Hashing into quadratic residues modulo a safe prime composite

Sietse Ringers

February 25, 2021

Set $n=p q$, and set p^{\prime}, q^{\prime} such that $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$. Suppose p, q are safe primes, i.e., p^{\prime} and q^{\prime} are also prime. Call a function H a cryptographic hash function if it is (second) pre-image resistant and collision resistant. Given a cryptographic hash function H whose output is sufficiently long, it is possible to define another hash function H_{n} as the composition of H and squaring modulo n. This document proves in section 1 that then H_{n} is also a cryptographic hash function, after first showing three preliminary propositions that we use in our proof. Then in section 2 we provide an explicit description of the hash function H_{n} in pseudocode.

We write \mathbb{Z}_{n}^{*} for $(\mathbb{Z} / n \mathbb{Z})^{*}$, the multiplicative group of the integers modulo n having an inverse (i.e. $0<x<n$ with $\operatorname{gcd}(x, n)=1$). Additionally we write $Q R_{n}=\left(\mathbb{Z}_{n}^{*}\right)^{2}=\left\{x^{2} \mid x \in \mathbb{Z}_{n}^{*}\right\}$ for the group of quadratic residues modulo n.

1 Proving security

Proposition 1. \mathbb{Z}_{n}^{*} contains exactly four square roots of 1, i.e. elements X such that $X^{2}=1$, namely:

- $1 \bmod n$
- $n-1 \bmod n$
- $R:=P p-Q q \bmod n$, where P, Q are the integers such that $P p+Q q=$ 1, given by the extended Euclidean algorithm
- $n-R \bmod n$

Proof. It is clear that 1 and $n-1$ square to $1 \bmod n$. Due to the Chinese Remainder Theorem (CRT), \mathbb{Z}_{n}^{*} is isomorphic to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$. The order of the two group factors is $p-1=2 p^{\prime}$ and $q-1=2 q^{\prime}$ respectively. Both of those groups have a subgroup of order 2 , namely the ones generated by $-1 \bmod p$ and $-1 \bmod q$ respectively, and because of Lagrange's theorem those must be the only such subgroups. Therefore because of the CRT isomorphism, \mathbb{Z}_{n}^{*} has two distinct subgroups of order two, generated by $(1,-1)$ and $(-1,1)$. Under the inverse of that isomorphism these are $R=P p-Q q \bmod n$ and $-R=n-R \bmod n$.

Proposition 2. Any quadratic residue $Y=X^{2} \bmod n \in Q R_{n}$ unequal to 1 has exactly four square roots in \mathbb{Z}_{n}^{*}, namely $X \bmod n, n-X \bmod n, R X \bmod$ n and $n-R X \bmod n$. Two of these have representatives smaller than or equal to $(n-1) / 2$.

Proof. That the mentioned numbers square to Y is easily seen using direct computation. Furthermore, if X and Z have the same square $\bmod n$, then $X / Z \bmod n$ squares to $1 \bmod n$, so if any Y had more than four distinct roots then this would yield a fifth square root of one which does not exist.

As to the second claim of the proposition, one of X and $n-X$ must be smaller than or equal to $(n-1) / 2$, and then the other will be larger. The same must hold of the smallest representatives of $R X \bmod n$ and $n-$ $R X \bmod n$.
Proposition 3. If one knows one of the nontrivial square roots of $1 \in Q R_{n}$ (i.e. not 1 or $n-1$), then one can factor n.

Proof. Denote the square root again with R. Since $R^{2}=1 \bmod n$ we have $R^{2}-1=(R+1)(R-1)=0 \bmod n$; i.e. for some integer $a,(R+1)(R-1)$ is of the form $(R+1)(R-1)=a n=a p q$, with $a \neq 0$ since $R \neq 1$. Now since p is prime, it must divide one of the two factors, $R+1$ or $R-1$. Since $R+1 \neq p q=n$ (as we assumed the square root was nontrivial), it follows that q must divide the other factor. So the factors of n are $\operatorname{gcd}(n, R-1)$ and $\operatorname{gcd}(n, R+1)$.

Since $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$ are safe primes, the order of \mathbb{Z}_{n}^{*} is $\phi(n)=$ $(p-1)(q-1)=4 p^{\prime} q^{\prime}$. Then it is easy to see that the order or $Q R_{n}$ equals $p^{\prime} q^{\prime}$. For example, using CRT, the fact that \mathbb{Z}_{p}^{*} and \mathbb{Z}_{q}^{*} are cyclic, and then CRT again, we have

$$
\mathbb{Z}_{n}^{*} \cong \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*} \cong \mathbb{Z}_{2 p^{\prime}} \times \mathbb{Z}_{2 q^{\prime}} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{p^{\prime}} \times \mathbb{Z}_{q^{\prime}}
$$

Then the quadratic residues in \mathbb{Z}_{n}^{*} are those whose two components in the two group factors \mathbb{Z}_{2} equal 0 . This means that the order of $Q R_{n}$ is indeed $p^{\prime} q^{\prime}$.

Theorem 1. If $f:\{0,1\}^{*} \rightarrow Q R_{n}$ is any function such that $f(x)=1$ does not happen or happens with negligible probability, and if factoring is hard, then its output will be a generator of $Q R_{n}$ with overwhelming probability.

Proof. Suppose $G=f(x)$ is not a generator; that is, its order is not the maximal order $p^{\prime} q^{\prime}$. Without loss of generality let its order be p^{\prime}, so that $1=G^{p^{\prime}} \bmod n$. Since $n=p q$, reducing modulo p gives the identity

$$
1=G^{p^{\prime}} \bmod q=(G \bmod q)^{p^{\prime}} \bmod q .
$$

Now $G \bmod q$ is an element of \mathbb{Z}_{q}^{*}, whose group order is $2 q^{\prime}$, and since G is a quadratic residue the order of $G \bmod q$ cannot be $2 q^{\prime}$, so it must be either 1 or q^{\prime}. In the latter case, our identity $(G \bmod q)^{p^{\prime}}=1 \bmod q$ would imply that q^{\prime} divides p^{\prime} which is impossible because p^{\prime} is prime. Therefore, the order of $G \bmod q$ in \mathbb{Z}_{q}^{*} is 1 , i.e. $G=1 \bmod q$. This implies that $G-1=a q$ for some a, i.e., $\operatorname{gcd}(n, G-1)=q$.

Theorem 2. Let $H:\{0,1\}^{*} \rightarrow[2,(n-1) / 2]$ be a cryptographic hash function (i.e. it is collision resistant and (second) pre-image resistant). Define H_{n} : $\{0,1\}^{*} \rightarrow Q R_{n}$ by $H_{n}(x)=H(x)^{2} \bmod n$. If factoring is hard, then H_{n} is also a cryptographic hash function, which outputs generators of $Q R_{n}$ with overwhelming probability.

Proof. First note that the output of H will have with overwhelming probability a multiplicative inverse $\bmod n$, i.e. $\operatorname{gcd}(H(x), n)=1$, because if not, then $\operatorname{gcd}(H(x), n)$ will factor n. So with some abuse of notation, we may consider the range of H to be a subset of \mathbb{Z}_{n}^{*}, so that the range of H_{n} is indeed $Q R_{n}$.

Suppose H_{n} is not collision resistant, so let $x_{1} \neq x_{2}$ be such that $H_{n}\left(x_{1}\right)=$ $H_{n}\left(x_{2}\right) \bmod n$. Then by Proposition $2, H\left(x_{1}\right)$ equals $H\left(x_{2}\right)$ or $n-H\left(x_{2}\right)$ or $R H\left(x_{2}\right) \bmod n$ or $n-R H\left(x_{2}\right) \bmod n$. It cannot be $n-H\left(x_{2}\right)$ since that exceeds $(n-1) / 2$. Similarly, of $R H\left(x_{2}\right) \bmod n$ and $n-R H\left(x_{2}\right) \bmod n$, only one will have a smallest representative that is smaller than $(n-1) / 2$. Suppose without loss of generality that it is $R H\left(x_{2}\right)$. Summarizing, then, we have either $H\left(x_{1}\right)=H\left(x_{2}\right)$ or $H\left(x_{1}\right)=R H\left(x_{2}\right)$. Now in the latter case we have $H\left(x_{1}\right) / H\left(x_{2}\right)=R \bmod n$: one of the nontrivial square roots of 1 (since $1<H(\cdot)<n-1$). So if the latter case holds with non-negligible probability, then we have a non-negligible chance of being able to factor n, by Proposition 3. Thus we must have $H\left(x_{1}\right)=H\left(x_{2}\right)$. So any algorithm that breaks collision resistance of H_{n} can be used to break that of H, which is impossible since we assumed H to be collision resistance.

Collision resistance implies second pre-image resistance. Ordinary preimage resistance can be proven with an almost identical argument as above.

The fact that H_{n} outputs generators with overwhelming probability is proven in the previous theorem.

Because the hash function is the composition of H and squaring modulo n, and because for each integer smaller than or equal to $(n-1) / 2$ there is exactly one other such integer that squares to the same quadratic residue by Proposition 2, H_{n} has exactly twice as much collisions as H itself. This is to be expected, however, since the range of H_{n} is half as large as the maximal range of H (which we take to be the lower half of \mathbb{Z}_{n}^{*}, as above). Additionally, the fact that all quadratic residues have exactly two roots smaller than the upper bound ensures that this non-injectiveness of the square function does not cause particular values of $Q R_{n}$ to be returned by H_{n} more often than others. Summarizing, the output of H_{n} "appears as random" as can be expected.

2 Instantiation and implementation

In this section we describe the cryptographic hash function H_{n} in more detail. For convenience, we interpret the output of our hash functions as large integers; that is, we assume an implicit conversion of the output bytes to integers.

Generally the construction below can be done for any hash function H of sufficiently long output length, but for concreteness we take $H(x)=$ SHAKE256 (x, d). Here SHAKE256 from the SHA3 function family is a socalled Extendible Output Function (XOF): a function that has variable output length, specified in bits as the second parameter d, with the property that for any fixed d the function $\operatorname{SHAKE} 256(\cdot, d)$ is a cryptographic hash function, and moreover if $d^{\prime}>d$ then the first d bits of SHAKE256 $\left(\cdot, d^{\prime}\right)$ coincide with SHAKE256(\cdot, d).

Let $L_{n}=|n|$ be the length in bits of the modulus (i.e. 1024, 2048 or 4096). As the theorem above states, for the security of H_{n} it is important that the cryptographic hash function H has the appropriate maximum output; specifically, its output should be smaller than or equal to $(n-1) / 2$. Now since SHAKE256(\cdot, d) outputs d bits the upper limit of its output is 2^{d} instead of $(n-1) / 2$. Setting $d=L_{n}-1=|(n-1) / 2|$, our hash functions will thus sometimes output an integer smaller than 2^{d} but larger than $(n-1) / 2$. We can "fix" that by prepending our input bytes with a counter i starting at 0 , i.e. when hashing x we return $H(0 \| x)$ if that is below the upper bound, and if it exceeds $(n-1) / 2$ we increment i until $H(i \| x) \leq(n-1) / 2$. We do the same in the (unlikely) case that H outputs 0 or 1 . To prevent attacks
where x is crafted with a specific i as its first few bits, one should use an encoding such as DER-ASN1 for $i \| x$. Note that this does not mean that an implementation has to include a generic ASN1 parser; instead one can work out once and then hardcode the bytes of a DER encoding of the following ASN1 sequence:

```
HashInput ::= SEQUENCE {
    i INTEGER,
    x OCTET STRING
}
```

Finally, in implementations it might only be possible to specify the output length of SHAKE256 in bytes instead of in bits. In this case, one can simply request $L_{n} / 8$ output bytes and then discard the rightmost bit to end up with the required $d=L_{n}-1$ bits.

A description of the algorithm computing H_{n} summarizing the above may be found in pseudocode below. We assume there that SHAKE256 takes its output length as the second parameter in bits.

```
Algorithm 1 Cryptographic hash function \(H_{n}:\{0,1\}^{*} \rightarrow Q R_{n}\)
    function \(H_{n}(x)\)
        \(i \leftarrow 0\)
        repeat
            \(O \leftarrow \operatorname{SHAKE256}\left(\mathrm{DER}-\operatorname{ASN} 1(i, x), L_{n}-1\right)\)
            \(i \leftarrow i+1\)
        until \(1<O \leq(n-1) / 2\)
        return \(O^{2} \bmod n\)
    end function
```

