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Abstract. In this paper, we show that it is impossible to construct
a public key encryption scheme (PKE) from a ring signature scheme
in a black-box fashion in the standard model. Such an impossibility is
highly non-trivial because, to the best of our knowledge, known generic
constructions of ring signature scheme are based on public key cryp-
tosystems or in the random oracle model. Technically, we introduce a
new cryptographic primitive named indistinguishable multi-designated
verifiers signature (IMDVS), and prove that (i) IMDVS is equivalent to
PKE, and (ii) it is impossible to construct IMDVS from a ring signature
scheme in a generic way. Our result suggests an essential gap between
ring signature and group signature, as it is known that group signature
implies PKE.
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1 Introduction

1.1 Black-Box Impossibility

Since the seminal work by Impagliazzo and Rudich [17], which shows that it is
impossible to construct a key agreement scheme from a one-way function in a
black-box fashion, it has been one of the most important tasks to investigate the
relationship between cryptographic primitives. In general, such an impossibility
is called black-box impossiblity (or separation).

Impagliazzo [16], demonstrates five possible worlds and their implications
for computer science.4 In particular, Cryptomania is the world where public
key cryptography exists and Minicrypt is the world where a one-way function
exists but public key cryptography does not. Loosely speaking, investigating the
black-box (im)possibility of a cryptographic primitive is to uncover if it belongs
to Cryptomania or Minicrypt.

Understanding the limitation of the power of a cryptographic primitive is
useful, for instance, to cryptographic protocol design. That is, we prefer to use
weaker primitives as building blocks for getting another cryptographic protocol.

4 Another possible world is obfustopia [12], but we do not mention it in this paper.
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Therefore, it is important to investigate if a cryptographic primitive belongs to
Cryptomania or Minicrypt.

1.2 Our Problem

A ring signature scheme [27] is a signature scheme that equips with signer
anonymity. In a ring signature scheme, potential signers constitute a group (or
a ring), then a signer creates a signature on behalf of the group. Verifiers can
confirm that the signature is indeed created by a member of the ring, but can-
not detect who signed it. Thanks to this anonymity, it is expected to be used in
many applications such as e-voting, e-cash, e-bidding, and e-lottery [26].

There are existing works that construct a ring signature scheme from cryp-
tographic primitives so far, such as a public key encryption scheme, a signature
scheme, and a two-message public-coin witness indistinguishability proof system
(a.k.a. ZAP) [2, 3] and a trapdoor permutation in the random oracle model [28].
Furthermore, it is well known that we can obtain a ring signature scheme from
an OR-proof system [7] by applying the Fiat-Shamir transformation [10] (thus
in the random oracle model) [3].

To the best of our knowledge, all such generic constructions of a ring signature
scheme are obtained from Cryptomania primitives or in the random oracle model.
Particularly, no construction only from Minicrypt primitives has been proposed
in the standard model. Therefore, the following question is still open.

Which does ring signature belong to Cryptomania or Minicrypt?

1.3 Our Contribution

In this paper, we provide strong evidence for the above question. Concretely, we
prove that it is impossible to construct a PKE from a ring signature scheme in
the standard model.5

Roughly, the separation is shown as follows. We first introduce a new cryp-
tographic primitive called indistinguishable multi-designated verifiers signature
(IMDVS). We then demonstrate that IMDVS is equivalent to PKE, but it is
impossible to construct IMDVS from ring signature in a black-box fashion.

An IMDVS scheme is an extension of an MDVS scheme [8] in which only des-
ignated verifiers can verify a signature by using their secret verification keys. In
addition, we require IMDVS to have signature indistinguishability, which guar-
antees that, even given a signature and two messages, a non-designated verifier
cannot distinguish on which message the signature is created. We note that, while
it was believed that (standard) MDVS can be obtained from ring signature in
general [20, 21, 30, 33], recently it has been shown that such a construction is
impossible in a black-box sense [32]. We emphasize that IMDVS is an artificial
primitive just to prove our result. Therefore, it does not matter here how to
instantiate it.
5 Note that it is orthogonal to the construction from an OR-proof system as it is in
the random oracle model.
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1.4 Technical Overview

This section provides a technical overview of our result step by step. We first
explain how IMDVS works. There are two key generation algorithms that out-
put public key and secret key for signers and verifiers, respectively6. A signing
algorithm takes a signer’s secret key and a set of designated verifiers’ public keys
to sign on a message. A verification algorithm takes a set of designated verifiers’
public keys, a signer’s public keys, and one of the designated verifier’s secret keys
to verify a signature on a message. Besides unforgeability, we require signature
indistinguishability, i.e. it is impossible for non-designated verifiers to decide if
a pair of a message and a signature is valid or not.

(IMDVS → PKE). Firstly, we give an overview of our PKE scheme based on
an IMDVS scheme. Our construction is inspired by the work of Okamoto [24],
which demonstrates the equivalence between designated confirmer signature and
PKE. We construct a 1-bit PKE scheme as follows. The key generation algorithm
creates both a signer’s and a verifier’s keys of the underlying IMDVS scheme
with respect to the same user. The public key is a pair of the signer’s signing
key and the verifier’s public key and the secret key is a tuple of the signer’s
public key and the verifier’s public and secret key. When encrypting a message
m = 1, the encryption algorithm creates a signature σ on the message m and
outputs (σ,m) as a ciphertext. Otherwise, it outputs (σ,m′) where m′ ̸= m.
The decryption algorithm, given a ciphertext (σ,m), verifies σ on m by using
its verifier’s secret key. When the verification result is b ∈ {0, 1}, it interprets
that the decryption result is b. The IND-CPA security of PKE follows from the
signature indistinguishability of the underlying IMDVS scheme.

(PKE→ IMDVS). Secondly, we give an overview of our IMDVS scheme based
on a PKE scheme. We construct an IMDVS scheme from a PKE scheme and a
(standard) signature scheme.7 A signer’s key pair is a key pair of the signature
scheme and the verifier’s key pair is a key pair of the PKE scheme. Suppose that
there are n designated verifiers. When signing a message m, a signer creates a
(standard) signature σ on the message m and generates a ciphertext ci of σ by
using each designated verifier’s public key to output n ciphertexts (c1, · · · , cn)
as the IMDVS signature. Given the IMDVS signature (c1, · · · , cn), a designated
verifier decrypts a ciphertext whose index i corresponds to him and verifies the
resulting signature by using the signer’s public key of the underlying signature
scheme.

(Ring Signature ↛ IMDVS). Finally, we give an overview of the separation
between ring signature and IMDVS. The proof is similar to that of [32], which
uses the meta-reduction paradigm [13]. While we have to deal with subtleties in

6 We require a setup algorithm that outputs a public parameter and a master secret
key, but we do not mention it here.

7 Note that it is known that PKE implies one-way function (that is, (standard) sig-
nature).
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our proof, we here present a simplified version for easier understanding. When
considering a construction of IMDVS from a ring signature scheme, a natural
idea might be to regard a ring of the underlying ring signature scheme as a set
of a signer and designated verifiers. However, we prove that it is impossible to
reduce the unforgeability of such an IMDVS to that of the ring signature scheme.

Essentially, the impossibility stems from the difference in definitions of the
unforgeability between IMDVS and ring signature. In a ring signature scheme,
it is not allowed to corrupt a ring member, whereas in an IMDVS scheme, it is
possible to corrupt a designated verifier. Let A be a polynomial time adversary
who breaks unforgeability of the IMDVS scheme with non-negligible probability
and R a polynomial time reduction algorithm who breaks unforgeability of the
underlying ring signature scheme by accessing A in a black-box manner. Suppose
that A makes a query that corrupts a designated verifier, necessitating R to
corrupt a ring member. However, R cannot call its corruption oracle since this
immediately violates the winning condition for R, and thus should answer the
query from A by itself. If R is able to do this, it can break unforgeability of the
underlying ring signature scheme without assuming the existence of A since it
can create a signing key of a ring member by itself, which is a contradiction.

1.5 Implication of Our Result

We argue that our result provides two implications. One is for the nature of
group-oriented signature schemes, and the other is for cryptographic protocol
designs.

According to the survey by Perera et al. [26], it has been an important task to
balance anonymity and traceability (i.e., an ability to identify a signer) in group-
oriented signature schemes such as ring signature and group signature [6], where
only group signature equips with traceability among them. Our result suggests
an essential gap between them because it is known that group signature implies
PKE [1, 9, 23]. Besides, achieving traceability in group-oriented signatures may
require the same level of capability as public key cryptography, since it is known
that accountable ring signature [31], which was proposed to fill the gap between
ring signature and group signature, implies group signature (and thus PKE) [5].

As mentioned earlier, when we consider cryptographic designs of advanced
primitives in a generic manner, it is preferable to employ building blocks as weak
as possible. Since our result indicates that ring signature is strictly weaker than
PKE, ring signature is more preferable alternative primitive as a building block
rather than PKE.

1.6 Related Work

The line of black-box separation research has been successful, and there are
many known results such as the impossibility of oblivious transfer from PKE [14],
CCA-PKE from CPA-PKE (in a somewhat restricted model) [15], identity-based
encryption scheme from trapdoor permutation [4]. Recently, it has been proven
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that it is impossible to construct (standard) multi-designated verifiers signature
from ring signature in a black-box fashion [32].

Several black-box (im)possibilities have been already known regarding signa-
ture schemes. It is widely known that standard signature scheme is equivalent
to one-way function [29]. Considering the result of Impagliazzo and Rudich [17],
standard signature scheme is separated from PKE. As mentioned earlier, it is
known that group signature implies PKE [1, 9, 23]. Furthermore, blind signature
cannot be obtained from one-way permutation [18].

Ring signature schemes that equip with various levels of tracing functionality
have been proposed so far, such as accountable ring signature [31], linkable ring
signature [22], traceable ring signature [11], deniable ring signature [19], and
claimable/repudiable ring signature [25].

1.7 Paper Organization

The rest of our paper consists of the following. Section 2 introduces basic no-
tation and definitions of some cryptographic primitives. In Section 3, we define
IMDVS. Section 4 demonstrates the equivalence between IMDVS and PKE and
in Section 5, we prove the separation between ring signature and IMDVS. Finally,
Section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Throughout this paper, we let λ ∈ N be a security parameter. We abbreviate
a probabilistic polynomial time algorithm as a PPT algorithm. We denote a
polynomial function and a negligible function by poly(·) and negl(·), respectively.
For any n ∈ N, let [n] := {1, 2, · · · , n}. A subroutine X of an algorithm Π is
denoted by Π.X. A security property is defined by a game (or an experiment)
between a challenger and an adversary. If the result of the game is 1, we say that
the adversary wins the game.

2.2 Public Key Encryption

Definition 1 (Public Key Encryption). A public key encryption (PKE)
scheme with a message space M consists of three PPT algorithms (KeyGen,
Enc,Dec) that work as follows:

– KeyGen(1λ) → (pk, sk) : Given a security parameter 1λ, it outputs a public
key pk and a secret key sk.

– Enc(pk,m) → c : Given a public key pk and a message m, it outputs a
ciphertext c.

– Dec(sk, c) → m : Given a secret key sk and a ciphertext c, it outputs a
message m.
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A PKE scheme is correct if for any λ ∈ N, any (pk, sk)← KeyGen(1λ) and any
m ∈M, it holds that Pr[Dec(sk,Enc(pk,m)) = m] = 1− negl(λ).

Definition 2 (IND-CPA). A PKE scheme Π = (KeyGen,Enc,Dec) is indis-
tinguishable under chosen plaintext attack (IND-CPA secure) if for any λ ∈ N,
any PPT stateful adversary A, it holds that |Pr[ExpINDCPAΠ,A(1

λ) = 1]−1/2| ≤
negl(λ) where the experiment ExpINDCPAΠ,A(1

λ) is defined as follows:

ExpINDCPAΠ,A(λ)

(pk, sk)← KeyGen(1λ);
(m0,m1)← A(pk);
b← {0, 1}; c∗ ← Enc(pk,mb);
b′ ← A(c∗) :
output 1 if b′ = b, otherwise 0

2.3 Signature

Definition 3 (Signature). A signature scheme with a message space M con-
sists of three PPT algorithms (KG,Sig,Vrf) that work as follows:

– KG(1λ) → (pk, sk) : Given a security parameter 1λ, it outputs a public key
pk and a secret key sk.

– Sig(sk,m)→ σ : Given a secret key sk and a message m, it outputs a signa-
ture σ.

– Vrf(pk,m, σ) = 1/0 : Given a public key pk, a message m, and a signature
σ, it outputs 1 (meaning “valid”) or 0 (meaning “invalid”).

A signature scheme (KG,Sig,Vrf) is correct if for any security parameter λ, any
(pk, sk)← KG(1λ), and any message m ∈M, it holds that Vrf(pk,m,Sig(sk,m))
= 1.

Definition 4 (EUF-CMA). A signature scheme Π = (KG,Sig,Vrf) is ex-
istentially unforgeable under an adaptive chosen-message attack (EUF-CMA
secure) if for any sufficiently large security parameter λ and any PPT ad-
versary A, it holds that Pr[ExpEUFSigΠ,A(1

λ) = 1] ≤ negl(λ), where

ExpEUFSigExpEUFSigΠ,A(1
λ) is defined as follows:

ExpEUFSigΠ,A(1
λ)

L := ∅; (pk, sk)← KG(1λ);
(m∗, σ∗)← AOSig(pk) :
output 1 if Vrf(pk,m∗, σ∗) = 1 ∧ (m∗, ·) /∈ L,
otherwise 0

where OSig works as follows: Given a message m, it returns σ if (m, σ) ∈ L.
Otherwise, it returns σ ← Sig(sk,m) and updates L := L ∪ {(m, σ)}.
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2.4 Multi-Designated Verifier Signature

In this section, we recall the definition of multi-designated verifier signature
(MDVS). We follow the most standard definition of MDVS by [8] except that
all designated verifiers are required to participate to simulate a signature.8 They
claim that the basic security requirements for MDVS are unforgeability, OTR,
and consistency. Namely, consistency is a property that guarantees that verifi-
cation results are the same among designated verifiers.

Let I denote a set of users’ identities and we use I in the definition of an
MDVS scheme. The formal definition is as follows. 9

Definition 5 (MDVS). A multi-designated verifier signature scheme (MDVS)
scheme consists of the following six algorithms (Set,SKG,VKG,Sig,Vrf,Sim):

– Set(1λ) → (pp,msk) : Given a security parameter 1λ, it outputs a public
parameter pp and a master secret key msk.

– SKG(pp,msk, idS) → (spkidS , sskidS) : Given a public parameter pp, a master
secret key msk, and an identity idS ∈ I, it outputs the signer’s public key
spkidS and secret key sskidS .

– VKG(pp,msk, idV)→ (vpkidV , vskidV) : Given a public parameter pp, a master
secret key msk, and an identity idV ∈ I, it outputs the verifier’s public key
vpkidV and secret key vskidV .

– Sig(pp, sskidS , {vpkidV}idV∈D,m)→ σ : Given a public parameter pp, a signer’s
secret key sskidS , a set of verifiers’ public keys {vpkidV}idV∈D of designated
verifiers D, and a message m ∈M, it outputs a signature σ.

– Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m, σ) → 1/0 : Given a public parameter
pp, a set of public keys {vpkidV}idV∈D of designated verifiers D, a verifier’s
secret key vskid′V , a signer’s public key spkidS , a message m, and a signature
σ, it outputs 1 (meaning accept) or 0 (meaning reject).

– Sim(pp, {vpkidV}idV∈D, {vskidV}idV∈D, spkidS ,m) → σ : Given a public parame-
ter pp, a set of public keys {vpkidV}idV∈D of designated verifiers D, a set of
secret keys {vskidV}id∈D of designated verifiers D, a signer’s public key spkidS ,
and a message m, it outputs a simulated signature σ.

Definition 6 (Correctness). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,
Sim) satisfies correctness if for any security parameter λ ∈ N, any (pp,msk) ←
Set(1λ), any set of verifiers’ identities D ⊆ I, any verifier’s identity id′V ∈ D,
any signer’s identity idS ∈ I, and any message m ∈M, it holds that

Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m,Sig(pp, sskidS , {vpkidV}idV∈D,m)) = 1,

8 Note that this setting is limited compared to one by [8] in the sense that their
definition considers simulation by any subset of designated verifiers. However, we
stress that adopting a weaker definition makes our result better since our goal is to
show a black-box impossibility from a ring signature scheme to an MDVS scheme.

9 Note that, using I, we give each algorithm an identifier only to make a user explicit.
That is, we do not consider so-called “identity-based” primitives (e.g., identity-based
signature).
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where (spkidS , sskidS) ← SKG(pp,msk, idS) and (vpkidV , vskidV) ←
VKG(pp,msk, idV) for all idV ∈ D.

We require an MDVS scheme to satisfy unforgeability, consistency, and off-
the-record (OTR) as security requirements, as discussed in [8].

Definition 7 (EUF-CMA). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,
Sim) is existentially unforgeable under an adaptive chosen-message attack (EUF-
CMA) if for any security parameter λ ∈ N, and any PPT adversary A, it holds
that Pr[ExpEUFDVSΠ,A(1

λ) = 1] ≤ negl(λ) where ExpEUFDVS is defined as
follows:

ExpEUFDVSΠ,A(1
λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ);
(id∗S,D∗,m∗, σ∗)← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (pp) :
Output 1 if (∃id′V ∈ D∗ \ LVSK s.t.Vrf(pp, {vpkidV}idV∈D∗ , vskid′V , spkid∗S ,m

∗, σ∗) = 1)

∧ (id∗S ∈ LSPK) ∧ ((id∗S, spkid∗S , spkid∗S ) /∈ LSSK)

∧ (∀id′V ∈ D∗, (id′V, vpkid′V , vskid
′
V
) ∈ LVPK) ∧ ((D∗, id∗S,m

∗) /∈ LSign)

otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig, and OVrf work as follows:

OSPK: Given idS ∈ I, if idS has already been queried previously, then it searches
for (idS, spkidS , sskidS) from LSPK and returns spkidS . Otherwise, it computes
(spkidS , sskidS) ← SKG(pp,msk, idS), returns spkidS , and updates LSPK :=
LSPK ∪ {(idS, spkidS , sskidS)}.

OSSK: Given idS ∈ I, if (idS, spkidS , sskidS) ∈ LSPK, then it returns sskidS , and
updates LSSK := LSSK ∪ {idS}. Otherwise, it calls OSPK(idS) to generate
(spkidS , sskidS) along with updating LSPK := LSPK ∪ {(idS, spkidS , sskidS)}, re-
turns (spkidS , sskids), and updates LSSK := LSSK ∪ {idS}. Note that we regard
the signer corresponding to idS ∈ LSSK as a corrupted signer.

OVPK: Given idV ∈ I, if idV has already been queried previously, then it searches
for (idV, vpkidV , vskidV) from LVPK and returns vpkidV . Otherwise, it computes
(vpkidV , vskidV) ← VKG(pp,msk, idV), returns vpkidV , and updates LVPK :=
LVPK ∪ {(idV, vpkidV , vskidV)}.

OVSK: Given idV ∈ I, if (idV, vpkidV , vskidV) ∈ LVPK, then it returns vskidV ,
and updates LVSK := LVSK ∪ {idV}. Otherwise, it calls OVPK(idV) to gen-
erate (vpkidV , vskidV) along with LVPK := LVPK∪{(idV, vpkidV , vskidV)}, returns
(vpkidV , vskidV), and updates LVSK := LVSK ∪ {idV}. Note that we regard the
verifier corresponding to idV ∈ LVSK as a corrupted verifier.

OSig: Given D ⊆ I, idS ∈ I, and m ∈M, it does the followings:
– If (idS, ·, ·) /∈ LSPK, then call OSPK on idS to generate (spkidS , sskidS).
– For all idV ∈ D s.t. (idV, ·, ·) /∈ LVPK, call OVPK on idV to generate

(vpkidV , vskidV).
– Return σ ← Sig(pp, sskidS , {vpkidV}idV∈D,m), and update LSign := LSign ∪
{(D, idS,m)}.
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OVrf : Given id′V, idS ∈ I,m ∈ M, D ⊆ I where id′V ∈ D, and σ, it does the
followings:

– If id′V /∈ D, then return 0.

– If (idS, ·, ·) /∈ LSPK, then call OSPK on idS to generate (spkidS , sskidS).

– For all idV ∈ D, if (idV, ·, ·) /∈ LVPK, then call OVPK on idV to generate
(vpkidV , vskidV).

– Return b = Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m, σ) and update LVrf :=

LVrf ∪ {(D, id′V, idS,m, σ)}.

2.5 Ring Signature

In this section, we review the definition of ring signature. We follow the strongest
definition by [3]. Namely, as security properties for ring signature, we require
unforgeability w.r.t. insider corruptions and anonymity against full key exposure.
We remark that this stronger definition makes our result better, as it means an
MDVS scheme cannot be obtained from such a stronger ring signature scheme
in a black-box manner.

Definition 8 (Ring Signature). A ring signature scheme consists of four
PPT algorithms (Set,KG,Sig,Vrf) that work as follows:

– Set(1λ)→ pp : Given a security parameter 1λ, it outputs a public parameter
pp.

– KG(pp)→ (pk, sk) : Given a public parameter pp, it outputs a public key pk
and a secret key sk.

– Sig(pp, sk, {pki}i∈[n],m)→ σ : Given a public parameter pp, a secret key sk,
a set of public keys (or a ring) {pki}i∈[n] where n = poly(λ), and a message
m, it outputs a signature σ. If there is no i ∈ [n] s.t. (pki, sk) ← Set(pp),
then it returns ⊥.

– Vrf(pp, {pki}i∈[n],m, σ) = 1/0 : Given a public parameter pp, a set of public
keys {pki}i∈[n] where n = poly(λ), a message m, and a signature σ, it outputs
1 (meaning accept) or 0 (meaning reject).

A ring signature scheme (Set,KG,Sig,Vrf) satisfies correctness if for any security
parameter λ, any pp← Set(1λ), and any message m ∈M, it holds that

Vrf(pp, {pki}i∈[n],m,Sig(pp, sk, {pki}i∈[n],m)) = 1,

where for any i ∈ [n], pki is generated by KG, and in particular, there exists
i ∈ [n] s.t. (pki, sk)← KG(pp).

Next, we define the unforgeability w.r.t. insider corruption as follows. Similar
to MDVS, Anonymity is provided in Appendix ??, as it does not appear in our
discussion.
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Definition 9 (Unforgeability w.r.t. Insider Corruptions). A ring signa-
ture scheme Πrs = (Set,KG,Sig,Vrf) satisfies unforgeability w.r.t. insider cor-
ruptions if for any security parameter λ and any PPT adversary A who is al-
lowed to make at most q = poly(λ) queries to oracles, Pr[ExpEUFRSΠrs,A(1

λ)

= 1] ≤ negl(λ) where the experiment ExpEUFRSΠrs,A(1
λ) is defined as follows:

ExpEUFRSΠrs,A(1
λ)

LPK := ∅;LSK := ∅;LSign := ∅; pp← Set(1λ);
({pk∗i }i∈[n],m

∗, σ∗)← AOPK,OSK,ORSig(pp) :
Output 1 if (Vrf(pp, {pk∗i }i∈[n],m

∗, σ∗) = 1) ∧ (∀i ∈ [n], (pk∗i , sk
∗
i ) ∈ LPK)

∧(∀i ∈ [n], (pk∗i , sk
∗
i ) /∈ LSK) ∧ (∀j ∈ [n], (pk∗j , {pk

∗
i }i∈[n]\{j},m

∗, σ∗) /∈ LSign),
otherwise 0

where n = poly(λ) s.t. n ≤ q, and OPK,OSK and ORSig work as follows:

OPK: Given pp, it computes (pk, sk)← KG(pp), returns pk, and updates LPK :=
LPK ∪ {(pk, sk)}.

OSK: Given pk, if (pk, sk) ∈ LPK, then it returns sk, and updates LSK := LSK ∪
{(pk, sk)}. Otherwise, it returns ⊥. Note that we regard LSK as a set of
corrupted entities.

ORSig: Given a signer’s public key pk, a set of public keys {pki}i∈[n′] where n′ =
poly(λ), and a message m, it does the followings:
– If (pk, sk) /∈ LPK, then returns ⊥.
– If (pk, {pki}i∈[n′],m, σ) ∈ LSign, then returns σ.
– Returns σ ← Sig(pp, sk, {pk}∪{pki}i∈[n′],m) and updates LSign := LSign∪
{(pk, {pki}i∈[n′],m, σ)}.

In the following, for simplicity, we say that a ring signature scheme satisfies
EUF-CMA security if it satisfies the above definition.

3 Indistinguishable MDVS

Definition 10 (IMDVS). An indistinguishable multi-designated verifier sig-
nature scheme (IMDVS) scheme consists of the following five algorithms (Set,
SKG,VKG,Sig,Vrf), where Vrf is deterministic and others are probabilistic:

– Set(1λ) → (pp,msk) : Given a security parameter 1λ, it outputs a public
parameter pp and a master secret key msk.

– SKG(pp,msk, idS) → (spkidS , sskidS) : Given a public parameter pp, a master
secret key msk, and an identity idS ∈ I, it outputs the signer’s public key
spkidS and secret key sskidS .

– VKG(pp,msk, idV)→ (vpkidV , vskidV) : Given a public parameter pp, a master
secret key msk, and an identity idV ∈ I, it outputs the verifier’s public key
vpkidV and secret key vskidV .

– Sig(pp, sskidS , {vpkidV}idV∈D,m)→ σ : Given a public parameter pp, a signer’s
secret key sskidS , a set of verifiers’ public keys {vpkidV}idV∈D of designated
verifiers D, and a message m ∈M, it outputs a signature σ.
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– Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m, σ) → 1/0 : Given a public parameter
pp, a set of public keys {vpkidV}idV∈D of designated verifiers D, a verifier’s
secret key vskid′V , a signer’s public key spkidS , a message m, and a signature
σ, it outputs 1 (meaning accept) or 0 (meaning reject).

Definition 11 (EUF-CMA). An IMDVS scheme Π = (Set,SKG,VKG,Sig,
Vrf) is existentially unforgeable under an adaptive chosen-message attack (EUF-
CMA) if for any security parameter λ ∈ N, and any PPT adversary A, it holds
that Pr[ExpEUFDVSΠ,A(1

λ) = 1] ≤ negl(λ) where ExpEUFIMDVS is defined as
follows:

ExpEUFIMDVSΠ,A(1
λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ);
(id∗S,D∗,m∗, σ∗)← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (pp) :
output 1 if (∃id′V ∈ D∗ \ LVSK s.t.Vrf(pp, {vpkidV}idV∈D∗ , vskid′V , spkid∗S ,m

∗, σ∗) = 1)

∧ (id∗S ∈ LSPK) ∧ ((id∗S, spkid∗S , spkid∗S ) /∈ LSSK)

∧ (∀id′V ∈ D∗, (id′V, vpkid′V , vskid
′
V
) ∈ LVPK) ∧ ((D∗, id∗S,m

∗) /∈ LSign)

otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig, and OVrf are defined as in Definition 7.

Definition 12 (Signature Indistinguishability). An IMDVS Π = (Set,
SKG,VKG,Sig,Vrf) is signature indistinguishable if for any security parame-
ter λ ∈ N and any PPT adversary A, it holds that |Pr[ExpSigINDΠ,A(λ) =
1]− 1/2| ≤ negl(λ) where the experiment ExpSigINDΠ,A(λ) is defined as follows:

ExpSigINDΠ,A(λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ);
(m0,m1, idS ∈ I,D ⊆ I)← AOSPK,OSSK,OVPK,OVSK,OSig(pp);
b← {0, 1};σ ← Sig(pp, sskidS , {vpki}i∈D,mb);
b′ ← AOSPK,OSSK,OVPK,OVSK,OSig(σ);
return⊥ if (∃idV ∈ D s.t. idV ∈ LVSK) ∨ (∃idV ∈ D s.t. (idV, ·, ·) /∈ LVPK) :
Output 1 if b′ = b, otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig, and OVrf work as follows:

OSPK: Given idS ∈ I, if idS has already been queried previously, then it searches
for (idS, spkidS , sskidS) from LSPK and returns spkidS . Otherwise, it computes
(spkidS , sskidS) ← SKG(pp,msk, idS), returns spkidS , and updates LSPK :=
LSPK ∪ {(idS, spkidS , sskidS)}.

OSSK: Given idS ∈ I, if (idS, spkidS , sskidS) ∈ LSPK, then it returns sskidS , and
updates LSSK := LSSK ∪ {idS}. Otherwise, it calls OSPK(idS) to generate
(spkidS , sskidS) along with updating LSPK := LSPK ∪ {(idS, spkidS , sskidS)}, re-
turns (spkidS , sskids), and updates LSSK := LSSK ∪ {idS}. Note that we regard
the signer corresponding to idS ∈ LSSK as a corrupted signer.
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OVPK: Given idV ∈ I, if idV has already been queried previously, then it searches
for (idV, vpkidV , vskidV) from LVPK and returns vpkidV . Otherwise, it computes
(vpkidV , vskidV) ← VKG(pp,msk, idV), returns vpkidV , and updates LVPK :=
LVPK ∪ {(idV, vpkidV , vskidV)}.

OVSK: Given idV ∈ I, if (idV, vpkidV , vskidV) ∈ LVPK, then it returns vskidV ,
and updates LVSK := LVSK ∪ {idV}. Otherwise, it calls OVPK(idV) to gen-
erate (vpkidV , vskidV) along with LVPK := LVPK∪{(idV, vpkidV , vskidV)}, returns
(vpkidV , vskidV), and updates LVSK := LVSK ∪ {idV}. Note that we regard the
verifier corresponding to idV ∈ LVSK as a corrupted verifier.

OSig: Given D ⊆ I, idS ∈ I, and m ∈M, it does the followings:
– If (idS, ·, ·) /∈ LSPK, then call OSPK on idS to generate (spkidS , sskidS).
– For all idV ∈ D s.t. (idV, ·, ·) /∈ LVPK, call OVPK on idV to generate

(vpkidV , vskidV).
– Return σ ← Sig(pp, sskidS , {vpkidV}idV∈D,m), and update LSign := LSign ∪
{(D, idS,m)}.

On the Absence of a Verification Oracle. In the experiment ExpSigIND,
the adversary is not given a verification oracle. In fact, we could not construct
IMDVS from PKE if we give the oracle to the adversary. We will elaborate on this
point after we demonstrate the construction of IMDVS from PKE. However, we
here emphasize that IMDVS is an artificial primitive, and thus such a restricted
definition is not important if we can prove the separation.

4 Equivalence Between PKE and IMDVS

In this section, we prove that PKE and IMDVS are equivalent to each other.
To do so, we demonstrate two generic constructions; the construction of PKE
from IMDVS, and vice versa. Formally, we prove the following theorem in this
section.

Theorem 1. PKE and IMDVS are equivalent to each other.

Proof. Theorem 2 and Theorem 3 conclude Theorem 1. ⊓⊔

4.1 A Generic Construction of PKE from IMDVS

Let ΠI = (Set,SKG,VKG,Sig,Vrf) be an IMDVS scheme. We demonstrate a
generic construction of IND-CPA secure PKE ΠP = (KeyGen,Enc,Dec) with a
message spaceM = {0, 1} fromΠI = (Set,SKG,VKG,Sig,Vrf). The construction
is similar to the construction of PKE from a designated confirmer signature
scheme by Okamoto [24]. Before the formal description, we provide an intuition
for the construction.

In the encryption algorithm Enc, it chooses a message m uniformly at random
and signs on m by Sig to obtain σ. In case the message to be encrypted is
1, it outputs m and σ as a ciphertext, otherwise, it chooses another message
m′ uniformly at random and outputs m′ and σ. Given (m, σ), the decryption
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algorithm outputs the verification result on (m, σ). That is, if (m, σ) is a valid
pair, then it passes the verification so that the decryption result is 1, otherwise
0.

Here we should guarantee that, with overwhelming probability, Vrf rejects
a pair (m′, σ) where m′ is a uniformly chosen message and σ is a signature
on another uniformly chosen message m. It is almost trivial that this is the
case. Concretely, if Vrf accepts such a pair with non-negligible probability, the
adversary in ExpEUFIMDVS easily wins the game; it signs on a message and
outputs the signature along with another uniformly chosen message.

The formal construction is as follows:

KeyGen(1λ): Given 1λ, it first runs (pp,msk) ← Set(1λ). Then, it chooses
id ∈ I uniformly, and computes (spkid, sskid) ← SKG(pp,msk, id) and
(vpkid, vskid) ← VKG(pp,msk, id). It outputs pk := (pp, sskid, vpkid) and
sk := (pp, spkid, vskid, vpkid).

Enc(pk, b): Given pk = (pp, sskid, vpkid) and a message b ∈ {0, 1}, it chooses
m ←M, and computes σ ← Sig(pp, sskid, vpkid,m). When b = 1, it outputs
c := (m, σ). Otherwise, it chooses m′ ←M, and outputs c := (m′, σ).

Dec(sk, c): Given sk = (pp, spkid, vskid, vpkid) and c = (m, σ), it outputs b =
Vrf(pp, vpkid, vskid, spkid,m, σ).

Correctness of ΠP immediately follows from the correctness and EUF-CMA
security ofΠI . That is, when c is a ciphertext of b = 1, it holds that Dec(sk, c) = 1
with probability 1 due to the correctness of ΠI . On the other hand, when b = 0,
Dec(sk, c) = 0 with overwhelming probability, since otherwise we can construct a
PPT adversary that breaks EUF-CMA security of ΠI with overwhelming prob-
ability.

Theorem 2. If ΠI is signature indistinguishable, then ΠP is IND-CPA secure.

Proof. We assume for contradiction that there exists a PPT adversary A that
breaks the IND-CPA security of ΠP with non-negligible advantage ϵ. Then, we
construct a PPT adversary B that breaks the signature indistinguishability of
ΠI as follows.

Setup Phase Given pp, B first chooses id ∈ I uniformly. It makes queries to
OSSK and OVPK on id to obtain (spkid, sskid) and vpkid, respectively. It sets pk :=
(pp, sskid, vpkid) and simulates A on pk. Finally, it returns m0 = 0,m1 = 1, id,
and D = {vpkid} to the challenger of ExpSigINDΠI ,B(λ).

Guessing Phase Given a signature σ on either m0 or m1, say mb, B chooses
b† ∈ {0, 1} uniformly, and simulates A on (mb† , σ). Note that the probability
that (mb† , σ) is a valid pair is only 1/2, but it is sufficient for our analysis. When
A outputs a bit b′, it returns b′ to the challenger of ExpSigINDΠI ,B(λ).
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Analysis Observe that B does not violate the conditions to abort the experiment.
Therefore, given b′ the challenger outputs 1 if b′ = b, otherwise 0.

Recall that B runs A on a valid pair with probability 1/2. Therefore, the
advantage of B that guesses the challenge bit b correctly is ϵ/2, which is still
non-negligible. ⊓⊔

4.2 A Generic Construction of IMDVS from PKE

We demonstrate a generic construction ΠI of IMDVS from a PKE scheme and
standard signature scheme. Note that it is known that a standard signature
scheme can be constructed from a PKE scheme. Let ΠP = (KeyGen,Enc,Dec)
be a PKE andΠS = (KG,Sig,Vrf) a signature scheme. Without loss of generality,
we assume that the plaintext space of ΠP is equal to the signature space of ΠS

(i.e. a signature created by ΠS .Sig can be encrypted by ΠP .Enc).
Before the formal description, we provide an intuition of the construction.

The construction does not require a setup algorithm. The signer’s (resp., the
verifier’s) key generation algorithm outputs a key pair of the standard signature
scheme (resp., the PKE scheme).

In the signing algorithm, it signs on a message by using the signer’s signing
key. Then, for each designated verifier, the signature is encrypted by using the
designated verifier’s public key. Thus, if n verifiers are designated, then the
signature is a tuple of n ciphertexts of the underlying PKE scheme.

In the verification algorithm, a designated verifier first decrypts a ciphertext
that corresponds to him by using his verification key (decryption key of the
underlying PKE scheme) to obtain a standard signature. Finally, it verifies the
signature by using the signer’s public key.

Roughly, EUF-CMA security of ΠI is guaranteed by EUF-CMA security of
ΠS , and signature indistinguishability stems from IND-CPA security of ΠP .

SKG(idS): Given idS ∈ I, it computes (pksig,idS , sksig,idS) ← ΠS .KG(1
λ). It out-

puts spkidS := (idS, pksig,idS) and sskidS := (idS, sksig,idS).

VKG(idV): Given idV ∈ I, it computes (pkpke,idV , skpke,idV)← ΠP .KeyGen(1
λ). It

outputs vpkidV := (idV, pkpke,idV) and vskidV := (idV, skpke,idV).
Sig(sskidS , {vpkidV}idV∈D,m): Given sskidS = (idS, sksig,idS), {vpkidV}idV∈D where

vpkidV = (idV, pkpke,idV), and a message m, it does the followings: It cre-
ates σidS ← ΠS .Sig(sksig,idS ,m) and for each idV ∈ D, it computes cidV ←
ΠP .Enc(pkpke,idV , σidS). It outputs σ := {(idV, cidV)}idV∈D.

Vrf({vpkidV}idV∈D, vskid′V , spkidS ,m, σ): Given {vpkidV}idV∈D where vpkidV =

(idV, pkpke,idV), vskid′V = (id′V, skpke,id′V), spkidS where spkidS = (idS, pksig,idS),m,

and σ where σ = {(idV, cidV)}idV∈D′ , it outputs ⊥ if D ≠ D′ or id′V /∈ D.
Otherwise, it computes σidS ← ΠP .Dec(skpke,id′V , cid′V) and outputs b =
ΠS .Vrf(pksig,idS ,m, σidS).

Theorem 3. The construction ΠI is EUF-CMA secure if ΠS is EUF-CMA
secure.
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Proof. We assume for contradiction that there exists a PPT adversary A that
breaks EUF-CMA security of ΠI with non-negligible probability ϵ. Then, we
demonstrate a PPT adversary B that breaks EUF-CMA security of ΠS with
non-negligible probability, using A. We assume, without loss of generality, that
A makes at most q = poly(λ) queries to the oracle OSPK.

Observe that a signer’s key pair of ΠI is a key pair of ΠS , and ΠI .Vrf uses
ΠS .Vrf inside. Thus, in case A succeeds in forging a signature, it means that A
outputs a ciphertext of a standard signature, and the standard signature passes
the verification by ΠS .Vrf, without knowing the signing key of a signer. The
algorithm B works as follows.

Setup Phase Given pk∗sig, it initiates LVPK := ∅, LSPK := ∅, LVSK := ∅, LSSK :=
∅, LSign := ∅ and LVrf := ∅.

Forgery Phase It runs the adversary A with simulating oracles as follows:

OSPK: Given idS ∈ I, if idS has already been queried previously, then it searches
for (idS, spkidS , sskidS) from LSPK and returns spkidS . Otherwise, it does the
following:
– (This is a once for all task.) With probability 1/q, it sets spkidS := pk∗sig,

returns spkidS and updates LSPK := LSPK ∪ {(idS, vpkidS ,⊥)}.
– Otherwise, it computes (spkidS , sskidS) := (pksig,idS , sksig,idS) ←

ΠS .KG(1
λ), returns spkidS to A, and updates LSPK := LSPK ∪

{(idS, spkidS , sskidS)}.
OSSK: Given idS ∈ I, it does the following. If idS is an identifier such that spkids =

pk∗sig, then abort the experiment and output ⊥. If (idS, spkidS , sskidS) ∈ LSPK,
then it returns sskidS , and updates LSSK := LSSK ∪ {idS}. Otherwise, it does
the following.
– (This does not happen if spkidS := pk∗sig has already occurred in the

simulation of OSPK.) With probability 1/q, it aborts the experiment. We
regard this event as a corruption query on pk∗sig is made.

– Otherwise, it computes (pksig,idS , sksig,idS) ← ΠS .KG(1
λ), sets LSPK :=

LSPK ∪ {(idS, spkidS , sskidS)}, returns (spkidS , sskidS) to A, and updates
LSSK := LSSK ∪ {idS}.

OVPK: Given idV ∈ I, if idV has already been queried previously, then it searches
for (idV, vpkidV , vskidV) from LVPK and returns vpkidV to A. Otherwise, it com-
putes (vpkidV , vskidV) := (pkpke,idV , skpke,idV) ← ΠP .KG(1

λ), returns vpkidV to
A, and updates LVPK := LVPK ∪ {(idV, vpkidV , vskidV)}.

OVSK: Given idV ∈ I, if (idV, vpkidV , vskidV) ∈ LVPK, then it returns vskidV , and
updates LVSK := LVSK ∪ {idV}. Otherwise, it generates (vpkidV , vskidV) :=
(pkpke,idV , skpke,idV) ← ΠP .KG(1

λ) along with updating LVPK := LVPK ∪
{(idV, vpkidV , vskidV)}, returns (vpkidV , vskidV), and updates LVSK := LVSK ∪
{idS}.

OSig: Given D ⊆ I, idS ∈ I, and m ∈M, it does the followings:
– If (idS, ·, ·) /∈ LSPK, then it simulates OSPK on idS to generate

(idS, spkidS , sskidS).



16 Kyosuke Yamashita and Keisuke Hara

– For all idV ∈ D s.t. (idV, ·, ·) /∈ LVPK, it simulates OVPK on idV to generate
(idV, vpkidV , vskidV).

– If idS is an identity such that spkidS = pk∗sig, then it calls OSig

of ExpEUFSig on m to obtain a signature σidS , otherwise it creates
σidS ← ΠS .Sig(sskidS ,m). For each idV ∈ D, it computes cidV ←
ΠP .Enc(vpkidV , σidS). It returns σ = {(idV, cidV)}idV∈D, and updates
LSign := LSign ∪ {(D, idS,m)}.

OVrf : Given id′V, idS ∈ I,m ∈ M, D ⊆ I where id′V ∈ D, and σ, it does the
followings:
– If id′V /∈ D, then return 0.
– If (idS, ·, ·) /∈ LSPK, then it simulates OSPK on idS to generate

(idS, spkidS , sskidS).
– For all idV ∈ D, if (idV, ·, ·) /∈ LVPK, it simulates OVPK on idV to generate

(idV, vpkidV , vskidV).
– Parse σ = {(idV, cidV)}idV∈D. It computes σid′V

= ΠP .Dec(vskid′V , cid′V),
returns b = ΠS .Vrf(spkidS ,m, σid′V

), and updates LVrf := LVrf ∪
{(D, id′V, idS,m, σ)}.

When A outputs (id∗S,D∗,m∗, σ∗), B does the followings. Let σ∗ =
{(idV, cidV)}idV∈D∗ . It aborts if (i) pk∗sig is not embedded in a signer’s public
key, or (ii) id∗S is not the identifier whose public key is pk∗pke. Otherwise, for
all idV ∈ D \ LVSK, it computes σidV = ΠP .Dec(vpkidV , cidV), and confirms if
ΠS .Vrf(vpkidV ,m

∗, σidV) = 1. If such idV is found, then B returns σidV to the chal-
lenger. Otherwise, it aborts. (Observe that when A wins, there must be such
idV.)

Analysis We first observe that if A wins and B does not abort, then B wins as
well. Thus, we evaluate the probability that B does not abort. The algorithm B
aborts if one of the following events happens:

E1: pk∗sig is not embedded in a signer’s public key.
E2: An identity idS s.t. spkidS = pk∗sig is queried to OSSK.
E3: id∗S is not the identifier whose public key is pk∗pke.

We can evaluate the probability that each event does not occur as follows.
Regarding the event E1, when B simulates OSPK on idS, the probability that

pk∗sig is not embedded to the signer’s public key is 1 − 1/q. Since at most q
queries are made during the experiment, the probability that E1 happens is
(1− 1/q)q ≈ 1/e for sufficiently large q. Thus, the probability that E1 does not
occur is 1− 1/e.

Regarding the event E2, observe that there should be at least one non-
corrupted signer’s public key for the A’s winning condition on ExpEUFIMDVS. In
other words, at least one identity should not be queried to OSSK. As an identity
idS s.t. spkidS = pk∗pke is chosen uniformly at random, and at most q queries are
made, the event E2 does not occur with probability better than 1/q.

Regarding the event E3, similar to the above discussion, at most q signing
keys are created during the experiment. Thus, the probability that the identifier
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whose public key is pk∗pke is chosen as id∗S (that is, the event E3 does not occur)
is at least 1/q.

Recall that the winning probability of A is non-negligible ϵ, and B wins if A
wins. To sum up the discussion, the advantage of B in the experiment ExpINDCPA
is at least

ϵ ·
(
1− 1

e

)
· 1
q2

,

which is still non-negligible. ⊓⊔

Theorem 4. The construction ΠI is signature indistinguishable if ΠP is IND-
CPA secure.

Proof. (The proof is similar to that of Theorem 3.) We demonstrate a PPT ad-
versary B that breaks IND-CPA security of ΠP with non-negligible advantage
with assuming the existence of a PPT adversary A that breaks signature indis-
tinguishability of ΠI with non-negligible advantage ϵ for contradiction. Namely,
B plays the experiment ExpINDCPA by running A. The adversary B also simu-
lates oracle answers that appear in the experiment ExpSigIND for A. Without
loss of generality, we assume that A obtains q = poly(λ) verifier’s public keys
during ExpSigIND.

Setup Phase Given pk∗pke, B sets LVPK := ∅, LSPK := ∅, LVSK := ∅, LSSK :=
∅, LSign := ∅, and LVrf := ∅. It runs A with simulating oracles as follows (note
that ΠI does not have a setup algorithm):

OSPK: Given idS ∈ I, if idS has already been queried previously, then it searches
for (idS, spkidS , sskidS) from LSPK and returns spkidS . Otherwise, it computes
(spkidS , sskidS) := (pksig,idS , sksig,idS) ← ΠS .KG(1

λ), returns spkidS , and up-
dates LSPK := LSPK ∪ {(idS, spkidS , sskidS)}.

OSSK: Given idS ∈ I, if (idS, spkidS , sskidS) ∈ LSPK, then it returns sskidS , and
updates LSSK := LSSK ∪ {idS}. Otherwise, it generates (spkidS , sskidS) :=
(spkidS , sskidS) ← ΠS .KG(1

λ) along with updating LSPK := LSPK ∪
{(idS, spkidS , sskidS)}, returns (spkidS , sskidS), and updates LSSK := LSSK∪{idS}.

OVPK: Given idV ∈ I, if idV has already been queried previously, then it searches
for (idV, vpkidV , vskidV) from LVPK and returns vpkidV . Otherwise, it does the
following:
– (This is a once for all task.) With probability 1/q, it sets vpkidV := pk∗pke,

returns vpkidV , and updates LVPK := LVPK ∪ {(idV, vpkidV ,⊥)}.
– Otherwise, it computes (vpkidV , vskidV) := (pkpke,idV , skpke,idV) ←

ΠP .KeyGen(1
λ), returns vpkidV , and updates LVPK := LVPK ∪

{(idV, vpkidV , vskidV)}.
OVSK: Given idV ∈ I, it does the following. If idV is an identifier such

that vpkidV = pk∗pke, then abort the experiment and output ⊥. If
(idV, vpkidV , vskidV) ∈ LVPK, then it returns vskidV , and updates LVSK :=
LVSK ∪ {idV}. Otherwise, it does the following.
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– (This does not happen if vpkid′V
:= pk∗pke has already occurred for some

id′V ∈ I in the simulation of OVPK.) With probability 1/q, it aborts the
experiment. We regard this event as a corruption query on vpkidV is made.

– Otherwise, it computes (vpkidV , vskidV) := (pkpke,idV , skpke,idV) ←
ΠP .KG(1

λ), sets LVPK := LVPK ∪ {(idV, vpkidV , vskidV)}, returns
(vpkidV , vskidV), and updates LVSK := LVSK ∪ {idV}.

OSig: Given D ⊆ I, idS ∈ I, and m ∈M, it does the followings:
– If (idS, ·, ·) /∈ LSPK, then it simulates OSPK on idS to generate

(idS, spkidS , sskidS).
– For all idV ∈ D s.t. (idV, ·, ·) /∈ LVPK, it simulates OVPK on idV to generate

(idV, vpkidV , vskidV).
– Then, it creates σidS ← ΠS .Sig(sskidS ,m) and for each idV ∈ D, it com-

putes cidV ← ΠP .Enc(vpkidV , σidS). It returns σ = {(idV, cidV)}idV∈D, and
updates LSign := LSign ∪ {(D, idS,m)}.

At some point, A outputs (m0,m1, id
∗
S,D). The algorithm B terminates and

outputs ⊥ if (i) pk∗pke is not embedded in a verifier’s public key, or (ii) D does not
contain vpkid∗V = pk∗pke. Otherwise, B computes m∗

0 := σ0 ← ΠS .Sig(sskid∗S ,m0)

and m∗
1 := σ1 ← ΠS .Sig(sskid∗S ,m1), and returns m∗

0 and m∗
1 to the challenger of

ExpINDCPA.

Guessing Phase Given a ciphertext c∗, B does the following. It flips a random
coin b† ∈ {0, 1} and computes cidV ← ΠP .Enc(pkpke,idV ,m

∗
b†) for each idV ∈

D \ {id∗V}. Then, it gives {(idV, cidV)}idV∈D to A where cid∗V = c∗. Note that the

probability that b† is equal to the bit chosen by the challenger of ExpINDCPA is
exactly 1/2, but it is sufficient for our purpose. When A outputs b′ ∈ {0, 1}, B
returns b′ to the challenger.

Analysis Observe that B wins if and only if A wins ExpINDCPA between B.
However, there are cases that B aborts as follows:

E1: pk∗pke is not embedded in a verifier’s public key.
E2: An identity idV s.t. vpkidV = pk∗pke is queried to OVSK.
E3: D does not contain vpkidV = pk∗pke.

We can evaluate the probability that each event does not occur as follows.
When B simulates OVPK on idV, the probability that pk∗pke is not embedded

to the verifier’s public key is 1−1/q. Since at most q queries are made during the
experiment, the probability that E1 happens is (1− 1/q)q ≈ 1/e for sufficiently
large q. Thus, the probability that E1 does not occur is 1− 1/e.

Regarding the event E2, observe that there should be at least one non-
corrupted verifier’s public key for A’s winning condition on ExpEUFIMDVS. In
other words, at least one identity should not be queried to OVSK. As an identity
idV s.t. vpkidV = pk∗pke is chosen uniformly at random, and at most q queries are
made, the event E2 does not occur with probability better than 1/q.

The third event can be analyzed in a similar manner as E2. That is, at least
one verifier’s public key is contained in D. As an identity idV s.t. vpkidV = pk∗pke
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is chosen randomly, and at most q verifier’s public key is created during the
experiment, the probability that id′V ∈ D is at least 1/q.

Recall that the advantage of A is non-negligible ϵ. Further, the probability
that the signature {(idV, cidV)}idV∈D given to A is valid with probability 1/2. To
sum up the discussion, the advantage of B in the experiment ExpINDCPA is at
least

ϵ

2
·
(
1− 1

e

)
· 1
q2

,

which is still non-negligible. ⊓⊔

On Simulation of a Verification Oracle As mentioned in Section 3, an adversary
is not given a verification oracle in ExpSigIND. This is because we could not find
how B simulates a verification oracle. Suppose that a verification oracle works as
follows; given id′V, idS ∈ I,m ∈ M, D ⊆ I where id′V ∈ D, and σ, it outputs the
verification result b ∈ {0, 1}. Let us consider the case that D = {vpkidV} where
vpkidV = pk∗pke. To verify σ, B should first decrypt it by using the secret key sk∗pke,
which corresponds to pk∗pke. However, as we are considering IND-CPA security,
no decryption oracle is given to B. Therefore, B should decrypt σ without relying
on a decryption oracle, which is almost impossible as long as ΠP is IND-CPA
secure.

5 Separation Between Ring Signature and IMDVS

This section demonstrates that it is impossible to construct an IMDVS scheme
from a ring signature scheme, which implies the separation of a PKE scheme
from a ring signature scheme. Precisely, we prove that, given a ring signature
scheme Πrs, there is no black-box construction ΠΠrs

imdvs whose EUF-CMA security
is reduced to the EUF-CMA security of Πrs.

The proof is similar to that of [32], which shows the impossibility of an MDVS
scheme from a ring signature scheme. Roughly, the impossibility stems from the
difference in the definitions of the EUF-CMA security between ring signature
and IMDVS.

Theorem 5. Let Πrs = (Set,KG,Sig,Vrf) be a ring signature scheme. There
is no black-box construction ΠΠrs

imdvs = (Set,SKG,VKG,Sig,Vrf) of an IMDVS
scheme based on Πrs, whose EUF-CMA security is reduced to EUF-CMA secu-
rity of Πrs.

Proof. We assume for contradiction that there exists a PPT adversary A that
breaks the EUF-CMA security of ΠΠrs

imdvs with non-negligible probability ϵ. We
demonstrate a PPT reduction algorithm R that accesses A in a black-box fashion
to break the EUF-CMA security of Πrs with non-negligible probability, or Πrs

is not EUF-CMA secure.
Although we do not know howΠΠrs

imdvs is constructed, we put the following nat-
ural assumptions on it: ΠΠrs

imdvs.Set uses Πrs.Set, Π
Πrs
imdvs.SKG and ΠΠrs

imdvs.VKG use
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Πrs.KG respectively, ΠΠrs
imdvs.Sig uses Πrs.Sig and ΠΠrs

imdvs.Vrf uses Πrs.Vrf. There-
fore, when A makes a query to an oracle, R asks the challenger of ExpEUFRS to
call its oracle to answer the query by A.

The reduction algorithm R works in ExpEUFRS as follows. Given a public
parameter ppRS, R initiates LVPK := ∅, LSPK := ∅, LVSK := ∅, LSSK := ∅, LSign := ∅,
and LVrf := ∅. Then, it computes (ppIMDVS,mskIMDVS) ← ΠΠrs

imdvs.Set(1
λ) (based

on ppRS), and runs A on ppIMDVS. When A outputs (id†S,D†,m†, σ†), R returns
(R∗ := {pk∗i }i∈[n],m

∗, σ∗) to the challenger where n = poly(λ).

The adversary RA succeeds to forge a ring signature if all the following con-
ditions are satisfied.

– Πrs.Vrf(ppRS, R
∗,m∗, σ∗) = 1.

– Every pk∗i is created by the oracle OPK.

– Every pk∗i is not queried to OSK (i.e., no ring member is corrupted).

– The signature σ∗ is not created by ORSig on (pk∗j , R
∗,m∗) for some pk∗j ∈ R∗.

We focus on the third condition and provide an intuition behind our proof.
If A makes a query that necessitates corrupting a public key in R∗ (we call such
a query as a ring corruption query), then R should answer it without relying
on OSK. However, if such a computation is possible, then R is able to break the
EUF-CMA security of Πrs by itself without assuming the existence of A. We
further consider the case where A never makes a ring corruption query. In this
case, we show that Πrs is not EUF-CMA secure. The formal argument is as
follows.

Case 1: A makes a ring corruption query. As mentioned above, R is able
to create a signing key of a ring member of the ring R∗ without calling OSK. We
demonstrate a PPT algorithm R′ that breaks the EUF-CMA security of Πrs by
simulating R as follows.

– Given a public parameter ppRS, it creates R∗ = {pk∗i }i∈[n] by calling OPK,
where n = poly(λ).

– For each i ∈ [n], it tries to create a signing key sk∗i by simulating R. If such a
key is obtained, it moves to the next step. If the signing key is not obtained
for all i ∈ [n], then it terminates and outputs ⊥.

– It chooses a message m∗ at random and computes σ∗ ←
Πrs.Sig(ppRS, sk

∗
i , R

∗,m∗).

– It returns (R∗,m∗, σ∗) to the challenger.

Observe that (pk∗i , R
∗,m∗, σ∗) is not recorded in LSign as it is generated locally

by R′. Thus, if R′ outputs (R∗,m∗, σ∗), then it wins the game. Considering the
probability that A breaks the EUF-CMA security of ΠΠrs

imdvs, R is able to find a
signing key of a ring member of R∗ with probability better than ϵ. Therefore, R′

breaks the EUF-CMA security of ΠΠrs
imdvs with probability better than ϵ, which

is non-negligible.
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Case 2: A never makes a ring corruption query. This case should be
devided in two subcases: whether A asks a query that necessitates the query
(pk∗j , R

∗,m∗
RS) to ORSig for some j ∈ [n] or not.

If it is the case, then R should return a valid ring signature without calling
ORSig, and thus we can construct another PPT algorithm R′ that breaks the EUF-
CMA security of Πrs with non-negligible probability by a similar discussion as
Case 1.

Otherwise, Πrs is no longer EUF-CMA secure since A neither necessitates
to corrupt a ring member nor to create a ring signature with respect to R∗.

In the first subcase, we can construct a PPT algorithm R′ as follows.

– Given a public parameter ppRS, it creates R∗ = {pk∗i }i∈[n] by calling OPK,
where n = poly(λ).

– It chooses a message m∗ at random and (somehow) computes a signature σ∗

s.t. Πrs.Vrf(ppRS, R
∗,m∗, σ∗) = 1. If it cannot create such a ring signature

σ∗, then it terminates and outputs ⊥.
– It returns (R∗,m∗, σ∗) to the challenger.

Observe that R′ wins the game if it outputs (R∗,m∗, σ∗). Considering the winning
probability of A, the probability that R′ succeeds in forging a ring signature is
at least ϵ, which is non-negligible.

We finally consider the second subcase. Recall that we are assuming that the
key generation algorithms of ΠΠrs

imdvs need to call OPK. Thus, every public key
of a ring member of R∗ is created by the oracle OPK. Since we are considering
Case 2 and its second subcase, no ring member of R∗ is corrupted and a forged
signature σ∗ is not created by OSig. Therefore, even if we assume the existence

of A that breaks the EUF-CMA security of ΠΠrs
imdvs, R is able to simulate A to

break the EUF-CMA security of Πrs with non-negligible probability. Thus, if
Πrs allows this subcase, it is no longer EUF-CMA secure. ⊓⊔

As mentioned earlier, it is known that group signature implies PKE [1, 9, 23].
Therefore, combining it with Theorem 5, we obtain the following corollary.

Corollary 1. There is no black-box construction of group signature based on
ring signature.

6 Conclusion and Future Work

In this paper, we have proven that it is impossible to construct PKE from ring
signature in a black-box manner and partly answer the question if ring signa-
ture belongs to Cryptomania or Minicrypt. Furthermore, this result indicates an
essential difference between ring signature and group signature because group
signature implies PKE [1].

While it is known that ring signature can be constructed by using Cryp-
tomania primitives in the standard model or OR-proof systems in the random
oracle model, to the best of our knowledge, it is still unclear if we can obtain
ring signature only from Minicrypt primitives in the standard model. We leave
this as an interesting open problem.
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2. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
Logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 281–311. Springer Inter-
national Publishing, Cham (2019)

3. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) Theory of Cryp-
tography. pp. 60–79. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

4. Boneh, D., Papakonstantinou, P., Rackoff, C., Vahlis, Y., Waters, B.: On the im-
possibility of basing identity based encryption on trapdoor permutations. In: Pro-
ceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. p. 283–292. FOCS ’08, IEEE Computer Society, USA (2008)

5. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A., Schneider, S.A. (eds.) Ap-
plied Cryptography and Network Security - 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings. Lecture Notes in Computer
Science, vol. 9696, pp. 117–136. Springer (2016). https://doi.org/10.1007/978-3-
319-39555-5 7, https://doi.org/10.1007/978-3-319-39555-5 7

6. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) Advances in
Cryptology — EUROCRYPT ’91. pp. 257–265. Springer Berlin Heidelberg, Berlin,
Heidelberg (1991)

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) Advances in
Cryptology — CRYPTO ’94. pp. 174–187. Springer Berlin Heidelberg, Berlin, Hei-
delberg (1994)

8. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) Theory of Cryptography. pp. 229–260. Springer International
Publishing, Cham (2020)

9. Emura, K., Hanaoka, G., Sakai, Y.: Group signature implies pke with non-
interactive opening and threshold pke. In: Echizen, I., Kunihiro, N., Sasaki, R.
(eds.) Advances in Information and Computer Security. pp. 181–198. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

11. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Public Key Cryptography –
PKC 2007. pp. 181–200 (2007)



On the Black-Box Separation Between RS and PKE 23

12. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology –
EUROCRYPT 2017. pp. 156–181. Springer International Publishing, Cham (2017)

13. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science. p. 305. FOCS ’00, IEEE Computer Society, USA (2000)

14. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: Proceedings
41st Annual Symposium on Foundations of Computer Science. pp. 325–335 (2000)

15. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and cca
security for public key encryption. In: Vadhan, S.P. (ed.) Theory of Cryptography.
pp. 434–455. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

16. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference. pp. 134–147
(1995)

17. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) Advances in Cryptology — CRYPTO’ 88. pp.
8–26. Springer New York, New York, NY (1990)
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