variables that are stored by the Cloud, we use for these
names that feature a hat notation (e.g., “𝑥”). The values𝑚 and ℓ ,
which are the only values known to the Cloud in plaintext, do not
receive a hat notation.

If a computation involves no brackets at all, and therefore no
communication, it can refer to a standalone computation either by
the Cloud or by the Client. The two can be distinguished based on
whether or not the result features a hat notation. As an example, if
Algorithm 1 itself was written in this notation (rather than merely
acting to explain the SUM() operator), all variables in it would
have had hats in their names, because it is an algorithm only run
by the Cloud.

The only other values used in our system are those that are
pre-computed by the Data Owners prior to being uploaded to the
Cloud. Each Data Owner 𝑖 sends to the Cloud the following, each
number encrypted in its own ciphertext:

• −𝑦𝑖 , and
• For each 𝑗 ∈ [1, ℓ]:
◦ 𝑥𝑖 𝑗 ,
◦ 𝑥2

𝑖 𝑗
, and

◦ 𝑥𝑖 𝑗𝑦𝑖 .

Where these values which were communicated by the Data Owners
are used in a formula, they are enclosed in braces (“{}”).

Unlike communications from the Client, when a Data Owner
sends a ciphetext vector to the Cloud, this vector includes the en-
crypted value in only its first element. When the Cloud uploads
these, it uses cyclic shifting to map each Data Owner’s information
to its own unique position, then sums together vectors that under-
went different shifts into a single vector, packing as many values as
possible, from different Data Owners, that are all of the same value
type.

We refer to this as column-oriented storage. It enables efficient use
of CKKS’s SIMD architecture for both intra-vector and inter-vector
operations.

3.1 Normalisation
Because the vast majority of the computation in this algorithm is
done over encrypted data, it is important throughout the algorithm
to keep information from becoming too large (and susceptible to
overflows) or too small (and susceptible to loss of precision). We
account for this in the algorithm in two places. First, when the
Data Owners upload their data, they do so in units of measure-
ment that are appropriate, so that data values come at a consistent
order of magnitude. This order of magnitude does not need to be
too precisely prescribed, because all such values are immediately
standardised when uploaded to the Cloud, so as to have zero mean
and unit variance. Second, at each iteration of the algorithm, the
Client communicates to the Cloud a scaling factor, 𝛾 , such that
computations are effectively done on 𝛾𝑥 , rather than on 𝑥 .

The first thing the algorithm needs to compute is therefore the
mean and the variance for each feature, in order to remove them
from the data. This is done as described in Algorithm 2. This al-
gorithm removes the mean from the data in the Cloud, but only
computes the standard deviation at the Client. It would have been
possible to completely standardise the data by multiplying it by 1/𝜎 ,
but this would have cost us an extra multiplication. Instead, the
multiplicative factor 𝛾 , which is applied on the data each iteration,
already incorporates the 𝜎 factor when communicated from the
Client to the Cloud.

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

Algorithm 2: Calculate the variance and remove the mean.
Input :A feature vector, x∗𝑗 .
Output :Mean-removed x̂∗𝑗 and standard deviation 𝜎 .
` ← SUM

(
{x∗𝑗 }

)
/𝑚

𝜎 ←

√︂
SUM

(
{x2∗𝑗 }

)
/𝑚−⟦`2⟧

𝑚−1
x̂∗𝑗 ← {x∗𝑗 } − ⟦`⟧
return x̂∗𝑗 , 𝜎

The purpose of multiplying by a factor𝛾 at each iteration, beyond
the issue of maintaining the integrity of the encrypted value as
described above, is to allow us to apply on the data a non-linear
function. In order to compute, for example, ℎ(𝑥), where ℎ is the
hinge function, ℎ(𝑥) = max(𝑥, 0), we replace ℎ by a polynomial
approximation, ℎ̃, but any such polynomial approximation is only
valid within a specific range. We have designed all our polynomial
approximations to be accurate within the range −1 ≤ 𝑥 ≤ 1. As a
result, we continuously rescale our data to make sure that all of it
is exactly within this range.

We try to maximise the spread of 𝑥 values within the allowed
range, because our approximations are also most effective away
from zero. However, because within a single optimisation iteration
values are modified incrementally, we actually scale to within the
range [−(1−[), 1−[], keeping amargin of[so as to allow breathing
room for this. The value of [was set in our experiments at 0.2.

The calculation of the maximum |𝑥 | value, in order to allow for
the scaling, is also approximate, and is described in Algorithm 3.
We use 𝑘 = 3, which allows fairly accurate estimation of the maxi-
mum without running the risk of overflows, and is well within our
multiplication budget.

Algorithm 3: Calculate the approximate maximum,
softmax(x∗𝑗).
Input :A feature vector, x∗𝑗 .
Output :The approximate max𝑖 |x𝑖 𝑗 |.
𝑡 ← x2∗𝑗
for 𝑖 ← 2 to 𝑘 do

𝑡 ← 𝑡2

softmax← SUM
(
𝑡
)2−𝑘

return softmax

The initial choice of 𝛾 is done before the Client can have enough
information from the Cloud in order to make sure that softmax
can be calculated safely, so instead of Algorithm 3 we scale using
the previously calculated standard deviation, 𝜎 , so that the range
[−(1 − [), 1 − [] covers 𝑠 standard deviations, for a predefined
𝑠 , dependent only on 𝑚. We chose 𝑠 to be 3 in our experiments,
because, given our𝑚, if the features are normally distributed, this
scaling ensures that less than one sample in expectation will exceed
the designated range.

There is still a risk that some samples will slightly exceed the
range, but not enough to cause problematic overflows, and slight
deviations are handled by the use of an even-degree approximating
polynomial for our loss function, which ensures that in the process

of optimisation the optimising algorithm would steer to avoid such
cases.

3.2 The training algorithm
We use an iterative training algorithm whose purpose is to find the
classifier parameters (w, 𝑏) that minimise the loss function

𝐿(w, 𝑏) = SUM𝑖

(
ℎ̃({−𝑦𝑖 }(x𝑖∗ · ⟦w⟧ + ⟦𝑏⟧))

)
. (2)

This is an approximated form of hinge loss, which is a common loss
function for training the perceptron algorithm. In our case, because
the approximation is least accurate around zero, and smoothes over
the function’s transition to zero, it also introduces a built-in margin,
so this loss can equally be thought of as the minimisation of slack
variables in SVM optimisation.

This optimisation is subject to ∥w∥ = 1, meaning that the w
is a unit vector indicating the normal to the decision boundary
hyperplane. Without this constraint, it would have been possible
to improve the loss simply by scaling w.

We note that the entire loss function 𝐿(w, 𝑏) can be computed
with a multiplication depth of only 2 plus the multiplication depth
of ℎ̃. In our implementation, we use a ℎ̃ polynomial of degree 14,
which we compute using a multiplicative depth of 4.

Because hinge loss is a convex loss function (when not constrain-
ing the size of w), it is well suited for iterative, gradient-based
algorithms. Two such popular algorithms are gradient descent and
Newton iterations. Gradient descent shifts the parameters in the di-
rection of maximal improvement, but requires one to set a learning
rate, 𝛼 , for it. The iterations then become

(w𝑡+1, 𝑏𝑡+1) ← (w𝑡 , 𝑏𝑡) − 𝛼∇𝐿(w, 𝑏) .

A too-small choice for 𝛼 would lead to slow convergence, whereas
a choice that is too large would cause the algorithm to overshoot
the optimum and potentially lose stability.

Newton iterations, on the other hand, do not require such a
manually set learning rate parameter, but do so at significant com-
putational cost. A Newton iteration locally approximates the target
function as a hyperboloid and sets the next iteration to the opti-
mal point on the hyperboloid. It has been shown that when such
iterations are within their basin of convergence, convergence is
exponentially fast. However, computing the parameters of the hy-
perboloid requires a second derivative, i.e. a Hessian, which is an
ℓ×ℓ matrix, so requires an amount of effort quadratic in the number
of features.

We opted to use a third method, combining the best of both
gradient descent and Newton iterations. Namely, at each iteration,
we first compute the gradient, and then perform a Newton optimi-
sation iteration just in the direction of the gradient. In other words,
we approximate the loss function along the line of the gradient as a
parabola, and set our new values to the optimum of that parabola.
This algorithm, one-dimensional Newton iterations, can be thought
of as a form of gradient descent where the 𝛼 parameter is computed
automatically. The complete algorithm is shown in Algorithm 4.

In Algorithm 4, “·” indicates matrix multiplication, “×” indicates
element by element multiplication, and function application on a
vector works also element by element. For the purposes of matrix

8

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

Algorithm 4: A Newton iteration.
Input : Input parameters (w𝑡 , 𝑏𝑡).
Output :Next iteration parameters (w𝑡+1, 𝑏𝑡+1).
ĉ← {−y} × (x̂ · ⟦w𝑡⟧ + ⟦𝑏𝑡⟧)
d̂← ℎ̃′ (ĉ)
for 𝑗 ← 1 to ℓ do

Δ𝑤 𝑗 ← SUM𝑖

(
𝑑𝑖

(
{−𝑦𝑖 }𝑥𝑖 𝑗

))
Δ𝑏 ← SUM𝑖

(
𝑑𝑖 {−𝑦𝑖 }

)
𝑝 ← ∆w𝑇 ·w𝑡

∆w← ∆w − 𝑝w𝑡

𝐷 ← (Δ𝑏)2 + ∥∆w∥2

𝐻 ← SUM𝑖

(
ℎ̃′′ (𝑐𝑖) (𝑥𝑖∗ · ⟦∆w⟧ + ⟦Δ𝑏⟧)2

)
𝛼 ← 𝐷/𝐻
(w𝑡+1, 𝑏𝑡+1) ← (w𝑡 , 𝑏𝑡) − 𝛼 (∆w,Δ𝑏)
w𝑡+1 ← w𝑡+1/∥w𝑡+1∥
return (w𝑡+1, 𝑏𝑡+1)

multiplication, the vectors w𝑡 , w𝑡+1 and ∆w are all taken to be
column vectors. They are all of length ℓ .

In the algorithm, Δ𝑤 𝑗 acts as the partial derivative 𝜕𝐿 (w,𝑏)
𝜕𝑤𝑗

while

Δ𝑏 acts as 𝜕𝐿 (w,𝑏)
𝜕𝑏

. We remove from ∆w, however, its component
parallel to the w𝑡 vector, in order for small steps in this direction
to not change the size of the weight vector, thus improving the
stability of the algorithm.

The polynomials ℎ̃′ and ℎ̃′′ are the first and second derivatives
of ℎ̃, our approximation for the hinge function, and were computed
analytically from ℎ̃. The computation of all 3 functions was done
ahead of time, and involves no communication.

The values 𝐷 and 𝐻 are the first and second derivatives in the
direction of the gradient, so setting 𝛼 as 𝐷/𝐻 is simply a standard
Newton iteration in one dimension.

Newton iterations, because of their ability to perform large steps,
are at risk of diverging when not near an optimum, for which reason
in our implementation following this step the Client checks whether
there is an improvement in the loss function. A deterioration in the
loss function leads to halving 𝛼 . However, this condition was never
triggered in our training, and the algorithm converged after only
6–7 iterations even from a random initialisation. (And even faster
when using the initialisation recommended in Section 3.3.)

We note that throughout this entire process the Cloud at no point
needed to perform a computation with a multiplicative depth of
more than 3 plus the depth of the polynomial. (Two multiplications
are needed in order to compute ĉ, the input to the polynomial, and
one more in order to multiply the polynomial’s output with any
additional factors in a final multiplication step.) Scaling, in partic-
ular, does not increase the multiplicative depth of the algorithm:
when scaling {−𝑦𝑖 }(x̂𝑖∗ · ⟦w𝑡⟧ + ⟦𝑏𝑡⟧) by a factor 𝛾 in order to
use the result as an input to a function, we do this simply by hav-
ing the Client scale the values w𝑡 and 𝑏𝑡 prior to communicating
them. Where the output of the function needs to be scaled as well,
this is done after the summation by the Cloud, by the Client, in
plaintext, so once again does not incur any additional ciphertext
multiplications.

3.3 Initialisation
Before algorithm iterations can commence, we must choose an
initial parameter set to start with. There are many ways to do this.
We have opted to set the bias 𝑏 to zero and the initial weights𝑤 𝑗 to
be proportional to the covariance between the target labels and the
𝑗 th feature. If the feature noise is independent between features,
this initialisation produces predictions that are least affected by
noise.

The covariance is computed using the Data Owner-precalculated
𝑥𝑖 𝑗𝑦𝑖 values. The specifics are almost identical to the way feature
variance was computed in Algorithm 2. We do not repeat the de-
scription here.

3.4 Approximating ℎ
The final part of the algorithm, which we have not discussed yet,
is how to approximate the hinge function using a polynomial ap-
proximation with a small multiplication depth. In fact, instead of
computing ℎ̃ directly, we chose to approximate ℎ̃′′, or a function
proportional to ℎ̃′′, instead, and compute ℎ̃ by doubly integrating
the result, scaling, and adding an affine function (this affine function
being a degree of freedom in the integration). The scaling factor
and the linear component of the affine function were chosen so that
the negative portion of the function will be as flat as possible while
the positive part will have a slope of 1. The optimisation algorithm
itself is invariant to the choice of the additive constant, so in the
actual implementation we used for it zero. This choice made it
easier to ignore unused vector positions when summing function
output values across an entire ciphertext vector. However, in order
to demonstrate of the quality of the approximation, it is possible to
substitute this zero by the additive constant that minimises the Root
Mean Square Error (RMSE) in approximating the hinge function.

Figure 1 shows the plots of the hinge function ℎ, the raw result
of doubly integrating ℎ̃′′ and scaling, 𝐼 , and our final polynomial
approximation of ℎ̃ after adding the appropriate affine function,
including the additive constant that minimises its RMSE. The num-
bers in Table 2, which showcase the significant improvement in
approximation accuracy afforded by our method, were computed
using this same constant.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

I(x)

h̃(x)

h(x)

Figure 1: Plot of 𝐼 , ℎ̃ and ℎ.

9

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

We note that while the additive constant used in the approx-
imation is arbitrary, a good choice of the linear coefficient and
scaling factor is critical. Hinge loss penalises the model when the
predicted score is on the wrong side of the decision boundary
(i.e., 𝑦𝑖 (xi · w + 𝑏) < 0). When the predicted score is correct (i.e.,
𝑦𝑖 (xi · w + 𝑏) > 0), the loss is 0. Thus, correct classifications do
not impact the optimisation algorithm which is merely trying to
improve the incorrect classifications (i.e., to minimise the slack
variables). As optimisation progresses, there should be more and
more correctly classified pairs, and the misclassified pairs become a
small minority. As a result, it is important for the correctly classified
majority to not bias the optimisation and by this prevent proper
handling of the remaining incorrectly classified samples. This was
done by considering the smallest and largest positive zeros of the
original (unscaled) 𝐼 polynomial, and scaling the function so that
the slope between them is exactly 1/2. A linear coefficient of 1/2
then aligns the corresponding negative zeroes to the same height
in the final ℎ̃′′, while adjusting the positive slope to 1.

It remains to show how to approximate ℎ̃′′. In the case of the
original hinge function ℎ, the first derivative is a Heaviside step
function and the second derivative is a Dirac 𝛿 function. To approx-
imate this, we wanted to choose a polynomial that in the range
𝜖 ≤ |𝑥 | ≤ 1 never exceeds some absolute value 𝛼 , but at 𝑥 = 0
reaches 1.

A well-known family of polynomials whose absolute values
are bounded within the range [−1, 1] is the family of Chebyshev
polynomials. These are easy-to-compute polynomials, all of whose
roots lie within the [−1, 1] range, and all of whose maxima and
minima reach a height of 1 and −1, respectively. At −1 and 1, the
polynomials also reach the same height.

Consider now, for the Chebyshev polynomial 𝑇𝑛 of some even
degree 𝑛, the polynomial

𝑄 (𝑥) = 𝛼𝑇𝑛

(
𝑠 − (𝑠 + 1)𝑥2

)
,

where 𝑠 =
(
1 + 𝜖2

)
/
(
1 − 𝜖2

)
. This polynomial stays within [−𝛼, 𝛼]

in the entire range where −1 ≤ 𝑠 − (𝑠 + 1)𝑥2 ≤ 1, i.e. where√︁
(𝑠 − 1)/(𝑠 + 1) ≤ |𝑥 | ≤ 1 holds. This is exactly the desired range

𝜖 ≤ |𝑥 | ≤ 1. For each 𝜖 , there is an 𝛼 for which 𝑄 (0) = 1. This
presents a trade-off between our choice of 𝜖 (the range of the ap-
proximation) and 𝛼 (the accuracy of the approximation). In our
implementation we used 𝛼 = 1/4.

In the literature, polynomial approximations for non-linear func-
tions are computed using either Taylor coefficients or Chebyshev
coefficients, the latter of which is meant to reduce inaccuracies
near the edges of the approximation range, this effect being known
as Runge’s Phenomenon. Our approximation method, however,
using Chebyshev polynomials to directly constrain the maximal
divergence of the approximation, has allowed us to reach superior
results.

4 EXPERIMENTAL IMPLEMENTATION
4.1 Parameters
The results presented here are based on executions on a single
machine with 32 GBs RAM, running an Intel(R) Core(TM) i7-8700
CPU at 3.20GHz, under the Ubuntu 21.10 operating system.We used

the Wisconsin Breast Cancer (WBC) dataset [60], a public medical
dataset, to generate our PPMLmodel. This dataset contains real data
on breast cancer tumours for 569 patients. The dataset is composed
of 30 numerical features that describe measured attributes of each
tumour, and one binary attribute indicating the final diagnosis of
whether the tumour was subsequently designated ‘malignant’ or
‘benign’. The final diagnosis, being our target variable, was mapped
to 1 for ‘benign’ and −1 for ‘malignant’.

AlthoughWBC is a relatively small dataset, it was suitable for our
proof-of-concept implementation. Our purpose was to demonstrate
the feasibility of our approach, not to create a production system.3

In fact, because of the small number of samples in WBC, the vast
majority of our ciphertext vectors remains unused when learning
WBC in its native form, so at first glance our timing results may
appear suboptimal. However, in follow-up experiments, we have
supplemented WBC with synthetic repetitions of the same training
samples, and our results show that even learning on 8, 000 samples
does not increase run-times. Furthermore, the algorithmic complex-
ity of our homomorphic operations is invariant to the number of
samples, so increasing the training set size has no effect on our
choice of encryption parameters.

For a CKKS implementation, we used the SEAL open-source
library [55] byMicrosoft implemented in C/C++, which we accessed
through the Python wrapper SEAL-Python [14].

We chose our parameters so as to provide 128-bit equivalent
security and to allow a multiplicative depth of at least 7 (being 4 for
the polynomial calculation and 3 for the Newton iterations). The
minimal choice of such parameters, which led to the fastest exe-
cution times and smallest ciphertexts, allowed for a multiplicative
depth of 8, thereby providing ample computational headroom for
employing more complex algorithms. However, we did not use the
extra headroom for the results presented here. The resulting cipher-
text vectors when using our chosen parameters possessed a length
of 8, 192 ciphertext elements, which is why training execution time
remains invariant even with the inclusion of additional samples.

4.2 Results
4.2.1 Execution times. We separated our PPML training process
into three phases:
Encryption: Encryption of the samples,
Data Ingest: Uploading the encrypted samples to the Cloud, and

the samples’ subsequent preprocessing and scaling, and
Training: Initialisation and iterations of the Newton-based algo-

rithm.
As is common practice, we partitioned the full WBC dataset into
training and testing sets, with the former comprising 80% and the
latter 20% of the data.

Three types of actors participate in the training phase: the Data
Owners, the Client, and the Cloud. Encryption of the samples is
performed by the Data Owners, and is, in a real-world application,
a massively parallelised process in which each Data Owner only
encrypts their own data. The other steps are performed jointly by

3We acknowledge that a linear SVM, even supplemented with non-linear features,
is unable to handle more complex datasets such as the MNIST dataset. In follow-up
work, we expand our solution to enable the learning of general models, which allow
classification on full-sized, high-complexity datasets.

10

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

0 2,000 4,000 6,000 8,000
0

50

100

150

200

Number of samples

T
im

e
p
er

D
a
ta

O
w
n
er

(m
s)

Encryption

(a) Encryption execution time per
Data Owner by number of sam-
ples.

0 2,000 4,000 6,000 8,000
0

20

40

60

Number of samples
T
im

e
(s
)

Data Ingest
Training

(b) Data Ingest and Training ex-
ecution time by number of sam-
ples.

Figure 2: Execution time as a function of sample count.

the Client and the Cloud, and Data Owners do not participate in
them at all. The computational load for performing this algorithm
should therefore be analysed from the perspective of the Data
Owners and the Client separately (noting that the Client, in a real-
world setting, is likely to be paying for the computational load
of the Cloud as well). From the perspective of the Data Owners,
only the time it takes to encrypt each Data Owner’s own data is
important, and we analyse this in terms of the time it takes to
encrypt a single new sample. From the perspective of the Client,
encryption time is immaterial, but the entirety of the rest of the
process should be measured; we therefore analyse this portion of
the training seperately to encryption. For completeness, we also
include in Table 1 the full summed-up processing times, where
total encryption time is given. In this view, encryption takes up the
majority of our CPU time, although in practice this is unlikely to
be a concern. Without encryption, our PPML training algorithm
completes in under 45 seconds.

Table 1: PPML training execution times. Total execution time
is given without (“w/o”) and with (“w”) encryption.

Phase Execution time (s)

Encryption 56.70
Data Ingest 6.448
Model initialisation 2.194
Model optimisation 34.99
Total time (w/o) 43.632
Total time (w) 100.333

We investigated the scalability of our PPML training algorithm
in relation to variations in the number of samples and features. For
this, we executed the complete algorithm, including data encryption,
with up to 8, 000 samples and 60 features.

Figure 2 displays execution times as a function of the number of
samples. This is separated by actor. Figure 2(a) displays the average
execution time for a single Data Owner; Figure 2(b) shows combined
execution times for the Client and Cloud.

These results demonstrate that, regardless of the number of Data
Owners involved, computation time for each Data Owner remains
constant at around 150 milliseconds. Training remains invariant

0 15 30 45 60
0

5

10

15

20

Number of features

T
im

e
(s
)

Data Ingest

(a) Data Ingest execution time by
number of features.

0 15 30 45 60
0

20

40

60

80

Number of features

T
im

e
(s
)

Training

(b) Training execution time by
number of features.

Figure 3: Execution time as a function of feature count.

with respect to the number of samples up to the point of saturating
the ciphertext vector. However, any increase in the number of
samples beyond the prescribed limit of 8, 192 (as determined by our
SEAL parameters) results in additional ciphertext vectors i.e. in a
linear growth of the Training phase, and is fully parallelisable.

The results also show a linear growth in the length of the Data
Ingest phase. This growth is only due to the uploading of the en-
crypted data by the Cloud. Once data is uploaded and packed into
ciphertext vectors, its total processing time depends only on the
number of ciphertext vectors, and therefore, as before, remains
constant up to 8, 192 samples.

Figure 3 illustrates the execution times in the Data Ingest and
Training phases for a varying number of features.

As previously described, in our implementation we chose a
column-oriented arrangement: we used the entire length of our
ciphertext vectors to store as many data samples as we have, each
vector housing the values of only a single feature, in order to effec-
tively exploit the SIMD architecture inherent in the CKKS algorithm.
As a result, execution times of the training phase exhibit a linear
growth with the number of features, as depicted in Figure 3(b).

The Data Ingest phase grows linearly in both the number of fea-
tures and the number of samples. The contribution of each feature
to the computation time is approximately 250 milliseconds in the
Data Ingest phase (for the total sample size of the WBC dataset)
and approximately 1.2 seconds in the Training phase.

4.2.2 Accuracy. The efficacy of our PPML model is inherently de-
pendent on the effectiveness of our polynomial approximation
technique, which we utilise in order to compute the hinge function
over encrypted data. Table 2 compares the quality of our polyno-
mial approximation to related works and confirms the effectiveness
of our approach. The results are due both to our approximation
method and to the fact that our efficient use of multiplications else-
where in the PPML training algorithm enabled us to incorporate
here a full multiplicative-depth 4 polynomial approximation.

Using our polynomial approximation, we obtained an accuracy
of 99.1% on our (decrypted) trained model over held-out data. For
comparison, we trained the samemodel on clear data using common
methods and obtained exactly the same accuracy results, proving
the viability of our methods.

Figure 4 presents a confusion matrix of the results of our PPML-
trained model, when applied over clear data.

11

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

Table 2: Comparison between related works and ours on
polynomial approximation in the [−1, 1] domain.

Work Method Function Multiplicative-depth RMSE Final model
accuracy (%)

[13] Taylor series ReLU 3 0.056 97.91

[29] Orthogonal systems
of polynomials Sigmoid 1 N/A 96.3

[28] Derivative and
Chebyshev ReLU 1 0.13 98.52

Ours Second derivative
and Chebyshev ReLU/hinge 4 0.0050 99.1

Malignant Benign

Malignant

Benign

23% 0.9%

0% 76.1%

Actual

P
re
d
ic
te
d

0

20

40

60

Figure 4: Confusion matrix of our PPML model.

4.2.3 Comparison with related work. Park et al.’s [47] is the work
most comparable to ours andwarrants a comprehensive comparison.
This is given in Table 3.

Table 3: Comparison between Park et al. and our work.

Work
Number
of used
features

Number of
iterations

Time per
iteration
(s)

Training (s) Model final
accuracy (%)

Park et al. [47] 9 10 33.545 335.45 97–98
Ours 30 6 7.272 43.632 99.1

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel PPML training method using
FHE, which achieves state-of-the-art processing speeds without
sacrificing accuracy. Specifically, we trained a linear SVM classifier
on 8, 000 samples, each containing 30 numerical features in under 45
seconds (not including the initial encryption) on a single computer,
without any GPU acceleration, and attained 99% accuracy, which is
a state-of-the-art result for the dataset used.

To achieve these results, we applied a collection of carefully
selected techniques and design considerations that prioritise prag-
matic concerns relating to computational efficiency and processing
capacity. These include FHE over floating-point data, vectorised and
parallelised computations, the client-assisted computation model,
minimal communication between the client and the cloud, frugal
polynomial approximations, and rapid convergence methods.

We propose that our techniques and methods can serve as a
blueprint for real-world training of machine-learning models under
the constraint of privacy-preservation, in settings where a client-
assisted computation model can be used.

In ongoing research, we are expanding our solution to support
generic algorithms, applicable for significantly larger datasets.

ACKNOWLEDGMENTS
The authors acknowledge INCERT for the funding of the project.

REFERENCES
[1] Rakesh Agrawal and Ramakrishnan Srikant. 2000. Privacy-Preserving Data

Mining. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA, Weidong Chen, Jeffrey F.
Naughton, and Philip A. Bernstein (Eds.). ACM, 439–450. https://doi.org/10.
1145/342009.335438

[2] Shamima Ahmed, Muneer M. Alshater, Anis El Ammari, and Helmi Hammami.
2022. Artificial intelligence and machine learning in finance: A bibliometric
review. Research in International Business and Finance 61 (2022), 101646. https:
//doi.org/10.1016/j.ribaf.2022.101646

[3] Mohammad Al-Rubaie and J. Morris Chang. 2019. Privacy-Preserving Machine
Learning: Threats and Solutions. IEEE Secur. Priv. 17, 2 (2019), 49–58. https:
//doi.org/10.1109/MSEC.2018.2888775

[4] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[5] Ahmad Al Badawi, Ling Chen, and Saru Vig. 2022. Fast homomorphic SVM
inference on encrypted data. Neural Comput. Appl. 34, 18 (2022), 15555–15573.
https://doi.org/10.1007/s00521-022-07202-8

[6] Jean-Claude Bajard, Paulo Martins, Leonel Sousa, and Vincent Zucca. 2020. Im-
proving the Efficiency of SVM Classification With FHE. IEEE Trans. Inf. Forensics
Secur. 15 (2020), 1709–1722. https://doi.org/10.1109/TIFS.2019.2946097

[7] Mauro Barni, Claudio Orlandi, and Alessandro Piva. 2006. A privacy-preserving
protocol for neural-network-based computation. In Proceedings of the 8th work-
shop on Multimedia & Security, MM&Sec 2006, Geneva, Switzerland, September
26-27, 2006, Sviatoslav Voloshynovskiy, Jana Dittmann, and Jessica J. Fridrich
(Eds.). ACM, 146–151. https://doi.org/10.1145/1161366.1161393

[8] Daniel J. Bernstein and Tanja Lange. 2017. Post-quantum cryptography. Nat. 549,
7671 (2017), 188–194. https://doi.org/10.1038/nature23461

[9] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and
Hossein Yalame. 2020. MP2ML: a mixed-protocol machine learning frame-
work for private inference. In ARES 2020: The 15th International Conference
on Availability, Reliability and Security, Virtual Event, Ireland, August 25-28,
2020, Melanie Volkamer and Christian Wressnegger (Eds.). ACM, 14:1–14:10.
https://doi.org/10.1145/3407023.3407045

[10] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski. 2019.
nGraph-HE: a graph compiler for deep learning on homomorphically encrypted
data. In Proceedings of the 16th ACM International Conference on Computing
Frontiers, CF 2019, Alghero, Italy, April 30 - May 2, 2019, Francesca Palumbo,
Michela Becchi, Martin Schulz, and Kento Sato (Eds.). ACM, 3–13. https://doi.
org/10.1145/3310273.3323047

[11] Florian Bourse, Olivier Sanders, and Jacques Traoré. 2020. Improved Secure
Integer Comparison via Homomorphic Encryption. In Topics in Cryptology - CT-
RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San Francisco,
CA, USA, February 24-28, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12006), Stanislaw Jarecki (Ed.). Springer, 391–416. https://doi.org/10.1007/978-
3-030-40186-3_17

[12] Centers for Medicare & Medicaid Services. 1996. The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA). Online at
http://www.cms.hhs.gov/hipaa/.

[13] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. IACR Cryptol. ePrint Arch. (2017), 35. http://eprint.iacr.org/2017/035

[14] Zhigang Chen. 2022. SEAL-Python (release 4.0). https://github.com/Huelse/SEAL-
Python.

[15] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 11349), Carlos Cid andMichael J. Jacobson Jr. (Eds.). Springer, 347–368.
https://doi.org/10.1007/978-3-030-10970-7_16

12

https://doi.org/10.1145/342009.335438
https://doi.org/10.1145/342009.335438
https://doi.org/10.1016/j.ribaf.2022.101646
https://doi.org/10.1016/j.ribaf.2022.101646
https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1007/s00521-022-07202-8
https://doi.org/10.1109/TIFS.2019.2946097
https://doi.org/10.1145/1161366.1161393
https://doi.org/10.1038/nature23461
https://doi.org/10.1145/3407023.3407045
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1007/978-3-030-40186-3_17
https://doi.org/10.1007/978-3-030-40186-3_17
http://eprint.iacr.org/2017/035
https://github.com/Huelse/SEAL-Python
https://github.com/Huelse/SEAL-Python
https://doi.org/10.1007/978-3-030-10970-7_16

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Ap-
plications of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10624), Tsuyoshi
Takagi and Thomas Peyrin (Eds.). Springer, 409–437. https://doi.org/10.1007/978-
3-319-70694-8_15

[17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. J. Cryptol. 33, 1
(2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[18] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
2020. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE.
InWAHC 2020–8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, Vol. 15.

[19] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping
Enables Efficient Homomorphic Inference of Deep Neural Networks. In Cyber
Security Cryptography and Machine Learning - 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12716), Shlomi Dolev, Oded Margalit, Benny Pinkas, and
Alexander A. Schwarzmann (Eds.). Springer, 1–19. https://doi.org/10.1007/978-
3-030-78086-9_1

[20] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (1995), 273–297. https://doi.org/10.1007/BF00994018

[21] Jack L. H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup.
2018. Doing Real Work with FHE: The Case of Logistic Regression. In Proceedings
of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, WAHC@CCS 2018, Toronto, ON, Canada, October 19, 2018, Michael Brenner
and Kurt Rohloff (Eds.). ACM, 1–12. https://doi.org/10.1145/3267973.3267974

[22] European Commission. 2016. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2016/679/oj

[23] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University. crypto.stanford.edu/craig.

[24] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy. In Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings,
Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 201–
210. http://proceedings.mlr.press/v48/gilad-bachrach16.html

[25] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2: Basic Appli-
cations. Cambridge University Press.

[26] Shai Halevi. 2017. Homomorphic Encryption. In Tutorials on the Foundations of
Cryptography., Yehuda Lindell (Ed.). Springer International Publishing, 219–276.
https://doi.org/10.1007/978-3-319-57048-8_5

[27] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In Advances in Cryptol-
ogy - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I (Lecture Notes in Computer Sci-
ence, Vol. 8616), Juan A. Garay and Rosario Gennaro (Eds.). Springer, 554–571.
https://doi.org/10.1007/978-3-662-44371-2_31

[28] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2019. Deep Neu-
ral Networks Classification over Encrypted Data. In Proceedings of the Ninth
ACM Conference on Data and Application Security and Privacy, CODASPY 2019,
Richardson, TX, USA, March 25-27, 2019, Gail-Joon Ahn, Bhavani Thuraising-
ham, Murat Kantarcioglu, and Ram Krishnan (Eds.). ACM, 97–108. https:
//doi.org/10.1145/3292006.3300044

[29] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright. 2018.
Privacy-preserving Machine Learning as a Service. Proc. Priv. Enhancing Technol.
2018, 3 (2018), 123–142. https://doi.org/10.1515/popets-2018-0024

[30] Hai Huang, Yongjian Wang, and Haoran Zong. 2022. Support vector machine
classification over encrypted data. Appl. Intell. 52, 6 (2022), 5938–5948. https:
//doi.org/10.1007/s10489-021-02727-2

[31] Lei Jiang and Lei Ju. 2022. FHEBench: Benchmarking Fully Homomorphic En-
cryption Schemes. CoRR abs/2203.00728 (2022). https://doi.org/10.48550/arXiv.
2203.00728 arXiv:2203.00728

[32] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX As-
sociation, 1651–1669. https://www.usenix.org/conference/usenixsecurity18/
presentation/juvekar

[33] Aviad Kipnis and Eliphaz Hibshoosh. 2012. Efficient Methods for Practical Fully
Homomorphic Symmetric-key Encrypton, Randomization and Verification. IACR
Cryptol. ePrint Arch. (2012), 637. http://eprint.iacr.org/2012/637

[34] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 1998. MNIST hand-
written digit database. http://yann.lecun.com/exdb/mnist/. (1998).

[35] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, and Jong-
Seon No. 2022. Privacy-Preserving Machine Learning With Fully Homomorphic
Encryption for Deep Neural Network. IEEE Access 10 (2022), 30039–30054. https:
//doi.org/10.1109/ACCESS.2022.3159694

[36] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai
Lin. 2022. When Machine Learning Meets Privacy: A Survey and Outlook. ACM
Comput. Surv. 54, 2 (2022), 31:1–31:36. https://doi.org/10.1145/3436755

[37] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network Pre-
dictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM, 619–631. https://doi.org/10.1145/3133956.3134056

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices
and Learning with Errors over Rings. In EUROCRYPT (Lecture Notes in Computer
Science, Vol. 6110). Springer, 1–23.

[39] MohamadMansouri, Melek Önen,Wafa Ben Jaballah, andMauro Conti. 2023. SoK:
Secure Aggregation Based on Cryptographic Schemes for Federated Learning.
Proc. Priv. Enhancing Technol. 2023, 1 (2023), 140–157. https://doi.org/10.56553/
popets-2023-0009

[40] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank H. P.
Fitzek, and Najwa Aaraj. 2022. Survey on Fully Homomorphic Encryption,
Theory, and Applications. Proc. IEEE 110, 10 (2022), 1572–1609. https://doi.org/
10.1109/JPROC.2022.3205665

[41] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,
19–38. https://doi.org/10.1109/SP.2017.12

[42] Jean-MichelMuller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod,
Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge
Torres. 2018. Handbook of Floating-Point Arithmetic (2nd Ed.). Springer. https:
//doi.org/10.1007/978-3-319-76526-6

[43] Karthik Nandakumar, Nalini K. Ratha, Sharath Pankanti, and Shai Halevi. 2019.
Towards Deep Neural Network Training on Encrypted Data. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE,
40–48. https://doi.org/10.1109/CVPRW.2019.00011

[44] Srinath Obla, Xinghan Gong, Asma Aloufi, Peizhao Hu, and Daniel Takabi. 2020.
Effective Activation Functions for Homomorphic Evaluation of Deep Neural
Networks. IEEE Access 8 (2020), 153098–153112. https://doi.org/10.1109/ACCESS.
2020.3017436

[45] Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious Neural
Network Computing via Homomorphic Encryption. EURASIP J. Inf. Secur. 2007
(2007). https://doi.org/10.1155/2007/37343

[46] Saerom Park, Junyoung Byun, and Joohee Lee. 2022. Privacy-Preserving Fair
Learning of Support Vector Machine with Homomorphic Encryption. In WWW
’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides
Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM, 3572–3583. https://doi.
org/10.1145/3485447.3512252

[47] Saerom Park, Junyoung Byun, Joohee Lee, Jung Hee Cheon, and Jaewook Lee.
2020. HE-Friendly Algorithm for Privacy-Preserving SVM Training. IEEE Access
8 (2020), 57414–57425. https://doi.org/10.1109/ACCESS.2020.2981818

[48] Adnan Qayyum, Junaid Qadir, Muhammad Bilal, and Ala Al-Fuqaha. 2021. Secure
and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomed-
ical Engineering 14 (2021), 156–180. https://doi.org/10.1109/RBME.2020.3013489

[49] Jean Louis Raisaro, Jeffrey G Klann, Kavishwar B Wagholikar, Hossein Estiri,
Jean-Pierre Hubaux, and Shawn N Murphy. 2018. Feasibility of Homomorphic
Encryption for Sharing I2B2 Aggregate-Level Data in the Cloud. AMIA Summits
on Translational Science Proceedings 2017 (may 2018), 176–185. https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC5961814/

[50] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005, Harold N. Gabow and Ronald
Fagin (Eds.). ACM, 84–93. https://doi.org/10.1145/1060590.1060603

[51] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS
2018, Incheon, Republic of Korea, June 04-08, 2018, Jong Kim, Gail-Joon Ahn,
Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim (Eds.). ACM, 707–721.
https://doi.org/10.1145/3196494.3196522

[52] Ronald L. Rivest, M. L. Dertouzos, and Leonard M. Adleman. 1978. On data banks
and privacy homomorphisms. Fondations of Secure Computation, Academia Press
(1978), 169–179.

[53] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. 1978. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21,
2 (1978), 120–126.

13

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/3267973.3267974
https://eur-lex.europa.eu/eli/reg/2016/679/oj
crypto.stanford.edu/craig
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1145/3292006.3300044
https://doi.org/10.1145/3292006.3300044
https://doi.org/10.1515/popets-2018-0024
https://doi.org/10.1007/s10489-021-02727-2
https://doi.org/10.1007/s10489-021-02727-2
https://doi.org/10.48550/arXiv.2203.00728
https://doi.org/10.48550/arXiv.2203.00728
https://arxiv.org/abs/2203.00728
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
http://eprint.iacr.org/2012/637
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1145/3436755
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.56553/popets-2023-0009
https://doi.org/10.56553/popets-2023-0009
https://doi.org/10.1109/JPROC.2022.3205665
https://doi.org/10.1109/JPROC.2022.3205665
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/ACCESS.2020.3017436
https://doi.org/10.1109/ACCESS.2020.3017436
https://doi.org/10.1155/2007/37343
https://doi.org/10.1145/3485447.3512252
https://doi.org/10.1145/3485447.3512252
https://doi.org/10.1109/ACCESS.2020.2981818
https://doi.org/10.1109/RBME.2020.3013489
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961814/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961814/
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/3196494.3196522

Proceedings on Privacy Enhancing Technologies YYYY(X) Brand and Pradel

[54] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. 2021. POSEIDON:
Privacy-Preserving Federated Neural Network Learning. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-
25, 2021. The Internet Society. https://www.ndss-symposium.org/ndss-paper/
poseidon-privacy-preserving-federated-neural-network-learning/

[55] SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[56] Harry Chandra Tanuwidjaja, Rakyong Choi, Seunggeun Baek, and Kwangjo Kim.
2020. Privacy-Preserving Deep Learning on Machine Learning as a Service - a
Comprehensive Survey. IEEE Access 8 (2020), 167425–167447. https://doi.org/10.
1109/ACCESS.2020.3023084

[57] Boaz Tsaban and Noam Lifshitz. 2015. Cryptanalysis of the MORE symmetric
key fully homomorphic encryption scheme. J. Math. Cryptol. 9, 2 (2015), 75–78.
https://doi.org/10.1515/jmc-2014-0013

[58] Serge Vaudenay and Damian Vizár. 2015. Cryptanalysis of chosen symmetric ho-
momorphic schemes. STUDIA SCIENTIARUMMATHEMATICARUMHUNGARICA
52, 2 (2015), 288–306. https://doi.org/10.1556/012.2015.52.2.1311

[59] Anamaria Vizitiu, Cosmin Ioan Nita, Andrei Puiu, Constantin Suciu, and Lu-
cian Mihai Itu. 2020. Applying Deep Neural Networks over Homomorphic
EncryptedMedical Data. Comput. Math. Methods Medicine 2020 (2020), 3910250:1–
3910250:26. https://doi.org/10.1155/2020/3910250

[60] WilliamWolberg, Nick Street, and Olvi Mangasarian. 1995. Breast CancerWiscon-
sin (Diagnostic). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml.

A ALGORITHMS
We used Algorithm 5 to generate the Chebyshev polynomial of
degree 𝑛.

Algorithm 5: Function chebyshev that computes Cheby-
shev 𝑇𝑛
Input :Degree 𝑛
Output :Chebyshev polynomial 𝑇𝑛 of degree 𝑛
𝑇0 ← 1
𝑇1 ← 𝑥

for 𝑖 ← 2 to 𝑛 do
𝑇𝑖 ← 2𝑥𝑇𝑖−1 −𝑇𝑖−2

return 𝑇𝑛

The algorithm for computing ℎ̃′′ is given in Algorithm 6.

Algorithm 6: Function approx_dirac that approximates
the Dirac function
Input :A degree 𝑛 and 𝛽 ∈ R
Output :A polynomial 𝑄 (𝑥) ≈ ℎ′′ and 𝑠 ∈ R
if 𝑛 . 0 mod 2 then

Stop: the degree must be even.
𝑇𝑛/2 ← chebyshev(𝑛/2)
𝑠 ← seek_beta(𝑇𝑛/2, 𝛽)
𝑄 (𝑥) ← 𝛽−1𝑇𝑛/2 (𝑠 − (𝑠 + 1.0)𝑥2)
return (𝑄 (𝑥), 𝑠)

The solution to the equation𝑇𝑛/2 (𝑠) = 𝛽 , used in Algorithm 6, is
generated using the function seek𝛽 defined by Algorithm 7, which
is essentially a binary search.

The algorithm for approximating of the hinge loss is given in
Algorithm 8.

B SOLUTION ILLUSTRATION
Figure 5 presents a design overview of our solution described in
Section 1.2 including the various tasks achieved by the various

Algorithm 7: Function seek_beta

Input :A polynomial 𝑃 (𝑥) of degree 𝑛 and 𝛽 ∈ R
Output :𝑠 ∈ R such that 𝑃 (𝑠) = 𝛽

if 𝛽 ≤ 1 then
Stop

𝜖 ← 10−14
𝑥𝑚𝑖𝑛 ← 1.0
𝑥𝑚𝑎𝑥 ← 1.1
while 𝑃 (𝑥𝑚𝑎𝑥) < 𝛽 do

𝑥𝑚𝑎𝑥 ← 2𝑥𝑚𝑎𝑥 − 1.0
while 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 > 𝜖 do

𝑥𝑚𝑖𝑑 ← (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛) ∗ 0.5
𝑦𝑚𝑖𝑑 ← 𝑃 (𝑥𝑚𝑖𝑑)
if 𝑦𝑚𝑖𝑑 > 𝛽 then

𝑥𝑚𝑎𝑥 ← 𝑥𝑚𝑖𝑑

else
𝑥𝑚𝑖𝑛 ← 𝑥𝑚𝑖𝑑

return 𝑥𝑚𝑎𝑥

Algorithm 8: Function approx_hinge that approximates
the hinge loss
Input :A degree 𝑛 and 𝛼 ∈ R
Output :A polynomial approximation ℎ̃ of the hinge loss
(𝑄 (𝑥), 𝑠) ← approx_dirac(𝑛 − 2, 𝛼−1)
ℎ̃ ←

∬
𝑄 (𝑥)

𝑚 ← 𝑛−2
2

𝑘𝑚𝑖𝑛 ← 0
𝑘𝑚𝑎𝑥 ←𝑚 − 1

𝑥𝑚𝑖𝑛 ←

√︂
𝑠 −

cos
(
0.5𝜋+𝜋𝑘𝑚𝑖𝑛

𝑚

)
𝑠+1.0

𝑥𝑚𝑎𝑥 ←

√︂
𝑠 −

cos
(
0.5𝜋+𝜋𝑘𝑚𝑎𝑥

𝑚

)
1+1.0

𝑦𝑚𝑖𝑛 ← ℎ̃(𝑥𝑚𝑖𝑛)
𝑦𝑚𝑎𝑥 ← ℎ̃(𝑥𝑚𝑎𝑥)
𝑎 ← 𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

ℎ̃ ← ℎ̃ × 𝑎
2

ℎ̃ ← ℎ̃ + 𝑥
2

return ℎ̃

actors during the training of the PPML model based on FHE, using
the terminology of our motivating example in Section 1.1.1.

14

https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/ACCESS.2020.3023084
https://doi.org/10.1109/ACCESS.2020.3023084
https://doi.org/10.1515/jmc-2014-0013
https://doi.org/10.1556/012.2015.52.2.1311
https://doi.org/10.1155/2020/3910250
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Practical PPML using FHE Proceedings on Privacy Enhancing Technologies YYYY(X)

Figure 5: Illustration of our solution design.

15

	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 General solution design
	1.3 Related work
	1.4 Contributions
	1.5 Outline of the paper

	2 Preliminaries
	2.1 Homomorphic encryption
	2.2 Machine learning

	3 PPML training
	3.1 Normalisation
	3.2 The training algorithm
	3.3 Initialisation
	3.4 Approximating h

	4 Experimental implementation
	4.1 Parameters
	4.2 Results

	5 Conclusion and future work
	Acknowledgments
	References
	A Algorithms
	B Solution illustration

