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Abstract—This work formally analyzes the anonymity guar-
antees of continuous stop-and-go mixnets and attempts to
answer the above question. Existing mixnet based anony-
mous communication protocols that aim to provide provable
anonymity guarantees rely on round-based communication
models — which requires synchronization among all the nodes
and clients, and difficult to achieve in practice. Continuous
stop-and-go mixnets (e.g., Loopix and Nym) provide a nice
alternative by adding a random delay for each message on
every hop independent of all other hops and all other messages.
The core anonymization technique of continuous mixnets com-
bined with the fact that the messages are sent by the clients
to the mixnet at different times makes it a difficult problem to
formally prove security for such mixnet protocols; all existing
analyses for such designs provide only experimental evaluations
for anonymity.

We are the first to close that gap and provide a formal
analysis. We provide two indistinguishability based definitions
(of sender anonymity), namely pairwise unlinkability and user
unlinkability, tuned specifically for continuous stop-and-go
mixnets. We derive the adversarial advantage as a function
of the protocol parameters for the two definitions. We show
that there is a fundamental lower bound on the adversar-
ial advantage δ for pairwise unlinkability; however, strong
user unlinkability (negligible adversarial advantage) can be
achieved if the users message rate (λu) is proportional to
message processing rate (λ) on the nodes.

1. Introduction

Anonymous communication (AC) protocols based on
mixnets [1], [2], [3], [4], [5], [6], [7] aim to provide
anonymity by rerouting packets over several hops and
adding delays on every hop of messages that allow the
messages to mix with each other. All mixnets that attempt
to provide provable anonymity guarantees do so by relying
on some kind of round based communication model —
it is difficult to implement such rounds in practice when
there are thousands of nodes and millions of clients in
the system. Continuous stop-and-go mixnets (or simply,
continuous mixnets) like Loopix [8] and Nym [9] avoid
such round-based communication by adding a random delay
(chosen from a predefined distribution) on every hop of each

message, independent of all other hops of the message as
well as independent of all other messages.

Although attractive as a system-design choice, it was not
yet known if continuous mixnets can actually provide prov-
able anonymity guarantees — all existing analyses [8], [10]
rely on experimental evaluations of entropy of messages [11]
for specific settings and parameter choices in terms of
number of users, topology, choice of delays etc. Such evalu-
ations cannot provide a comprehensive understanding about
how the anonymity guarantees will vary with the variation
of those parameters/settings. This work attempts to solve
that open problem by providing a formal analysis of the
anonymity guarantees provided by such continuous mixnets.

One major challenge towards formally proving
anonymity for continuous mixnets is that the users do not
send their messages in batches, rather different messages
arrive the mixnet from the clients at different times. Any
anonymous communication protocol (even a trusted third
party) with bounded delay guarantees will inherently have
some leakage in such a setting.1 We precisely quantify the
above leakage, that we coin as ‘FIFO attack’ (first-in-first-
out), with continuous mixing strategy in the presence of
a global passive adversary even when all the nodes in the
mixnet are honest (§4).

Based on the above insight, we consider two
indistinguishability-based definitions of sender anonymity.
The first one, called user unlinkability, corresponds to an
adversary that observes all messages going through the
network, but does not control the messages of the honest
users, and attempts to track specific target messages. The
second one, called pairwise unlinkability, allows a strong
adversary that controls all the client messages except the
challenge messages, and also controls when the challenge
users initiate the challenge messages. Our definitions are
improvements over existing indistinguishability-based defi-
nitions [12], [13], to more suitably capture the FIFO effect.

As the main highlight of this work, we derive the upper
bound on adversarial advantage δ as a function of protocol
parameters of the mixnet in the presence of global pas-
sive adversaries that can additionally passively compromise
some parties in the protocol based on the two definitions
mentioned above (§6.2, §5.2). For our proofs, we consider

1. For that reason, round-based protocols with provable guarantees re-
quire the clients to send messages in batches in order to avoid such leakage.



generic and representative versions of continuous mixnets
(§3) adopted from Loopix [8], but without its active attack
resistance or other additional features. As corollaries, we
derive the range of parameters for which provable strong
anonymity (negligible adversarial advantage) is achieved.
Our proofs and results provide useful insights:

1) We identify a sufficient condition for two messages
mixing with each other; this could be useful to prove
anonymity guarantees for other variations of similar
designs.

2) We show that a single cascade mixnet design without
compromised nodes achieves exactly the same level of
anonymity as a trusted third party for the same delay
parameters.

3) When we consider pairwise unlinkability, increasing
the number of hops provide diminishing returns for
anonymity.

4) the presence of compromised nodes and choice of mul-
tiple paths drastically degrades pairwise unlinkability.

5) With user unlinkability, the protocol does not face
the above problems and can provide strong anonymity
(negligible adversarial advantage) if the client sends
messages at a rate proportional to the rate parameter
of the (exponential) delay distribution.

1.1. Existing analyses for continuous mixnets

There are earlier analyses [14], [15] on continuous
mixnets that focus on analyzing the mixing on a single
honest node. They provide some very useful insights: 1) they
analyze the correlation between the incoming and outgoing
messages of the single mixnode; 2) if the input messages
are generated using Poisson distribution and the delays are
sampled from exponential distribution, the mixnode acts as
an M/M/∞ queue.

The first end-to-end analysis for continuous mixnets
came in the form of Loopix [8]. They provide an empirical
analysis based on experimental evaluations with setup of
100 client and a stratified topology of 3 layers and 3 nodes
per layer. However, such an analysis only provides some
evidence for the anonymity properties; and cannot answer
questions like how that guarantee would scale for different
numbers of users, different topology, different number of
nodes per layer etc. Additionally, the specific probabilities
also depend on the specific nodes that are compromised for
the experimental instance. Our work provides a thorough
formal treatment to continuous mixnets.

2. Problem Statement And Roadmap

2.1. System model

In a mixnet-based AC protocol, we consider a set of
clients U who act as senders of messages, and are denoted
by u1, . . . , uN. They make use of a set of mixnodes I that are
responsible for routing the messages to finally deliver them
to the intended recipients. Since our analysis focuses on the

study of sender anonymity, we consider a single recipient
party R. In the following paragraphs, we explain how this
setting is instantiated in the continuous mixing paradigm.

Clients. In our system, each honest client acts independently
of all other clients. Each client ui generates traffic at a rate
of λu following Poisson distribution.

Routing. We consider a source-routed mixnet based archi-
tecture [8] allowing clients to send messages anonymously
using an overlay network of mixnodes, each sender of
a message selects the route through the network until it
reaches the receiver. Preparing a message for sending re-
quires encrypting it with public key material of the mixnodes
selected by the sender as intermediaries in the route. Upon
receiving a message, mixnodes use their private keys to strip
a layer of encryption and discover the next hop in the route.
In source-routing, the client picks all the mixnodes for the
path of a message, for a given path length k (where k is
specified as a protocol parameter), independent of all other
messages by the same client or other clients.

Continuous Mixing. Each message is delayed on every hop
using exponential delays [8], [16]. The delay for every hop
of a message is sampled typically, by the sender independent
of all other hops and all other messages, and encoded
in the Sphinx headers. Upon receiving and decrypting a
message, a mixnode extracts the delay from the header,
holds it for that amount of time, and then forwards it to
its next destination. Intuitively, such delays lead to a pool
of messages within a mixnode, and the messages within the
pool can be considered ‘mixed’ with each other. We do not
consider any cover traffic from the users or the mixnodes
for our proofs.

Adversary. We consider a probabilistic polynomial time
(PPT) adversary that can observe (but not alter) all network
traffic. The adversary can also perform passive and static
corruptions of senders, the recipient R, and a subset of mixn-
odes. Passive and static corruption means that the adversary
chooses the subset of corrupted parties before the protocol
starts; the adversary then has access to the internal states of
these c mixnodes, including all of their keys and random
choices; however, the compromised parties still follow the
protocol specifications.

We focus on provable anonymity guarantees against
global passive adversaries and do not consider active attacks.
How to model all possible active attacks (not only for contin-
uous mixnets, but in general for anonymous communication)
still remains an open problem. Additionally, we consider
that cryptography is perfect, and we do not consider any
fingerprinting attacks in our model.

2.2. Security Goals

In this work, we consider sender anonymity proper-
ties in the anonymous broadcast setting. Achieving sender
anonymity also implies relationship anonymity for bidirec-
tional communications [12]. We expect to see similar guar-
antees for recipient anonymity; however, the exact details are

2



left for future work. We consider two versions of security
definition for sender anonymity:
User Unlinkability. In our first definition, the adversary
does not control the time when the challenge messages
are released, and the content of any other messages from
the honest users. This more closely captures the surveil-
lance scenario where the adversary observes an interest-
ing/disturbing message received by the recipient and then
tries to figure out who among Alice and Bob could have sent
that message. Informally, the protocol achieves anonymity
according to this definition as long as a target message from
Alice is ‘mixed’ with at least one message from Bob.
Pairwise Unlinkability. Our second definition is stronger;
here, we consider that the adversary controls the time when
the challenge messages are released to the challenge users,
the content of all other messages from the honest users, and
then tries to distinguish who among them have sent which
of the challenge messages after they are received by the
recipient. Such a definition is useful to capture a strong ad-
versarial scenario in the context of whistleblowing where the
adversary might release fake/tagged documents and observe
the time of its release to identify the whistleblower.

In one of our main results, we prove that in continuous
mixnets, by controlling the time of release, the adversary
can exploit the fact that whichever message goes into the
AC network first, comes out first with good probability —
which we formally denote as the FIFO attack (§4).

2.3. Challenges Towards Provable Anonymity for
Continuous Mixnets

Existing mixnet designs that attempt to provide provable
anonymity guarantees mainly rely on (1) batch processing,
and (2) round based communication model. Because of
the round based communication model, all the messages
that arrive to an honest mixnode in a given round are
shuffled by the mixnode and forwarded to the next mixn-
odes/destination. Therefore, two messages are shuffled with
each other if they have met in an honest mixnode at least
once. With batch processing, the protocol waits for all (or a
threshold number of) users to send their messages, and then
all those messages stay in the protocol for the same number
of rounds — thus avoiding any leakage from end-to-end
time correlations.

However, continuous mixnets introduce interesting chal-
lenges towards formally proving the anonymity guarantees
since they do not implement any rounds or batches. Each
user generates their own messages independent of all other
users, and each message is delayed on a mixnode indepen-
dent of all other messages. Therefore, there are no explicit
shuffles (that happens in round-based models) among mes-
sages in continuous mixnet designs. Additionally, different
messages arriving the mixnet at different times could leak
significant information to the adversary, which we formalize
as First In First Out or FIFO attack in Section 4.2. As part
of our proof technique, we identify the explicit conditions
for mixing and quantify the leakage from FIFO attack

to derive the provable guarantees for continuous mixnets.
Additionally, dealing with continuous random variables for
delays has its own mathematical challenges:

1) the probability of two messages mixing/meeting on a
hop is dependent on all previous hops;

2) traditional combinatorial techniques are not applicable
anymore, and computing the conditional probabilities
becomes significantly more difficult;

3) the convolutions of the random variables do not always
have closed form expressions.

We overcome those hurdles in our proofs to derive our
bounds.

2.4. Proof Technique And Interesting Results

Our proof technique in general consists of the following
steps:

1) We identify a set of sufficient conditions (good event)
which ’mixes’ two messages on a mixnode, so that the
adversary cannot tell except negligible probability which of
them was sent by which user even if the rest of mixnodes
on the paths for both messages are compromised.

2) Then we compute the probability of such a good
event for a specific hop of a given message.

3) That allows us to compute the probability that no
such good event occurred over the whole path of a given
message — which directly translates to the maximum suc-
cess probability of a global passive adversary.
Sufficient Conditions for Mixing. When delays are sam-
pled from exponential distribution, based on the memoryless
property of the distribution, it can be shown that two honest
messages are ‘mixed’ in the view of an adversary if they
meet at an honest mixnode (the second message enters the
mixnode before the first message departs), and they have
the same number of hops remaining when they meet. If this
happens, the two messages are mixed with each other even
if the rest of the paths of both of the messages are com-
pletely compromised. We call this the sufficient condition
for mixing. If the delays are sampled from a distribution
which is not memoryless, these conditions are not sufficient
for mixing anymore.
Quantifying FIFO Attack. We show that there is an in-
herent leakage from the different arrival (to the mixnet)
time of the messages — with significant probability they
preserve the same order as they entered. We show that, even
against a trusted third party anonymizer, a global passive
adversary has an inherent advantage when the delays are
sampled from Erlang distribution Erl(k, λ) (equivalent delay
of a k-hop mixnet). The result about our FIFO attack can be
considered as an improvement over the generic impossibility
results [17], [18] for AC protocols.
Results about user unlinkability. We show that continu-
ous mixnets can provide user unlinkability with δ < 1

2 ·(
1− f · K−c

K

)k
, where f is a constant for λu = Θ(λ·K). For

this proof we model the mixnet as a Jackson network [19]
with each mixnode acting as an M/M/∞ queue, and derive
the bounds assuming a steady state of the network.
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Results about pairwise unlinkability. With pairwise un-
linkability, we start with a single cascade mixnet with no
compromised mixnodes, and show that it achieves the exact
same level of pairwise unliankability as a trusted third party
anonymizer for the same end-to-end delay distribution.

When the adversary can compromise some mixnodes in
the mixnet, the quality of mixing degrades. However, be-
cause of the diminishing returns with the increased number
of hops, there can be a significant (non-negligible) leakage
to the adversary.

When there are many mixnodes to choose from for
every hop of a message, we show that the chances for
two messages meeting each other degrades drastically (even
compared to single cascade mixnets).

3. The Continuous Mixing Paradigm

3.1. Preliminaries

The exponential distribution. The exponential distribution
Exp(λ) with parameter λ ∈ R+ has probability density
function

fλ(x) := λe−λx, where x ≥ 0 ,

and cumulative distribution function Fλ(x) = 1 − e−λx .
The mean of a random variable X following Expλ(x) is
1/λ. In addition, X satisfies the memoryless property:

Pr[X > x+ t | X > t] = Pr[X > x] = e−λx .

The Erlang distribution. The Erlang distribution Erl(k, λ)
with parameters k ∈ Z+ and λ ∈ R+ can be seen as the
sum of k independent random variables following Exp(λ).
We recall that Erl(k, λ) has probability density function

fk,λ(x) :=
λkxk−1e−λx

(k − 1)!
, where x ≥ 0 , (1)

and cumulative distribution function

Fk,λ(x) := 1−
k−1∑
n=0

(λx)n

n!
e−λx . (2)

We observe that Exp(λ) matches the Erlang Erl(1, λ).
For the security analysis of our protocols, we will apply

the following useful equalities.

Equality 1. For every k ∈ Z+ and λ ∈ R+, it holds that∫ ∞

0

λkxk−1e−λx

(k − 1)!
dx = 1 .

The above equality follows directly from the definition
of the Erlang distribution Erl(k, λ). For the following equal-
ities, the proofs are in Appendices A.1 and A.2.

Equality 2. For every n ∈ N and k ∈ Z+, it holds that
n∑

j=0

(
k + j − 1

j

)
=

(
n+ k

n

)
.

Equality 3. For every k ∈ N, it holds that

k∑
n=0

(
n+k
n

)
2k+n

= 1 .

3.2. Model of continuous mixing protocols

To explain our proofs easily, we consider two representa-
tive versions of continuous mixing protocols. Both protocols
use exponential delay sampling and mainly differ in the
mixnode path selection process. The first protocol repre-
sents a simple study case, called cascade continuous mixing
protocol, where the path is fixed according to a cascade
of k mixnodes. This construction is mostly of theoretical
interest and allows us to explore the essence and strength of
continuous mixing as an anonymization technique. The sec-
ond protocol, called multi-path continuous mixing protocol,
captures a full-fledged protocol in the realistic setting where
multiple paths in the mixnet are used by different users
depending on their own trusts and the overall scalability
requirement of the protocol.

3.2.1. The cascade continuous mixing protocol. Let
CCMk,λ,λu denote the cascade continuous mixing protocol,
where k is a positive integer and λ, λu are positive real
values. The execution of CCMk,λ,λu is carried as follows:

1) Each message travels through a fixed cascade of k
hops, denoted by MX1 → · · · → MXk, before getting
delivered to the recipient.2

2) The sender then onion encrypts the message (using
Sphinx [20] packet structure) for the cascade (including
the recipient), and sends it to the first of the mixnode
in the cascade, MX1, after some delay sampled from
exponential distribution Exp(λu).

3) Each mixnode delays the messages also following an
exponential distribution Exp(λ).

Remark 1. Generating messages with intervals sampled
from exponential distribution Exp(λu) yields a message rate
following Poisson distribution with average rate λu.
Remark 2. The aggregate delay imposed by the k mixnodes
follows the Erlang distribution Erl(k, λ).

3.2.2. The multi-path continuous mixing protocol. Let
MCMk,λ,λu denote the multi-path continuous mixing proto-
col, where k is a positive integer and λ, λu are positive real
values. The execution of MCMk,λ,λu is carried as follows:

1) Following the designs of Loopix [8] and Nym [9],
we consider a stratified topology where mixnodes are
arranged in a number of layers, such that mixnodes in
layer i receives messages from mixnodes in layer i−1
and sends messages to mixnodes in layer i+1. The path
length of message routes is determined by the number
of layers, and is denoted by k. Further, we consider
that each layer has exactly K mixnodes.

2.
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2) The sender of the message picks a path of length k by
picking one mixnode uniformly at random from each
layer, independent of the choices of other users or other
messages.

3) The sender samples k independent values x1, . . . , xk

from Exp(λ). They then onion encrypt the message
for the path (including the recipient), and embed the
values in the onions header such that only i-th mixnode
can see the xi value. Then they send it to the first of
the mixnodes in the path after a delay sampled from
Exp(λu).

4) Each mixnode delays a message for the amount of time
specified by xi.

We want to highlight that, even though we consider such
a stratified topology for our analysis, our results are also
valid for free-routing where the users can choose a hop for
a message from all the available mixnodes in the whole
mixnet. That case can be considered as a special case of
stratified topology where each layer contains the same set
of node. We elaborate on this further in Section 6.2.4.
Remark 3. In MCMk,λ,λu , given that the the packets are
onion encrypted, a compromised mixnode only learns the
previous and the next party on the path of a message.

3.3. Conditions for mixing

Based on the description of CCMk,λ,λu and MCMk,λ,λu

in Subsections 3.2.1 and 3.2.2, respectively, we provide
sufficient conditions for the mixing of two messages in our
protocols. In particular, we show that if the following con-
ditions are true (and they all have to be true) on a mixnode
for two messages, then the adversary cannot distinguish if
the messages went out in the same order as they came in or
they are swapped:

1) the two messages are honest messages,
2) they meet at an honest mixnode (which means the

second message enters the mixnode before the first
message leaves),

3) the two messages have the same number of hops re-
maining when they meet.

The justification behind the above set of conditions
comes from two facts: (i) exponential distribution is memo-
ryless, (ii) an honest mixnode does not reveal the mapping
between the input and output messages unless the adversary
deduce them from external information. Suppose, the first
message enters the mixnode at time t1 and the second
message at time t2. The first message leaves at time t′1 and
the second at time t′2. There are three possible cases:
t′1 ≤ t2: the first message leaves before the second message

can arrive, and hence, they do not meet.
t2 < t′1 < t′2: the second message arrives before the first

message leaves, and hence they meet. However, the
first message leaves before the second message — they
preserve order.

t′1 ≥ t′2: the first message leaves after the second message
leaves — which means they are swapped.

In the first case, they do not meet and our conditions for
mixing are not satisfied. Also, it is trivial in this case for
the adversary to identify the mapping between the input and
output messages. In the second and third case, our conditions
for mixing are satisfied. The only thing that remains to argue
is that those two cases are equally likely. That follows from
the memorylessness of the exponential distribution. Given
t2 < t′1, the probability that t′1 < t′2 is 0.5, since both the
delays follow the same exponential distribution. Formally,
we prove the following lemma (proof in A.3).

Lemma 1. Let t1, t2, t′1, t
′
2 as in Subsection 3.3 and τ :=

t2 − t1 ≥ 0. Then, the following hold:
1) Pr[t′1 ≤ t2] = 1− e−λτ (i.e., the probability that the

two messages do not meet in the mixnode is 1− e−λτ ).
2) Pr[t′1 < t′2|t2 < t′1] =

1
2 (i.e., the probability that the

first message leaves the mixnode first is 0.5, given the two
messages meet).

4. A golden standard for mixing: Trusted
Third Party Anonymizer

A trusted third party (TTP) anonymizer receives mes-
sages and shuffles them. Since we are analyzing continuous
mixnets, our TTP will shuffle messages by adding random
delays — whenever a messages comes it adds a random
delay to that message, and releases the message after that
chosen delay. If there are sufficient number of messages
received by the TTP regularly, then each message will mix
with enough number of other messages. However, differ-
ent messages arriving at different times tend to somewhat
preserve the order when they leave. And that inherently
provides linkability to any adversary who is observing the
incoming and outgoing messages. However, if a set mes-
sages are received by the TTP exactly at the same moment,
their output order will not reveal anything to the adversary;
and we could say that those messages are “shuffled” with
each other. We want to show that our protocol closely (only
with negligible difference) mimics such a TTP.

In our case, we want to prove mixing property for
a continuous mixnet that delays message on every node
following an exponential distribution. So, the overall delay
of a message follows a gamma distribution for a certain
number of hops k (same for every message). Our goal is
show the range of values of k for which our protocol mimics
a TTP that follows a similar gamma distribution for delay for
every message, without leaking any additional information.
Which means, two honest messages entering the TTP at the
same time will come out of the TTP in a random order.

4.1. A trusted third party for continuous mixing

The trusted third party TTPk,λ interacts with the senders
in U and the recipient R, and is parameterized by latency
k and delay λ. The senders provide TTPk,λ with their
messages over a secure channel, so that no information about
the message content is leaked to the adversary. TTPk,λ acts
as a central mixing node that delivers the messages to R
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The trusted third party TTPk,λ.

Event: Receive(message m, sender u ∈ U)
Read the internal time as Cl.
Sample a value d← Erl(k, λ).
Add the pair (m,Cl+ d) in the priority queue Υ in
an increasing order of Cl+ d.

Event:TimeFired((m,Cl) ∈ Υ)
▷ The delay-time has elapsed for a message.
Dequeue (m,Cl) from Υ.
Send m to R.

Figure 1: The trusted third party TTPk,λ interacting with
the senders in U and the recipient R, parameterized by k, λ.

after adding a delay sampled from the Erlang distribution
Erl(k, λ), as described in Figure 1.

Assuming that the central mixing node is honest, the
power of the adversary is limited to an observer that moni-
tors incoming and outgoing traffic. As this sets the minimum
power for a global passive adversary, the security of TTPk,λ

serves as an optimistic bound of the security expected by a
typical continuous mixing construction, such as CCMk,λ,λu

and MCMk,λ,λu described in Subsections 3.2.1 and 3.2.2.
Therefore, it is meaningful to explore the level of security
that TTPk,λ offers.

We define the protocol TTPk,λ,λu as the one that natu-
rally derives from the description of TTPk,λ in Figure 1,
when the delay from the sender to TTPk,λ follows the
exponential Exp(λu) distribution.

In the following subsection, we present an attack on
TTPk,λ,λu . Intuitively, this sets a threshold on the pairwise
unlinkability that CCMk,λ,λu and MCMk,λ,λu can promise,
as it will be formally presented in Section 6.2.

4.2. The FIFO attack

4.2.1. The setting. We consider a simplified setting with
(i) two senders u0, u1, (ii) a single recipient R, and (iii)
TTPk,λ as described in Figure 1. The system state is as
follows: each sender has a single message in her buffer
and the queue is empty, i.e. there are no prior pending
messages. The senders u0, u1 send their messages to the
recipient R that receives messages m0,m1. The goal of the
mix is to provide sender anonymity against an adversary
that controls R and is a global observer, i.e. to hide whether
communication occurs in 1) a “direct” manner: i.e., u0, u1

sent m0,m1 to R, respectively, or 2) a “cross” manner: i.e.,
u0, u1 sent m1,m0 to R, respectively.

In the above setting, the messages m0,m1 are delivered
to the R with the following delays added: (i) the delay
from the sender to TTPk,λ follows the exponential Exp(λu)
distribution, and (ii) the delay from TTPk,λ till the recipient
destination follows the Erlang Erl(k, λ) distribution.

4.2.2. Description of the FIFO attack. The adversary A
begins observation at some given time when the messages
m0,m1 are in the sender’s queues and are about to be
delivered. By the memoryless property of Exp(λu) and
the description of the system state, we may assume that
observation begins at time 0. Then, A executes the following
steps:

1) It waits until it records the following time values:
a) ts,0: when u0 sends her (encrypted) message to

TTPk,λ;
b) ts,1: when u1 sends her (encrypted) message to

TTPk,λ;
c) tr,0: when message m0 is forwarded to R by

TTPk,λ;
d) tr,1: when message m1 is forwarded to R by

TTPk,λ.
2) Then, it decides as follows:

• If ts,0 < ts,1 and tr,0 < tr,1, then it outputs ‘direct’.
• If ts,0 < ts,1 and tr,0 ≥ tr,1, then it outputs ‘cross’.
• If ts,0 ≥ ts,1 and tr,0 < tr,1, then it outputs ‘cross’.
• If ts,0 ≥ ts,1 and tr,0 ≥ tr,1, then it outputs ‘direct’.

In a nutshell, A guesses based on the prediction that
messages input earlier to the mixing node are more likely to
be delivered earlier to the intended recipient. This adversar-
ial strategy relies on the following interesting observation:
the overall end-to-end network traffic observed by a global
observer is NOT memoryless, as delays added by TTPk,λ

follow the Erl(k, λ) distribution. This distribution has a sig-
nificant “FIFO” bias, as it is fully analyzed in the following
subsection.

4.2.3. Analysis of the FIFO attack. Without loss of gen-
erality, assume that u0, u1 provide the messages m0,m1,
respectively, in a “direct” manner to R (due to symmetry and
independence, the “cross” case can be analysed similarly).
We denote the following random variables:

1) The delay x0 until m0 is sent to TTPk,λ by u0.
2) The delay x1 until m1 is sent to TTPk,λ by u1.
3) The delay y0 of TTPk,λ until m0 is forwarded to R,

i.e., the time m0 stays in the continuous mix.
4) The delay y1 of the Poisson mix until m1 is forwarded

to R, i.e., the time m1 stays in the continuous mix.

Clearly, x0, x1 ∼ Exp(λu) while y0, y1 ∼ Erl(k, λ).
By the description in Section 4.2.2, we have that

ts,0, ts,1, tr,0, tr,1 are the time values of x0, x1, x0+y0, x1+
y1, that A observes, in the direct case. Thus, A wins when
either one of the following events happen:

E0<1: x0 < x1 and x0 + y0 < x1 + y1, or
E0≥1: x0 ≥ x1 and x0 + y0 ≥ x1 + y1.

The following theorem provides a concrete evaluation of
the success probability of the FIFO attack.

Theorem 1. Let λu ≥ λ. The FIFO attack on TTPk,λ

6



described in Section 4.2.2 has success probability

ϕλ,λu(k) =



1− 2 ·
k−1∑
n=0

n∑
j=0

(−1)jλu

(λu − λ)j+1
×

×

(
n−j∑
i=0

λuλ
n−i
(
k+i−1
k−1

)
(λu + λ)n−j−i+12k+i

−

−
λj
(
k+n−j−1

k−1

)
2k+n−j+1

)
,

λu > λ

1

2
+

(
2k
k

)
22k+1

, λu = λ

When λu = ρλ for a constant ρ > 1 we have the alternative
expression

ϕλ,λu
(k) = 1− 2 ·

k−1∑
n=0

n∑
j=0

(−1)jρ
(ρ− 1)j+1

×

×

(
n−j∑
i=0

ρ
(
k+i−1
k−1

)
(ρ+ 1)n−j−i+12k+i

−
(
k+n−j−1

k−1

)
2k+n−j+1

)
.

We refer to Appendix A.4 for the detailed proof of
Theorem 1. For notation simplicity, we will use ϕ(k) when
λ, λu are implicit.
Analysis of the sequence ϕ(k). In order to analyze ϕ(k)
we plot the function in Fig. 2 for different values of ρ for a
range of k ∈ [1, 100]. We observe in those plots that ϕ(k)
decreases as k increases, for a given value of ρ. In our plots,
ϕ(k) approaches close to 0.5 for large k and ρ ≥ 4. With
smaller ρ values (e.g., 1 and 2), ϕ(k) values are still > 0.51
for the range of of the plotted k values. However, they also
show a trend to decline with k, and we can expect them to
approach 0.5 as k becomes very large.

For each of the plots, ϕ(k) rapidly drops for the smaller
values of k; then, with increased values of k, ϕ(k) does not
drop that rapidly. This shows that increasing the number
of hops provide diminishing returns in terms of the prob-
ability of two messages being swapped in TTPk,λ, and in
continuous mixnets in general.

We can observe that even when ρ = 64, the success
probability ϕ(k) for the adversary remains 0.500442 for k =
100. This means that the adversary still has over ≈ 2−11

advantage over a random guess. For ρ = 64 and k = 20, the
success probability ϕ(k) is still more than 0.501. For ρ = 1,
the success probability ϕ(k) remains above 0.525 even for
k = 100. Thus, the question remains whether protocols with
such continuous mixing strategy can still achieve meaningful
anonymity guarantees; we formally investigate this in the
later sections.
Case λu < λ. We observe in Fig. 2 that the success
probability ϕλ,λu

(k) for the adversary increases as ρ de-
creases. This indicates that ϕλ,λu

(k) is strictly greater than

ϕλ,λ(k) = 1
2 +

(2kk )
22k+1 when λu < λ. Intuitively, if λu is

smaller, ts,0 and ts,1 have high variances; and therefore,
there is a high chance of them being far apart, which makes
it more difficult for them to swap. Since the advantage of
the adversary is already significant for λu = λ, we skip a
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Figure 2: Success probability ϕ(k) of the FIFO attack over
a k-hop Poisson mix when λu = ρλ for k = 1, . . . , 100 and
different values of ρ.

formal derivation for the case λu < λ and mainly focus on
the case λu ≥ λ for the rest of the paper. However, as part
of our proof in Appendix A.4 we also add a mathematical
explanation about why this inequality holds (c.f. A.4.1).

5. User unlinkability of continuous mixnets

We study the anonymity of continuous mixnets, in the
context of our first security notion that we name User
Unlinkability. Our formal treatment includes a game-based
definition of the said notion and a rigorous assessment of
the guarantees that multi-path continuous mixing provides.

5.1. User unlinkability definition

We assume an honest-but-curious global network level
attacker that can eavesdrop on a fraction of the nodes (stat-
ically chosen), and has strong background knowledge about
the behavior of the clients; formally, the attacker controls
all but two users.

In user unlinkability, we formalize the question if a
target message could have beeen swapped with a message
from another user along the way. The adversary is not
allowed to control the inception time for the target messages,
and allows the honest users to choose the content of all
other messages. We present our indistinguishability-based
definition of user unlinkability via the corresponding game
described in Fig. 3. In the user unlinkability game, the
adversary does not control when the challenge message is
generated, and only tries to backtrack the message after it
is received by R. A message from Alice can be mixed with
any of the messages sent by Bob. This property aims to
capture the essence of real-world surveillance scenarios.
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The User Unlinkability game GΠ,A,c
UL (1η).

• The challenger Ch provides the adversary A with the
description of Π (that includes the description of the
user set U , the recipient R, and the mixing node set I).
• A statically corrupts the recipient R, all users in U
except from a pair of users u0, u1, and a subset of I
denoted by Icorr. It provides Ch with (i) the description
of Icorr; (ii) the identities of u0, u1.
• Ch generates the queues of messages for u0 and u1,
those messages will be used for the protocol run.
• Challenge: before the start of the protocol run, A
sends a challenge message m∗ to Ch. In turn, Ch
chooses a random bit b ∈ {0, 1} and makes the fol-
lowing adjustments:
– Pick a random spot x in the queue of ub.
– Add m∗ to the queue of ub at position x.
In any case, the recipient of all transmissions is R.
• Ch and A engage in an execution of Π where Ch first
specifies the mixnet topology for the execution and acts
on behalf of u0, u1 and the mixing nodes in I \ Icorr,
while A controls the corrupted parties and monitors the
network traffic as a global passive adversary.
• A can terminate the game any time by outputting a
bit b∗.
The game returns a bit which is 1 if and only if the
following conditions hold true:
C.1 |Icorr| ≤ c · |I| (i.e., no more than c fraction of

mixing nodes are corrupted).
C.2 b∗ = b (i.e., A guesses correctly).

Figure 3: The User Unlinkability game for protocol Π with
N users against adversary A that corrupts up to a fraction
of c mixing nodes.

Definition 1 (User Unlinkability). Let Π be a mixnet-based
AC protocol with N > 2 users and a set of mixing nodes
I. Let c be a non-negative number in [0, 1). We say that Π
provides user unlinkability w.r.t. c with error δ(·), if it holds
that ∣∣∣ max

A∈PPT
Pr
[
GΠ,A,c
UL (1η) = 1

]
− 1

2

∣∣∣ ≤ δ(η) .

5.2. Analysis for User Unlinkability

In order to analyse the user unlinkability guarantees, we
first analyze some properties of the network flows in the
mixnet. Based on those propoerties, we derive our bounds.

5.2.1. Estimates About Network Flows. In our case, the
message generation is a Poisson process, and the processing
on the mixnodes follows an exponential delay distribution.
We prove our bounds by showing that the overall mixnet
can be modeled as a Jackson network [19] with each node
acting as an independent M/M/C queue.
Jackson Networks [19]. A network of H interconnected
nodes is a Jackson network if it has the following properties:

• external arrival to each node i in the network follows
a Poisson process with rate µi.

• All service times are exponentially distributed with rate
parameter ei and the service discipline is first-come,
first-served (FCFS).

• A job leaving node i will either move to some new
node j with probability Pi,j or leave the network with

probability qi, where qi +
H∑
j=1

Pi,j = 1.

If the above conditions are satisfied, in the steady state of
the network, it is known that each node i can be considered
as as independent M/M/C queue with arrival rate νi = µi+
H∑
j=1

νjPj,i and the average number of jobs in the queue of

node i follows Poisson distribution with νi

ei
.

Lemma 2. For k ≥ 1 and λu, λ ∈ R+, assuming constant
delays on the network links, for the stream of messages sent
by each client the cascade continuous mixnet CCMk,λ,λu in
the steady state has the followings properties:

1) each mixnode acts as an independent M/M/C queue
with arrival rate λu;

2) at any time the number of messages held by a mixnode
follows Poisson distribution with average rate λu

λ .

Proof by construction. First we show that the cascade con-
tinuous mixnet CCMk,λ,λu can be modeled as a Jackson
network with k nodes. We consider the stream of messages
from a single client u1−b. We map the i-th mixnode on the
cascade to the i-th node in the Jackson network. Each node
i has the following properties:

1) If i = 1, we have µi = λu. Otherwise, µi = 0.
2) If each mixnode has a capacity to buffer up to C

messages, the node i in the Jackson network can
serve maximum C jobs in parallel, and each job takes
time following exponential distribution with parameter
ei = λ.

3) When a message leaves a node i, it goes to node i+1
with probability Pi,i+1 = 1 for i < k; and Pi,j = 0 for
j ̸= i + 1. The job exits the network with probability
qk = 1 for i = k, otherwise (when i < k) qi = 0.

From the above observation, and the additional assumption
that mixnodes process messages in FCFS manner, we can
say that each mixnode in CCMk,λ,λu acts as an M/M/C

queue with arrival rate νi = µi+
H∑
j=1

νjPj,i = λu. From the

properties of the Jackson network, we can also say that the
number of messages in the queue of a node follows Poisson

distribution with parameter
νi
ei

=
λu

λ
.

Remark 4. In the above proof we assume that the network-
link delays are constant. If the network-link delays are not
constant, the mixnodes behave as ·/M/C queues instead of
M/M/C queues. In that case, based on Kleinrock indepen-
dence approximation [21], Lemma 2 is still a good approxi-
mation. We skip the detailed derivation of variable network-
link delays or the exact accuracy of that approximation for
future work.
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Special Case.. If we consider that each mixnode has an
infinite memory buffer, i.e., it can accept up to infinite num-
ber messages, we have a special case of Jackson network
where each node act as an M/M/∞ queue. In practice, a
mixnode can have a system/memory limitation, and beyond
that limit messages will be dropped. However, the number
is generally high enough to avoid such message drops, and
the approximation remains valid. In the following proofs in
this section, we consider that approximation and assume that
each mixnode acts an an independent M/M/∞ queue in the
steady state.

Lemma 3. Let K, k be non-negative integers and λu, λ ∈
R+, assuming constant delays on the network links, and
each mixnode has an infinite memory buffer, the multipath
continuous mixnet MCMk,λ,λu in the steady state has the
followings properties:

1) each mixnode acts as an independent M/M/∞ queue
with arrival rate λu

K ;
2) at any point of time the number of messages held

by a mixnode follows Poisson distribution with rate
parameter λu

λK .

Proof Sketch. The proof of this lemma is very similar to
Lemma 2, except now each layer of the Jackson network
has K nodes. Therefore, for a node i in layer h and another
node j in layer h+1, Pi,j =

1
K (assuming the node on each

layer is chosen uniformly at random). And the rest of the
proof follows Lemma 2.

5.2.2. Anonymity Proof. With Lemma 3 at our disposal,
we derive the user unlinkability guarantee provided by
MCMk,λ,λu . To prove user unlinkability, we first estimate
the probability of at least one message from u1−b present
in a mixnode when the challenge message m∗ arrives there.
Then we compute the overall probability of m∗ to meet at
least one message from u1−b on a path of length k.

Lemma 4. For k ≥ 1 and λu, λ ∈ R+, in a steady state of
MCMk,λ,λu , if a message m∗ sent by ub reaches i-th hop,
the probability that there exists at least one message from
user u1−b also on i-th hop and on the same mixnode as m∗

is given by,
f = 1− e−

λu
λ·K .

Proof. From Lemma 3 we know that the number of mes-
sages in a mixnode on hop i from each user follows Poisson
distribution with parameter λu

Kλ . Therefore, when the mes-
sage m∗ reaches a mixnode on i-th hop, the probability that
the mixnode holds at least one message from u1−b on the
same i-th hop is given by,

f = Pr[X ≥ 1] X ∼ Poisson
( λu

Kλ

)
= 1− e−

λu
λK .

In the above lemma, if λu

λK is a constant, the quantity f
is also a constant. This means that the challenge message

from Alice will encounter at least one message from Bob
with significant probability, independent of the layer/hop i.

Theorem 2. For k ≥ 1 and λu, λ ∈ R+, assuming a steady
state of the network, MCMk,λ,λu provides user unlinkability
as defined in Definition 1 with error

δ ≤ 1

2
· (1− f · (1− c)))

k , where f = 1− e−
λu
λK .

Proof. According to Lemma 4, the challenge message m∗

on its i-th hop meets at least one message (also on i-th hop)
from u1−b with probability f = 1− e−

λu
λ·K .

Since c fraction of mixnodes are compromised, and the
mixnode on each hop is chosen uniformly at random, the
probability that the i-th hop of m∗ is honest is given by
(1−c). Suppose, M ′

i denotes the event that m∗ does not mix
with any message from Bob on its i-th hop. The probability
that m∗ does not mix with any message from u1−b on any
hops is given by,

Pr [M ′
1 ∧ · · · ∧M ′

k] =
∏

1≤i≤k

Pr[M ′
i ] = (1− f(1− c))k .

The above implies that

max
A∈PPT

Pr
[
GMCMk,λ,λu ,A,0
UL (1η) = 1

]
= 1 · Pr[M ′

1 ∧ · · · ∧M ′
k] +

1

2
· Pr[¬ (M ′

1 ∧ · · · ∧M ′
k)]

=
1

2
+

1

2
· Pr[M ′

1 ∧ · · · ∧M ′
k] =

1

2
+

1

2
(1− f(1− c))k .

Therefore, MCMk,λ,λu achieves user unlinkability with error
δ ≤ 1

2 (1− f(1− c))k.

Insights. We draw the following insights from Theorem 2:
1) If f and c are constants, (1− f(1− c)) is also con-

stant. So, the adversarial advantage δ declines rapidly with
higher values of k.

2) Consequently, for k ∈ ω(log(η)) we have an asymp-
totically negligible δ for the security parameter η.

3) If λu

λ is constant, f will go closer to 0 as K increases.
To maintain the same level of δ, the number of hops k needs
to grow with K. Typically, K increases with the number of
users to support the increased number of users.

4) k needs to grow approximately proportional to c to
maintain the same level of δ, i.e., the increased fraction of
compromised mixnodes can be compensated with increased
end-to-end latency.

6. Pairwise unlinkability of continuous mixing

In this section, we provide a formal study of the
anonymity of continuous mixing, as captured by the descrip-
tion of CCMk,λ,λu and MCMk,λ,λu (cf. Subsections 3.2.1
and 3.2.2, respectively), under a stronger security notion that
we name Pairiwse Unlinkability. As in the case of user un-
linkability, we begin by introducing a game-based definition
of pairwise unlinkability. Subsequently, we investigate the
level of anonymity that CCMk,λ,λu and MCMk,λ,λu can (or
fail to) support.
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6.1. Pairwise Unlinkability definition

As in Subsection 5.1, we assume an honest-but-curious
global network level attacker that can eavesdrop on a
fraction of the nodes (statically chosen), and has strong
background knowledge about the behavior of the clients;
formally, the attacker controls all but two users.

In pairwise unlinkabiltiy, we formalize the question if the
adversary could distinguish whether or not two messages,
that travelled the same number of hops in the protocol, could
have been swapped along the way. This property is close to
message indistinguishability properties from the literature,
such as tail indistinguishability by Kuhn et al. [13]. We
present our definition via the corresponding game described
in Figure 4. In the pairwise unlinkability game, the adversary
controls when the messages are initiated and observes when
they are received by R. This reflects the background knowl-
edge of the adversary about when a message of interest
could have been generated, and the adversary can observe
whose message (among Alice and Bob) enters first after
that message has been generated. That helps us capture the
essence of the FIFO attack that we detail in Section 4.2.

Definition 2 (Pairwise unlinkability). Let Π be a mixnet-
based AC protocol with N > 2 users and a set of mixing
nodes, I. Let c be a non-negative number in [0, 1). We say
that Π provides pairwise unlinkability w.r.t. c with error δ(·),
if it holds that∣∣∣ max

A∈PPT
Pr
[
GΠ,A,c
PU (1η) = 1

]
− 1

2

∣∣∣ ≤ δ(η) .

We say that a protocol achieves strong pairwise unlinkability
if δ is negligible in the security parameter η.

6.2. Analysis for Pairwise Unlinkability

The definition of pairwise unlinkability is closely related
to the FIFO attack presented in Section 4.2, except the ad-
versary can now observe the (encrypted) messages after each
intermediate hops, and some mixnodes might be corrupted.
As we show in the next subsection, the success probability
ϕλ,λu

(k) in the FIFO attack against TTPk,λ directly trans-
lates to the success probability max

A∈PPT
Pr
[
GΠ,A,c
PU (1η) = 1

]
against a k-hop cascade continuous mixnet CCMk,λ,λu when
there are no corrupted mixnodes (i.e., c = 0). We extend our
analysis for CCMk,λ,λu with c > 0 and MCMk,λ,λu in the
subsequent subsections.

6.2.1. The advantage of a global observer in CCMk,λ,λu

without any corrupted nodes. We prove that an adversary
that acts as a global observer (but corrupts no mixing nodes)
has no further advantage than a FIFO attacker, i.e., the
FIFO attack is the best possible attack (in terms of pairwise
unlinkability as defined in Definition 2) that can be launched
in CCMk,λ,λu when monitoring the network traffic. We
prove that based on the following lemma.

The Pairwise Unlinkability game GΠ,A,c
PU (1η).

• The challenger Ch provides the adversary A with the
description of Π (that includes the description of the
user set U , the recipient R, and the mixing node set I).
• A statically corrupts the recipient R, all users in U
except from a pair of users u0, u1, and a subset of I
denoted by Icorr. It provides Ch with (i) the description
of Icorr; (ii) the identities of u0, u1.
• Ch and A engage in an execution of Π where Ch first
specifies the mixnet topology for the execution and acts
on behalf of u0, u1 and the mixing nodes in I \ Icorr,
while A controls the corrupted parties and monitors the
network traffic as a global passive adversary.
• Challenge phase: at any time, A sends a pair of
challenge messages m0,m1 to Ch. In turn, Ch chooses
a random bit b ∈ {0, 1} and initiates two concur-
rent challenge transmissions according to the following
cases:
– If b = 0, then u0 (resp. u1) will begin the transmis-

sion of m0 (resp. m1).
– If b = 1, then u0 (resp. u1) will begin the transmis-

sion of m1 (resp. m0).
In any case, the recipient of both challenge transmis-
sions is R.
• A can terminate the game any time by outputting a
bit b∗.
The game returns a bit which is 1 if and only if the
following conditions hold true:
C.1 |Icorr| ≤ c · |I| (i.e., no more than c fraction of

mixing nodes are corrupted).
C.2 b∗ = b (i.e., A guesses correctly).

Figure 4: The Pairwise Unlinkability game for protocol Π
with N users against adversary A that corrupts up to a
fraction of c mixing nodes.

Lemma 5. Let mx,my be a pair of messages concurrently
leaving from their senders to enter the same path in a k-
hop continuous mix-net. Let x0, . . . , xk (resp. y0, . . . , yk)
be the delays added to mx (resp. my) by the sender and
the k-hops. Let M denote the event that mx and my meet
with each other at least in one of the hops. Then, M and
ϕλ,λu

(k) (as defined in Thm. 1) are related as follows:

1

2
+

1

2
Pr
[
¬M

]
= 1− 1

2
Pr
[
M
]
= ϕλ,λu

(k).

We present the detailed proof in Appendix A.5. Based on
the above lemma, we can prove the following theorem about
the anonymity guarantees of CCMk,λ,λu when c = 0.

Theorem 3. For every k ≥ 1, λu, λ ∈ R+, it holds that

max
A∈PPT

Pr
[
GCCM

k,λ,λu ,A,0
PU (1η) = 1

]
= max

A∈PPT
Pr
[
GTTP

k,λ,λu ,A,0
PU (1η) = 1

]
= ϕλ,λu(k).
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Therefore, the cascade continuous mix-net CCMk,λ,λu and
the trusted third party anonymizer protocol TTPk,λ,λu

provide pairwise unlinkability w.r.t. c = 0 with error
ϕλ,λu

(k)− 1
2 .

Proof. Every attack against TTPk,λ,λu can be directly trans-
lated to an attack against CCMk,λ,λu with no mix-node
corruptions (the attacker monitors the traffic at the end
points of the communication) by using the FIFO adversary
Afifo in the pairwise unlinkability game. Afifo engages in the
game GTTP

k,λ,λu ,Afifo,0
PU (1η) as follows: when provided the

user set U , it sets (i) Icorr = ∅; (ii) a fixed pair (u0, u1)
as the uncorrupted challenge senders (e.g., the first two
identities in lexicographic order); (iii) the recipient R. At
any time of its choice, it chooses a pair of distinct challenge
messages m0,m1 and engages in the execution as described
in Section 4.2.2. Instead of outputting ‘direct’ or ‘cross’,
Afifo outputs 0 or 1 respectively. Therefore, we get the
following inequality:

max
A∈PPT

Pr
[
GCCM

k,λ,λu ,A,0
PU (1η) = 1

]
≥ max

A∈PPT
Pr
[
GTTP

k,λ,λu ,A,0
PU (1η) = 1

]
.

(3)

Since there are no corrupted mixnodes in our current
consideration and the adversary against CCMk,λ,λu only
observes the encrypted messages entering and exiting the
mixnodes for the intermediate hops, the probability of not
satisfying the conditions for mixing (as specified in Sec-
tion 3.3) is exactly same as Pr[¬M ], where M denotes the
event that the two messages meet with each other at least
once. Therefore, for CCMk,λ,λu with c = 0 we can say,

max
A∈PPT

Pr
[
GCCM

k,λ,λu ,A,0
PU (1η) = 1

]
=1 · Pr[¬M ] +

1

2
· Pr[M ] =

1

2
+

1

2
· Pr

[
¬M

]
.

From Lemma 5 we know that the probability Pr[¬M ] is
related to the probability of those two messages swapping
with each other. That directly translates to the success
probability of Afifo in the pairwise unlinkability game:

max
A∈PPT

Pr
[
GCCM

k,λ,λu ,A,0
PU (1η) = 1

]
=

1

2
+

1

2
Pr
[
¬M

]
= ϕλ,λu

(k)

= Pr
[
GTTP

k,λ,λu ,Afifo,0
PU (1η) = 1

]
≤ max

A∈PPT
Pr
[
GTTP

k,λ,λu ,A,0
PU (1η) = 1

]
.

(4)

By Eq. (3) and (4), the proof is complete.

The following corollary of Lemma 5 simplifies the
results for specific values of k = 1, 2, 3 which could be
relevant to designs like Loopix [8] and Nym [9] where they
consider k = 3.

Corollary 1. Let mx,my be a pair of messages concur-
rently leaving from their senders to enter the same path
in a k-hop continuous mix-net with delay parameter λ.

Let x0, . . . , xk (resp. y0, . . . , yk) be the delays added to
mx (resp. my) by the sender and the k-hops. Let Mj ,
j = 1, . . . , k be the event that mx and my meet at the
j-th hop. Then, if we assume λu = ρ · λ, where ρ ≥ 1, for
the first three layers, it holds that

• Pr[M1] = 1− 1

1 + ρ
;

• Pr[M1 ∨M2] = 1− ρ+ 2

2(1 + ρ)2
;

• Pr[M1 ∨M2 ∨M3] = 1− (3ρ+ 1)(ρ+ 4)

8(1 + ρ)3
.

6.2.2. Pairwise Unlinkability of CCMk,λ,λu against static
corruptions. We analyze the level of anonymity that the
cascade continuous mix-net provides against adversaries
that (statically) corrupts a certain number of mixing nodes.
Formally, we prove the following theorem.

Theorem 4. Let k be non-negative integer, c ∈ [0, 1),
λ, λu ∈ R+ and λu ≥ λ. The cascade continuous mix-
net CCMk,λ,λu provides pairwise unlinkability w.r.t. c with
error δ where

δ ≤ c(1− ϕ(k)) + ϕ(k).

Proof. Let us define the following two quantities:

• T is a random variable that denotes the total number
of times the two challenge messages would meet in the
protocol CCMk,λ,λu based on the chosen delays. If T =
0, the two messages would not meet in CCMk,λ,λu , and
the adversary definitely wins.

• F (t) denotes the probability that t randomly chosen
nodes are all compromised. Even if the two challenge
messages meet total t times, if those nodes are all
compromised, the messages do not mix.

Since, The actual value of F (t) depends on how the k nodes
in the cascase are chosen; however, we can say that F (t+
1) ≤ F (t) since 0 ≤ F (t) ≤ 1, and F (1) = c.

Let us denote δ∗ as the error for pairwise unlinkabil-
ity provided by CCMk,λ,λu when the adversary does not
compromise any nodes. We know from Theorem 3 that
δ∗ = 1

2 ×Pr[¬M ] = ϕ(k)− 1
2 , where M denotes the event

that the two challenge messages meet on at least one node.
For our current scenario, we can say the following about

the event M ′ that the messages mix with each other :

Pr[¬M ′]

=Pr[T = 1] · F (1) + · · ·+ Pr[T = k] · F (k) + Pr[T = 0]

≤Pr[T = 1] · F (1) + · · ·+ Pr[T = k] · F (1) + Pr[¬M ]

=F (1)× Pr[M ] + Pr[¬M ]

=c · 2
(
1− ϕ(k)

)
+ 2
(
ϕ(k)− 1

2

)
.

(5)
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From the above equation we can say,

Pr
[
GCCM

k,λ,λu ,A,0
PU (1η) = 1

]
=
1

2
+

1

2
· Pr[¬M ′]

≤1

2
+ c
(
1− ϕ(k)

)
+
(
ϕ(k)− 1

2

)
=c(1− ϕ(k)) + ϕ(k).

The inequality step in Eq. (5) is untight and the error
increases with large k values. However, for small values of c
and small integers k our bound provides a reasonable upper
bound on the adversarial advantage against the protocol.
Remark 5. The maximum imprecision introduced in the in-
equality step cannot be more than k·Pr[¬M ] since exactly k
terms are replaced with a larger quantity F (1) Pr[T = 1] ≤
F (1) Pr[¬M ′] < Pr[¬M ′]. Therefore, the total imprecision
introduced cannot be more than k ·Pr[¬M ′]. Therefore, we
can say that our derived upper bound on the adversarial
advantage δ is at most (k + 1) · δ.

6.2.3. Pairwise unlinkability of MCMk,λ,λu . Now we
consider our multi-path continuous mixing protocol
MCMk,λ,λu : the formation of the message path is done via
sampling one mixnode uniformly from each of the k layers.
In the following theorem, we formally show the level of
pairwise unlinkability expected in MCMk,λ,λu .

Theorem 5. Let K, k be non-negative integers, λ, λu ∈ R+,
λu ≥ λ, and c ∈ [0, 1). The multipath continuous mixnet
MCMk,λ,λu provides pairwise unlinkability w.r.t. c with
error δ where

δ ≤
(
1− 1− c

K

)(
1− ϕ(k)

)
+ ϕ(k)− 1

2
.

The proof of this theorem is very similar to that in
Section 6.2.2, however the quantity F (t) would be slightly
different. With a single cascade, as long as the two messages
have overlapping delays on a hop, they will meet. However,
with many possible paths, meeting requires that the two
messages also choose the same node on a given hop. This
new factor in the proof captures this additional requirement,
besides the necessity for the node being honest, for the
two messages to meet. We include the detailed proof in
Appendix A.6.

Note that, for large values of K and c, C =
(
1− 1−c

K

)
has a large value (close to 1). With K = 100, we have C ≥
0.99 — which makes the bound really untight.However,
the theorem still provides an upper bound of adversarial
advantage over tossing a random coin; and for small K
values it is still a good estimate. Additionally, The bound
specified in Remark 5 is also valid for MCMk,λ,λu .

6.2.4. Free routing. When the user picks the paths from all
the available mixnodes in the mixnet, instead of following
a stratified topology, the bounds remain the same if they
choose the mixnodes on the path uniformly at random with

replacement. The free routing topology with a total of K
mixnodes can be considered as a special case of stratified
topology where all the nodes are part of each layer. Since the
user picks the nodes on the message path with replacement,
all the probabilities in our bounds still hold. If the user picks
a strategy to pick the mixnodes that is strictly better than
selecting with replacement, the upper bound on adversarial
advantage still holds.

Note that the same argument also holds for the bounds
with user unlinkability in Section 5.2.

6.2.5. Analysis and comparison with user unlinkability.
In Theorem 5, the upper bound on the error δ does not go
to negligible for constant values of c and K, when c > 0 or
K > 1. In Fig. 5, we plot the adversarial success probability
for CCMk,λ,λu and MCMk,λ,λu with respect to the pairwise
unlinkability game based on our proofs. Those plots indicate
that the messages will not mix with high probability (close
to 1) for large values of K. For practical values of c and
K the upper bound of the adversarial success probability
remains significantly high. Note that, for an overall adver-
sarial success probability of 0.9 in the plot indicates 0.4 as
an upper bound on δ. We know that our bound on δ is at
most (k+ 1) times the actual value. Therefore, for k = 20,
the plots indicate a high actual adversarial advantage of at
least 0.02.

We also plot in Fig. 5d the adversarial success prob-
ability with respect to the user unlinkability game, and
the probability drops rapidly even for small values of ρ.
Which provides strong confidence for the protocol when
user unlinkability notion is used as the anonymity metric.

7. Discussion And Conclusion

7.1. Comments About Round-based protocols

Round-based protocols [4], [5], [6], [7] assume some
kind of batching or threshold model (where all the users send
messages before the protocol starts a batch, or the protocol
waits for a threshold number of messages) to achieve their
provable security guarantees. There are no formal analyses
about anonymity guarantees when the clients are allowed
to send their messages in different rounds in a continuous
manner, except the generic impossibility bounds [17], [18].
Although we have not derived the formal bounds, we conjec-
ture that a protocol will have a leakage similar to our analy-
sis in Section 6.2 for pairwise unlinkability when the clients
send their messages following a Poisson distribution and the
delays (in number of rounds) are sampled from geometric
distribution3. In such a setting, if messages stay on a node
for only one round for each hop, the anonymity guarantees
will be worse. A thorough analysis of such a setting for
round-based mixnets is out of scope of this work and left
for future work. Therefore, a verdict about which type of
protocols (protocols with rounds or continuous mixnets) can
provide better anonymity properties is not out yet.

3. since geometric distribution is a discrete approximation of exponential
distribution.
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(a) Upper bound on the success probability (Thm. 4) of the
adversary against CCMk,λ,λu in the pairwise unlinkability game
for k = 1, . . . , 100 , c = 0.1, and different values of ρ.
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(b) Upper bound on the success probability (Thm. 5) of the
adversary against MCMk,λ,λu in the pairwise unlinkability game
for k = 1, . . . , 100 , c = 0, K = 5 (no. of mixnodes per layer),
and different values of ρ.
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(c) Upper bound on the success probability (Thm. 5) of the
adversary against MCMk,λ,λu in the pairwise unlinkability game
for k = 1, . . . , 100 , c = 0.1, K = 5 (no. of mixnodes per layer),
and different values of ρ.
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(d) Upper bound on the success probability (Thm. 2) of the
adversary against MCMk,λ,λu in the user unlinkability game for
k = 1, . . . , 100 , c = 0.1, K = 5 (no. of mixnodes per layer), and
different values of ρ.

Figure 5: Analysis of the adversarial success probability of CCMk,λ,λu and MCMk,λ,λu in different settings.

7.2. Limitations and Future Work

Our results provide a formal treatment for continuous
mixnets for the first time and confirm strong guarantees for
user unlinkability (Thm. 2). For pairwise unlinkability, we
have a pessimistic upper bound (Thm. 5), and a tight lower
bound (Thm 3) on the success probability of the adversary.
However, the treatment has room for improvements — be-
low we describe those gaps and possible directions towards
solving them:

• Our results assumes constant delay on the network
links, which is not true in reality. However, we argue
that network delays are clearly visible to global passive
adversaries, and variable network delays does not change
the insights significantly. A detailed mathematical derivation
with variable network delays is left for future work.

• Our main positive result (in 5.2) requires the steady
state assumption for the network. The assumption is valid
for most practical purposes. However, a really persistent
adversary might decide to observe the network before it
reaches the steady state. In that case, the adversary might

gain some additional insight. This problem can be easily
avoided if the users do not start sending real messages until
the network reaches the steady state.

• If multiple challenge messages are considered for our
pairwise unlinkability game, δ will linearly grow with the
number of challenges. However, with the user unlinkability
game, the relation is not so straight forward, since multiple
challenge message from Alice might mix with the same
message from Bob. Nonetheless, it still directly translates
to deniability for the user. Additionally, increasing the value
of λu would alleviate the problem. The exact relationship
between the single challenge and multi-challenge game for
user unlinkability is left for future work.

The objective of this work is to investigate the anonymity
that continuous mixing provides, i.e., when relying on the
exponential delay technique. Nonetheless, it would also be
an interesting future work to consider cover traffic and
formally analyze the effect on the anonymity guarantees.
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Appendix A.
Postponed Proofs

A.1. Proof of Equality 2

Proof. The proof is by induction on n for n ≥ 0. Namely,
for the base case n = 0 we have that for every k ∈ Z+:

0∑
j=0

(
k + j − 1

j

)
=

(
k − 1

0

)
= 1 =

(
0 + k

0

)
.

Then, for the induction step, we have that

n+1∑
j=0

(
k + j − 1

j

)
=

n∑
j=0

(
k + j − 1

j

)
+

(
k + n+ 1− 1

n+ 1

)
=

(
n+ k

n

)
+

(
n+ k

n+ 1

)
=

(
n+ 1 + k

n+ 1

)
.

A.2. Proof of Equality 3

Proof. The equality is proven by the following observation:
let z, w be two r.v.s that follow the Erl(k+1, λ) distribution
independently. Like any pair of independent r.v.s that follow
the same distribution, it holds that Pr[z < w] = Pr[z ≥
w] = 1

2 . If we compute the probability Pr[z < w], then by
Eq. (1) and (2), we get that
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1

2
= Pr[z < w]

=

∫ ∞

0

λk+1wke−λw

k!

∫ w

0

λk+1zke−λz

k!
dzdw

=

∫ ∞

0

λk+1wke−λw

k!

(
1−

k∑
n=0

(λw)n

n!
e−λw

)
dw

=

∫ ∞

0

λk+1wke−λw

k!
−

k∑
n=0

∫ ∞

0

λn+k+1wn+k

n!k!
e−2λwdw

=1−
k∑

n=0

(
n+ k

n

)∫ ∞

0

λn+k+1wn+k

(n+ k)!
e−2λwdw

=1−
k∑

n=0

(
n+k
n

)
2n+k+1

∫ ∞

0

λn+k+1un+k

(n+ k)!
e−λudu

=1−
k∑

n=0

(
n+k
n

)
2n+k+1

.

Thus, the equality follows from the above equality.

A.3. Proof of Lemma 1

Proof. By the description of the continuous mixing, it
holds that t′1 = t1+ ℓ1, t′2 = t2+ ℓ2 where ℓ1, ℓ2 ∼ Exp(λ).

1. We have that

Pr[t′1 ≤ t2] = Pr[ℓ1 ≤ τ ] =

∫ τ

0

λe−λℓ1dℓ1 = 1− e−λτ .

(6)

2. By the definition of conditional probability and
Eq. (6),

Pr[t′1 < t′2|t2 < t′1] =
Pr[t′1 < t′2 ∧ t2 < t′1]

Pr[t2 < t′1]

=
Pr[t′1 < t′2 ∧ t2 < t′1]

1− Pr[t′1 ≤ t2]

= eλτ · Pr[t′1 < t′2 ∧ t2 < t′1].

(7)

Next, by applying Equality 1, we compute

Pr[t′1 < t′2 ∧ t2 < t′1] =

=Pr[t1 + ℓ1 < t2 + ℓ2 ∧ t2 < ℓ1 + t1]

=Pr[ℓ1 < ℓ2 + τ ∧ ℓ1 > τ ]

=

∫ ∞

0

λe−λℓ2

∫ ℓ2+τ

τ

λe−λℓ1dℓ1dℓ2

=

∫ ∞

0

λe−λℓ2 ·
(
e−λτ − e−λ(ℓ2+τ

)
dℓ2

=e−λτ ·
(∫ ∞

0

λe−λℓ2dℓ2 −
∫ ∞

0

λe−2λℓ2dℓ2

)
=e−λτ ·

(
1− 1

2

)
=

e−λτ

2
.

(8)

By Eq. (7) and (8), we get that

Pr[t′1 < t′2|t2 < t′1] = eλτ · e
−λτ

2
=

1

2
.

A.4. Proof of Theorem 1

Proof. By the description of A we have that

Pr[A wins] = ϕλ,λu
(k)

= Pr[E0<1 ∨ E0≥1] = Pr[E0<1] + Pr[E0≥1]

= Pr[(x0 < x1) ∧ (x0 + y0 < x1 + y1)]+

+ Pr[(x0 ≥ x1) ∧ (x0 + y0 ≥ x1 + y1)] .

(9)

By the definition of E0<1 and E0≥1 and the symmetry
of x0, x1 and x0 + y0, x1 + y1 we have that Pr[E0<1] =
Pr[E0≥1]. So, it suffices that we compute the probability
that event E0<1 happens. We complete the proof in two
parts: (1) when λu > λ, and (2) when λu = λ. In our
analysis, we will apply the Equalities 1, 2, and 3.

Part 1: λu > λ. We now proceed to the computation of
Pr[E0<1] when λu > λ. By the definition of x0, x1, y0, y1
and Eq. (1), we have that

Pr[(x0 < x1) ∧ (x0 + y0 < x1 + y1)]

=Pr[(x0 < x1) ∧ (y0 < y1 + x1 − x0)]

=

∫ ∞

0

λkyk−1
1 e−λy1

(k − 1)!

∫ ∞

0

λue
−λux1

∫ x1

0

λue
−λux0

·
∫ y1+x1−x0

0

λkyk−1
0 e−λy0

(k − 1)!
dy0dx0dx1dy1

(10)

We compute the probability in Eq. (10) by computing
the following integrals:

By Eq. (2), we directly get that

A1 :=

∫ y1+x1−x0

0

λkyk−1
0 e−λy0

(k − 1)!
dy0

= 1−
k−1∑
n=0

(
λ(y1 + x1 − x0)

)n
n!

e−λ(y1+x1−x0) .

(11)
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By Eq. (11), we get that

A2 :=

∫ x1

0

λue
−λux0A1dx0

=

∫ x1

0

λue
−λux0dx0 −

∫ x1

0

λue
−λux0

·
k−1∑
n=0

(
λ(y1 + x1 − x0)

)n
n!

· e−λ(y1+x1−x0)dx0

=
[
− e−λux0

]x1

0
− e−λu(y1+x1)

k−1∑
n=0

λnλu

n!

·
∫ x1

0

(y1 + x1 − x0)
ne(λu−λ)(y1+x1−x0)dx0

= 1− e−λux1 − e−λu(y1+x1)
k−1∑
n=0

λnλu

n!

·
∫ y1+x1

y1

zne(λu−λ)zdz ▷ z = y1 + x1 − x0

= 1− e−λux1 − e−λu(y1+x1)
k−1∑
n=0

λnλu

��n!

·

[
n∑

j=0

(−1)j��n!zn−je(λu−λ)z

(n− j)!(λu − λ)j+1

]y1+x1

y1

▷ λu > λ

= 1− e−λux1 − e−λu(y1+x1)
k−1∑
n=0

λnλu

·

(
n∑

j=0

(−1)j(y1 + x1)
n−je(λu−λ)(y1+x1)

(n− j)!(λu − λ)j+1

−
n∑

j=0

(−1)jyn−j
1 e(λu−λ)y1

(n− j)!(λu − λ)j+1

)

= 1− e−λux1 −
k−1∑
n=0

λnλu

n∑
j=0

(−1)j

(n− j)!(λu − λ)j+1

·
(
(y1 + x1)

n−je−λ(y1+x1) − yn−j
1 e−λy1−λux1

)
(12)

Subsequently, by Eq. (12), Eq. (2), and Equality 1, we get

that

A3 :=

∫ ∞

0

λue
−λux1A2dx1

=

∫ ∞

0

λue
−λux1dx1 −

∫ ∞

0

λue
−2λux1dx1

−
∫ ∞

0

λue
−λux1

k−1∑
n=0

λnλu

n∑
j=0

(−1)j

(n− j)!(λu − λ)j+1

·
(
(y1 + x1)

n−je−λ(y1+x1) − yn−j
1 e−λy1−λux1

)
dx1

= 1− 1

2
−
∫ ∞

0

k−1∑
n=0

n∑
j=0

(−1)jλnλ2
u

(n− j)!(λu − λ)j+1

·
(
(y1 + x1)

n−je−(λu+λ)(y1+x1)eλuy1

− yn−j
1 e−λy1e−2λux1

)
dx1

=
1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλnλ2
u

(λu − λ)j+1

·
(
eλuy1

∫ ∞

0

(y1 + x1)
n−j

(n− j)!
e−(λu+λ)(y1+x1)dx1

− yn−j
1 e−λy1

(n− j)!

∫ ∞

0

e−2λux1dx1

)
=

1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλnλ2
u

(λu − λ)j+1

(
eλuy1

(λu + λ)n−j+1

·
∫ ∞

y1

αn−j+1zn−j

(n− j)!
e−αzdz − yn−j

1 e−λy1

2λu(n− j)!

)
▷ z = y1 + x1, α = λu + λ

=
1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλnλ2
u

(λu − λ)j+1

(
eλuy1

(λu + λ)n−j+1

·
n−j∑
i=0

(λu + λ)iyi1
i!

e−(λu+λ)y1 − yn−j
1 e−λy1

2λu(n− j)!

)

=
1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλnλ2
u

(λu − λ)j+1( n−j∑
i=0

yi1e
−λy1

i!(λu + λ)n−j−i+1
− yn−j

1 e−λy1

2λu(n− j)!

)
(13)

Finally, by Eq. (10), (13) and applying the Equalities 2
and 3, we conclude that
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Pr[(x0 < x1) ∧ (x0 + y0 < x1 + y1)]

=

∫ ∞

0

λkyk−1
1 e−λy1

(k − 1)!
A3dy1

=

∫ ∞

0

λkyk−1
1 e−λy1

2 · (k − 1)!
dy1 −

k−1∑
n=0

n∑
j=0

(−1)jλn+kλ2
u

(λu − λ)j+1(k − 1)!∫ ∞

0

( n−j∑
i=0

yk+i−1
1 e−2λy1

i!(λu + λ)n−j−i+1
− yk+n−j−1

1 e−2λy1

2λu(n− j)!

)
dy1

=
1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλn+kλ2
u

(λu − λ)j+1(k − 1)!

(
n−j∑
i=0

(k + i− 1)!

(2λ)k+i

· 1

i!(λu + λ)n−j−i+1
− (k + n− j − 1)!

2λu(n− j)!(2λ)k+n−j

)

=
1

2
−

k−1∑
n=0

n∑
j=0

(−1)jλu

(λu − λ)j+1

·

(
n−j∑
i=0

λuλ
n−i
(
k+i−1
k−1

)
(λu + λ)n−j−i+12k+i

−
λj
(
k+n−j−1

k−1

)
2k+n−j+1

)
.

(14)

By Eq. (9) and (14), we conclude that

ϕλ,λu
(k) = Pr[A wins] = 2 · Pr[E0<1]

= 1− 2 ·
k−1∑
n=0

n∑
j=0

(−1)jλu

(λu − λ)j+1

·

(
n−j∑
i=0

λuλ
n−i
(
k+i−1
k−1

)
(λu + λ)n−j−i+12k+i

−
λj
(
k+n−j−1

k−1

)
2k+n−j+1

)
.

By the above, when we consider λu = ρλ for a constant
ρ > 1, it holds that

ϕλ,λu
(k) = 1− 2 ·

k−1∑
n=0

n∑
j=0

(−1)jρλ
(ρλ− λ)j+1

·

(
n−j∑
i=0

ρλ · λn−i
(
k+i−1
k−1

)
(ρλ+ λ)n−j−i+12k+i

−
λj
(
k+n−j−1

k−1

)
2k+n−j+1

)

=1− 2 ·
k−1∑
n=0

n∑
j=0

(−1)jρ
(ρ− 1)j+1

·

(
n−j∑
i=0

ρ
(
k+i−1
k−1

)
(ρ+ 1)n−j−i+12k+i

−
(
k+n−j−1

k−1

)
2k+n−j+1

)
(15)

Part 2: λu = λ. We compute Pr[E0<1] as in Eq. (10) for
the special case where λu = λ. We observe that A1 remains

unchanged, i.e., (11) still holds. Thus, by Eq. (11), we get

A2 :=

∫ x1

0

λe−λx0A1dx0

=
[
− e−λx0

]x1

0
− e−λ(y1+x1)

k−1∑
n=0

λn+1

n!

·
∫ x1

0

(y1 + x1 − x0)
ndx0

= 1− e−λx1 −
k−1∑
n=0

λn+1

(n+ 1)!

·
(
(y1 + x1)

n+1 − yn+1
1

)
e−λ(y1+x1) .

(16)

Subsequently, by Eq. (16), Eq. (2), and Equality 1, we get
that

A3 :=

∫ ∞

0

λe−λx1A2dx1

=

∫ ∞

0

λe−λx1dx1 −
1

2

∫ ∞

0

2λe−2λx1dx1

−
k−1∑
n=0

eλy1

∫ ∞

0

λn+2

(n+ 1)!
(y1 + x1)

n+1e−2λ(y1+x1)dx1

+

k−1∑
n=0

λn+1yn+1
1

(n+ 1)!
e−λy1

∫ ∞

0

λe−2λx1dx1

= 1− 1

2
−

k−1∑
n=0

eλy1

2

∫ ∞

2y1

λn+2

(n+ 1)!

(z
2

)n+1

e−λzdz

+

k−1∑
n=0

λn+1yn+1
1

2(n+ 1)!
e−λy1

∫ ∞

0

2λe−2λx1dx1

=
1

2
−

k−1∑
n=0

eλy1

2n+2

(
1− Fn+2,λ(2y1)

)
+

k−1∑
n=0

λn+1yn+1
1

2(n+ 1)!
e−λy1

=
1

2
−

k−1∑
n=0

eλy1

2n+2

n+1∑
j=0

(2λy1)
j

j!
e−2λy1 +

k−1∑
n=0

λn+1yn+1
1

2(n+ 1)!
e−λy1

=
1

2
−

k−1∑
n=0

1

2n+2

n+1∑
j=0

(2λy1)
j

j!
e−λy1 +

k−1∑
n=0

λn+1yn+1
1

2(n+ 1)!
e−λy1

=
1

2
−

k−1∑
n=0

1

2n+2

n∑
j=0

(2λy1)
j

j!
e−λy1 .

(17)

Finally, by Eq. (10), (17) and applying the Equalities 2
and 3, we conclude that
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Pr[E0<1] = Pr[(x0 < x1) ∧ (x0 + y0 < x1 + y1)]

=

∫ ∞

0

λkyk−1
1 e−λy1

(k − 1)!
A3dy1

=
1

2
−

k−1∑
n=0

1

2n+2

n∑
j=0

∫ ∞

0

λk+jyk−1
1 (2y1)

j

(k − 1)!j!
e−2λy1dy1

=
1

2
−

k−1∑
n=0

1

2n+2

n∑
j=0

(
k+j−1
k−1

)
2k−1

∞∫
0

λk+j(2y1)
k+j−1

(k + j − 1)!
e−2λy1dy1

=
1

2
−

k−1∑
n=0

1

2n+2

n∑
j=0

(
k+j−1
k−1

)
2k

∫ ∞

0

λk+juk+j−1

(k + j − 1)!
e−λudu

=
1

2
−

k−1∑
n=0

1

2k+n+2

n∑
j=0

(
k + j − 1

k − 1

)
=

1

2
−

k−1∑
n=0

(
n+k
n

)
2k+n+2

=
1

2
− 1

4
·

k∑
n=0

(
n+k
n

)
2k+n

+

(
2k
k

)
22k+2

=
1

4
+

(
2k
k

)
22k+2

.

(18)

By Eq. (9), (18) and the fact that Pr[E0<1] = Pr[E0≥1],
we conclude that

ϕλ,λu
(k) = 2 · Pr[E0<1] =

1
2 +

(
2k
k

)
22k+1

.

A.4.1. The case λu < λ. Note that, when λu < λ, the
quantity A2 is strictly less than the r.h.s. of Eq. 16 (we can
say that based on the properties of the CDF of exponential
distribution). Similarly and consequently, A3 is also strictly
less than the r.h.s. of Eq. 17. From there we can deduce that
ϕλu,λ(k) < ϕλ,λ(k) when λu < λ.

A.5. Proof of Lemma 5

Proof. Let Mj , j = 1, . . . , k denote the event that mx

and my meet at the j-th hop. Further, let Yn =
n∑

i=0

yi

and Xn =
n∑

i=0

xi for n ≤ k. We want to prove that

Pr
[
¬M

]
+

1

2
Pr
[
M
]
= ϕ(k), since:

Pr
[
¬M

]
+

1

2
Pr
[
M
]

=
(
1− Pr

[
M
])

+
1

2
Pr
[
M
]

= 1− 1

2
Pr
[
M
]

=Pr
[
¬M

]
+

1

2

(
1− Pr

[
¬M

])
=

1

2
Pr
[
¬M

]
+

1

2
.

Observe that, if the two messages do not meet they
cannot swap, since,

¬M =⇒
( k−1∧

i=0

Yi > Xi+1

)
∨
( k−1∧

i=0

Xi > Yi+1

)
=⇒

(
Yk > Xk ∧ y0 > x0

)
∨
(
Xk > Yk ∧ x0 > y0

)
.

(19)

On the other hand, if two messages meet with each other
for n times, we prove by induction that they swap with
probability 0.5 for every 1 ≤ n ≤ k.

We can model this with coin-toss experiments with n fair
trials. Let us denote with H the case that the two messages
exit the node in the opposite order (swap) than they enter
the node, given that they meet in that node. Similarly, Let
us denote with T the case that the two messages exit the
node in the same order as they enter they node, given they
meet in that node. For a general n, this random experiment
will generate an n-bit string Xn. If Xn has even number of
H , the messages exit the mixnode in the same order as the
enter. If Xn has odd number of H , they messages will be
swapped. Let Sn denote the set of all possible such strings.
Further, let On denote the set of strings in Sn with odd
number of H , and En denote the set of strings with even
number of H .

Claim 1. For 1 ≤ n ≤ k, |On| = |En|.

Proof of Claim . For the base case of n = 1, this directly
follows from Lemma 1, since the two messages swap with
probability 0.5. We have S(1) = {H,T}.

By inductive hypothesis, after h trials we have |Oh| =
|Eh|. For (h + 1)-th trial, the two messages switch their
order with probability 0.5 (By Lemma 1) — and corresponds
to two possible outcomes H and T . Therefore Oh+1 will
contain all the strings from Oh concatenated with T at the
tail, plus all the strings from Eh concatenated with H at
the tail. Similarly, Eh+1 will contain all the strings from Oh

concatenated with H at the tail, plus all the strings from Eh

concatenated with T at the tail. In other words,

Oh+1 = {X||T ∀X ∈ Oh} ∪ {X||H ∀X ∈ Eh} (20)
Eh+1 = {X||T ∀X ∈ Eh} ∪ {X||H ∀X ∈ Oh} (21)
|Oh+1| = |Oh|+ |Eh| (22)

= |Eh+1| (23)

where || denotes concatenation operation. And that con-
cludes our inductive proof. ⋄

Finally, ϕ(k) denotes the probability that the two mes-
sages are not swapped. Therefore, according to Theorem 1,

ϕ(k) = Pr
[(
Yk > Xk ∧ y0 > x0

)
∨
(
Xk > Yk ∧ x0 > y0

)]
= Pr

[(
Yk > Xk ∧ y0 > x0

)
∨
(
Xk > Yk ∧ x0 > y0

)∣∣M]
× Pr[M ]

+ Pr
[(
Yk > Xk ∧ y0 > x0

)
∨
(
Xk > Yk ∧ x0 > y0

)∣∣¬M]
× Pr[¬M ]

=
1

2
· Pr[M ] + 1 · Pr[¬M ] = Pr[¬M ] +

1

2
Pr[M ].

(24)

And that completes the proof of our lemma.
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A.6. Proof of Theorem 5

Proof. Analogous to the proof of Theorem 4, let us define
the following two quantities:

• T is a random variable that denotes the total number of
times the two challenge messages have overlapping delays
on a hop. In CCMk,λ, the two messages would meet in such
a condition, however, in MCMk,λ the two messages might
still end up choosing different nodes for the hop and not
meet each other. If T = 0, the two messages definitely do
not meet, and the adversary definitely wins.

• F (t) denotes the probability that, for t randomly
chosen hops from the path of one challenge message, other
challenge message does not choose the same nodes for those
hops or the node is compromised whenever they choose the
same node.

Since each layer is independent of other layers in the
mixnet, F (t) = F (1)t. If V denotes the event that the two
messages choose the same node for a given hop, and W
denotes the event that the chosen node is honest,

F (1) =1− Pr[V ∧W ] = 1− (1− c)

K
.

Let us denote δ∗ as the error for pairwise unlinka-
bility provided by CCMk,λ when the adversary does not
compromise any nodes. We know from Theorem 3 that
δ∗ = 1

2 × Pr[¬M ]. For our current scenario, we can say
the following about the event M ′ that the messages ‘mix’
with each other :

Pr[¬M ′]

=Pr[T = 1] · F (1) + · · ·+ Pr[T = k] · F (k) + Pr[T ′ = 0]

≤Pr[T = 1] · F (1) + · · ·+ Pr[T = k] · F (1) + Pr[¬M ]

=F (1) · Pr[M ] + Pr[¬M ]

=

(
1− (1− c)

K

)
· 2
(
1− ϕ(k)

)
+ 2

(
ϕ(k)− 1

2

)
.

(25)

From the above equation we can say,

Pr
[
GCCM

k,λ,A,0
PU (1η) = 1

]
=

1

2
+

1

2
· Pr[¬M ′]

≤1

2
+

(
1− (1− c)

K

)(
1− ϕ(k)

)
+

(
ϕ(k)− 1

2

)
.

Therefore, the protocol CCMk,λ with at most c compro-
mised nodes provides pairwise unlinkability with an error
bounded by δ ≤

(
1− (1−c)

K

) (
1−ϕ(k)

)
+
(
ϕ(k)− 1

2

)
.
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