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ABSTRACT
The scalability and interoperability challenges in current cryptocur-

rencies have motivated the design of cryptographic protocols that

enable efficient applications on top and across widely used cryp-

tocurrencies such as Bitcoin or Ethereum. Examples of such proto-

cols include (virtual) payment channels, atomic swaps, oracle-based

contracts, deterministic wallets, and coin mixing services. Many

of these protocols are built upon minimal core functionalities sup-

ported by a wide range of cryptocurrencies. Most prominently,

adaptor signatures (AS) have emerged as a powerful tool for con-

structing blockchain protocols that are (mostly) agnostic to the

specific logic of the underlying cryptocurrency. Even though AS-

based protocols are built upon the same cryptographic principles,

there exists no modular and faithful way to reason about their

security. Instead, all the works analyzing such protocols focus on

reproving how adaptor signatures are used to cryptographically

link transactions while considering highly simplified blockchain

models that do not capture security-relevant aspects of transaction

execution in blockchain-based consensus.

To help this, we present LedgerLocks, a framework for the se-

cure design of AS-based blockchain applications in the presence

of a realistic blockchain. LedgerLocks defines the concept of AS-

locked transactions, transactions whose publication is bound to

the knowledge of a cryptographic secret. We argue that AS-locked

transactions are the common building block of AS-based blockchain

protocols and we define GLedgerLocks, a realistic ledger model in

the Universal Composability framework with built-in support for

AS-locked transactions. As LedgerLocks abstracts from the cryp-

tographic realization of AS-locked transactions, it allows protocol

designers to focus on the blockchain-specific security considera-

tions instead.

1 INTRODUCTION
Blockchain-based cryptocurrencies such as Bitcoin, enable mutu-

ally distrusting users to perform financial transactions without

relying on a trusted third party. However, for their large-scale adop-

tion, cryptocurrencies face major interoperability and scalability

challenges. These challenges can be tackled with the help of cryp-

tographic protocols that form a more flexible application layer on

top of the core cryptocurrency functionalities. Prominent examples

are atomic swaps [39] for users to trade their coins across different

cryptocurrencies or payment channels [1] to perform an unlimited
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Figure 1: Overview of the LedgerLocks framework. Crypto-
graphic protocols for creating AS-locked transactions in the state of

the art (in green) are modeled by an ideal functionality GLedgerLocks.

number of fast bilateral payments while publishing only a small

number of transactions on the blockchain.

To ease the interoperability across cryptocurrencies, these pro-

tocols are usually realized upon simple core operations supported

by most cryptocurrencies (e.g., payment authorization with a digi-

tal signature from the sender). This endeavor has been facilitated

by the recent discovery of adaptor signatures (AS) [1, 18], which
allow for conditioning the creation of a digital signature on the

knowledge of a cryptographic secret.

Despite the multitude of cryptographic blockchain protocols re-

lying on adaptor signatures [2, 5, 11, 19, 22, 29–32, 39], the security

analysis of these protocols is usually incomplete. This is due to

the fact that the security of these protocols does not only rely on

the correct usage of cryptographic primitives used in the message

exchanges between protocol participants but also on the guarantees

that stem from the underlying blockchain consensus. In spite of

that, all current works proposing new AS-based blockchain proto-

cols study their security in the context of highly simplified ledger

models, defined in an ad-hoc manner [1, 3, 4, 22, 31, 36, 39].

However, the subtleties of the ledger model have a significant

influence on the blockchain protocol security and neglecting these

aspects can easily result in undetected security issues as we will

show in §2. Consequently, it is highly desirable to build an infras-

tructure that facilitates the reasoning about AS-based blockchain

protocols in the presence of a realistic ledger.

Towards this goal, we propose LedgerLocks, a framework for

separating the reasoning about ledger-specific aspects of AS-based
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blockchain protocols from the cryptographic operations. We ob-

serve that adaptor signatures are used in these protocols to en-

code a generic building block that we call AS-locked transactions.
AS-locked transactions are transactions whose publication on the

blockchain is bound to the knowledge of a cryptographic secret in

two ways: (i) knowing the cryptographic secret is a prerequisite

for a party holding the AS-locked transaction to publish it on the

ledger, and (ii) the publication of the AS-locked transaction on the

ledger reveals the secret to all parties holding the AS-locked trans-

action. By synthesizing this building block and integrating it into

a realistic ledger functionality, we can describe many blockchain

protocols in terms of this functionality without the cryptographic

interactions between the protocol participants. We illustrate this

approach in Figure 1: In the state of the art, AS-based blockchain

protocols are mainly given through the exchange of cryptographic

messages among the participants. These interactions shall ensure

that the protocol participants can construct valid transactions to

be published on the blockchain (given through a simplified ledger

functionality G𝐿) in compliance with the protocol goals. The cryp-

tographic reasoning for showing the security of these interactions

is essentially the same throughout the state-of-the-art protocols

(denoted by the green parts of protocols App
1
to App𝑛). In Ledger-

Locks, we define a realistic ledger functionality GLedgerLocks that
supports generic AS-locked transactions and, thus, subsumes the

cryptographic aspects of these protocols. In this way, AS-based

blockchain protocols can be described in terms of AS-locked transac-

tions without further need for cryptographic interactions between

the protocol participants. Consequently, the subsequent security

analysis of such protocols does not require cryptographic reasoning

but can focus on the ledger-specific security arguments. Lifting the

burden of concurrently reasoning about both cryptographic and

ledger-specific security aspects paves the ground for the security

analysis of blockchain protocols in realistic ledger models.

Constructing GLedgerLocks comes with multiple technical chal-

lenges: The logic of protocols using AS-locked transactions usually

relies on relating these transactions through the structure of their

cryptographic conditions. Therefore, for truly modular reasoning

we need a general model of cryptographic conditions that integrates

with GLedgerLocks and is adaptable to the protocol needs. Further,

to show that GLedgerLocks is realizable by adaptor signatures in

the presence of such a model of cryptographic conditions, a novel

composable notion of adaptor signature security is needed. Finally,

to facilitate flexible reasoning in a faithful ledger model, we need

to model GLedgerLocks to expose provably realistic ledger behavior

while supporting a generic notion of AS-locked transactions.

In this work, we overcome these challenges as follows:

• We model cryptographic conditions as a standalone (global)

ideal functionality GCond, which encodes operations over condi-

tions, such as their composition. GCond can be easily extended to

account for other operations in a modular fashion, that is, with-

out modifying the several other functionalities using it in a shared

manner to keep conditions consistent across them (§5).

• We model (two-party) adaptor signatures as an ideal function-

ality FAdaptSig and prove that it is UC-realized by any two-party

adaptor signature with aggregatable public keys generated from

an identification scheme [18], a class encompassing all the digital

signatures used in current AS-based applications (§6).

• Based on the ledger functionality GLedger from Badertscher

et al. [8], which has been proven to be realizable by the Bitcoin

backbone protocol [8] as well as the proof of stake-based protocol

Ouroboros Genesis [7], we propose GLedgerLocks, an ideal function-

ality that models a ledger with generic AS-locked transactions. We

provide a protocol ΠLedgerLocks that UC-realizes GLedgerLocks in the

presence of GLedger from [8] and FAdaptSig (§7).
• We demonstrate the flexibility of our framework, by using

it to describe an enhanced atomic swap protocol ΠAtomicSwap and

a multi-hop payment protocol ΠMultiHop over payment channels

ΠChannel, all of them protocols relying on AS-locked transactions.

To this end, we instantiate GLedgerLocks with support for transac-

tion timelocks, which are crucial for atomic swap and multi-hop

payment security. The description of ΠAtomicSwap, ΠChannel and

ΠMultiHop does not involve additional cryptography, and hence,

can focus on the delicate task of adjusting the protocol timelocks to

provide security in the presence of realistic blockchains as modeled

by GLedgerLocks (§8).

2 STATE-OF-THE-ART BLOCKCHAIN
PROTOCOL ANALYSIS

In this section, we overview the existing approaches to analyzing

the security of (AS-based) blockchain protocols with an emphasis

on the ledger modeling. For this, we first give background on the

workings of realistic ledgers and then illustrate the impact of the

ledger model on the security analysis using the examples of an

atomic swap and a multi-hop off-chain payment protocol. Finally,

we discuss the ledgermodels used in literature and their limitations.

Blockchain workings. In cryptocurrencies built upon a tamper-

resistant distributed ledger (the blockchain), network participants

conduct transactions by broadcasting them to the network. Spe-

cific network nodes, so-called miners, group valid transactions into

blocks and append them to the blockchain. To ensure fairness, the

miner selection process is randomized based on a resource in the

possession of miners (usually their computational power or finan-

cial stakes). With a majority of the resource being owned by honest

miners, it is guaranteed that the system will progress safely: Even-

tually, the system will reach consensus on a stable prefix of the

blockchain and valid transactions are guaranteed to be eventually

included in such a stable prefix.

The resulting transaction execution model comes with several

peculiarities: Transactions submitted by honest users are not neces-

sarily guaranteed to be included in the blockchain but could still be

outrun by (adversarial) transactions that invalidate them, e.g., by

consuming the same assets. Also, transactions are already public

before their inclusion in the blockchain, possibly leaking sensitive

information to a (miner-controlling) attacker.

Atomic swaps. An atomic swap (Figure 2) involves two ledgers

A (blue), B (orange) and two users Alice (A) and Bob (B), holding

assets in A and B, respectively. A correct atomic swap protocol

ensures that Alice receives Bob’s assets on B and Bob receives

Alice’s assets on A if both parties are honest. An atomic swap

protocol is considered secure if an honest party always either (i)

receives the other party’s assets; or (ii) keeps their own assets. To

set up such an atomic swap, Alice locally creates a cryptographic

secret 𝑥 . Moreover, Alice and Bob deposit their assets into a shared
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account AB in the respective chain (through deposit transaction

dtx𝐴 and dtx𝐵 ). The assets in a shared account are set up such that

they can be released by the intended receiver showing the secret

value 𝑥 or refunded to the original owner. This functionality is

achieved by Alice and Bob jointly creating AS-locked transactions

ctx𝐴 and ctx𝐵 , which can only be submitted upon the knowledge

of secret 𝑥 and whose publication will release 𝑥 to the other party.

Further, they create the refund transactions rtx𝐴 and rtx𝐵 that

allow Alice and Bob to retrieve back their assets in case the other

party stops collaborating.

After a successful setup, Alice, who knows the secret 𝑥 , can claim

Bob’s assets in B (using ctx𝐴 ). Then, Bob can read 𝑥 from B and use

it to claim the assets in the shared account on A (using ctx𝐵 ). Alter-
natively (e.g., if the other user fails to cooperate), Alice and Bob can

refund their assets by publishing rtx𝐴 or rtx𝐵 , respectively. Alice’s
refund transaction rtx𝐴 is equipped with a timelock that ensures

that it can only be published after time 𝑡 . This restriction prevents

Alice from simultaneously publishing rtx𝐴 and ctx𝐴 to retrieve the

assets on both chains. Instead, if Alice has not claimed Bob’s assets

(through ctx𝐴 ) until time right before 𝑡 , Bob can publish rtx𝐵 to

be refunded before rtx𝐴 becomes valid at time 𝑡 .

Ledger model and atomic swap security. Although the idea

behind the atomic swap protocol seems simple, it is only secure

when assuming a highly simplified ledger model. More precisely, its

security relies on the assumption that rtx𝐵 will be included imme-

diately after Bob sent it to the network. In practice, the ledger only

guarantees, that rtx𝐵 will be included in the blockchain within a

time delay Δ. During this time, other transactions (even if submitted

later) may be included in the blockchain, invalidate rtx𝐵 and, thus,

prevent its inclusion. Specifically, a malicious Alice could send ctx𝐵
right after observing rtx𝐵 on the network. As a consequence, ctx𝐵
could be included in the blockchain first, canceling rtx𝐵 .

To secure the atomic swap protocol in the presence of such

ledgers, Bob’s behavior in the protocol needs to be adapted as

illustrated in Figure 3 (top): Right before time 𝑡 − 2Δ, Bob needs

to initiate the refund of their assets by publishing rtx𝐵 (denoted

by a dotted arrow). Like this, Bob knows right before time 𝑡 − Δ
whether the refund was successful or whether Alice managed to

outrun Bob with ctx𝐴 . In the latter case, Bob learns 𝑥 and publishes

ctx𝐵 , which is guaranteed to be included before 𝑡 , the time starting

from which Alice could publish rtx𝐴 .

Interestingly, even the adapted protocol is insecure when consid-

ering another subtlety of realistic ledger workings: Once submitted

to the network, a transaction becomes public to the miners, even

before being included in the blockchain. Considering that and de-

spite her advantage of exclusively knowing secret 𝑥 , Alice is subject

to an attack (Figure 3, bottom). When Alice claims Bob’s assets (by

publishing ctx𝐴 ), a malicious Bob can learn 𝑥 and still outrun ctx𝐴
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Figure 2: Transactions in an atomic swap protocol.
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Figure 3: Atomic swap in a ledger with delayed inclusion
(top). Attack in an atomic swap in a realistic ledger (bottom).

Figure 4: Setup for a multi-hop payment from sender 𝑆 to
receiver 𝑅. Dotted boxes denote payment channels between users,

with the funds of the left participant in white, funds of the right

participant in green, and locked funds in black. The distribution of

locked funds is controlled using transactions ctx𝑖 and rtx𝑖 .

with rtx𝐵 . Then, Bob could claim Alice’s assets (publishing ctx𝐵 )
before Alice could refund her assets using rtx𝐴 at time 𝑡 .

This issue can be mitigated when introducing an additional time-

lock for Bob’s refund transaction rtx𝐵 but it would stay undetected

when relying on a ledger model that does not leak transactions to

the attacker upon their submission to the network.

Multi-hop payment security. The described issues do not only

apply to atomic swaps but extend to a wide range of (AS-based)

blockchain protocols. One example is off-chain payments in pay-

ment channel networks such as described in [31]. Payment channel

networks, like Bitcoin’s Lightning Network [33], form a layer for

fast peer-to-peer payments on top of cryptocurrencies by relying on

two-party payment channels. In a payment channel, users lock funds
in a shared account and exchange guarantees for the ownership

distribution (channel state) of these funds. In this way, collabo-

rative channel users can perform offchain payments by updating

the channel state without making transactions on the blockchain.

The channel parties can always close the channel (e.g. when the

other party stops collaborating) by publishing transactions on the

blockchain to obtain the funds according to the latest channel state.

Users that do not share a payment channel can still securely

exchange offchain payments as long as they are connected via a

path in a payment channel network as illustrated in Figure 4. For

preparing a payment, the users 𝑢𝑖 on a payment path between

sender 𝑆 (= 𝑢0) and receiver 𝑅 (= 𝑢𝑛) lock channel funds for the

payment such that the payment later can be enforced atomically.

To this end, the users 𝑢𝑖 (0 ≤ 𝑖 < 𝑛) prepare conditional offchain
3
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payments based on some condition 𝑐𝑖 to their successors𝑢𝑖+1 on the

payment path. These conditional offchain payments are realized

through AS-locked transactions ctx𝑖 on the channel funds that

can be published once the channel is closed. The conditions 𝑐𝑖
are set up such that if user 𝑢𝑖+1 claims ctx𝑖 , this will reveal a
secret 𝑥𝑖 to 𝑢𝑖 allowing them to satisfy 𝑐𝑖−1 and claim ctx𝑖−1
in turn. Once all conditional payments are set up, 𝑆 initiates the

payment by revealing a secret 𝑠𝑅 to 𝑅 that allows them to open

𝑐𝑛−1. Next, the payment gets propagated through the payment path:

Collaborative users 𝑢𝑖 and 𝑢𝑖+1 can update their payment channels

offchain after revealing the secret that would enable ctx𝑖 . If 𝑢𝑖
is not collaborating, 𝑢𝑖+1 can close the channel and use ctx𝑖 to

enforce the conditional payment based on the last channel state.

To ensure that a malicious sender cannot indefinitely lock the

funds of intermediaries on the path, the users, in addition to ctx𝑖
prepare a refund transaction rtx𝑖 that allows 𝑢𝑖 to retrieve back

their funds after time 𝑡𝑖 . As for the atomic swap protocol, such

a refund option introduces additional challenges in the design of

a secure protocol: If user 𝑢𝑖+1 is not responding, honest 𝑢𝑖 needs
to close the channel and invoke the refund using rtx𝑖 . However,
even after successful channel closure while waiting for rtx𝑖 to be

included in the blockchain, 𝑢𝑖+1 may still decide to publish ctx𝑖
instead. In this case 𝑢𝑖 needs to observe ctx𝑖 on the blockchain,

learn 𝑥𝑖 and use it to continue the payment (either offchain or

onchain). For this, it needs to be ensured that ctx𝑖−1 is still valid

at this point and so that rtx𝑖−1 has not been published yet.

This illustrates how the protocol design is closely intertwined

with the precise guarantees that the underlying ledger provides: (i)

The protocol transactions need to have timelocks that respect the

ledger inclusion times. In particular, timelock 𝑡𝑖 of rtx𝑖 needs to be
adjusted such that 𝑡𝑖 < 𝑡𝑖−1+2Δ+Δclose (for 𝑡𝑖−1 being the timelock

of rtx𝑖−1 and Δclose being the channel closing time) to ensure that

𝑢𝑖 after closing their outgoing channel and publishing rtx𝑖 at 𝑡𝑖 ,
when learning (latest) at 𝑡𝑖 + Δ whether rtx𝑖 or ctx𝑖 got included

in the blockchain there is still enough time to close their ingoing

channel and publish ctx𝑖−1 on the blockchain (which may take up

to Δclose + Δ). (ii) The honest participant strategies need to respect

the timing constraints. It is e.g., crucial that honest participants

frequently poll the blockchain for the inclusion of payment channel

closing transactions and to react on the publication of a claim

transaction ctx onchain in well-defined time windows to obtain

the desired correctness guarantees.

If the ledgermodel is not accounting for the exact ledger behavior

concerning the attacker’s delay and learning capabilities, wrong

protocols can easily be proven secure. E.g., consider a version of the

multi-hop payment protocol where receiver 𝑅 accepts 𝑆 ’s payment

too late: After setting up the payment, if 𝑅 receives 𝑠𝑅 only after

𝑡𝑛 + Δclose, 𝑅 is not guaranteed anymore to receive the payment:

If 𝑢𝑛−1 does not collaborate in updating the channel, 𝑅 needs to

close the channel with 𝑢𝑛−1 (taking up to Δclose) and then publish

ctx𝑛 at time 𝑡 < 𝑡𝑛 . At 𝑡𝑛 , however, a malicious 𝑢𝑛−1 already

submitted rtx𝑛 to outrun ctx𝑛 resulting in 𝑢𝑛−1 being refunded

while still learning 𝑠𝑅 . With the knowledge of 𝑠𝑅 , 𝑢𝑛−1 completes

the payment and receives the funds meant for 𝑅. Similar to the

atomic swap example, such an attack could not be detected in the

presence of a ledger model with instant transaction inclusion or

Ledger Features Linst LΔ GLedger / GLedgerLocks
Attacker knowledge X X

∗ ✓
Attacker capabilities X X

∗ ✓
Inclusion time guarantees X ✓ ✓

Realizability X X
† ✓

Table 1: Overview of features of ledger models used for the
analysis of blockchain protocols. X∗ denotes that the corre-

sponding ledger feature is underspecified, X
†
indicates that the

realizability of LΔ is unknown.

without modeling that the attacker may learn transaction details

(such as 𝑥𝑖 ) before the transaction’s inclusion in the blockchain.

Ledger models in the state of the art. As highlighted by the

examples in the last paragraph, there are several realistic ledger fea-

tures whose modeling comes with immediate security implications:

Foremost, this is a realistic attacker model that accounts for both

the attacker knowledge (e.g., the knowledge of transactions after
they got submitted but before they got included in the blockchain)

and the attacker capabilities (e.g., to influence the order and time

of transaction inclusion). Related to the attacker capabilities, the

concrete inclusion time guarantees for honest users are crucial for
secure protocol design (e.g., for the correct adjustment of timeouts).

The importance of a realistic ledger model for the security analy-

sis of blockchain protocols is also emphasized by [26] who propose

a formal security analysis of Bitcoin’s Lightning Network in the

presence of the ledger model GLedger from [8]. The authors show-

case that for precisely specifying the Lightning Network protocol,

it is inevitable to rely on the exact timing guarantees obtained from

the ledger in [8]. Further, they prove that the simplified models that

are used in the security analysis of [14–17, 39] do not only not fail

to reflect the guarantees of realistic ledgers but that it is impossible

to design a ledger that could provide such guarantees.

However, as summarized in Table 1, the state-of-the-art still

analyses blockchain protocols in the presence of simplified ledger

models, which disregard security-relevant ledger features. These

works consider either (i) (provable unrealizable) ledgers Linst with

immediate inclusion guarantees [14–17, 39]; or (ii) ledgers LΔ that

let the attacker delay the inclusion of a transaction up to delay

Δ [1, 2, 4, 5, 22, 34, 36, 38, 40]. Even in protocols from the second

category, the exact way that the attacker can exercise their power

to delay transactions stays vague. E.g., in [1], it is stated that upon

a message being posted by the user, the ledger should “wait until

round 𝜏1 ≤ 𝜏0 + Δ (the exact value of 𝜏1 is determined by the

adversary)”. This description leaves open at which point in time

and based on which information the adversary determines the

inclusion time 𝜏1. However, as shown for the example of atomic

swap and multi-hop payments, leaving these aspects underspecified

may result in the security analysis missing relevant attacks.

This work aims to simplify the design of AS-based blockchain

protocols in the presence of realistic ledgers. To this end, the pro-

posed LedgerLocks framework extends the realistic ledger model

GLedger from [8] to include an abstraction for the cryptographic

operations required to synchronize transactions in AS-based proto-

cols. Like this, the security analysis of these protocols can focus

on the ledger-specific aspects instead of cryptographic arguments.
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Figure 5: Overview of the infrastructure of LedgerLocks.Dark-
gray components indicate novel functionalities and protocols intro-

duced in this work. The ≼ relation denotes that a protocol Π (left)

realizes a functionality F /G (right) in the UC framework.

3 TECHNICAL OVERVIEW
In this section, we overview the LedgerLocks framework. For en-

abling modular reasoning about the security of blockchain pro-

tocols, LedgerLocks relies on the Universal Composability (UC)

framework of Canetti [12]. In the UC framework, the security of

protocols is defined in terms of ideal functionalities, which describe

the idealized secure protocol behavior. Slightly simplified, a protocol

is considered secure (w.r.t. an ideal functionality) if an adversar-

ial environment cannot distinguish whether it interacts with the

protocol or with the ideal functionality. This security notion is suffi-

ciently strong to enable modular security reasoning. More precisely,

once protocol Π is proven secure w.r.t. an ideal functionality F ,
the security of protocols using Π as a subroutine can be analyzed

assuming F as subroutine instead.

The LedgerLocks framework provides ideal functionalities to

characterize the security of cryptographic conditions (GCond), adap-
tor signatures (FAdaptSig), and lock-enabling ledgers (GLedgerLocks).
Figure 5 depicts how these ideal functionalities connect to finally

expose an interface for modularly defining AS-based blockchain

protocols (such as an atomic swap protocol ΠAtomicSwap) based on

lock-enabling ledgers and cryptographic conditions.

In the following, we describe in more detail the different compo-

nents of the LedgerLocks framework (as highlighted by the different

background colors in Figure 5). To this end, Figure 6 gives a more

granular account of the individual components from Figure 5.

Conditions.We first define the ideal functionality GCond for rep-

resenting (secure) cryptographic conditions (§5). Intuitively, a cryp-

tographic condition describes the properties as given by a hard

relation 𝑅. Concretely, a condition is identified by a public state-

ment and we say that the condition is satisfied if the corresponding

witness is provided. Due to the hardness of the relation, without

prior knowledge, it is hard to come up with a witness satisfying a

given condition. A typical example is the discrete logarithm (DLOG)

assumption over certain cyclic groups (G, 𝑔, 𝑞) (with generator 𝑔

and order 𝑞), where given a group element (the statement) 𝑌 = 𝑔𝑦 ,

it is hard to compute the exponent 𝑦 (the witness).

At first sight, it may seem counter-intuitive to define conditions

as a standalone ideal functionality. The reason for doing so is that

the prerequisites for a party to craft a witness related to a statement

often emerge from a cryptographic protocol for the condition cre-

ation. As an example, consider the following scenario. Alice plays a

simple guessing game with Bob. If Bob can guess a number between

1 and 10 then he gets a prize from Alice. To implement this based on

DLOG, Alice prepares ten secret witnesses (𝑦mask
𝑖
)𝑖∈ (1,10) and sends

the corresponding statements

#          »

𝑌mask = (𝑔𝑦mask
𝑖 )𝑖∈ (1,10) to Bob. Bob

himself prepares onewitness𝑦win and tenwitnesses (𝑦blank
𝑖
)𝑖∈ (1,10) .

For the guess 𝑗 , Bob prepares
#          »

𝑌 guess = (𝑌 guess
𝑖
)𝑖∈ (1,10) such that for

𝑖 ≠ 𝑗 , 𝑌
guess
𝑖

= (𝑌mask
𝑖
)𝑦blank

𝑖 and 𝑌
guess
𝑗

= 𝑔𝑦
win
. At this point, Bob

knows the witness for 𝑌
guess
𝑗

, while he cannot know the witness for

any statement 𝑌
guess
𝑖

with 𝑖 ≠ 𝑗 , since for this, Bob would require

Alice’s secret masking values (𝑦mask
𝑖
)𝑖∈ (1,10) . Bob proves in zero-

knowledge to Alice that

#          »

𝑌 guess
is well-formed. Now, Alice chooses

a number𝑚 and prepares a payment to Bob based on 𝑌
guess
𝑚 . Alice

at this point, cannot know which condition Bob can open, only

that Bob can open exactly one out of the ten provided conditions.

If Alice and Bob chose the same number ( 𝑗 =𝑚), Bob can complete

the payment, otherwise, the money stays with Alice.

For reasoning about the above-described guessing game, we

need to capture that there are ten conditions out of which Bob

can open exactly one. However, the creation of conditions with

this property involves a protocol itself. This condition-creation

protocol is independent of more advanced protocols relying on

conditions with the respective property. In summary, by modeling

conditions as a separate functionality, we can modularize reasoning

about condition creation (e.g.,

#          »

𝑌 guess
) and protocols using these

conditions (e.g., the payment from Alice to Bob based on 𝑌
guess
𝑚 ).

Technically, this means that we can extend the functionality

GCond with further types of conditions without reproving any of

the results in Sections 6 and 8. For the scope of this work, we present

three different forms of conditions: 1) Plain conditions (which we

call individual conditions), which users can create on their own

by creating a fresh witness and the corresponding statement for a

given hard relation. 2) Composed conditions, which combine two

existing conditions. The concrete composition operation depends

on the underlying hard relation and is specified as a parameter

𝑓merge to the functionality GCond. 3) 1-out-of-n conditions, which

enable a party 𝑃 together with a set of users𝑈 to jointly create a

vector of statements, such that 𝑃 can (without the collaboration of

all users in𝑈 ) only know the witness for exactly one out of these

statements. The described guessing game included the creation of

a 1-out-of-10 condition for DLOG with 𝑃 = Bob and𝑈 = {Alice}.
Note that we fix the hard relation 𝑅 (as well as 𝑓merge) as a pa-

rameter to GCond. This is needed to enable composability with the

adaptor signature functionality FAdaptSig, which is also defined

w.r.t. to 𝑅. In §5, we show how to provably realize GCond for the

DLOG relation with the protocol ΠCond.

Within our LedgerLocks framework, we treat GCond as a global
subroutine [6]. In the UC framework, a global subroutine G is an

ideal functionality that can be securely used by some protocol Π,
even if Π relies on another functionality F , which makes use of

G as a subroutine. One can think of G as constituting some safely

shared state between Π and F . An example for this usage of GCond
is shown in Figure 6: Here, the protocol ΠAtomicSwap uses the func-

tionalities GCond (for creating conditions) and GLedgerLocks again
usesGCond as a subroutine (for checking conditions). HavingGCond
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Figure 6: Detailed overview of the different components of the LedgerLocks infrastructure.White arrow-shaped boxes indicate

parametrization; black ones instantiation.

as a global subroutine, intuitively allows us to define higher-level

functionalities relative to a shared, stateful notion of conditions.

Adaptor signatures. In §6, we define FAdaptSig, an ideal func-

tionality for adaptor signatures. Following the two-party adaptor

signatures scheme defined by Erwig et al. [18], our ideal function-

ality FAdaptSig allows two parties to jointly create a verification

key, sign a message and pre-sign a message with respect to a given

condition. Moreover, each user on its own can adapt a pre-signature

into a valid signature if they can satisfy the corresponding condi-

tion. Finally, they can also extract the witness 𝑦 for a condition 𝑌

if, for any given message𝑚, they can provide a valid pre-signature

�̂� on𝑚 with condition 𝑌 and the corresponding full signature 𝜎

obtained through adaptation with 𝑦.

In contrast to the adaptor signature scheme whose security is

characterized in terms of game-based security definitions, mod-

eling adaptor signatures as an ideal functionality comes with the

benefits of composable reasoning in the UC framework. In par-

ticular, it enables modular reasoning with respect to conditions,

since our model of FAdaptSig relies on GCond to handle conditions.

This means that for signature adaption FAdaptSig queries GCond for

determining whether the correct witness to open a condition was

provided. Similar to GCond, FAdaptSig is parameterized by a hard

relation 𝑅, and additionally a function 𝑓adapt, which transforms a

pre-signature �̂� and a witness 𝑦 into a corresponding full signa-

ture 𝜎 . This parametrization enables FAdaptSig to use conditions

as provided by GCond in a truly modular fashion. Without fixing

𝑓adapt, it would be required to make assumptions on the way that

protocols relying on FAdaptSig use GCond for condition generation.

We include a more detailed discussion of this aspect in §6.

In practice, the parametrization by 𝑓adapt does not pose a restric-

tion. Indeed, we can show that FAdaptSig is realizable for a big class
of adaptor signatures (and corresponding adaptation functions).

Erwig et al. [18] showed a generic transformation from signature

schemes built from an identification scheme to two-party signa-

ture schemes (with aggregatable public keys), and then from there

to two-party adaptor signature schemes. This transformation re-

quires an adaptation function 𝑓adapt with certain generic properties.

We can show that all adaptor signature instances resulting from

the transformation realize FAdaptSig for the same 𝑓adapt function

as used in the transformation. More precisely, we give a generic

wrapper protocol ΠAdaptSig around the algorithmic interface of

two-party adaptor signature schemes (as defined in [18]) and prove

this protocol to realize FAdaptSig by reduction to the game-based

security properties for adaptor signatures. Since (virtually all) the

concrete adaptor signature constructions proposed so far are iden-

tification scheme-based signature schemes, our proof shows all of

these schemes to realize FAdaptSig.

Lock-enabling ledger. In §7, we define GLedgerLocks, an ideal func-

tionality for a distributed ledger with AS-locked transactions. In

the design of GLedgerLocks, we follow the technique in [8]: The au-

thors in [8] provide GLedger, an ideal functionality modeling the

subtleties of real-world blockchain consensus, in particular, realis-

tic guarantees about the inclusion of transactions into the ledger.

Moreover, they give ΠLedger, a description of the Bitcoin backbone

protocol and prove that it UC-realizes GLedger.
GLedger and ΠLedger are generic in that they do not fix the con-

crete transaction format or ledger logic. Instead, both of them are

parametrized with a predicate isValidTx, which based on the inter-

nal ledger state determines whether a transaction is valid.

In this manner, the UC-realization proof holds for any instantia-

tion of this predicate. Moreover, one can leverage the results in [8]

by extending GLedger in two ways: (i) instantiating isValidTx predi-
cate to account for the specific transaction formats and ledger logics;

and (ii) extending the API of GLedger to account for further ledger

features. Our ideal functionality GLedgerLocks follows this blueprint
to model multi-party account-based transaction authorization.

In more detail, GLedgerLocks allows multiple parties to create a

joint account. Transactions are associated with the set of all ac-

counts, which need to provide authorization for transaction publi-

cation on the ledger. In addition to full authorization, accounts can

lock a transaction on a condition, in which case any account owner

can complete the authorization by providing an adequate witness.

If such a AS-locked transaction is published on the ledger, honest

account owners learn the corresponding witness, while a malicious

owner learns the witness already upon transaction submission.

We build GLedgerLocks from GLedger by 1) requiring the transac-

tion format to include the list of accounts to authorize the transac-

tion; 2) adding additional state and interfaces for the new operations;
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and 3) instantiating the valid predicate to check for correct transac-

tion authorization. The operation for releasing a AS-locked transac-

tion thereby makes use of GCond to determine whether a provided

witness satisfies the condition of the corresponding transaction.

To stay general, we do not fully fix the transaction format and

the isValidTx predicate but introduce another predicate CheckBase,
which performs additional transaction validity checks. In this way,

we can modularly add further functionality to GLedgerLocks, e.g.,
support for timelocks as we will show in §8.

Finally, we show how to realize GLedgerLocks with a protocol

ΠLedgerLocks, which uses GLedger and FAdaptSig. Thanks to our mod-

eling of GCond as global ideal functionality, the whole construction

and proof are independent of the concrete realization of conditions.

Using the framework. We show how to use our LedgerLocks

framework using an oracle-based atomic swap protocol that relies

on AS-locked transactions as a case study. An oracle-based atomic

swap works as the swap protocol described in §2 with the only

difference that a third party (the oracle) needs to agree to the swap

being executed. To this end, the condition locking the claim transac-

tions is composed of a condition 𝑌 chosen by Alice and a condition

𝑌𝑂 chosen by the oracle so that the oracle needs to communicate

its witness for 𝑌𝑂 to Alice for enabling the swap.

To express this protocol (denoted by ΠAtomicSwap), we (partially)

instantiate the CheckBase predicate of GLedgerLocks to encode a

timelock check. Since GLedgerLocks is an extension of GLedger, we
inherit its guarantees concerning the transaction inclusion time.

Based on these guarantees, we can create timelocks that ensure that

(1) Alice can successfully claim Bob’s assets before Bob can refund

and (2) Bob has always enough time to claim Alice’s assets if Alice

has claimed Bob’s assets before, avoiding the attacks from §2. Note

that ΠAtomicSwap does not only rely on GLedgerLocks but also on

GCond for the condition creation. The swap conditions are created

by composing two conditions 𝑌 and 𝑌𝑂 . Since LedgerLocks is fully

modular with respect to GCond, it is not even necessary to fix the

protocol to create 𝑌𝑂 .

This example shows the flexibility of the LedgerLocks framework

to use conditions in a way parametric to the other functionalities.

To show this beyond the atomic swaps, we use LedgerLocks to

express a multi-hop payment protocol over payment channels in

Appendix G, Figures 25 to 28 and 30 to 33. Furthermore, these

examples demonstrate how the ledger functionality can be easily

extended to account for new ledger features, avoiding repetitive

proofs for the ledger core functionality.

Privacy. Adaptor signatures come with privacy advantages that

cannot easily be captured within UC-based security definitions. For

completeness, we add a discussion on privacy in §6 and give (game-

based) definitions for adaptor signature privacy and a resulting

privacy notion achieved by lock-enabling ledgers in Appendix C.

4 PRELIMINARIES
We review adaptor signatures and defer the full definition of them

and other basic cryptographic primitives to Appendix B. We define

a two-party adaptor signature scheme with respect to a standard

two-party signature scheme with aggregatable public keys Σ2 and
a hard relation 𝑅. We first recall the notion of a hard relation.

Definition 1 (Hard Relation). Let𝑅 be a relationwith statement/witness
pairs (𝑌,𝑦). Let𝐿𝑅 be the associated language𝐿𝑅 := {𝑌 | ∃𝑦 s.t. (𝑌,𝑦) ∈
𝑅}. We say that 𝑅 is a hard if:
• There exists a PPT sampling algorithm GenR(1𝜆) that on input

the security parameter 𝜆 outputs a statement/witness pair (𝑌,𝑦) ∈ 𝑅.
• The relation is poly-time decidable.
• For all PPT adversariesA there exists a negligible function negl,

such that:

Pr

[
(𝑌, 𝑦∗ ) ∈ 𝑅

���� (𝑌, 𝑦) ← GenR(1𝜆 ),
𝑦∗ ← A(𝑌 )

]
≤ negl(𝜆),

where probability is over the randomness of GenR and A.

In an adaptor signature scheme, for any statement 𝑌 ∈ 𝐿𝑅 , a

signer holding a secret key can produce a pre-signature w.r.t. 𝑌 on

any message𝑚. Such a pre-signature can be adapted into a valid

full signature on𝑚 if and only if the adaptor knows a witness for 𝑌 .

Moreover, if such a valid signature is produced, it must be possible

to extract the witness for 𝑌 given the pre-signature and the adapted

signature. Next, we formally define the two-party adaptor signature

scheme with aggregatable public keys.

Definition 2 (Two-Party Adaptor Signature Scheme with Aggre-

gatable Public Keys [18]). A two-party adaptor signature scheme
with aggregatable public keys is defined w.r.t. a hard relation 𝑅

and a two-party signature scheme with aggregatable public keys
Σ2 = (Setup,KGen,ΠSig,KAgg,Vf). It is run between parties 𝑃0, 𝑃1
and consists of a tuple Ξ𝑅,Σ

2
= (ΠPreSig,Adapt, PreVf, Ext) of efficient

protocols and algorithms defined as follows:
ΠPreSig⟨sk𝑖 ,sk1−𝑖 ⟩ (pk0, pk1,𝑚,𝑌 ): is an interactive protocol with

input secret key sk𝑖 from party 𝑃𝑖 with 𝑖 ∈ {0, 1} and commonmessage
𝑚 ∈ {0, 1}∗, public keys pk

0
, pk

1
and statement 𝑌 ∈ 𝐿𝑅 , outputs a

pre-signature �̂� .
PreVf (apk,𝑚,𝑌, �̂�): is aDPT algorithm with input an aggregated

public key apk, a message𝑚 ∈ {0, 1}∗, a statement 𝑌 ∈ 𝐿𝑅 and a
pre-signature �̂� , outputs bit 𝑏.

Adapt(apk, �̂�, 𝑦): is a DPT algorithm with input an aggregated
public key apk, pre-signature �̂� and witness 𝑦, outputs a signature 𝜎 .

Ext(apk, 𝜎, �̂�, 𝑌 ): is a DPT algorithm with input an aggregated
public key apk, a signature 𝜎 , pre-signature �̂� and statement 𝑌 ∈ 𝐿𝑅 ,
outputs a witness 𝑦 s.t. (𝑌,𝑦) ∈ 𝑅, or ⊥.

In addition to the standard signature correctness, an adaptor

signature scheme has to satisfy pre-signature correctness. Informally,

it says that an honestly generated pre-signature w.r.t. a statement

𝑌 ∈ 𝐿𝑅 is valid and can be adapted into a valid signature from

which a witness for 𝑌 can be extracted.

We review the security properties of a two-party adaptor sig-

nature scheme with aggregatable public keys: Unforgeability re-

sembles two-party existential unforgeability under chosen message

attacks (2-EUF-CMA) but additionally requires that producing a

forgery 𝜎 for some message𝑚 is hard even given a pre-signature

on𝑚 w.r.t. a random statement 𝑌 ∈ 𝐿𝑅 . Allowing the adversary to

learn a pre-signature on the forgery message𝑚 is crucial as for our

applications unforgeability needs to hold even in case the adversary

learns a pre-signature for𝑚 without knowing a witness for 𝑌 .

Pre-signature adaptability requires that any valid pre-signature

w.r.t. 𝑌 (possibly produced by a malicious signer) can be adapted

into a valid signature using the witness 𝑦 with (𝑌,𝑦) ∈ 𝑅.
7
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Finally,witness extractability guarantees that a valid signature/pre-
signature pair (𝜎, �̂�) for a message/statement pair (𝑚,𝑌 ) can be

used to extract the corresponding witness 𝑦 of 𝑌 .

We formally define these properties in Appendix B. Combining

the three properties described above, we can define a secure adaptor

signature scheme as follows.

Definition 3 (Secure Two-Party Adaptor Signature Scheme). A
two-party adaptor signature scheme with aggregatable public keys
Ξ𝑅,Σ
2

is secure if it is 2-aEUF-CMA secure, two-party pre-signature
adaptable and two-party witness extractable.

Finally, we review the Universal Composability (UC) framework,

which we use in our framework LedgerLocks. We briefly overview

the notion of secure realization in UC framework [12]. Intuitively, a

protocol realizes an ideal functionality if any distinguisher, i.e., the

environment, cannot distinguish between a real run of the protocol

and a simulated interaction with the ideal functionality.

Let 𝜋 be a protocol. The output of an environment E interacting

with protocol 𝜋 and an adversaryA, on input the security parame-

ter 1
𝜆
and auxiliary input 𝑧, is denoted as EXEC𝜋,A,E (1𝜆, 𝑧). Let 𝜙F

be the ideal protocol for an ideal functionality F , i.e., 𝜙F is a trivial

protocol in which the parties simply forward their inputs to the

ideal functionality F . The output of an environment E interacting

with protocol 𝜙F and an adversary S (also called the simulator), on

input the security parameter 1
𝜆
and auxiliary input 𝑧, is denoted

as EXEC𝜙F ,S,E (1
𝜆, 𝑧).

The main security notion of the UC framework informally says

that if a protocol 𝜋 UC-realizes an ideal functionality F , then any

attack that can be carried out against the real-world protocol 𝜋 can

also be carried out against the ideal protocol 𝜙F .

Definition 4 (UC Security). We say a protocol 𝜋 UC-realizes an ideal
functionality F , if for every adversary A there exists an adversary
S such that{

EXEC𝜋,A,E (1𝜆, 𝑧 )
}

𝜆∈N,
𝑧∈{0,1}∗

≈𝑐
{
EXEC𝜙F ,S,E (1

𝜆, 𝑧 )
}

𝜆∈N,
𝑧∈{0,1}∗

(where ≈𝑐 denotes computational indistinguishability).

5 GLOBAL CONDITIONS
In existing blockchain protocols, adaptor signatures and their as-

sociated conditions are analyzed within monolithic protocol de-

scriptions. Here, we advocate for handling conditions in a modular

fashion instead, using a standalone global functionality GCond.
Global conditions functionality. We illustrate the (global) ideal

functionality GCond for conditions in Figure 7. GCond is parameter-

ized by a hard relation 𝑅 and merging function 𝑓merge. GCond pro-

vides three interfaces: The individual conditions interface acts as a

bulletin board for conditions created outside the ideal functionality,

and just stores the input condition/opening (i.e., statement/witness)

pair in the list L. The merged conditions interface models the cre-

ation of a condition as the composition of two other conditions,

where the concrete composition operations are given by 𝑓merge.

This function is split into an operation + on witnesses and an opera-

tion · on statements, which need to satisfy that (𝑌1 ·𝑌2, 𝑦1 +𝑦2) ∈ 𝑅
if both (𝑌1, 𝑦1), (𝑌2, 𝑦2) ∈ 𝑅. The open condition interface allows

checking if a condition/opening pair is valid (i.e., is in L).

Global conditions protocol.We describe the global conditions

protocolΠCond in Figure 8 for DLOG. The protocol is parameterized

with a group description (G, 𝑔, 𝑞) and the discrete logarithm (DLOG)

relation 𝑅DLOG over it, i.e., (𝑌,𝑦) ∈ 𝑅DLOG ⇐⇒ 𝑌 = 𝑔𝑦 . We

assume that the group G is a DLOG-hard group here. The function

𝑓merge defines the witness operation (+) as addition and the statment

operation (·) as the group operation.

In the case of individual conditions, the protocol checks if the in-

put condition/opening pair (i.e., statement/witness pair for 𝑅DLOG)

is valid, and in such case, returns it. In the case of merged condi-

tions, the protocol multiplies the inputted condition to form the

merged condition, which gets returned by this process. Lastly, for

opening conditions, the protocol validates the membership of in-

put condition/opening (i.e., statement/witness) pair in the relation

𝑅DLOG, and returns the output bit 𝑏.

Ideal Functionality G𝑅,𝑓merge
Cond

The functionality interacts with an adversary S and set of parties

P = {𝑃1, . . . , 𝑃𝑛 }. Additionally, the functionality maintains a list L that

is indexed by conditions and stores their corresponding openings. The

functionality is parameterized by a hard relation 𝑅 and a function 𝑓merge
for which the following invariant holds: (𝑌1, 𝑦1 ) ∈ 𝑅 ∧ (𝑌2, 𝑦2 ) ∈ 𝑅 =⇒
(𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ), 𝑓merge (wit, 𝑅, 𝑦1, 𝑦2 ) ) ∈ 𝑅

Individual Conditions: Upon receiving (create-ind-cond, sid, (𝑌, 𝑦) )
from some party 𝑃 , check if (𝑌, 𝑦) ∈ 𝑅. If not, then ignore this request.

Else, set L[𝑌 ] := 𝑦 and send (created-ind-cond, sid, 𝑌 ) to 𝑃 and S.
Merged Conditions: Upon receiving (create-merged-cond,
sid, (𝑌1, 𝑌2 ) ) from some party 𝑃 check if L[𝑌1 ] = ⊥ or L[𝑌2 ] = ⊥ and

then ignore the request. Otherwise, set 𝑌 ∗ := 𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ) ,
set 𝑦∗ := 𝑓merge (wit, 𝑅, (L[𝑌1 ], L[𝑌2 ] ) ) , set L[𝑌 ∗ ] := 𝑦∗ and send

(created-merged-cond, sid, 𝑌 ∗ ) to 𝑃 and S.
Open Conditions: Upon receiving (open-cond, sid, (𝑌 ∗, 𝑦∗ ) ) from

some party 𝑃∗, set 𝑏 := (L[𝑌 ∗ ] ?

= 𝑦∗ ) and send (opened-cond, sid, 𝑏 ) to
𝑃∗ and S.

Figure 7: Ideal functionality G𝑅,𝑓merge
Cond .

Protocol Π𝑅DLOG
Cond

The protocol is parameterized by group description (G, 𝑔, 𝑞) , and the

corresponding discrete logarithm (DLOG) relation 𝑅DLOG over it, i.e.,

(𝑌, 𝑦) ∈ 𝑅DLOG ⇐⇒ 𝑌 = 𝑔𝑦 .

Individual Conditions: Party 𝑃 upon receiving

(create-ind-cond, sid, (𝑌, 𝑦) ) from E, checks if (𝑌, 𝑦) ∈ 𝑅DLOG.

If not, then ignores the request. Otherwise, returns (𝑌, 𝑦) .
Merged Conditions: Party 𝑃 upon receiving (create-and-cond,
sid, (𝑌1, 𝑌2 ) ) from E, compute 𝑌 ∗ := 𝑌1 · 𝑌2 and return 𝑌 ∗.
Open Conditions: Party 𝑃 upon receiving (open-cond, sid, (𝑌 ∗, 𝑦∗ ) )

from E, return ( (𝑌 ∗, 𝑦∗ ) ?∈ 𝑅DLOG ) .
Definition of 𝑓merge:
𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ) := 𝑌1 · 𝑌2
𝑓merge (wit, 𝑅, (𝑦1, 𝑦2 ) ) := 𝑦1 + 𝑦2

Figure 8: Protocol Π𝑅DLOG
Cond .
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Ideal Functionality F
𝑅,𝑓adapt
AdaptSig

The functionality is parameterized by a hard relation 𝑅 and an adaptation function 𝑓adapt. It maintains the list K that stores all generated keys; the list Q
that stores tuples (𝑚,𝜎, 𝑣, 𝑓 ) representing message, signature, key and a verification flag, and the list P that stores tuples (𝑚, �̂�, 𝜎, 𝑣,𝑌 , 𝑦, 𝑓 ) representing
message, pre-signature, signature, key, condition, witness, and pre-verification flag. All lists are indexed by a session identifier and are initially set to ∅.
Key Generation: Upon receiving (keygen, sid) from 𝑃0 and 𝑃1, verify that sid = (𝑃0, 𝑃1, sid′ ) for some sid′. If not, ignore the request. Else, send

(keygen, sid) to S. Upon receiving (verification-key, sid, 𝑣) from S, add 𝑣 into K[sid] and send (verification-key, sid, 𝑣) to 𝑃0 and 𝑃1.
Adaptation: Upon receiving (adapt, sid, �̂�, 𝑣, 𝑦) from some party 𝑃 , check if there is an entry ℓ := (𝑚, �̂�,⊥, 𝑣,𝑌 ,⊥, 1) ∈ P[sid]. If not, then ignore this

request. Else, send (open-cond, sid, (𝑌, 𝑦) ) to G𝑅,𝑓merge
Cond . Upon receiving (opened-cond, sid, 𝑏 ) , if 𝑏 = 0, then abort. Else set 𝜎 := 𝑓adapt (�̂�, 𝑦) and update ℓ

as (𝑚, �̂�, 𝜎, 𝑣,𝑌 , 𝑦, 1) in P[sid], add (𝑚,𝜎, 𝑣, 1) into Q[sid], and send (adapted-signature, sid, 𝜎 ) to 𝑃 . (This guarantees pre-signature adaptability: any
valid pre-signature �̂� can be adapted into a valid full signature 𝜎 using the witness 𝑦.)
Extraction:Upon receiving (extract, sid, 𝜎, �̂�, 𝑣) from some party𝑃 , check if there is an entry (𝑚, �̂�, 𝜎, 𝑣,𝑌 , 𝑦, 1) in P[sid]. If not, then send (witness, sid,⊥)
to 𝑃 , otherwise, send (witness, sid, 𝑦) to 𝑃 . (This guarantees witness extractability: any valid signature/pre-signature pair (𝜎, �̂� ) can be used to extract the
corresponding witness 𝑦.)
(Pre-)Signature Generation: Upon receiving (sign, sid,𝑚, 𝑣,𝑌 , type) from 𝑃0 and 𝑃1, verify that sid = (𝑃0, 𝑃1, sid′ ) for some sid′ and 𝑣 ∈ K[sid]. If not,
ignore the request. Else, send (sign, sid,𝑚, 𝑣,𝑌 , type) to S. Upon receiving (signature, sid,𝑚, 𝜎 ) from S,
• if type = signature and (𝑚,𝜎, 𝑣, 0) ∉ Q[sid], then add (𝑚,𝜎, 𝑣, 1) into Q[sid];
• if type = pre-signature and (𝑚,𝜎,⊥, 𝑣,𝑌 ,⊥, 0) ∉ P[sid], then add (𝑚, �̂� := 𝜎,⊥, 𝑣,𝑌 ,⊥, 1) into P[sid].
If any of the above checks fail, then output an error and halt. Otherwise, output (signature, sid, 𝜎 ) to 𝑃0 and 𝑃1.
(Pre-)Signature Verification: Upon receiving (verify, sid,𝑚, 𝜎, 𝑣,𝑌 , type) from some party 𝑃 , send (verify, sid,𝑚, 𝜎, 𝑣,𝑌 , type) to S. Upon receiving

(verified, sid,𝑚,𝜙 ) from S, do the following:

• If 𝑣 ∈ K[sid], and (𝑚,𝜎, 𝑣, 1) ∈ Q[sid] (if type = signature) or (𝑚, �̂� := 𝜎, ·, 𝑣,𝑌 , ·, 1) ∈ P[sid] (if type = pre-signature), then set 𝑓 = 1. (This condition
guarantees completeness: if the verification key 𝑣 is registered before and 𝜎 is a legitimately generated (pre-)signature for𝑚, then the verification succeeds.)
• Else, if 𝑣 ∈ K[sid], the signers are not corrupted, and (𝑚,𝜎 ′, 𝑣, 1) ∉ Q[sid] (if type = signature) or (𝑚,𝜎 ′, ·, 𝑣,𝑌 , ·, 1) ∉ P[sid] (if type = pre-signature)
for any 𝜎 ′ , then set 𝑓 = 0 and add (𝑚,𝜎, 𝑣, 0) into Q[sid] (if type = signature) or add (𝑚, �̂� := 𝜎,⊥, 𝑣,𝑌 ,⊥, 0) into P[sid] (if type = pre-signature). (This
condition guarantees unforgeability: if 𝑣 is one of the registered keys, the signers are not corrupted and never (pre-)signed𝑚, then the verification fails.)
• Else, if there exists (𝑚,𝜎, 𝑣, 𝑓 ′ ) ∈ Q[sid] (if type = signature) or (𝑚, �̂� := 𝜎, ·, 𝑣,𝑌 , ·, 𝑓 ′ ) ∈ P[sid] (if type = pre-signature), then set 𝑓 = 𝑓 ′. (This
guarantees consistency: all verification requests with identical parameters will result in the same answer.)
• Else, set 𝑓 = 𝜙 , add (𝑚,𝜎, 𝑣, 𝜙 ) into Q[sid] (if type = signature) or add (𝑚, �̂� := 𝜎,⊥, 𝑣,𝑌 ,⊥, 𝜙 ) into P[sid] (if type = pre−signature).
Output (verified, sid,𝑚, 𝑓 ) to 𝑃 .

Figure 9: Ideal functionality F 𝑅,𝑓adapt
AdaptSig.

Security. The security of our construction is established with the

following theorem, for which we provide a proof in Appendix E.1.

Theorem 1. Let G be a DLOG-hard group, then the protocol Π𝑅DLOG
Cond

UC-realizes the ideal functionality G𝑅,𝑓merge

Cond , for 𝑅 = 𝑅DLOG and
𝑓merge as defined in Figure 8.

Extensions. Our model can be extended to account for further

protocols to create and verify conditions. As an example, in Appen-

dix A we show how to extend our model to account for additional

combinations of conditions, e.g., 1-out-of-n. Note that the exist-

ing interfaces of GCond would stay unaffected by such extensions

and, hence, proofs conducted with respect to the current version of

GCond remain valid. Moreover, it might be interesting to analyze

constructions for other hard relations such as the RSA assumption

(e.g., used in Guillou-Quisquater-based adaptor signature [18]) or

the 𝑅SIS relation (as used in Dilithium-based adaptor signature [20]).

6 UC ADAPTOR SIGNATURES
We first define an ideal functionality for adaptor signatures, which

accounts for multiple keys per session and models two-party key

generation (with public key aggregation) and signing. Then, we

show that any two-party adaptor signature scheme with aggregat-

able public keys Ξ𝑅,Σ
2

securely realizes our ideal functionality.

Two-party adaptor signature functionality. Our signature func-
tionality FAdaptSig (shown in Figure 9) extends the digital signature

functionality given by Kiayias et al. [27] to adaptor signatures by

considering a hard relation 𝑅 and a deterministic adaptation func-

tion 𝑓adapt. Furthermore, it accounts for multiple keys per session

and models 2-party key generation (with public key aggregation)

and the 2-party signing protocol.

The functionality captures the expected correctness and security

properties of a two-party adaptor signature as described in §4. More

precisely, it captures completeness and consistency, along with

(two-party) unforgeability and witness extractability. Pre-signature

correctness and adaptability are captured with the help of the func-

tion 𝑓adapt and global conditions functionality GCond.
The parametrization with 𝑓adapt is required to stay fully mod-

ular with respect to GCond. By using GCond in a modular fash-

ion, we do not make any assumption about the creation of con-

ditions, and in particular about which protocol parties know the

witness for a condition. However, for parties knowing the witness

𝑦, the presignature �̂� and the corresponding adapted signature

𝜎 = 𝑓adapt (�̂�, 𝑦) are distinctly connected. For showing that a proto-

col ΠAdaptSig UC-realizes FAdaptSig without assuming any knowl-

edge about which party knows 𝑦, we need to ensure that signatures

created via FAdaptSig’s adaptation interface cannot be distinguished

9
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from those created through the adaptation algorithm (even for par-

ties knowing 𝑦). If we would let the simulator choose 𝜎 at this point

(as one would usually do in such cases), the simulator could not be

guaranteed to know 𝑦, nor to complete the signature adequately

(without leaking 𝑦 or making an assumption on condition genera-

tion). Consequently, we need to let FAdaptSig compute the correct

signature based on 𝑦, to which end we must fix 𝑓adapt.

Two-party adaptor signature protocol and security. We de-

scribe how to translate a two-party adaptor signature scheme with

aggregatable public keys (from identification scheme) Ξ𝑅,Σ
2

into a

protocol ΠAdaptSig in Appendix E.2. Note that the construction is

parametric with respect to GCond where GCond needs to support

the relation 𝑅 of Ξ𝑅,Σ
2

. The security is established with the following

theorem, which we prove in Appendix E.2.

Theorem2. LetΞ𝑅,Σ
2

be a secure two-party adaptor signature scheme
with aggregatable public keys (from identification scheme) that is
composed of a hard relation𝑅 and a secure two-party signature scheme
Σ2, then ΠAdaptSig UC-realizes the ideal functionality FAdaptSig.

Modeling privacy of adaptor signatures in UC.We note that

our adaptor signature functionality from Figure 9 does not model

any privacy property. We discuss the reason for it here and refer

to Appendix C for game-based privacy notions.

Capturing a privacy property (e.g., that the freshly computed

signatures and adapted ones are indistinguishable or that the sig-

nature does not reveal any information about the corresponding

witness used) for two-party adaptor signatures is difficult because

it inherently only holds against a third party not involved in (pre-

)signature generation and only sees the final signature. However, in

the UC security proof we need to consider that the parties actually

involved in the two-party (pre-)signing are adversarial, hence, such

a third-party privacy notion is not provable.

More technically, in order to model such a privacy notion we

need the simulator S to produce a valid full signature 𝜎 without

having access to the corresponding witness 𝑦. One potential way to

achieve this is inside the adaptation interface of FAdaptSig to make

a call to the simulator S, and let S return a fresh full signature 𝜎′

that is independent of the witness 𝑦. Then, we can argue that 𝜎′

is indistinguishable from a full signature 𝜎 , which is obtained by

adapting a pre-signature �̂� with the witness 𝑦. However, since we

are in the two-party adaptor signatures setting, it means that during

the simulation we have to assume that one of the two parties in-

volved in (pre-)signature generation is corrupted. Though, if one of

the (pre-)signers is adversarial, then it is trivial for the adversary to

distinguish different protocol runs, and hence, different signatures,

since it is itself involved in the protocol execution.

7 LOCK-ENABLING LEDGER
Wemodel a realistic ledger supporting AS-locked transactions as an

ideal functionality GLedgerLocks. Figure 10 shows how GLedgerLocks
is constructed from the base ledger GLedger defined in [8].

Lock-enabling ledger functionality. We formally describe func-

tionality GLedgerLocks in Figure 11. GLedgerLocks builds upon GLedger
by adding interfaces, introducing an additional state, and refining

the transaction validation check (by instantiating the predicate

isValidTx). GLedgerLocks keeps three lists to model account manage-

ment (LAccId), authorization (LAuths) and locking of transactions

(LTxsCond). The new validity predicate CheckCond operates on

transactions of the form (A, tx′) where A denotes the set of ac-

counts controlling the transaction tx′. For checking the validity of

a transaction, it checks LAuths for authorization of all accounts in

A and invokes CheckBase for further validity checks. In addition to

the interfaces for submitting and reading transactions provided by

GLedger, GLedgerLocks provides five interfaces: The account genera-
tion interface allows multiple parties to jointly generate an account

(added to LAccId). Although the ideal functionality models multi-

party account generation, we note that in our protocol in Figure 12,

we only consider two-party account generation as this is sufficient

for our envisioned applications. Moreover, a transaction can have

several accounts associated to it, contributing to the generality of

the ideal functionality definition. In particular, this allows for mod-

eling UTXO-style cryptocurrencies, where a transaction refers to

multiple inputs, which may be controlled by different accounts.

The transaction locking interface allows the parties owning an

account to jointly create an authorization for a transaction, which

is locked under a specified condition and can only be released using

the opening information for this condition. This authorization is

recorded in LTxsCond. The transaction release interface allows a

party controlling the respective account and knowing the opening

information of the condition to submit a locked transaction to

the ledger, moving the transaction from LTxsCond to LAuths. The

witness signaling interface allows the account parties to extract the

condition witness from the published AS-locked transaction.

One subtlety in our model here is that witness signaling is only

enabled when the previously released transaction is added to the

ledger. Only then we can guarantee that any party (involved in

its creation) would have seen both the AS-locked transaction and

the released transaction. We model this by checking whether the

released transaction is in the ledger’s view of the party invoking

the witness signaling interface, which can be accessed by the ledger

state variable, as defined in GLedger. While an honest user is only

guaranteed to learn the witness upon inclusion of the transaction in

the ledger, a malicious user may learn the witness already upon the

transaction’s submission to the ledger. As motivated in §2, this situ-

ation may occur if the attacker controls both the user participating

in the creation of the AS-locked transaction and a miner. We reflect

this subtlety in the release interface: If any of the transaction’s

R

R

6

6
R

R

R

R

Figure 10: Realization of GLedgerLocks from GLedger, FAdaptSig.
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Ideal Functionality GLedgerLocks

The functionality interacts with an adversary S and a set of parties P = {𝑃1, . . . , 𝑃𝑛 }. It maintains a set of corrupted parties in C. It uses LAccId with

entries of the form (AccountId, (𝑃1, . . . , 𝑃𝑚 ) ) , LAuths with entries of the form (AccountId, tx) , and LTxsCond with entries of the form (sid, tx, 𝑌 , {𝑦,⊥}) .
Moreover, we inherit the read and submit interfaces from GLedger of [8] (cf. Appendix D).
Account Generation: Upon receiving (create-account, sid, (𝑃1, . . . , 𝑃𝑚 ) ) from 𝑃 do the following:

• For each 𝑃𝑖 in (𝑃1, . . . , 𝑃𝑚 ) : Send (acc-req, sid, (𝑃1, . . . , 𝑃𝑚, 𝑃 ) ) to 𝑃𝑖 and receive (acc-rep, sid, 𝑏𝑖 ) . If any 𝑏𝑖 = 0, then ignore the request.

• Send (account-req, sid, (𝑃1, . . . , 𝑃𝑚, 𝑃 ) ) to S, and upon receiving a reply (account-rep, sid, AccountId) , add (AccountId, (𝑃1, . . . , 𝑃𝑚, 𝑃 ) ) in LAccId
and return (create-account, sid, AccountId) to all 𝑃1, . . . , 𝑃𝑚 and 𝑃 .

Authorize TX: Upon receiving (auth-tx, sid, tx, AccountId) from 𝑃 , do the following:

• Extract the pair 𝛼 := (AccountId, {𝑃∗}) from LAccId. If it does not exist, then ignore the request.

• Set auth-flag := 1. For 𝑃𝑖 ∈ {𝑃∗} \ {𝑃 }: Send (auth-req, sid, tx, 𝛼 ) to 𝑃𝑖 and S, and receive (auth-rep, sid, 𝑏𝑖 ) from 𝑃𝑖 . If 𝑏𝑖 = 0, set auth-flag := 0.

• If auth-flag = 1, store (AccountId, tx) in LAuths.

• Return (auth-tx, sid, auth-flag) to 𝑃 .
Lock TX: Upon receiving (lock-tx, sid, tx, AccountId, 𝑌 ) from 𝑃 , do the following:

• Extract the pair 𝛼 := (AccountId, {𝑃∗}) from LAccId. If it does not exist, then ignore the request.

• Set lock-flag := 1. For 𝑃𝑖 ∈ {𝑃∗} \ {𝑃 }: Send (lock-req, sid, tx, 𝛼,𝑌 ) to 𝑃𝑖 and S, and receive (lock-rep, sid, 𝑏𝑖 ) from 𝑃𝑖 . If 𝑏𝑖 = 0, set lock-flag := 0.

• If lock-flag = 1, store (AccountId, tx, 𝑌 ,⊥) in LTxsCond.

• Return (lock-tx, sid, lock-flag) to 𝑃 .
Release TX: Upon receiving (release-tx, sid, tx, AccountId, 𝑌 , 𝑦) from some party 𝑃 , do the following:

• Extract the pair (AccountId, {𝑃∗}) from LAccId. If it does not exist, then ignore the request.

• If 𝑃 ∉ {𝑃∗}, then ignore the request.

• Extract the entry (AccountId, tx, 𝑌 ,⊥) from LTxsCond. If it does not exist, then ignore the request.

• Invoke G𝑅Cond on input (open-cond, sid, (𝑌, 𝑦) ) and receive (opened-cond, sid, 𝑏 ) .
• If 𝑏 = 1, then replace (AccountId, tx, 𝑌 ,⊥) with (AccountId, tx, 𝑌 , 𝑦) in LTxsCond, and store (AccountId, tx) in LAuths.

• Invoke (submit, sid, tx) . Moreover, if ∃𝑃 ∈ {𝑃∗}, such that 𝑃 ∈ C, then send (release-tx, sid, 𝑦) to S.
• Return (release-tx, sid, 𝑏 ) to 𝑃 .
Signal Witness: Upon receiving (signal-tx, sid, AccountId, tx, 𝑌 ) from party 𝑃 , do the following:

• Extract the pair (AccountId, {𝑃∗}) from LAccId. If it does not exist, then ignore the request.

• If 𝑃 ∉ {𝑃∗}, then ignore the request.

• Set state𝑖 := state |min{ptP,|state|} . Check if inState(tx, state𝑖 ) . Otherwise, ignore the request.
• Extract the entry (AccountId, tx, 𝑌 , 𝑤 ) from LTxsCond, where 𝑤 := 𝑦 or 𝑤 := ⊥. Otherwise, ignore the request.
• Return (signal-tx, sid, 𝑤 ) to 𝑃 .
Validate Predicate: Our predicate CheckCond(tx, state) instantiates isValidTx(tx, state) from [8] as follows:

• Parse tx := (A, tx′ ) . Then, for AccountId𝑖 ∈ A: Set 𝑏1,𝑖 := ( (AccountId𝑖 , tx) ∈ LAuths ) .
• Set 𝑏2 := CheckBase(tx, state) .
• Return 𝑏1,1 ∧ . . . ∧ 𝑏

1,|A| ∧ 𝑏2.

Figure 11: Ideal functionality GLedgerLocks.Here, pt𝑃 is 𝑃 ’s pointer into the state, as defined for GLedger [8]. Moreover, inState(tx, state) :=
∃𝐵 ∈ state, tx ∈ Blockify−1 (𝐵), where Blockify is a predicate to parse transactions into a block [8].

account owners is corrupted, the witness is immediately sent to

the adversary. As shown in §2, modeling this behavior is crucial for

an accurate security analysis of blockchain protocols.

Lock-enabling ledger protocol. Our lock-enabling ledger proto-
col ΠLedgerLocks is defined in the (FAdaptSig,GLedger)-hybrid model

and given in Figure 12. During account generation, parties obtain

verification keys by making calls to the key generation interface of

FAdaptSig. Analogously, authorization of transactions and locking of
transactions happen with a call to the signing interface of FAdaptSig,
where in the latter case, only a pre-signature �̂� that is conditioned

on 𝑌 is computed, whereas in the former a full signature 𝜎 over

the transaction is computed. Releasing of transactions happens by

calling the adaptation interface of FAdaptSig with the witness (i.e.,

opening) 𝑦 of the corresponding condition (i.e., statement) 𝑌 used

during the locking procedure. Lastly, witness signaling calls the

extraction interface of FAdaptSig, which returns witness 𝑦.

Finally, the validation predicate CheckAdapt verifies the signa-
tures attached to the transactions. Note that the instantation of

GLedger used for ΠLedgerLocks differs from the one that GLedgerLocks
extends. More specifically, GLedger used in ΠLedgerLocks operates

on transactions of the form tx∗ = (tx, ®𝜎) that (in addition to the

account identities of tx) hold the signatures ®Sig that CheckAdapt
verifies via FAdaptSig. To hide this difference in format from a dis-

tinguishing environment, ΠLedgerLocks wraps the corresponding

interfaces of GLedger for reading and submitting.

Security. The security of conditional ledger is captured with the

theorem below, which we prove in Appendix E.4.

Theorem 3. The protocol ΠLedgerLocks UC-realizes GLedgerLocks, in
the (FAdaptSig,GLedger)-hybrid model.

8 LEDGERLOCKS APPLICATIONS
We demonstrate how to use LedgerLocks for modeling AS-based

blockchain protocols. To this end, we first give a concrete example
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Protocol Π𝑅
LedgerLocks

Each party has a list K with entries (𝑃, vk) , a list P with entries (tx, vk, 𝑌 , �̂� ) , and a list Q with entries (tx, vk, 𝜎 ) .
Account Generation: Party 𝑃 upon receiving (create-account, sid, 𝑃 ′ ) from E:
• Party 𝑃 : Compute sid′ := (sid, 𝑃, 𝑃 ′ ) , send (sid′ ) to 𝑃 ′, and invoke F

𝑅,𝑓adapt
AdaptSig on input (keygen, sid′ ) . Receive (verification-key, sid, vk) from F

𝑅,𝑓adapt
AdaptSig,

and store (𝑃 ′, vk) in K .
• Party 𝑃 ′: Receive sid′ from 𝑃 . Invoke F

𝑅,𝑓adapt
AdaptSig on input (keygen, sid′ ) and receive (verification-key, sid, vk) . Store (𝑃, vk) in K .

Authorize TX: Party 𝑃 upon receiving (auth-tx, sid, tx, 𝑃0, 𝑃1, vk) from E:
• Party 𝑃 : Send (auth-req, sid, tx, {𝑃0, 𝑃1}) to 𝑃0 and 𝑃1 and receive (auth-rep, sid, 𝑓𝑏 ) from each 𝑃𝑏 . If 𝑓𝑏 = 0, abort.

• Party 𝑃 : Compute sid′ := (sid, 𝑃0, 𝑃1 ) and send (sid′, vk) to 𝑃0 and 𝑃1.
• Party 𝑃𝑏 (symmetrically party 𝑃

1−𝑏 ): Receive (sid′, vk) from 𝑃 . Parse sid′ := (sid, 𝑃𝑏 , 𝑃1−𝑏 ) . Extract (𝑃1−𝑏 , vk) from K , and otherwise abort. Invoke

F
𝑅,𝑓adapt
AdaptSig on input (sign, sid′, tx, vk,⊥, signature) and receive (signature, sid′, 𝜎 ) . Store (tx, vk, 𝜎 ) in Q, and send 𝜎 to 𝑃 .

• Party 𝑃 : Receive 𝜎 from 𝑃𝑏 and 𝑃
1−𝑏 , store (tx, vk, 𝜎 ) in Q.

Lock TX: Party 𝑃 upon receiving (lock-tx, sid, tx, 𝑌 , 𝑃0, 𝑃1, vk) from E:
• Party 𝑃 : Send (pre-auth-req, sid, tx, {𝑃0, 𝑃1}) to 𝑃0 and 𝑃1 and receive (auth-rep, sid, 𝑓𝑏 ) from each 𝑃𝑏 . If 𝑓𝑏 = 0, abort.

• Party 𝑃 : Compute sid′ := (sid, 𝑃0, 𝑃1 ) and send (sid′, vk) to 𝑃0 and 𝑃1.
• Party 𝑃𝑏 (symmetrically party 𝑃

1−𝑏 ): Receive (sid′, vk) from 𝑃 . Parse sid′ := (sid, 𝑃𝑏 , 𝑃1−𝑏 ) . Extract (𝑃1−𝑏 , vk) from K , otherwise, abort. Invoke F
𝑅,𝑓adapt
AdaptSig

on input (sign, sid′, tx, vk, 𝑌 , pre-signature) and receive (signature, sid′, �̂� ) . Store (tx, vk, 𝑌 , �̂� ) in P, and send �̂� to 𝑃 .

• Party 𝑃 : Receive �̂� from 𝑃𝑏 and 𝑃
1−𝑏 , and store (tx, vk, 𝑌 , �̂� ) in P.

Release TX: Party 𝑃 upon receiving (release-tx, sid, tx, 𝑌 , 𝑦, 𝑃, 𝑃 ′, vk) from E:
• Party 𝑃 : Compute sid′ := (sid, 𝑃, 𝑃 ′ ) , extract entry (tx, vk, 𝑌 , �̂� ) from P, invoke F

𝑅,𝑓adapt
AdaptSig on input (adapt, sid′, �̂�, vk, 𝑦) , receive

(adapted-signature, sid′, 𝜎 ) , and store (tx, vk, 𝜎 ) in Q.
• Invoke GLedger on input (submit, sid, (tx, 𝜎 ) ) .
Signal Witness: Party 𝑃 upon receiving (signal-tx, sid, tx, 𝑌 , vk) from E:
• Extract the entry (tx, vk, 𝑌 , �̂� ) from P, otherwise abort.
• Invoke GLedger on input (read, sid) and receive the current state.
• Check if inState( ( (vk

1
, . . . vk𝑛 ), tx′ ), (𝜎1, . . . , 𝜎𝑛 ), state) and vk𝑖 = vk for some vk𝑖 , otherwise abort.

• Invoke F
𝑅,𝑓adapt
AdaptSig on input (extract, 𝜎𝑖 , �̂�, vk) , receive (witness, sid, 𝑦) and return 𝑦.

Ledger Read: Party 𝑃 upon receiving (read, sid) from E, do the following:

• Invoke GLedger on input (read, sid) and receive the current state state := st1 | | . . . | |st𝑛 .
• state′ := st1. Then, for st2, . . . , st𝑛 : Extract (tx1, (𝜎1,1, . . . , 𝜎1,𝑛 ) ) | | . . . | | (tx𝑚, (𝜎𝑚,1, . . . , 𝜎𝑚,𝑛′ ) ) .
• Define new block content ®𝑥 ′ := tx1 | | . . . | |tx𝑚 . Set state′ := state′ | |Blockify( ®𝑥 ′ ) and return (read, sid, state′ ) .
Submit TX: Party 𝑃 upon receiving (submit, sid, tx) from E:
• Parse tx := ( (vk

1
, . . . , vk𝑛 ), tx′ ) and check that each vk𝑖 is in K . Otherwise, ignore the request.

• Read the state from GLedger as above. For each vk𝑖 , extract the entry (tx, vk𝑖 , 𝜎𝑖 ) from Q. If any of them is missing, then abort.

• Invoke GLedger on input (submit, sid, (tx, (𝜎1, . . . , 𝜎𝑛 ) ) ) .
Validate Predicate: Our predicate CheckAdapt(tx, state) instantiates isValidTx(tx, state) in [8] as follows:

• Parse tx∗ := ( ( (vk
1
, . . . , vk𝑛 ), tx′ ), (𝜎1, . . . , 𝜎𝑛 ) ) . For each pair (vk𝑖 , 𝜎𝑖 ) , invoke F

𝑅,𝑓adapt
AdaptSig on input (verify, sid, tx, 𝜎𝑖 , vk𝑖 ,⊥, signature) , receive

(verified, sid, tx, 𝑓𝑖 ) , and set 𝑏1,𝑖 := 𝑓𝑖 .

• Set 𝑏2 := CheckBase( ( (vk
1
, . . . , vk𝑛 ), tx′ ), state) and return 𝑏1,1 ∧ . . . ∧ 𝑏1,𝑛 ∧ 𝑏2.

Figure 12: Protocol Π𝑅
LedgerLocks in the (F 𝑅,𝑓adapt

AdaptSig,GLedger)-hybrid world.

of an oracle-enabled atomic swap protocol that we express with the

help of LedgerLocks. Finally, we provide a general recipe for work-

ing with LedgerLocks to model and analyze blockchain protocols

that are based on adaptor signatures.

8.1 Case Study: Oracle-enabled Atomic Swaps
In the following, we consider the oracle-enabled atomic swap pro-

tocol, as described in §3. We provide the full protocol description

in Appendix F (Figure 21 and Figure 22). Here, for illustrative pur-

poses, Figures 14 and 15 show different phases of the protocol.

The key feature of LedgerLocks is that for describing anAS-based

blockchain protocol such as the atomic swap protocol considered

here, we only need to rely on the functionality GCond and instances
of GLedgerLocks representing the blockchains involved in the proto-

col. In particular, we do not need to make use of (adaptor) signatures

because their utility is abstracted by the corresponding interfaces

of GLedgerLocks. For the given protocol, we use two instances of

GLedgerLocks (calledA and B here in the following) representing the

two blockchains between which assets shall be swapped. Thanks

to the generality of LedgerLocks, GLedgerLocks can easily be instan-

tiated to support additional blockchain features such as scripting

capabilities by instantiating the CheckBase predicate. For model-

ing the atomic swap protocol from §3, the underlying blockchains

need to support timelocks. A timelock of a transaction ensures

that this particular transaction can only be included starting from a

12
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certain blockheight. The blockheight denotes the number of blocks

in the blockchain and can be accessed through the variable state of
GLedgerLocks (which is inherited from GLedger). To obtain A and B
with timelock support from GLedgerLocks, we fix their transaction
format to pairs of the form (tx′′, tl), where tl denotes the timelock

and by defining their CheckBase predicate as follows to support

the timelock check:

CheckBase( (A, (tx′′, tl) ), state) := |state | ≥ tl

∧ CheckBaseC ( (A, tx′′ ), state)

For generality, we again only specify checks for the desired fea-

ture and leave further validity checks to another ledger-specific

predicate CheckBaseC.
Figure 14 shows the setup phase of the atomic swap protocol.

Both parties initially know the oracle condition 𝑌O , which is as-

sumed to be registered in GCond. In the first step, Alice constructs

the locking condition 𝑌 ∗ by merging a newly created individual

condition 𝑌 and the oracle condition 𝑌O using GCond. Next, Alice
and Bob create joint accounts on the two ledgersA and B. Based on
these accounts, both of them prepare three kinds of transactions:

(1) a deposit transaction dtx (which spends funds of the correspond-

ing party to the joint account), (2) a claim transaction ctx (which
transfers the deposit from the joint account to the other user), and

(3) a refund transaction rtx (which transfers the deposit back to

the original owner). Importantly, ctx𝐴 and rtx𝐵 (along with ctx𝐵
and rtx𝐴 , respectively) are conflicting transactions, which can only

be spent with authorization from the joint account. Conflicting

means that only one out of them can be published in the ledger. To

establish an order on the transaction execution, the refund trans-

actions are equipped with a timelock ℎ. These timelocks will en-

sure that Alice will always have enough time to safely claim ctx𝐴
and that Bob will always have enough time to claim ctx𝐵 once

ctx𝐴 has been claimed. The corresponding property is checked

by the predicate safe, which is formally defined in Figure 13. The

safe predicate accounts for the fact that A and B are independent

blockchains that can provide different inclusion guarantees and

proceed at different block creation rates. Inherited from GLedger,
the relevant behavior of a GLedgerLocks instance C is determined

by the parameters windowsizeC (the maximum amount of blocks

that an honest user can be lacking behind the current state of the

blockchain), minTimeCwindow (the minimal amount of time for includ-

ing windowsizeC blocks) and maxTimeCwindow (the maximal amount

of time for including windowsizeC blocks). Based on these param-

eters, we can define #
C
safe = 5 · windowsizeC to be the maximal

amount of time that it takes an honest user on ledger C to include

a transaction in reaction to a change in the blockchain state
1
.

1
Up to windowsize blocks may be added to the ledger per round, so when user U

makes an observation at blockheightℎ, the ledger may be at heightℎ+windowsize−1.

ubC
1
→C

2
(𝑛) =

⌈⌈
𝑛

windowsizeC1

⌉
·
maxTime

C
1

window

minTime
C
2

window

⌉
· windowsizeC2

safe(ℎ𝐴, ℎ𝐵 , 𝑛𝐴, 𝑛𝐵 ) = ℎ𝐵 < 𝑛𝐵 + ubA→B (#Asafe ) + 2 · #
B
safe

∧ ℎ𝐴 < 𝑛𝐴 + ubB→A (ℎ𝐵 + #Bsafe − 𝑛𝐵 ) + #Asafe

Figure 13: Notions for safe timelocks in atomic swaps.
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Figure 14: Setup of the Atomic Swap. inState is a predicate

checking for the inclusion of a transaction in the ledger state. dtx𝑈 ,

ctx𝑈 , and rtx𝑈 denote constructors for the deposit, claim, and re-

fund transactions of user𝑈 .

The function ubC1→C2 computes an upper bound on the number

of blocks that can be added in ledger C2 while 𝑛 blocks are added to

C1. Using this, safe can check that given the current blockheight 𝑛𝐵

After submission, GLedger (and hence GLedgerLocks) guarantees a valid transaction to

appear in U’s view within 4 · windowsize blocks.
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on ledger B there is still enough time to include transactions dtx𝐴
onA (taking up to ubA→B (#Asafe) blocks) and to include transactions
dtx𝐵 and ctx𝐴 on B (taking up to 2 · #Bsafe blocks) before reaching
timelockℎ𝐵 (first conjunct). The second conjunct ensures that given

current blockheight 𝑛𝐴 on ledgerA, at the point that an honest Bob

learns whether rtx𝐵 that they submitted after ℎ𝐵 has been included

on B (latest after ℎ𝐵 +#Bsafe blocks), the blockheight onA (computed

by 𝑛𝐴 + ubB→A (ℎ𝐵 + #Bsafe − 𝑛𝐵)) is still at least #
A
safe before ℎ𝐴 so

that ctx𝐵 can be safely included.

After checking the timelocks, the users authorize their refund

transactions and lock their claim transactions on the condition 𝑌 ∗.
Once this is done, Alice submits dtx𝐴 to A, and once Bob sees it

published on A they submit dtx𝐵 to B and finish the setup. Note

that the setup should be completed in a timely fashion (|state| <
|ℎ𝐵 | − #Bsafe) so that there is still time for Alice to claim ctx𝐴 before

Bob needs to initiate the refund.

Figure 15 shows the case when a malicious Alice does not submit

ctx𝐴 in time. Here, Bob needs to submit rtx𝐵 at the earliest possible

point (once ℎ𝐵 is reached). Thanks to B’s transaction inclusion

guarantees, Bob can enforce that by ℎ𝐵 + #Bsafe, either the refund
was successful, or ctx𝐴 must have been published. In the latter

case (thanks to the original validity check), there is still enough

time (#
A
safe) for Bob to submit ctx𝐵 to A before (at ℎ𝐴) rtx𝐴 can

be submitted and, hence, Bob can complete the protocol as in an

honest execution.

The example illustrates how delicate the correct modeling of

the blockchain fairness guarantees is to reason about the security

of blockchain-based protocols: If the timelocks are wrongly set

up, Bob could lose their money, because a malicious Alice could

claim ctx𝐴 and still prevent Bob from claiming ctx𝐵 by sneaking the

refund rtx𝐴 in before ctx𝐵 . Similarly, in an attack as shown in §2,

if ℎ𝐵 is not set properly, Bob could outrun Alice’s ctx𝐴 transaction

with rtx𝐵 and receive the assets on both chains. Setting up timeouts

correctly and reasoning about their security become particularly

hard when considering protocols across independent ledgers as

shown in the example. Even for stating the checks to be done by

the protocol participants (here given through the safe predicate),
we need to resort to the safety and liveness guarantees provided by

the underlying ledgers – an aspect disregarded in most prior work.

8.2 Template for using LedgerLocks
The oracle-enabled atomic swap case illustrates how to model AS-

based blockchain protocols using LedgerLocks. We generalize this

approach here and outline further steps towards using LedgerLocks

for the verification of AS-based blockchain protocols.

Modeling the protocol. For describing a protocol Π∗ (such as

ΠAtomicSwap) with the help of LedgerLocks, Π∗ can be defined in

a GCond,GLedgerLocks-hybrid world, meaning that it may interact

with GCond and GLedgerLocks. Intuitively, all (adaptor-)signature-
related operations of the protocols can be replaced with calls to the

corresponding interfaces of GLedgerLocks. GCond allows for a logical
separation between the creation of conditions and their usage to

restrict transaction publication on GLedgerLocks.
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Figure 15: Atomic Swap: Malicious 𝐴 claims late.

In cases where Π∗ involves several blockchains, the description
of Π∗ uses multiple instances of GLedgerLocks (such as A and B
in the previous example). The characteristics of these blockchain

instances can be further refined by specifying the CheckBase pred-
icate (and correspondingly the transaction format) to describe the

logic of transaction execution. For the atomic swap example, we

showed how to extend the blockchain logic with timelocks in this

way. However, the formalism is expressive enough to encode more

involved smart contract logic.

If Π∗ requires the creation of conditions with additional prop-

erties (that go beyond simple conditions, merged conditions, or

1-out-of-n conditions), then GCond’s condition creation interface

can be extended to G∗Cond to support the new condition types. In

this case, for some relation R (known to realize GCond) one needs
to give a protocol ΠR and prove that it realizes the newly added

interfaces in G∗Cond. Alternatively, one can immediately give a pro-

tocol ΠR∗ for some new relation R∗ (that is known to be supported

by an adaptor signature scheme) and show it to realize all of G∗Cond.

Defining protocol security. LedgerLocks can also serve as a

starting point for defining the security of AS-based protocols. An

ideal functionality F ∗ capturing the desired security of Π∗ can
be described by extending GLedgerLocks, e.g., by instantiating the

CheckBase predicate that determines which transactions will be

considered valid in a faithful protocol execution. Similar to how we

extended GLedger to GLedgerLocks, F ∗ may make use of additional

state to capture the desired correctness and security properties of

the protocol. For cross-chain blockchain protocols, F ∗ may hold

several internal copies of extended GLedgerLocks functionalities.

Proving UC-realization. Finally, one needs to prove Π∗ to UC-

realize F ∗. This proof should not involve cryptographic reduc-

tions but focus on how the interactions of Π∗ with GLedgerLocks
and G∗Cond are translated into interactions with F ∗. As F ∗ uses

14



LedgerLocks: A Security Framework for Blockchain Protocols Based on Adaptor Signatures

GLedgerLocks as a component, the proof’s essence should lie in show-

ing that the way that transactions are created, locked and released

within Π∗ enforces the transaction inclusion logic encoded in F ∗.
Limitations. LedgerLocks, in its current form, is not suitable for

modeling blockchain protocols operating on ledgers that do not sup-

port transaction authorization through adaptor signature schemes.

However, most cryptocurrencies base their transaction authoriza-

tion on signature schemes shown to support adaptor signatures.

One notable exception is the cryptocurrency Zerocash [9].

Further, since GLedger is currently only shown to be realized by

the Bitcoin (PoW) backbone protocol [8] and the Ouroboros Genesis

(PoS) protocol [7], LedgerLocks (relying on the security of GLedger)
only provides full end-to-end guarantees for ledgers implementing

one of these consensus protocols.

9 CONCLUSION
In this work, we provide foundations for the security of adaptor sig-

natures as well as the applications using them as building blocks for

blockchain protocols. We give novel ideal functionalities in the UC

framework to model standalone cryptographic conditions, as well

as adaptor signatures and lock-enabling ledgers operating upon

such conditions. We define concrete protocols and show them to

securely realize the different functionalities and finally, we show-

case the utility of our model by using it to describe an atomic swap

protocol in a clear and modular fashion. In the future, the same

blueprint can be used to define other blockchain protocols based

on AS-locked transactions.
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A EXTENDED GLOBAL CONDITIONS
In this section, we present an extension of the global conditions

functionality GCond to model additional protocols to create condi-

tions, in this case, 1-out-of-n, where a set of users can create a set

of conditions where the requesting user can only open one of them

(see 1-out-of-n illustrative example in §3). The details are shown

in Figure 16.

Accordingly, we have extended the protocol from §5 to include

the realization of the 1-out-of-𝑛 condition (as shown in Figure 17).

Concretely, we propose a multi-party protocol where each party

provides a random share 𝑠𝑖 for each of the conditions𝑌𝑗 . Finally, the

invoking party combines the shares from other users to compute

each 𝑌𝑗 except for the position that she commits to, denoted by

index, where she just uses the condition for which she knows the

opening. Finally, she proves in zero-knowledge that the final (set

of) conditions are computed correctly.

We analyze the security of the extended global conditions in Ap-

pendix E.

B BASIC CRYPTOGRAPHIC PRIMITIVES
Identification scheme. We recall the notion of canonical identifi-

cation scheme, as in [28]. It can be transformed to a digital signature

using Fiat-Shamir heuristic [21].

Definition 5 (Canonical Identification Scheme [28]). A canonical
identification scheme consists of four algorithms ID = (IGen, P,ChSet,
V), where
IGen(1𝜆): is a PPT algorithm that on input a security parameter 𝜆

outputs a key pair (sk, pk). We assume that pk defines the
challenge set ChSet.

P: is a PPT algorithm composed of P1 and P2:
• P1 (sk): on input a secret key sk, outputs a commitment
𝑅 ∈ Drand and a state st.
• P2 (sk, 𝑅, ℎ, st): on input a secret key sk, commitment 𝑅 ∈
Drand, challenge ℎ ∈ ChSet and state st, outputs a response
𝑠 ∈ Dresp.

V(pk, 𝑅, ℎ, 𝑠): is a DPT algorithm that on input a public key pk, and
conversation transcript composed of (𝑅,ℎ, 𝑠), outputs a bit 𝑏.

We require that for all (sk, pk) ∈ IGen(1𝜆), all (𝑅, st) ∈ P1 (sk), all
ℎ ∈ ChSet and all 𝑠 ∈ P2 (sk, 𝑅, ℎ, st), we have that V(pk, 𝑅, ℎ, 𝑠) = 1.

Digital signature. We recall the definition and security notions of

a digital signature.

Definition 6 (Digital Signature). A signature scheme is a tuple of
three algorithms Σ = (KGen, Sig,Vf) defined as:

KGen(1𝜆): is a PPT algorithm that on input a security parameter 𝜆,
outputs a key pair (sk, pk).

Sig(sk,𝑚): is a PPT algorithm that on input a secret key sk and
message𝑚 ∈ {0, 1}∗, outputs a signature 𝜎 .

Vf (pk,𝑚, 𝜎): is a DPT algorithm that on input a public key pk, mes-
sage𝑚 ∈ {0, 1}∗ and signature 𝜎 , outputs a bit 𝑏.

Every signature scheme must satisfy correctness meaning that

for every 𝜆 ∈ N and every message𝑚 ∈ {0, 1}∗:

Pr

[
Vf (pk,𝑚, Sig(sk,𝑚)) = 1 | (sk, pk) ← KGen(1𝜆)

]
= 1.

The most common security requirement of a signature scheme is

existential unforgeability under chosen message attack (EUF-CMA).

On a high level, it guarantees a malicious party, that does not know

the private key, cannot produce a valid signature on a message𝑚

even if he knows polynomially many valid signatures on messages

of his choice (but different from𝑚). Next, we recall this notion.

Definition 7 (EUF-CMA Security). A signature scheme Σ isEUF-CMA

secure if for every PPT adversary A there exists a negligible function
negl such that

Pr[SigForgeA,Σ (𝜆) = 1] ≤ negl(𝜆),
where the experiment SigForgeA,Σ is defined as follows:

Ideal Functionality G𝑅,𝑓merge
Cond

The functionality interacts with an adversary S and set of parties

P = {𝑃1, . . . , 𝑃𝑛 }. Additionally, the functionality maintains a list L that

is indexed by conditions and stores their corresponding openings. The

functionality is parameterized by a hard relation 𝑅 and a function 𝑓merge
for which the following invariant holds: (𝑌1, 𝑦1 ) ∈ 𝑅 ∧ (𝑌2, 𝑦2 ) ∈ 𝑅 =⇒
(𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ), 𝑓merge (wit, 𝑅, 𝑦1, 𝑦2 ) ) ∈ 𝑅

Individual Conditions: Upon receiving (create-ind-cond, sid, (𝑌, 𝑦) )
from some party 𝑃 , check if (𝑌, 𝑦) ∈ 𝑅. If not, then ignore this request.

Else, set L[𝑌 ] := 𝑦 and send (created-ind-cond, sid, 𝑌 ) to 𝑃 and S.
1-out-of-n Conditions: Upon receiving (create-1-of-n-cond,
sid, (𝑌, 𝑦), index, 𝑛, {𝑃𝑖 }) from some party 𝑃 , do the following:

• If (𝑌, 𝑦) ∉ 𝑅, then ignore the request. Otherwise, continue.

• For all 𝑖 ∈ [𝑛] ∧ 𝑖 ≠ index, sample random (𝑌𝑖 , 𝑦𝑖 ) ∈ 𝑅.
• Set 𝑌 ∗ := (𝑌1, . . . , 𝑌index := 𝑌, . . . , 𝑌𝑛 ) .
• For all 𝑃∗ ∈ {𝑃𝑖 }, send (join-1-of-n-cond, sid, 𝑃,𝑌 ∗ ) , and re-

ceive back (joined-1-of-n-cond, sid, 𝑏𝑖 ) .
• If any 𝑏𝑖 = 0, then abort. Otherwise, continue.

• Set L[𝑌 ∗ ] = (⊥, . . . , 𝑦index := 𝑦, . . . ,⊥) .
• Send (created-1-of-n-cond, sid, 𝑌 ∗ ) to 𝑃 and S.

Merged Conditions: Upon receiving (create-merged-cond,
sid, (𝑌1, 𝑌2 ) ) from some party 𝑃 check if L[𝑌1 ] = ⊥ or L[𝑌2 ] = ⊥ and

then ignore the request. Otherwise, set 𝑌 ∗ := 𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ) ,
set 𝑦∗ := 𝑓merge (wit, 𝑅, (L[𝑌1 ], L[𝑌2 ] ) ) , set L[𝑌 ∗ ] := 𝑦∗ and send

(created-merged-cond, sid, 𝑌 ∗ ) to 𝑃 and S.
Open Conditions: Upon receiving (open-cond, sid, (𝑌 ∗, 𝑦∗ ) ) from

some party 𝑃∗, set 𝑏 := (L[𝑌 ∗ ] ?

= 𝑦∗ ) and send (opened-cond, sid, 𝑏 ) to
𝑃∗ and S.

Figure 16: Ideal functionality G𝑅,𝑓merge
Cond (extension from Fig-

ure 7 with 1-out-of-𝑛 conditions).
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Protocol Π𝑅DLOG
Cond

The protocol is parameterized by group description (G, 𝑔, 𝑞) , and the

corresponding discrete logarithm (DLOG) relation 𝑅DLOG over it, i.e.,

(𝑌, 𝑦) ∈ 𝑅DLOG ⇐⇒ 𝑌 = 𝑔𝑦 .

Individual Conditions: Party 𝑃 upon receiving

(create-ind-cond, sid, (𝑌, 𝑦) ) from E, checks if (𝑌, 𝑦) ∈ 𝑅DLOG.

If not, then ignores the request. Otherwise, returns (𝑌, 𝑦) .
1-out-of-n Conditions:
Party 𝑃 upon receiving

(create-1-of-n-cond, (𝑌, 𝑦), index, 𝑛, {𝑃𝑖 }) from E:
• For all 𝑃∗ ∈ {𝑃𝑖 }, send (𝑛, {𝑃𝑖 }) to 𝑃∗.

Party 𝑃∗ ∈ {𝑃𝑖 } upon receiving (𝑛, {𝑃𝑖 }) from 𝑃 :

• For all 𝑗 ∈ [𝑛], sample 𝑠𝑖 [ 𝑗 ] ←$ Z𝑞 .

• For all 𝑗 ∈ [𝑛], compute ℎ𝑖 [ 𝑗 ] := 𝑔𝑠 [ 𝑗 ] .

• Send vector
®ℎ𝑖 := {ℎ𝑖 [ 𝑗 ] } 𝑗 ∈ [𝑛] to 𝑃 and {𝑃𝑖 } \ {𝑃∗}.

Party 𝑃 upon receiving
®ℎ𝑖 from 𝑃∗ ∈ {𝑃𝑖 }:

• For all 𝑗 ∈ [𝑛], sample 𝑠 [ 𝑗 ] ←$ Z𝑞 .

• For all 𝑗 ∈ [𝑛] and 𝑗 ≠ index, compute 𝑓𝑗 :=
∏

𝑖∈|{𝑃𝑖 }| ℎ𝑖 [ 𝑗 ]
and 𝑐 [ 𝑗 ] := 𝑓𝑗 · 𝑔𝑠 [ 𝑗 ] .

• Set 𝑐 [index] := 𝑌 and 𝑠 [index] := 𝑦.

• Compute 𝜋index ← NIZK.P({∃(®𝑠, index) | 𝑐 [index] =

𝑔𝑠 [index] ∧ (∀ 𝑗 ∈ [𝑛] ∧ 𝑗 ≠ index, 𝑐 [ 𝑗 ] = 𝑓𝑗 ·
𝑔𝑠 [ 𝑗 ] ) }, (®𝑠, index) ) .

• Return ( (®𝑐,
{
𝑓𝑗
}
𝑗 ∈ [𝑛] , 𝜋index ), 𝑦) .

Merged Conditions: Party 𝑃 upon receiving (create-and-cond,
sid, (𝑌1, 𝑌2 ) ) from E, compute 𝑌 ∗ := 𝑌1 · 𝑌2 and return 𝑌 ∗.
Open Conditions: Party 𝑃 upon receiving (open-cond, sid, (𝑌 ∗, 𝑦∗ ) )

from E, return ( (𝑌 ∗, 𝑦∗ ) ?∈ 𝑅DLOG ) .
Definition of 𝑓merge:
𝑓merge (stmt, 𝑅, (𝑌1, 𝑌2 ) ) := 𝑌1 · 𝑌2
𝑓merge (wit, 𝑅, (𝑦1, 𝑦2 ) ) := 𝑦1 + 𝑦2

Figure 17: Protocol Π𝑅DLOG
Cond (extension from protocol in Fig-

ure 8 with the functionality for 1-out-of-𝑛 conditions).

SigForgeA,Σ (𝜆)
Q ← ∅

(sk, pk) ← KGen(1𝜆 )

(𝑚,𝜎 ) ← AOS ( ·) (pk)
return (𝑚 ∉ Q ∧ Vf (pk,𝑚, 𝜎 ) )

OS (𝑚)
𝜎 ← Sig(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

Existential unforgeability does not say anything about the dif-

ficulty of transforming a valid signature on𝑚 into another valid

signature on𝑚. Hardness of such transformation is captured by

a stronger notion, called strong existential unforgeability under

chosen message attack (or SUF-CMA for short), which we recall

next.

Definition 8 (SUF-CMA Security). A signature scheme Σ is SUF-CMA

secure if for every PPT adversary A there exists a negligible function
negl such that

Pr[StrongSigForgeA,Σ (𝜆) = 1] ≤ negl(𝜆),
where the experiment StrongSigForgeA,Σ is defined as follows:

StrongSigForgeA,Σ (𝜆)
Q ← ∅

(sk, pk) ← KGen(1𝜆 )

(𝑚,𝜎 ) ← AOS ( ·) (pk)
return ( (𝑚,𝜎 ) ∉ Q ∧ Vf (pk,𝑚, 𝜎 ) )

OS (𝑚)
𝜎 ← Sig(sk,𝑚)
Q := Q ∪ {𝑚,𝜎 }
return 𝜎

The advantage of the adversaryA playing the game StrongSigForge
is defined as follows:

AdvStrongSigForgeA = Pr[StrongSigForgeA,Σ (𝜆) = 1] .

Two-party signature with aggregatable public keys.We pri-

marily make use of two-party signatures with aggregatable public

keys as defined by Erwig et al. [18].

Definition 9 (Two-Party SignaturewithAggregatable Public Keys [18]).
A two-party signature scheme with aggregatable public keys is a tu-
ple of protocols and algorithms Σ2 = (Setup,KGen,ΠSig,KAgg,Vf)
defined as follows:

Setup(1𝜆): is a PPT algorithm that on input a security parameter 𝜆,
outputs public parameters pp.

KGen(pp): is a PPT algorithm that on input public parameters pp,
outputs a key pair (sk, pk).

ΠSig⟨sk𝑖 ,sk1−𝑖 ⟩ (pk0, pk1,𝑚): is an interactive PPT protocol that on
input secret keys sk𝑖 from party 𝑃𝑖 with 𝑖 ∈ {0, 1} and com-
mon values messages𝑚 ∈ {0, 1}∗ and public keys pk

0
, pk

1
,

outputs a signature 𝜎 .
KAgg(pk

0
, pk

1
): is a DPT algorithm that on input two public keys

pk
0
, pk

1
, outputs an aggregated public key apk.

Vf (apk,𝑚, 𝜎): is a DPT algorithm that on input a public key pk,
message𝑚 ∈ {0, 1}∗ and signature 𝜎 , outputs a bit 𝑏.

We can define completeness for Σ2 in a natural way: a two-

party signature scheme with aggregatable public keys Σ2 satis-

fies completeness, if for all public parameters pp ← Setup(1𝜆),
key pair (sk, pk)KGen(pp) and messages 𝑚 ∈ {0, 1}∗, the proto-
col ΠSig⟨sk𝑖 ,sk1−𝑖 ⟩ (pk0, pk1,𝑚) outputs a signature 𝜎 to both parties

𝑃0, 𝑃1, such that Vf (apk,𝑚, 𝜎) = 1, where apk := KAgg(pk
0
, pk

1
).

A two-party signature scheme with aggregatable public keys

should satisfy unforgeability. At a high level, this property guar-

antees that if one of the two parties is malicious, this party is not

able to produce a valid signature under the aggregated public key

without the cooperation of the other party. We formalize the prop-

erty through an experiment SigForge𝑏A,Σ2
, where 𝑏 ∈ {0, 1} defines

which of the two parties is corrupted.

Definition 10 (2-EUF-CMA Security). A two-party signature scheme
with aggregatable public keys Σ2 is 2-EUF-CMA secure if for every
PPT adversaryA there exists a negligible function negl such that, for
𝑏 ∈ {0, 1},

Pr[SigForge𝑏A,Σ2
(𝜆) = 1] ≤ negl(𝜆),

where the experiment SigForge𝑏A,Σ2
is defined as follows:
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SigForge𝑏A,Σ2
(𝜆)

Q ← ∅

pp← Setup(1𝜆 )
(sk

1−𝑏 , pk1−𝑏 ) ← KGen(pp)
(sk𝑏 , pk𝑏 ) ← A(pp, pk1−𝑏 )

(𝑚,𝜎 ) ← AO
𝑏
Π
S

( ·) (pk
1−𝑏 , sk𝑏 , pk𝑏 )

apk := KAgg(pk
0
, pk

1
)

return (𝑚 ∉ Q ∧ Vf (apk,𝑚, 𝜎 ) )

O𝑏ΠS

(𝑚)
Q := Q ∪ {𝑚}

𝜎 ← ΠASig⟨sk
1−𝑏 ,·⟩

(pk
0
, pk

1
,𝑚)

return 𝜎

Generic transformation to adaptor signature scheme. Erwig
et al. [18] showed how to generically transform a canonical identifi-

cation scheme (as defined in Appendix B) into an adaptor signature

scheme (as defined in §4). Here we describe the generic transfor-

mation from two-party signature with aggregatable public keys

(obtained from an identification scheme) to an adaptor signature

scheme, given in [18, Section 5.1]. This transformation is given

in Figure 18, and it makes use of the following functions and proto-

cols:

• The randomness shift function 𝑓shift : Drand ×𝐿𝑅 → Drand,

takes as input a commitment value 𝑅 ∈ Drand of the identi-

fication scheme and a statement𝑌 ∈ 𝐿𝑅 of the hard relation,

and outputs a new commitment value 𝑅′ ∈ Drand. We as-

sume that the inverse of this function is well-defined.

• The adaptation function 𝑓adapt : Dresp×Dw → Dresp, takes

as input a pre-signature value 𝑠 ∈ Dresp (which corresponds

to the response value of the identification scheme) and a

witness 𝑦 ∈ Dw of the hard relation 𝑅, and outputs a new

value 𝑠 ∈ Dresp.

• The witness extraction function 𝑓ext : Dresp×Dresp → Dw,

takes as input two response values 𝑠, 𝑠 ∈ Dresp and outputs

a witness 𝑦 ∈ Dw.

• The randomness combining function 𝑓com-rand : Drand ×
Drand → Drand, that takes as input two randomness𝑅0, 𝑅1 ∈
Drand and outputs a new combined randomness 𝑅 ∈ Drand.

• The signature combining function 𝑓com-sig, that takes as

input two partial signatures and returns a new combined

signature.

• The randomness exchange protocol ΠRand-Exc.

• The partial signature exchange protocol ΠExchange.

In [18] it was shown how to instantiate the functions and pro-

tocols specified above for different type of signatures, such as

Schnorr [35], Katz-Wang [25] and Guillou-Quisquater [23]. We

note here that the recently proposed post-quantum adaptor signa-

tures, such as lattice-based LAS [20] and isogeny-based IAS [37]

are also adaptor signature scheme obtained from an identification

scheme, and hence, fit this framework.

Adaptor signatures. In this section, we describe the full correct-

ness and security properties of adaptor signatures that were sum-

marized in §4.

Definition 11 (Two-Party Pre-signature Correctness). A two-party
adaptor signature scheme with aggregatable public keys Ξ𝑅,Σ

2
satisfies

two-party pre-signature correctness if for every 𝜆 ∈ N, every message
𝑚 ∈ {0, 1}∗ and every statement/witness pair (𝑌,𝑦) ∈ 𝑅, the following

holds:

Pr



PreVf (apk,𝑚,𝑌, �̂�) = 1

∧
Vf(apk,𝑚, 𝜎) = 1

∧
(𝑌,𝑦′) ∈ 𝑅

������������������

pp← Setup(1𝜆)
(sk

0
, pk

0
) ← KGen(pp)

(sk
1
, pk

1
) ← KGen(pp)

(𝑌,𝑦) ← GenR(1𝜆)
�̂� ← ΠPreSig⟨sk

0
,sk

1
⟩

(pk
0
, pk

1
,𝑚,𝑌 )

apk := KAgg(pk
0
, pk

1
)

𝜎 := Adapt(apk, �̂�, 𝑦)
𝑦′ := Ext(apk, 𝜎, �̂�, 𝑌 )


= 1.

We now formally define the existential unforgeability under

chosen message attack for two-party adaptor signature scheme

with aggregatable public keys (2-aEUF-CMA).

Definition 12 (2-aEUF-CMA Security). A two-party adaptor sig-
nature scheme with aggregatable public keys Ξ𝑅,Σ

2
is 2-aEUF-CMA

secure if for every PPT adversary A there exists a negligible function
negl such that: Pr[aSigForge𝑏

A,Ξ𝑅,Σ
2

(𝜆) = 1] ≤ negl(𝜆), where the

experiment aSigForge𝑏
A,Ξ𝑅,Σ

2

is defined as follows:

aSigForge𝑏
A,Ξ𝑅,Σ

2

(𝜆)
Q := ∅; pp← Setup(1𝜆 )
(sk

1−𝑏 , pk1−𝑏 ) ← KGen(pp)
(sk𝑏 , pk𝑏 ) ← A(pp, pk1−𝑏 )

𝑚 ← A
O𝑏Π

S

( ·),O𝑏Π
pS

( ·,·)
(pk

1−𝑏 , sk𝑏 , pk𝑏 )

(𝑌, 𝑦) ← GenR(1𝜆 )

�̂� ← ΠAPreSig⟨sk
1−𝑏 ,·⟩

(𝑚,𝑌 )

𝜎 ← A
O𝑏Π

S

( ·),O𝑏Π
pS

( ·,·)
(�̂�, 𝑌 )

apk := KAgg(pk
0
, pk

1
)

return (𝑚 ∉ Q ∧ Vf (apk,𝑚, 𝜎 ) )

O𝑏ΠS

(𝑚)
Q := Q ∪ {𝑚}
𝜎 ← ΠASig⟨sk

1−𝑏 ,·⟩
(pk

0
, pk

1
,𝑚)

return 𝜎

O𝑏ΠpS

(𝑚,𝑌 )
Q := Q ∪ {𝑚}
�̂� ← ΠAPreSig⟨sk

1−𝑏 ,·⟩
(pk

0
, pk

1
,𝑚,𝑌 )

return �̂�

The following definition formalizes the property of pre-signature
adaptability.

Definition 13 (Two-Party Pre-signature Adaptability). A two-party
adaptor signature scheme with aggregatable public keys Ξ𝑅,Σ

2
sat-

isfies two-party pre-signature adaptability if for any 𝜆 ∈ N, any
message 𝑚 ∈ {0, 1}∗, any statement/witness pair (𝑌,𝑦) ∈ 𝑅, any
public keys pk

0
and pk

1
, and any pre-signature �̂� ← {0, 1}∗ satisfy-

ing PreVf (apk,𝑚,𝑌, �̂�) = 1, where apk := KAgg(pk
0
, pk

1
), we have:

Pr[Vf (apk,𝑚,Adapt(apk, �̂�, 𝑦)) = 1] = 1.

We note that this property is stronger than the pre-signature

correctness property from Definition 11, since we require that even

maliciously produced pre-signatures, can always be completed into

valid signatures.

The last property that we are interested in is witness extractabil-
ity.

Definition 14 (Two-Party Witness Extractability). A two-party
adaptor signature scheme with aggregatable public keys Ξ𝑅,Σ

2
two-

party witness extractable if for every PPT adversaryA, there exists a
negligible function negl such that the following holds:
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ΠPreSig⟨sk𝑖 ,sk1−𝑖 ⟩ (pk0, pk1,𝑚,𝑌 )
Parse pk𝑖 = ( (1𝜆, pp𝐶 , crs), pk′𝑖 ), 𝑖 ∈ {0, 1}
(𝑅𝑖 , st𝑖 , 𝑅1−𝑖 ) ← ΠRand-Exc⟨𝑠𝑘𝑖 ,𝑠𝑘1−𝑖 ⟩ (pp𝐶 , crs)
𝑅pre := 𝑓com-rand (𝑅0, 𝑅1 )
𝑅sign := 𝑓shift (𝑅pre, 𝑌 ), ℎ := 𝐻 (𝑅sign,𝑚)
𝑠𝑖 ← P2 (sk𝑖 , 𝑅𝑖 , ℎ, st𝑖 )
𝑠𝑖−1 ← ΠExchange ⟨𝑠𝑖 , 𝑠𝑖−1 ⟩
(ℎ, 𝑠 ) := 𝑓com-sig (ℎ, (𝑠𝑖 , 𝑠𝑖−1 ) )
return �̂� := (ℎ, 𝑠 )

PreVf (apk,𝑚,𝑌, �̂� := (ℎ, 𝑠))
𝑅pre := V0 (apk, ℎ, 𝑠 )
return ℎ = 𝐻 (𝑓shift (𝑅pre, 𝑌 ),𝑚)

Adapt(apk, �̂� := (ℎ, 𝑠), 𝑦)
return 𝜎 := (ℎ, 𝑓adapt (𝑠, 𝑦) )

Ext(apk, 𝜎 := (ℎ, 𝑠), �̂� := (ℎ, 𝑠), 𝑌 )
return 𝑓ext (𝑠, 𝑠 )

Figure 18: Two-party adaptor signature scheme with aggregatable public keys Ξ𝑅,Σ
2

with respect to Σ2 and hard relation 𝑅.

Pr[aWitExt𝑏
A,Ξ𝑅,Σ

2

(𝜆) = 1] ≤ negl(𝜆)

where the experiment aWitExt𝑏
A,Ξ𝑅,Σ

2

is defined as follows

aWitExt𝑏A,Ξ𝑅,Σ
(𝜆)

Q := ∅; pp← Setup(1𝜆 )
(sk

1−𝑏 , pk1−𝑏 ) ← KGen(pp)
(sk𝑏 , pk𝑏 ) ← A(pp, pk1−𝑏 )

(𝑚,𝑌 ) ← A
O𝑏Π

S

( ·),O𝑏Π
pS

( ·,·)
(pk

1−𝑏 , sk𝑏 , pk𝑏 )

�̂� ← ΠAPreSig⟨sk
1−𝑏 ,·⟩

(𝑚,𝑌 )

𝜎 ← A
O𝑏Π

S

( ·),O𝑏Π
pS

( ·,·)
(�̂� )

apk := KAgg(pk
0
, pk

1
)

𝑦′ := Ext(apk, 𝜎, �̂�, 𝑌 )
return (𝑚 ∉ Q ∧ (𝑌, 𝑦′ ) ∉ 𝑅 ∧ Vf (apk,𝑚, 𝜎 ) )

O𝑏ΠS

(𝑚)
Q := Q ∪ {𝑚}
𝜎 ← ΠASig⟨sk

1−𝑏 ,·⟩
(pk

0
, pk

1
,𝑚)

return 𝜎

O𝑏ΠpS

(𝑚,𝑌 )
Q := Q ∪ {𝑚}
�̂� ← ΠAPreSig⟨sk

1−𝑏 ,·⟩
(pk

0
, pk

1
,𝑚,𝑌 )

return �̂�

Although the witness extractability experiment aWitExt looks
similar to the experiment aSigForge, there is one important dif-

ference, namely, the adversary is allowed to choose the forgery

statement 𝑌 . Hence, we can assume that the adversary knows a

witness for 𝑌 , and therefore, can generate a valid signature on the

forgery message𝑚. However, this is not sufficient to win the ex-

periment. The adversary wins only if the valid signature does not

reveal a witness for 𝑌 .

Non-interactive zero-knowledge proof system. Let 𝑅 be an

efficiently computable binary relation, where for pairs (𝑥,𝑤) ∈ 𝑅
we call 𝑥 the statement and 𝑤 the witness. Let 𝐿 be the language

consisting of statements in 𝑅. A non-interactive zero-knowledge

(NIZK) proof system [10] for a language 𝐿 allows to prove in a non-

interactive manner that some statements are in 𝐿 without leaking

information about the corresponding witnesses. We formally define

it as follows.

Definition 15 (Non-Interactive Zero-Knowledge Proof System).
A non-interactive zero-knowledge (NIZK) proof system NIZK for a
language 𝐿 ∈ NP (with witness relation𝑅) is a tuple of PPT algorithms
NIZK = (PGen, P,V), such that:

PGen(1𝜆): on input a security parameter 𝜆, outputs a common ref-
erence string crs.

P(crs, 𝑥,𝑤): on input a common reference string crs, a statement 𝑥
and a witness𝑤 , outputs a proof 𝜋 .

V(crs, 𝑥, 𝜋): on input a common reference string crs, a statement 𝑥
and a proof 𝜋 , outputs a bit 𝑏.

We require NIZK to meet the following properties:
Completeness. For every (𝑥,𝑤) ∈ 𝑅 we have that

Pr

[
crs← PGen(1𝜆), 𝜋 ← P(crs, 𝑥,𝑤) : V(crs, 𝑥, 𝜋) = 1

]
= 1.

Soundness. For every 𝑥 ∉ 𝐿, and every adversary A, we have that

Pr

[
crs← PGen(1𝜆), 𝜋 ← A(crs, 𝑥) : V(crs, 𝑥, 𝜋) = 1

]
≤ negl(𝜆) .

Zero-Knowledge. There exists a PPT algorithm S = (S1,S2) such
that for every PPT adversary A,

AdvZKA (𝜆) :=
��� Pr[crs← PGen(1𝜆) : AP(crs,·,· ) (crs) = 1

]
− Pr

[
(crs, 𝜏) ← S1 (1𝜆) : AO(crs,𝜏,·,· ) (crs) = 1

] ���
is negligible in 𝜆, where O(crs, 𝜏, ·, ·) is an oracle that outputs ⊥ on
input (𝑥,𝑤) when (𝑥,𝑤) ∉ 𝑅 and outputs 𝜋 ← S2 (crs, 𝜏, 𝑥) when
(𝑥,𝑤) ∈ 𝑅.

C PRIVATE ADAPTOR SIGNATURE AND
LEDGER

In this sectionwe extend adaptor signature and lock-enabling ledger

with privacy notions.

C.1 Private Adaptor Signatures
We extend the adaptor signature definition from §4 with privacy

properties, namely, we define perfect unlinkability.
Perfect unlinkability. Informally, unlinkability guarantees that

an adversary cannot distinguish freshly computed signatures from

adapted ones. Such a property thereby raises the bar in practice for

the adversary (e.g., the miner) to behave differently for transactions

authorized through adaptor signatures. Note that current miners

in blockchains such as Bitcoin and Ethereum do tag transactions in

order to e.g., censor them and not include them in a block.
2 3

2
https://www.coindesk.com/tech/2021/05/07/marathon-miners-have-started-

censoring-bitcoin-transactions-heres-what-that-means/

3
https://cointelegraph.com/news/slippery-slope-as-new-bitcoin-mining-pool-

censors-transactions
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Here we consider a stronger notion of indistinguishability of

fresh signatures and adapted ones, dubbed perfect unlinkability. It is
a strengthening of computational unlinkability definition given by

Dai et al. [13]. More precisely, we consider a statistical unlinkability,

where the distributions of fresh and adapted signatures are identical.

We define it as follows.

Definition 16 (Perfect Unlinkability). A two-party adaptor signa-
ture scheme with aggregatable public keys Ξ𝑅,Σ

2
is perfectly unlink-

able, if for every 𝜆 ∈ N, every message𝑚 ∈ {0, 1}∗ and every pair
(𝑌,𝑦) ∈ 𝑅, it holds that
[ΠSig⟨sk

0
,sk

1
⟩ (𝑚)] and [Adapt(apk,ΠPreSig⟨sk

0
,sk

1
⟩ (𝑚,𝑌 ), 𝑦)]

are identically distributed. Here, pp ← Setup(1𝜆), (sk
0
, pk

0
) ←

KGen(pp), (sk
1
, pk

1
) ← KGen(pp), and apk := KAgg(pk

0
, pk

1
).

Clearly, all schemes that satisfy this stronger notion (stated

above) also satisfy the weaker (computational) notion given in [13].

Next, we state that perfect unlinkability is achieved by any two-

party adaptor signature with aggregatable public keys constructed

from an identification scheme, as described in Appendix B, for

which we provide proof in Appendix E.3.

Lemma 1. A two-party adaptor signature scheme with aggregatable
public keys (from identification scheme) Ξ𝑅,Σ

2
is perfectly unlinkable.

Private adaptor signatures. Using the above definition we can

define a private adaptor signature scheme as follows.

Definition 17 (Private Adaptor Signature Scheme). A two-party
adaptor signature scheme with aggregatable public keys Ξ𝑅,Σ

2
is pri-

vate if it is perfectly unlinkable.

C.2 The LedgerLockTx Primitive
Definition. We define here a primitive, dubbed LedgerLockTx,

in order to capture the privacy notions relevant for conditional

ledgers §7 in game-based setting.

Definition 18 (LedgerLockTx). A LedgerLockTx scheme is defined
w.r.t a hard relation 𝑅 and consists of a tuple Λ𝑅 = (Setup,ΠAccGen,

ΠAuthTx,ΠLockTx,RelTx, SigTx,VerTx) of efficient protocols, run be-
tween parties 𝑃𝑏 for 𝑏 ∈ {0, 1}, and algorithms defined as follows:

Setup(1𝜆): is a PPT algorithm that on input a security parameter
𝜆, outputs public parameters pp.

ΠAccGen (pp): is an interactive protocol that on input public pa-
rameters, outputs secret keys (sk𝑏 , sk1−𝑏 ) and a verification key vk.

ΠAuthTx⟨sk𝑏 ,sk1−𝑏 ⟩ (vk, tx): is an interactive protocol that on input
a verification key vk and transaction tx, outputs a signature 𝜎 .

ΠLockTx⟨sk𝑏 ,sk1−𝑏 ⟩ (vk, tx, 𝑌 ): is an interactive protocol that on in-
put a verification key vk, transaction tx and condition 𝑌 , outputs a
pre-signature �̂� .

RelTx(vk, tx, �̂�, 𝑦): is a DPT algorithm that on input a verifica-
tion key vk, transaction tx, pre-signature �̂� and witness 𝑦, outputs a
signature 𝜎 .

SigTx(vk, 𝜎, �̂�, 𝑌 ): is a DPT algorithm that on input a verification
key vk, signature 𝜎 , pre-signature �̂� and statement 𝑌 ∈ 𝐿𝑅 , outputs a
witness 𝑦 s.t. (𝑌,𝑦) ∈ 𝑅, or ⊥.

VerTx(vk, tx, 𝜎): is a DPT algorithm that on input a verification
key vk, transaction tx and signature 𝜎 , outputs a bit 𝑏.

Construction. We give an instantiation of LedgerLockTx using

two-party adaptor signature scheme with aggregatable public keys

(as defined in §4). In our instantiation, account generation ΠAccGen
corresponds to key generation, transaction authorization ΠAuthTx
corresponds to full signature generation, and transaction locking

ΠLockTx corresponds to pre-signature generation using the adaptor

signature scheme. Similarly, releasing transaction RelTx and sig-

naling transaction SigTx correspond to adaptation and extraction

operations, respectively. Our instantiation is given in Figure 19.

Setup(1𝜆)
pp← Σ2 .Setup(1𝜆 )
return pp

ΠAccGen (pp)
(sk𝑏 , pk𝑏 ) ← Σ2 .KGen(pp)
(sk

1−𝑏 , pk1−𝑏 ) ← Σ2 .KGen(pp)
vk := (pk𝑏 , pk1−𝑏 )
return (sk𝑏 , vk) to 𝑃𝑏 and (sk

1−𝑏 , vk) to 𝑃1−𝑏

ΠAuthTx⟨sk𝑏 ,sk1−𝑏 ⟩ (vk, tx)
Parse vk as (pk𝑏 , pk1−𝑏 )
𝜎 ← Σ2 .ΠSig⟨sk𝑏 ,sk1−𝑏 ⟩ (pk𝑏 , pk1−𝑏 , tx)
return 𝜎

ΠLockTx⟨sk𝑏 ,sk1−𝑏 ⟩ (vk, tx, 𝑌 )
Parse vk as (pk𝑏 , pk1−𝑏 )
�̂� ← Ξ𝑅,Σ

2
.ΠPreSig⟨sk𝑏 ,sk1−𝑏 ⟩ (pk𝑏 , pk1−𝑏 , tx, 𝑌 )

return �̂�

VerTx(vk, tx, 𝜎)
Parse vk as (pk𝑏 , pk1−𝑏 )
apk := Σ2 .KAgg(pk𝑏 , pk1−𝑏 )
𝑏 := Σ2 .Vf (apk, tx, 𝜎 )
return 𝑏

RelTx(vk, tx, �̂�, 𝑦)
Parse vk as (pk𝑏 , pk1−𝑏 )
apk := Σ2 .KAgg(pk𝑏 , pk1−𝑏 )
𝜎 := Ξ𝑅,Σ

2
.Adapt(apk, �̂�, 𝑦)

return 𝜎

SigTx(vk, 𝜎, �̂�, 𝑌 )
Parse vk as (pk𝑏 , pk1−𝑏 )
apk := Σ2 .KAgg(pk𝑏 , pk1−𝑏 )
𝑦 := Ξ𝑅,Σ

2
.Ext(apk, 𝜎, �̂�, 𝑌 )

return 𝑦

Figure 19: Instantiation of LedgerLockTx Λ𝑅 using two-party
adaptor signature scheme Ξ𝑅,Σ

2
.

Perfect unlinkability. Analogous to the perfect unlinkability defi-
nition for adaptor signatures (see Appendix C.1), we can also define

perfect unlinkability for LedgerLockTx, in order to argue that sig-

natures from ΠAuthTx and RelTx are identically distributed.

Definition 19 (Perfect Unlinkability for LedgerLockTx). We say
that a LedgerLockTx scheme Λ𝑅 is perfectly unlinkable, if for every
𝜆 ∈ N, every transaction tx ∈ {0, 1}∗ and every pair (𝑌,𝑦) ∈ 𝑅, it
holds that

[ΠAuthTx⟨sk
0
,sk

1
⟩ (vk, tx)] and [RelTx(vk,ΠLockTx⟨sk

0
,sk

1
⟩ (vk, tx, 𝑌 ), 𝑦)]
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are identically distributed. Here pp← Setup(1𝜆) and (sk
0
, sk

1
, vk) ←

ΠAccGen (pp).

It naturally follows that our LedgerLockTx instantiation from

two-party adaptor signatures, as shown in Figure 19, achieves per-

fect unlinkability.

Lemma 2. Let Ξ𝑅,Σ
2

be a perfectly unlinkable two-party adaptor
signature scheme, then our LedgerLockTx construction from Figure 19
is perfectly unlinkable according to Definition 19.

D AUXILIARY IDEAL FUNCTIONALITIES
In this section we describe the auxiliary ideal functionalities that

we make use of throughout the paper.

Clock functionality. Next, we describe the global clock function-

ality GClock [6, 24], which allows the parties to proceed in synchro-

nized rounds. More specifically, the functionality keeps track of

a round variable whose value the parties can request by sending

it (clock-read, sid𝐶 ). This value is updated only once all honest

parties send (clock-update, sid𝐶 ) request to the functionality. The

functionality is given in Figure 20.

Ledger functionality. Lastly, we describe the ledger ideal func-
tionality GLedger of Badertscher et al. [8], which is depicted in Fig-

ure 34. The functionality makes use of the clock functionalityGClock
define in Appendix D, and is parameterized by four algorithms

Validate, ExtendPolicy,Blockify, and predict-time, along with two

parameters windowSize, Delay ∈ N. We refer the reader to [8] for

all the details of this ledger functionality.

E FULL SECURITY ANALYSIS
In this section we provide the full security analysis of our construc-

tions.

E.1 Security Analysis of Global Conditions
We recall the theorem stated in §5, for which we provide a proof

here. We note that we prove the extended version of global condi-

tions as defined in Appendix A.

Theorem 4. Let NIZK be a non-interactive zero-knowledge proof
system and G be a DLOG-hard group, then the protocol Π𝑅DLOG

Cond UC-

realizes the ideal functionality G𝑅,𝑓merge

Cond , for 𝑅 = 𝑅DLOG and 𝑓merge
as defined in Figure 8.

Proof. Throughout the following proof, we implicitly assume

that all messages of the adversary are well-formed and we treat the

malformed messages as aborts. Since we consider static corruption

model, we denote the set of users corrupted by the adversary with

C. The proof is composed of a series of hybrids.

HybridH0: This corresponds to the original ΠCond.

Hybrid H1: All calls to non-interactive zero-knowledge proof

system NIZK are simulated using the simulator SNIZK for the cor-

responding language L.
HybridH2: For the set of corrupted parties C, if the adversary

outputs (open-cond, (𝑌 ∗, 𝑦∗)), such that (𝑌 ∗, 𝑦∗) ∈ 𝑅DLOG, for the
condition 𝑌 ∗ created by party 𝑃 via (create-ind-cond, (𝑌 ∗, 𝑦∗)) and
𝑃 ∉ C, then the experiment aborts by outputting fail1.

HybridH3: For the set of corrupted parties C, if the adversary
outputs (open-cond, (®𝑐∗ [index∗], 𝑦∗)), such that (®𝑐∗ [index∗], 𝑦∗) ∈
𝑅DLOG, for the condition ®𝑐∗ created by party 𝑃 via (create-1-of-n-cond,
(𝑌 ∗, 𝑦∗), index∗, 𝑛, {𝑃𝑖 }) and 𝑃 ∉ C, then the experiment aborts by

outputting fail2.
HybridH4: For the set of corrupted parties C, if the adversary

outputs (open-cond, (𝑌 ∗, 𝑦∗)), such that (𝑌 ∗, 𝑦∗) ∈ 𝑅DLOG, for the
condition𝑌 ∗ created by party 𝑃 via (create-merged-cond, (𝑌 ∗

1
, 𝑌 ∗

2
))

and 𝑃 ∉ C, then the experiment aborts by outputting fail3.

Simulator S: The simulator S simulates the honest parties as

in the previous hybrid, except that its actions are dictated by the

interaction with the ideal functionality G𝑅Cond. More precisely, the

simulator proceeds as in the execution of H4 by simulating the

view of the adversary appropriately as it receives messages from

the ideal functionality GCond. If the simulated view deviates from

the execution of the ideal functionality, then the simulation must

have already aborted (as given in cases of abort in the above hy-

brids).

Next, we proceed to proving the indistinguishability of the neigh-

boring hybrids for the environment E.

Lemma 3. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The proof follows directly from the zero-knowledge

property of the non-interactive zero-knowledge proof systemNIZK,
for which the simulator SNIZK is guaranteed to exist. □

Lemma 4. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Let fail1 be the event that triggers an abort in H2 but

not in H1. In the following we are going to show that the proba-

bility that such an event happens can be bounded by a negligible

function in the security parameter. Assume towards contradiction

that Pr[fail1 | H1] ≥ 1

poly(𝜆) . To show that the probability of fail1
happening inH2 cannot be inverse polynomial we reduce it to the

hardness of DLOG. The reduction receives as input a group element

ℎ, and samples an index 𝑗 ∈ [1, 𝑠], where 𝑠 ∈ poly(𝜆) is a bound
on the total number of sessions. The reduction sets the condition

as 𝑌 ∗ = ℎ in the 𝑗-th session. If the event fail1 happens, then the

reductions returns the corresponding 𝑦∗, otherwise it aborts.
The reduction is clearly efficient, and whenever 𝑗 is guessed cor-

rectly it does not abort. Since fail1 happens it means that (𝑌 ∗, 𝑦∗) ∈
𝑅DLOG, for the condition 𝑌 ∗, and 𝑃 ∉ C. This implies that the

reduction succeeded in breaking the DLOG. By assumption this

happens with probability at least
1

𝑠 ·poly(𝜆) , which is a contradiction

and proves that Pr[fail1 | H1] ≤ negl(𝜆).
□

Lemma 5. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. The proof of this lemma is analogous to that of Lemma 4,

but we need to additionally account for index∗. More precisely,

since (®𝑐∗ [index∗], 𝑦∗) ∈ 𝑅DLOG, we know that ®𝑐∗ [index∗] = 𝑔𝑦
∗
.
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Ideal Functionality GClock

The functionality manages the set P of registered identities, i.e., parties 𝑃 := (pid, sid) . It also manages the set 𝐹 of functionalities (together with their

session identifier). Initially, P = ∅ and 𝐹 = ∅.
For each session sid the clock maintains a variable 𝜏sid. For each identity 𝑃 := (pid, sid) ∈ P it manages variable 𝑑𝑃 . For each pair (F, sid) ∈ 𝐹 it manages

variable 𝑑F,sid (all integer variables are initially 0).

Synchronization:

• Upon receiving (clock-update, sid𝐶 ) from some party 𝑃 ∈ P set 𝑑𝑃 = 1, execute Round-Update and forward (clock-update, sid𝐶 , 𝑃 ) to S.
• Upon receiving (clock-update, sid𝐶 ) from some functionality F in a session sid such that (F, sid) ∈ 𝐹 set 𝑑 (F,sid) = 1, execute Round-Update

and return (clock-update, sid𝐶 , F) to this instance of F.
• Upon receiving (clock-read, sid𝐶 ) from any participant (including the environment on behalf of a party, the adversary, or any ideal—shared or

local—functionality) return (clock-read, sid𝐶 , 𝜏sid ) to the requestor (where sid is the session identifier of the calling instance).

Round-Update: For each session sid do: If 𝑑 (F,sid) = 1 for all F ∈ 𝐹 and 𝑑𝑃 = 1 for all honest parties 𝑃 := ( ·, sid) ∈ P, then set 𝜏sid = 𝜏sid + 1 and reset

𝑑 (F,sid) = 0 and 𝑑𝑃 = 0 for all parties 𝑃 := ( ·, sid) ∈ P.

Figure 20: Ideal functionality GClock [6, 24].

Hence, the reduction needs to guess this index∗ ∈ [𝑛] before
embedding the DLOG challenge. Therefore, the reduction incurs

an additional
1

𝑛 loss, where 𝑛 ∈ poly(𝜆).
□

Lemma 6. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. The proof of this lemma is analogous to that of Lemma 4.

□

Lemma 7. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECG𝑅
Cond,S,E

.

Proof. The two experiments are identical and the change here

is only syntactical. Hence, indistinguishability follows. □

This concludes the proof of Theorem 4. □

E.2 Security Analysis of Two-Party Adaptor
Signature

First, we describe how to straightforwardly translate a two-party

adaptor signature scheme with aggregatable public keys (from iden-

tification scheme) Ξ𝑅,Σ
2

into a protocol ΠAdaptSig
4
. We consider

parties 𝑃𝑏 for 𝑏 ∈ {0, 1} running ΠAdaptSig, and upon each request

we verify that sid = (𝑃𝑏 , 𝑃1−𝑏 , sid′) for some sid′, and if not, then

ignore the request.

• Upon receiving (keygen, sid) fromE, generate keys (sk𝑏 , pk𝑏 ) ←
Σ2 .KGen(pp), for some public parameters pp, store sk𝑏 , and
output (verification-key, sid, 𝑣 := (pk𝑏 , pk1−𝑏 )).

• Upon receiving (sign, sid,𝑚, 𝑣, 𝑌 , signature) from E, parse 𝑣
as (pk𝑏 , pk1−𝑏 ), execute the protocol𝜎 ← Σ2 .ΠSig⟨sk𝑏 ,sk1−𝑏 ⟩
(pk𝑏 , pk1−𝑏 ,𝑚) and output (signature, sid, 𝜎).

4
Parameterizing the protocol with a deterministic adaptation function 𝑓adapt is without

loss of generality, since the generic transformation of Erwig et al. [18, Figure 7]

considers that the adaptation algorithm of two-party adaptor signature coincides with

the function 𝑓adapt .

• Upon receiving (sign, sid,𝑚, 𝑣, 𝑌 , pre-signature) fromE, parse
𝑣 as (pk𝑏 , pk1−𝑏 ) and 𝑌 as 𝑌 , execute the protocol 𝜎 ←
Ξ𝑅,Σ
2

.ΠPreSig⟨sk𝑏 ,sk1−𝑏 ⟩ (pk𝑏 , pk1−𝑏 ,𝑚,𝑌 ), and output (signature,
sid, �̂�).

• Upon receiving (verify, sid,𝑚, 𝜎, 𝑣, 𝑌 , signature) fromE, parse
𝑣 as (pk𝑏 , pk1−𝑏 ), compute apk := Σ2 .KAgg(pk𝑏 , pk1−𝑏 )
and 𝑓 ← Σ2 .Vf (apk,𝑚, 𝜎), and output (verified, sid,𝑚, 𝑓 ).

• Upon receiving (verify, sid,𝑚, 𝜎, 𝑣, 𝑌 , pre-signature) from
E, parse 𝑣 as (pk𝑏 , pk1−𝑏 ) and 𝑌 as 𝑌 , compute apk :=

Σ2 .KAgg(pk𝑏 , pk1−𝑏 ) and 𝑓 ← Ξ𝑅,Σ
2

.PreVf (apk,𝑚,𝑌, 𝜎),
and output (verified, sid,𝑚, 𝑓 ).

• Upon receiving (adapt, sid, �̂�, 𝑣, 𝑦, 𝑌 ) fromE, send (open-cond,
sid, 𝑌 ,𝑦) toG𝑅,𝑓merge

Cond , and obtain the response (opened-cond, sid, 𝑏).
If 𝑏 = 0, then abort. Else, compute 𝜎 := 𝑓adapt (�̂�, 𝑦), and
output (adapted-signature, sid, 𝜎).

• Upon receiving (extract, sid, 𝜎, �̂�, 𝑣) fromE, parse 𝑣 as (pk𝑏 , pk1−𝑏 ),
compute apk := Σ2 .KAgg(pk𝑏 , pk1−𝑏 ) and𝑦 ← Ξ𝑅,Σ

2
.Ext(apk,

𝜎, �̂�, 𝑌 ), and output (witness, sid, 𝑦).
Next, we prove that the ideal functionality FAdaptSig, described

in §6, for a hard relation 𝑅, is realized by ΠAdaptSig.

Theorem2. LetΞ𝑅,Σ
2

be a secure two-party adaptor signature scheme
with aggregatable public keys (from identification scheme) that is
composed of a hard relation𝑅 and a secure two-party signature scheme
Σ2, then ΠAdaptSig UC-realizes the ideal functionality FAdaptSig.

Proof. We give a proof by contradiction. Assume thatΞ𝑅,Σ
2

does

not realize FAdaptSig, i.e., there exists an environment E that can

differentiate whether it is interacting with FAdaptSig and S in the

ideal world, or with Ξ𝑅,Σ
2

and A in the real world. We show that

Ξ𝑅,Σ
2

violates the definition of secure two-party adaptor signature

scheme from Appendix B. Since the environment E succeeds for

any S, it also succeeds for the following generic S, which runs

a simulated copy of A and does the following (where 𝑏 ∈ {0, 1}
defines which of the two parties is corrupted):

(1) Any input from E is forwarded to A, and any output from

A is copied to S’s output (to be read by E).
(2) Upon receiving a message (keygen, sid) from F 𝑅,𝑓adapt

AdaptSig:
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• If sid is not of the form (𝑃
1−𝑏 , 𝑃𝑏 , sid

′), then S ignores

the request.

• Else, S runs (sk
1−𝑏 , pk1−𝑏 ) ← Σ2 .KGen(pp), sets

𝑣 := (pk
1−𝑏 , pk𝑏 ), records the tuple (sid, sk1−𝑏 , 𝑣), and

returns (verification−key, sid, 𝑣) to F 𝑅,𝑓adapt

AdaptSig.

(3) Upon receiving amessage (sign, sid,𝑚, 𝑣, 𝑌 , type) fromF 𝑅,𝑓adapt

AdaptSig:

• If sid is not of the form (𝑃
1−𝑏 , 𝑃𝑏 , sid

′) and no tuple of
the form (sid, sk

1−𝑏 , 𝑣), has been previously recorded,

then S ignores the request.

• If type = signature, then S parses 𝑣 := (pk
1−𝑏 , pk𝑏 ),

simulates a run of the protocol𝜎 ← Σ2 .Π
A
Sig⟨sk

1−𝑏 ,·⟩
(pk

1−𝑏 ,

pk𝑏 ,𝑚) (by simulating the honest party 𝑃
1−𝑏 ), and

sends (signature, sid,𝑚, 𝜎) to F 𝑅,𝑓adapt

AdaptSig.

• If type = pre−signature, then S parses 𝑌 := 𝑌 and

𝑣 := (pk
1−𝑏 , pk𝑏 ), simulates a run of the protocol �̂� ←

Ξ𝑅,Σ
2

.ΠAPreSig⟨sk
1−𝑏 ,·⟩

(pk
1−𝑏 , pk𝑏 ,𝑚,𝑌 ) (by simulating

the honest party 𝑃
1−𝑏 ), and sends (signature, sid,𝑚, �̂�)

to F 𝑅,𝑓adapt

AdaptSig.

(4) Upon receiving (verify, sid,𝑚, 𝜎, 𝑣, 𝑌 , type) from F 𝑅,𝑓adapt

AdaptSig:

• If type = signature, then S parses 𝑣 := (pk
1−𝑏 , pk𝑏 ),

computes apk := Σ2 .KAgg(pk1−𝑏 , pk𝑏 ), sets𝜙 := Σ2 .Vf (apk,
𝑚, 𝜎), and returns (verified, sid,𝑚, 𝜙) to F 𝑅,𝑓adapt

AdaptSig.

• If type = pre−signature, thenS parses𝑌 := 𝑌 and 𝑣 :=

(pk
1−𝑏 , pk𝑏 ), computes apk := Σ2 .KAgg(pk1−𝑏 , pk𝑏 ),

sets𝜙 := Ξ𝑅,Σ
2

.PreVf (apk,𝑚,𝑌, 𝜎), and returns (verified,
sid,𝑚, 𝜙) to F 𝑅,𝑓adapt

AdaptSig.

(5) When A corrupts some party 𝑃 , then S corrupts 𝑃 in the

ideal world. If 𝑃 is the signer, then S reveals the signing

key sk (and the internal state of the signing algorithm, if

such a state exists) as 𝑃 ’s internal state.

Next, we assume that Ξ𝑅,Σ
2

is both complete and consistent, and

construct an attacker B that breaks the unforgeability. B runs a

simulated copy of E and simulates the interactions with S and

FAdaptSig. Analogous to S, B also runs a simulated copy of A.

However, in the first activation, instead of running Σ2 .KGen to

generate the key, B gives to A the verification key pk
1−𝑏 that it

has received as an input from its own challenger (where 𝑏 ∈ {0, 1}
defines which of the two parties is corrupted). Whenever B needs

to provide (pre-)signature on a message𝑚,B asks its oracles to (pre-

)sign𝑚 and obtains (pre-)signature 𝜎 . Moreover, B and A jointly

generate pre-signature �̂� on the challenge message𝑚∗ (provided by
A), whereB just relays the protocol messages of its own challenger

when computing the joint pre-signature on the same challenge

message𝑚∗. Finally, whenever the simulated E activates some party

with input (verify, sid,𝑚∗, 𝜎∗, 𝑣, 𝑌 , type), where type = signature,
B checks whether (𝑚∗, 𝜎∗) constitutes a valid forgery (i.e.,𝑚∗ is
the challenge message and it has never been signed before and

Σ2 .Vf (apk,𝑚∗, 𝜎∗) = 1, for apk := Σ2 .KAgg(pk1−𝑏 , pk𝑏 ), where
𝑣 := (pk

1−𝑏 , pk𝑏 ) and pk𝑏 is the verification key of A). If (𝑚∗, 𝜎∗)
is a valid forgery, then B outputs 𝜎∗ as its own forgery and halts.

Otherwise, it continues the simulation. If A asks to corrupt the

honest signer 𝑃
1−𝑏 , then B halts with a failure.

We analyze the success probability ofB. Letwin denote the event
that in a run of Ξ𝑅,Σ

2
with A and E with sid = (𝑃

1−𝑏 , 𝑃𝑏 , sid
′),

the signers generate the verification keys pk
1−𝑏 and pk𝑏 , such

that 𝑣 := (pk
1−𝑏 , pk𝑏 ), some party is activated with verification

request (verify, sid,𝑚∗, 𝜎∗, 𝑣, 𝑌 , type), where type = signature and
Σ2 .Vf (𝑣,𝑚∗, 𝜎∗) = 1, party 𝑃

1−𝑏 is uncorrupted and signers never

signed𝑚∗. Since Ξ𝑅,Σ
2

is complete and consistent, we have that as

long as the event win does not occur E’s view of an interaction

with A and Ξ𝑅,Σ
2

in the real world is statistically close to its view

of an interaction with S and F 𝑅,𝑓adapt

AdaptSig in the ideal world. However,

we are given that E distinguishes with non-negligible probability

between the ideal and real world, thus, we are guaranteed that when

E interacts withA and Ξ𝑅,Σ
2

, event win occurs with non-negligible

probability. Finally, observe that from the point of view ofA and E,
the interaction with the forger B looks the same as an interaction

in the real world with Ξ𝑅,Σ
2

. Hence, we are guaranteed that event

win occurs with non-negligible probability. Furthermore, event win
can only occur when 𝑃

1−𝑏 is not corrupted. This means whenever

eventwin occurs, B outputs a successful forgery, which contradicts

the unforgeability definition of Ξ𝑅,Σ
2

.

We can construct a similar adversary B′ against the witness

extractability property of Ξ𝑅,Σ
2

. B′ works exactly as B above, with

the caveat that the joint pre-signature �̂� is computed over both the

challenge message𝑚∗ and challenge statement 𝑌 ∗ provided by the

adversary A. Moreover, the winning condition is adjusted such

that𝑚∗ is the challenge message and it has never been signed be-

fore and Σ2 .Vf (apk,𝑚∗, 𝜎∗) = 1, for apk := Σ2 .KAgg(pk1−𝑏 , pk𝑏 ),
where 𝑣 := (pk

1−𝑏 , pk𝑏 ) and pk𝑏 is the verification key of A, and

(𝑌 ∗, 𝑦′) ∉ 𝑅, for 𝑦′ := Ξ𝑅,Σ
2

.Ext(𝑣, 𝜎∗, �̂�, 𝑌 ∗).
Lastly, we observe that pre-signature adaptability is captured

within the adaptation interface of the ideal functionality FAdaptSig,
which makes use of the global ideal functionality GCond and param-

eterized deterministic adaptation function 𝑓adapt. More precisely, a

valid pre-signature �̂� w.r.t. some condition 𝑌 := 𝑌 can be adapted

into a valid signature, i.e., 𝜎 := 𝑓adapt (�̂�, 𝑦), using the witness 𝑦 that

satisfies (𝑌,𝑦) ∈ 𝑅.
This concludes the proof of Theorem 2. □

E.3 Security Analysis of Private Adaptor
Signature

We recall and prove the lemma stated in Appendix C.1.

Lemma 1. A two-party adaptor signature scheme with aggregatable
public keys (from identification scheme) Ξ𝑅,Σ

2
is perfectly unlinkable.

Proof. We prove this lemma by considering the deterministic

adaptation function 𝑓adapt given in Appendix B for the generic trans-

formation from an identification scheme-based two-party signature

to an adaptor signature. 𝑓adapt : Dresp×Dw → Dresp, takes as input

a pre-signature value 𝑠 ∈ Dresp (which corresponds to the response

value of the identification scheme) and a witness𝑦 ∈ Dw of the hard

relation 𝑅, and outputs a new value 𝑠 ∈ Dresp. Then, the adaptation

function of Ξ𝑅,Σ
2

is defined as Adapt(apk, 𝑠, 𝑦) := 𝑓adapt (𝑠,𝑦). Since
a freshly computed signature from an identification scheme is some
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response value 𝑠′ ∈ Dresp, it is immediate that the adapted signa-

ture 𝑠 and the fresh signature 𝑠′ come from the same distribution

Dresp. □

E.4 Security Analysis of Lock-enabling Ledger
We prove the following theorem about the security of lock-enabling

ledger, which was previously stated in §7.

Theorem 3. The protocol ΠLedgerLocks UC-realizes GLedgerLocks, in
the (FAdaptSig,GLedger)-hybrid model.

Proof. The only non-trivial properties that GLedgerLocks en-

forces (in addition to what the base ledger functionality GLedger
provides) are that only the account holders can submit transac-

tions and transactions can be tied to conditions. Since both of these

properties are achieved through the usage of adaptor signature

functionality FAdaptSig, we have that the real world indeed imple-

ments the stronger validation predicate. More precisely, due to the

security of FAdaptSig, we are guaranteed existence of the simulator

SAdaptSig, which can handle our calls in ideal world execution to

perfectly simulate the protocol. Our simulator SLedgerLocks is given
below. We note that indistinguishability follows because the sim-

ulator SLedgerCond makes exactly the same calls to FAdaptSig that
an honest party makes in ΠLedgerLocks. Furthermore, in the case

of releasing transactions, we have that the simulator SLedgerCond
learns the witness as long as it is involved in the transaction, which

coincides with the real world protocol. This concludes the proof.

Simulator SLedgerLocks

Initialization: The simulator internally runs A in a black-box way and

simulates the interaction between A and (emulated) real-world hybrid

functionalities. The inputs from A to the base ledger GLedger are simply

relayed (and replies given back to A). The simulator maintains locally

a list of keys K𝑃 , list of pre-signed transactions P𝑃 and list of signed

transactions Q𝑃 , for an honest party 𝑃 . Moreover, the simulator manages

internally a simulated adaptor signature functionality FAdaptSig.

Messages from Lock-enabling Ledger:
• Upon receiving (account-req, sid, (𝑃 ′, 𝑃 ) ) from GLedgerLocks, set sid′

:= (sid, 𝑃, 𝑃 ′ ) , forward (keygen, sid′ ) to the simulated adaptor signature

functionality FAdaptSig in the name of 𝑃 . Upon receiving (verification-key,
sid′, vk) from FAdaptSig, output this to A and store (𝑃 ′, vk) in K𝑃 .

• Upon receiving (auth-req, sid, tx, 𝛼 ) from GLedgerLocks, parse 𝛼 as

(AccountId, {𝑃∗}) and {𝑃∗} as (𝑃, 𝑃 ′ ) , set sid′ := (sid, 𝑃, 𝑃 ′ ) , and for-

ward (sign, sid′, tx, vk,⊥, signature) to the simulated adaptor signature

functionality FAdaptSig in the name of𝑃 . Upon receiving (signature, sid′, 𝜎 )
from FAdaptSig, output this answer to A and store (tx, vk, 𝜎 ) in list Q𝑃 .
• Upon receiving (lock-req, sid, tx, 𝛼,𝑌 ) from the GLedgerLocks, parse

𝛼 as (AccountId, {𝑃∗}) and {𝑃∗} as (𝑃, 𝑃 ′ ) , set sid′ := (sid, 𝑃, 𝑃 ′ ) , for-
ward (sign, sid′, tx, vk, 𝑌 , pre-signature) to the simulated adaptor signa-

ture functionality FAdaptSig in the name of 𝑃 . Upon receiving (signature,
sid′, �̂� ) from FAdaptSig, output this answer to A and store (tx, vk, 𝑌 , �̂� )
in list P𝑃 .
• Upon receiving (release-tx, sid, 𝑦) from GLedgerLocks, store 𝑦.

□

F LEDGERLOCKS APPLICATION: ATOMIC
SWAPS PROTOCOL DESCRIPTION

In this section, we use the LedgerLocks framework to describe

the atomic swaps protocol. The protocol description is included

in Figures 21 and 22.

G LEDGERLOCKS APPLICATION: MULTI-HOP
PAYMENT PROTOCOL

In this section, we first use the LedgerLocks framework to describe

the payment channel protocol (as given in [1]). The protocol descrip-

tion is included in Figures 25 to 29. We then describe a multi-hop

payment over payment channels (as given in [31]). The protocol

description is included in Figures 30 to 33.

For modeling these protocols we will instantiate GLedgerLocks
to support simple UTXO style transactions and will instantiate

the CheckBase predicate accordingly. To this end, we first fix the
transaction format. Recall that GLedgerLocks transactions are of the
form (A, tx′) whereA denotes a set of account identifiers. In §8, we

already showed how to refine CheckBase to account for absolute
(transaction-level) timelocks by fixing the transaction format of tx′

to (tx′′, tl).
We will further refine the format of tx′′ to be of the form

(id, ®in, ®out) with id being a transaction identifier, ®in being a vec-

tor of inputs and ®out being a vector of outputs. Inputs in𝑖 ∈ ®in are

of the form (idout, 𝑗, rtl) where (idout, 𝑗) refers to the output that

the input is spending (with idout being the transaction id and 𝑗 the

offset in the transactions output vector), and rtl denotes a relative
timelock indicating the number of blocks that need to have been

included in the blockchain since the publication of the transaction

with the referenced out before the transaction can be published.

Outputs are out𝑖 ∈ ®out and they are of the form (aID, 𝑣) with aID
denoting the id of the account controlling the output and 𝑣 denoting

the output’s value.

TheCheckBase predicate was already refined in §8 to account for
the (absolute) timelock check. We will now refine the CheckBaseC

predicate to account for the additional UTXO checks.

Intuitively, the following checks need to be conducted:

(1) The transaction id is fresh

(2) The transaction inputs are unique

(3) The transactions should be required to be authorized by all

accounts that control consumed inputs

(4) The values of the outputs created by a transaction should

not exceed the values of the inputs consumed

(5) All consumed inputs should exist and respect the relative

input timelocks

(6) All consumed inputs should not yet have been consumed by

another transaction on the blockchain (no double-spending)

To simplify these checks, we define a helper function getOutput
that accesses information of a transaction input in the blockchain

state. Given an input in and the blockchain state, getOutput returns
a set containing tuples with additional information for that output,

namely the aID of the account controlling the spent output, the

value 𝑣 of the output and the height ℎ at which the transaction with

the output was added to the state.
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Protocol Π𝑅
AtomicSwap

Alice(𝑎𝐼𝐷𝐴, 𝑌O ) Bob(𝑎𝐼𝐷𝐵, 𝑌O )
Sample (𝑌, 𝑦) ← GenR(1𝜆 )
Set 𝑌 ∗ := (𝑌,𝑌O )

Invoke G𝑅,𝑓merge
Cond [𝑌O ] on input (create-ind-cond, sid, (𝑌, 𝑦) )

Invoke G𝑅,𝑓merge
Cond [𝑌O ] on input (create-merged-cond, sid, (𝑌,𝑌O ) )

Receive (create-merged-cond, sid, 𝑌 ∗ ) from G𝑅,𝑓merge
Cond [𝑌O ]

(𝑌,𝑌 ∗ )

If 𝑌 ∗ ≠ 𝑓merge (stmt, 𝑅, (𝑌,𝑌O ) then abort

Invoke G𝐴LedgerLocks on input (create-account, sid, 𝐵) Invoke G𝐵
LedgerLocks on input (create-account, sid, 𝐴)

Receive (acc-req, sid, (𝐴, 𝐵) ) from G𝐵
LedgerLocks Receive (acc-req, sid, (𝐵,𝐴) ) from G𝐴LedgerLocks

Send (acc-rep, sid, 𝑏 := 1) to G𝐵
LedgerLocks Send (acc-rep, sid, 𝑏 := 1) to G𝐴LedgerLocks

Receive (create-account, sid, 𝑎𝐼𝐷𝐴
𝐴𝐵 ) from G

𝐴
LedgerLocks Receive (create-account, sid, 𝑎𝐼𝐷𝐴

𝐴𝐵 ) from G
𝐴
LedgerLocks

Receive (create-account, sid, 𝑎𝐼𝐷𝐵
𝐴𝐵 ) from G

𝐵
LedgerLocks Receive (create-account, sid, 𝑎𝐼𝐷𝐵

𝐴𝐵 ) from G
𝐵
LedgerLocks

Set dtx𝐴 := (dtx𝐴 [𝑎𝐼𝐷𝐴 ], 0) Set dtx𝐵 := (dtx𝐵 [𝑎𝐼𝐷𝐵 ], 0)
Set ctx𝐵 := (ctx𝐵 [dtx𝐴 ], 0) Set ctx𝐴 := (ctx𝐴 [dtx𝐵 ], 0)
Set rtx𝐴 := (rtx𝐴 [dtx𝐴 ], ℎ𝐴 ) Set rtx𝐵 := (rtx𝐵 [dtx𝐵 ], ℎ𝐵 )

dtx𝐴, ctx𝐵, rtx𝐴

dtx𝐵, ctx𝐴, rtx𝐵

Invoke G𝐴LedgerLocks and G
𝐵
LedgerLocks with (read, sid) Invoke G𝐴LedgerLocks and G

𝐵
LedgerLocks with (read, sid)

Receive (read, sid, state𝐴 ) and (read, sid, state𝐵 ) Receive (read, sid, state𝐴 ) and (read, sid, state𝐵 )

If safe(ℎ𝐴, ℎ𝐵, state𝐴, state𝐵 ) ≠ 1 then abort If safe(ℎ𝐴, ℎ𝐵, state𝐴, state𝐵 ) ≠ 1 then abort

Invoke G𝐴LedgerLocks with (auth-tx, sid, rtx𝐴, 𝑎𝐼𝐷
𝐴
𝐴𝐵 ) Invoke G𝐵

LedgerLocks with (auth-tx, sid, rtx𝐵, 𝑎𝐼𝐷
𝐵
𝐴𝐵 )

Receive (auth-req, sid, rtx𝐵, 𝑎𝐼𝐷𝐵
𝐴𝐵 ) from G

𝐵
LedgerLocks Receive (auth-req, sid, rtx𝐴, 𝑎𝐼𝐷𝐴

𝐴𝐵 ) from G
𝐴
LedgerLocks

Send (auth-rep, sid, 𝑏𝐵𝑟 := 1, 𝑎𝐼𝐷𝐵
𝐴𝐵 ) to G

𝐵
LedgerLocks Send (auth-rep, sid, 𝑏𝐴𝑟 := 1, 𝑎𝐼𝐷𝐴

𝐴𝐵 ) to G
𝐴
LedgerLocks

Invoke G𝐴LedgerLocks with (lock-tx, sid, ctx𝐵, 𝑎𝐼𝐷
𝐴
𝐴𝐵, 𝑌

∗ ) Invoke G𝐵
LedgerLocks with (lock-tx, sid, ctx𝐴, 𝑎𝐼𝐷

𝐵
𝐴𝐵, 𝑌

∗ )

Receive (lock-req, sid, ctx𝐴, 𝑎𝐼𝐷𝐵
𝐴𝐵, 𝑌

∗ ) from G𝐵
LedgerLocks Receive (lock-req, sid, ctx𝐵, 𝑎𝐼𝐷𝐴

𝐴𝐵, 𝑌
∗ ) from G𝐴LedgerLocks

Send (lock-rep, sid, 𝑏𝐵𝑐 := 1, 𝑎𝐼𝐷𝐵
𝐴𝐵 ) to G

𝐵
LedgerLocks Send (lock-rep, sid, 𝑏𝐴𝑐 := 1, 𝑎𝐼𝐷𝐴

𝐴𝐵 ) to G
𝐴
LedgerLocks

Invoke G𝐴LedgerLocks with (auth-tx, sid, dtx𝐴, 𝑎𝐼𝐷𝐴 ) while ¬inState(dtx𝐴, state𝐴 ) ∧ |state𝐵 | < ℎ𝐵 − 2 · #𝐵
𝑠𝑎𝑓 𝑒

Invoke G𝐴LedgerLocks with (submit, sid, dtx𝐴 ) Invoke G𝐴LedgerLocks and G
𝐵
LedgerLocks with (read, sid)

Receive (read, sid, state𝐴 ) and (read, sid, state𝐵 )

while ¬inState(dtx𝐵, state𝐵 ) ∧ |state𝐵 | < ℎ𝐵 − #
𝐵
𝑠𝑎𝑓 𝑒

Invoke G𝐵
LedgerLocks with (auth-tx, sid, dtx𝐵, 𝑎𝐼𝐷𝐵 )

Invoke G𝐴LedgerLocks and G
𝐵
LedgerLocks with (read, sid) Invoke G𝐵

LedgerLocks with (submit, sid, dtx𝐵 )

Receive (read, sid, state𝐴 ) and (read, sid, state𝐵 )

Figure 21: Setup protocol of atomic swap in (G𝑅,𝑓merge
Cond ,GLedgerLocks := (G𝐴LedgerLocks,G

𝐵
LedgerLocks))-hybrid world.

Note that getOutput should return either ∅ indicating that state
does not contain a transaction with the referred output or a single-

ton set containing the information for the unique output in state.
getOutput((idout, 𝑗, rtl), state) :=

{(idout, 𝑗, aID, 𝑣, ℎ) | ∃ 𝑏 statepre statepost ®in ®out A tl.

state = statepre∥𝑏∥statepost
∧ ℎ = |statepre |

∧ (A, ((idout, ®in, ®out), tl) ∈ 𝑏
∧ out𝑗 = (aID, 𝑣)}
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Protocol Π𝑅
AtomicSwap

Alice(𝑎𝐼𝐷𝐴, 𝑌
∗, 𝑦, 𝑦O ) Bob(𝑎𝐼𝐷𝐵, 𝑌

∗ )
𝑦∗ ← 𝑓merge (wit, 𝑅, (𝑦, 𝑦O ) )

Invoke G𝐵
LedgerLocks with (release-tx, sid, ctx𝐴, 𝑎𝐼𝐷

𝐵
𝐴𝐵, 𝑌

∗, 𝑦∗ )

Receive (release-tx, sid, 𝑎𝐼𝐷𝐵
𝐴𝐵, 𝑏 ) from G

𝐴
LedgerLocks

If 𝑏 ≠ 1 then abort while ¬inState(ctx𝐴, state𝐵 ) ∧ |state𝐵 | < ℎ𝐵

Invoke G𝐵
LedgerLocks with (read, sid)

Receive (read, sid, state) from G𝐵
LedgerLocks

Invoke G𝐵
LedgerLocks with (signal-tx, sid, 𝑎𝐼𝐷

𝐵
𝐴𝐵, ctx𝐴, 𝑌

∗ )

Receive (signal-tx, sid, 𝑦∗ ) from G𝐵
LedgerLocks

Invoke G𝐴LedgerLocks with (release-tx, sid, ctx𝐵, 𝑎𝐼𝐷
𝐴
𝐴𝐵, 𝑌

∗, 𝑦∗ )

Receive (release, sid, 𝑎𝐼𝐷𝐴
𝐴𝐵, 𝑏 := 1) from G𝐴LedgerLocks

Figure 22: Atomic swap in (G𝑅,𝑓merge
Cond ,GLedgerLocks := (G𝐴LedgerLocks,G

𝐵
LedgerLocks))-hybrid world.

With the help of getOutput, we now define the CheckBaseC

in Figure 23. The individual conditions of the functions correspond

to the checks discussed before.

Timelocks. As already discussed in §2, one of the most delicate

points for protocol security are the concrete timelocks of the refund

transactions and the corresponding reaction times of the partici-

pants in the protocol. More precisely, the timelocks need to ensure

that a user 𝑢𝑖 can always claim the funds from user 𝑢𝑖−1 that the
next user 𝑢𝑖+1 takes from them. To explain how the timelocks need

to be set to ensure this, we consider the following worst-case sce-

nario: Consider that user 𝑢𝑖+1 is not responding to user 𝑢𝑖 so that

𝑢𝑖 at time 𝑡 [𝑖] (the timelock of its refund transaction rtx𝑖 for the
money locked on the channel with 𝑢𝑖+1), 𝑢𝑖 wants to submit rtx𝑖 .
Then 𝑢𝑖 needs to consider that rtx

𝑖
can only be published once the

channel with 𝑢𝑖+1 has been closed, meaning that both the commit

transaction tx𝑖𝑐 and the split transaction tx𝑖𝑠 of this channel must

have been published. Since publishing tx𝑖𝑐 takes up to #safe (from

the perspective of 𝑢𝑖 ) and after that (due to its relative timelock)

tx𝑖𝑠 can only be submitted after additional #safe blocks and may

take #safe again till being published, 𝑢𝑖 needs to start closing the

channel at least at block height 𝑡 [𝑖] − 3 · #safe to be sure that tx𝑖𝑠
will be published at 𝑡 [𝑖] so that 𝑢𝑖 can submit rtx𝑖 .

Now, at this point, 𝑢𝑖 cannot be sure that rtx
𝑖
will also be pub-

lished on the blockchain since rtx𝑖 can still be outrun by ctx𝑖

(published by 𝑢𝑖+1). However, 𝑢𝑖 is guaranteed that by 𝑡 [𝑖] + #safe
either rtx𝑖 or ctx𝑖 will be included in the ledger.

If indeed ctx𝑖 was published, 𝑢𝑖 still needs to have sufficient

time to claim the payment from 𝑢𝑖−1. In the optimistic case, this

can be settled by an offchain channel update. However, if 𝑢𝑖−1 does
not collaborate, 𝑢𝑖 also needs to close the channel with 𝑢𝑖−1 (taking
up to 3 · #safe blocks) and afterwards publish ctx𝑖−1 for claiming

the money locked with 𝑢𝑖−1 on this channel (taking other #safe
blocks). Consequently, it may take until 5 · #safe blocks until 𝑢𝑖
claims their funds in this way. To ensure that ctx𝑖−1 is guaranteed
to be published, the timelock 𝑡 [𝑖−1] of rtx𝑖−1 needs to prevent that

𝑢𝑖−1 could publish rtx𝑖−1 before (and in this way outrun ctx𝑖−1).
For this reason, the users check during the setup protocol (Figure 30)

that 𝑡 [𝑖 − 1] > 𝑡 [𝑖] + 5 · #safe. Further, they ensure that during the

payment protocol (Figure 33), they publish the claim transaction

ctx𝑖−1 at least 4 · #safe before the timelock 𝑡 [𝑖 − 1] (so that it will
be included before rtx𝑖 is enabled).

Note that it is also crucial for security that an honest user 𝑢𝑖
starts closing the channel with𝑢𝑖+1 (if that user does not collaborate)
latest at 𝑡 [𝑖] − 3 · #safe to make sure that at latest at 𝑡 [𝑖] + #safe 𝑢𝑖
knows whether they need to initiate the forceful claiming. If this

would be learned only later, the difference between the timelocks

may not be sufficient to ensure a secure execution.
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CheckBaseC ((A, (id, ®in, ®out)), state) :=(
¬∃tx A′ id′ ®in′ ®out′tl′ . tx = (A′, ((id′, ®in′, ®out′), tl′)) ∧ inState(tx, state) ∧ id = id′

)
(1)

∧
(
∀(idout, 𝑗, rtl) (id′out, 𝑗 ′, rtl′) ∈ ®in. (idout, 𝑗) ≠ (id′out, 𝑗 ′)

)
(2)

∧ ©«A =

aID | (id, 𝑗, aID, 𝑣, ℎ) ∈
⋃
in∈ ®in

getOutput(in, state)
ª®¬ (3)

∧ ©«
∑︁

(aID,𝑣) ∈ ®𝑜𝑢𝑡
𝑣 ≤

∑︁
(id′, 𝑗 ′,aID′,𝑣′,ℎ′ ) ∈⋃in∈ ®in getOutput(in,state)

𝑣 ′ª®¬ (4)

∧
(
∀(idout, 𝑗, rtl) ∈ ®in. ∃ aID′ 𝑣 ′ ℎ′ . getOutput((idout, 𝑗, rtl), state) = {(idout, 𝑗, aID′, 𝑣 ′, ℎ′)}

∧ |state| − ℎ ≥ rtl
)

(5)

∧
(
∀(idout, 𝑗, rtl) ∈ ®in.¬∃tx A′ id′ ®in′ ®out′tl′ . tx = (A′, ((id′, ®in′, ®out′), tl′)) ∧ inState(tx, state)

∧ ∃(id′out, 𝑗 ′, rtl′) ∈ ®in′ . (id′out, 𝑗 ′) = (idout, 𝑗)
)

(6)

Figure 23: Definition of the CheckBaseC predicate.

GenFund(tx𝐴, aID𝐴, tx𝐵, aID𝐵, aID𝐴𝐵 )

parse tx𝐴 as (A𝐴, ( (id𝐴, ®in𝐴, [ (aID𝐴, 𝑣𝐴 ) ], tl𝐴 ) )

parse tx𝐵 as (A𝐵, ( (id𝐵, ®in𝐵, [ (aID𝐵, 𝑣𝐵 ) ], tl𝐵 ) )
id∗ ← 𝐻 (id𝐴 ∥id𝐵 )
return ( ({aID𝐴, aID𝐵 }, ( (id∗, [ (id𝐴, 0, 0), (id𝐵, 0, 0) ], [ (aID𝐴𝐵, 𝑣𝐴 + 𝑣𝐵 ) ] ), 0) ), (𝑣𝐴, 𝑣𝐵 ) )

GenCommit(tx𝑓 , aID𝐴𝐵 )

parse tx𝑓 as (A, ( (id, ®in, [ (aID𝐴𝐵, 𝑣) ], tl′ ) )
id∗ ← 𝐻 (id)
return ({aID𝐴𝐵 }, ( (id∗, [ (id, 0, 0) ], [ (aID𝐴𝐵, 𝑣) ] ), 0) )

GenSplit(tx𝑐 , ®𝑑)

parse tx𝑐 as (A, ( (id, ®in, [ (aID𝐴𝐵, 𝑣) ], tl′ ) )
id∗ ← 𝐻 (id)

return ({aID𝐴𝐵 }, ( (id∗, [ (id, 0, #safe ) ], ®𝑑 ), 0) )

GenPunish(tx𝑐 , aID𝐴)

parse tx𝑐 as (A, ( (id, ®in, [ (aID𝐴𝐵, 𝑣) ], tl′ ) )
id∗ ← 𝐻 (id)
return ({aID𝐴𝐵 }, ( (id∗, [ (id, 0, 0) ], [ (aID𝐴, 𝑣) ] ), 0) )

GenPay(tx𝑠 , aID𝐴𝐵, aID, tl)

parse tx𝑠 as (A, ( (id, ®in, [ (aID𝐴𝐵, 𝑣), out𝐴, out𝐵 ], tl′ ) )
id∗ ← 𝐻 (id)
return ({aID𝐴𝐵 }, ( (id∗, [ (id, 0, 0) ], [ (aID, 𝑣) ] ), tl) )

ComputeBalance(tx𝑓 , tx𝑠 )

parse tx𝑓 as (A𝑓 , ( (id𝑓 , ®in𝑓 , ®out𝑓 , tl𝑓 ) )

parse tx𝑠 as (A𝑠 , ( (id𝑠 , ®in𝑠 , ®out𝑠 ), tl𝑠 ) )
id∗ ← 𝐻 (id𝑓 )
return ({aID𝐴𝐵 }, ( (id∗, [ (id𝑓 , 0, 0) ], ®out𝑠 ), 0) )

Figure 24: Definition of transaction constructors used in the channel and multi-hop payment protocol.
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Protocol ΠChannel

Create Channel

Alice(tx𝐴, 𝑎𝐼𝐷𝐴 ) Bob(tx𝐵, 𝑎𝐼𝐷𝐵 )
Sample (𝑌𝐴

𝑃 , 𝑦𝐴𝑃 ) ← GenR(1𝜆 ) Sample (𝑌𝐵
𝑃 , 𝑦𝐵𝑃 ) ← GenR(1𝜆 )

Sample (𝑌𝐴
𝑅 , 𝑦𝐴𝑅 ) ← GenR(1𝜆 ) Sample (𝑌𝐵

𝑅 , 𝑦𝐵𝑅 ) ← GenR(1𝜆 )

(𝑌𝐴
𝑃 , 𝑌𝐴

𝑅 )

(𝑌𝐵
𝑃 , 𝑌𝐵

𝑅 )

Invoke GLedgerLocks on input (create-account, sid, 𝐵)
Receive (acc-req, sid, (𝐵,𝐴) ) from GLedgerLocks
Send (acc-rep, sid, 𝑏 := 1) to GLedgerLocks

Receive (create-account, sid, 𝑎𝐼𝐷𝐴𝐵 ) from GLedgerLocks Receive (create-account, sid, 𝑎𝐼𝐷𝐴𝐵 ) from GLedgerLocks
Set (tx𝑓 , (𝑣𝐴, 𝑣𝐵 ) ) := GenFund(tx𝐴, 𝑎𝐼𝐷𝐴, tx𝐵, 𝑎𝐼𝐷𝐵, 𝑎𝐼𝐷𝐴𝐵 ) Set (tx𝑓 , (𝑣𝐴, 𝑣𝐵 ) ) := GenFund(tx𝐴, 𝑎𝐼𝐷𝐴, tx𝐵, 𝑎𝐼𝐷𝐵, 𝑎𝐼𝐷𝐴𝐵 )
Set tx𝑐 := GenCommit(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 ) Set tx𝑐 := GenCommit(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 )
Set tx𝑠 := GenSplit(tx𝑐 , [ (𝑎𝐼𝐷𝐴, 𝑣𝐴 ), (𝑎𝐼𝐷𝐵, 𝑣𝐵 ) ] ) Set tx𝑠 := GenSplit(tx𝑐 , [ (𝑎𝐼𝐷𝐴, 𝑣𝐴 ), (𝑎𝐼𝐷𝐵, 𝑣𝐵 ) ] )

Set tx𝐴𝑝 := GenPunish(tx𝑐 , 𝑎𝐼𝐷𝐴 ) Set tx𝐵𝑝 := GenPunish(tx𝑐 , 𝑎𝐼𝐷𝐵 )

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐴

𝑃 , 𝑦𝐴𝑃 ) ) Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐵

𝑃 , 𝑦𝐵𝑃 ) )

Receive (created-ind-cond, sid, 𝑌𝐴
𝑃 ) from G

𝑅,𝑓merge
Cond Receive (created-ind-cond, sid, 𝑌𝐵

𝑃 ) from G
𝑅,𝑓merge
Cond

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐴

𝑅 , 𝑦𝐴𝑅 ) ) Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐵

𝑅 , 𝑦𝐵𝑅 ) )

Receive (created-ind-cond, sid, 𝑌𝐴
𝑅 ) from G

𝑅,𝑓merge
Cond Receive (created-ind-cond, sid, 𝑌𝐵

𝑅 ) from G
𝑅,𝑓merge
Cond

Invoke G𝑅,𝑓merge
Cond on input (create-merged-cond, sid, (𝑌𝐵

𝑃 , 𝑌𝐵
𝑅 ) ) Invoke G𝑅,𝑓merge

Cond on input (create-merged-cond, sid, (𝑌𝐴
𝑃 , 𝑌𝐴

𝑅 ) )

Receive (create-merged-cond, sid, 𝑌𝐵∗ ) from G𝑅,𝑓merge
Cond Receive (create-merged-cond, sid, 𝑌𝐴∗ ) from G𝑅,𝑓merge

Cond

Invoke GLedgerLocks with (lock-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐴
𝑃 ) Invoke GLedgerLocks with (lock-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌

𝐵
𝑃 )

Receive (lock-req, sid, tx𝑐 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks Receive (lock-req, sid, tx𝑐 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (lock-rep, sid, 𝑏𝐴𝑐 := 1) to GLedgerLocks Send (lock-rep, sid, 𝑏𝐵𝑐 := 1) to GLedgerLocks
Receive (lock-tx, sid, 𝑏𝐴𝐵

𝑐 ) from GLedgerLocks Receive (lock-tx, sid, 𝑏𝐴𝐵
𝑐 ) from GLedgerLocks

Invoke GLedgerLocks with (auth-tx, sid, tx𝑠 , 𝑎𝐼𝐷𝐴𝐵 )
Receive (auth-req, sid, tx𝑠 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (auth-rep, sid, 𝑏𝐵𝑠 := 1, 𝑎𝐼𝐷𝐴𝐵 ) to GLedgerLocks

Receive (auth-tx, sid, 𝑏𝐵𝑠 ) from GLedgerLocks
Invoke GLedgerLocks with (lock-tx, sid, tx𝐴𝑝 , 𝑎𝐼𝐷𝐴𝐵, 𝑌

𝐵∗ ) Invoke GLedgerLocks with (lock-tx, sid, tx𝐵𝑝 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐴∗ )

Receive (lock-req, sid, tx𝐵𝑝 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks Receive (lock-req, sid, tx𝐴𝑝 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (lock-rep, sid, 𝑏𝐴𝑝 := 1) to GLedgerLocks Send (lock-rep, sid, 𝑏𝐵𝑝 ) to GLedgerLocks
Receive (lock-tx, sid, 𝑏𝐵𝑝 ) from GLedgerLocks Receive (lock-tx, sid, 𝑏𝐴𝑝 ) to GLedgerLocks
If 𝑏𝐵𝑠 ∧ 𝑏𝐴𝐵

𝑐 ∧ 𝑏𝐵𝑝 ≠ 1 then abort If 𝑏𝐴𝐵
𝑐 ∧ 𝑏𝐴𝑝 ≠ 1 then abort

Invoke GLedgerLocks with (auth-tx, sid, tx𝑓 , 𝑎𝐼𝐷𝐴 ) Invoke GLedgerLocks with (auth-tx, sid, tx𝑓 , 𝑎𝐼𝐷𝐵 )
Invoke GLedgerLockswith (read, sid) Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks Receive (read, sid, state) from GLedgerLocks
Set ℎ𝑓 := |state | Set ℎ𝑓 := |state |
Invoke GLedgerLocks with (submit, sid, tx𝑓 ) Invoke GLedgerLocks with (submit, sid, tx𝑓 )
while |state | < ℎ𝑓 + #safe : while |state | < ℎ𝑓 + #safe :

Invoke GLedgerLockswith (read, sid) Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks Receive (read, sid, state) from GLedgerLocks

if inState(tx𝑓 , state) : if inState(tx𝑓 , state) :

chState[0] := (tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴
𝑃 , 𝑦𝐴𝑃 , 𝑌

𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 ) chState[0] := (tx𝑐 , tx𝑠 , tx𝐵𝑝 , 𝑌𝐵

𝑃 , 𝑦𝐵𝑃 , 𝑌
𝐴
𝑃 , 𝑌𝐵

𝑅 , 𝑦𝐵𝑅 , 𝑌
𝐴
𝑅 )

else else

Invoke GLedgerLocks with (submit, sid, tx𝐴𝑟 ) Invoke GLedgerLocks with (submit, sid, tx𝐵𝑟 )
while |state | < ℎ𝑓 + 2 · #safe : while |state | < ℎ𝑓 + 2 · #safe :

Invoke GLedgerLockswith (read, sid) Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks Receive (read, sid, state) from GLedgerLocks

if inState(tx𝑓 , state) : if inState(tx𝑓 , state) :
Set bal := [ (𝑎𝐼𝐷𝐴, 𝑣𝐴 ), (𝑎𝐼𝐷𝐵, 𝑣𝐵 ) ] Set bal := [ (𝑎𝐼𝐷𝐴, 𝑣𝐴 ), (𝑎𝐼𝐷𝐵, 𝑣𝐵 ) ]

chState[0] := (tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴
𝑃 , 𝑦𝐴𝑃 , 𝑌

𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 , bal) chState[0] := (tx𝑐 , tx𝑠 , tx𝐵𝑝 , 𝑌𝐵

𝑃 , 𝑦𝐵𝑃 , 𝑌
𝐴
𝑃 , 𝑌𝐵

𝑅 , 𝑦𝐵𝑅 , 𝑌
𝐴
𝑅 , bal)

Figure 25: Create channel protocol in (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world. Here,GenFund,GenCommit,GenSplit, andGenPunish

denote the constructors for tx𝑓 , tx𝑐 , tx𝑠 , and tx𝑠 , respectively as described in Figure 24.28
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Protocol ΠChannel

Update Channel

Alice(tx𝑓 , 𝑎𝐼𝐷𝐴, split-info) Bob(tx𝑓 , 𝑎𝐼𝐷𝐵, split-info)
Sample (𝑌𝐴

𝑃 , 𝑦𝐴𝑃 ) ← GenR(1𝜆 ) Sample (𝑌𝐵
𝑃 , 𝑦𝐵𝑃 ) ← GenR(1𝜆 )

Sample (𝑌𝐴
𝑅 , 𝑦𝐴𝑅 ) ← GenR(1𝜆 ) Sample (𝑌𝐵

𝑅 , 𝑦𝐵𝑅 ) ← GenR(1𝜆 )

(𝑌𝐴
𝑃 , 𝑌𝐴

𝑅 )

(𝑌𝐵
𝑃 , 𝑌𝐵

𝑅 )

Invoke GLedgerLocks on input (create-account, sid, 𝐵)
Receive (acc-req, (𝐵,𝐴) ) from GLedgerLocks
Send (acc-rep, 𝑏 := 1) to GLedgerLocks

Receive (create-account, sid, 𝑎𝐼𝐷𝐴𝐵 ) from GLedgerLocks Receive (create-account, sid, 𝑎𝐼𝐷𝐴𝐵 ) from GLedgerLocks
Set tx𝑐 := GenCommit(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 ) Set tx𝑐 := GenCommit(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 )
Set tx𝑠 := GenSplit(tx𝑐 , split-info) Set tx𝑠 := GenSplit(tx𝑐 , split-info)

Set tx𝐴𝑝 := GenPunish(tx𝑐 , 𝑎𝐼𝐷𝐴 ) Set tx𝐵𝑝 := GenPunish(tx𝑐 , 𝑎𝐼𝐷𝐵 )

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐴

𝑃 , 𝑦𝐴𝑃 ) ) Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐵

𝑃 , 𝑦𝐵𝑃 ) )

Receive (created-ind-cond, sid, 𝑌𝐴
𝑃 ) from G

𝑅,𝑓merge
Cond Receive (created-ind-cond, sid, 𝑌𝐵

𝑃 ) from G
𝑅,𝑓merge
Cond

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐴

𝑅 , 𝑦𝐴𝑅 ) ) Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌𝐵

𝑅 , 𝑦𝐵𝑅 ) )

Receive (created-ind-cond, sid, 𝑌𝐴
𝑅 ) from G

𝑅,𝑓merge
Cond Receive (created-ind-cond, sid, 𝑌𝐵

𝑅 ) from G
𝑅,𝑓merge
Cond

Invoke G𝑅,𝑓merge
Cond on input (create-merged-cond, sid, (𝑌𝐵

𝑃 , 𝑌𝐵
𝑅 ) ) Invoke G𝑅,𝑓merge

Cond on input (create-merged-cond, sid, (𝑌𝐴
𝑃 , 𝑌𝐴

𝑅 ) )

Receive (create-merged-cond, sid, 𝑌𝐵∗ ) from G𝑅,𝑓merge
Cond Receive (create-merged-cond, sid, 𝑌𝐴∗ ) from G𝑅,𝑓merge

Cond

Invoke GLedgerLocks with (lock-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐴
𝑃 ) Invoke GLedgerLocks with (lock-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌

𝐵
𝑃 )

Receive (lock-req, sid, tx𝑐 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks Receive (lock-req, sid, tx𝑐 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (lock-rep, sid, 𝑏𝐴𝑐 := 1) to GLedgerLocks Send (lock-rep, sid, 𝑏𝐵𝑐 := 1) to GLedgerLocks
Receive (lock-tx, sid, 𝑏𝐴𝐵

𝑐 ) from GLedgerLocks Receive (lock-tx, sid, 𝑏𝐴𝐵
𝑐 ) from GLedgerLocks

Invoke GLedgerLocks with (auth-tx, sid, tx𝑠 , 𝑎𝐼𝐷𝐴𝐵 )
Receive (auth-req, sid, tx𝑠 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (auth-rep, sid, 𝑏𝐵𝑠 := 1) to GLedgerLocks

Receive (auth-tx, sid, 𝑏𝐵𝑠 ) from GLedgerLocks
Invoke GLedgerLocks with (lock-tx, sid, tx𝐴𝑝 , 𝑎𝐼𝐷𝐴𝐵, 𝑌

𝐵∗ ) Invoke GLedgerLocks with (lock-tx, sid, tx𝐵𝑝 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐴∗ )

Receive (lock-req, sid, tx𝐵𝑝 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks Receive (lock-req, sid, tx𝐴𝑝 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (lock-rep, sid, 𝑏𝐴𝑝 := 1) to GLedgerLocks Send (lock-rep, sid, 𝑏𝐵𝑝 := 1) to GLedgerLocks
Receive (lock-tx, sid, 𝑏𝐵𝑝 ) from GLedgerLocks Receive (lock-tx, sid, 𝑏𝐴𝑝 ) to GLedgerLocks
If 𝑏𝐵𝑠 ∧ 𝑏𝐴𝐵

𝑐 ∧ 𝑏𝐵𝑝 ≠ 1 then abort If 𝑏𝐴𝐵
𝑐 ∧ 𝑏𝐴𝑝 ≠ 1 then abort

Read (𝑌𝐴
𝑅
, 𝑦𝐴𝑟 ) from chState[ |chState | − 1] Read (𝑌𝐵

𝑅
, 𝑦𝐵𝑟 ) from chState[ |chState | − 1]

(𝑌𝐴
𝑅
, 𝑦𝐴𝑟 )

(𝑌𝐵
𝑅
, 𝑦𝐵𝑟 )

Invoke G𝑅,𝑓merge
Cond on input (open-cond, sid, (𝑌𝐵

𝑅
, 𝑦𝐵

𝑅
) ) Invoke G𝑅,𝑓merge

Cond on input (open-cond, sid, (𝑌𝐴
𝑅
, 𝑦𝐴

𝑅
) )

Receive (opened-cond, sid, 𝑏𝐴
0
) from G𝑅,𝑓merge

Cond Receive (opened-cond, sid, 𝑏𝐵
0
) from G𝑅,𝑓merge

Cond

𝑏𝐴
1
:= 𝑌𝐵

𝑅
∈ chState[ |chState | − 1] 𝑏𝐵

1
:= 𝑌𝐴

𝑅
∈ chState[ |chState | − 1]

if 𝑏𝐴
0
∧ 𝑏𝐴

1
≠ 1 If 𝑏𝐵

0
∧ 𝑏𝐵

1
≠ 1

Go to ForceClose( |chState | − 2) Go to ForceClose( |chState | − 2)
else else

chState[ |chState | ] := (tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴
𝑃 , 𝑦𝐴𝑃 , 𝑌

𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 , split-info) chState[ |chState | ] := (tx𝑐 , tx𝑠 , tx𝐵𝑝 , 𝑌𝐵

𝑃 , 𝑦𝐵𝑃 , 𝑌
𝐴
𝑃 , 𝑌𝐵

𝑅 , 𝑦𝐵𝑅 , 𝑌
𝐴
𝑅 , split-info)

Figure 26: Update channel protocol in (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world. Here, GenCommit, GenSplit and GenPunish denote

the constructors for tx𝑐 , tx𝑠 and tx𝑝 , respectively as described in Figure 24.
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Protocol ΠChannel

Close Channel

Alice(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 ) Bob(tx𝑓 , 𝑎𝐼𝐷𝐴𝐵 )
(tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴

𝑃 , 𝑦𝐴𝑃 , 𝑌
𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 ) ← chState[ |chState | − 1] (tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴

𝑃 , 𝑦𝐴𝑃 , 𝑌
𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 ) ← chState[ |chState | − 1]

Set tx𝑡 := ComputeBalance(txf, txs ) Set tx𝑡 := ComputeBalance(txf, txs )
Invoke GLedgerLocks with (auth-tx, sid, tx𝑡 , 𝑎𝐼𝐷𝐴𝐵 )

Receive (auth-req, sid, tx𝑡 , (𝑎𝐼𝐷𝐴𝐵, (𝐴, 𝐵) ) ) from GLedgerLocks
Send (auth-rep, sid, 𝑏𝐵𝑡 := 1) to GLedgerLocks

Receive (auth-tx, sid, 𝑏𝑡 ) from GLedgerLocks
Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks
Set ℎ𝑡 := |state |
Invoke GLedgerLocks with (submit, sid, tx𝑡 )
while |state | < ℎ𝑡 + #safe :

Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks

if ¬inState(tx𝑡 , state) :
Go to ForceClose( |chState | − 1)

Figure 27: Close channel protocol in (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world. Here, ComputeBalance denotes the constructor for

tx𝑡 as described in Figure 24.

Protocol ΠChannel

ForceClose Channel

Alice(𝑎𝐼𝐷𝐴𝐵, 𝑖 )
(tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴

𝑃 , 𝑦𝐴𝑃 , 𝑌
𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 , 𝑦𝐵𝑅 ) ← chState[𝑖 ]

Invoke GLedgerLocks with (release-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐴
𝑃 , 𝑦𝐴𝑃 )

Receive (release-tx, sid, 𝑏 ) from GLedgerLocks
Invoke GLedgerLocks with (read, sid)
Receive (read, sid, state) from GLedgerLocks
Set ℎ𝑐 := |state |
while |state | < ℎ𝑐 + 2 · #safe :
Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks

Invoke GLedgerLocks with (submit, sid, tx𝑠 )

Punish Channel

Alice(𝑎𝐼𝐷𝐴𝐵, 𝑖 )
(tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴

𝑃 , 𝑦𝐴𝑃 , 𝑌
𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 , 𝑦𝐵𝑅 ) ← chState[𝑖 ]

Invoke GLedgerLocks with (signal-tx, sid, tx𝑐 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐵
𝑃 )

Receive (signal-tx, sid, 𝑦𝐵𝑃 ) from GLedgerLocks
𝑦𝐵∗ := 𝑓merge (wit, 𝑅, 𝑦𝐵𝑃 , 𝑦

𝐵
𝑅 )

Invoke GLedgerLocks with (release-tx, sid, tx𝐴𝑝 , 𝑎𝐼𝐷𝐴𝐵, 𝑌
𝐵∗, 𝑦𝐵∗ )

Receive (release-tx, sid, 𝑦𝐵𝑃 ) from GLedgerLocks

Figure 28: ForceClose and Punish algorithms in (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world.
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Protocol ΠChannel

Monitor Channel

Alice(𝑎𝐼𝐷𝐴𝐵, chState)
while 1 :

Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks
for 𝑖 ∈ [0, |chState | − 2] :

(tx𝑐 , tx𝑠 , tx𝐴𝑝 , 𝑌𝐴
𝑃 , 𝑦𝐴𝑃 , 𝑌

𝐵
𝑃 , 𝑌𝐴

𝑅 , 𝑦𝐴𝑅 , 𝑌
𝐵
𝑅 , 𝑦𝐵𝑅 ) ← chState[𝑖 ]

if inState(tx𝑐 , state) :
Go to PunishChannel(𝑎𝐼𝐷𝐴𝐵, 𝑖 )

Figure 29: Monitor channel algorithm in (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world.

Protocol ΠMultiHop

Setup

𝑃0 (𝑡∗, 𝑛)
Set 𝑡𝑛 := 𝑡∗

for 𝑖 ∈ [𝑛, 1] :
Set 𝑡𝑖−1 := 𝑡𝑖 + 5 · #safe + 1

Set ®𝑡 := [𝑡0, 𝑡𝑛−1 ]

Sample (𝑌 0, 𝑦0 ) ← GenR(1𝜆 )

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌 0, 𝑦0 ) )

Receive (created-ind-cond, sid, 𝑌 0 ) from G𝑅,𝑓merge
Cond

∀𝑖 ∈ [1, 𝑛 − 1] :

Sample (𝑌aux, 𝑦aux ) ← GenR(1𝜆 )

Invoke G𝑅,𝑓merge
Cond on input (create-ind-cond, sid, (𝑌aux, 𝑦aux ) )

Receive (created-ind-cond, sid, 𝑌 ∗ ) from G𝑅,𝑓merge
Cond

Invoke G𝑅,𝑓merge
Cond on input (create-merged-cond, sid, (𝑌 𝑖−1, 𝑌aux ) )

Receive (created-merged-cond, sid, 𝑌 𝑖 ) from G𝑅,𝑓merge
Cond

return ®𝑌, ®𝑦, ®𝑌aux, ®𝑦aux, ®𝑡
Setup Setup

𝑃𝑖 (𝑌aux, 𝑦aux, 𝑌 𝑖−1, 𝑌 𝑖 , 𝑡𝑖 , 𝑡𝑖−1 ) 𝑃𝑛 (𝑌, 𝑦)
Invoke G𝑅,𝑓merge

Cond on input (open-cond, sid, (𝑌aux, 𝑦aux ) ) Invoke G
𝑅,𝑓merge
Cond on input (open-cond, sid, (𝑌, 𝑦) )

Receive (opened-cond, sid, 𝑏0 ) from G
𝑅,𝑓merge
Cond Receive (opened-cond, sid, 𝑏0 ) from G

𝑅,𝑓merge
Cond

𝑏1 := (𝑌 𝑖 ?

= 𝑓merge (stmt, 𝑅, (𝑌 𝑖−1, 𝑌 ∗ ) ) ) if 𝑏0 ≠ 1 then abort

𝑏2 := 𝑡𝑖−1 > 𝑡𝑖 + 5 · #safe else ok

if 𝑏0 ∧ 𝑏1 ∧ 𝑏2 ≠ 1 then abort

else ok

Figure 30: Setup algorithms in the (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world.
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Protocol ΠMultiHop

Lock i-th channel

𝑃𝑖 (tx𝑓 , 𝑎𝐼𝐷𝑖 , 𝑎𝐼𝐷𝑖+1, 𝑌
𝑖 , 𝑡𝑖 , 𝑣𝑖 , 𝑣𝑖+1, 𝑣lock ) 𝑃𝑖+1 (tx𝑓 , 𝑎𝐼𝐷𝑖 , 𝑎𝐼𝐷𝑖+1, 𝑌

𝑖 , 𝑡𝑖 , 𝑣𝑖 , 𝑣𝑖+1, 𝑣lock )
Invoke GLedgerLocks on input (create-account, sid, 𝑃𝑖+1 )

Receive (acc-req, (𝑃𝑖+1, 𝑃𝑖 ) ) from GLedgerLocks
Send (acc-rep, 𝑏 := 1) to GLedgerLocks

Receive (create-account, sid, 𝑎𝐼𝐷𝑖,𝑖+1 ) from GLedgerLocks Receive (create-account, sid, 𝑎𝐼𝐷𝑖,𝑖+1 ) from GLedgerLocks
Set split-info := [ (𝑎𝐼𝐷𝑖,𝑖+1, 𝑣lock ), (𝑎𝐼𝐷𝑖 , 𝑣𝑖 ), (𝑎𝐼𝐷𝑖+1, 𝑣𝑖+1 ) ] Set split-info := [ (𝑎𝐼𝐷𝑖,𝑖+1, 𝑣lock ), (𝑎𝐼𝐷𝑖 , 𝑣𝑖 ), (𝑎𝐼𝐷𝑖+1, 𝑣𝑖+1 ) ]
Invoke UpdateChannel(tx𝑓 , 𝑎𝐼𝐷𝑖 , split-info) Invoke UpdateChannel(tx𝑓 , 𝑎𝐼𝐷𝑖+1, split-info)
ctx := GenPay(tx𝑠 , 𝑎𝐼𝐷𝑖,𝑖+1, 𝑎𝐼𝐷𝑖+1, 0) ctx := GenPay(tx𝑠 , 𝑎𝐼𝐷𝑖,𝑖+1, 𝑎𝐼𝐷𝑖+1, 0)
rtx := GenPay(tx𝑠 , 𝑎𝐼𝐷𝑖,𝑖+1, 𝑎𝐼𝐷𝑖 , 𝑡𝑖 ) rtx := GenPay(tx𝑠 , 𝑎𝐼𝐷𝑖,𝑖+1, 𝑎𝐼𝐷𝑖 , 𝑡𝑖 )
Invoke GLedgerLocks with (auth-tx, sid, rtx, 𝑎𝐼𝐷𝑖,𝑖+1 )

Receive (auth-req, sid, rtx, (𝑎𝐼𝐷𝑖,𝑖+1, (𝑃𝑖 , 𝑃𝑖+1 ) ) ) from GLedgerLocks
Send (auth-rep, sid, 𝑏 := 1) to GLedgerLocks

Receive (auth-tx, sid, 𝑏 ) from GLedgerLocks
Invoke GLedgerLocks with (lock-tx, sid, ctx, 𝑎𝐼𝐷𝑖,𝑖+1, 𝑌

𝑖 )
Receive (lock-req, sid, ctx, (𝑎𝐼𝐷𝑖,𝑖+1, (𝑃𝑖 , 𝑃𝑖+1 ) ), 𝑌 𝑖 ) from GLedgerLocks
Send (lock-rep, sid, 𝑏 := 1, 𝑎𝐼𝐷𝑖,𝑖+1 ) to GLedgerLocks

Receive (lock-tx, sid, 𝑏, 𝑎𝐼𝐷𝑖,𝑖+1 ) from GLedgerLocks
return ctx, rtx, 𝑎𝐼𝐷𝑖,𝑖+1 return ctx, rtx, 𝑎𝐼𝐷𝑖,𝑖+1

Figure 31: Lock protocol in the (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world. Here, GenPay denotse the constructors for ctx and rtx,

respectively as described in Figure 24.

Protocol ΠMultiHop

Off-Chain Pay i-th channel

𝑃𝑖 (𝑌 𝑖−1, 𝑌aux, 𝑦aux, 𝑌
𝑖 , 𝑦𝑖 , 𝑡𝑖−1 )

Invoke G𝑅,𝑓merge
Cond on input (open-cond, sid, (𝑌 𝑖 , 𝑦𝑖 ) )

Receive (opened-cond, sid, 𝑏1 ) from G
𝑅,𝑓merge
Cond

Invoke GLedgerLocks with (read, sid)
Receive (read, sid, state) from GLedgerLocks
Set 𝑦𝑖−1 := 𝑓merge (wit, 𝑅, 𝑦𝑖 , −𝑦aux )
if 𝑏1 ≠ 1 return abort

else return 𝑦𝑖−1

On-Chain Pay i-th channel

𝑃𝑖 (ctx𝑖 , 𝑌 𝑖 , 𝑦𝑖aux, 𝑎𝐼𝐷𝑖,𝑖+1 )
Invoke GLedgerLocks with (read, sid)
Receive (read, sid, state) from GLedgerLocks
Invoke GLedgerLockswith (read, sid)
Receive (read, sid, state) from GLedgerLocks
if ¬inState(ctx𝑖 , state)then abort

Invoke GLedgerLocks on input (signal-tx, sid, 𝑎𝐼𝐷𝑖,𝑖+1, ctx
𝑖 , 𝑌 𝑖 )

Receive (signal-tx, sid, 𝑦𝑖 ) from GLedgerLocks
Set 𝑦𝑖−1 := 𝑓merge (wit, 𝑅, 𝑦𝑖 , −𝑦𝑖aux )
return 𝑦𝑖−1

Force Pay i-th channel

𝑃𝑖 (𝑌 𝑖−1, 𝑦𝑖−1, 𝑎𝐼𝐷𝑖−1,𝑖 , ctx
𝑖−1 )

Invoke ForceClose(𝑎𝐼𝐷𝑖−1,𝑖 )
Invoke GLedgerLocks on input (release-tx, sid, ctx𝑖−1, 𝑎𝐼𝐷𝑖−1,𝑖 , 𝑌

𝑖1 , 𝑦𝑖−1 )
Receive (release-tx, sid, 𝑏 ) from GLedgerLocks

Refund Pay i-th channel

𝑃𝑖 (𝑎𝐼𝐷𝑖,𝑖+1, rtx
𝑖 )

Invoke ForceClose(𝑎𝐼𝐷𝑖,𝑖+1 )
Invoke GLedgerLocks on input (submit-tx, sid, rtx𝑖 )

Figure 32: On-chain payment, off-chain payment, force payment and refund algorithms in the (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid

world.
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Protocol ΠMultiHop

𝑃0 (𝑡∗, tx0,1𝑓 , 𝑎𝐼𝐷0, 𝑎𝐼𝐷1, 𝑣pay, 𝑣fee, chState0,1, 𝑛) 𝑃𝑖 (tx𝑖−1,𝑖𝑓
, tx𝑖,𝑖+1

𝑓
, 𝑎𝐼𝐷𝑖−1, 𝑎𝐼𝐷𝑖 , 𝑎𝐼𝐷𝑖+1 ) 𝑃𝑛 (tx𝑛−1,𝑛𝑓

, 𝑎𝐼𝐷𝑛−1, 𝑎𝐼𝐷𝑛 )
®𝑌, ®𝑦, ®𝑌aux, ®𝑦aux, ®𝑡 := Setup(𝑡∗, 𝑛)
𝑣𝑛 := 𝑣pay

𝑣𝑖 := 𝑣pay + (𝑛 − 𝑖 − 1) · 𝑣fee
𝑦𝑛−1 := 𝑓merge (wit, 𝑅, 𝑦𝑛−2, 𝑦𝑛−1aux )

(𝑌 𝑖−1, 𝑌 𝑖−1
aux , 𝑦

𝑖−1
aux , 𝑌

𝑖 , ®𝑡, 𝑣𝑖−1, 𝑣𝑖 ) to 𝑃𝑖

(𝑌𝑛−1, 𝑦𝑛−1, ®𝑡, 𝑣𝑛 ) to 𝑃𝑛
Setup(𝑌aux [𝑖 ], 𝑦aux [𝑖 ], 𝑌 [𝑖 − 1], 𝑌 [𝑖 ], 𝑡 [𝑖 ], 𝑡 [𝑖 − 1] ) Setup(𝑌 [𝑛], 𝑦 [𝑛] )

𝑣∗
0
← GetBal(chState0,1 [ |chState0,1 | − 1], 𝑎𝐼𝐷0 ) 𝑣∗𝑖−1 ← GetBal(chState𝑖−1,𝑖 [ |chState𝑖−1,𝑖 | − 1], 𝑎𝐼𝐷𝑖−1 )

𝑣′
0
:= 𝑣∗

0
− 𝑣0 𝑣′𝑖−1 := 𝑣∗𝑖−1 − 𝑣𝑖−1

𝑣′
1
← GetBal(chState0,1 [ |chState0,1 | − 1], 𝑎𝐼𝐷1 ) 𝑣′𝑖 ← GetBal(chState𝑖−1,𝑖 [ |chState𝑖−1,𝑖 | − 1], 𝑎𝐼𝐷𝑖 )

𝑥0 := (tx0,1𝑓 , 𝑎𝐼𝐷0, 𝑎𝐼𝐷1, 𝑌 [0], 𝑡 [0], 𝑣′0, 𝑣′1, 𝑣0 ) 𝑥𝑖−1 := (tx𝑖−1,𝑖𝑓
, 𝑎𝐼𝐷𝑖−1, 𝑎𝐼𝐷𝑖 , 𝑌 [𝑖 − 1], 𝑡 [𝑖 − 1], 𝑣′𝑖−1, 𝑣′𝑖 , 𝑣𝑖−1 )

in0 := Lock(𝑥0 ) in𝑖−1 := Lock(𝑥𝑖−1 ) with 𝑃𝑖−1

𝑣∗𝑖 ← GetBal(chState𝑖,𝑖+1 [ |chState𝑖, 𝑖 + 1 | − 1], 𝑎𝐼𝐷𝑖 )
𝑣′′𝑖 := 𝑣∗𝑖 − 𝑣𝑖

𝑣′𝑖+1 ← GetBal(chState𝑖,𝑖+1 [ |chState𝑖, 𝑖 + 1 | − 1], 𝑎𝐼𝐷𝑖+1 )

𝑥𝑖 := (tx𝑖,𝑖+1𝑓
, 𝑎𝐼𝐷𝑖 , 𝑎𝐼𝐷𝑖+1, 𝑌 [𝑖 ], 𝑡 [𝑖 ], 𝑣′′𝑖 , 𝑣′𝑖+1, 𝑣𝑖 )

in𝑖 := Lock(𝑥𝑖 ) with 𝑃𝑖+1

𝑣∗𝑛−1 ← GetBal(chState𝑛−1,𝑛 [ |chState𝑛−1,𝑛 | − 1], 𝑎𝐼𝐷𝑛−1 )
𝑣′′𝑛−1 := 𝑣∗𝑛−1 − 𝑣𝑛−1

𝑣′𝑛 ← GetBal(chState𝑛−1,𝑛 [ |chState𝑛−1,𝑛 | − 1], 𝑎𝐼𝐷𝑛 )

𝑥𝑛−1 := (tx𝑛−1,𝑛𝑓
, 𝑎𝐼𝐷𝑛−1, 𝑎𝐼𝐷𝑛, 𝑌 [𝑛 − 1], 𝑡 [𝑛 − 1], 𝑣′′𝑛−1, 𝑣′𝑛, 𝑣𝑛−1 )

in𝑛−1 := Lock(𝑥𝑛−1 ) with 𝑃𝑛−1

ctx0, rtx0, 𝑎𝐼𝐷0,1 ← in0 ctx𝑖−1, rtx𝑖−1, 𝑎𝐼𝐷𝑖−1,𝑖 ← in𝑖−1

ctx𝑖 , rtx𝑖 , 𝑎𝐼𝐷𝑖,𝑖+1 ← in𝑖+1

ctx𝑛−1, rtx𝑛−1, 𝑎𝐼𝐷𝑛−1,𝑛 ← in𝑛−1

Set 𝑦 [𝑖 − 1] := ⊥

𝑦 [𝑛 − 1] to 𝑃𝑛−1

split-info := [ (𝑎𝐼𝐷𝑛−1, 𝑣
′′
𝑛−1 ), (𝑎𝐼𝐷𝑛, 𝑣

′
𝑛 + 𝑣𝑛−1 ) ]

UpdateChannel(tx𝑛−1,𝑛
𝑓

, 𝑎𝐼𝐷𝑛, split-info) with 𝑃𝑛−1

while 1 : while 1 : while 1 :

Invoke GLedgerLocks with (read, sid) Invoke GLedgerLocks with (read, sid) Invoke GLedgerLocks with (read, sid)
Receive (read, sid, state) from GLedgerLocks Receive (read, sid, state) from GLedgerLocks Receive (read, sid, state) from GLedgerLocks
if |state | ≥ 𝑡 [0] − 3 · #safe − 1 : if receive 𝑦 [𝑖 ] from 𝑃𝑖+1 if |state | ≥ 𝑡 [𝑛 − 1] − 4 · #safe − 1 :

Refund(rtx0, 𝑎𝐼𝐷0,1 ) 𝑦 [𝑖 − 1] := Off-Pay(Y[i], y[i], t[i-1]) ForcePay(𝑌 [𝑛 − 1], 𝑦 [𝑛 − 1], ctx𝑛−1, 𝑎𝐼𝐷𝑛−1,𝑛 )

if receive𝑦 [0] from 𝑃1 if 𝑦 [𝑖 − 1] ≠ ⊥ ∧ |state | < 𝑡 [𝑖 − 1] − 4 · #safe − 1 :

split-info := [ (𝑎𝐼𝐷0, 𝑣
′
0
), (𝑎𝐼𝐷1, 𝑣

′
1
+ 𝑣0 ) ] 𝑦 [𝑖 − 1] to 𝑃𝑖−1

UpdateChannel(tx0,1
𝑓
, 𝑎𝐼𝐷0, split-info) with 𝑃1 if |state | < 𝑡 [𝑖 ] − 4 · #safe − 1 :

split-info := [ (𝑎𝐼𝐷𝑖 , 𝑣
′′
𝑖 ), (𝑎𝐼𝐷𝑖+1, 𝑣

′
𝑖+1 + 𝑣𝑖 ) ]

UpdateChannel(tx𝑖,𝑖+1
𝑓

, 𝑎𝐼𝐷𝑖 , split-info) with 𝑃𝑖+1

𝑦 [𝑖 − 1] := On-Pay(ctx𝑖 , 𝑌 [𝑖 ], 𝑦aux [𝑖 ], 𝑎𝐼𝐷𝑖,𝑖+1 )

if 𝑦 [𝑖 − 1] ≠ ⊥ ∧ |state | < 𝑡 [0] − 4 · #safe − 1 :

𝑦 [𝑖 − 1] to 𝑃𝑖−1

split-info′ := [𝑎𝐼𝐷𝑖−1, 𝑣
′
𝑖−1 ), (𝑎𝐼𝐷𝑖 , 𝑣

′
𝑖 + 𝑣𝑖−1 ]

UpdateChannel(tx𝑖−1,𝑖
𝑓

, 𝑎𝐼𝐷𝑖 , split-info′ ) with 𝑃𝑖−1

if 𝑦 [𝑖 − 1] ≠ ⊥ ∧ |state | ≥ 𝑡 [𝑖 − 1] − 4 · #safe − 1 :

ForcePay(𝑌 [𝑖 − 1], 𝑦 [𝑖 − 1], ctx𝑖−1, 𝑎𝐼𝐷𝑖−1,𝑖 )
if |state | ≥ 𝑡 [1] − 3 · #safe − 1 :

Refund(rtx𝑖 , 𝑎𝐼𝐷𝑖,𝑖+1 )

Figure 33: Multi-hop payment protocol in the (G𝑅,𝑓merge
Cond ,GLedgerLocks)-hybrid world.
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Ideal Functionality GLedger

General: The functionality is parameterized by four algorithms Validate, ExtendPolicy,Blockify, and predict-time, along with two parameters

windowSize, Delay ∈ N. The functionality manages variables state,NxtBC, buffer, 𝜏𝐿 and ®𝜏state. Initially, state := ®𝜏state, NxtBC := 𝜀 , buffer := ∅, 𝜏𝐿 = 0.

Party Management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P, and the (sub-)set of de-synchronized
honest parties P𝐷𝑆 ⊂ H. The sets P,H, P𝐷𝑆 are all initially set to ∅. When a new honest party is registered at the ledger, if it is registered with the clock

already, then it is added to the party set H and P, and the current time of registration is also recorded; if the current time is 𝜏𝐿 > 0, it is also added to

P𝐷𝑆 . Similarly, when a party is deregistered, it is removed from both P (and therefore also from P𝐷𝑆 and H). The ledger maintains an invariant that it is

registered (as a functionality) to the clock whenever H ≠ ∅. A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input 𝐼 from any party or from the adversary, send (clock-read, sid𝐶 ) to GClock and upon receiving response (clock-read, sid𝐶 , 𝜏 )
set 𝜏𝐿 = 𝜏 and do the following:

(1) Let P̂ ⊆ P𝐷𝑆 denote the set of de-synchronized honest parties that have been registered (continuously) since time 𝜏 ′ < 𝜏𝐿 − Delay (to both ledger

and clock). Set P𝐷𝑆 := P𝐷𝑆 \ P̂. On the other hand, for any synchronize party 𝑃 ∈ H \ P𝐷𝑆 , if 𝑃 is not registered to the clock, then P𝐷𝑆 ∪ {𝑃 }.
(2) If 𝐼 was received from an honest party 𝑃𝑖 ∈ P:

• Set
®I𝑇
𝐻

= ®I𝑇
𝐻
∥ (𝐼 , 𝑃, 𝜏𝐿 ) .

• Compute ®𝑁 = ( ®𝑁1, . . . , ®𝑁ℓ ) := ExtendPolicy( ®I𝑇
𝐻
, state,NxtBC, buffer, ®𝜏state ) and if ®𝑁 ≠ 𝜀 , set state :=

state∥Blockify( ®𝑁1 ) ∥ · · · ∥Blockify( ®𝑁ℓ ) and ®𝜏state := ®𝜏state ∥𝜏ℓ𝐿 , 𝜏
ℓ
𝐿
= 𝜏𝐿 ∥ · · · ∥𝜏𝐿 .

• For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0, then delete BTX from buffer. Also, reset NxtBC := 𝜀 .

• If there exists 𝑃 𝑗 ∈ H \ P𝐷𝑆 such that |state | − pt𝑗 > windowSize or pt𝑗 < |state𝑗 | , then pt𝑘 := |state | for all 𝑃𝑘 ∈ H \ P𝐷𝑆 .

(3) Depending on the input 𝐼 and the ID of the sender, execute the respective code:

• Submitting a transaction:
If 𝐼 = (submit, sid, tx) and is received from a party 𝑃𝑖 ∈ P or from S (on behalf of a corrupted party 𝑃𝑖 ), do the following:

– Choose a unique transaction ID txid and set BTX := (tx, txid, 𝜏𝐿, 𝑃𝑖 ) .
– If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
– Send (submit, BTX) to S.

• Reading the state:
If 𝐼 = (read, sid) is received from a fully registered party 𝑃 , then set state𝑖 := state |

min pti,|state| and return (read, sid, state𝑖 ) to the requester.

If requester is S, then send (state, buffer, ®I𝑇
𝐻
) to S.

• Maintaining the ledger state:
If 𝐼 = (maintain-ledger, sid,minerID) is received by an honest party 𝑃𝑖 ∈ P, and (after updating

®I𝑇
𝐻

as above) predict−time( ®I𝑇
𝐻
) = 𝜏 > 𝜏𝐿 ,

then send (clock-update, sid𝐶 ) to GClock. Else, send 𝐼 to S.
• The adversary proposing the next block:

If 𝐼 = (next-block, hFlag, (txid1, . . . , txidℓ ) ) is sent from the adversary, update NxtBC as follows:

– Set listOfTxid← 𝜖 .

– For 𝑖 = 1, . . . , ℓ do: if there exists BTX := (𝑥, txid,minerID, 𝜏𝐿, 𝑃𝑖 ) ∈ bufferwith ID txid = txid𝑖 , then set listOfTxid := listOfTxid∥txid𝑖 .
– Finally, set NxtBC := NxtBC∥ (hFlag, listOfTxid) and output (next-block, 𝑜𝑘 ) to S.

• The adversary setting state-slackness:
If 𝐼 = (set-slack, (𝑃𝑖1 , p̂t

′
𝑖1
), . . . , (𝑃𝑖ℓ , p̂t

′
𝑖ℓ
) ) , with {𝑃𝑖1 , . . . , 𝑃𝑖ℓ } ⊆ H \ P𝐷𝑆 is received from the adversary S, do the following:

– If for all 𝑗 ∈ [ℓ ] : |state | − p̂t𝑖 𝑗 ≤ windowSize and pt𝑖1 := p̂t𝑖1 for every 𝑗 ∈ [ℓ ] and return (set-slack, 𝑜𝑘 ) to S.
– Otherwise, set pt𝑖 𝑗 := |state | for all 𝑗 ∈ [ℓ ].

• The adversary setting the state for de-synchronized parties:
If 𝐼 = (desync-state, (𝑃𝑖1 , state′𝑖1 ), . . . , (𝑃𝑖ℓ , state

′
𝑖ℓ
) ) , with {𝑃𝑖1 , . . . , 𝑃𝑖ℓ } ⊆ P𝐷𝑆 from the adversary S, set state𝑖 𝑗 = state′

𝑖 𝑗
for each

𝑗 ∈ [ℓ ] and return (desync-state, 𝑜𝑘 ) to S.

Figure 34: Ideal functionality GLedger [8].
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