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Abstract. Key-policy attribute-based encryption scheme (KP-ABE) uses a set of
attributes as public keys for encryption. It allows homomorphic evaluation of cipher-
text into another ciphertext of the same message, which can be decrypted if a certain
access policy based on the attributes is satisfied. A lattice-based KP-ABE scheme
is reported in several works in the literature, and its software implementation is
available in an open-source library called PALISADE. However, as the cryptographic
primitives in KP-ABE are overly involved, non-trivial hardware acceleration is needed
for its adoption in practical applications.
In this work, we provide GPU-based algorithms for accelerating KP-ABE encryption
and homomorphic evaluation functions seamlessly integrated into the open-source
library with minor additional build changes needed to run the GPU kernels. Using
GPU algorithms, we perform both homomorphic encryption and homomorphic evalu-
ation operations 2.1× and 13.2× faster than the CPU implementations reported in
the literature on an Intel i9, respectively. Furthermore, our implementation supports
up to 128 attributes for encryption and homomorphic evaluation with fixed and
changing access policies. Unlike the reported GPU-based homomorphic operations
in the literature, which support only up to 32 attributes and give estimations for a
higher number of attributes.
We also propose a GPU-based KP-ABE scheme for publish/subscribe messaging ap-
plications, in which end-to-end security of the messages is guaranteed. Here, while the
exchanged messages are encrypted with as many as 128 attributes by publishers, fewer
attributes are needed for homomorphic evaluation. Our fast and memory-efficient
GPU implementations of KP-ABE encryption and homomorphic evaluation operations
demonstrate that the KP-ABE scheme can be used for practicable publish/subscribe
messaging applications.
Keywords: Lattice-based cryptography · Attribute-based encryption · RLWE ·
PALISADE · GPU · Publish/Subscribe

1 Introduction
The attribute-based encryption (ABE) is introduced first in [1], where the correct decryption
of ciphertext can be performed by users that have a certain set of attributes. There are
two types of ABE, namely ciphertext-policy attribute-based encryption (CP-ABE) and the
key-policy attribute-based encryption (KP-ABE). In CP-ABE [8–15], as the access policy
is defined over ciphertext, it must be known at the time of encryption. Therefore, the
publisher has to know all access policies requested by the subscribers beforehand, which is
not exactly suitable for the loosely coupled nature of publishers and subscribers in the
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publish/subscribe (Pub/Sub) communication model. In the KP-ABE scheme [2–7], on
the other hand, the plaintext is encrypted using a set of attributes as the public key and
decryption keys are generated for access policies defined over a subset of the attributes.
An access policy can be defined after the encryption, and publishers need to know neither
subscribers nor the access policies improving subscribers’ privacy. Also, the attributes
can be the properties of the message to be encrypted, not the attributes of the recipients.
Once the access policy is known, the original ciphertext is homomorphically evaluated
and transformed into another ciphertext under different access policies by a third party,
which can be a communication server that does not need to know a secret key. Therefore,
KP-ABE stands as a suitable cryptographic scheme that provides all the primitives needed
to ensure end-to-end security for Pub/Sub model.

In a pub-sub communication model with KP-ABE, we envision a communication service
run by a third party, which provides long-term storage for, homomorphically evaluates,
and forward ciphertexts to interested subscribers. Publishers and subscribers agree on a
set of attributes of the messages, over which the policies will be defined and the attributes
are not necessarily revealed to the communication service as they may be sensitive. The
set of attributes is referred to as the dictionary, and its elements can be represented
with pseudonyms whose mappings to real attributes are only known by publishers and
subscribers. The subscribers register with the Pub/Sub service indicating the published
messages they are interested in using an access policy defined over the attributes of the
message. For instance, attributes can be keywords or categories of the messages, and
the policy can be defined as messages containing certain keywords or falling into certain
categories. In addition, the communication service can support search operations based
on the set of attributes over the previously published messages. In the Pub/Sub scenario,
the number of keywords or categories can easily reach thousands while their multitude in
the access policies stays relatively low. However, as the number of policies for the same
message can vary depending on the requesting subscribers, homomorphic evaluation can
still be a computational bottleneck. Therefore, encrypting messages and homomorphic
evaluations of ciphertexts and public keys can be time-consuming and call for non-trivial
acceleration.

Dai et al. [20] report on a GPU accelerator of the KP-ABE scheme in [16] for PALISADE
library [21] using a fast implementation of Number Theoretic Transform (NTT) operations
in [17]. The GPU implementation of NTT in [17] uses a special form “carrier prime”
which supports fast modular arithmetic. Nonetheless, using carrier prime leads to working
with many smaller primes in RNS arithmetic [18] used for multi-precision integers to
support large modulus in homomorphic encryption systems as well as KP-ABE. Also, the
authors in [20] employ various other techniques to accelerate KP-ABE operations, such
as Non-Adjacent Form (NAF) for slowing the noise growth in a zero-centered range such
that the ciphertexts are decrypted successfully. Nevertheless, the implementation in the
PALISADE library and its GPU accelerator still suffer from a high execution time due to
overly involved encryption and homomorphic evaluation operations. For instance, on an
Intel Core i7 processor for 8 attributes, homomorphic evaluation, and encryption functions
take up to 3.4 seconds and 259 ms, respectively (Table II in [20]).

Another work [25] employs a technique known as subgaussian gadget decomposition,
for which larger base b values can be used for the decomposition operation while in the
original implementation in [21] and its GPU implementation in [20], b = 2 is used for
decomposition. While using larger decomposition bases can adversely affect the noise growth
in the ciphertext, it significantly accelerates both the KP-ABE encryption and ciphertext
homomorphic evaluation operations. Indeed, for eight attributes, the implementation
in [25] performs homomorphic evaluation 18.3 times faster than the implementation in [20].
Nonetheless, when the number of attributes increases, even the fast method in [25] results
in prohibitively high execution times. For instance, when the number of attributes ℓ = 32,
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the homomorphic evaluation operation takes as high as 5.67 s.
To the best of our knowledge, the implementation in [20] is the only work that introduces

the GPU implementation of the KP-ABE scheme. Although it provides considerable
acceleration, it has several shortcomings. As the attribute number, ring dimension, and
modulus size increase, the timings become prohibitively high for any practical application
of KP-ABE. First and foremost, the NTT algorithm employed and its GPU implementation
and the use of RNS arithmetic are inefficient. Moreover, as the memory requirements also
increase, the device memory (with the GPU used in [20]) becomes insufficient when the
number of attributes exceeds 32. As a result of this, Dai et al. [20] provide estimations
for execution times beyond 32 attributes. Moreover, it does not exploit the much faster
KP-ABE algorithms introduced [25]. Finally, the accelerator in [20] is a separate GPU
implementation and not fully integrated with the PALISADE library that implements
other KP-ABE operations, which needs no acceleration and runs efficiently on a common
CPU. Consequently, the GPU implementation falls short of being a real accelerator as its
integration with a software library is non-trivial.

High execution times, especially for a moderately high number of attributes, fail to
motivate users, researchers, or developers to integrate the KP-ABE scheme in practical
applications, albeit with its highly advanced security properties. This work is a renewed
attempt to address the implementation challenges of the KP-ABE scheme using improved
algorithms and implementation techniques suitable for GPU devices.

Our Contribution. This work aims to provide an accelerated GPU implementation of
the three most time-consuming KP-ABE operations when it is used to provide end-to-end
security in Pub/Sub communication system. KP-ABE consists of five cryptographic func-
tions: i) key generation ii) encryption, iii) Homomorphic evaluation of ciphertext, EvalCT,
iv) Homomorphic evaluation of public key, EvalPK and v) decryption. As decryption and
key generation operations are relatively fast and key generation is infrequently applied, we
focus on encryption and homomorphic evaluation operations.

When a subscriber in Pub/Sub system forms an attribute-based access policy, EvalPK
operation is applied to the attributes, and a new public key is obtained to compute a
secret key for the access policy. Provided an access policy changes occasionally (fixed
policy), EvalPK operation is not executed often. EvalCT operation needs to be performed
every time a new message is published. When the policies are changing frequently, both
operations are performed (changing policy). Similarly, publishers need to encrypt every
message sent using many attributes.

In this work, we first investigate the methods to fully integrate KP-ABE encrypt,
EvalPK and EvalCT operations in the PALISADE library while running all other KP-ABE
operations in CPU. For this, we develop CUDA codes to run on GPU and introduce
certain modifications to the library’s API regarding typecasting, including the GPU
kernels and modifying the Cmake scripts. As a result, our codes are compiled along
with PALISADE seamlessly1. Also, even though the main library supports multi-precision
integers, the built-in headers are not intended for usage in CUDA codes, which is an
obstacle. Therefore, we have to include our GPU implementation for multi-precision (128-
bits integers) arithmetic and incorporate it in the PALISADE library. Users and developers
of PALISADE Trapdoor2 libraries with CUDA installed on their machines are able to build
and run our GPU accelerator without major extra builds.

The major execution bottleneck in KP-ABE operations is the multiplication of polyno-
mials of a very high degree, whose coefficients are multi-precision integers. For instance,
depending on the number of attributes, KP-ABE employs polynomials whose degrees are

1We provide our codes and other files for compilation and build at
www.github.com/RoronoaZ/KPABE-GPU.git

2Another library built by PALISADE developers, which contains the KP-ABE scheme API.
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as high as 214 and coefficient sizes as large as 300 bit. We use a highly efficient GPU
implementation of number theoretic transformation operation for polynomial multiplication.
Our CUDA implementation of NTT is again seamlessly integrated with the PALISADE
library and provides significant speedup values.

This work also introduces the first publish/subscribe communication application based
on the KP-ABE scheme for providing superior security properties such as end-to-end
encryption, ensuring the privacy of subscribers pertaining to the nature of their interest
in the published messages. Our proposal provides true decoupling of publishers and
subscribers and protects published messages against communication servers that receive,
store, and forward messages. The proposed Pub/Sub system enjoys high performance
provided by our GPU-base accelerator.

The paper is organized as follows: The section 2 will go through the works related to
our topic. The following section 3 defines the necessary mathematical information and
background to understand the cryptographic constructs in this scheme. Then, section 4
gives details about the KP-ABE scheme. Next, we present a concise explanation of the
GPU-accelerated Number Theoretic Transform (NTT) implementation that we used in
our work in Section 5. Later on, our proposed KP-ABE based publish/subscribe scheme
is presented in Section 6. We discuss the acceleration of the scheme’s primitives and the
challenges faced during the development process in Section 7, while in Section 8, we present
the experiments and the development environment’s details. Finally, we conclude our work
with Section 9 and one appendix B, including the full timings of our experiments.

2 Related Work
The publish/subscribe (Pub/Sub) communication system supports exchanging messages
between information creators (producers) and consumers, who acquire such information by
subscribing to a set of topics. The other party included in the Pub/Sub system is called the
message intermediary (broker), which delivers the messages to the communication channel
subscribers according to their submitted topics. This loosely-coupled communication
protocol was first introduced in [19]. Although it ensures no direct communication between
the publishers and subscribers, it is subject to data privacy breaches since, under specific
scenarios, the messages are disclosed to the broker, which may act with malicious intentions
or be subject to malicious intrusions. The other security concern is the security level of the
encryption schemes used in the Pub/Sub protocols and their durability against quantum
attacks.

Works in [22, 23] provide Pub/Sub implementations that address the security concerns
by applying a proxy re-encryption scheme (PRE), which allows the broker or server to
re-encrypt already encrypted data sent by the publishers so that the new ciphertext can be
decrypted by interested subscribers. This method addresses the problem of the potential
information disclosure at the broker side [22]. The authors in [23] propose two lattice-based
PRE schemes that support key switching, allow complete decoupling between publishers
and subscribers, and provide the ability to pass the access grant to other servers or brokers.
The common aspect between the latter work and ours is that both use homomorphic
encryption schemes. Furthermore, both works in [22, 23] and this paper address the
confidentiality and privacy concerns in Pub/Sub communication system.

While they provide relatively fast solutions as re-encryption operation can be performed
efficiently on off-the-shelf computers, PRE-based end-to-end secure Pub/Sub systems have
several shortcomings as that in [22,23]. First, the PRE scheme relies on a policy authority,
which acts as an intermediary between publishers and subscribers and can see the content
of the published messages as it generates public and secret keys for publishers. The access
policies are formed very simply, and the policy authority is responsible for generating
re-encryption keys for the proxy servers to perform the re-encryption operation. The access
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policy simply determines who will receive a particular message, and the re-encryption must
be repeated separately for every interested subscriber. If many subscribers are interested in
the same message, this will be prohibitively expensive for a practical messaging application.

On the other hand, a Pub/Sub communication system based on KP-ABE provides
more flexibility as much more involved policies can be expressed over a set of attributes
that needs no policy authority. A communication server can homomorphically evaluate
ciphertext without any re-encryption keys. Here, as homomorphic evaluation of ciphertext
transforms an original ciphertext under an access policy, it is analogous to the re-encryption
operation of a PRE-based solution. If a policy dictates multiple subscribers receive the
same message, ciphertext evaluation is performed once for all subscribers interested in
the message. In the PRE-based system, on the other hand, both the re-encryption key
generation and re-encryption operations have to be repeated for every interested subscriber.
In the KP-ABE-based solution, however, an authority referred to a private key generator
in all identity and attribute-based encryption schemes generate secret keys per policy.
Secret key generation is not particularly costly.

The authors in [22] state that the infeasibility of ABE schemes is due to the required
expensive hardware for acceleration, which may not be available within reach of publishers
for encrypting their data needs a re-examination; we intend to address this problem in this
work. Here, we develop fast GPU implementations of KP-ABE encryption and evaluation
functions built on top of the existing CPU implementation in [21] of the KP-ABE scheme.
And we show that conventional GPU hardware, which is available even in many off-the-
shelf desktop and notebook computers, can deliver an acceptable level of performance
in the Pub/Sub systems, satisfying the need for computational power requirements. In
addition, in Pub/Sub systems in which the same message is delivered to many subscribers,
KP-ABE-based solutions offer computational advantages over PRE-based solutions.

In Table 1, we give a qualitative comparison of PRE- and KP-ABE-based end-to-end
secure Pub/Sub communication services. Giving a fair quantitative comparison can be
difficult as one may offer some computational advantages over the other depending on the
use-case scenario. For instance, if one subscriber is interested in a published message and
provided that all re-encryption keys are generated and given to the communication server
acting as proxy encryption party, the re-encryption takes about 297 ms concerning the best
PRE scheme that Polyakov et al. provided in [23], which gives an upper bound of 1 s for
the generation of re-encryption keys. A ciphertext evaluation operation in [25] finishes in
590 ms when the number of attributes in the policy is ℓ = 8 while generating a secret policy
key takes 151 ms. Both implementations use the ring dimension of n = 8192 and run on
Intel i7 CPU. Note that if more than one subscribers are interested in the same message, the
policy authority and the communication server must repeat the generation of re-encryption
keys and re-encryption operations for every subscriber in the PRE-based solution. In the
KP-ABE-based solution, the communication server performs the ciphertext evaluation
only once for all interested subscribers, provided they all want the same message using
the same policy. As can be understood from these quantitative comparison attempts, care
must be taken when interpreting the execution time results as they are highly dependent
on the application scenario.

The implementation in this work introduces no fundamental changes in the construction
of the key-policy attribute-based encryption (KP-ABE) scheme. It preserves the same
hardness level as the Shortest Vector Problem (SVP), which is an NP-hard problem. The
extension of the LWE problem to the RLWE construction [24] is mainly proposed to reduce
memory overheads and increase the performance of the cryptographic operations that form
the bottleneck in this scheme.

With the emergence of mathematical foundations for secure post-quantum cryptography,
such as lattice-based, hash-based, and code-based cryptography, a framework for building
secure applications has been formed since then. For instance, the work in [8] introduces
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Table 1: A qualitative comparison of PRE-based and KP-ABE-bases Pub/Sub communi-
cation systems

PRE-Based Pub/Sub KP-ABE-based Pub/Sub

Third Party Policy authority (PA) Private key generator (PKG)
Access Policy Subscribers inform policy authority Attribute-based and dynamic
Ciphertext processing Re-encryption Homomorphic evaluation
Key for ciphertext processing Re-encryption keys No keys needed
Repetition of ciphertext processing per user per policy
Private key generation Policy Authority for publishers Private key generator per policy
End-to-end security Policy Authority can decrypt all messages No authority alone can decrypt messages
Privacy of subscribers Access policies known by PA Access policies can be hidden from PKG
Search over messages Not possible Attribute based search

a variant of the attribute-based encryption, called the ciphertext policy attribute-based
Encryption (CP-ABE). It defines the access policy and links it with the ciphertext such
that the policy cannot be changed after the encryption. On the other hand, the KP-ABE
links the access policy with a set of attributes chosen in various means by subscribers
wishing to decrypt a ciphertext. In this design, since the policy is not defined by the
sender (encryptor), it can be decided after the encryption operation. Moreover, it can be a
changing policy where different message receivers holding different attributes will be able
to decrypt it after getting the policy keys from a private key generator.

We adopt the particular KP-ABE construction, which is is the lattice-based KP-
ABE scheme in [16], implemented in the PALISADE library [21] and GPU-accelerated
in [20]. Although the state-of-the-art implementation in [21] provides a fast encryption
operation, the homomorphic encryption and evaluation of ciphertexts and public keys are
the bottlenecks of this scheme due to its high number of vector-vector and matrix-vector
multiplications. While another optimization by the work in [25] accelerates KP-ABE
operations significantly, its GPU acceleration has not been reported in the literature.
Therefore, no evaluation of the new technique has been reported for higher number of
attributes.

In this paper, we provide the fast and memory-efficient GPU implementation of the
fastest lattice-based KP-ABE scheme in [25]. We also propose a Pub/Sub communication
system with higher flexibility of forming access policies and superior security properties
and show that it is practical. The GPU implementation is fully integrated to PALISADE as
an accelerator, therefore, all other KP-ABE operations, which needs no acceleration, can
still be performed in the host CPU. Our solution can be used to accelerate other somewhat
homomorphic encryption schemes implemented in PALISADE, such as BFV [26], BGV [27],
and CKKS [28].

3 Preliminaries
We present the required mathematical background regarding the lattice-based cryptography
and the KP-ABE scheme.

General Notations We employ bold letters to denote vectors and calligraphic letters
for sets and similar mathematical structures such as rings. We use n to refer to the ring
dimension for the polynomial ring R = Z[x]/Φ(x), where Φ(x) = xn + 1 is cyclotomic
polynomial of degree a power of two. Arithmetic operations in KP-ABE usually occur in
the ring Rq = R/qR, where the polynomial coefficients are integers modulo q, Zq = Z/qZ,
and considered in the range (−⌊q/2⌋, ⌊q/2⌋) unless stated, otherwise. A polynomial in
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A ∈ R can also be viewed as a vector of its coefficients over Z, namely A ∈ Zn. The modulo
q reduction operation can be applied to a polynomial’s coefficients, [A]q = A mod q; then,
[A]q ∈ Zn

q .
For efficiency, we use RNS arithmetic [18] as we use the isomorphism Rq ≈ Rq0 ×

. . .×Rqt−1 with q =
∏t−1

i=0 qi, where qis are smaller primes, which usually fit in the word
size of a computer. For a positive integer base b, a non-negative integer a < bk can be
decomposed into digits a0, . . . , ak−1, where ai < b, such that a =

∑k−1
i=0 aib

i.
For a positive non-zero m, we define Rm×m

q , R1×m
q , Rm

q as a matrix, row vector, and
a column vector of ring elements in Rq respectively. The value of m is determined based
on the following formula from [20]:

m =
[

log2(qi)
log2(b) × t

]
+ 2, (1)

where we assume smaller primes qi are of the same size.
The sampling from a discrete uniform random distribution is shown by the notation

a ←U Zq, A ←U Zn
q , where A is, in fact, the element of Rq. Also, B ← DR,σ stands

for random sampling from the distribution DR,σ with zero mean and a small standard
deviation of σ, where B ∈ R.

Ring Learning with Errors problem The most important hard problem employed to secure
the KP-ABE scheme is known as the ring learning with errors (RLWE) problem. Suppose
s is an arbitrary polynomial in R and a←U Rq and an error polynomial e←DR,σ. Given
these, we define the hardness of two RLWE problems as follows:

1. RLWE Search Problem: given the pair of (a, as + e), it is hard to find r.

2. RLWE Decision Problem: given the pair (a, as + e) and b is randomly sampled in
Rq, it is hard to distinguish between (as + e) and b.

The security level of the implementation is determined by the modulus q, the ring
dimension n, and the standard deviation value σ in the distribution DR,σ using the
inequality from [30]

n ≥
log2( q

σ )
4 log2(δ) , (2)

where δ is the Hermite factor, which is one of the determining factors for security level.
For instance, δ = 1.006 provides ∼ 100 bits of security.

4 Key-Policy Attribute-Based Encryption - Kp-abe
The Key-Policy Attribute-Based Encryption scheme allows senders to perform the en-
cryption on a set of attributes and define a compact-sized private (policy) key associated
with an access policy to permit the correct decryption of specific ciphertexts only to
receivers holding the correspondent policy key. Assume we have a set of attributes
X = {x1, x2, ..., xℓ} of size ℓ, which we use to determine access policies. Assume also that
each attribute xi ∈ {0, 1} takes binary values indicating whether a required attribute exits
or not. Attributes can pertain to receivers as well as messages.

We can define an access policy as a circuit of NAND gates over a set of attributes. For
example, assuming ℓ = 8 such that X = {x1, x2, x3, x4, x5, x6, x7, x8}, where the access
policy can be defined as

f(x1, x2, ..., x8) = (x1 ∧ x3) ∨ (x2 ∧ x4)
∨ (x5 ∧ x6) ∨ (x7 ∧ x8).

(3)
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The access policy is expressed as a Boolean function or logic circuit in this example. As
NAND gates are universal, any access policy that can be expressed as a logic function can
be realized using only NAND gates. As homomorphic operations over ciphertext and public
keys are defined as arithmetic operations, each NAND gate is written as ¬(x∧ y) = 1− xy.
Then, the policy in Eq. 3 are written as

f(x1, x2, ..., x8) = (1− x1x3)× (1− x2x4)
× (1− x5x6)× (1− x7x8).

(4)

The expression in Eq. 4 is referred to as the evaluation circuit for the policy in Eq. 3
as both ciphertext and the public keys corresponding to the attributes in the policy are
homomorphically evaluated using this circuit. In our implementations in this work, we use
benchmark evaluation circuits to assess the efficiency of the KP-ABE schemes. Figure 1 is
an example of a benchmark evaluation circuit with ℓ = 16 attributes. The actual policies
can be defined in various ways, whose corresponding evaluation circuits are most likely
not more complicated than our benchmark circuit with the same number of attributes.
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x28

x1
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x8
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x13

x14
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Figure 1: An illustration of a policy circuit of l = 16 and depth 4. Except from the input
attributes, the rest of them where l > 16 are the attribute values on the circuit wires which
form the inputs of gates at level i where i ∈ [1:4] for this example.

The KP-ABE scheme consists of five main functions as follows:

1. Setup(1λ, ℓ) → {MPK, MSK}: Given the number of attributes ℓ and the security
parameter λ this phase generates a master public key (MPK) and master secret
key (MSK), the latter of which is known to and used by a public key generator
for generating policy secret key for ciphertexts that can be decrypted under the
corresponding access policy. Note that MPK, used during encryption, includes row
vectors of ring elements, namely A, Bi ∈ R1×m

q for i = 0, 1, . . . , ℓ and β ∈ Rq;
namely MPK = (A, B0, . . . , Bℓ, β). We can think that one public key component
Bi corresponds to the attribute xi for i = 1, . . . , ℓ.

2. Encrypt(M , X , MPK) → C: The sender encrypts the message M using the master
public key and the set of attributes X . For the ciphertext we can write C = (Cin, c1),
where Cin ∈ R

1×(ℓ+2)m
q and c1 ∈ Rq. Namely, Cin = (CA, C0, . . . , Cℓ), and

CA, Ci ∈ Rm
q for i = 0, . . . , ℓ.

3. Evaluate(f , CA, C0, C, B0, B)→ {Cpolicy, Bpolicy}: The evaluation function takes
the policy circuit f and a subset of the public keys B and a subset of ciphertexts C
corresponding to the attributes in f ; i.e., B ⊂ {B1, . . . , Bℓ} and C ⊂ {C1, . . . , Cℓ}.
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It homomorphically evaluates the ciphertexts and the public keys pertaining to
the access policy circuit f . As a result, it returns the evaluated public key and
ciphertext Bpolicy, Cpolicy ∈ Rm

q , respectively. If the access policy does not change
(i.e., fixed policy case), Bpolicy can be obtained using a separate evaluation function
EvaluatePK(f, B0,B)→ Bpolicy once. Then, the ciphertext evaluation is performed
for each ciphertext using EvaluateCT(f, CA, C0, C)→ Cpolicy.

4. KeyGen(A, β, Bpolicy, MSK) → αpolicy: Given the master public key MPK, the
master secret key MSK, and the policy public key Bpolicy for the policy f , the key
generation function, executed by the private key generator, returns a secret policy
key, αpolicy, which is used to decrypt the ciphertext Cpolicy. The policy secret key is
sent in a secure way to the subscribers that satisfy the access policy.

5. Decrypt(Cpolicy, c1, CA, αpolicy) → M̂ : Given the evaluated ciphertext Cpolicy, the
other parts of the ciphertext, and the secret policy key the decryption results in M̂
such that M = M̂ when the secret policy key is correct.

Since we target the acceleration of the encryption (Encrypt) and the evaluation
(Evaluate, EvaluatePK, EvaluateCT) functions, we briefly introduce their algorithms 3

as they show the operations that can benefit from the GPU acceleration. We also explain
our approach to minimize their latencies or increase their throughput.

4.1 Encrypt
The GPU implementation of KP-ABE encryption can be made much faster than the
CPU implementation as demonstrated in [20] with a GPU implementation. As it consists
of a considerable number of involved arithmetic operations such as Rq multiplication,
which can be carried out concurrently and take advantage of our highly optimized GPU
implementation of the NTT operation, KP-ABE encryption, the steps of which are given in
Algorithm 1, is a natural candidate for GPU acceleration. In particular, Step 3 and step 4
and the Rq multiplication, βs, in Step 5 of Algorithm 1 benefit from GPU acceleration.

Here, G is a primitive row vector of constant polynomials required for generating a
G-lattice extended by two 0 polynomials to match the row size m of polynomial vectors
A and Bi. The polynomial vectors e0 and eA represent the noise or error component in
the encryption added to the ciphertext vectors. The noise levels in the ciphertext as in the
case of all lattice-based homomorphic encryption schemes, should not exceed a decryption
threshold τ to guarantee correct decryption.

4.2 Evaluation
The homomorphic evaluation of public key vectors Bi, ciphertext vectors CA, and Ci are
performed using the functions EvalPK and EvalCT, which are combined into one function
Evaluate in the PALISADE library, whose steps are detailed in Algorithm 2. The algorithm
takes the public key vectors Bi and ciphertext vectors Ci in the policy circuit as inputs,
performs the evaluation for each gate of the policy circuit, which is the benchmark circuit
of the type in Figure 1, and returns the evaluated ciphertext and public key vectors Cpolicy

and Bpolicy, respectively. As a typical policy circuit does not contain all attributes, the
public key and ciphertext vectors come from a smaller subset of all vectors, namely B and
C, and their cardinality can be written as |B| = |C| = ℓ′. For simplicity, we designate the
public key and ciphertext vectors in the policy circuit with indices starting from 0 to ℓ′.

During the homomorphic evaluation, the operation in the third step of Algorithm 2
produces a matrix of size m×m, referred as the digit-decomposition matrix, Ψi, which

3The algorithms referred to in this section can be reached in Appendix A
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contains polynomials in R, whose coefficients are smaller than the base b and distributed
with a zero mean µ = 0. The NAFDECOMP is a technique introduced first in [20] to limit
noise growth using the base b = 2. The technique is later extended using higher base
values in [25]. We adopt the latter approach as using higher bases, b, results in smaller m
values, which minimizes the number of polynomials in public key and ciphertext vectors
leading to significant computational advantage.

In the fourth and fifth steps of Algorithm 2, the homomorphic evaluation is performed
on the ciphertext and the public key vectors using the NAND gate representation of the
benchmark policy circuit in Eq. 4. The evaluation loops over the gates of the policy circuit,
and the evaluated Cpolicy and Bpolicy are obtained in the output wires of the last gate. In
Step 4 of the algorithm, a relatively large number of high-degree polynomials in Ψi and
B2i are multiplied using the NTT algorithm. Therefore, our GPU implementation of the
NTT algorithm and other optimization techniques for GPU can significantly accelerate
the KP-ABE homomorphic evaluation function in Algorithm 2. Our implementation of
the algorithm is discussed further in Section 7.

4.3 Fixed Policy
The policy does not change often in certain application scenarios (e.g., publish/subscribe
communication protocol). For instance, subscribers can communicate their access policy
to the communication server, which computes the public key vectors Bi, where i ∈
[ℓ′ + 1, 2ℓ′ − 1] once using Algorithm 3 and stores them in memory. Furthermore, if the
policy circuit is sufficiently simple and ℓ′ is a small integer, the decomposition matrices
Ψi for i = 1, . . . , ℓ′ − 1 can be stored in the GPU memory, which can eliminate all NTT
computations in the homomorphic evaluations of ciphertext vectors.

Algorithm 4 evaluates the ciphertext vectors in C in a fixed policy scenario, where
the set of attributes and evaluated public keys are given as input. Consequently, the
execution time of EvalCT function for the fixed policy will be less than when the policies
are changing and thus, we have to run the Evaluation function. In the end, we will save
(ℓ′ × τEvalPK × τtransfer_to_gpu) seconds, where EvalPK and τtransfer_to_gpu stand for the
execution times for computing the public key vectors in the policy circuit and for time
expended in transferring Bi for i = 1, . . . , 2ℓ′ − 1, respectively.

4.4 Changing Policy
In the changing policy scenario, such as when the subscribers perform an attribute-based
search over the encrypted messages published to the data space implemented by the
communication server, the policy can possibly change with every query submitted by the
subscribers. Then, the Evaluation function has to be executed, and the values of both
Cis and Bi vectors are sent to and evaluated on the GPU kernel. In the changing policy
scenario, m2 NTT transformations at each gate in the policy circuit are performed.

5 Gpu-based Ntt Implementation
For NTT4, we use the merge in-place method described in Algorithm 5, which is based on
the factorization of the polynomial xn + 1 into n one-degree polynomials. Therefore, we
do not need post or pre-processing steps, and the output, a, is a vector in bit-reversed
order. Thus, it is unnecessary to re-order the output provided they are consistently kept
in bit-reversed order while in the NTT domain. In Algorithm 5, we use a vector of n
integers in Zq both for the input polynomial and the output vector. Hence the algorithm
is in-place.

4The algorithms referred to in this section can be reached in Appendix A
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On the other hand, designing an NTT algorithm suitable for GPU implementation
is more involved as a straightforward implementation of Algorithm 5 will likely be very
inefficient. Algorithm 5 has a recursive nature and works on independent NTT instances of
smaller sizes as the outer loop iterates. For instance, when n = 4096 while the first iteration
computes one 4096-point NTT, two independent 2048-point NTT operations are computed
in the second iteration. The number of NTT computations doubles with every iteration
while each size halves. In the butterfly operation (see Steps 8-11 of Algorithm 5), which
is the main operation of NTT computations, one GPU thread reads from two memory
locations and writes into the exact locations. Therefore, when the number of threads in a
GPU block, tc, is more than or equal to the half NTT size, i.e., tc ≥ n/2, one GPU block
can compute 2tc-point NTT efficiently. Since single block threads use the same fast shared
memory in GPU, NTT can be computed in one kernel. The method, given in Algorithm 6,
is called NTT Kernel 2.

When tc < 2n, on the other hand, the method in Algorithm 6 becomes inefficient as the
threads from different blocks should synchronize, which requires accessing global memory.
Therefore, a new algorithm that minimizes global memory access is essential for efficient
implementation. We adopt the approach in [31] and use Algorithm 7 for the first couple of
NTT iterations until the sizes of NTT operations get sufficiently small so that they can be
computed using Algorithm 6. For instance, a typical block size in contemporary GPUs is
tc = 1024, which can compute up to 2048-point NTT without accessing global memory for
synchronization. If we compute an 8192-point NTT, its first two iterations are computed
using Algorithm 7 and the remaining 11 iterations with Algorithm 6.

There is a significant difference in our approach to performing multiplication in Rq

when compared to one in [20], in which a carrier prime of goldilocks form (P = 264−232 +1)
is used for NTT operations. While the Goldilocks primes offer certain advantages for
fast NTT arithmetic, our approach using arbitrary primes for RNS arithmetic has two
advantages over the one in [20].

First, we use fewer word-sized primes while the method in [20] has to work with
relatively more minor primes. For example, we have the following constraint for Goldilocks
prime P : P > n · q2

i , where the primes qi are used for RNS arithmetic. For 256 attributes,
where n = 212 and log2 q = 150, one can only use 25-bit primes, qi for RNS arithmetic,
which will result in using at least six such primes to attain 150-bit modulus, q, for the
ring Rq. On the other hand, our approach can use 64-bit primes and therefore needs only
three primes. Second, as we use the primes that are the factors of the modulus q, we have
the isomorphism Rq ≈ Rq1 × . . .×Rqt , where qi are word-sized primes employed in RNS
arithmetic. In the method in [20], which uses the carrier modulus, this isomorphism is
lost, necessitating an inverse NTT operation after every ring multiplication in [20]. On the
other hand, this is not necessary in our approach due to the isomorphism.

6 Proposed Kp-abe based Publish/Subscribe Scheme
The Pub/Sub communication model is a framework of asynchronously exchanging messages
between publishers, which send messages, and subscribers, which consume published
messages, selected based on their preferences. A communication server, the Proxy, facilitates
storing and forwarding published messages to interested parties. A subscriber can base
his/her preferences for messages to receive on different attributes of the messages, such as
message type and classification and even the words in the published messages. Publishers
are entirely decoupled from subscribers as the former do not know who is accessing
messages and subscribers’ preferences. Nevertheless, the Proxy usually needs to know
all those details and contents of messages to deliver them to interested subscribers in
the existing implementation of Pub/Sub systems. Therefore, classical publish/subscribe
communication systems suffer from the fact that neither end-to-end security nor subscribers’



12
A Lattice-based Publish-Subscribe Communication Protocol using Accelerated

Homomorphic Encryption Primitives

privacy is ensured. Our proposed Pub/Sub system provides additional security and privacy
guarantees formulated in the following definitions.

Definition 1 (End-to-end security in Pub/Sub system). Pub/Sub system provides end-
to-end security if a message is revealed only to subscribers interested in and has access
rights to the message.

Definition 2 (Subscriber Privacy). The Pub/Sub system supports subscribers’ privacy if
the messages subscribers receive are not revealed to other parties, including publishers of
messages and the communication server (Proxy).

At the end of the section, we show that the proposed Pub/Sub system provides both.
The proposed system can take several forms depending on the application scenario and the
context. An example Pub/Sub scenario depicted in Figure 2 allows publishers to encrypt
messages using the set of all possible attributes and subscribers to access messages based
on access policies, for which a formal definition is given in the following.

Definition 3 (Access policy (f)). The access policy for a published message is a Boolean
function defined over a subset of attributes, which determines subscribers that can decrypt
the message.

Attributes can pertain either to messages or to subscribers. In the former case, the
attributes are about messages, such as their subjects, themes, or the words contained in
messages. Then, by categorizing them, subscribers are more likely to define the access
policy to show their interest in receiving a certain subset of published messages. For
instance, they may be interested in messages containing certain keywords or labeled in
certain subjects. In this case, as only subscribers know the access policy, encrypted
messages must be homomorphically evaluated after publication, which is possible only
with the KP-ABE scheme.

In the latter case, the attributes are about the subscribers, such as their access rights
or roles, which give them specific access rights. A typical example is role-based access
control systems [32,33], in which a central authority usually determines the access rights of
roles. Publishers may or may not know who will access their messages during publishing,
i.e., the access policy. If the publisher knows the access policy, it can use the ciphertext
policy attribute-based encryption scheme (CP-ABE), for which various efficient proposals
are in the literature [8–12]. Nonetheless, if publishers do not know the access policy for a
particular message, KP-ABE is the only alternative to support end-to-end security in the
most strict sense.

In the scenario given in Figure 2, the publisher forwards the homomorphically en-
crypted message C to the proxy server over a secure channel, which can happen any
time independent of the following operations, which needs to be performed in the order
explained:

1. The access policy f , which N subscribers share, is communicated to the Proxy and
the private key generator (PKG) over a secure channel. A list of access policies is
kept at the Proxy and the PKG.

2. The Proxy performs the EvalPK function to generate the policy public key Bpolicy

and sends it to the PKG.

3. The PKG performs the KeyGen function to generate the secret key for the policy
f , skpolicy using the master secret key MSK. It then checks the subscribers’ list
registered to f . Finally, if the access rights of a particular subscriber allow it to
exercise f on any message published, the secret policy key skpolicy is delivered to it
over a secure channel.
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Figure 2: The general architecture of the publish/subscribe scenario that this work tackles.

4. When ciphertext messages arrive, the proxy checks whether their attributes satisfy
any access policy in the list, then it homomorphically evaluates the message for
matching access policies (EvalCT). Finally, the Proxy transmits, over a secure channel,
the resulting ciphertext Cpolicy to the subscribers registered in f .

In order to prove that the proposed Pub/Sub system fulfills the security and privacy
guarantees formulated in Definition 1 and Definition 2, we need the following assumptions:

Assumption 1 (Secure Channel). The parties have access to pair-wise secure channels,
which provide confidentiality, authentication, and integrity for the messages exchanged.

The secure channel assumption can be satisfied by employing the standard transport
layer security protocol, which secures more than 90% of the Web traffic.

Assumption 2 (Non-collusion). The PKG and the Proxy do not collaborate to access the
content of messages published.

Naturally, if the ciphertext message posted to the Proxy C or any evaluated ciphertext
message Cpolicy the PKG captures, it can decrypt it as it holds the master secret key.

Assumption 3 (Hidden Attributes). The semantics of attributes are not revealed to the
Proxy, which knows only the pseudonyms of the attributes.

The attributes are treated as binary values, such as their existence or non-existence in
a particular message, so they do not need to be revealed to the Proxy. Nonetheless, the
Proxy can perform frequency analysis and learn about the frequently used attributes.

Given the definitions and assumptions, we can now prove that the proposed Pub/Sub-
messaging system provides the following security and privacy properties.

Theorem 1. The proposed Pub/Sub messaging system provides end-to-end security for
the exchanged messages.

Proof. Due to Assumption 1, messages are encrypted twice when they are in public
channels, once with the KP-ABE scheme and the second with the classic encryption
scheme provided by the secure channel. Herefore, no parties can decrypt and access their
contents, including PKG, if they are not authorized. In the Proxy, however, the messages
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are encrypted only with the KP-ABE scheme. Knowing neither the master secret key nor
the secret policy key, the Proxy cannot decrypt the messages. Assumption 2 stipulates that
the Proxy does not share the messages with the PKG, which cannot decrypt them.

Theorem 2. The proposed Pub/Sub messaging system supports subscribers’ privacy by
preventing their access policies from being exposed.

Proof. By Assumption 1, when a subscriber sends its access policy to the Proxy and PKG
via a secure channel, no party, including the subscribers, can see the access policies other
than the communicating parties of the secure channel. By Assumption 3, the Proxy extracts
partial information on the access policies while the PKG must know them as PKG is the
party that determines and exercise the access rights in general. In summary, subscribers’
privacy is protected fully against publishers and partially against the Proxy.

The PALISADE library provides an example code for the KP-ABE scheme, and the
implementation is aligned with Pub/Sub application scenarios outlined in this section.
Therefore, we use it as a starting point to design our GPU-based Pub/Sub communication
scheme implementation. Our implementation of the Pub/Sub application permits encrypt-
ing messages on GPU, using a large number of attributes (up to 128 attributes) by the
sender. The receiver(s) (subscriber) only need to decrypt the messages associated with the
same or a smaller set of attributes that matches the receiver’s chosen attributes (defined
previously in f). The evaluation process (also on GPU) can either be performed by the
receiver or a third party. However, performing it by a proxy with sufficient computation
power is preferred to avoid extra latency values and heavy workloads imposed by the
relatively expensive homomorphic computations on the receiver side.

7 Acceleration of Kp-abe Encrypt and Evaluate Functions
The GPU or hardware acceleration of the encryption and evaluation functions of the
KP-ABE scheme, which is implemented in the well-known library PALISADE, can be highly
challenging due to many technical details. Even though PALISADE has official releases, it
is still a library under development and comprises obstacles such as type casting functions
and integration of GPU scripts within the main library (compiling scripts). Moreover, to
make use of the KP-ABE main functions, it is required to install the separate Trapdoor
library (also developed by [21]) and create/bring modifications to their compiling scripts.

7.1 Technical Challenges
In this section, we highlight the main issues encountered during the integration and
development of our GPU implementation into PALISADE and how they are resolved in our
implementation.

1. The integration of the Trapdoor API and the PALISADE library with CUDA code we
developed is technically challenging as the task contains many minor implementation
details. We provide a compiling script that enables the usage of both PALISADE and
Trapdoor libraries alongside the integration of CUDA scripts. Our solution permits
running PALISADE API (with our implemented functions) on both CPU and GPU.

2. It is involved and time-consuming to convert the elements of the polynomial rings
R and Rq stored in highly complex and structured DCRTPoly (Double CRT)5 data
structures into more primitive data structures (arrays) acceptable by CUDA kernels.
Then, we introduce data type casting functions to the existing APIs inside the main

5The Double CRT data type is used in PALISADE’s API to store both the polynomial and their coefficients
in CRT form, which are optimized for memory access in CPU.
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PALISADE library so that it is installed with its scripts once a rebuild is performed.
For instance, for most polynomials, a matrix of DCRTPoly data structure is used
in PALISADE. Each DCRTPoly instance encompasses k polynomials (under the CRT
configurations) where k is the number of the smaller prime moduli employed in
RNS arithmetic. The introduced type-casting functions will copy these polynomials
into primitive arrays declared in the device’s memory by preserving their order in
the DCRTPoly matrix structure. The type-casting operation is reversed by copying
back the polynomials from CUDA arrays into the DCRTPoly polynomials after the
kernels’ execution is performed since the resulting polynomials can be processed
in the subsequent operations of the KP-ABE scheme in the CPU; Decryption for
instance.

3. Performing the NTT operations (Forward & Inverse) is prohibitively expensive,
especially in the homomorphic evaluation process, which incorporates overly many
NTT operations. Therefore, we integrate a GPU implementation of the NTT
operations discussed in Section 5 into our GPU-accelerated scheme.

7.2 Memory restrictions
The complexity of prohibitively resource-consuming computations imposed by the homo-
morphic evaluation operations (e.g., number of homomorphic multiplications and additions),
plus the necessity of a considerable amount of memory to store the polynomials in the
device memory, forms an obstacle to achieving efficient GPU implementation that can
fully function even for a relatively high number of attributes. Therefore, we pursue two
approaches (mentioned in Section 4), referred to as Fixed Policy and Changing Policy, to
take advantage of different use case scenarios to interplay computation complexity and
memory requirements. In the former case, where the policy is known beforehand and does
not change often, we pre-compute and store the polynomial vectors Bℓ′+i for i = 1, . . .
using the EvalPK function to avoid computing them every time for each ciphertext, which
will be homomorphically evaluated for the same policy. This eliminates Step 4 in Algorithm
2 in a GPU kernel, which frees a substantial amount of GPU’s main memory space, which
can now be used for computing Cℓ′+i during the evaluation of the ciphertexts. In the
latter case, where the policy changes, we must compute the polynomial vectors Bℓ′+i in
run time. The latter case is much more challenging for given GPU resources in terms of
memory requirements and computation complexity, and as we will show in the subsequent
sections, there will be limits on the number of attributes in the policy if we want to keep
the computational latency within reasonable ranges.

In our implementation, we use Unified Memory architecture while allocating memory
for the polynomials, which creates a shared memory space between the host (CPU) and
the device (GPU) such that when the device memory is depleted, the host memory will
be used. Although this memory architecture does not alleviate the overhead of data
transfers between the host and the device, it allows a larger memory space without manual
intervention. Thus, it becomes possible to run the implementation with a much higher
number of attributes.

As for the GPU implementation of the encryption function, there is no primary concern
regarding the memory requirement since there are fewer polynomials and relatively less
computation compared to the Evaluate function.

Regarding the Evaluate operation, our new API functions allow copying data types
of PALISADE into arrays in GPU, where four large arrays dominate the GPU memory
during the homomorphic evaluation operation. The set C, which contains ciphertext
polynomial vectors used in the policy, is the input to Algorithm 2. During the homomorphic
computation, we generate Cℓ′+i for i = 1, . . . representing ciphertext vectors for the inner
gates of the policy circuit. The significant memory consumption is due to the matrix
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Figure 3: This plot shows the approximate amount of memory in Megabytes (MB)
required to accomplish the evaluation process as the attribute number increases. The
matrix of polynomials Ψ dominates the memory usage. This illustration matches the
Changing Policy scenario, while the memory requirements decrease when applying the
Fixed Policy

Ψ since it is a Rm×m
2 Double-CRT matrix of polynomials in PALISADE. Finally, there

is the resulting ciphertext vectors Cf or Cpolicy. Fig. 3 shows the increase in memory
requirements as the number of attributes increases. It should be pointed out that the
number of attributes, the ring dimension n, and the modulus size q considerably affect the
amount of required memory for the evaluation process.

The vectors shown in Figure 3 are the main data structures that occupy the device
memory. For instance, the polynomial vectors Bi and Bℓ′+i are also stored in the device
memory. Herefore, for some CPUs and GPUs with modest main memory sizes, the number
of attributes is limited to ℓ = 16 or ℓ = 32.

This work implements the Fixed and Changing policies. In the fixed access policy, we
work on the assumption that the polynomial vectors Bi, where i ∈ {ℓ′ + 1, 2ℓ′ − 1}, are
pre-computed and stored on the device memory. Differently from [20], we copy at one go
the required polynomial vectors Bi and Ci to a unified memory space to benefit from the
high GPU memory bandwidth rates used in this work. Therefore, the overhead of data
transfers is kept to a minimum. Furthermore, when the applied scenario is the changing
policy, the NTT transformations alongside the evaluation of the public key vectors Bi and
ciphertext vectors Ci are performed in one function Evaluate, as stated in Subsection 4.4.

7.3 Accelerating the encryption and evaluation operations
We develop two CUDA kernels for executing KP-ABE encryption and homomorphic eval-
uation operations in GPU, which are written in C language by adding the directives
“__global__” or “__device__”. Kernels preceded with __device__ cannot be called from
the host code, for which __global__ before calling the CUDA kernel is used. It allows
the compiler to identify it as a piece of code to execute on the GPU. GPU kernels come
with a set of arguments and parameters, including the number of threads, the number
of thread blocks, grid size, and the size of shared memory (in case the implementation
uses shared memory among thread blocks). Additionally, CUDA streams are essential to
run concurrent CUDA operations in case there are other streams than the default one to
pipeline data transfers and computations.
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// kernel .cpp
#include <... >
__global__ void Encrypt_Ker ( uint128t * ctCin_d , uint128t * s_d , uint128t * g_d ,

uint128t * eA , uint128t * eCin , ...) ();

Encrypt_Ker <<<ROWSIZE / BLOCKSIZE , BLOCKSIZE , shared_mem_size , EvalStream >>>(ctCin_d ,
s_d , g_d , eA , eCin , ...);

CUDA_SAFE_CALL ( cudaEventSynchronize (stop));

The code snippet above shows a small code segment that calls a defined kernel with
the selected dimensions (grid and block dimensions, threads per block in the first two
arguments after the symbol «<. The next argument indicates the amount of the shared
memory that will be used, and the last one stands for the CUDA stream allocated for the
specific kernel.

The design in our implementation dynamically allocates the number of grids, blocks,
and threads depending on the values of n, m, and the number of RNS primes6, t. We
use ( m×n×t

MAX_T HR_P ER_BLK ) thread blocks, where MAX_THR_PER_BLK= 1024 is the
maximum number of threads per block for the GPUs used in our implementation.

Furthermore, we create CUDA streams to concurrently handle data transfers and com-
putations. The dimension of each block is a multiple of the warp size (32) to increase the
average utilization of thread resources. The transferring of polynomial coefficients from
PALISADE’s data structures into GPU arrays is accelerated using OpenMP7. The transfer
times are kept to minimum (less than 40 ms) for the largest possible parameters (ℓ, m, n,
q).

Table 2: The hardware specifications

Machine 1 Machine 2 Machine 3

CPU - Intel(R) i9-7900X Xeon(R) Gold 6152 i9-11900K
GPU GTX 1080 Quadro GV100 RTX 3070 Ti
Memory (host) 32 GB 1 TB 32 GB
Memory (GPU) 8.5 GB 32 GB 8 GB
Bandwidth (GPU) 320.3 GB/s 868.4 GB/s 608.3 GB/s
Base clock (GPU) 1607 MHz 1132 MHz 1575 MHz
CUDA cores 2560 5120 6144

8 Experiments & Implementation Results
We compare our work with the state-of-the-art GPU and CPU implementations, namely [20]
and [25], respectively. We use a machine with an Intel i9-7900X processor running at 3.30
GHZ with an Nvidia GeForce GTX 1080 GPU with the Pascal architecture. Other GPUs,
also used for comparison, are Nvidia Quadro GV100 and RTX 3070 Ti with the Volta and
Ampere architectures, respectively (see Table 2 for technical details). The operating system
is Ubuntu 20.04 LTS with the compiler g++ 9.4.0 and the CUDA toolkit CUDA 11.4.

We should note that we compare our implementation with the PALISADE library, which
does not include a GPU implementation. However, we compare it with the GPU timings
reported in work by Dai et al. [20], which also uses the PALISADE library and slightly
different, but comparable GPU devices (Titan X and Titan XP). As mentioned by the
authors of [20], their timings are estimated starting from a relatively low number of

6The implementation in PALISADE uses RNS arithmetic for large q sizes. It generates t smaller RNS
primes to speed up the polynomial multiplications of a higher number of coefficients. In addition, it helps
in the parallelization of coefficients multiplication.

7OpenMP is a multi-platform multithreading library that allows the use of threads to accelerate the
programs’ sequential execution times.
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Figure 4: This plot compares the KP-ABE Encryption operation between the CPU runs
and our GPU implementation on 3 different GPUs. The ℓ value starts from 16 until 128
attributes. These timings include the data copying between the CPU & GPU memories.
The actual timing values are included in Appendix B.

attributes, i.e., ℓ > 32, since their implementation is memory-restricted. On the other
hand, our timings are accurate as they are the results of the actual runs of the GPU-
accelerated KP-ABE scheme of PALISADE. We achieve successful homomorphic encryption
and evaluation for 128 attributes with execution times less than 0.5 and 2.5 seconds,
respectively (see Tables. 4–6 and 7). In the table, the encrypt kernel timing includes
the sampling of the secret and the error polynomials (Steps 1, 2 and 3 in Algorithm 1),
which runs in the host device while the homomorphic evaluation includes both EvalCT
and EvalPK operations for Changing Policy scenario, but only EvalCT for Fixed Policy
scenario.

8.1 Comparison with the CPU implementations
Figures 4 and 5 illustrate the comparison of execution times of our GPU-based and the
CPU-based KP-ABE encryption operations, where the timings for a lower number of
attributes are not included (for the actual timing values, see Table 7 in Appendix B).
The difference between Figures 4 and 5 is that the second does not include the entire
timing of the CPU-GPU data copying overhead, specifically, the PALISADE-GPU in-between
communication. In Figure 5, the timing results labeled with Intel i7 are taken directly
from [25]. We also run KP-ABE encryption of PALISADE on a faster CPU, where the
execution times are labeled as Intel i9. When measuring the execution times, we run
KP-ABE encryption and KP-ABE evaluation functions with the same number of attributes
and check if the ciphertext decrypts correctly; this is repeated several times, and averages
are taken. Our GPU implementation on RTX 3070 Ti is superior to the Intel i7 runs
for all attribute counts. Moreover, our implementation performs better than the Intel i9
processor runs for all attributes on RTX 3070 Ti. We achieve up to 2.7× speedups
compared to the best CPU run for ℓ = 128 (see Table 7 in Appendix B).

For homomorphic evaluation operation, Figures 6 and 7 show the execution times of
the homomorphic evaluation on the selected GPU devices and Intel processors. Compared
to the Intel i9 processor runtimes, our GPU implementation is a minimum of 1.9 times
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Figure 5: This plot compares the KP-ABE Encryption operation between the CPU runs
and our GPU implementation on 3 different GPUs. The ℓ value starts from 16 until 128
attributes. These timings do not include the data copying between the CPU & GPU
memories. The actual timing values are included in Appendix B.
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Figure 6: Comparison of the KP-ABE Evaluation operation between the CPU runs on the
Intel i9 and Intel i7 [25] processors and our GPU implementation on 3 different GPUs.
The timings include the CPU-GPU data copying overhead.
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Figure 7: Comparison of the KP-ABE Evaluation operation between the CPU runs on the
Intel i9 and Intel i7 [25] processors and our GPU implementation on 3 different GPUs.
The timings do not include the CPU-GPU data copying overhead.

(for 2 attributes on the GV100) and a maximum of 22.3 times (for 128 attributes on the
RTX 3070 Ti) faster (for detailed timing results see Table 4 in Appendix B). Furthermore,
the acceleration ratio remains between 4 × and 12 × for the rest of the attributes. On the
other hand, the ratios are at least 1.9 × (for GV100) and, at most, 40 × (for RTX 3070
Ti) compared to the Intel i7 processor. Finally, from Figures 7 and 6, it is observable
that we have at least two GPUs (GTX 1080 & RTX 3070 Ti) in which our GPU-based
implementation is faster than the CPU-based KP-ABE implementation on the Intel 9
processor.

8.2 Comparison with the GPU implementation
The GPU implementation presented in this work differs from that of Dai et al. [20] in that
we fully integrated the GPU kernels within PALISADE’s API. This allows us to call our GPU
kernels in lieu of generally slower CPU-based encryption and evaluation functions. On
the other hand, Dai et al. use a standalone GPU implementation of the KP-ABE scheme,
which is not integrated into PALISADE, and their implementation is not public. Moreover,
their implementation used smaller parameters, including a smaller base b, compared to
the parameters that can be used on PALISADE for KP-ABE.

Notably, the work in [20] estimates the timings of the homomorphic evaluation for
the number attributes l ≥ 32. Supposing that the previous GPU implementation uses
unified memory architecture, those estimations may turn out to be optimistically low when
working with larger attribute counts, modulus, and ring dimensions. The possible latency
increase could be attributed to two potential factors. The first factor plays out when the
GPU’s memory is full, whereby extra CPU RAM memory will be allocated, leading to data
transfers between host and device memories. The second factor affects the performance
when the CPU RAM is also at its limit, and a SWAP partition is allocated on the hard
disk drive. Then, the latency figures would significantly increase as well.

Therefore, a comparison of our work with the work of Dai et al. [20] is involved. Different
GPU architectures employed in [20] add to the difficulty of achieving a fair comparison.
To this end, we run our NTT and inverse NTT implementation on Titan X, on which the
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timing of NTT-based polynomial multiplication is reported in [20] and include the results
in Table 3. As can be observed from the table, the fastest GPU (RTX 3070 Ti) in our
implementation runs the NTT and inverse NTT operations faster than Titan X. In the
next section, we compare our NTT-based polynomial multiplication and the one reported
in [20]

Table 3: Forward and Inverse NTT Timings (In Microseconds) on Titan X / RTX 3070
Ti GPUs

64-bit 4096-NTT
Ring size NTT_Count Forward NTT Inverse NTT

212

4 16.58 / 16.61 6.27 / 6.22
16 31.49 / 17.2 13.0 / 7.68
32 50.26 / 25.77 23.36 / 13.59
64 77.46 / 38.28 30.54 / 18.72
128 130.3 / 76.24 58.6 / 33.85

213

4 28.92 / 18.48 11.25 / 7.48
16 55.44 / 26.93 26.07 / 14.01
32 87.76 / 38.82 36.7 / 21.0
64 134.2 / 75.1 61.88 / 35.05
128 264.6 / 136.07 116.41 / 62.24

214

4 48.49 / 23.45 21.24 / 10.03
16 109.38 / 41.17 41.35 / 21.76
32 187.31 / 80.33 80.8 / 36.9
64 268.88 / 139.68 133.95 / 67.6
128 542.13 / 259.18 250.78 / 124.26

8.2.1 Comparison of the polynomial multiplication

Dai et al. [20] approximate the polynomial multiplication as 2× Forward NTTs and 1×
Inverse NTT. As such, they estimate the overall timing of (256× 128× 4) multiplications
and compute the average single multiplication latency. They use the ring dimension of
2048, and RNS primes less than 24-bit for coefficients (recall a carrier Goldilocks prime of
64-bit is used in their work). They report that one polynomial multiplication takes 0.94µs
on Titan X.

Here, we developed a program to measure the polynomial multiplication using the NTT
implementation of [29], following a similar approach as [20] to ensure a fair comparison.
However, we set the ring size to 4096 for 64−bit coefficients. Therefore, since the ring sizes
differ, we estimate our multiplication latency by dividing the timing by 2.18 (knowing
that the algorithm’s complexity is n log2 n). Furthermore, we use 60−bit RNS primes as
opposed to the 24-bit primes used in [20]. This means that the implementation in [20]
needs to perform 60/24 = 2.5 more RNS primes than ours to reach the same modulus q.
As timings are measured for batch execution of polynomial multiplication, this gives our
implementation a 2.5× advantage in timings.

In Table 3, for 128 parallel polynomials multiplications for the ring dimension 4096, the
time taken for one Forward NTT operation is 130.3µs while the timing for the Inverse
NTT (INTT) is 58.6µs. As we consider a polynomial multiplication as 2 NTTs and
1 INTT operation, an average latency of a polynomial multiplication is calculated as
130.3·2+58.6

128 ≈ 2.49 µs. If we factor in 2.5× advantage due to our larger RNS primes, we
can conclude that our implementation is estimated to be 0.94·2.5·2.18

2.49 ≈ 2 times faster than
the timing reported in [20].
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8.3 GPU-based Publish/Subscribe Evaluation
Table 8 shows the timings of both homomorphic operations after running them with
different parameters. Each row on Table 8 can be read as follows: in the 8th row, the
encryption includes 32 attributes while the access policy incorporates only 4 attributes for
the evaluation operation. The ciphertext modulus size is 100 bits, and the ring size is 8192,
with a base value equal to 220. Under the Encrypt / Evaluation column, the figures
show the run times of encryption and evaluation for each GPU separated by a slash.

It is clear from the timings mentioned in the table that adopting such a communication
protocol based on a lattice-based homomorphic scheme KP-ABE is no longer impractica-
ble. Furthermore, the proxy with an off-the-shelf GPU can handle many homomorphic
evaluation operations. Meanwhile, subscribers only decrypt their respective messages,
which are relatively inexpensive operation compared to homomorphic encryption and
evaluation. However, if the designed communication protocol lets the subscribers perform
the evaluation locally, it requires only a GPU with similar or close specifications to a 600$
GPU.

9 Conclusion
The PALISADE library offers a state-of-the-art implementation of RLWE-based Key Policy-
Attribute-Based Encryption (KP-ABE) scheme that features computationally expensive
homomorphic evaluation and encryption operations, which are amenable to hardware
acceleration.

To this end, we presented a GPU implementation of the most expensive homomorphic
operations in PALISADE that can support homomorphic evaluation and encryption of the
KP-ABE scheme up to l = 128 attributes. Our GPU implementation is integrated within
the main library and acts as a true accelerator, unburdening computationally demanding
operations off the host CPU. We achieve significant acceleration figures for the main
time-consuming operations of the KP-ABE scheme.

We, then, show that a KP-ABE-based publish/subscribe communication system, which
supports end-to-end encryption and thus enhances the privacy of the communicating
parties, is practicable. We envision and take advantage of a more realistic publish/subscribe
scenario, whereby while published messages can assume many attributes, the access policies
of the subscribers can be defined as logical functions over a fewer number of them.

One important factor in the acceleration is that our implementation does not use a
special carrier prime, which would limit the sizes of the RNS primes that play an important
factor in the performance of many homomorphic encryption schemes, including KP-ABE.
Using RNS primes directly in the computation of number theoretic transform decreases the
number of RNS primes and supports the continuation of arithmetic in the NTT domain.
Our overall speedup figures confirm the advantage of our approach.

After the completion of our work, the developers of PALISADE released an extensible
open-source post-quantum fully homomorphic encryption schemes library, which mainly
contains the same API of PALISADE with additional modules and layers. More specifically,
the Hardware Abstraction Layer (HAL) supports the integration of different hardware
accelerators, such as FPGA and GPU. Therefore, our provided implementation in this
would perform correctly with the newly introduced library with minor changes to the
compiling scripts.

10 Future Work
Our work would urge other researchers to use it in further accelerations either of the
KP-ABE or other homomorphic encryption schemes developed in PALISADE. On the other
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hand, the GPU and its memory design are evolving in a way that we believe would
significantly reduce the data communication overhead between the host and the device and
increase the memory capacity, allowing larger policy circuits to execute faster on GPUs.
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A Appendix: Algorithms
This section contains the algorithms mentioned throughout the paper in their order of
mention.

Algorithm 1 Encrypt(M , X , Master PKey)
Require: M : The message
Require: X : The attributes set
Require: Master PKey, The master public key generated at the setup phase
Ensure: Cin, c1: The ciphertex vectors Cin can be partitioned into CA and Ci for

i = 0, . . . , ℓ
1: s←U Rq; e1 ←DR,σ; eA ←DR1×m,σ

2: Si ←U {±1}m×m where i ∈ [0, l]
3: e0 ← (eT

A|eT
AS0|eT

AS1| . . . |eT
ASl)T

4: Cin ← (A|(G + B0)|(x1G + B1)|(x2G + B2)| . . . ||(xℓG + Bℓ))T × s + e0
5: c1 ← βs + e1 + M⌈ q

2⌉
6: Return (Cin, c1)

Algorithm 2 Evaluate(Ci, Bi, X , ℓ′)
Require: C, B: Ciphertext and public key vectors in the policy circuit
Require: x, ℓ′: The attributes in the policy circuit and their cardinality
Ensure: Bpolicy, Cpolicy

1: for (i = 1; i < ℓ′; i+ = 1) do
2: x̄ℓ′+i ← (1− x̄2i−1x̄2i)
3: Ψi ← NAFDECOMP(−B2i−1)
4: Bℓ′+i ← B0 −B2iΨi

5: Cℓ′+i ← C0 − x̄2iC2i−1 −ΨT
i C2i

6: end for
7: Return B2ℓ′−1, C2ℓ′−1

Algorithm 3 EvalPK(B, ℓ′)
Require: B: Public key vectors in the policy circuit
Require: x, ℓ′: The attributes and their count
Ensure: Bpolicy

1: for (i = 1; i < ℓ′; i+ = 1) do
2: Ψi ← NAFDECOMP(−B2i−1)
3: Bℓ′+i ← B0 −B2iΨi

4: end for
5: Return B2ℓ′−1
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Algorithm 4 EvalCT(C, Bi, X , ℓ′)
Require: C: Ciphertext vectors in the policy circuit
Require: Bi: Public key vectors, where i ∈ [1, 2ℓ′ − 1]
Require: x, ℓ′: The attributes in the policy circuit and their cardinality
Ensure: Cpolicy

1: for (i = 1; i < ℓ′; i+ = 1) do
2: x̄ℓ′+i ← (1− x̄2i−1x̄2i)
3: Ψi ← NAFDECOMP(−B2i−1)
4: Cℓ′+i ← C0 − x̄2iC2i−1 −ΨT

i C2i

5: end for
6: Return C2ℓ′−1

Algorithm 5 Merge In-Place Forward NTT
Input: a(x) ∈ Zq[x]/(xn + 1) polynomial standard-order
Input: Ωbr[k] = Ωbr(k) (Powers of the primitive root of unity ω sare tored in bit-reversed

order)
Input: n = 2l, q (q ≡ 1 mod 2n)
Output: a ∈ Zn

q in bit-reversed order
1: t = n; m = 1
2: while m < n do
3: t = t/2
4: for i from 0 by 1 to m do
5: j1 = 2it
6: j2 = j1 + t− 1
7: for j from j1 by 1 to j2 + 1 do
8: U = aj

9: V = aj+t · Ωbr[m + i] (mod q)
10: aj = U + V (mod q)
11: aj+t = U − V (mod q)
12: end for
13: end for
14: m = 2m
15: end while

Algorithm 6 (NTT Kernel 2) A GPU Algorithm for Merge in-Place Forward NTT
when the number of threads in a block is greater than or equal to n/2
Input: A[n] , OmegaTable[n], n, q
Output: A[n]

1: idx = blockIdx.x× blockDim.x + threadIdx.x
2: for ℓ from 0 by 1 to log2(n) do
3: t = (n/2)≫ ℓ
4: m = 2≪ ℓ
5: i = ⌊ idx

t ⌋
6: address = i · t + idx
7: U = A[address]
8: V = A[address + t]
9: ω = OmegaTable[i + m]

10: V = (V × ω) mod q
11: A[address] = (U + V ) mod q
12: A[address + t] = (U − V ) mod q
13: end for
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Algorithm 7 (Kernel 1)
Input: A[n], OmegaTable[n], q, blockId, threadId
Input: bc: no. of blocks (bc = 2) tc: no. of threads in a block
Output: A[n]

1: idx = blockId× tc + threadId
2: m = 1; t = n
3: k = n/(2× bc× c)
4: for i from 0 to n/(2× tc ) do
5: reg[i] = A[idx + (i× (2× tc))]
6: end for
7: for i from 0 to log2 (n/(2× tc× bc)) + 1 do
8: for j from 0 to n/(tc× 4) do
9: ℓ = ⌊ j

k ⌋ × k + j
10: U = reg[ℓ]
11: V = reg[ℓ + k]
12: address = ⌊ idx

t ⌋+ m
13: V = (V ×OmegaTable[address]) mod q
14: reg[ℓ] = (U + V ) mod q
15: reg[ℓ + k] = (U − V ) mod q
16: end for
17: m = 2m; k = k/2; t = t/2
18: end for
19: for i from 0 by 1 to n/(tc× 2) do
20: A[idx + (i× (tc× 2))] = reg[i]
21: end for

B Appendix: Timing Results
Here, We provide the detailed results of our GPU implementation’s run times on different
hardware (GPU and CPU). In addition to the execution times of the publish/subscribe
application, we integrated it into PALISADE.

The tables here include the detailed timings taken on three different GPUs of different
architectures, compute capability, memory clock speeds, and bandwidths. The list of
hardware specifications is provided in Table 2.

The Tables. 4–7 enumerate the running times of our GPU-based homomorphic en-
cryption and evaluation operations in comparison with the running times on Intel i7 and
Intel i9 processors.

Table 8 includes the timings of the homomorphic encryption and evaluation operations
in the context of the proposed publish/subscribe application that allows encryption and
evaluations with a different number of attributes. In other words, lEnc > lEva stands for
the number of attributes/topics used in the encryption and evaluation, respectively.

The selected parameters in these trials indicate the minimal working set of parameters,
including the number of attributes ℓ, the modulus q, the ring dimension n, and the base.
Moreover, these parameters guarantee an acceptable level of security (at least 100-bit) and
the implementation’s correctness.
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Table 4: Homomorphic evaluation operation (EvalCT & EvalPK) comparison with state-
of-the-art CPU implementation in [25] (Timings in ms). The GPU timings include the
kernels, CPU-GPU data copying, and the data copying from PALISADE’s data types into
CUDA arrays.

Att. Count log2 q n b GTX 1080 Quadro GV100 RTX 3070 Ti CPU i71 CPU i92

(ℓ)
2 100 (50) 212 (211) 220 (25) 14.06 19.34 6.31 23 23
4 100 212 220 36.13 51.78 18.15 72 72.6
8 150 (120) 213 217 (215) 360.6 518.3 141.03 590 525.2
16 200(180) 213 220 1548.27 1836.97 615.55 1680 1573.4
32 200(180) 213 220 (215) 3139.6 3768.32 1288.46 5670 5135.6
64 204 213 215 (217) 10249.88 12075.21 4141.05 13100 11954.8
128 300 214 225 11730.23 43121.81 4204.41 98300 55430.8

1: Intel Core i7-3770 CPU - 3.40GHz and 16GB of memory [25]

2: Intel Core i9-11900K CPU @ 3.50GHz and 32GB of memory.

Table 5: Homomorphic evaluation operation (EvalCT & EvalPK) timings in ms. The
timings include the kernels operations and the NTT transformations.

Att. Count log2 q n b GTX 1080 Quadro GV100 RTX 3070 Ti
(ℓ)

2 100 (50) 212 (211) 220 (25) 8.78 12.42 6.03
4 100 212 220 21.49 29.54 17.36
8 150 (120) 213 217 (215) 172.72 188.01 77.47
16 200(180) 213 220 690.97 738.11 196
32 200 (180) 213 220 (215) 1416.71 1520.76 395.55
64 204 213 215 (217) 4267.88 4501.03 1309.68
128 300 214 225 7566.19 7717.74 2483.8

Table 6: Encrypt operation comparison with state-of-the-art CPU implementation in [25]
(Timings in ms). The GPU timings include the kernels, CPU-GPU data copying, and the
data copying from PALISADE’s data types into CUDA arrays.

Att. Count log2 q n b GTX 1080 Quadro GV100 RTX 3070 Ti CPU i71 CPU i92

(ℓ)
2 100 (50) 212 (211) 220 (25) 17.73 38.10 11.46 7 4
4 100 212 220 19.42 37.77 11.71 15 5.2
8 150 (120) 213 217 (215) 87.64 268.77 41.8 56 18.8
16 200(180) 213 220 177.71 376.37 74.14 157 39.2
32 200(180) 213 220 (215) 248.78 445.71 93.83 414 78
64 204 213 215 (217) 536.54 816.24 176.11 1052 182.2
128 300 214 225 1561.5 2703.5 629.38 6454 1332

1: Intel Core i7-3770 CPU - 3.40GHz and 16GB of memory [25]

2: Intel Core i9-11900K CPU @ 3.50GHz and 32GB of memory.



30
A Lattice-based Publish-Subscribe Communication Protocol using Accelerated

Homomorphic Encryption Primitives

Table 7: Encrypt operation timings in ms. It includes the kernels and the samplings
from different distributions. The timings include the kernel executions and the sampling
operations.

Att. Count log2 q n b GTX 1080 Quadro GV100 RTX 3070 Ti
(ℓ)

2 100 (50) 212 (211) 220 (25) 4.25 13.7 2.31
4 100 212 220 6.66 17.59 2.82
8 150 (120) 213 217 (215) 37.3 67.61 13.89
16 200(180) 213 220 105.89 151.21 32.92
32 200(180) 213 220 (215) 177.12 222.76 52.78
64 204 213 215 (217) 447.78 482.39 127.1
128 300 214 225 1283.41 2034.52 493.54

Table 8: Encrypt & Evaluation operations for the Pub/Sub application scenario (Timings
in ms)

Att. Count log2 q n b Encrypt / Evaluation
(lEnc / lEva) GTX1080 GV100 RTX3070 Ti

4/2 100 212 220 17.7 / 12.0 24.43 / 19.39 11.33 / 5.13
8/2 100 212 220 21.76 / 12.34 27.67 / 19.99 12.61 / 5.17
8/4 100 212 220 21.76 / 32.73 27.67 / 50.8 12.61 / 14.11
16/2 100 212 220 25.72 / 12.89 38.61 / 20.66 13.95 / 5.26
16/4 100 212 220 25.72 / 33.43 38.61 / 51.33 13.95 / 16.23
16/8 150 213 225 76.62 / 212.45 116.85 / 279.17 33.39 / 71.69
32/2 100 213 220 74.02 / 22.37 152.22 / 35.49 21.15 / 8.38
32/4 100 213 220 74.02 / 61.74 152.22 / 90.60 21.15 / 23.22
32/8 150 213 225 104.6 / 201.84 160.13 / 291.41 30.57 / 73.02
32/16 200 213 225 176.77 / 850.84 306.58 / 1042.93 54.43 / 336.52
64/2 100 212 220 65.66 / 13.05 114.8 / 18.53 21.85 / 9.3
64/4 100 212 220 65.66 / 36.11 114.8 / 50.07 21.85 / 22.68
64/8 150 213 225 177.66 / 205.47 291.31 / 271.76 31.27 / 72.56
64/16 200 213 225 275.95 / 845.77 426.12 / 1048.07 45.86 / 346.33
64/32 204 213 215 519.9 / 4925.22 778.03 / 6119.14 124.0 / 1961.02
128/2 100 212 220 124.38 / 13.57 167.34 / 19.32 21.41 / 8.46
128/4 100 212 220 124.38 / 34.08 167.34 / 49.74 21.41 / 23.02
128/8 150 213 225 301.1 / 200.23 408.9 / 288.69 30.99 / 78.08
128/16 204 213 217 697.03 / 1480.49 959.89 / 2086.63 224.0 / 650.67
128/32 204 213 217 697.03 / 3035.44 959.89 / 3907.83 224.0 / 1240.08
128/64 204 213 215 854.03 / 9674.46 1215.37 / 12542.97 280.82 / 4033.04
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