Hashing into quadratic residues
modulo a safe prime composite

Sietse Ringers

February 25, 2021

Set \(n = pq \), and set \(p', q' \) such that \(p = 2p' + 1 \) and \(q = 2q' + 1 \). Suppose \(p, q \) are safe primes, i.e., \(p' \) and \(q' \) are also prime. Call a function \(H \) a cryptographic hash function if it is (second) pre-image resistant and collision resistant. Given a cryptographic hash function \(H \) whose output is sufficiently long, it is possible to define another hash function \(H_n \) as the composition of \(H \) and squaring modulo \(n \). This document proves in section 1 that then \(H_n \) is also a cryptographic hash function, after first showing three preliminary propositions that we use in our proof. Then in section 2 we provide an explicit description of the hash function \(H_n \) in pseudocode.

We write \(\mathbb{Z}_n^* \) for \((\mathbb{Z}/n\mathbb{Z})^*\), the multiplicative group of the integers modulo \(n \) having an inverse (i.e. \(0 < x < n \) with \(\gcd(x,n) = 1 \)). Additionally we write \(QR_n = (\mathbb{Z}_n^*)^2 = \{ x^2 \mid x \in \mathbb{Z}_n^* \} \) for the group of quadratic residues modulo \(n \).

1 Proving security

Proposition 1. \(\mathbb{Z}_n^* \) contains exactly four square roots of 1, i.e. elements \(X \) such that \(X^2 = 1 \), namely:

- \(1 \mod n \)
- \(n - 1 \mod n \)
- \(R := Pp - Qq \mod n \), where \(P, Q \) are the integers such that \(Pp + Qq = 1 \), given by the extended Euclidean algorithm
- \(n - R \mod n \)
Proof. It is clear that 1 and \(n - 1 \) are square to 1 mod \(n \). Due to the Chinese Remainder Theorem (CRT), \(\mathbb{Z}_n^* \) is isomorphic to \(\mathbb{Z}_p^* \times \mathbb{Z}_q^* \). The order of the two group factors is \(p - 1 = 2p' \) and \(q - 1 = 2q' \) respectively. Both of those groups have a subgroup of order 2, namely the ones generated by \(-1 \mod p\) and \(-1 \mod q\) respectively, and because of Lagrange’s theorem those must be the only such subgroups. Therefore because of the CRT isomorphism, \(\mathbb{Z}_n^* \) has two distinct subgroups of order two, generated by \((1, -1)\) and \((-1, 1)\). Under the inverse of that isomorphism these are \(R = Pp - Qq \mod n \) and \(-R = n - R \mod n \).

Proposition 2. Any quadratic residue \(Y = X^2 \mod n \in QR_n \) unequal to 1 has exactly four square roots in \(\mathbb{Z}_n^* \), namely \(X \mod n \), \(n - X \mod n \), \(RX \mod n \) and \(n - RX \mod n \). Two of these have representatives smaller than or equal to \((n - 1)/2\).

Proof. That the mentioned numbers square to \(Y \) is easily seen using direct computation. Furthermore, if \(X \) and \(Z \) have the same square mod \(n \), then \(X/Z \mod n \) squares to 1 mod \(n \), so if any \(Y \) had more than four distinct roots then this would yield a fifth square root of one which does not exist.

As to the second claim of the proposition, one of \(X \) and \(n - X \) must be smaller than or equal to \((n - 1)/2\), and then the other will be larger. The same must hold of the smallest representatives of \(RX \mod n \) and \(n - RX \mod n \).

Proposition 3. If one knows one of the nontrivial square roots of 1 \(\in QR_n \) (i.e. not 1 or \(n - 1 \)), then one can factor \(n \).

Proof. Denote the square root again with \(R \). Since \(R^2 = 1 \mod n \) we have \(R^2 - 1 = (R + 1)(R - 1) = 0 \mod n \); i.e. for some integer \(a \), \((R + 1)(R - 1) = an = apq \), with \(a \neq 0 \) since \(R \neq 1 \). Now since \(p \) is prime, it must divide one of the two factors, \(R + 1 \) or \(R - 1 \). Since \(R + 1 \neq pq = n \) (as we assumed the square root was nontrivial), it follows that \(q \) must divide the other factor. So the factors of \(n \) are \(\gcd(n, R - 1) \) and \(\gcd(n, R + 1) \).

Since \(p = 2p' + 1 \) and \(q = 2q' + 1 \) are safe primes, the order of \(\mathbb{Z}_n^* \) is \(\phi(n) = (p - 1)(q - 1) = 4p'q' \). Then it is easy to see that the order or \(QR_n \) equals \(p'q' \). For example, using CRT, the fact that \(\mathbb{Z}_p^* \) and \(\mathbb{Z}_q^* \) are cyclic, and then CRT again, we have

\[
\mathbb{Z}_n^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^* \cong \mathbb{Z}_{2p'} \times \mathbb{Z}_{2q'} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{p'} \times \mathbb{Z}_{q'}
\]

Then the quadratic residues in \(\mathbb{Z}_n^* \) are those whose two components in the two group factors \(\mathbb{Z}_2 \) equal 0. This means that the order of \(QR_n \) is indeed \(p'q' \).
Theorem 1. If \(f : \{0,1\}^* \rightarrow QR_n \) is any function such that \(f(x) = 1 \) does not happen or happens with negligible probability, and if factoring is hard, then its output will be a generator of \(QR_n \) with overwhelming probability.

Proof. Suppose \(G = f(x) \) is not a generator; that is, its order is not the maximal order \(p'q' \). Without loss of generality let its order be \(p' \), so that \(1 = G^{p'} \mod n \). Since \(n = pq \), reducing modulo \(p \) gives the identity

\[
1 = G^{p'} \mod q = (G \mod q)^{p'} \mod q.
\]

Now \(G \mod q \) is an element of \(\mathbb{Z}_q^* \), whose group order is \(2q' \), and since \(G \) is a quadratic residue the order of \(G \mod q \) cannot be \(2q' \), so it must be either 1 or \(q' \). In the latter case, our identity \((G \mod q)^{p'} = 1 \mod q \) would imply that \(q' \) divides \(p' \) which is impossible because \(p' \) is prime. Therefore, the order of \(G \mod q \) in \(\mathbb{Z}_q^* \) is 1, i.e. \(G = 1 \mod q \). This implies that \(G - 1 = aq \) for some \(a \), i.e., \(\gcd(n,G - 1) = q \).

Theorem 2. Let \(H : \{0,1\}^* \rightarrow [2,(n-1)/2] \) be a cryptographic hash function (i.e. it is collision resistant and (second) pre-image resistant). Define \(H_n : \{0,1\}^* \rightarrow QR_n \) by \(H_n(x) = H(x)^2 \mod n \). If factoring is hard, then \(H_n \) is also a cryptographic hash function, which outputs generators of \(QR_n \) with overwhelming probability.

Proof. First note that the output of \(H \) will have with overwhelming probability a multiplicative inverse \(\mod n \), i.e. \(\gcd(H(x), n) = 1 \), because if not, then \(\gcd(H(x), n) \) will factor \(n \). So with some abuse of notation, we may consider the range of \(H \) to be a subset of \(\mathbb{Z}_n^* \), so that the range of \(H_n \) is indeed \(QR_n \).

Suppose \(H_n \) is not collision resistant, so let \(x_1 \neq x_2 \) be such that \(H_n(x_1) = H_n(x_2) \mod n \). Then by Proposition 2, \(H(x_1) \) equals \(H(x_2) \) or \(n - H(x_2) \) or \(RH(x_2) \mod n \) or \(n - RH(x_2) \mod n \). It cannot be \(n - H(x_2) \) since that exceeds \((n-1)/2 \). Similarly, of \(RH(x_2) \mod n \) and \(n - RH(x_2) \mod n \), only one will have a smallest representative that is smaller than \((n-1)/2 \). Suppose without loss of generality that it is \(RH(x_2) \). Summarizing, then, we have either \(H(x_1) = H(x_2) \) or \(H(x_1) = RH(x_2) \). Now in the latter case we have \(H(x_1)/H(x_2) = R \mod n \): one of the nontrivial square roots of 1 (since \(1 < H(\cdot) < n - 1 \)). So if the latter case holds with non-negligible probability, then we have a non-negligible chance of being able to factor \(n \), by Proposition 3. Thus we must have \(H(x_1) = H(x_2) \). So any algorithm that breaks collision resistance of \(H_n \) can be used to break that of \(H \), which is impossible since we assumed \(H \) to be collision resistance.

Collision resistance implies second pre-image resistance. Ordinary pre-image resistance can be proven with an almost identical argument as above.
The fact that \(H_n \) outputs generators with overwhelming probability is proven in the previous theorem.

Because the hash function is the composition of \(H \) and squaring modulo \(n \), and because for each integer smaller than or equal to \((n - 1)/2\) there is exactly one other such integer that squares to the same quadratic residue by Proposition 2, \(H_n \) has exactly twice as much collisions as \(H \) itself. This is to be expected, however, since the range of \(H_n \) is half as large as the maximal range of \(H \) (which we take to be the lower half of \(\mathbb{Z}_n^* \), as above). Additionally, the fact that all quadratic residues have exactly two roots smaller than the upper bound ensures that this non-injectiveness of the square function does not cause particular values of \(QR_n \) to be returned by \(H_n \) more often than others. Summarizing, the output of \(H_n \) “appears as random” as can be expected.

2 Instantiation and implementation

In this section we describe the cryptographic hash function \(H_n \) in more detail. For convenience, we interpret the output of our hash functions as large integers; that is, we assume an implicit conversion of the output bytes to integers.

Generally the construction below can be done for any hash function \(H \) of sufficiently long output length, but for concreteness we take \(H(x) = \text{SHAKE256}(x, d) \). Here \(\text{SHAKE256} \) from the SHA3 function family is a so-called Extendible Output Function (XOF): a function that has variable output length, specified in bits as the second parameter \(d \), with the property that for any fixed \(d \) the function \(\text{SHAKE256}(\cdot, d) \) is a cryptographic hash function, and moreover if \(d' > d \) then the first \(d \) bits of \(\text{SHAKE256}(\cdot, d') \) coincide with \(\text{SHAKE256}(\cdot, d) \).

Let \(L_n = |n| \) be the length in bits of the modulus (i.e. 1024, 2048 or 4096). As the theorem above states, for the security of \(H_n \) it is important that the cryptographic hash function \(H \) has the appropriate maximum output; specifically, its output should be smaller than or equal to \((n - 1)/2\). Now since \(\text{SHAKE256}(\cdot, d) \) outputs \(d \) bits the upper limit of its output is \(2^d \) instead of \((n - 1)/2\). Setting \(d = L_n - 1 = |(n - 1)/2| \), our hash functions will thus sometimes output an integer smaller than \(2^d \) but larger than \((n - 1)/2\). We can “fix” that by prepending our input bytes with a counter \(i \) starting at 0, i.e. when hashing \(x \) we return \(H(0||x) \) if that is below the upper bound, and if it exceeds \((n - 1)/2 \) we increment \(i \) until \(H(i||x) \leq (n - 1)/2 \). We do the same in the (unlikely) case that \(H \) outputs 0 or 1. To prevent attacks
where x is crafted with a specific i as its first few bits, one should use an encoding such as DER-ASN1 for $i||x$. Note that this does not mean that an implementation has to include a generic ASN1 parser; instead one can work out once and then hardcode the bytes of a DER encoding of the following ASN1 sequence:

$$\text{HashInput ::= SEQUENCE \{ }$$
$$i \text{ INTEGER, }$$
$$x \text{ OCTET STRING }\}$$

Finally, in implementations it might only be possible to specify the output length of SHAKE256 in bytes instead of in bits. In this case, one can simply request $L_n/8$ output bytes and then discard the rightmost bit to end up with the required $d = L_n - 1$ bits.

A description of the algorithm computing H_n summarizing the above may be found in pseudocode below. We assume there that SHAKE256 takes its output length as the second parameter in bits.

Algorithm 1 Cryptographic hash function $H_n : \{0, 1\}^* \rightarrow QR_n$

function $H_n(x)$

$i \leftarrow 0$

repeat

\[O \leftarrow \text{SHAKE256}(\text{DER-ASN1}(i, x), L_n - 1) \]

\[i \leftarrow i + 1 \]

until $1 < O \leq (n - 1)/2$

return $O^2 \mod n$

end function
