
Cryptanalysis of HALFLOOP Block Ciphers:
Destroying HALFLOOP-24

Gregor Leander1, Shahram Rasoolzadeh2 and Lukas Stennes1

1 Ruhr University Bochum, Bochum, Germany, firstname.lastname@rub.de
2 Radboud University, Nijmegen, The Netherlands firstname.lastname@ru.nl

Abstract. HALFLOOP is a family of tweakable block ciphers that are used for
encrypting automatic link establishment (ALE) messages in high-frequency radio, a
technology commonly used by the military, other government agencies, and industries
that require high robustness in long-distance communications. Recently, it was shown
in [DDLS22] that the smallest version of the cipher, HALFLOOP-24, can be attacked
within a practical time and memory complexity. However, in the real-word ALE
setting, it turns out that this attack requires waiting more than 500 years to collect
the necessary amount of plaintext-tweak-ciphertext pairs fulfilling the conditions of
the attack.
In this paper, we present real-world practical attacks against HALFLOOP-24 which are
based on a probability-one differential distinguisher. In our attacks, we significantly
reduce the data complexity to three differential pairs in the chosen-plaintext (CPA)
setting which is optimal in the sense that even a brute force attack needs at least six
plaintext-tweak-ciphertext pairs to uniquely identify the correct key. Considering the
same ALE setting as [DDLS22], this translates to a reduction from 541 years to 2
hours worth of intercepted traffic.
Besides, we provide the first, non generic, public cryptanalysis of HALFLOOP-48 and
HALFLOOP-96. More precisely, we present Demirci-Selçuk meet-in-the-middle attacks
against full-round HALFLOOP-48 and round-reduced HALFLOOP-96 to recover the
complete master key in a CPA setting. However, unlike the attacks on HALFLOOP-24,
our attacks on the larger versions are only theoretical. Moreover, for HALFLOOP-96
the known generic time-memory trade-off attack, based on a flawed tweak handling,
remains the strongest attack vector.
In conclusion, we iterate what was already stated in [DDLS22]: HALFLOOP does not
provide adequate protection and should not be used.
Keywords: HF Radio · ALE · HALFLOOP · Differential · DS-MITM · TDM-TO

1 Introduction
High frequency (HF) radio communication enables radio communication even in case
there is no direct line-of-sight by using so-called skywave propagation, i.e., the fact that
the signal is reflected back to earth by the ionosphere layer in the atmosphere. As such,
HF radio communication can be used for intercontinental radio communications or in
cases where the topography prevents direct line-of-sight communication and a redirecting
network is not available. As a downside, HF radio has a rather small bandwidth.

In order to establish a connection between two communication parties, protocols
for automatic link establishment (ALE) were developed during the 1980s, with military
settings being one of the primary setups. The US military standard [DoD17] describes
how to use dedicated tweakable block ciphers, HALFLOOP and its predecessor SoDark,
in order to ensure confidentiality and authentication in the ALE protocol. We refer
to [Dan21, DDLS22] for more background on ALE and its practical relevance.

mailto:firstname.lastname@rub.de
mailto:firstname.lastname@ru.nl

2 Cryptanalysis of HALFLOOP Block Ciphers

The cipher SoDark was developed already in 1992 [Joh92]. However, it took nearly 30
years until Dansarie [Dan21], who showed weaknesses in SoDark, attracted the attention
of the symmetric crypto community to the encryption algorithms used in ALE. By then,
the successor algorithm HALFLOOP was already specified in [DoD17]. Its building blocks
mostly imitate the operations of the AES. Dansarie, Derbez, Leander, and Stennes [DDLS22]
presented a practical time attack on HALFLOOP-24 using a data complexity of 238 known
plaintexts. While this badly breaks the cipher in an academic setting, it turns out that this
data complexity is actually impractical: As detailed in [DDLS22] even assuming a favorable
situation with many ALE messages sent per day, it would require to wait about 541 years
to collect plaintext-tweak-ciphertext pairs fulfilling the requirements of the attack.

Our Contribution Our main contribution are practical attacks against HALFLOOP-24.
Besides that, we give the first public cryptanalysis of HALFLOOP-48 and HALFLOOP-96.

Our attack on HALFLOOP-24 is a rather classical differential attack with the important
caveat that, unlike classical differential attacks, we focus on reducing the data complexity
down to very few pairs as our primary goal. We achieve that by a rather heavy trial
decryption phase. This in turn requires a careful fine-tuning of the filtering process for key
candidates in order to keep the entire attack practical.

We significantly reduce the data complexity from 218 to three differential pairs in
the chosen-plaintext (CPA) setting. This is optimal in the sense that even a brute force
attack needs at least six plaintext-tweak-ciphertext pairs to uniquely identify the correct
key. When we consider the same ALE setting as [DDLS22], i.e., the same number of sent
messages per minute etc., this translates to a reduction from 541 years to 2 hours worth of
intercepted traffic. Hence, we consider our attack on HALFLOOP-24 practical.

We like to highlight that we implemented all details of the attack in order to (i) verify
the heuristic assumptions made and (ii) get accurate estimates of the running time on
actual hardware.

Concerning the two larger variants of HALFLOOP, the only known attacks, mentioned
in [DDLS22], are time memory tradeoff attacks based on the flawed handling of tweaks.
For completness, we present the details of this attack here. For instance, for HALFLOOP-96,
this attack requires 264 encryptions for each offline and online computations, 264 chosen-
plaintext-tweak-ciphertext pairs of data, and 3 · 269 bytes of memory.

Those attacks are generic in the sense that they do not depend on any internal structure
of the round function or the key-scheduling itself. As such, the question remains if stronger
attacks exist. Our second contrubution is thus to initiate the non-generic cryptanalysis on
the larger versions of HALFLOOP by providing the first non-generic cryptanalysis of these
two ciphers.

More precisely, we apply Demirci-Selçuk Meet-in-the-Middle (DS-MITM) attack [DS08]
against full-round HALFLOOP-48 and reduced to 7-rounds HALFLOOP-96 to recover the
complete master key in a CPA setting. The complexity of the first attack is 13 chosen-
plaintext-tweak-ciphertext pairs together with about 2121 encryptions and 2122 look-ups in
a table which needs 297 bytes of memory.

The latter attack needs 15 chosen-plaintext-tweak-ciphertext pairs together with about
2113.3 encryptions and 2114 look-ups in table which needs 2105 bytes of memory. Thus, for
HALFLOOP-96 the generic attack thus remains the best attack vector for now.

We summarize our results together with the attacks from [DDLS22] in Table 1. For
completeness, we also include the boomerang attack from [DDLS22] which is in the chosen-
ciphertext (CCA) setting where an attacker can choose tweaks and query encryptions and
decryptions as they wish. But, in the real world ALE setting, this is rather unrealistic as
the attacker needs full access to a radio with the key.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 3

Table 1: Overview of the attacks on HALFLOOP family of tweakable block ciphers.
†: The CCA attack in [DDLS22] restores only the first round key.

Variant Setting Time Data Memory Reference
HALFLOOP-24 ALE 256 Enc. 541 years 2 MB [DDLS22]
HALFLOOP-24 ALE 248 Enc. 2 hours 5 GB Section 3
HALFLOOP-24 CCA 210 Enc.† 210 negligible [DDLS22]
HALFLOOP-24 CPA 256 Enc. 6 5 GB Section 3
HALFLOOP-24 CPA 248 Enc.+248 LUT 8 5 GB Section 3
HALFLOOP-48 CPA 2121 Enc.+2122 LUT 13 257 TB Section 5
HALFLOOP-48 CPA 265 Enc.+264 LUT 265 3 · 229 TB Section 4
HALFLOOP-96 CPA 264 Enc.+264 LUT 264 3 · 229 TB Section 4

Structure of the Paper We clarify our notation and give a brief description of HALFLOOP
in Section 2. In Section 3, we give our new and practical attack against full-round
HALFLOOP-24. The theoretical TDM-TO attacks on all versions of HALFLOOP are
described for completeness in Section 4. We present DS-MITM attacks on HALFLOOP-48
and reduced to 7-round HALFLOOP-96 in Section 5. We conclude our work in Section 6.

2 Preliminaries
We write F2 for the finite field with two elements {0, 1}, F2n for the finite field with 2n

elements, and Fn
2 for the vector space of dimension n ∈ N over F2. We use ⊕ to denote

the component-wise addition in Fn
2 which we also call XOR. For a set of vectors A ⊆ Fn

2
and a vector b ∈ Fn

2 , we simply write A⊕ b for the set {a⊕ b | a ∈ A}. For two vectors
x, x′ ∈ Fn

2 , we write ∆x for the difference ∆x = x⊕ x′. The concatenation of two vectors
a and b is denoted as a ∥ b.

We refer to a tuple of plaintext, tweak, and ciphertext (p, t, c) as plaintext-tweak-
ciphertext pair and call a pair of such pairs ((p, t, c), (p′, t′, c′)), which is usually related in
a differential way, a differential pair.

Recall the basic differential properties of the AES S-box S : F8
2 → F8

2. For a non-zero
input differences δ ∈ F8

2 there are 127 possible output differences γ. For 126 of those, the
equation S(x) ⊕ S(x ⊕ δ) = γ has two solutions. For each δ, there is one and only one
γ such that the equation has four solutions. We denote a possible transition of δ to γ

through S by δ
S→ γ. When we apply S in parallel to a vector x ∈ Fk·8

2 , we write SB(x).

2.1 Description of HALFLOOP and Related Notation
The family of tweakable block ciphers HALFLOOP, i.e., the three variants HALFLOOP-24,
HALFLOOP-48, and HALFLOOP-96 are specified in US military standard 188-141 [DoD17].
For the sake of self-completeness, we give a brief description of HALFLOOP.

For each variant, the trailing number is the block size in bits. All variants use a 128-bit
key k, a 64-bit tweak t and consist of 10 rounds. Each round is built up of four steps:
AddRoundKey, SubBytes, RotateRows and MixColumns. These components are very
similar to the building blocks of the AES and are explained in detail below. In the last
round there is no MixColumns operation, and instead there is an extra round key addition.

State and AddRoundKey Similar to the AES, the state of HALFLOOP is represented as
a matrix of 8-bit cells. For HALFLOOP-24, the 24-bit state is represented as a 3× 1 matrix.
For HALFLOOP-48, we use a 3× 2 and for HALFLOOP-96 a 4× 3 matrix respectively. For

4 Cryptanalysis of HALFLOOP Block Ciphers

each variant, the round keys are represented in the same way as the state and the key
addition is simply the bitwise XOR of state and key.

For convenience, throughout the paper, we denote the state immediately after the
addition of the round key with the letter x, the state after the S-boxes by y and the state
after the linear layer by z. Furthermore, we use the superscript to illustrate the round,
e.g., x(0) denotes the XOR of the plaintext p and the very first round key rk(0) and x(10)

corresponds to the ciphertext. At times, we are only interested in some bytes of a state
or round key. Then, we use the subscript to denote the corresponding cell, i.e., byte, in
the standard way depicted below, where (a state of) HALFLOOP-24 is depicted on the left,
HALFLOOP-48 in the middle and HALFLOOP-96 on the right.

x0

x1

x2

x0,0

x1,0

x2,0

x0,1

x1,1

x2,1

x0,0

x1,0

x2,0

x3,0

x0,1

x1,1

x2,1

x3,1

x0,2

x1,2

x2,2

x3,2

For convenience of the reader, we always use the variable name i and j to address different
row and column of the cells in a state and r to address the round number. For denoting
states in the data path and states of round keys, we show the two-dimensional array
of a state as a vector of bytes by concatenating the columns. Thus, we denote the
state x of HALFLOOP-24 with (x0, x1, x2), and for HALFLOOP-48 and HALFLOOP-96
with (x0,0, x1,0, x2,0, x0,1, x1,1, x2,1) and (x0,0, x1,0, . . . x2,2, x3,2), respectively. Besides, for
denoting the state of tweak and two halves of the key, we always use an array of 16 bytes.

SubBytes We apply the 8-bit AES S-box S to each cell of the state.

MixColumns For the MixColumns step, each column is treated as a polynomial over
F28 . For HALFLOOP-96, we then multiply this polynomial with the fixed polynomial
c(χ) = 3χ3 + χ2 + χ + 2 and reduce the result modulo χ4 + 1 which is the same as for
AES. For HALFLOOP-24 and HALFLOOP-48, we multiply with c(χ) = χ2 + 2χ + 9 and
reduce modulo χ3 + 1. For all three variants, these linear mappings are MDS.

RotateRows The RotateRows operation, which corresponds to ShiftRows in the AES, is
essentially the same for all three variants. In contrast to ShiftRows, the rotation does not
take place on the cell-level but on the bit-level. The first row of the state is not changed.
The second row is rotate to the left by 6 bit positions and the third by 12 bit positions.
For HALFLOOP-96, the fourth row is rotated to the left by 18 bit positions.

The linear layer of the round functions (excluding the last round) is composition of the
RotateRows and MixColumns operations. For the description of our attacks, we call the
resulting linear layer LL.

Key Schedule First, the 64-bit tweak t is added to the first 64-bit of the key k. For ease
of use, we split the 128-bit key k into two parts: k′ the first half and k′′ the second half,
i.e., k = (k′ ∥ k′′) and the tweak is XORed to k′. Then, the same Feistel network as in the
AES-128 key schedule is used to derive the round keys. That is, we start with (k′ ⊕ t ∥ k′′)
for the first 128 bits of the round keys. Then, we apply one round of the AES-128 key
schedule to derive the next 128 bits and so forth. However, since the round keys are only
of size 24, 48 or 96 bits, we do not need the full AES-128 key expansion. More concretely,

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 5

we only need 264, 528 or 1056 round key bits. For HALFLOOP-24, this means that the
tweak has only linear influence on the round keys except for the very last byte, which was
already observed in [DDLS22].

3 Attack on HALFLOOP-24
Our new attack on HALFLOOP-24 builds up on the ideas of [DDLS22] and hence, before
we present our new attack, we briefly recall the main concepts of their attack.

Recap of [DDLS22] Attack In [DDLS22], Dansarie, Derbez, Leander, and Stennes
present a nearly practical known-plaintext attack against HALFLOOP-24. Their attack
builds upon two observation. First, since the tweak is simply XORed to the master key
and there are only 10 rounds and each round key is only 24 bits, related-tweaks allow
for powerful attacks, similar to the related-key attacks on AES-192 and AES-256 [BK09].
More concretely, they show that for a differential pair of plaintexts, tweaks and ciphertexts
(p, t, c) and (p′, t′, c′) and a difference δ ∈ F8

2 with

p⊕ p′ = (0, 0, δ) , t⊕ t′ = (0, 0, δ, 0, 0, 0, 0, 0) ,

it holds that there is no difference in z(5), i.e., the state after five rounds. Namely, we have

∆rk(r) =

(0, 0, δ) if r ∈ {0, 8}
(δ, 0, 0) if r ∈ {6, 10}
(0, δ, 0) if r = 7
(0, 0, 0) else.

This is visualized in Figure 1. The second observation is that we have ∆x(8) = 0 if and
only if we observe c⊕ c′ = (δ, 0, 0) which is not to unlikely, since the ciphertexts are only
24 bits in size. Given three such pairs, [DDLS22] shows how to recover the key in practical
time. However, it turns out that the data complexity is too high in the real world. Our
new attack improves on this as we do not rely on a special ciphertext difference.

Notice, to ease notation, throughout this section, we ignore what is called round key
normalization in [DDLS22]. That is, when we consider the round keys for independent
tweaks t and t′, the round keys differ but the difference is almost only linear in the tweaks.
This is also visible in Figure 1. No matter where the tweaks t and t′ differ, the last 32-bit
word of the key, corresponding to rk(4), is not affected. Hence, the first-round input to g,
which the only non-linear operation in the key schedule, is the same for every tweak. For
the attacks on HALFLOOP, we consider multiple tweaks and hence it is handy to normalise
the round keys by considering the round keys for the all zero tweak. Of course, we do so in
our implementation of our attack. But for this write-up, we do this only implicitly. Notice
that the influence of the tweak is only almost linear since it is non-linear on the last byte
of rk(10). This is again visible in Figure 1 as the last byte of rk(10) depends on the output
of the non-linear g function. However, this is not a problem for our new attack since this
non-linearity only depends on rk(9) which we guess at the same time as rk(10).

3.1 Our New Attack
Naive Attack With Better Data Complexity To ease the understanding of our new
attack, we present an intermediate attack first. That is, an attack that improves the data
complexity but is not optimal regarding the time complexity. The attack is straightforward
and uses a related-tweak differential with probability-one.

6 Cryptanalysis of HALFLOOP Block Ciphers

k′ ⊕ t k′′

rk
(0)
0 rk

(0)
1 rk

(0)
2 rk

(1)
0 rk

(1)
1 rk

(1)
2 rk

(2)
0 rk

(2)
1 rk

(2)
2 rk

(3)
0 rk

(3)
1 rk

(3)
2 rk

(4)
0 rk

(4)
1 rk

(4)
2 rk

(5)
0

g

rk
(5)
1 rk

(5)
2 rk

(6)
0 rk

(6)
1 rk

(6)
2 rk

(7)
0 rk

(7)
1 rk

(7)
2 rk

(8)
0 rk

(8)
1 rk

(8)
2 rk

(9)
0 rk

(9)
1 rk

(9)
2 rk

(10)
0 rk

(10)
1

g

rk
(10)
2

Figure 1: Key schedule of HALFLOOP-24 together with the effect of tweak difference
(0, 0, δ, 0, 0, 0, 0, 0) adapted from [DDLS22]. The orange blocks depict the round key bytes
that will be affected by the tweak difference. Note that the induced difference in each of
these bytes are the same as δ.

Consider Figure 2. We use d differential plaintext-tweak-ciphertext pairs ((p, t, c),
(p′, t′, c′)) with the aforementioned form of differences in the plaintext and tweak. Then, we
guess 80 bits of the key, namely rk(10), rk(9), rk(8), and the first byte from the equivalent
round key LL−1(rk(7))0. Notice that those 80 bits are sufficient to check ∆z(5) ?= 0, i.e.,
the difference before the key addition of rk(6). While for a correct guess, ∆z(5) must be
zero, for a wrong guess, we assume that the difference is randomly distributed over all
24-bit values.

We use d = 3 differential pairs, so, in total, we check for a 3 · 24 = 72-bit condition and
hence expect 28 candidates for the 80 bits of the key. After this, we simply brute force the
remaining 28 · 2128−80 = 256 bits which is the same as Step 4 of the attack in [DDLS22].

The time complexity is clearly dominated by the 280 partial HALFLOOP-24 decryption.
We want to emphasize that, in terms of data complexity, this attack is optimal in the
chosen-plaintext setting. That is, even the trivial brute force attack that checks all 2128

possible keys needs six plaintext-ciphertext pairs, simply because a random key confirms a
plaintext-tweak-ciphertext pair with probability 2−24 and hence confirms five plaintext-
ciphertext pairs with probability 2−120 and so we would be left with about 256 candidates.
We believe this, i.e., a differential attack reaching optimal data complexity, is astonishing.
But, of course, this is due to the probability-one differential.

Improving Our Time Complexity To improve the time complexity, we first notice that
we do not have to guess the first byte of LL−1(rk(7)). This is rather obvious, as this is
essentially the introductory textbook example for differential cryptanalysis, e.g., in The
Block Cipher Companion [KR11], and hence we can simply compute all possible key bytes.

Further, we precompute a lookup table for candidates of rk(8). That is, for all (observed)
δ ∈ F8

2 (from three differential pairs) and all ∆y(7) ∈ F24
2 , we compute

Tδ[∆y(7)] = {SB(x(7)) ∈ F24
2 | ∃γ : δ

S→ γ and SB(x(7))⊕ SB(x(7) ⊕∆x(7)) = ∆y(7)}

where ∆x(7) = LL(γ, 0, 0)⊕ (0, δ, 0). Then, we get all the candidates for LL−1(rk(8)), and
equivalently for rk(8), by computing Tδ[∆y(7)]⊕ v(8) where v(8) = LL−1(x(8)) and we can
compute it with only guessing rk(10) and rk(9).

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 7

rk(6)

⊕

⊕

⊕ γ

δ

⊕

∆z(5) = 0

z(5)

S

S

S

LL−1(rk(7))

⊕

⊕

⊕

LL

δ

⊕

x(6) y(6) v(7)

S

S

S

LL−1(rk(8))

⊕

⊕

⊕

LL
δ

⊕
x(7) y(7) v(8) x(8)

guess rk(9)

and rk(10)

Figure 2: The main stage of our attack: seventh and eighth round of HALFLOOP-24
Adapted from [DDLS22]. The state names are in blue, in the state differences induced by
the differences in the round keys are in red.

As we show in the next section, on average there are about 27 candidates left for
each differential pair. We assume that the resulting candidates are independent for each
differential pair. Now, the idea is to simply intersect the candidates for each pair. That is,
for each (rk(10), rk(9)), the intersection of the three sets of candidates for rk(8) is roughly
of size 23·7−2·24 = 2−27, as we analyze this in more detail in next subsection.

For those set of candidates for (rk(10), rk(9), rk(8)), we compute the set of all pos-
sible LL−1(rk(7))0, again for each pair and then compute the intersection. For each
pair, we expect two candidates, on average. So, in total, we expect 23·1−2·8 = 2−13

candidates for LL−1(rk(7))0 for every candidate of (rk(10), rk(9), rk(8)). We add the re-
sulting candidates to a set K which concludes the computation of all candidates for(
rk(10), rk(9), rk(8), LL−1(rk(7))0

)
.

After we handled every (rk(10), rk(9)), we expect |K| ≈ 28 candidates for the 80 bits of
the key. Therefore, there are only 56 bits to brute force and that is the final step of our
attack. We capture the preceding description of our attack in Algorithm 1.

3.2 Analysis of the Attack
Here, we analyse the time, memory and data complexity of our attack. However, our intend
here is not only to derive the specific complexity but also to deepen our understanding of
the attack, as, in the next stage, we discuss practical improvements of our attack.

Time Complexity The time complexity of our attack clearly depends on the size
|Tδ[∆y(7)]| and the size |K|. As stated before, a rough estimate gives an average size of 27

for each Tδ[∆y(7)]. To see this, notice that for a fixed nonzero δ ∈ F8
2, there are 127 ≈ 27

possible output differences γ with δ
S→ γ and those are mapped one-to-one to ∆x(7). For

each byte ∆x
(7)
j , the probability that the difference goes through the single S-box to the

(fixed) difference ∆y
(7)
j is 127

256 ≈ 0.5 (ignoring that ∆x
(7)
1 might be zero) but at the same

time we expect two candidates for y
(7)
j if it goes through. Hence, there are roughly 27

candidates for rk(8) as the XOR with v(8) does not change the number of key candidates.

8 Cryptanalysis of HALFLOOP Block Ciphers

Algorithm 1 Attack on HALFLOOP-24
1: Input three differential pairs ((p, t, c), (p′, t′, c′)) whose differences in the input are
2: ∆p = (0, 0, δi) and ∆t = (0, 0, δi, 0, 0, 0, 0, 0)
3: Output the master key k used for encryption

4: for all ∆y(7) ∈ F24
2 and δ ∈ {δ0, δ1, δ2} do ▷ precomputation

5: Tδ[∆y(7)]← {SB(x(7)) | ∃γ : δ
S→ γ and SB(x(7))⊕ SB(x(7) ⊕∆x(7)) = ∆y(7)}

6: end for
7: K ← {} ▷ list of key candidates
8: for all rk(10) ∈ F24

2 and all rk(9) ∈ F24
2 do

9: compute v(8) and ∆y(7) for each differential pair
10: RK(8) ←

⋂2
i=0 Tδi

[∆y(7)]⊕ v(8) ▷ 248 times
11: for all LL−1(rk(8)) ∈ RK(8) do
12: RK(7) ← compute candidates for LL−1(rk(7))0 ▷ ≈ 221 times
13: for all LL−1(rk(7))0 ∈ RK(7) do
14: K ← K ∪ {(rk(10), rk(9), LL−1(rk(8)), LL−1(rk(7))0)} ▷ ≈ 28 times
15: end for
16: end for
17: end for
18: for all (rk(10), rk(9), LL−1(rk(8)), LL−1(rk(7))0) ∈ K do
19: brute force remaining 48 bits of the key ▷ same as [DDLS22, Step 4]
20: return if correct key is found
21: end for

We experimentally verified our estimates for |Tδ[∆y(7)]|. That is, we exhaustively
computed |Tδ[∆y(7)]|. We give the results in Figure 3. There, we plot Pr[|Tδ[∆y(7)]| = χ]
with respect to χ, where the probability is taken over the uniform choice of a nonzero δ
and ∆y(7). The results confirm our theoretical estimates. However, there are interesting
outliers, namely Pr[|Tδ[∆y(7)]| = 0] ≈ 0.011 and the nonzero (but small) probabilities for
1024, 2048 or 4096 candidates for rk(8). The three latter cases are due to the fact that for
the middle byte there might be a zero difference which results in 256 candidates for that
byte. Paired with 2 or 4 candidates for the first and last byte this gives 1024, 2048 or 4096
candidates in total. The first case corresponds to impossible differentials. For instance,
consider the differences ∆y(7) = (0, ∗, ∗). Those are clearly impossible because the input
difference ∆x(7) must be nonzero for the topmost S-box (as LL uses an MDS matrix) and
so must be the output difference.

Coming back to the time complexity of our attack, we argue that the intersection
over three pairs leaves us with 2−27 candidates for rk(8). To do so, we assume that the
candidates for rk(8) are pairwise independent. Then, we estimate the number of left
candidates after the first intersection as 27 · 27 · 2−24 = 2−10, i.e., we multiply the number
of pairs of candidates for rk(8) with the probability that both candidates in the pair are the
same. After the second intersection, we expect roughly 2−10 · 27 · 2−24 = 2−27 candidates,
with the same reasoning.

For every pair and every candidate for rk(8), we expect two candidates for LL−1(rk(7))0.
Again, we take the intersection. With the same reasoning as above, we are left with
23·1−2·8 = 2−13 candidates. So, in total, we expect 2−27 · 2−13 = 2−40 candidates for
(rk(8), LL−1(rk(7))0) for each (rk(10), rk(9)). In other words, we expect |K| ≈ 28 candidates
for the 80 bits of the key given by

(
rk(10), rk(9), rk(8), LL−1(rk

(7)
0)

)
. This matches the line

of argumentation that we guess 80 bits of the key and filter with a 3 · 24 = 72-bit condition
that we applied for our naive approach. Finally, for each of such candidate, we brute force
the remaining 48 bits of the key and hence the overall time complexity is dominated by

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 9

500 1000 1500 2000 2500 3000 3500 4000
χ

0.02

0.04

0.06

0.08

0.10

0.12
Pr[|Tδ[∆y7]|=χ]

Figure 3: Plot of Pr[|Tδ[∆y(7)]| = χ] where the probability is taken over the uniform
choice of a nonzero δ ∈ F8

2 and ∆y(7) ∈ F24
2 . For clarity, there are no dots if the probability

is zero. The mean value µ = 127 is marked with the dashed line.

the 256 evaluations of HALFLOOP-24 in the last step.

Memory Complexity The memory complexity is clearly dominated by the memory
required to store T . We already studied the average size of Tδ[∆y(7)] and so it is easy to
estimate the size of T for three different differential pairs, as

3 · 224 · 27 · 3 bytes = 18 GB.

Data Complexity In contrast to [DDLS22], our attack does not rely on any special
ciphertext difference. That is, we need three differential plaintext-tweak-ciphertext pairs(
(p, t, c), (p′, t′, c′)

)
where ∆p = (0, 0, δ) and ∆t = (0, 0, δ, 0, 0, 0, 0, 0) for three nonzero δ

and where c, c′ are the corresponding ciphertexts, of course, encrypted under the same key.
In a chosen-plaintext-tweak setting, this requires only six queries which is an improvement
by a factor of about 215 compared to [DDLS22]. This reduction of the data complexity is
our main improvement. As we discuss in Subsection 3.4, this improvement transfers to a
more practical known-plaintext scenario in the context of ALE and hence results in an
attack that is applicable in the real world.

Time-Data Tradeoffs We briefly discuss how our attack performs with less data since,
for HALFLOOP-24, the data complexity is what matters the most in the real world. As the
dominating step for the time complexity is the final exhaustive enumeration, it is sufficient
to consider the naive variant of our attack here.

If we have only one differential pair and four more arbitrary plaintext-tweak-ciphertext
pairs that we need to uniquely identify the correct key in the final step, we get an attack
with a time complexity of 2104 HALFLOOP-24 evaluations: we guess the 80 bits of the
key, check a 24 bit condition and are left with 256 candidates, i.e., we have to check
256+48 = 2104 keys in the final step. The memory complexity is not affected since we
do not have to store all the candidates but can check them immediately. Although this
clearly is a valid attack, we rank the time complexity of 2104 evaluations of HALFLOOP-24
as unrealistic, even for large-scale adversaries. For a more detailed discussion on the
practicality of attacks with enormous time complexity, we refer to [BG12].

If we have two differential pairs (and two more arbitrary plaintext-tweak-ciphertext
pairs), we get a time complexity of 280 as we can filter with a 48-bit condition and hence are
left with 232 candidates for each of which we have to check 248 more. Again, the memory
complexity is not affected. Of course, a time complexity of 280 HALFLOOP-24 evaluations

10 Cryptanalysis of HALFLOOP Block Ciphers

is still gigantic but we argue that this might be doable for large-scale adversaries such as
state actors. For comparison, at time of writing, the hash rate of the Bitcoin network is
in the ballpark of 268 SHA-256 hashes per second.1 Hence, it seems possible that a state
actor could run our attack with only two differential pairs in the order of magnitude of
a day (one day has roughly 216 seconds). Surely, this is not a precise comparison, but it
is still quite alarming, especially when we consider that a single key is used for an entire
communication network and that it is not clear how often keys are changed in the fields.

Three pairs result in our main attack described above with a time complexity of
256. With four pairs, we are left with one unique candidate for the 80-bit partial key(
rk(10), rk(9), rk(8), LL−1(rk

(7)
0)

)
and hence need only 248 HALFLOOP-24 evaluations (and

also 248 set intersections in the first phase). Notice that there is no need to use the fourth
pair in the intersection phase. We can simply use it to check the ∆z(5) ?= 0 conditions
for approximate 28 candidates from the three-pair version. Thereby, we do not need any
further precomputation and especially no additional memory accesses in the intersection
phase.

3.3 Fine-Tuning the Attack
Here, we describe an observations that allows for two separate approaches to improve
our attack in practice. From a theoretical point of view, they do not change the time
complexity of the attack. However, in practice, they might have a rather vast impact on
the performance.

The observation, which is quite obvious once seen, is that T decomposes into unions of
Cartesian products of three smaller sets (actually affine subspaces), one for each S-box.
More precisely, let D̃DT be similar to the DDT of the AES S-box S but instead of the
cardinality of the set we consider the corresponding output values, i.e.,

D̃DT[α][β] := {S(x) ∈ F8
2 | S(x)⊕ S(x⊕ α) = β}.

Then, for ∆x(7) = LL(γ, 0, 0)⊕ (0, δ, 0), we have

Tδ[∆y(7)] = {SB(x(7)) ∈ F24
2 | ∃γ : δ

S→ γ and SB(x(7))⊕ SB(x(7) ⊕∆x(7)) = ∆y(7)}

=
⋃
γ

δ
S→γ

2×
j=0

D̃DT[∆x
(7)
j][∆y

(7)
j].

In other words, we can replace the large precomputed table T by combining lookups to
the significantly smaller table D̃DT. We present two approaches to make use of this.

First, we can enormously decrease the memory complexity by purging T . Consider Fig-
ure 2 again. For γ, ∆x

(7)
0 , ∆x

(7)
1 , and ∆x

(7)
2 , there is a pairwise one-to-one correspondence.

This is because two differences at the input of LL are zero and so the correspondences are
essentially multiplications in F28 with the constants from the MixColumns matrix. Using
this and the observation above, it is possible to efficiently restore all possible ∆x(7) from
∆y(7) without the need for T . We know four one-byte differences, namely γ, ∆y

(7)
0 , ∆y

(7)
1 ,

and ∆y
(7)
2 , and, because of the one-to-one correspondences, each of those implies 127 (out

of 256) candidates for ∆x
(7)
0 which in turn gives us all of ∆x(7). When we intersect those,

which we can efficiently do by ANDing 256-bit registers, we expect about 28−4·1 = 16
candidates for ∆x(7). For each S-box, we then expect two candidates for the corresponding
byte of LL−1(rk(8)) per candidate for ∆x(7) and hence we expect |RK(8)| ≈ 24 · 23 = 27.
Of course, those are the same candidates that we stored in T before. With this technique,

1See, e.g., https://www.blockchain.com/explorer/charts/hash-rate.

https://www.blockchain.com/explorer/charts/hash-rate

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 11

we reduce the memory complexity from about 3 · 224 · 27 · 3 bytes = 18 GB for T to about
3 · 3 · 28 · 256 bits = 72 KB to map the known differences to candidates for ∆x(7). For
the change in run time, naively, we have to compare one (main memory) lookup to a
couple of cached lookups and, on modern x86 CPUs, some AVX instructions. Although
the specific changes surely depend on the concrete hardware, we assume that this would
actually increase the run time on a single-core system. However, on a multi-core system
(or even on dedicated hardware), where the memory for T would be shared across many
computing units, it seems reasonable to assume that the latency of the many parallel main
memory lookups are doomed to be a bottleneck of the attack.

Our second idea based on the observation above aims at improving the complexity of
the intersection step. Recall that we have to compute (to avoid confusion with the byte
index j, we omit the index i of the used differential pair for ∆y(7) and v(8))

RK(8) ←
2⋂

i=0
Tδi

[∆y(7)]⊕ v(8)

for about 248 times. That is, we repeatedly have to intersect three sets of 24-bit values.
With the observation above this becomes

RK(8) ←
2⋂

i=0

⋃
γ

δi
S→γ

2×
j=0

(
D̃DT[∆x

(7)
j][∆y

(7)
j]⊕ v

(8)
j

)
.

Implementation-wise, it would be preferable to do 8-bit intersection because then each set
of 8-bit values can be represented by a 256-bit AVX register and the intersection is just an
AND operation. Now, our key observation is that we can swap the Cartesian product and
the union over the possible intermediate differences γ without loosing correctness of our
attack. Thereby, we achieve the desired 8-bit intersection but, of course, the outcome of
the intersection changes. That is, the now obtained set

R̃K
(8)
←

2×
j=0

2⋂
i=0

⋃
γ

δi
S→γ

(
D̃DT[∆x

(7)
j][∆y

(7)
j]⊕ v

(8)
ij

)

is a superset of the original candidates RK(8). Notice that R̃K
(8)
⊃ RK(8) directly implies

that our attack stays correct. Concerning the run time, to quantify the size of R̃K
(8)

,
consider Figure 2 again. There, the nonzero δ can transition to 127 possible γ. The
probability that γ transitions to a given difference ∆y(7) is about 2−3 (0.5 for each S-box)
and hence we only have to consider roughly 127 · 2−3 ≈ 16 values for γ. Notice that we can
either precompute a table T̃ for those, using 4.5 GB of memory, or use an approach similar
to the one presented above that eliminates the need for a large precomputation. Each γ is
mapped one-to-one to ∆x(7) and the lookup in D̃DT yields (roughly) 2 candidates for one
key byte. Hence, we expect approximately 32 candidates for each byte of rk(8) for each
differential pair.

We validate this claim by exhaustively computing the number of candidates in Figure 4
in the same manner as we did for the joined candidates in Figure 3. The plot for the first
and last byte are the same and given on the left hand side. They confirm our expectation
of 32 key candidates per byte. The plot for the middle byte is given on the right hand
side and is quite similar except for the outlier at χ = 256 which again is explained by
the fact that ∆x

(7)
1 = 0 is possible. Therefore, for the byte-wise intersections using three

differential pairs, we expect 23·5−2·8 = 2−1 candidates per byte and hence 2−3 in total. For
those, we check that ∆y(7) indeed is of the form (∗, 0, 0) and then continue as before. We
implemented this variation of our attack and give the experimental results in Subsection 3.5.

12 Cryptanalysis of HALFLOOP Block Ciphers

50 100 150 200 250
χ

0.02

0.04

0.06

0.08

0.10

0.12

Pr[|T̃δ[∆y7]|=χ]

(a) Plot for bytes j = 0 and j = 2. µ ≈ 31.14.

50 100 150 200 250
χ

0.02

0.04

0.06

0.08

0.10

0.12

Pr[|T̃δ[∆y7]|=χ]

(b) Plot for byte j = 1. µ ≈ 31.26.

Figure 4: Plot of Pr[|T̃δ[∆y(7)]| = χ] where the probability is taken over the uniform
choice of a nonzero δ ∈ F8

2 and ∆y(7) ∈ F24
2 . For clarity, there are no dots if the probability

is zero. The mean values µ are marked with dashed lines.

For an attack using only three good differential pairs, the impact of this is limited, as
the final brute force search with a complexity of 256 HALFLOOP-24 evaluations dominates
the run time. But, as discuss in the previous section, if we have access to a fourth
differential pair, we can reduce this to 248 evaluations. Then, we need as many intersection
computations as HALFLOOP-24 evaluations and therefore it is sensible to also optimize
the first phase.

A Note on an Integral Attack For completeness, we want to point out that, in terms of
time complexity, there is an even stronger attack, namely an integral attack. For this, we
consider plaintext-tweak structures with all possible δ instead of only pairs, i.e., plaintexts
and tweaks of the form{(

p⊕ (0, 0, δ), t⊕ (0, 0, δ, 0, 0, 0, 0, 0)
)
| δ ∈ F8

2
}

for some p ∈ F24
2 , t ∈ F64

2 . With this, we get a zero-sum property for each byte of x(8).
That is, for all j ∈ {0, 1, 2}, we have (omitting index i for readability)⊕

i

x
(8)
j = 0

and hence it is enough to guess 32 bits at once: all rk(10) and one byte of LL−1(rk(9)).
This way, it is also possible to recover the aforementioned 80 bits the master key with a
dominant time complexity of 3 · 28 · 232 times looking up to the S-box table. However, it
still remains to exhaustively search for the other remaining 48 bits of the key and more
importantly it comes with a significantly increased data complexity. Therefore, we do not
pursue this approach any further.

3.4 Practicality: Data Complexity in the Real World
We argue that the presented attack is practical in terms of time, memory and data
complexity. That is, we are confident that our attack can be applied against HALFLOOP-24
used in ALE in the real world, provided that the adversary indeed knows plaintexts, i.e.,
that they hold some light intelligence on the victim’s callsigns.

As discussed above, the time and memory complexity is very much practical: the
memory-wise worst variation of our attack needs only about 18 GB of memory and with

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 13

three good differential pairs we need only 256 HALFLOOP-24 evaluations. Since the attack
is trivial to parallelize, we claim that a large-scale, i.e., state-level adversary could run the
attack easily in less than an hour.

This leaves the data complexity, which was also the main restriction in [DDLS22], as
the limiting complexity. However, in contrast to [DDLS22], our attack does not rely on
a special ciphertext difference and therefore needs far less data. Recall, from [DDLS22],
that in a 16-minute window with n captured ALE frames there are about⌊

n2

8 −
n

2

⌋
differential pairs with a suitable tweak difference. Further, if we assume that on average
m messages are send per minute and that the probability that the plaintext difference
matches the tweak difference is ρ, the probability that a 16-minute window contains at
least one good pair is

1− (1− ρ)⌊ (16m)2
8 − 16m

2 ⌋ = 1− (1− ρ)⌊32m2−8m⌋.

As detailed in [DDLS22], the probability ρ that the plaintext difference is also fulfilled is
highly depended on the attacked network. For instance, if the network assigns callsigns
uniformly at random, it holds that ρ = 36−1 · 18−1 · 2−8 ≈ 2−17.3. However, as [DDLS22,
Table 3] demonstrates, at least in the case of unencrypted networks, there are examples
where this probability is as high as 0.215 · 2−8 ≈ 2−10.22. In that case, if we assume a
(high) number of m = 6 messages per minute, the probability for at least one good pair in
a 16-minute window is

1− (1− 2−10.22)1104 ≈ 0.60.

This in turn means that 0.6−1 · 4 windows of 16 minutes each, i.e., less than two hours of
intersected traffic is enough to mount our four-pair attack with more than 50% success
probability. In contrast, for the same setting, the attack in [DDLS22] needs around 541
years worth of traffic. In conclusion, we double down on the conclusion in [DDLS22]:
HALFLOOP-24 must not be used.

3.5 Experimental Results
We implemented the fine-tuned variation of our chosen-plaintext-tweak attack with three
differential pairs in a lab setting. Our implementation is freely available online.2 We
executed the full attack on a server equipped with two AMD EPYC 7742 64-Core processors.
We need about 50s for the precomputation steps and about 5 GB of memory. Checking all
248 candidates for (rk(10), rk(9)) took two weeks.

Furthermore, we use our implementation to experimentally validate our theoretical
analysis of the steps of our attack. To do so, we execute five partial runs of the attack,
i.e., we check only 232 out of the 248 candidates on our laptop. Regarding the number of
candidates per byte of rk(8), our experiments confirm the estimate of about 32 candidates
per byte. After computing the intersection, on average, 6.43% of the candidates for
(rk(10), rk(9)) are left. Notice that this is only half of what we predict in our analysis, i.e.,
our attack is better than initially assumed. However, the effect of this is only marginal,
simply because the preceding steps dominate the run time anyway. Also, recalling our
analysis, this slight inaccuracy is not unexpected. We assumed subsets of fixed size 32 and
also independence which is too simple considering that, again assuming fixed size 32, our
attack can only encounter

3 · 255 · 224(256
32

) ≈ 2−101

2For this submission, see supplementary material instead.

14 Cryptanalysis of HALFLOOP Block Ciphers

of all the possible subsets. For the surviving candidates, we check whether ∆y(6) ?= (∗, 0, 0)
holds and thereby reduce the portion of left candidates to 0.056%. In this experiment, no
candidate survived the final filter, i.e., there never was a candidate for rk(7). Considering
the small number of tested keys, this is as expected.

Notice that we omit the exhaustive search of the remaining key bits which was already
implemented in [DDLS22]. There the authors provide an implementation that finds the
remaining 48 bits of the master key in roughly 5h on a 16-core machine. If only three
differential pairs are available, this step has to be repeated about 256 times, but parallelizing
this step is trivial.

4 Time-Data-Memory Trade-off Attack on HALFLOOP
In this section, we present a time-data-memory trade-off (TDM-TO) attack [DH77] which
works on all three versions of full-round HALFLOOP. Recall that the tweak t is simply
XORed to the first half of the key. Due the simple tweakey schedule, it is possible to
use the following property: the encryption with key (k′ ∥ k′′) and tweak t is the same as
the encryption with (k′ ⊕ ∆ ∥ k′′) and t ⊕ ∆, for any 64-bit value ∆. This related-key
related-tweak property of the cipher makes it possible to launch a related-tweak TDM-TO
attack.

In the offline phase, the attacker randomly chooses d different plaintexts p1, . . . , pd.
Then for each 64-bit value of k′′, he computes the corresponding ciphertexts c1, . . . , cd

using the encryption with tweak 064, and key (064 ∥ k′′). He saves the value of k′′ in a hash
table T at index (c1, . . . , cd). For an attack on HALFLOOP-b, that means that each index
of the table contains 264−d·b elements, on average.

In the online phase of the attack, for each 64-bit tweak t, he queries the correspond-
ing ciphertexts for the same p1, . . . , pd plaintext values. We denote the corresponding
ciphertexts as c∗

1, . . . , c∗
d. By looking up to the index (c∗

1, . . . , c∗
d) of the hash table, he

has candidates for the 128-bit key used for encryption. Namely, for each 64-bit k∗ in
T [c∗

1, . . . , c∗
d], the 128-bit key value (t ∥ k∗) is a candidate for the correct key.

Since on average there are 264−d·b values in each index of the table, in total there
will be 264 · 264−d·b = 2128−d·b candidates for the 128-bit correct key. To find the exact
128-bit correct key, the attacker needs to query the corresponding ciphertexts for another
⌈ 128−d·b

b ⌉ = ⌈ 128
b ⌉ − d randomly chosen plaintext and tweak pairs. Then, he can do an

exhaustive search on those 2128−d·b candidate keys to find the correct key for the encryption.

Attack Complexity In this attack, in the offline phase, the attacker needs d·264 encryptions
to pre-compute the entries of the hash table. Then, in the online phase, he needs to query
the ciphertexts for d · 264 different plaintext-tweak values. Besides, the exhaustive search
step of the attack requires about computing 2128−d·b encryptions.

The data complexity of the attack is d · 264 chosen-plaintext-tweak data together with
⌈ 128

b ⌉− d known-plaintext-tweak data, and its memory complexity is saving the hash table
T . In the case of d · b < 64, the table requires saving about 264 of 64-bit words which is
equal to 267 bytes. In the case of d · b > 64, we can use the first 64 bits of the d ciphertext
values as an index for the table and put the rest of it, together with the value of k′′, in the
content of the index which it is then used in the matching. In this case, on average, each
index of the table contains one 64-bit value for the key and (d · b− 64)-bit value for the
remaining ciphertext(s) bits. This means saving the table requires memory of about 264

d · b-bit words.
For HALFLOOP-24, HALFLOOP-48, HALFLOOP-96, respectively by setting d = 3,

d = 2, d = 1, the complexity of attack is about 3 · 264, 265, 264 encryptions for each offline
and online computations, 3 · 264, 265, 264 of chosen-plaintext-tweak, and 9 · 267, 12 · 267,
12 · 267 bytes of memory.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 15

In conclusion, we highlight that to build a tweakey schedule, even with applying a
strong key schedules, simply XORing the tweak to (some part of) the master key is not
a correct approach. This always makes it possible tho have a TDM-TO attack with a
complexity of order 2|t| chosen-plaintext-tweak-ciphertext pair of data, and order of 2|k|−|t|

memory cost and computations in each offline and online phases.

5 Meet-in-the-Middle Attack on HALFLOOP
In this section, we present Demirci-Selçuk Meet-in-the-Middle (DS-MITM) attacks [DS08]
on full-round HALFLOOP-48 and reduced to 7-round HALFLOOP-96 block ciphers. By
the nature of MITM attacks, our attacks in this section, also focus on reducing the data
complexity.

5.1 DS-MITM Attack on Full-Round HALFLOOP-48
Consider the key schedule of HALFLOOP-48 shown in Figure 5. Since the tweak t is simply
XORed to the first half of the key, k′, by inserting a difference in a single byte of the tweak,
only some bytes of the round keys will be affected by this difference. For instance, for
the difference shown in Figure 5, for the tweak difference ∆t = (0, 0, 0, 0, 0, α, 0, 0), with α
being a nonzero 8-bit value, only 21 bytes (out of 66) shown with orange and red colors of
the round keys will be affected. The difference in 8 bytes of these 21 bytes is the same as
α which are determined with orange color. Namely:

∆rk(0) = (0, 0, 0, 0, 0, α) , ∆rk(1) = (0, 0, 0, 0, 0, 0) ,

∆rk(2) = (0, 0, 0, 0, 0, 0) , ∆rk(3) = (0, 0, 0, α, 0, 0) ,

∆rk(4) = (0, α, 0, 0, 0, α) , ∆rk(5) = (0, 0, β, 0, 0, 0) ,

∆rk(6) = (β, α, 0, 0, β, 0) , ∆rk(7) = (0, 0, β, α, 0, 0) ,

∆rk(8) = (γ, 0, 0, δ, β ⊕ γ, α) , ∆rk(9) = (0, δ, γ, α, 0, δ) ,

∆rk(10) = (β ⊕ γ, 0, 0, δ, γ, 0) ,

where

β = S(rk
(4)
2,1)⊕ S(rk

(4)
2,1 ⊕ α),

γ = S(rk
(7)
0,1)⊕ S(rk

(7)
0,1 ⊕ α)⊕ β,

δ = S(rk
(7)
2,0)⊕ S(rk

(7)
2,0 ⊕ β).

Due to the nonlinearity of above equations, for a given value of α determining values of
β, γ and δ requires knowing three round key bytes: rk

(4)
2,1, rk

(7)
2,0 and rk

(7)
0,1. This property

of the key schedule in HALFLOOP-48 makes it possible to launch a DS-MITM attack as it
is described in the following.

Forward Direction For a given α ∈ F8
2, we define the difference in plaintext and tweak

states as below:

∆p = (0, 0, 0, 0, 0, α) , ∆t = (0, 0, 0, 0, 0, α, 0, 0) .

This way it is possible to cancel the effect of tweak difference in the data path for the
first three rounds. In other words, we have ∆x(r) = ∆y(r) = ∆z(r) = (0, 0, 0, 0, 0, 0) for
r ∈ {0, 1, 2}. The difference in the data path propagates again by XOR of the difference in
rk(3) where we have ∆x(3) = (0, 0, 0, α, 0, 0).

16 Cryptanalysis of HALFLOOP Block Ciphers

k′ ⊕ t k′′

rk
(0)
0,0 rk

(0)
1,0 rk

(0)
2,0 rk

(0)
0,1 rk

(0)
1,1 rk

(0)
2,1 rk

(1)
0,0 rk

(1)
1,0 rk

(1)
2,0 rk

(1)
0,1 rk

(1)
1,1 rk

(1)
2,1 rk

(2)
0,0 rk

(2)
1,0 rk

(2)
2,0 rk

(2)
0,1

α

g

rk
(2)
1,1 rk

(2)
2,1 rk

(3)
0,0 rk

(3)
1,0 rk

(3)
2,0 rk

(3)
0,1 rk

(3)
1,1 rk

(3)
2,1 rk

(4)
0,0 rk

(4)
1,0 rk

(4)
2,0 rk

(4)
0,1 rk

(4)
1,1 rk

(4)
2,1 rk

(5)
0,0 rk

(5)
1,0

α α α

g

rk
(5)
2,0 rk

(5)
0,1 rk

(5)
1,1 rk

(5)
2,1 rk

(6)
0,0 rk

(6)
1,0 rk

(6)
2,0 rk

(6)
0,1 rk

(6)
1,1 rk

(6)
2,1 rk

(7)
0,0 rk

(7)
1,0 rk

(7)
2,0 rk

(7)
0,1 rk

(7)
1,1 rk

(7)
2,1

β β α β β α

g

rk
(8)
0,0 rk

(8)
1,0 rk

(8)
2,0 rk

(8)
0,1 rk

(8)
1,1 rk

(8)
2,1 rk

(9)
0,0 rk

(9)
1,0 rk

(9)
2,0 rk

(9)
0,1 rk

(9)
1,1 rk

(9)
2,1 rk

(10)
0,0 rk

(10)
1,0 rk

(10)
2,0 rk

(10)
0,1

γ δ β ⊕ γ α δ γ α δ β ⊕ γ δ

g

rk
(10)
1,1 rk

(10)
2,1

γ

Figure 5: Key schedule of HALFLOOP-48 together with the effect of tweak difference
(0, 0, 0, 0, 0, α, 0, 0). The orange and red blocks depict the round key bytes that will be
affected by the tweak difference: The orange ones are the bytes with difference equal to α,
but the red ones are the bytes whose difference is dependent on the value of some round
key bytes. The induced difference in these bytes are written in blue.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 17

By guessing the value of x
(3)
0,1, we can compute the value for ∆x(4):

∆x(4) = LL
((

0, 0, 0, S(x(3)
0,1 ⊕ α)⊕ S(x(3)

0,1), 0, 0
))
⊕ (0, α, 0, 0, 0, α) .

One step forward, by guessing the values for four bytes of x
(4)
i,j with (i, j) ∈ {(1, 0), (0, 1),

(1, 1), (2, 1)}, we can compute the values for five bytes of ∆x(5):

∆y
(4)
i,j =

{
S(x(4)

i,j)⊕ S(x(4)
i,j ⊕∆x

(4)
i,j) if (i, j) ∈ {(1, 0), (0, 1), (1, 1), (2, 1)} ,

0 otherwise ,

⇒ ∆x(5) = LL(∆y(4))⊕ (0, 0, 0, β, 0, 0) .

Since, determining value of β requires knowledge about the value of rk
(4)
2,1, we cannot

determine the value of ∆x
(5)
0,1 by only knowing the values for aforementioned five bytes

from x(3) and x(4).
As the last step in forward direction, by guessing the values for rk

(4)
2,1 and x(5), we can

compute the value for ∆x(6):

∆x(6) = LL
(
SB(x(5))⊕ SB(x(5) ⊕∆x(5))

)
⊕ (β, α, 0, 0, β, α) .

Figure 6 depicts the approach of making a meeting point at ∆x
(6)
0,0. The corresponding

bytes which we know their value by guessing the aforementioned 12 bytes, are shown
with orange color, and the bytes which we only know the difference in these bytes are
shown with apricot color, but we leave the bytes with zero-difference with white color.
We emphasis the bytes that we do not know the difference value in these positions, with
gray hatch pattern. Some of the bytes that we know its exact value by guessing those
aforementioned 12 bytes, are the bytes of z(5) that we will use this property in our attack.

Backward Direction To compute the value for x
(6)
0,0 from the ciphertext side, we need to

know the values for whole rk(10) and rk(9) round keys, together with three bytes in the
first column (the ones with (i, 0) indices) of the equivalent round key LL−1(rk(8)) and the
first byte (the one with (0, 0) index) of the equivalent round key LL−1(rk(7)).

We also need to compute the value for ∆x
(6)
0,0 from the ciphertext side for a given value

of α. Therefore, it is necessary to determine the values for β, γ and δ which requires
knowing rk

(4)
2,1, rk

(7)
2,0 and rk

(7)
0,1 round key bytes.

Considering the relation between the round key bytes based on the key schedule of
HALFLOOP-48 shown in Figure 5, some of these round key bytes are dependent. Thereby,
computing x

(6)
0,0 and ∆x

(6)
0,0 only requires rk(10), rk(9), rk

(8)
2,1, rk

(4)
2,1 round key bytes together

with extra 6 + 4 bits from the equivalent round key LL−1(rk(8)). In total, we need to guess
(6 + 6 + 1 + 1) · 8 + 6 + 4 = 122 bits of the 128-bit master key.

In Figure 6, the corresponding bytes or the bits which we know their value by guessing
the aforementioned 122 key bits, are shown with green color, and the bytes which we only
know linearly-dependent information of its bits are shown with green hatch pattern. We
emphasis the bytes or the bits that we do not know the difference value in these positions,
with gray hatch pattern.

Attack Procedure In the offline phase of the attack, we randomly choose d different
nonzero 8-bit values for α1, . . . , αd where d is an integer greater than 12. We denote the
value for ∆x

(6)
0,0 when α = αi by ∆x

(6)
0,0

∣∣
αi

for each i with 1 ≤ i ≤ d.

18 Cryptanalysis of HALFLOOP Block Ciphers

rk
(3
)α

x
(3
)

y
(3
)

z
(3
)

S
B

L
L

rk
(4
)

α

α
x
(4
)

y
(4
)

z
(4
)

S
B

L
L

rk
(5
)

β
x
(5
)

y
(5
)

S
B

L
L

z
(5
)

rk
(6
)

βα
β

x
(6
)

M
eetin

g
P
oin

t

y
(6
)

z
(6
)

S
B
−
1

L
L
−
1

rk
(7
)

β

α

x
(7
)

y
(7
)

z
(7
)

S
B
−
1

L
L
−
1

x
(8
)

rk
(8
)

γ
δ

β
⊕
γ

α

Figure
6:

D
em

irci-Selçuk
M

eet-in-the-M
iddle

attack
on

H
ALFLO

O
P-48.

T
he

bytes
w

hich
w

e
know

their
value

in
the

forw
ard

direction
are

show
n

w
ith

orange
color,and

the
bytes

w
hich

w
e

only
know

the
difference

in
these

bytes
are

show
n

w
ith

apricot
color.

T
he

bytes
w

hich
w

e
know

their
value

in
the

backw
ard

direction
are

show
n

w
ith

green
color.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 19

For all values for 12 bytes of x
(3)
0,1, x

(4)
i,j with (i, j) ∈ {(1, 0), (0, 1), (1, 1), (2, 1)}, x

(5)
i,j for

all i and j values, and rk
(4)
2,1, we compute the values of ∆x

(6)
0,0

∣∣
αi

for each αi and the value
of z

(5)
0,0. We save these (d + 1) bytes together with the value of rk

(4)
2,1 in a hash table T .

For ease of application, we can use the first 12 bytes (i.e., ∆x
(6)
0,0

∣∣
αi

with 1 ≤ i ≤ 12) as
of the index for the hash table and put the remaining (d− 10) bytes (i.e., ∆x

(6)
0,0

∣∣
αi

with
12 < i ≤ d, rk

(4)
2,1, and z

(5)
0,0) in the content of the table. This way, in average, each index of

the table contains (d− 10) bytes.
In the online phase, we choose a random plaintext p ∈ F48

2 , a random tweak t ∈ F64
2

and for each αi chosen in the offline phase, we define p|αi = p⊕∆p|αi and t|αi = t⊕∆t|αi .
For each plaintext-tweak pair (p|αi , t|αi), we query the corresponding ciphertext which
we denote it by c|αi . We also query the ciphertext c which corresponds to the (p, t)
plaintext-tweak pair.

For each 122-bit value for rk(10), rk(9), rk
(8)
2,1, rk

(4)
2,1 and the other 10 bits from

LL−1(rk(8)), we partially decrypt c and each c|αi , to compute x
(6)
0,0 and ∆x

(6)
0,0

∣∣
αi

for
all 1 ≤ i ≤ d. By looking up to the index x

(6)
0,0

∣∣
α1
∥ . . . ∥x

(6)
0,0

∣∣
α12

of the table T , we check
if the computed values for ∆x

(6)
0,0

∣∣
αi

with 12 < i ≤ d and rk
(4)
2,1 in the backward direction

match with the saved values from the forward direction. This matching happens with
probability of 2−8·(d−12+1) on average.

In the case of the first matching for ∆x
(6)
0,0

∣∣
αi

bytes, we use the saved value for z
(5)
0,0

from the offline phase and the computed value for x
(6)
0,0 from the online phase to get the

value for round key byte rk
(6)
0,0 by XORing those two bytes. Then, we check if this one

round key byte matches with the guessed value for 122 bits of the key. This matching
happens with a probability of 2128−122−8 = 2−2 on average.

In the case of the second matching, we have a candidate for the 128-bit master key.
Using this key candidate, we compute the encryption for already-existed plaintext-tweak
pairs (i.e., (p|αi

, t|αi
)) to see if the computed value is the same as the queried ciphertext

value (i.e., c|αi
).

Attack Complexity Applying this attack requires (d + 1) chosen-plaintext-tweak data
and a memory of saving 28·12 of (d− 10) bytes.

In the offline phase to compute the hash table T , we need (d + 1) · 28·12 of partial
encryptions. We optimize the cost of this partial encryption by splitting the guess of 10
bytes to several steps of guess-and-compute. This way, the cost of each partial encryption
will be about one look up table to the S-box table.

In the online phase, we need (d + 1) · 2122 times of partial decryption and 2122 times
looking up to T table. Again, we optimize the cost of this partial decryption by splitting the
guess to several steps of guess-and-compute. This way, the cost of each partial decryption
will be about two look up table to the inverse of S-box table. Besides, in the exhaustive
search step, there will be about 2128−8·(d−11)−2 key candidates.

By setting d = 12, our attack needs about 297 bytes of memory, together with about
1

60 · 13 · 296 encryptions in the offline phase, 2
60 · 13 · 2122 + 2128−8−2 encryptions with

2122 look-up tables in the online phase. That means the time complexity of the attack is
dominant by 2121 encryptions and 2122 look-up tables.

5.2 DS-MITM Attack on Reduced to 7-Round HALFLOOP-96
Figure 7 illustrates the key schedule of HALFLOOP-96 reduced to 7 rounds. Similar to the
key schedule in the smaller versions of the cipher, by inserting a difference in a single byte
of the tweak value, only some bytes of the round keys will be affected by this difference.

20 Cryptanalysis of HALFLOOP Block Ciphers

k′ ⊕ t k′′

rk
(0)
0,0 rk

(0)
1,0 rk

(0)
2,0 rk

(0)
3,0 rk

(0)
0,1 rk

(0)
1,1 rk

(0)
2,1 rk

(0)
3,1 rk

(0)
0,2 rk

(0)
1,2 rk

(0)
2,2 rk

(0)
3,2 rk

(1)
0,0 rk

(1)
1,0 rk

(1)
2,0 rk

(1)
3,0

α α

g

rk
(1)
0,1 rk

(1)
1,1 rk

(1)
2,1 rk

(1)
3,1 rk

(1)
0,2 rk

(1)
1,2 rk

(1)
2,2 rk

(1)
3,2 rk

(2)
0,0 rk

(2)
1,0 rk

(2)
2,0 rk

(2)
3,0 rk

(2)
0,1 rk

(2)
1,1 rk

(2)
2,1 rk

(2)
3,1

α

g

rk
(2)
0,2 rk

(2)
1,2 rk

(2)
2,2 rk

(2)
3,2 rk

(3)
0,0 rk

(3)
1,0 rk

(3)
2,0 rk

(3)
3,0 rk

(3)
0,1 rk

(3)
1,1 rk

(3)
2,1 rk

(3)
3,1 rk

(3)
0,2 rk

(3)
1,2 rk

(3)
2,2 rk

(3)
3,2

α α α α

g

rk
(4)
0,0 rk

(4)
1,0 rk

(4)
2,0 rk

(4)
3,0 rk

(4)
0,1 rk

(4)
1,1 rk

(4)
2,1 rk

(4)
3,1 rk

(4)
0,2 rk

(4)
1,2 rk

(4)
2,2 rk

(4)
3,2 rk

(5)
0,0 rk

(5)
1,0 rk

(5)
2,0 rk

(5)
3,0

α β α β α β α β

g

rk
(5)
0,1 rk

(5)
1,1 rk

(5)
2,1 rk

(5)
3,1 rk

(5)
0,2 rk

(5)
1,2 rk

(5)
2,2 rk

(5)
3,2 rk

(6)
0,0 rk

(6)
1,0 rk

(6)
2,0 rk

(6)
3,0 rk

(6)
0,1 rk

(6)
1,1 rk

(6)
2,1 rk

(6)
3,1

α γ δ γ β ⊕ δ α γ δ γ β ⊕ δ

g

rk
(6)
0,2 rk

(6)
1,2 rk

(6)
2,2 rk

(6)
3,2 rk

(7)
0,0 rk

(7)
1,0 rk

(7)
2,0 rk

(7)
3,0 rk

(7)
0,1 rk

(7)
1,1 rk

(7)
2,1 rk

(7)
3,1 rk

(7)
0,2 rk

(7)
1,2 rk

(7)
2,2 rk

(7)
3,2

α ϵ ζ δ α ϵ γ ⊕ ζ β ϵ ζ β ⊕ δ ϵ γ ⊕ ζ

Figure 7: Key schedule of HALFLOOP-96 reduced to 7 rounds together with the effect
of tweak difference (α, 0, 0, 0, α, 0, 0, 0). The orange and red blocks depict the round key
bytes that will be affected by the tweak difference: The orange ones are the bytes with
difference equal to α, but the red ones are the bytes whose difference is dependent on the
value of some round key bytes. The induced difference in these bytes are written in blue.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 21

For the example shown in Figure 7 with the tweak difference ∆t = (α, 0, 0, 0, α, 0, 0, 0),
with α being a nonzero 8-bit value, only 38 bytes (out of 8 · 12 = 96) shown with orange
and red colors of the round keys will be affected. The difference in the 15 bytes of these 38
bytes is the same as α which are determined with orange color. Namely:

∆rk(0) = (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0) ,

∆rk(1) = (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0) ,

∆rk(2) = (0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0) ,

∆rk(3) = (α, 0, 0, 0, α, 0, 0, 0, α, 0, 0, 0) ,

∆rk(4) = (α, 0, 0, β, α, 0, 0, β, α, 0, 0, β) ,

∆rk(5) = (α, 0, 0, β, α, 0, γ, δ, 0, 0, γ, β ⊕ δ) ,

∆rk(6) = (α, 0, γ, δ, 0, 0, γ, β ⊕ δ, α, ϵ, ζ, δ) ,

∆rk(7) = (α, ϵ, γ ⊕ ζ, β, 0, ϵ, ζ, β ⊕ δ, 0, ϵ, γ ⊕ ζ, 0) ,

where

β = S(rk
(3)
0,2)⊕ S(rk

(3)
0,2 ⊕ α) , γ = S(rk

(5)
3,0)⊕ S(rk

(5)
3,0 ⊕ β)⊕ β ,

δ = S(rk
(5)
0,0)⊕ S(rk

(5)
0,0 ⊕ α) , ϵ = S(rk

(6)
2,1)⊕ S(rk

(6)
2,1 ⊕ γ) ,

ζ = S(rk
(6)
3,1)⊕ S(rk

(6)
3,1 ⊕ β ⊕ δ)⊕ γ .

Due to the nonlinearity of above equations, for a given value of α determining values
of β, γ, δ, ϵ and ζ requires knowing five round key bytes: rk

(3)
0,2, rk

(5)
0,0, rk

(5)
3,0, rk

(6)
2,1 and rk

(6)
3,1.

Applying this property of the key schedule in HALFLOOP-96, we present a DS-MITM
attack on its reduced to 7-rounds version of the cipher in the following.

Forward Direction For a given α ∈ F8
2, we define the difference in plaintext and tweak

states as below:

∆p = (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0) , ∆t = (α, 0, 0, 0, α, 0, 0, 0) .

This way it is possible to cancel the effect of tweak difference in the data path for the
first round: i.e., we have ∆x(0) = ∆y(0) = ∆z(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). The
difference in the data path propagates again by XOR of the difference in rk(1) where we
have ∆x(1) = (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0).

By guessing the value of x
(1)
0,1, we can compute the value for ∆x(2):

⇒ ∆y(1) =
(
0, 0, 0, 0, S(x(1)

0,1 ⊕ α)⊕ S(x(1)
0,1), 0, 0, 0, 0, 0, 0, 0

)
⇒ ∆x(2) = LL(∆y(1))⊕ (0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0) .

One step forward, by guessing the values for five bytes of x
(2)
i,j with (i, j) ∈ {(0, 1), (1, 1),

(2, 1), (3, 1), (0, 2)}, we can compute ∆x(3).

⇒ ∆y
(2)
i,j =

S(x(2)

i,1)⊕ S(x(2)
i,1 ⊕∆x

(2)
i,1) if j = 1 ,

S(x(2)
0,2)⊕ S(x(2)

0,2 ⊕ α) if (i, j) = (0, 2) ,

0 otherwise ,

⇒ ∆x(3) = LL(∆y(2))⊕ (α, 0, 0, 0, α, 0, 0, 0, α, 0, 0, 0) .

One more step forward, by guessing the values for five bytes of x
(3)
i,j with (i, j) ∈

{(0, 0), (1, 0), (3, 0), (1, 1), (2, 1), (2, 2), (3, 2)}, we can compute the difference in the first
column of the output for third round, i.e., ∆z

(3)
i,0 :

⇒ ∆y
(3)
i,j = S(x(3)

i,j)⊕ S(x(3)
i,j ⊕∆x

(3)
i,j) for (i, j) in the aforementioned set ,

⇒ ∆z
(3)
i,0 = LL

(
(∆y

(3)
0,0, ∆y

(3)
1,0, 0, ∆y

(3)
3,0, 0, ∆y

(3)
1,1, ∆y

(3)
2,1, 0, 0, 0, ∆y

(3)
2,2, ∆y

(3)
2,3)

)
i,0 ∀i .

22 Cryptanalysis of HALFLOOP Block Ciphers

Note that not only the difference in these five bytes can be computed, but also their exact
value can be computed:

z
(3)
i,0 = LL

((
S(x(3)

0,0), S(x(3)
1,0), 0, S(x(3)

3,0), 0, S(x(3)
1,1), S(x(3)

2,1), 0, 0, 0, S(x(3)
2,2), S(x(3)

3,2)
))

i,0
∀i .

Figure 8 illustrates our approach for making a meeting point at z
(3)
0,0 and ∆z

(3)
0,0 bytes.

The corresponding bytes which we know their value by guessing the aforementioned 13
bytes, are shown with orange color, and the bytes which we only know the difference in
these bytes are shown with apricot color, but we leave the bytes with zero-difference with
white color. We emphasis the bytes that we do not know the difference value in these
positions, with gray hatch pattern.

Backward Direction To compute the value for z
(3)
0,0 from the ciphertext side, we need to

know the values for whole rk(7) round key, four bytes in the first column (the ones with
(i, 0) indices) of the equivalent round key LL−1(rk(6)), the first byte (the one with (0, 0)
index) of the equivalent round key LL−1(rk(5)), and rk

(4)
0,0 round key byte.

We also need to compute the value for ∆z
(3)
0,0 from the ciphertext side for a given value

of α. Therefore, it is necessary to determine the values for β, γ, δ, ϵ and ζ which requires
knowing rk

(3)
0,2, rk

(5)
0,0, rk

(5)
3,0, rk

(6)
2,1 and rk

(6)
3,1 round key bytes.

Considering the relation between the round key bytes based on the key schedule of
HALFLOOP-96 shown in Figure 7, some of these round key bytes are dependent. Thereby,
computing z

(3)
0,0 and ∆z

(3)
0,0 only requires knowing the values for whole rk(7) round key, rk

(3)
0,2

round key byte together with extra 6 + 4 bits from the equivalent round key LL−1(rk(6)).
In total, we need to guess (12 + 1) · 8 + 6 + 4 = 114 bits of the 128-bit master key.

In Figure 8, the corresponding bytes which we know their value by guessing the
aforementioned 114 key bits, are shown with green color, and the bytes which we only
know linearly-dependent information of its bits are shown with green hatch pattern. We
emphasis the bytes or the bits that we do not know the difference value in these positions,
with gray hatch pattern.

Attack Procedure The attack procedure is very similar to the attack on full-round
HALFLOOP-48 in the previous subsection. In the offline phase of the attack, we set α0 to
be zero and randomly choose (d− 1) different nonzero 8-bit values for α1, . . . , αd−1 where
d is an integer greater than 13. We denote the value for ∆z

(3)
0,0 when α = αi by ∆z

(3)
0,0

∣∣
αi

and also define z
(3)
0,0

∣∣
αi

with z
(3)
0,0

∣∣
αi

= z
(3)
0,0 ⊕∆z

(3)
0,0

∣∣
αi

for each i with 0 ≤ i < d. Note that
z

(3)
0,0

∣∣
α0

= z
(3)
0,0.

For all values for 13 bytes of x
(1)
0,1, x

(2)
i,j with (i, j) ∈ {(0, 1), (1, 1), (2, 1), (3, 1), (0, 2)},

and x
(3)
i,j with (i, j) ∈ {(0, 0), (1, 0), (3, 0), (1, 1), (2, 1), (2, 2), (3, 2)}, we compute the values

of z
(3)
0,0

∣∣
αi

for each αi. We save these d bytes in a hash table T .
We use the first 13 bytes (i.e., z

(3)
0,0

∣∣
αi

with 0 ≤ i ≤ 12) as of the index for the hash
table and put the remaining (d− 13) bytes (i.e., z

(3)
0,0

∣∣
αi

with 12 < i < d in the content of
the table. This way, in average, each index of the table contains (d− 13) bytes.

In the online phase, we choose a random plaintext p ∈ F96
2 , a random tweak t ∈ F64

2
and for each αi, we define p|αi = p⊕∆p|αi and t|αi = t⊕∆t|αi . For each plaintext-tweak
pair (p|αi

, t|αi
), we query the corresponding ciphertext which we denote it by c|αi

.
For each 114-bit value for rk(7), rk

(3)
0,2 and other 10 bits from LL−1(rk(6)), we partially

decrypt each c|αi to compute z
(3)
0,0

∣∣
αi

. By looking up to the index z
(3)
0,0

∣∣
α0
∥ . . . ∥ z

(3)
0,0

∣∣
α12

of

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 23

rk
(1
)

x
(1
)

y
(1
)

z(
1
)

rk
(2
)

x
(2
)

y
(2
)

z(
2
)

rk
(3
)

x
(3
)

y
(3
)

z(
3
)

M
ee
ti
n
g
P
oi
n
t

rk
(4
)

x
(4
)

y
(4
)

z(
4
)

rk
(5
)

x
(5
)

y
(5
)

z(
5
)

rk
(6
)

x
(6
)

S
B

L
L

S
B

L
L

S
B

L
L

S
B
−
1

L
L
−
1

S
B
−
1

L
L
−
1

Fi
gu

re
8:

D
em

irc
i-S

el
çu

k
M

ee
t-

in
-t

he
-M

id
dl

e
at

ta
ck

on
re

du
ce

d
to

7-
ro

un
d

H
AL

FL
O

O
P-

96
.

T
he

by
te

s
w

hi
ch

w
e

kn
ow

th
ei

r
va

lu
e

in
th

e
fo

rw
ar

d
di

re
ct

io
n

ar
e

sh
ow

n
w

ith
or

an
ge

co
lo

r,
an

d
th

e
by

te
s

w
hi

ch
w

e
on

ly
kn

ow
th

e
di

ffe
re

nc
e

in
th

es
e

by
te

s
ar

e
sh

ow
n

w
ith

ap
ric

ot
co

lo
r.

T
he

by
te

s
w

hi
ch

w
e

kn
ow

th
ei

r
va

lu
e

in
th

e
ba

ck
w

ar
d

di
re

ct
io

n
ar

e
sh

ow
n

w
ith

gr
ee

n
co

lo
r.

24 Cryptanalysis of HALFLOOP Block Ciphers

the table T , we check if the computed values for z
(3)
0,0

∣∣
αi

with 12 < i < d in the backward
direction match with the saved value from the forward direction. This matching happens
with probability of 2−8·(d−13) in average.

In the case of matching, we have a candidate for 114 bits from the 128-bit master
key. Using this candidate, and guessing the remaining 14 bits we compute the encryption
for already-existed plaintext-tweak pairs to see if the computed value is the same as the
queried ciphertext value.

Attack Complexity Applying this attack requires d chosen-plaintext-tweak data and a
memory for saving 28·13 of (d− 13) bytes.

In the offline phase to compute the hash table T , we need d ·28·13 of partial encryptions.
We optimize the cost of this partial encryption by splitting the guess of 13 bytes to several
steps of guess-and-compute. This way, the cost of each partial encryption will be about
one look up table to the S-box table.

In the online phase, we need d · 2114 times of partial decryption and 2114 times looking
up to T table. Again, we optimize the cost of this partial decryption by splitting the guess
to several steps of guess-and-compute. This way, the cost of each partial decryption will be
about three look up table to the inverse of S-box table. Besides, in the exhaustive search
step, there will be about 2128−8·(d−13) key candidates.

By setting d = 15, our attack needs about 2105 bytes of memory, together with about
1

120 · 15 · 2104 encryptions in the offline phase, 3
120 · 15 · 2114 + 2128−8·2 encryptions with

2114 look-up tables in the online phase. That means the time complexity of the attack is
dominant by about 2113.3 encryptions and 2114 look-up tables.

6 Conclusion
We presented attacks on HALFLOOP-24 that are practical in all dimensions, in particular
in terms of the data complexity. We therefore can only iterate what was already stated
in [Dan21]: HALFLOOP does not provide adequate protection and should not be used.

This leaves the obvious question on how to fix the flaws in the design of HALFLOOP.
Given our analysis, it is obvious that a different tweak-key scheduling should be deployed in
order to avoid the generic attacks presented in Section Section 4. Besides that, we actually
think that the design of the round function itself is sound but obviously the number of
rounds is not adequate. Thus a possible fix with limited effort is to use a tweak-key
scheduling along the lines of TWEAKEY framework [JNP14] and more rounds, e.g. 20
instead of 10 should provide ample security margin even in the case of HALFLOOP-24.
Detailing out the design and the analysis of such a cipher is left as possible future work.

References
[BG12] Alex Biryukov and Johann Großschädl. Cryptanalysis of the full AES using

gpu-like special-purpose hardware. Fundam. Informaticae, 114(3-4):221–237,
2012.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Tokyo, Japan, December 6-10,
2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages
1–18. Springer, 2009.

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes 25

[Dan21] Marcus Dansarie. Cryptanalysis of the sodark cipher for HF radio automatic
link establishment. IACR Trans. Symmetric Cryptol., 2021(3):36–53, 2021.

[DDLS22] Marcus Dansarie, Patrick Derbez, Gregor Leander, and Lukas Stennes. Breaking
HALFLOOP-24. IACR Trans. Symmetric Cryptol., 2022(3):217–238, 2022.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanalysis
of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

[DoD17] Interoperability and performance standards for medium and high frequency
radio systems. United States Department of Defense Interface Standard MIL-
STD-188-141D, 2017.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round
AES. In Fast Software Encryption, 15th International Workshop, FSE 2008,
Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages
116–126, 2008.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of
Lecture Notes in Computer Science, pages 274–288. Springer, 2014.

[Joh92] Eric E Johnson. A 24-bit encryption algorithm for linking protection. Technical
report, Technical Report ASQB-OSO-S-TR-92-04, USAISEC, 1992.

[KR11] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

	Introduction
	Preliminaries
	Description of HALFLOOP and Related Notation

	Attack on HALFLOOP-24
	Our New Attack
	Analysis of the Attack
	Fine-Tuning the Attack
	Practicality: Data Complexity in the Real World
	Experimental Results

	Time-Data-Memory Trade-off Attack on HALFLOOP
	Meet-in-the-Middle Attack on HALFLOOP
	DS-MITM Attack on Full-Round HALFLOOP-48
	DS-MITM Attack on Reduced to 7-Round HALFLOOP-96

	Conclusion

