
How to Recover a Cryptographic Secret From the Cloud

Chris Orsini, Alessandra Scafuro∗, and Tanner Verber†

North Carolina State University

September 1, 2023

Abstract

Clouds have replaced local backup systems due to their stronger reliability and availability guarantees
compared to local machines, which are prone to hardware/software failure or can be stolen or lost,
especially in the case of portable devices

In recent years, some digital assets are managed solely through the knowledge of cryptographic secrets
(e.g., cryptocurrency, encrypted datasets), whose loss results in the permanent loss of the digital asset.
Since the security of such systems relies on the assumption that the cryptographic key remains secret, a
secret owner Alice cannot simply store a backup copy of such secret on the cloud, since this corresponds
to giving away her ownership over the digital assets. Thus Alice must rely on her personal machines to
maintain these secrets.

Is it possible to obtain the best of the two worlds, where Alice benefits from the convenience of storing
a backup copy of her cryptographic secrets on the cloud such that she can recover them even when she
loses her devices and forgets all credentials, while at the same time retaining full ownership of her secrets?

In this paper, we show that this is indeed possible, by revisiting and expanding the concept of Break-
glass Encryption pioneered by Scafuro [PKC19].

We provide a secret-recovery mechanism where confidentiality is always guaranteed when Alice has
not lost her credentials, even in the presence of a malicious cloud and users ([PKC19] only guarantees
that a violation of confidentiality will be detected, not prevented). Recoverability is achieved in most
circumstances.

We design and prove security of a credential-less authentication mechanism, that enables Alice to
access her secret, without remembering any credentials. This tool was assumed in [PKC19] but not
implemented. We redesign the storage mechanism on the cloud side so that the cloud needs to perform
no operations during the storage phase. This is in contrast with [PKC19] where the cloud must re-
encrypt the stored file continuously with the help of a secure enclave (regardless of whether a recovery
procedure will happen).

Our protocols are proved secure in the Universal Composition framework.

1 Introduction

Some digital assets, such as cryptocurrencies [MSH+16] or encrypted databases [PRZB12], require the knowl-
edge of a cryptographic secret (e.g., a signing key, a decryption key,) in order to be accessed and used by its
owner. The security of such digital assets hinges on the cryptographic secret being known only by its owner,
and, if the owner loses the secret, she loses access to this asset1.

To avoid this loss, could a user, say Alice, store a backup copy of her cryptographic secrets on a cloud,
while at the same time retaining full ownership of her secrets? It seems that the answer to this question
should be a definitive no. Firstly, by sending the cryptographic secrets s to the cloud, the user is effectively
giving the cloud the ability to access the cryptographic asset associated with s, defeating the purpose of

∗Alessandra Scafuro and Tanner Verber are supported by a research grant from Horizen Labs
†Author contact tverber@ncsu.edu.
1This is a severe problem in cryptocurrencies where losing access to the signing key results in losing the ability to create

transactions and hence use the money.

1

using a cryptographically secured digital asset to begin with. However, even if we trust the cloud not
to illegitimately access users’ assets, another potential point of failure is the authentication method that
Alice uses to connect to the cloud. The security of the cryptographic systems for which Alice is using her
cryptographic secrets is downgraded to the security of the authentication system Alice uses with the cloud.
Finally, if Alice uses a strong two-factor authentication (2FA) involving her physical devices as second factors,
there is still a chance that Alice loses access if she loses all her physical devices.

In this paper, we revisit the concept of Break-glass Encryption, introduced by Scafuro [Sca19], to provide
an efficient and concrete mechanism that allows Alice to use the convenience of a cloud to store a crypto-
graphic secret, in such a way that (1) the cloud does not learn the secret (2) Alice is able to retrieve her
secret even when she loses all her credentials and devices, while no-one else can retrieve the secret on her
behalf.

Such a mechanism seems to have two contradicting security requirements. On the one hand, we must
provide provable cryptographic guarantees that no one, not even the cloud, should be able to learn the
cryptographic secret that Alice is storing. On the other hand, we must guarantee that if Alice loses all her
devices and secrets – which puts Alice in a position of being like anyone else – she should be able to connect
to the cloud and retrieve her secret. While seemingly irreconcilable, we show that this can be achieved.

In order to better frame the ideas behind our scheme, we present the overarching approach we take in
this paper to achieve the security requirements outlined above. The first requirement asks that Alice stores
her secret s on the cloud, in such a way that the cloud will never learn the secret. This would be easily
achieved by having Alice store an encryption of s, under some key that Alice knows, say retK, that we
will call “retrieval key”. As long as Alice remembers this key, she will be able to retrieve and decrypt her
cryptographic secret. The second requirement asks that if Alice loses everything, Alice should be able to
retrieve and decrypt s. This is impossible unless Alice gave her retrieval retK to someone else, but we want
that no one should be able to access this secret besides Alice. Note that this requirement rules out any
solution based on escrowing the key to trusted parties [Mic92, Sha95, BG96, Gan96, BG97]. In particular,
we want that no one should ever be able to access Alice’s secret without her detecting it (which would happen
if the key is escrowed to others).

To overcome this challenge we use the aid of a trusted execution environment (TEE) [MAB+13, PST17].
TEE is a technology that allows a client to create her own private space on an untrusted cloud machine
(often called the host). The assumption is that every computation and piece of data stored in the enclave
is opaque to the host.2 Hence, we require that the cloud is equipped with a TEE and Alice can create her
own secure enclave to privately store retK. The TEE can be seen as the trusted party that knows about
Alice’s key retK and can use it in case of emergency to decrypt Alice’s ciphertext, recover her secret s, and
re-encrypt it under a new key, say pk, that Alice freshly created. This is done obliviously to the cloud who
just observes the ciphertext c as input to the enclave, and then the fresh ciphertext c′ in output, which is a
re-encryption of c under a new key pk.

However, the most challenging question remains unanswered. How does the TEE know that pk is a key
chosen by Alice, and not by the cloud? Or another party who is pretending to be Alice?

This brings us to the second, and most challenging, tool that we build in this paper: a mechanism to
obtain credential-less cryptographically secured permission. This mechanism, inspired by a similar definition
presented, but not implemented, by Scafuro [Sca19] allows only Alice to legitimately authenticate, even when
she loses all cryptographic secrets. This permission should be publicly verifiable and can be inputted into the
TEE to authenticate a recovery request from Alice. This again seems very improbable since any mechanism
that would allow Alice to obtain a certificate without any particular secret, should also enable any party to
do the same.

However, we observe that there is a difference between Alice and the others. Alice would ask for a
certificate only in the rare case that she lost all the devices/credentials she possesses. Most of the time, Alice
does have such credentials – and can use them to authenticate. In contrast, other parties are never able to
authenticate.

This asymmetry can be leveraged to create a permission mechanism that guarantees that, using her
keys, Alice can stop any malicious requests for permission, and that in the case where Alice lost everything,
her attempt to create permission cannot be (cryptographically) stopped by anyone. Our solution requires

2In practice, TEEs are still not bulletproof since hardware side-channel attacks exist. Nevertheless, this technology is still
developing and it is used in several works [DSC+15, KMB15, ZDB+17, KGM19, CZK+19]

2

that Alice uses her credentials (as long as she has them) to actively participate in stopping illegitimate
attempts at recovery, as well as initiate a recovery request as soon as she realizes that she lost them. The
latter is necessary, else, if Alice loses her credentials and does not initiate a recovery request, she loses
her power to stop any future illegitimate requests. Looking ahead, in our solution, there is a possibility
of a non-cryptographic attack that prevents Alice, whereby an adversary guesses that Alice will make a
recovery request at a specific time, and will initiate a recovery request in parallel. As we discuss later, this
attack would prevent Alice from recovery but will never compromise the security of Alice’s secrets since
two competing requests will only result in aborting the recovery process. Likewise, if Alice fails to reject a
malicious request, she will lose her confidentiality. Therefore, Alice needs to ensure that she watches for any
requests made on her behalf.3

Our Contribution. We build upon the ideas presented in [Sca19] to provide a full protocol that allows
clients to securely recover cryptographic secrets stored on a cloud even without remembering any credentials
while guaranteeing that no one else, not even the cloud, learns the secret. Our protocol requires the imple-
mentation of two tools: a tool to cryptographically authenticate a client when she loses all her credentials
and a tool to allow the cloud to obliviously recover a secret for the client, without learning the secret. We
defined the two tools in a modular way and we implement them independently. We provide the following
contributions:
1. The first implementation of an authenticated Credentials-less Permission Mechanism GPerm

using blockchains. While [Sca19] abstracted the concept of a credentials-less permission mechanism
via the GPerm functionality, it was never instantiated. We provide the first concrete protocol that securely
realizes the GPerm functionality. In proving UC-security of such a protocol many subtleties arise that
highlight issues with previous definitions and proposed instantiations. We therefore revisited and improved
the definition of GPerm. Our implementation leverages blockchain technology.

2. UC-definition of a credential-less Secret Recovery functionality FSecRec. We provide a formal
definition of a secure yet credential-less Secret-Recovery mechanism, in the UC-framework.

3. UC-protocol instantiating FSecRec in the GPerm hybrid world, and using TEE. We instantiate
FSecRec with a very efficient protocol that leverages the security of TEE, and requires minimal overhead for
the cloud. We provide a formal UC-security proof of our protocol, and hence we use the UC-formalization
of TEE provided by [PST17], called Gatt. Our protocol is modular and uses GPerm as a module that can
be instantiated with other implementations besides the one we provide in this paper.

Roadmap In Section 2 we give a high level description of our techniques to achieve our solution. Section 3
discusses our improvements over Break-glass Encryption [Sca19] and other related works. Section 4 gives
background on the tools used in our solution. In Section 5 gives our definition, protocol, and proof for
credential-less publicly verifiable permissions. Finally, Section 6 gives our definition, protocol, and proof for
credential-less secret recovery.

2 Our Techniques

1. Implementation of credential-less permission mechanism GPerm via blockchain. We revisit
the definition of credential-less permission provided by Scafuro [Sca19] in our own ideal functionality GPerm

(Figure 7). Our definition includes technical changes to improve modularity. Among these changes, our
formulation defines the role of clients and servers, and their connection, and better defines the role of ex-
ternal parties in requesting permission, and the verification of the permission is defined as an external
predicate. These changes make GPerm usable as a building block in any application that requires authenti-
cated credential-less permission. Our main contribution on this front, however, is in our UC-realization of
GPerm. While Scafuro provided a definition and a discussion of potential realizations, this work is the first
to concretely realize GPerm and prove security.

At a high level, our blockchain-based realization is as follows. To register to the permission system,
Alice posts a transaction indicating the identifier she wants to use perm-info, a public key vkC that she
wants to use to block/accept permission requests, and the server(s) that are allowed to use her permissions.

3As we will see, this watching can be outsourced.

3

Only servers that have published their verification key to the blockchain can be chosen by Alice. In this
registration transaction, Alice also establishes timing parameters related to the creation of the permission:
topen and tchal, which will become clear later in the description. In order to have a transaction posted on
the blockchain Alice might need to create a blockchain account (e.g., a wallet). However, note that for our
protocol Alice does not need to remember the secret key associated to it after the transaction is computed.
Indeed, Alice can create an account on the fly for each transaction that she wishes to post. Also, note that
in our current version of the protocol we do not consider the expenses of posting transactions. However, they
could be leveraged to discourage malicious parties from posting illegitimate requests and to reward Alice’s
attempt to stop them (we discuss this more in the Competing Requests paragraph of Section 5.2).

Now, say Alice loses the keys she used to access to the server S. She will create a permission that S
can publicly verify as follows. First, she posts a transaction tx on the blockchain containing her public id
perm-info and the public key of the server S she wants to create permission for and a field that we call req,
which contains additional information for the server S. (This field is specific to the application for which the
permission is used. Looking ahead in Secret Recovery req will be a fresh public key pk that the TEE will
use to re-encrypt the secret it holds for Alice). Once Alice’s transaction appears on the blockchain, there
are two cases. If Alice does remember the signing key associated with vkC that was registered along with
perm-info, Alice can simply endorse by signing this transaction.4 If Alice does not remember any key, then
Alice simply waits for tchal blocks to be added to the ledger after the block containing the transaction tx is
posted. This sequence of blocks, tx and the tchal blocks after, simply represents a valid permission for S. We
call this a silent proof. Note that constructing this sequence required no secrets from Alice.

On the other hand, assume that Alice did not lose her secrets, and a malicious party, Jeff, attempts
to create permission by following the procedure above. Jeff can simply create a transaction tx∗ containing
perm-info and then wait for tchal blocks to be appended. The key observation here is that, if Alice did not
lose her devices, then she has access to the signing key associated with vkC, so she can post a signature
to deny the request and stop anyone else from obtaining a silent proof. In this case, when Alice sees the
transaction tx∗, she will follow up with a transaction where she denies tx∗ and add a signature that verifies
under vkC. The ability to deny is why we consider silence to be proof of accepting permission.

Note that this requires that Alice monitors the blockchain and is on the lookout for illegitimate permission
requests. While this might seem too taxing for Alice, monitoring the ledger could be offloaded to a server
who notifies Alice in the case of a request. Further, the following observations show that this work can
move from taxing to rewarding. First, the parameter tchal plays an important role in the frequency of the
monitoring activity. Alice could choose tchal to be long enough (e.g., one week) so that she does not have to
monitor the blockchain constantly, but has a monitoring procedure going off once a week. Second, while we
do not explicitly implement this in the paper, every permission request can have a required request fee that
is automatically paid to the wallet associated with perm-info when denied. In this way, every denial yields
Alice a reward.

Now, consider the last, most challenging case, where Alice loses her keys and posts a transaction tx
requesting permission for perm-info, S, req, and this is immediately followed by a transaction from another
party tx∗ for the same perm-info, S, req′. Since Alice lost her keys, no one can stop tx∗.

This attack is similar to the “front-running attacks” that plague blockchain applications, where miners
can take advantage of their first-hand knowledge of the transactions in the mempool and create transactions
accordingly (e.g., if the transactions suggest a certain buying trend, the miners can take advantage of it
before anyone else by creating and validating their own transactions first).

Luckily the front-running problem can be greatly mitigated using a commit-and-reveal approach where
parties do not post values in the clear, but rather they post a commitment to it. Once the transaction
containing the commitment made it to the blockchain, the party can follow up with a transaction that
contains the opening of the commitment. Thanks to the hiding of the commitment, when Alice publishes
the commitment to perm-info,S, and req, Jeff will not be able to know what perm-info is committed and will
not be able to front-run Alice. The commit-and-reveal approach increases the overhead on the blockchain and
the users, however, for our setting this is not problematic since permission transactions are expected to be
infrequent. Hence, the protocol discussed above is slightly modified so that permission request transactions

4This step might seem redundant but it will become clear later why we break it down into two transactions.

4

are first committed and then opened. A parameter topen is then used to establish how many blocks can pass
for an opening to be accepted by our system.

However, this does not entirely stop an adversary from determining the identity of Alice. A malicious
miner monitoring network traffic could determine the source of a commitment, giving a strong indication of
Alice’s identity. To avoid this, an anonymous network may be used such as Tor [Tora] or, if the ledger is a
bitcoin-like ledger, Dandelion [VFV17].

A Non-Cryptographic Attack. Note that although hiding guarantees that Jeff cannot detect which
perm-info is committed in the permission request, there is still a possibility that Jeff tries to mount a denial
of service attack to the system by publishing commitments to all perm-infos, with the hope of guessing the
one that is committed in an honest transaction. Furthermore, Jeff might be someone that knows that Alice
was robbed of their phone and could be the one posting a transaction perm-info right before (or right after)
Alice posts her request.

All such attacks are not cryptographic in nature, as they concern the ability of Jeff to predict which
perm-info will be lost. The consequence of this is that two transactions with the same perm-info will appear
on the blockchain. In this case, our protocol will simply ignore the request and no permission will be created.
Note that this approach guarantees that in case of doubts, no one gets permission, which means that Alice’s
secrets remain protected (although they are not recoverable by Alice).

2. UC-definition of a Credential-less Secret Recovery Functionality FSecRec. We provide a UC-
definition of the properties we want from a cloud-assisted secret recovery functionality where the cloud does
not learn anything, besides the fact that a client wishes to store a secret.

We model this via the ideal functionality FSecRec (Figure 21), where a client Client can store a secret s
with FSecRec and a cloud Cloud is informed that a client Client has stored a secret and has a public identity
perm-info associated to it. The client Client can ask the ideal functionality to retrieve her secret s anytime.
Upon this request, FSecRec, before sending s to Client, will first need the approval from Cloud. This step
models the fact that in the real world a cloud can always stop working or refuse to provide service.

Any party P can ask for a recovery request. This is an emergency request that may come from someone
other than the owner. If this request is associated with a valid permission perm, FSecRec accepts and sends
the secret s to this unauthenticated party P – again assuming that Cloud has agreed to provide this service.
Thanks to the modular UC-definition perm can be checked in FSecRec by accessing GPerm.

Finally, we also allow a client to remove her secrets from the cloud.

3. UC-protocol instantiating FSecRec in the GPerm hybrid world, and using TEE. We provide
a realization of FSecRec in the GPerm hybrid world and using the TEE, modeled as an ideal functionality
Gatt [PST17]. In the realization, the first step for Alice is to register with GPerm ideal functionality, choosing
a public id perm-info and communicating the identity of the cloud Cloud she wants to associate the permission
to.

Then, to store a secret s on Cloud’s machine, as mentioned above, Alice interacts with the TEE hosted
by the cloud (in our formal protocol, Alice interacts with the Gatt functionality). The TEE executes a simple
program. (1) perform key-agreement with a client with id perm-info, (2) process recovery requests for the
client if they are authenticated with a valid permission perm.

Alice engages in a Diffie-Hellman key-agreement protocol5 with the TEE hosted at the cloud, we denote
this key as “retrieval key” retK. This key is used by Alice to encrypt s, via a CCA-secure encryption scheme,
and obtain the ciphertext c, which is then stored on the cloud Cloud. So long as Alice remembers her retrieval
key retK, Alice can retrieve her secret by simply downloading c and decrypting it with retK.

If Alice loses her key(s), she will use GPerm to obtain permission perm. GPerm allows a party to create
permission for a specific action req. In our protocol, the action is to have the TEE recover the secret and
re-encrypt it under a new public key pk that Alice picks. Hence, in our protocol req = (“recover“||pk).

After obtaining the permission perm from GPerm, Alice sends the pair (req, perm) to the cloud which will
be used to operate TEE. The TEE is queried with input (req, perm, perm-info, c) and will first check that

5Note that any secure key exchange would work, we chose DHKA for simplicity.

5

perm verifies for perm-info. If the permission is valid, the TEE will attempt to decrypt c with the key retK
associated to perm-info, and re-encrypt under the public key pk.

Finally, to implement removal from the system, clients simply send an authenticated removal request to
the TEE to remove their secrets from the enclave.

2.1 Areas for Improvement

Before proceeding, we take a moment to discuss areas for improving the contributions presented in this work.

Avoiding Trusted Execution Environment. Of course, trust should be limited as much as possible,
and therefore the use of a trusted execution environment is slightly concerning. However, through the use
of two non-colluding servers, the TEE can be replaced using secure 2PC. Further, the input to the TEE can
be very large, consisting of possibly many blocks of the ledger that need to be verified. Our protocol could
be improved by structuring this input as a compact data structure and a proof of membership (in the case
of an acceptance signature) or a proof of non-membership (in the case of a proof of silence).

Monitoring the Ledger. It might be unrealistic to assume that a client will constantly monitor the ledger
for malicious requests to access their secret. This suggests that the size of the challenge window tchal must
be very large to allow the client to catch these malicious requests. However, we observe that the monitoring
(and only the monitoring) of the ledger can be outsourced to one or more servers. Servers would be trusted
only to inform the clients on time that a request recovery was published, and nothing else. This can be a
reasonable approach, which requires minimal trust, and clients can always check the ledger on their own –
even when they are paying the servers to do so.

Proof of Silence. A proof of silence might not be ideal, as it does not definitively prove that the client
wishes for permission to be granted. It could be possible that the client did not see that the request had
been posted. While it may seem safer to have the client remember something simple, such as a PIN or
passphrase, our goal was to provide a way for the client to obtain permission while remembering nothing.
Nevertheless, it may be worthwhile to implement such a measure that allows the client to obtain permission
using a PIN or passphrase, and default to a proof of silence if this has been forgotten as well.

Competing Requests. In our protocol, there is the possibility that two users will claim the same identity,
neither with a way to prove it. One possible approach is to accept the first request that was committed, as is
done in KELP [BCC+21]. However, there is the possibility that the adversary has learned in real time that
the client has lost their credentials. For example, an adversary could physically steal the client’s devices.
Then post a recovery request. If the client is not able to post their own request first, then their secret is lost.

We instead opt to accept neither request when two valid competing requests are made. However, this
gives an adversary the ability to block the true client’s request. With the implementation of a request fee6,
returned upon the granting of permission, the adversary must risk their own money in order to steal the
client’s secret.

With the implementation of the request fee, there is a discussion to be had about how much an adversary
would reasonably risk (and therefore, how many requests an adversary would make) to potentially steal the
client’s secret. We leave the game theoretic analysis of this for future work.

3 Related Work

Our work is inspired by the concept of “Break-glass Encryption” introduced by Scafuro [Sca19]. Their goal
is to allow a user to decrypt her own ciphertexts stored on the cloud, even when she loses her decryption
key. Being the first of its kind, [Sca19] focused on a feasibility result, and some important tools (such as the
permission functionality) were defined but not realized with any protocol.

6Discussed in Section 5.2

6

Our work improves on [Sca19] in several ways. We provide a concrete realization of the permission
functionality GPerm and we prove its security in the UC-framework. Along the way, we revised the definition
of GPerm and improved its modularity. Our recovery protocol is very practical, requiring our cloud to only
store one ciphertext and query the TEE only four times: twice upon storage, once in the case of removal,
and once in case of emergency recovery. In contrast, [Sca19] provides a complex protocol that requires the
cloud to continuously update the client’s ciphertexts with bookkeeping information, using trusted hardware.

At a high level, our improvement over Break-glass Encryption is in the maintenance of ciphertexts.
Specifically, our protocol requires no maintenance of ciphertexts. In Break-glass encryption, each ciphertext
must be re-encrypted every I steps. I is a parameter set when implementing the system. Further, note
that each of these re-encryptions are done on the trusted hardware. In Secret Recovery, the ciphertext is
only re-encrypted once, upon recovery. Therefore, Break-glass Encryption requires constant maintenance of
all stored ciphertexts, Secret Recovery does not. No work needs to be done besides storage, retrieval, and
recovery.

Further, we discovered and addressed problems that were unmentioned in Break-glass Encryption. For
example, front-running attacks and the need for computational unforgeability of the ledger. Lastly, Break-
glass Encryption does not prevent unauthorized access by the cloud. Break-glass Encryption only allows the
client to detect that their secret has been accessed.

The Problem of Recovery. The problem of recovery is most popular in blockchain settings, as in our
previous example of a user losing the key to their cryptocurrency wallet and subsequently their funds. The
work by Blackshear et al. [BCC+21] focuses on this specific problem, and provides a mechanism that allows
the owner of a wallet, who forgot the key, to replace her old wallet with a fresh wallet for which she does know
the key. Their approach uses time-lock commitments and smart contracts [BCC+21]. This solution, however,
only applies to cryptocurrency wallets, whereas our work solves a more general problem of recovering any
kind of secret stored on a cloud.

The work by Maram, Kelkar, and Eyal [MKE22] considers a related problem that they call the authen-
tication problem. The authors consider a scenario of two parties, an honest party and an adversary, both
interacting with a mechanism to prove identity. This mechanism will use some set of credentials, or other
facts that the honest party should know, to verify the identity. We instead consider the case where the user
has no credentials left, rather the user has lost everything, and can still recover a stored secret.

Other approaches for recovering a forgotten key are based on key-escrow. Key-escrow is an approach to
key-recovery where a trusted party stores the key on behalf of the key-owner [BG96, Gan96]. The key can
also be split into parts and shared among trustees of the authority so that cooperation from a threshold
amount of the trustees is required [Mic92, Sha95]. Similarly, a user might escrow only part of their key, so the
authority must work to obtain the entire key [BG97]. However, due to the trusted nature of the authority,
the key can be used by the authority at any time. In fact, many applications of key escrow involve law
enforcement playing the role of the authority and using the key for “authorized wiretaps”. One interesting
approach to key-escrow was shown by Green, Kaptchuk, and Van Leer where surveillance can only occur
given a warrant by a judge, either prospectively or retrospectively [GKL21]. Further, key-escrow provides
no detectability. The user has no means to determine if their key has been recovered by someone else.

All such approaches are incomparable to ours since a key requirement of our work is to enable Alice
to recover her secret on her own without having to share her credentials with any other party. The main
motivation for insisting on this requirement is that sharing credentials with other parties results in other,
potentially corrupt, parties having access to the assets associated with the credentials. In the worst case,
this could result in these parties stealing said assets.

Another popular approach is to lock keys behind a password, passphrase, or passcode, as these are often
easier to remember than a key. For example, in Torus [torb], users provide an email for them to receive a
backup passphrase to recover their wallet. Similarly, users of the Trezor Hardware Wallets are able to recover
their wallets using a seed phrase of 12, 18, 20, 24, or 33 words [tre]. While seed phrases are meant to be
made up of easy to remember words, it can still be a challenge to remember that many words. Rather than
longer seed phrases, in SafetyPin [DCM20], users are able to recover their cloud-based mobile backups using
a short PIN. This paper also provides a safeguard against brute-force guessing attacks against these PINs.
Lastly, there are approaches based on password-protected secret sharing [JKKX17, JKX18]. These protocols
allow a client to prove knowledge of a password to a server, without revealing said password, to obtain a

7

previously stored secret. Furthermore, we aim to provide a route for users who have forgotten everything,
including any password, passphrase, or passcode.

To provide support for these users who have forgotten everything, there is also the method of biometric-
based recovery. One approach to using biometrics in this space is to use biometric-based encryption to
encrypt the key, that way it can always be decrypted using a fingerprint upon recovery [ACAA19]. The
user thus need not remember anything, however, in this solution, the encrypted key is split among a set of
“stewards” who are trusted and must be online for recovery. Our solution has a single cloud, who is not
trusted but does run a TEE, and we do not require costly biometric encryption, rather standard encryption.

4 Background

In this section we present the tools that our constructions are built on.

4.1 Symmetric key encryption

We revisit the definition from Chapter 3 of [KL14]. Let Π := (Gen,Enc,Dec) be a symmetric key encryption
scheme where:
• Gen is the key generation algorithm that takes as input 1λ and outputs a key k. Concretely, k ←$ Gen(1λ).
• Enc is the encryption algorithm that takes as input a key k and a message m ∈ {0, 1}∗ and outputs a
ciphertext c. That is, c←$ Enc(k,m).

• Dec is the decryption algorithm that takes as input a key k and a ciphertext c and outputs a message m
or an error (⊥). That is m = Dec(k, c).

For completeness, it is required that for every λ ∈ N, every k ←$ Gen(1λ), and every m ∈ {0, 1}∗, it holds
that Deck(Enck(m)) = m.

In Figure 1, we show the IND-CPA game presented in [KL14] for a symmetric encryption scheme as
described before. This game is between a challenger and a PPT adversary A.

PrivKcpa
A,Π(λ)

1. k ←$ Gen(1λ).
2. m0,m1 ← AEnck(·)(1λ) s.t. |m0| = |m1|.
3. b←$ {0, 1}, c∗ ←$ Enck(mb).
4. b′ ← AEnck(·)(c∗).
5. If b′ = b output 1, else output 0.

Figure 1: IND-CPA for Π

We say an encryption scheme Π is IND-CPA secure if:

Pr[PrivKcpa
A,Π(λ) = 1] ≤ 1

2
+ negl(λ).

Additionally, we provide the INT-CTX experiment [BN00, Sca19] in Figure 2 for a symmetric encryption
scheme Π := (Gen,Enc,Dec) for reference.

We say an encryption scheme Π is INT-CTX secure if:

Pr[ExpINT−CTX
A,Π (1λ) = win] ≤ negl(λ).

4.2 Public key encryption.

Next we discuss the definition from Chapter 11 of [KL14]. Let Πpub := (Gen,Enc,Dec) be a public key
encryption scheme and M be a message space where:

8

ExpINT−CTX
A,Π (1λ)

• K ←$ Π.Gen(1λ). Initialize S = ∅, win = false and provide oracle access to Π.EncK(·) to A.
• For any query Mi, Ci ←$ Π.EncK(Mi), S = S ∪ {Ci}.
• For any query V F (C), M ←$ Π.DecK(C). If M ̸= ⊥ and C /∈ S return 1 and set win = true.
• After receiving “Finalize”, output win.

Figure 2: INT-CTX for Π

• Gen is the key generation algorithm that takes as input 1λ and outputs a key pair (pk, sk). Concretely,
(pk, sk)←$ Gen(1λ).

• Enc is the encryption algorithm that takes as input a public key pk and a message m from M and outputs
a ciphertext c. That is, c←$ Enc(pk,m).

• Dec is the decryption algorithm that takes as input a secret key sk and a ciphertext c and outputs a
message m or an error (⊥). That is m = Dec(sk, c).

For completeness, it is required that for every λ ∈ N, every (pk, sk)←$ Gen(1λ), and every m ∈M , it holds
that Decsk(Encpk(m)) = m except with negligible probability.

PubKcpa
A,Πpub

(λ)

1. (pk, sk)←$ Gen(1λ).
2. m0,m1 ← A(pk) s.t. |m0| = |m1| and m0,m1 ∈M .
3. b←$ {0, 1}, c∗ ←$ Encpk(mb).
4. b′ ← A(c∗).
5. If b′ = b output 1, else output 0.

Figure 3: IND-CPA for Πpub

We capture the IND-CPA experiment for public key encryption in Figure 3. We say an encryption scheme
Πpub is IND-CPA secure if:

Pr[PubKcpa
A,Πpub

(λ) = 1] ≤ 1

2
+ negl(λ).

4.3 Digital signature schemes.

Now we revisit the definition from chapter 12 of [KL14]. A digital signature scheme Σ := (Gen,Sig,Vf) for
a message space M is a tuple of three PPT algorithms such that:
• Gen is the key generation algorithm that takes 1λ as input and outputs a pair of public and private keys
(pk, sk). Concretely (pk, sk)←$ Gen(1λ).

• Sig is the signing algorithm that takes a private key sk and a message m from the message space M as
input and outputs a signature σ. We write this as σ ←$ Sig(sk,m).

• Vf is the verification algorithm that takes a public key pk, a message m, and a signature σ as input and
outputs 1 if a valid signature and 0 if an invalid signature. We write this as b = Vf(pk,m, σ).

For completeness, we require that for (pk, sk) ←$ Gen(1λ), m ∈ M , it holds that 1 = Vf(pk,m, Sig(sk,m))
except with a negligible probability.

We present the game in figure 4 to capture unforgeability. We say a signature scheme Σ is existentially
unforgeable against chosen-message attacks (i.e. secure) if for all PPT A we have that Pr[Sig-ForgeA,Σ(λ) =
1] ≤ negl(λ).

9

Sig-ForgeA,Σ(λ)

1. (pk, sk)←$ Gen(1λ).
2. m,σ ← ASigsk(·)(pk) let Q be the set of queries A asked to the oracle.
3. If 1 = Vf(pk,m, σ) and m /∈ Q output 1; otherwise output 0.

Figure 4: EUF-CMA forΣ

4.4 Commitment Schemes

A commitment scheme COM is a tuple of algorithms (Commit,Open) that allows a party to produce a com-
mitment com to a value x. We make use of a statistically hiding and computationally binding commitment
scheme [DF02], defined as:
• A commitment scheme is considered statistically hiding if for any x, x′ Commit(x) and Commit(x′) are
statistically indistinguishable (as defined by [GMR89]) [DF02]

• A commitment scheme is considered computationally binding if the probability that any PPT adversary
can produce com, open, open′, such that open ̸= open′ but both open com is less than negl(λ) [KL14]

4.5 Global Clock Functionality

Next, we present the global reference clock functionality GrefClock (Figure 5) [CHMV17]. This functionality
is used by our ideal functionality GPerm to determine the amount of time that has passed between notifying
a client of a request for permission on their behalf, and the client responding with an acceptance, denial, or
silence.

Functionality: GrefClock

Participants: The environment Z, some party P
Variables: An integer G representing the time, initially 0

Procedures:
• Increment Time
– Upon receipt of (increment time) from Z, set G = G+1 and send (incremented) to Z. Ignore

any (increment time) from any other party
• Get Time
– Upon receipt of (get time) from a party P, send (time, G) to P

Figure 5: GrefClock The Global Functionality for a Reference Clock

Proof-of-Publication Ledger L. We assume that the parties have access to an unforgeable, verifiable
ledger L as modeled in [KGM19]. The concept of unforgeability here is the same as unforgeability of
signatures. Upon posting a transaction tx to a ledger with chain ID cid, the posting party receives an
authentication tag σ such that it is hard to compute σ without posting tx to the ledger. cid allows us to
identify a specific chain of posts, and for the purpose of our permission protocol we will assume that only
posts pertaining to the permission protocol and server S will be made to the chain with ID cid. The structure
of cid is dependent on the instantiation of L. At a high level, L provides the following:
• (tx, σ) ← L.Post(z, cid): This allows a user to post Data = z on the append only ledger for the chain
identifier, cid. We will often use tx.Data to refer to the contents posted, in this case z. The output of this
interface is the transaction, tx, and an authentication tag for verifying that the data was posted on the
ledger. The chain identifier ties multiple transactions together.

10

Gatt[Σ, reg]

On initialize: (msk,mvk) := Σ.Gen(1λ), T = ∅.
On receive: getpk() from some P: set mvk to P.

Enclave Operations

On receive install(idx, prog) from some P ∈ reg: if P is honest, assert idx = sid generate
nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx, prog, 0⃗), send eid to P.
On receive resume(eid, inp) from some P ∈ reg: let (idx, prog,mem) := T [eid,P], abort if
not found let (outp,mem) := prog(inp,mem) update T [eid,P] = (idx, prog,mem) let σatt :=
Σ.Sigmsk(idx, eid, prog, outp) and send (outp, σatt) to P.

Figure 6: Gatt The Ideal Functionality of a TEE

• {0, 1} ← L.Verify(tx, σ): This allows any user to verify that the pair (tx, σ) were the result of the L.Post
procedure above.
We use this ledger due to the public verifiability, which allows our TEE to verify transactions without

having access to the ledger. It is vital that the TEE be able to verify transactions so that a malicious server
is not able to produce forged permission.

Trusted Execution Environment. The Cloud has access to a trusted execution environment (TEE)
represented as the ideal functionality Gatt (Figure 6) presented in [PST17]. Recall that a TEE is an enclave
on a computer that can securely perform computation and store data. In Figure 6 all Blue activation points
are activation points that can be executed more than once. However, Green activation points can be only
executed once. Let prog be the program run by the enclave. Upon performing this computation, the TEE
returns an attestation, which is a signature based on keys provided by the manufacturer.

At a high level, Gatt is defined for a signature scheme Σatt and registry reg that lists the parties equipped
with a processor containing the TEE, these parties are known as the host. Upon initialization (at the
factory) the TEE enabled processor is initialized with a signature key pair msk,mvk. This initialization is
only performed once, and the signature pair is used for attesting the execution of a program in the TEE.
Gatt allows parties to query the public verification key, mvk. In practice, this is often implemented as an
online trusted resource where users can verify an attestation from the TEE.

To use the TEE, the host P first calls install(idx, prog) to install the defined program, prog. Gatt checks
that P ∈ reg and idx = sid, where idx is provided by the host and sid is the session ID stored by the TEE.
Then it generates a random identifier, eid, to identify the installed enclave and returns eid to party, P.

Next to run the program on any input, inp, the host calls
resume(eid, inp), and the TEE runs the program defined for eid on the input inp. Finally, it returns the
output along with a signature under msk as its attestation, which can be verified using the public mvk.

5 Credential-less Publicly Verifiable Permissions

In order to allow for the recovery of a secret without any memory of anything, including a secret key or
access to private channels, we need verifiable permissions that are generated in the same setting. Any party
can request permission for any registered client, and the permission received will be a certificate for a server
to perform some procedure. In secret recovery, this procedure will be recovering a stored secret.

11

Functionality: GPerm

Participants: A set of servers S, a set of clients C, a party P, the adversary A
Variables: L, the set of registered servers, LS the list of clients registered to server S
External Functionalities: GrefClock the global clock functionality
Algorithms: VerifyPerm checks the validity of permissions

Procedures:
• Registration - Server
1. Upon receipt of (register server,S) from S ∈ S for the first time, add S to L, set LS = ∅,

and send (registered,S) to C and A
• Registration - Client
1. Upon receipt of (register client,C,S) from C ∈ C for the first time, send

(registration request,C,S) to A
2. Upon receipt of (client perm-info,C, perm-info) from A add (perm-info,S,⊥) to LS and send

(perm-info,S) to C,S, and A
• Generate Permission
1. Upon receipt of (generate permission, perm-info,S, req) from party P, send

(permission request, perm-info) to S and A
(a) If (perm-info,S, req∥res∥perm) /∈ LS then output (nonexistent client, perm-info) to P, S,

and A
(b) Else, if (perm-info,S, req∥res∥perm ̸= ⊥) ∈ LS parse perm-info to identify C, then send

(existing permissions, perm-info) to P,C,S, and A
(c) Else send (permission requested, perm-info,S) to C and receive a response res, where

res can be accepted, denied, or silent and let telapse be the time between sending and
receiving a response according to GrefClock

i. If res = (accepted) send (acceptance proof, perm-info,S, req, telapse) to A and receive
perm

ii. Else if res = (denied) send (denial proof, perm-info,S, req, telapse) to A and receive
perm

iii. Else send (silent, perm-info,S, req) to A and receive perm
iv. Add (perm-info,S, req∥res∥perm) to LS and send

(permission, perm-info,S, req∥res∥perm) to P and A
• Verify Permission
1. Upon receipt of (verify permission, perm-info,S, req, perm) from party P, if there exists

(perm-info,S, req∥res∥perm) ∈ LS

(a) Let VerifyPerm(perm-info,S, req, perm) = bver
(b) If res = accepted output (accepted, perm-info,S, req∥perm) to P and A
(c) Else if res = denied output (denied, perm-info,S, req∥perm) to P and A
(d) Else if res = silence, if bver = 1 output (accepted, perm-info,S, req∥perm) to P and A.

Else output (denied, perm-info,S, req∥perm) to P and A
2. Else output (denied, perm-info,S, req∥perm) to P and A

Figure 7: GPerm The Global Functionality for Verifiable Permission

5.1 Definition of Credential-less Publicly Verifiable Permissions

In Figure 7 we present GPerm the ideal functionality for authenticated credential-less permission generation.
In this functionality a client C registers to a server S with public information perm-info. This information is
not secret and should be accessible to the client even after losing all secrets. In this functionality, any party
can request publicly-verifiable, unforgeable permissions on behalf of any registered client. This client has the
opportunity to accept or deny the permission, or to request that they be generated by silence, showing that

12

Protocol: ΠPerm - Register and Manage Permissions

• Register - Server
– S: Upon receiving (register server,S) from Z

1. Set TS = ∅
2. Generate signature keys: (vkS, skS)← Σ.Gen(1λ) and choose a chain id cid.
3. Post verification key on the ledger: txS, σS ← L.Post(“register”∥vkS, cid)

• Register - Client
– C: Upon receiving (register client,S) from Z, find txS, σS on L with tx.Data = “register”∥vkS

1. Generate signature keys: Set (vkC, skC)← Σ.Gen(1λ)
2. Choose topen, tchal as the time allotted to open a commitment and the time allotted to chal-

lenge a permission respectively
3. Set permission identity: perm-info = (C, vkC, topen, tchal, vkS)
4. Post registration on the ledger: txC, σC ← L.Post(perm-info, cid) and send txC, σC to S

– S : Upon receiving (txC, σC) from C
1. Check for prior registration: If perm-info ∈ LS abort
2. Else add perm-info to LS

3. Authorize registration: Compute σsig = Σ.Sign(skS, txC.Data)
4. Post signature: (txreg, σreg) = L.Post(txC.Data∥σsig, cid) and send (txreg, σreg) to C

– C : Upon receipt of (txreg, σreg) from S
1. If Σ.Vf(vkS, σsig, txC.Data) ̸= 1 abort

• Manage Permissions: (Run continuously by C upon registration)
– C : Upon seeing any transaction tx referencing C posted to the ledger

1. If Z sends (accepted, tx)
(a) Sign the transaction to accept: σacc−tx = Σ.Sign(skC, “accepted”∥tx.Data)
(b) Post acceptance: (txacc, σacc) = L.Post(“accepted”∥tx.Data∥σacc−tx∥

txC.Data)
2. Else if Z sends (denied, tx)

(a) Sign the transaction to deny: σden−tx = Σ.Sign(skC, “denied”∥tx.Data)
(b) Post denied: (txden, σden) = L.Post(“denied”∥tx.Data∥σden−tx∥

txC.Data)
3. Else do nothing

Figure 8: Registration and Manage Permissions Procedures of Verifiable Permission Protocol ΠPerm

the permissions are valid because the client did not deny. With public-verifiability we protect a server from
accusations of cheating by a malicious client, who claims that the server performed the procedure without
valid permission.

5.2 Realizing GPerm

Here we present our protocol ΠPerm to realize GPerm our ideal functionality for verifiable, credential-less
permissions. We realize this functionality in Figures 8 and 9 using a verifiable ledger L, as described by
Kaptchuk, Miers, and Green [KGM19]. We consider a setting in which we have many clients C where each
C ∈ C contracts some server S ∈ S, such that S needs permission to perform some task, which we represent
as a request req. However, because the permission requires no secret, they can be requested by any party.

Registration and Managing Permissions. To begin the parties must register (Figure 8). A server
must register by announcing to the world that they are open for registration by posting their verification key
and to the ledger with chain ID cid7. Once the server has made this announcement, a client may register

7We assume that cid is publicly known and associated with this server such that it is easy for a client to find

13

with them by constructing their permission information perm-info. This information contains the client’s
verification key, the time allotted for opening a commitment topen and challenging a request tchal, and the
verification key of the server. Once the client posts this information to the ledger, if they are not already
registered, the server accepts the registration by signing the client registration transaction and posting the
signature to the ledger (within time tchal). Upon completion of registration, the client will begin to monitor
the ledger (Manage Permissions, Figure 8).

Generate Permission. To generate permission (Figure 9) any party may post a commitment transaction
and subsequent opening to the request. Once the opening is posted, the client may accept, deny, or remain
silent. The server, upon seeing the opening, constructs the permission.

The permission includes the registration transaction of the client and the tchal blocks after (denoted
chalwindowC). Permission also includes a “commitment window”, which includes the topen blocks before
and ζ blocks after the opening transaction. This set of blocks (denoted comwindowreq) must include the
commitment transaction that has been opened. Finally, the permission includes a “challenge window”,
consisting of the tchal blocks after the opening transaction (denoted chalwindowreq). If there is a signed
denial in chalwindowC, the registration is considered invalid and the request is denied. chalwindowreq may
contain either a signed denial or signed acceptance of a request, and the request will be denied or accepted
respectively. chalwindowreq might also contain an opening for the same request. If this is the case, and there
is a valid commitment posted in comwindowreq for this second opening, we consider these to be competing
requests and neither is accepted. If none of these are true, then comwindowreq is checked to ensure that the
commitment to the original request was posted and subsequently opened within the appropriate time frame.
In the case of valid permission, the server signs the permission and posts the signature to the ledger.

Verify Permission. Any party must be able to verify permissions, even without access to the ledger. To
verify (Figure 10) any party takes the permission and checks that the server and client registrations are
valid, that all transactions in the permission verify and are in the correct sequence, and if there exists an
acceptance or denial transaction in chalwindowreq.

Other Realizations of GPerm. In Figures 8, 9 we provide our candidate realization, and here we provide
a high level overview of other potential realizations. The problem of realizing GPerm can be narrowed down
to the problem of proving that one has the right to request permission for a certain request. If the client still
holds some credentials they could use these credentials to prove their identity and therefore their right to the
permissions [MKE22]. If the client remembers nothign, they could instead designate a set of parties to serve
as vouchers for them [Sch]. These parties, who presumably still hold their own authentication information,
would then sign off on a request to verify that it came from the correct source. Another approach is to use
a trusted party who has a direct line of communication with the user. If the client needs permission and has
lost access to everything, including the private channel, the private channel is used to generate a proof of
silence.

Competing Requests. Commit and reveal helps mitigate front-running. However, an adversary may post
frequent requests in the hope that one slips through, or may learn in real time that the client has lost access
to their credentials. In the case where two competing requests are made, we opt to accept neither. This
effectively allows the adversary to block a client’s request. We give two potential approaches to mitigating
this problem below.

Request Fees. One approach is to institute fees for all requests, as is done in KELP [BCC+21]. In this
approach, parties making a request pay an additional fee, on top of the gas fee for posting to the ledger, for
both their commitment and opening transactions. This fee does not go to miners8, but instead goes to the
wallet associated with C. This would help deter an adversary from repeatedly posting commitments in the
hopes that C eventually makes their own request, as the adversary would lose money in the process, and
would potentially never successfully block a request. This provides C with the ability to block the adversary’s
request as well, even without knowledge of any secret.

8In the case that a commitment is not opened, this extra does go to the miners

14

Protocol: ΠPerm - Generate and Verify Permission

• Generate Permission
– A party P: Upon receiving (generate permissions, perm-info,S, req) from Z

1. Compute a commitment to the request: (com, open) = Commit(perm-info∥req∥S∥txC)
2. Post commitment to the ledger: txcom, σcom ← L.Post(com, cid)
3. Open the commitment and post the opening: Upon seeing txcom posted to the ledger, post

txopen, σopen ← L.Post(open, cid)
– C: Upon seeing txopen on L where perm-info ∈ txopen.Data

1. If Z sends (accepted)
(a) Sign the opening to accept the request: σgranted = Σ.Sign(skC, “accepted”∥txopen.Data)
(b) Post the acceptance: txaccept, σaccept = L.Post(“accepted”∥txopen.Data∥σgranted, cid)

2. Else if Z sends (denied)
(a) Sign the opening to deny the request: σrefuse = Σ.Sign(skC, “denied”∥txopen.Data)
(b) Post the denial: txdenied, σdenied = L.Post(“denied”∥txopen.Data∥σrefuse, cid)

3. Else if Z sends (silence), do nothing
– S: Upon seeing txopen on L where perm-info ∈ txopen.Data and perm-info ∈ LS

1. Set ledger blocks as challenge windows:
(a) Let chalwindowC be the tchal blocks after txC
(b) Let comwindowreq be the topen blocks before and the ζ blocks after txopen, and

chalwindowreq be the tchal blocks after txopen including txopen
2. Verify registration transaction:

(a) Check for acceptance: If there exists txacc ∈ chalwindowC such that
Σ.Vf(vkC, σacc−tx, “accepted”∥txC) = 1 for σacc−tx ∈ txC.Data, set chalwindowC to
be the ledger blocks from txC to txacc

(b) Check for denial: If there exists txden ∈ chalwindowC such that
Σ.Vf(vkC, σden−tx, “denied”∥txC) = 1 for σden−tx ∈ txC.Data, set chalwindowC to
be the ledger blocks from txC to txden

3. Check for valid commitment: If there does not exist txcom ∈ comwindowreq such that
txopen.Data is a valid opening of txcom.Data, output ⊥ and abort

4. Verify permission request:
(a) Check for acceptance: If there exists txaccept ∈ chalwindowreq such that

Σ.Vf(vkC, σgranted, “accepted”∥txopen.Data) = 1 for σgranted ∈ txaccept.Data, set
chalwindowreq to be the ledger blocks from txopen to txaccept

(b) Check for denial: Else if there exists txdenied ∈ chalwindowreq such that
Σ.Vf(vkC, σrefuse, “denied”∥txopen.Data) = 1 for σrefuse ∈ txdenied.Data, set
chalwindowreq to be the ledger blocks from txopen to txdenied

(c) Check for competing requests: Else if there exists tx′open ∈ chalwindowreq such that
there exists tx′com ∈ comwindowreq where tx′open.Data is a valid opening of tx′com.Data
for the same perm-info or a valid opening of txcom, the distance between tx′open and the
commitment it opens is less than or equal to topen, output ⊥ and abort

5. Sign the permissions: Compute
σperm = Σ.Sign(skS, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq) set perm =
txS∥σS∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥σperm and post txfin, σfin =
L.Post(perm, cid)

• Verify Permission
– A party P : Upon receipt of (verify permission, perm-info,S, req, perm) from Z

1. Run VerifyPerm(perm-info,S, req, perm)

Figure 9: Generate and Verify Permission Procedures of Verifiable Permission Protocol ΠPerm

15

Algorithm: {0, 1} ← VerifyPerm(perm-info,S, req, perm)

1. Parse perm = txS∥σS∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥σperm

2. Parse txS.Data = “register”∥vkS and txC.Data = perm-info′

3. If perm-info′ ̸= perm-info = (C, vkC, topen, tchal, vkS) output 0
4. Check server signature: If Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸=

1 output 0
5. Check perm-info of permission: If perm-info in txC is not the same as the perm-info in open, output

0
6. Check request: If req /∈ open, output 0
7. Verify registration transactions: If L.Vf(txS, σS) ̸= 1 or L.Vf(txC, σC) ̸= 1 output 0
8. Verify transactions from commitment window and challenge window: If there exists any pair (tx, σ)

in chalwindowC comwindowreq or chalwindowreq such that L.Vf(tx, σ) ̸= 1 output 0
9. Verify the order of the transactions: If the transactions in chalwindowC, comwindowreq or

chalwindowreq are not a direct sequence, output 0
10. Check client registration:

(a) If txC ∈ perm is not in open, output 0
(b) If there does not exist txreg ∈ chalwindowC with σsig ∈ txreg.Data such that

Σ.Vf(vkS, σsig, txC.Data) = 1 output 0
(c) Check for denial: If there exists txden ∈ chalwindowC such that

Σ.Vf(vkC, σden−tx, “denied”∥txC) = 1 for σden−tx ∈ txC.Data output 0
11. Check opening and commitment: If there does not exists txopen ∈ chalwindowreq such that

txopen.Data = open is a valid opening of txcom ∈ comwindowreq, output 0
12. Else

(a) If there exists txdenied ∈ chalwindowreq such that Σ.Vf(vkClient, σrefuse, “denied”∥txopen.Data) =
1 for σrefuse ∈ txdenied.Data output 0

(b) If there exists txaccept ∈ chalwindowreq such that Σ.Vf(vkClient, σgranted, “accepted”∥txopen.Data) =
1 for σgranted ∈ txaccept.Data output 1

(c) Else if there exists tx′open ∈ chalwindowreq such that there exists tx′com ∈ comwindowreq where
tx′open.Data is a valid opening of tx′com.Data for the same perm-info or a valid opening of txcom,
the distance between tx′open and the commitment it opens is less than or equal to topen, output
0

13. Else if |comwindowreq| = topen + ζ and |chalwindowreq| = tchal, output 1

Figure 10: The Algorithm VerifyPerm for Local Verification of Permission

16

Second Line of Defense. Another approach is to institute a second line of defense, where upon competing
recoveries, the two parties enter an authentication game as demonstrated by Maram et al. [MKE22]. Maram
et al. describe multiple ways to instantiate such a game, where C competes against the adversary by showing
knowledge credentials or other facts about themselves that they should know.

5.3 Instantiating ΠPerm

In order to implement ΠPerm, we need a SUF-AUTH secure ledger, a statistically hiding and computationally
binding commitment scheme, and a EUF-CMA secure signature scheme.

A detailed discussion on instantiating this SUF-AUTH ledger was provided by Kaptchuk et al. [KGM19],
we give a high level overview here but refer the reader to their work for details.

The ledger is required to store a state and provide a method of verifying parts of this state. This
verification must show that certain information is part of the state and allow one to confirm that a sequence of
blocks appear in a particular order. A straightforward realization of the ledger is a permissioned blockchain.
In a permissioned blockchain, only certain miners are permitted to contribute blocks, which are verified
using the miners’ verification keys, and blockchains inherently contain information to confirm the sequence
of blocks. In this realization, assuming that the ledger is only used for a single purpose, the cid of the
ledger consists of the verification keys of the miners who are permitted to add blocks to the ledger. The
authentication tag σ is a signature on the contents of the post tx under at least one of these verification
keys, and includes cid, allowing for easy verification.

Verifiable ledgers can also be realized using a permissionless blockchain. A Bitcoin-like blockchain can
be used to build a verifiable ledger by including what Kaptchuk et al. call confirmation blocks, which are
blocks immediately following a post to ensure that a transaction makes it to the chain. The ledger can also
be realized using an smart contract system like Ethereum, where the state is maintained and updated by a
smart contract.

While not required in the original work, we only consider realizations that are computationally unforge-
able. Thus solutions such as permissionless blockchains are not suitable for our setting, as the chains are
forgeable, although at a steep economic cost. We consider only computationally unforgeable ledgers due
to the consequences of a forged block in our setting. Specifically, if a client were to store the key to a
cryptocurrency wallet that contains a significant amount of money, the economic cost of computing forgeries
may not be enough of a deterrent to stop an adversary from forging blocks to create phony permission.

For a permissioned ledger, we consider the example of Ripple [Rip]. In Ripple, a signed transaction (with
four signatures) costs at a minimum 50 “drops”9. A drop is equivalent to .00001 XRP where XRP is the
on chain currency. At the time of writing this paper, XRP is worth 0.7 USD. Therefore, the cost of a single
post is extremely low.

A client must post at least a registration transaction. The client may need to decline malicious requests
for permission. However, an implementation of a request fee paid to the rightful client upon denial would
mean that the client makes money on these transactions rather than lose money. The client will post a
commit and reveal transaction upon requesting permission. Assuming the cost of 50 drops, this will cost
a total of .0015 XRP or 0.00105 USD. No computation is performed on the ledger, therefore we need only
worry about the costs of posting.

The server must also post to the ledger. Once upon registration, and once upon successful generation of
permission. While the cost of this will be extremely low, a server may charge a fee to any client registered
to them to cover this cost, as well as the cost of computation.

Pedersen commitments [Ped91] provide all that we need from our commitment scheme. The client
will need to post a minimum of one commitment upon the need to generate permission. Lastly we need
a EUF-CMA secure encryption scheme, such as the ElGamal signature scheme [Gam84], with a slight
modification in the random oracle model [Bon11]. The client may need to sign denials on invalid requests,
request fees will mean the client gets paid for this work. The client may need to sign once to accept
permission. They will also need to sign to verify the generation of permission.

9No maximum cost is given. The cost of a signed transaction is dependent on the number of signatures, with 10 drops being
added per signature.

17

Simulator: SimS∗ - Registration

• Register - Server: Upon query (“register”∥vkS) to OLedger
1. Send (register server,S∗) to GPerm

2. Forward the query to OLedger and receive txS∗ , σS∗ , store this in Lcid and forward to S∗

• Register - Client: Upon receipt of (registration request,C,S∗) from GPerm

1. Set (vksim, sksim)← Σ.Gen(1λ)
2. Choose topen, tchal as the time to open a commitment and challenge a request respectively
3. Set perm-info = (C, vksim, topen, tchal, vkS) and send (client perm-info,C, perm-info)
4. Query OLedger with (perm-info), receive txC, σC, store in Lcid, and send txC, σC to S∗

5. Upon query (txC.Data∥σsig) to OLedger by S∗, if Σ.Vf(vkS, σsig, txC.Data) ̸= 1 abort, else forward
the query to receive (txreg, σreg) and store in Lcid

Figure 11: Simulation of the Register Procedure of ΠPerm for a Malicious Server S∗

5.4 Security Proofs

Here we present our Theorem 1 on the security of the protocol ΠPerm and provide a sketch of the proof.

Theorem 1. If L is a SUF-AUTH ledger represented as an oracle OLedger, COM = (Commit,Open) is a
statistically hiding, computationally binding commitment scheme, and Σ = (Gen,Sign,Vf) is a EUF-CMA
signature scheme, then ΠPerm realizes the ideal functionality GPerm

Case: Malicious Server First we consider the case of a malicious server. To prove security in this case, we
present the simulator SimS∗ (Figures 11, 12, 13) that generates the view for a malicious S∗ in the ideal world.
We then prove, through a series of hybrids, that the view generated by this simulator is indistinguishable
from the view of a malicious server in the real world executing ΠPerm.

Proof by Hybrids
We prove that the view simulated by SimS∗ is indistinguishable from a view of the adversary in the real

world through a series of hybrids, starting from the real world protocol and moving step-by-step until we
reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that the
real and ideal world are indistinguishable to a malicious S∗.
• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0, except that SimS∗ aborts with ForgeFail when S∗ submits forget blocks
as permissions

• Hyb2 : This is the same as Hyb1 except that SimS∗ aborts with SigForge when S∗ submits a signature
on behalf of an honest client

• Hyb3 : This is the same as Hyb2 except that SimS∗ aborts with CommitFail when there are two valid
requests for the same perm-info in the permissions

Lemma 1. If OLedger is realized as a SUF-AUTH secure ledger L, Hyb0 is indistinguishable from Hyb1

Proof. Note that the concept of unforgeability here is the same as the concept of unforgeability of signatures.
That is, the adversary wins if they are able to produce a pair (tx∗, σ∗) that verifies, but was not the result
of a call L.Post.

Towards a contradiction, assume that there exists a PPT adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). The only difference between these two hybrids is that in Hyb1, SimS∗ aborts
if S∗ submits permissions that include blocks that were not the result of a query to OLedger. The only way
A could distinguish between these two hybrids is if they can produce blocks (tx∗, σ∗) that verify but were
not posted on the ledger.

Therefore, we can use A to construct a reduction D such that D can win the unforgeability game for a
SUF-AUTH ledger. Define D as follows:
D(cid):

18

Simulator: SimS∗ - Generate Permission Honest Request

• Generate Permission: Upon receipt of (permission request, perm-info) from GPerm

1. Upon receipt of (res, perm-info,S∗, req, telapse) from GPerm

2. Query OLedger with com, where (com, open) = Commit(perm-info∥req∥S∗∥txC), receive
txcom, σcom and store in Lcid

3. After time telapse, query OLedger with open, and store txopen, σopen in Lcid

4. If res = acceptance proof

(a) Compute σgranted = Σ.Sign(sksim, “accepted”∥txopen.Data), query OLedger with
“accepted”∥txopen.Data∥σgranted, receive txaccept, σaccept and store in Lcid

(b) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq)
̸= 1 abort, else

i. If (txaccept, σaccept) /∈ chalwindow abort with ForgeFail

ii. If there exists (txdenied, σdenied) ∈ chalwindow with σrefuse ∈ txdenied.Data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.Data) = 1 abort with SigForge

5. Else if res = denial proof

(a) Compute σrefuse = Σ.Sign(sksim, “denied”∥txopen.Data), query OLedger with
“denied”∥txopen.Data∥σrefuse, receive txdenied, σdenied and store in Lcid

(b) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq)
̸= 1 abort, else

i. If (txdenied, σdenied) /∈ chalwindow abort with ForgeFail

ii. If there exists (txaccept, σaccept) ∈ chalwindow with σgranted ∈ txaccept.Data and
Σ.Vf(vksim, σgranted, “accepted”∥txopen.Data) = 1 abort with SigForge

6. Else
(a) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if |comwindow| ̸= topen + ζ, |chalwindow| ≠ tchal, or
Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸= 1 abort

i. If there exists (txaccept, σaccept) ∈ chalwindow with σgranted ∈ txaccept.Data
and Σ.Vf(vksim, σgranted, “accepted”∥txopen.Data) = 1 or there ex-
ists (txdenied, σdenied) ∈ chalwindow with σrefuse ∈ txdenied.Data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.Data) = 1 abort with SigForge

7. If there does not exist txreg ∈ chalwindowC with σsig ∈ txreg.Data such that
Σ.Vf(vkS, σsig, txC.Data) = 1 abort with ForgeFail

8. If there exists any pair (tx, σ) ∈ comwindow or chalwindow such that (tx, σ) /∈ Lcid,
(txcom, σcom) /∈ comwindow, (txopen, σopen) /∈ chalwindow abort with ForgeFail

9. Else if there exists tx′open ∈ chalwindow such that there exists tx′com ∈ comwindow where
tx′open.Data is a valid opening of tx′com.Data for a request for the same perm-info, and the
distance between tx′open and the commitment it opens is less than or equal to topen abort with
CommitFail

10. Else set perm = txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

forward the query, receive (txfin, σfin) and store in Lcid and store in Lcid and send perm to
GPerm

Figure 12: Simulation of an Honest Request to Generate Permission in ΠPerm for a Malicious Server S∗ and
Party P∗

19

Simulator: SimS∗ - Generate Permissions Malicious Request

• Generate Permission: Upon query com to OLedger by P∗

1. Forward com to OLedger, receive (txcom, σcom), and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC; r to OLedger by P∗, forward open to OLedger, receive
(txopen, σopen) and store in Lcid

3. Send (generate permissions, perm-info,S∗, req) to GPerm

4. If res = acceptance proof

(a) Compute σgranted = Σ.Sign(sksim, “accepted”∥txopen.Data), query OLedger with
“accepted”∥txopen.Data∥σgranted, receive txaccept, σaccept and store in Lcid

(b) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq)
̸= 1 abort, else

i. If (txaccept, σaccept) /∈ chalwindow abort with ForgeFail

ii. If there exists (txdenied, σdenied) ∈ chalwindow with σrefuse ∈ txdenied.Data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.Data) = 1 abort with SigForge

5. Else if res = denial proof

(a) Compute σrefuse = Σ.Sign(sksim, “denied”∥txopen.Data), query OLedger with
“denied”∥txopen.Data∥σrefuse, receive txdenied, σdenied and store in Lcid

(b) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq)
̸= 1 abort, else

i. If (txdenied, σdenied) /∈ chalwindow abort with ForgeFail

ii. If there exists (txaccept, σaccept) ∈ chalwindow with σgranted ∈ txaccept.Data and
Σ.Vf(vksim, σgranted, “accepted”∥txopen.Data) = 1 abort with SigForge

6. Else
(a) Upon query txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if |comwindowreq| ≠ topen + ζ, |chalwindowreq| ≠ tchal, or
Σ.Vf(vkS, σperm, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸= 1 abort

i. If there exists (txaccept, σaccept) ∈ chalwindow with σgranted ∈ txaccept.Data
and Σ.Vf(vksim, σgranted, “accepted”∥txopen.Data) = 1 or there ex-
ists (txdenied, σdenied) ∈ chalwindow with σrefuse ∈ txdenied.Data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.Data) = 1 abort with SigForge

7. If there does not exist txreg ∈ chalwindowC with σsig ∈ txreg.Data such that
Σ.Vf(vkS, σsig, txC.Data) = 1 abort with ForgeFail

8. If there exists any pair (tx, σ) ∈ chalwindowC ∪ comwindowreq ∪ chalwindowreq such that
(tx, σ) /∈ Lcid, (txcom, σcom) /∈ comwindow, (txopen, σopen) /∈ chalwindow abort with ForgeFail

9. Else if there exists tx′open ∈ chalwindow such that there exists tx′com ∈ comwindow where
tx′open.Data is a valid opening of tx′com.Data for a request for the same perm-info, and the
distance between tx′open and the commitment it opens is less than or equal to topen abort with
CommitFail

10. Else set perm = txS∗∥σS∗∥txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

forward the query, receive (txfin, σfin) and store in Lcid and store in Lcid and send perm to
GPerm

Figure 13: Simulation of a Malicious Request to Generate Permission in ΠPerm for a Malicious Server S∗

and Party P∗

20

Simulator: SimC∗ - Register

• Register - Server: Upon receipt of (registered,S) from GPerm

1. Set vksim, sksim ← Σ.Gen(1λ)
2. Choose cid
3. Query OLedger with “register′′∥vksim, receive (txS, σS) and store in Lcid

• Register - Client: Upon query perm-info = C∗∥vkC∥topen∥tchal∥vksim from C∗ to OLedger
1. Forward the query, receive (txC∗ , σC∗), store in Lcid and receive (txC∗ , σC∗) from C∗

2. Send (register client,C∗,S) to GPerm, receive (registration request,C∗,S) from GPerm

and respond with (client perm-info,C∗, perm-info)
3. If this is the first registration request from C∗, compute σsig = Σ.Sign(sksim, txC∗ .Data), query

OLedger with (txC∗ .Data∥σsig), receive (txreg, σreg) and store in Lcid

Figure 14: Simulation of the Register Procedure of ΠPerm for a Malicious Client C∗

1. Activate A(1λ)
2. Emulate Hyb0 for A, posting all queries to OLedger to L
3. If A submits a pair (tx∗, σ∗) as a part of the permissions such that L.Vf(tx∗, σ∗) = 1 but was not a result

of a query to OLedger, submit (tx∗, σ∗) to the challenger, else abort
Because A can distinguish between the two hybrids, we know that the pair (tx∗, σ∗) must verify. Therefore

we know that D wins the unforgeability game for a SUF-AUTH ledger with the same non-negligible probability
that A has of distinguishing between the two hybrids.

Lemma 2. If Σ is a EUF-CMA secure signature scheme, Hyb2 is indistinguishable from Hyb1

Proof. Assume towards a contradiction that there exists an adversary A such that |Pr[A(Hyb2) = 1] −
Pr[A(Hyb1) = 1]| > negl(λ). The only difference between these two hybrids is that the simulator aborts
with SigForge when there is a signed acceptance or denial transaction that was not computed by the
simulator.

Therefore, we can use A to construct a reduction D that can win the unforgeability game for a EUF-CMA
signature scheme Σ. Define D as follows:
D(vk):

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. If A submits permissions containing a signed acceptance σ∗ = σgranted or denial σ∗ = σdenied, send σ∗

and the message it signs to the challenger, else abort
Because A can distinguish between the two hybrids, we know that the signature σ∗ will verify. Therefore

we know that D wins the unforgeability game for a EUF-CMA signature scheme with the same non-negligible
probability that A has of distinguishing between the two hybrids.

Lemma 3. If COM = (Commit,Open) is a statistically hiding commitment scheme, Hyb3 is indistinguishable
from Hyb2

Proof. Because COM is statistically hiding, we know that an adversary cannot determine the contents of the
commitment based on txcom. Therefore, the only way the adversary can post a competing commitment is
by guessing which client the request is for.

Case: Malicious Client Next we consider the case of a malicious client. Towards this, we present the
simulator SimC∗ (Figures 14, 15). Note that the case of a malicious client covers the case of a malicious
party P. This is because C can perform any procedure that P can and more, and with more knowledge. We
do still, however, consider the possibility that the permissions were requested by some malicious party P∗.

Proof by Hybrids

21

Simulator: SimC∗ - Generate Permission

• Generate Permission: Upon query com to OLedger by C∗ or P∗

1. Forward com to OLedger, receive (txcom, σcom), and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC∗ ; r to OLedger by C∗ or P∗, forward open to OLedger,
receive (txopen, σopen), and store in Lcid

3. Let chalwindowC be the tchal blocks after and including txC
4. Send (generate permission, perm-info,S, req) to GPerm

5. If C∗ queries OLedger with “accepted”∥txopen.Data∥σgranted where
Σ.Vf(vkC, σgranted, “accepted”∥txopen.Data) = 1, send (accepted) to GPerm

(a) Forward the query to OLedger, receive (txaccept, σaccept), and store in Lcid

(b) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be
the blocks from txopen to txaccept

(c) Compute σperm = Σ.Sign(sksim, txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq)
6. Else if C∗ queries OLedger with “denied”∥txopen.Data∥σrefuse where

Σ.Vf(vkC, σrefuse, “denied”∥txopen.Data) = 1, send (denied) to GPerm

(a) Forward the query to OLedger, receive (txdenied, σdenied), and store in Lcid

(b) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be
the blocks from txopen to txdenied

(c) Compute σperm = Σ.Sign(sksim, txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq)
7. Else if C∗ does nothing, send (silent) to GPerm

(a) If any party queries OLedger with com′ and open′ such that req′ ∈ open′ is
a request for the same perm-info, the distance between the queries is less than
topen, and com′ was queried no more than ζ time after com output ⊥ and abort

(b) Else if any party queries OLedger with open′ such that open′ ̸= open is an opening
for com, abort with BindingFail

(c) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be
the tchal blocks after txopen

(d) Compute σperm = Σ.Sign(sksim, txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq)
8. Set perm = txS∥σS∥txC∗∥σC∗∥chalwindowC∗∥open∥comwindow∥chalwindow∥vksim∥σperm query

OLedger with perm, receive (txfin, σfin), store in Lcid, and send perm to GPerm

Figure 15: Simulation of the Generate Permission Procedure of ΠPerm for a Malicious Client C∗

22

Simulator: SimS∗,C∗ - Register

• Register - Server: Upon query (“register”∥vkS) to the ledger
1. Send (register server,S∗) to GPerm

2. Forward the query to OLedger and receive txS∗ , σS∗ , store this in Lcid and forward to S∗

• Register - Client: Upon query perm-info = C∗∥vkC∥topen∥tchal∥vkS from C∗ to OLedger
1. Forward the query, receive txC∗ , σC∗ and store in Lcid

2. Send (register client,C∗,S∗) to GPerm, receive (registration request,C∗,S∗) from GPerm,
and respond with (client perm-info,C∗, perm-info)

3. Upon query (txC∗ .Data∥σsig) to OLedger by S∗, forward the query to receive (txreg, σreg) and
store in Lcid

Figure 16: Simulation of the Register Procedure of ΠPerm for a Malicious Server S∗ and Client C∗

We prove that the view simulated by SimC∗ is indistinguishable from a view of the adversary in the real
world through a series of hybrids, starting from the real world protocol and moving step-by-step until we
reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that the
real and ideal world are indistinguishable to a malicious C∗.
• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0, except that SimC∗ aborts with BindingFail when a commitment is
opened to a different value than the committed value

Lemma 4. If COM = (Commit,Open) is a binding commitment scheme, Hyb1 is indistinguishable from
Hyb0

Proof. Assume towards a contradiction that there exists an adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). The only difference between these two hybrids is that in Hyb1, the simulator
aborts when a commitment is opened to two different values. Therefore, we can use A to construct a
reduction D that can break the binding property of COM. Define D as follows:
D(1λ):

1. Activate A(1λ)
2. Emulate Hyb0 for A
3. If A provides open′ such that open′ is a second opening for com, send (com, open, open′) to the challenger,

else abort
Because A is able to distinguish between Hyb0 and Hyb1, we know that open and open′ will be valid

openings with the same probability that A has of distinguishing between the two hybrids. Therefore D breaks
binding with the same non-negligible probability that A has of distinguishing between the two hybrids.

Case: Malicious Server and Client Now we consider the case of a malicious server colluding with a
malicious client.

Proof by Hybrids
We prove that the view simulated by SimS∗,C∗ is indistinguishable from a view of the adversary in the

real world through a series of hybrids, starting from the real world protocol and moving step-by-step until
we reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that
the real and ideal world are indistinguishable to a malicious S∗ and C∗.
• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except SimS∗,C∗ aborts with BindingFail when a commitment is opened
to a different value than the committed value

• Hyb2 : This is the same as Hyb1 except SimS∗,C∗ aborts with ForgeFail if there are any forged transac-
tions in the permissions

Lemma 5. If COM = (Commit,Open) is a binding commitment scheme, Hyb1 is indistinguishable from
Hyb0

23

Simulator: SimS∗,C∗ - Generate Permission

• Generate Permission: Upon query com to OLedger by C∗ or P∗

1. Forward com to OLedger, receive (txcom, σcom) and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC; r to OLedger from C∗ or P∗ forward open to OLedger,
receive (txopen, σopen) and store in Lcid

3. Send (generate permissions, perm-info,S∗, req) to GPerm

4. If C∗ queries with (“accepted”∥txopen.Data∥σgranted) where
Σ.Vf(vkC, σgranted, “accepted”∥txopen.Data) = 1, send (accepted) to GPerm

(a) Forward the query to OLedger and receive (txaccept, σaccept)
(b) Upon query txS∗∥σS∗∥txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if
Σ.Vf(vkS, σperm, txC∗∥σC∗∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸= 1 abort

5. Else if C∗ queries with (“denied”∥txopen.Data∥σrefuse) where
Σ.Vf(vkC, σrefuse, “denied”∥txopen.Data) = 1, send (denied) to GPerm

(a) Forward the query to OLedger and receive (txdenied, σdenied)
(b) Upon query txS∗∥σS∗∥txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if
Σ.Vf(vkS, σperm, txC∗∥σC∗∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸= 1 abort

6. Else if C∗ does nothing, send (silent) to GPerm

(a) If any party queries OLedger with com′ and open′ such that req′ ∈ open′ is
a request for the same perm-info, the distance between the queries is less than
topen, and com′ was queried no more than ζ time after com output ⊥ and abort

(b) Else if any party queries OLedger with open′ such that open′ ̸= open is an opening
for com, abort with BindingFail

(c) Upon query txS∗∥σS∗∥txC∗∥σC∗∥chalwindowC∗∥open∥comwindowreq∥chalwindowreq∥vkS∥σperm

to OLedger by S∗, if |comwindowreq| ≠ topen + ζ, |chalwindowreq| ≠ tchal, or
Σ.Vf(vkS, σperm, txC∗∥σC∗∥chalwindowC∥open∥comwindowreq∥chalwindowreq) ̸= 1 abort

7. If there does not exist txreg ∈ chalwindowC with σsig ∈ txreg.Data such that
Σ.Vf(vkS, σsig, txC.Data) = 1 abort with ForgeFail

8. If there exists any pair (tx, σ) ∈ chalwindowC∗ ∪ comwindowreq ∪ chalwindowreq with
(tx, σ) /∈ Lcid, (txcom, σcom) /∈ comwindow, (txopen, σopen) /∈ chalwindow, or (txdenied, σdenied) /∈
chalwindow abort with ForgeFail

9. Else set perm = txS∗∥σS∗∥txC∗∥σC∗∥open∥comwindow∥chalwindow∥vkS∥σperm forward the query,
receive (txfin, σfin) and store in Lcid and store in Lcid and send perm to GPerm

Figure 17: Simulation of the Generate Permission Procedure of ΠPerm for a Malicious Server S∗, Client C∗,
and Party P∗

24

Simulator: SimH - Register

• Registration - Server: Upon receipt of (registered,S) from GPerm

1. Set vkS, skS ← Σ.Gen(1λ)
2. Choose cid
3. Query OLedger with “register′′∥vkS∥cid, receive (txS, σS) and store in Lcid

• Registration - Client: Upon receipt of (register client,C,S) from GPerm

1. Set (vkC, skC)← Σ.Gen(1λ)
2. Choose topen, tchal as the time to open a commitment and challenge a request respectively
3. Set perm-info = (C, vkC, topen, tchal, vkS) and send (client perm-info,C, perm-info)
4. Query OLedger with perm-info, receive txC, σC, store in Lcid

5. Compute σsig = Σ.Sign(skS, txC.Data), query OLedger with (txC.Data∥σsig), receive (txreg, σreg)
and store in Lcid

Figure 18: Simulation of the Registration Procedure of ΠPerm for Honest Client C, Server S, and Party P

Proof. Follows from the proof of Lemma 4.

Lemma 6. If OLedger is realized by a SUF-AUTH secure ledger L, Hyb2 is indistinguishable from Hyb1

Proof. Follows from the proof of Lemma 1.

Case: All Honest Parties Finally, we consider the case where all parties are honest, and show the
simulator SimH for this case.

Lemma 7. The view generated by SimH is indistinguishable from the view generated by honest parties in
the real world

Proof. SimH honestly generates signing keys on behalf of S and C, honestly signs the correct messages
based on the commands of Z, honestly commits to the request and posts the opening, posts the correct
information to the ledger, and honestly generates the permission. Therefore, the two views are statistically
indistinguishable.

Verifying Permission Next we prove that verification of permission in the real world is indistinguishable
from verification of permission in the ideal world using the predicate VerifyPerm by presenting the simulator
Sim.

Lemma 8. The probability that Simvf aborts with VerifyFail is negl(λ)

Proof. Simvf only aborts with VerifyFail in two cases:
• Case: res = accepted and bver = 0
In this case, GPerm accepts the permission while VerifyPerm rejects the permission. GPerm will accept
permission only if the permission was generated through GPerm and accepted by the client, or if the
permission is generated through silence and VerifyPerm outputs 1. In the case of silence permission,
GPerm defers to VerifyPerm, therefore the probability that the output differs is 0. In the case of accepted
permission, an adversary would need to either forge ledger blocks to remove the acceptance transaction, or
forge a denial signature on behalf of the client, which we have proved happens with negligible probability
in the proofs of Lemmas 1 and 2 respectively.

• Case: res = denied and bver = 1
In this case, GPerm denies the permission while VerifyPerm accepts. GPerm will deny the permission only
if the permission was not generated through GPerm, was generated through GPerm but denied by the
client, or was generated through silence and VerifyPerm output 0. Again in the case of silence GPerm

defers to VerifyPerm, therefore the probability that the output differs is 0. If the permission was not
generated through GPerm, an adversary must have forged blocks from the ledger, as we have shown that

25

Simulator: SimH - Generate Permission

• Generate Permission Upon receipt of (permission request, perm-info) from GPerm

1. Upon receipt of (res, perm-info,S, req, telapse) from GPerm

2. Query OLedger with com where (com, open) = Commit(perm-info∥req∥S∥txC), receive txcom, σcom,
and store in Lcid

3. After time telapse, query OLedger with (open), and store txopen, σopen in Lcid

4. Let chalwindowC be the tchal blocks after and including txC
5. If res = acceptance proof

(a) Compute σgranted = Σ.Sign(skC, “accepted”∥txopen.Data), query OLedger with
“accepted”∥txopen.Data∥σgranted, receive txaccepted, σaccepted, and store in Lcid

(b) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be
the blocks from txopen to txaccept

6. If res = denial proof

(a) Compute σrefuse = Σ.Sign(skC, “denied”∥txopen.Data), query OLedger with
“denied”∥txopen.Data∥σrefuse, receive txdenied, σdenied, and store in Lcid

(b) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be
the blocks from txopen to txdenied

7. Else
(a) Let comwindowreq be the topen blocks before and ζ blocks after txopen and chalwindowreq be

the tchal blocks after txopen
8. Compute σperm = Σ.Sign(skS, txC∥σC∥chalwindowC∥open∥comwindowreq∥chalwindowreq∥vkS)
9. Set perm = txS∥σS∥txC∥σC∥chalwindowC∥open∥comwindow∥chalwindow∥vkS∥σperm, query

OLedger with perm, receive (txfin, σfin) store in Lcid, and send perm to GPerm

Figure 19: Simulation of the Generate Permission Procedure of ΠPerm for Honest Client C, Server S, and
Party P

Simulator: Simvf - Verify Permission

• Verify Permission: Upon receipt of (res, perm-info,S, req, perm) from GPerm

1. Run VerifyPerm(perm-info,S, req, perm) = bver
2. If res = accepted and bver = 0 or res = denied or not verified and bver = 1 abort with

VerifyFail

3. Else output bver

Figure 20: Simulation of the Verification of Permission VerifyPerm

26

Functionality: FSecRec

Participants: The Client, the Cloud, the adversary A, and some party P
Variables: TF a table of keys indexed by identity
External Functionalities: GPerm the ideal permissions functionality

Procedures:
• Store
1. Upon receiving (store, perm-info,Cloud, s) from Client, send (storage request, perm-info) to

Cloud and A.
2. If TF [perm-info] ̸= ⊥, output ⊥ to Client and send (existing entry, perm-info) to Cloud and A
3. If Cloud is corrupt:

(a) Upon receipt of (res, perm-info) from Cloud, if res = denied send ⊥ to Client
(b) Else store TF [perm-info] = (s,⊥), send (stored, perm-info) to Client, Cloud, and A

4. Else:
(a) Store TF [perm-info] = (s,⊥), send (stored, perm-info) to Client, Cloud, and A

• Remove
1. Upon receipt of (remove, perm-info) from Client, set TF [perm-info] = ⊥ and send

(removed, perm-info) to Cloud and A
• Retrieve
1. Upon receipt of (retrieve, perm-info) from Client, if TF [perm-info] ̸= ⊥, send

(retrieve, perm-info) to Cloud and A. If a retrieval request is received from any party other
than Client, send (retrieval denied, perm-info) to Cloud and A

2. If TF [perm-info] = (s, req∥res∥perm) for req∥res∥perm ̸= ⊥ send (recovered, req∥res∥perm) to
Client

3. Else send (s) to Client and (retrieved, perm-info) to Cloud and A
• Recover
1. Upon receiving (recover, perm-info) from a party P, if TF [perm-info] ̸= ⊥, send

(recover, perm-info) to Client,Cloud, and A
2. Upon receiving (recover, perm-info, req, perm) from A send

(verify permission, perm-info,Cloud, req, perm) to GPerm

3. Upon receipt of (res, perm-info,Cloud, req∥perm) from GPerm, if res ̸= accepted output ⊥ to P
4. Else Send (s, req∥res∥perm) to P, set TF [perm-info] = (s, req∥res∥perm), and send

(recovery accepted, perm-info, req∥res∥perm) to Client,Cloud,A

Figure 21: FSecRec The Ideal Functionality for Secret Recovery

permission generation can be simulated in all cases, and we know that blocks can only be forged with
negligible probability in the proof of Lemma 1. In the case of denied permission, an adversary would again
have to either forge ledger blocks to remove the denial transaction, or forge an acceptance signature on
behalf of the client. We know this happens with negligible probability from the proofs of Lemmas 1 and
2 respectively.
Therefore, in both cases, the probability that Simvf aborts with VerifyFail is negligible.

6 Credential-less Secret Recovery

In this section we present our definition of secret recovery, followed by our protocol realizing our definition
and the proof of security.

27

6.1 Definition of Secret Recovery

In Figure 21 we present the ideal functionality for secret recovery FSecRec. With this functionality we capture
a client storing a secret with a cloud, such that this secret can be recovered only using permissions obtained
through GPerm. The cloud learns nothing about the secret during storage, retrieval, or recovery. Further, a
client is able to request removal from the secret recovery system, at which point the secret will no longer be
stored.

6.2 Secret Recovery Protocol

Next we present the secret recovery protocol ΠSecRec (Figures 22, 23), as well as the program run by Gatt
(Figure 24), and provide a sketch of the proof that ΠSecRec realizes FSecRec in the GPerm,Gatt-hybrid world.

6.3 Instantiating Protocol ΠSecRec.

In order to implement ΠSecRec, we need an INT-CTX and IND-CPA secure symmetric key encryption
scheme, an IND-CPA secure public key encryption scheme, and an EUF-CMA secure signature scheme.

INT-CTX and IND-CPA can be achieved using an IND-CPA secure encryption scheme and a message au-
thentication code (MAC) via encrypt-then-MAC [BN00]. For the encryption scheme we suggest AES [Dwo23]
and for the MAC we suggest HMAC [BCK96].

For our public key encryption, we suggest ElGamal [Gam84]. Encryption is done by the TEE upon
recovery only, decryption is done by the client once during recovery only. Decryption is performed by the
client once, upon receiving the recovered secret. For signatures, we again we will use the slightly modified
ElGamal signature scheme [Gam84, Bon11]. The client need only sign in the case of removing their stored
secret or upon retrieval. The cloud signs nothing, only verifies the signatures of the client.

6.4 Security Proofs

Finally we present our theorem that ΠSecRec realizes FSecRec in the GPerm,Gatt-hybrid world.

Theorem 2. If Π = (Gen,Enc,Dec) is an INT-CTX and IND-CPA secure symmetric key encryption
scheme, Gatt is parameterized by an EUF-CMA signature scheme, the DDH assumption holds in group
G of prime order q, Πpub = (Gen,Enc,Dec) is an IND-CPA secure public key encryption scheme, and
Σ = (Gen,Sign,Vf) is an EUF-CMA secure signature scheme, then ΠSecRec realizes the ideal functionality
FSecRec in the (Gatt,GPerm) - hybrid model

To prove Theorem 2, we consider four cases: a malicious Cloud∗, a malicious Client∗, both malicious
Cloud∗ and Client∗, and both honest Cloud and Client. We make use of the same techniques of simulating
a secure enclave presented by Pass et al. [PST17]. Specifically, we provide our simulator with a backdoor
to the TEE that allows the simulator to obtain signatures on values that are not the true output of the
program.

Case: Malicious Cloud∗ In Figure 25 we present the simulator in the case of a malicious Cloud∗ and prove
through a series of hybrids that the view generated by SimCloud∗ is indistinguishable from the view generated
in the real world.

Proof by Hybrids
We prove indistinguishability through a series of hybrids:

• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except that a random key is used for retK instead of the result of the
Diffie Hellman Key Exchange

• Hyb2 : This is the same as Hyb1 except that 0 is stored instead of the actual secret and the simulator
aborts with CTXFail when the ciphertext retrieved is not the ciphertext that was stored

• Hyb3 : This is the same as Hyb2 except that the simulator aborts with AttestFail if Cloud∗ does not
make the correct calls to Gatt

• Hyb4 : This is the same as Hyb3 except that the simulator aborts with SigForge if Cloud∗ makes a
remove call to Gatt using a signature that the simulator did not compute

28

Protocol: ΠSecRec - Set Up, Store, Manage Permissions, and Remove

• Set Up
– Cloud: Upon receipt of (register server,Cloud) from Z

1. Send (register server,Cloud) to GPerm

• Store
– Client: Upon receipt of (store,Client, s,Cloud) from Z

1. Send (register client,Client,Cloud) to GPerm and receive (perm-info,Cloud)
2. Set (vkClient, skClient)← Σ.Gen(1λ)
3. Get mvk = Gatt.getpk()
4. Sample a

$←− Zq and let A = ga

5. Send (A, perm-info, vkClient) to Cloud
– Cloud: Upon receipt of (A, perm-info, vkClient) from Client

1. Let eid = Gatt.install(perm-info, progSecRec)
2. Let (eid, progSecRec, B, vkko, A, σatt) = Gatt.resume(eid, (“store”, A, vkClient))
3. Send (eid, progSecRec, B, vkko, A, σatt) to Client

– Client : Upon receiving (eid, progSecRec, B, vkClient, A, σatt) from Cloud
1. If Σatt.Vf(mvk, eid∥progSecRec∥B∥vkClient∥A, σatt) ̸= 1, output ⊥ and abort
2. Else store retK = Ba

3. Compute c = Π.Enc(retK, (perm-info, s,⊥)) and send c to Cloud
– Cloud: Upon receipt of c from Client

1. Let (batt, σatt) = Gatt.resume(eid, (“verify ciphertext”, perm-info, c))
2. If batt ̸= 1, output ⊥ and abort
3. Else set T[perm-info] = (eid, vkClient, c,⊥)

• Manage Permissions (Run continuously by Client upon registration)
– Client : Upon receipt of any (generate permission, perm-info,Cloud, req) from GPerm such that

Client did not request the permission
1. If Z sends (accepted, req), send (accepted) to GPerm

2. Else if Z sends (denied, req), send (denied) to GPerm

3. Else send (silent) to GPerm

• Remove
– Client : Upon receipt of (remove, perm-info) from Z

1. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info)
2. Send (remove, perm-info, σremove) to Cloud

– Cloud : Upon receipt of (remove, perm-info) from Client
1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Else let (“removed”, perm-info, σremove, σatt) = Gatt.resume(eid, (“remove”, perm-info, σremove)
3. Set T[perm-info] = ⊥
4. Send (“removed”, perm-info, σatt) to Client

– Client : Upon receipt of (“removed”, perm-info, σremove, σatt) from Cloud
1. If Σatt.Vf(mvk, σatt, “removed”∥perm-info∥σremove) ̸= 1 abort

Figure 22: Set Up, Store, Manage Permissions, and Remove Procedures for the Secret Recovery Protocol
ΠSecRec

Lemma 9. If the DDH assumptions holds in the group G of prime order q, Hyb1 is indistinguishable from
Hyb0

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). Then we can construct a reduction D that can distinguish between a random
tuple and a DDH tuple with the same non-negligible probability. Define D as follows:
D(g,A,B,C) :

29

Protocol: ΠSecRec - Retrieve and Recover

• Retrieve
– Client : Upon receipt of (retrieve, perm-info) from Z

1. Compute σret = Σ.Sign(skClient, retrieve∥perm-info)
2. Send (retrieve, perm-info, σret) to Cloud

– Cloud: Upon receipt of (retrieve, perm-info) from Client
1. Get T[perm-info] = (eid, vkClient, c, req∥res∥perm)
2. If Σ.Vf(vkClient, σret, retrieve∥perm-info) ̸= 1 abort
3. Else if req∥res∥perm ̸= ⊥ send (recovered, req∥res∥perm) to Client
4. Else send c to Client

– Client: Upon receipt of c from Cloud
1. Compute (perm-info′, s, req∥res∥perm) = Π.Dec(retK, c)
2. If perm-info′ ̸= perm-info output ⊥ and abort
3. Else if req∥res∥perm ̸= ⊥ output ⊥ and abort

• Recover
– Client : Upon receipt of (recover, perm-info) from Z

1. Let (pk, sk)← Πpub.Gen(1
λ)

2. Let req = “recover”∥pk
3. Send (generate permission, perm-info,

Cloud, req) to GPerm

4. Upon receipt of (generate permission,
perm-info,Cloud, req) from GPerm, if the request was not made by Client defer to Manage
Permissions, else

5. If Z sends (accepted, req) send (accepted) to GPerm

6. Else if Z sends (denied, req) send (denied) to GPerm

7. Else send (silent) to GPerm

8. Upon receipt of (permission, perm-info,Cloud, req∥res∥perm) from GPerm, send req∥res∥perm
to Cloud

– Cloud : Upon receipt of req∥res∥perm from Client
1. Let (eid, cfin, σatt) = Gatt.resume(eid, (“recover”, pk, c, req, perm))
2. Set T[perm-info] = (eid, vkClient, cfin, req∥res∥perm)
3. Send (eid, cfin, σatt) to Client

– Client : Upon receipt of (eid, cfin, σatt) from Cloud
1. Get mvk = Gatt.getpk()
2. If Σatt.Vf(mvk, σatt, outp) ̸= 1 output ⊥ and abort
3. Compute (perm-info, s, req′∥res′∥perm′) = Πpub.Dec(sk, cfin)
4. If req′ ̸= req, res′ ̸= res, or perm′ ̸= perm output ⊥ and abort

Figure 23: Retrieve and Recover Procedures for the Secret Recovery Protocol ΠSecRec

30

Program: progSecRec

• On input(“store”, A, vkClient):

1. Let b
$←− Zq

2. Let B = gb

3. Let retK = Ab

4. Output (eid, progSecRec, B, vkClient, A)
• On input(“verify ciphertext”, perm-info, c):
1. Compute (perm-info′, s, req∥res∥perm) = Π.Dec(retK, c)
2. If perm-info′ = perm-info and req∥res∥perm = ⊥ output 1, else output 0

• On input(“remove”, perm-info, σremove)
1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 output ⊥
2. Set retK = ⊥, b = ⊥, B = ⊥, and A = ⊥
3. Output “removed” ∥perm-info∥σremove

• On input(“recover”, pk, c, req, perm):
1. If VerifyPerm(perm-info,Cloud, req, perm) = 0 or req ̸= “recover”∥pk output ⊥ and abort
2. Else (perm-info′, s, req′∥res′∥perm′) = Π.Dec(retK, c)
3. If perm-info′ ̸= perm-info or req′∥res′∥perm′ ̸= ⊥ output ⊥ and abort
4. cfin = Πpub.Enc(pk, (perm-info, s, req∥res∥perm)
5. Output (eid, cfin)

Figure 24: The Program Run by Gatt for Secret Recovery

1. Activate A(1λ)
2. Emulate Hyb0 for A using A in step 2 of the storage procedure, B in step 5 of the storage procedure10

and C as retK
3. Output whatever A outputs

The only difference between the two hybrids is whether retK is random or gab. Therefore, if C is random
this is exactly Hyb1 and if C = gab this is exactly Hyb0. Therefore D wins the DDH game with the same
non-negligible probability that A has of distinguishing between the two hybrids.

Lemma 10. If Π = (Gen,Enc,Dec) is INT-CTXT and IND-CPA secure and Πpub = (Gen,Enc,Dec) is
IND-CPA secure, Hyb2 is indistinguishable from Hyb1

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb2) = 1] −
Pr[A(Hyb1) = 1]| > negl(λ). The only difference between these two hybrids is that the stored value is 0
and not the secret. Therefore, A must be able to distinguish between a ciphertext of 0 and an encryption of
k under the encryption scheme Πpub or under the encryption scheme Π.

Case: Πpub

First suppose that A can distinguish between the two hybrids because they can distinguish between an
encryption of 0 under Πpub and an encryption of the secret s under Πpub. Then we can construct a reduction
Dpub that wins the IND-CPA game against the encryption scheme Πpub. Define Dpub as follows:
Dpub(pk) :

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon recovery, query the challenger with m0 = (perm-info, 0,⊥) and m1 = (perm-info, s,⊥) to receive c∗,

and use c∗ as cfin
11

4. Output whatever A outputs
If c∗ is an encryption of 0, this is exactly what A would expect to see at this point in Hyb2 and if c∗

is an encryption of k, this is exactly what A expects to see in Hyb1. Therefore Dpub wins the CPA game

10Use the backdoor of Gatt to ensure the output of Gatt is B and a valid signature is received
11Use the backdoor of Gatt to ensure the output is c∗ and a valid signature is received

31

Simulator: SimCloud∗

• Set Up: Upon receipt of (register server,Cloud∗) from Cloud∗ to GPerm

1. Send (register server,Cloud∗) to internally simulated GPerm

• Store: Upon receipt of (registration request,Client,Cloud∗) from GPerm

1. Run internally simulated GPerm to obtain perm-info and send (perm-info,S) to Cloud∗

2. Upon receipt of (storage request, perm-info) from FSecRec

3. Set (vkClient, skClient)← Σ.Gen(1λ)

4. Sample a
$←− Zq and set A = ga

5. Send (A, perm-info, vkClient) to Cloud∗

6. Upon call Gatt.install(perm-info, progSecRec) by Cloud∗, run internally simulated Gatt and forward
response eid to Cloud∗

(a) If no such call is made, abort with AttestFail

7. Upon call Gatt.resume(eid, (“store”, A, vkClient)) by Cloud∗, run internally simulated Gatt and
forward response (eid, progSecRec, B, vkClient, A, σatt) to Cloud∗

(a) If no such call is made, abort with AttestFail

8. Upon receipt of (eid, progSecRec, B, vkClient, A, σatt) from Cloud∗, store retK
$←− Zq

9. Compute c = Π.Enc(retK, (perm-info, 0,⊥)) and send c to Cloud∗

10. Upon call Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) by Cloud∗, run internally simu-
lated Gatt and use the backdoor to obtain a signature on batt = 1 if the correct inputs are
supplied and forward response (batt, σatt) to Cloud∗

(a) If no such call is made, abort with AttestFail

• Remove: Upon receipt of (removed, perm-info) from FSecRec

1. If Cloud∗ calls Gatt.resume(eid, (“remove”, perm-info, σ∗
remove)) where σ∗

remove was not
computed by the simulator, abort with SigForge

2. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info)
3. Send (remove, perm-info, σremove) to Cloud∗

4. Upon call Gatt.resume(eid, (“remove”, perm-info, σremove)) by Cloud∗, run internally simulated
Gatt to receive output (“removed”, perm-info, σremove, σatt) and forward the output to Cloud∗

(a) If no such call is made, abort with AttestFail

• Retrieve: Upon receipt of (retrieve, perm-info) from FSecRec

1. Compute σret = Σ.Sign(skClient, retrieve∥perm-info)
2. Send (retrieve, perm-info, σret) to Cloud∗

3. Receive ciphertext c′

4. If c′ ̸= c abort with CTXFail

5. Else compute Π.Dec(retK, c) ̸= (perm-info′, 0, req∥res∥perm)
6. If perm-info′ ̸= perm-info or req∥res∥perm ̸= ⊥ abort

• Recover: Upon receipt of (recover, perm-info) from FSecRec

1. Let (pk, sk)← Πpub.Gen(1
λ)

2. Let req = “recover”∥pk
3. Send (generate permission, perm-info,S, req) to internally simulated GPerm and receive perm
4. Send (recover, perm-info, req, perm) to FSecRec

5. Send perm to Cloud∗

6. Upon call Gatt.resume(eid, (“recover”, pk, c, req, perm)) by Cloud∗, run internally simulated Gatt
and forward response (eid∥cfin, σatt) where cfin = Πpub.Enc(pk, 0), and σatt is obtained via
backdoor if perm is the correct permissions to Cloud∗

(a) If no such call is made, abort with AttestFail

7. Receive (eid∥cfin, σatt) from Cloud∗

Figure 25: Simulation of ΠSecRec for a Malicious Cloud∗
32

with the same non-negligible probability that A has of distinguishing between the two hybrids, and we have
reached our contradiction.

Case: Π
Now suppose that A is able to distinguish between the two hybrids by submitting a ciphertext c′ ̸= c.

That is, A is able to produce a new ciphertext that decrypts, else Hyb1 would abort at the same point. Then
we can construct a reduction DCTXT that can win the INT-CTXT game [BN08] with the same non-negligible
probability. Define DCTXT as follows:
D(1λ) :

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon storage, query the challenger with (perm-info, s,⊥) and receive c
4. Upon retrieval, if A submits a ciphertext c′ ̸= c, submit c′ to the challenger
5. Submit “Finalize” to the challenger

Because A is able to distinguish between the two hybrids by submitting a ciphertext that is not equal
to the ciphertext stored but decrypts, we know that DCTXT wins the game, also by submitting a ciphertext
that was never queried yet decrypts, with the same non-negligible probability that A has of distinguishing
between the two hybrids, and have reached our contradiction.

Suppose instead that A distinguishes between the two hybrids by distinguishing between an encryption
of 0 under Π and encryption of the secret s under Π. Then we can construct a reduction DCPA that can
win the IND-CPA game [BN08] with the same non-negligible probability. Define DCPA as follows:
DCPA(1

λ) :

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon storage, query the challenger with m0 = (perm-info, 0,⊥) and m1 = (perm-info, s,⊥) and receive c∗,

and use c∗ as the ciphertext for storage
4. Output whatever A outputs

If c∗ is an encryption of 0, this is exactly what A would expect to see at this point in Hyb2 and if c∗

is an encryption of s, this is exactly what A expects to see in Hyb1. Therefore DCPA wins the CPA game
with the same non-negligible probability that A has of distinguishing between the two hybrids, and we have
reached our contradiction.

Therefore, in each case, we can construct a reduction that either wins the IND-CPA game against Πpub,
the INT-CTXT game against Π, or the CPA game against Π, and have a contradiction. Therefore Hyb2 is
indistinguishable from Hyb1.

Lemma 11. If Gatt is parameterized by a EUF-CMA secure signature scheme Σatt = (Gen,Sign,Vf), Hyb3

is indistinguishable from Hyb2

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb3) = 1] −
Pr[A(Hyb2) = 1]| > negl(λ). Then we can construct a reduction D with the goal of winning the unforge-
ability game against the signature scheme Σatt. Define D as follows:
D(vk):

1. Activate A(1λ)
2. Emulate Hyb2 for A
3. Upon submission of a signature σ∗ by A that was not the result of a call to Gatt, submit σ∗ and the

message it signs to the challenger
The only difference between the two hybrids is that in Hyb3 the simulator aborts with AttestFail when

the adversary does not make the proper calls to Gatt. Therefore, A must be able to produce forged signatures
that verify, else Hyb2 would abort at the same point, and we know that D must then win the unforgeability
game with the same non-negligible probability.

Lemma 12. If Σ = (Gen,Sign,Vf) is an EUF-CMA secure signature scheme, then Hyb4 is indistinguishable
from Hyb3

33

Simulator: SimClient∗

• Set Up: Upon receipt of (registered,Cloud) from GPerm

1. Send (registered,Cloud) to Client∗

• Store: Upon receipt of (register client,Client∗,Cloud) from Client∗ intended for GPerm

1. Forward (register client,Client∗,Cloud) to internally simulated GPerm to obtain perm-info
2. Upon receipt of (A, perm-info, vkClient) from Client∗ run Gatt.install(perm-info, progSecRec) = eid

on internally simulated Gatt
3. Run Gatt.resume(eid, (“store”, A, vkClient)) = (eid, progSecRec, B, vkClient, A, σatt) on internally

simulated Gatt and store retK
4. Send (eid, progSecRec, B, vkClient, A, σatt) to Client∗

5. Receive c from Client∗ and compute Π.Dec(retK, c) = (perm-info′, s, req∥res∥perm)
6. If perm-info′ ̸= perm-info or req∥res∥perm ̸= ⊥ output ⊥ and abort
7. Else send (store, perm-info, s) to FSecRec and store TSim[perm-info] = (eid, c,⊥)

• Remove: Upon receipt of (remove, perm-info, σremove) from Client∗

1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Else send (remove, perm-info) to FSecRec and receive (removed, perm-info)
3. Run internally simulated Gatt.resume(eid, (“remove”, perm-info, σremove)) =

(“removed”, perm-info, σremove, σatt) and send the output to Client∗

• Retrieve: Upon receipt of (retrieve, perm-info, σret) from Client∗

1. If Σ.Vf(vkClient, σret, retrieve∥perm-info) ̸= 1 abort
2. Else send (retrieve, perm-info) to FSecRec

3. If FSecRec sends (recovered, perm) forward (recovered, perm) to Client∗

4. Else receive (s) from FSecRec and send c to Client∗

• Recover: Upon receipt of (generate permission, perm-info,Cloud, req) from Client∗ intended for
GPerm

1. Send (generate permission, perm-info,Cloud, req) to internally simulated GPerm, receive
(permission, perm-info,Cloud, req∥res∥perm), and send to Client∗

2. Send (recover, perm-info, req, perm) to FSecRec

3. Upon receipt of req′∥res′∥perm′ from Client∗, if req′ ̸= req, res′ ̸= res, or perm′ ̸= perm abort
4. Run Gatt.resume(eid, (“recover”, pk, c, req, perm)) = (eid∥cfin, σatt) on internally simulated Gatt
5. Send (eid∥cfin, σatt)

Figure 26: Simulation of ΠSecRec for a Malicious Client∗

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb3) = 1] −
Pr[A(Hyb2) = 1]| > negl(λ). Then we can construct a reduction D such that D can win the unforgeability
game against the signature scheme Σ with the same non-negligible probability. Define D as follows:
D(vk):

1. Activate A(1λ)
2. Emulate Hyb3 for A, querying the challenger to compute signatures
3. If A makes a remove call to Gatt using a signature σ∗ that is not the result of a query, submit

(σ∗, “remove”∥perm-info) to the challenger
Because A can distinguish between the two hybrids, and the only difference is that in Hyb4 the simulator

aborts when A submits a signature that was not computed by the simulator, A must be able to compute
forgeries that verify, else Hyb3 would abort at the same point. Therefore D wins the unforgeability game
against Σ with the same non-negligible probability that A has of distinguishing between the two hybrids.

Case: Malicious Client∗ In Figure 26 we present the simulator in the case of a malicious Client∗ and prove
through a series of hybrids that the view generated by SimClient∗ is indistinguishable from the view generated
in the real world.

34

Simulator: SimCC∗

• Set Up: Upon receipt of (register server,Cloud∗) from Cloud∗ intended for GPerm

1. Send (register server,Cloud∗) to internally simulated GPerm

• Store: Upon receipt of (register client,Client∗,Cloud∗) from Client∗ intended for GPerm

1. Forward (register client,Client∗,Cloud) to internally simulated GPerm to obtain perm-info,
and send (perm-info,Cloud∗) to Client∗

2. Upon call Gatt.install(perm-info, progSecRec) by Cloud∗, run internally simulated Gatt and forward
response eid to Cloud∗

3. Upon call Gatt.resume(eid, (“store”, A, vkClient)) by Cloud∗, run internally simulated Gatt and
forward response (eid, progSecRec, B, vkClient, A, σatt) to Cloud∗ and store retK

4. Upon call
Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) by Cloud∗

(a) Compute Π.Dec(retK, c) = (perm-info, s, req∥res∥perm)
(b) Send (store, perm-info, s) to FSecRec

(c) Run internally simulated Gatt and forward response (batt, σatt) to Cloud∗

• Remove: Upon call Gatt.resume(eid, (“remove”, perm-info, σremove)) by Cloud∗

1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Send (remove, perm-info) to FSecRec

3. Run internally simulated Gatt and forward the output (“removed”, perm-info, σremove, σatt) to
Cloud∗

• Recover: Upon receipt of (generate permission, perm-info,Cloud∗, req) from Client∗ intended for
GPerm

1. Send (generate permission, perm-info,Cloud∗, req) to internally simulated GPerm, receive
(permission, perm-info,Cloud∗, req∥res∥perm), and send to Client∗

2. Send (recover, perm-info) to FSecRec

3. Send (recover, perm-info, req, perm) to FSecRec

4. Upon call Gatt.resume(eid, (“recover”, pk, c, req, perm)) by Cloud∗ run internally simulated Gatt
and forward response (eid∥cfin, σatt) to Cloud∗

Figure 27: Simulation of ΠSecRec for a Malicious Cloud∗ and Client∗

Indistinguishability

Lemma 13. The view generated by SimClient∗ is indistinguishable from the view generated by the real world
adversary controlling a malicious Client∗

Proof. SimClient∗ behaves as an honest Cloud, and needs no special abort cases. Therefore the view generated
by SimClient∗ is indistinguishable from the view generated by a real world adversary controlling a malicious
Client∗.

Case: Malicious Cloud∗ and Client∗ In Figure 27 present the simulator in the case where both Cloud∗

and Client∗ are malicious and prove through a series of hybrids that the view generated by SimCC∗ is
indistinguishable from the view generated in the real world.

Proof

Lemma 14. The view generated by SimCC∗ is indistinguishable from the view generated by the real world
adversary

Proof. SimCC∗ honestly simulates Gatt towards Cloud∗, and because we know that a simulator exists for
GPerm, is able to generate perm-info as expected for Client∗. Therefore the view generated by SimCC∗ is
indistinguishable from that of a real world adversary.

35

Simulator: SimH

• Set Up: Receive (registered,Cloud) from GPerm

• Store: Upon receipt of (registration request,Client,Cloud∗) from GPerm

1. Run internally simulated GPerm to obtain perm-info and send (perm-info,S) to Cloud∗

2. Upon receipt of (storage request, perm-info) from FSecRec

3. Set (vkClient, skClient)← Σ.Gen(1λ)

4. Sample a
$←− Zq and set A = ga

5. Run internally simulated Gatt to receive eid = Gatt.install(perm-info, progSecRec)

6. Run internally simulated Gatt to receive (eid, progSecRec, B, vkClient, Aσatt) =

Gatt.resume(eid, (“store”, A, vkClient)) and store retK
$←− Zq

7. Compute c = Π.Enc(retK, (perm-info, 0,⊥)) and send c to Cloud∗

8. Run internally simulated Gatt to receive (batt, σatt) =
Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) using the backdoor to receive a signa-
ture on batt = 1

• Remove: Upon receipt of (removed, perm-info) from FSecRec

1. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info)
2. Run internally simulated Gatt to receive (“removed”, perm-info, σremove, σatt) =
Gatt.resume(eid, (“remove”, perm-info, σremove))

• Recover: Upon receipt of (recover, perm-info) from FSecRec

1. Upon receipt of (permission, perm-info,S, req∥res∥perm)
2. Parse req = “recover”∥pk
3. Send (recover, perm-info, req, perm) to FSecRec

4. Run internally simulated Gatt to receive (eid∥cfin, σatt) =
Gatt.resume(eid, (“recover”, pk, c, req, perm)) where cfin is an encryption of 0

Figure 28: Simulation of ΠSecRec for Honest Cloud and Client

Case: Honest Cloud and Client Finally, in Figure 28 we present the simulator in the case where all parties
are honest and prove through a series of hybrids that the view generated by SimH is indistinguishable from
the view generated in the real world.

Proof by Hybrids
We prove indistinguishability through a series of hybrids:

• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except that a random key is used as retK instead of the result of the
DHKE

• Hyb2 : This is the same as Hyb1 except that the value stored upon storage is 0 instead of the secret

Lemma 15. If the DDH assumption holds in the group G of prime order q, Hyb1 is indistinguishable from
Hyb0

Proof. Follows from the proof of Lemma 9

Lemma 16. If Πpub = (Gen,Enc,Dec) is a CPA secure encryption scheme and Π = (Gen,Enc,Dec) is a
CCA secure encryption scheme, Hyb2 is indistinguishable from Hyb1

Proof. Follows from the proof of Lemma 10

36

References

[ACAA19] Mehmet Aydar, Salih Cemil Cetin, Serkan Ayvaz, and Betül Aygün. Private key encryption and
recovery in blockchain. CoRR, abs/1907.04156, 2019. pages 8

[BCC+21] Sam Blackshear, Konstantinos Chalkias, Panagiotis Chatzigiannis, Riyaz Faizullabhoy, Irakliy
Khaburzaniya, Eleftherios Kokoris-Kogias, Joshua Lind, David Wong, and Tim Zakian. Reactive
key-loss protection in blockchains, 2021. pages 6, 7, 14

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentica-
tion. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, vol-
ume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996. pages 28

[BG96] M. Bellare and S. Goldwasser. Encapsulated key escrow, 1996. pages 2, 7

[BG97] Mihir Bellare and Shafi Goldwasser. Verifiable partial key escrow. In Richard Graveman,
Philippe A. Janson, Clifford Neuman, and Li Gong, editors, CCS ’97, Proceedings of the 4th
ACM Conference on Computer and Communications Security, Zurich, Switzerland, April 1-4,
1997, pages 78–91. ACM, 1997. pages 2, 7

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances in
Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Application of
Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 531–545. Springer, 2000. pages 8, 28

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptol., 21(4):469–491, 2008. pages 33

[Bon11] Dan Boneh. Elgamal digital signature scheme. In Henk C. A. van Tilborg and Sushil Jajodia,
editors, Encyclopedia of Cryptography and Security, 2nd Ed, pages 395–396. Springer, 2011. pages
17, 28

[CHMV17] Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A universally composable
treatment of network time. In 30th IEEE Computer Security Foundations Symposium, CSF
2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 360–375. IEEE Computer Society,
2017. pages 10

[CZK+19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. Johnson, Ari
Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving, trust-
worthy, and performant smart contracts. In IEEE European Symposium on Security and Privacy,
EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019, pages 185–200. IEEE, 2019. pages 2

[DCM20] Emma Dauterman, Henry Corrigan-Gibbs, and David Mazières. Safetypin: Encrypted backups
with human-memorable secrets. In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6, 2020, pages 1121–1138. USENIX
Association, 2020. pages 7

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. In Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT
2002, 8th International Conference on the Theory and Application of Cryptology and Information
Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lecture
Notes in Computer Science, pages 125–142. Springer, 2002. pages 10

[DSC+15] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang Zhang.
M2R: enabling stronger privacy in mapreduce computation. In Jaeyeon Jung and Thorsten
Holz, editors, 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, pages 447–462. USENIX Association, 2015. pages 2

37

[Dwo23] Morris J Dworkin. Advanced encryption standard (aes). 2023. pages 28

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
196:10–18, 1984. pages 17, 28

[Gan96] Ravi Ganesan. How to use key escrow (introduction to the special section). Commun. ACM,
39(3):32–33, 1996. pages 2, 7

[GKL21] Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant law enforcement access
systems, 2021. pages 7

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989. pages 10

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: cost-minimal
password-protected secret sharing based on threshold OPRF. In Dieter Gollmann, Atsuko Miyaji,
and Hiroaki Kikuchi, editors, Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, volume 10355 of
Lecture Notes in Computer Science, pages 39–58. Springer, 2017. pages 7

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE proto-
col secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part III, volume 10822 of Lecture Notes in Computer Science, pages 456–486.
Springer, 2018. pages 7

[KGM19] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless: Augmenting
trustworthy computation with ledgers, 2019. pages 2, 10, 13, 17

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014. pages 8, 9, 10

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play decentralized poker.
In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015, pages 195–206. ACM, 2015. pages 2

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model for isolated
execution. In Ruby B. Lee and Weidong Shi, editors, HASP 2013, The Second Workshop on
Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013,
page 10. ACM, 2013. pages 2

[Mic92] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor, Advances in Cryptology
- CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages
113–138. Springer, 1992. pages 2, 7

[MKE22] Deepak Maram, Mahimna Kelkar, and Ittay Eyal. Interactive authentication. IACR Cryptol.
ePrint Arch., page 1682, 2022. pages 7, 14, 17

[MSH+16] Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and
Richard R. Brooks. A brief survey of cryptocurrency systems. In 14th Annual Conference on
Privacy, Security and Trust, PST 2016, Auckland, New Zealand, December 12-14, 2016, pages
745–752. IEEE, 2016. pages 1

38

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, vol-
ume 576 of Lecture Notes in Computer Science, pages 129–140. Springer, 1991. pages 17

[PRZB12] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb:
processing queries on an encrypted database. Commun. ACM, 55(9):103–111, 2012. pages 1

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure
processors. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, volume
10210 of Lecture Notes in Computer Science, pages 260–289, 2017. pages 2, 3, 5, 11, 28

[Rip] Ripple. https://ripple.com/. pages 17

[Sca19] Alessandra Scafuro. Break-glass encryption. In Dongdai Lin and Kazue Sako, editors, Public-
Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and Theory of
Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II, volume 11443
of Lecture Notes in Computer Science, pages 34–62. Springer, 2019. pages 2, 3, 6, 7, 8

[Sch] Ricardo Guilherme Schmidt. Secret multisig recovery. https://hackmd.io/@3esmit/rJ4YBV_JI.
pages 14

[Sha95] Adi Shamir. Partial key escrow: A new approach to software key escrow. In Key escrow confer-
ence, 1995. pages 2, 7

[Tora] Tor project anonymity online. https://www.torproject.org/. pages 5

[torb] Torus labs: Open-source key management. https://tor.us/. pages 7

[tre] Recovery process for the trezor model t. https://trezor.io/learn/a/

recover-wallet-on-model-t. pages 7

[VFV17] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dandelion: Redesigning
the bitcoin network for anonymity. Proc. ACM Meas. Anal. Comput. Syst., 1(1):22:1–22:34, 2017.
pages 5

[ZDB+17] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and
Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In Aditya
Akella and Jon Howell, editors, 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 283–298. USENIX
Association, 2017. pages 2

39

https://ripple.com/
https://hackmd.io/@3esmit/rJ4YBV_JI
https://www.torproject.org/
https://tor.us/
https://trezor.io/learn/a/recover-wallet-on-model-t
https://trezor.io/learn/a/recover-wallet-on-model-t

	Introduction
	Our Techniques
	Areas for Improvement

	Related Work
	Background
	Symmetric key encryption
	Public key encryption.
	Digital signature schemes.
	Commitment Schemes
	Global Clock Functionality

	Credential-less Publicly Verifiable Permissions
	Definition of Credential-less Publicly Verifiable Permissions
	Realizing GPerm
	Instantiating Perm
	Security Proofs

	Credential-less Secret Recovery
	Definition of Secret Recovery
	Secret Recovery Protocol
	Instantiating Protocol SecRec.
	Security Proofs

