
About “k-bit security” of MACs
based on hash function Streebog

Vitaly Kiryukhin

LLC “SFB Lab”, JSC “InfoTeCS”, Moscow, Russia
vitaly.kiryukhin@sfblaboratory.ru

Abstract

Various message authentication codes (MACs), including HMAC-Streebog and
Streebog-K, are based on the keyless hash function Streebog. Under the assumption
that the compression function of Streebog is resistant to the related key attacks, the
security proofs of these algorithms were recently presented at CTCrypt 2022.

We carefully detail the resources of the adversary in the related key settings,
revisit the proof, and obtain tight security bounds. Let n be the bit length of the
hash function state. If the amount of processed data is less than about 2n−k blocks,
then for HMAC-Streebog-512 and Streebog-K, the only effective method of forgery
(or distinguishing) is guessing the k-bit secret key or the tag if it is shorter than
the key. So, we can speak about “k-bit security” without specifying the amount
of material, if the key length is no longer than half of a state. The bound for
HMAC-Streebog-256 is worse and equal to 2

n
2
−k blocks.

Keywords: Streebog, PRF, HMAC, provable security

1 Introduction

Russian hash function Streebog [1] is based on a modified Merkle-
Damg̊ard (MD) approach [6, 7]. The latter, as is well known, includes:
padding the messageM and splitting it into b-bit blocks; iteratively applying
the compression function g to the message block and the n-bit previous state;
the initial state is the predefined constant; the last state is the result of hash-
ing. Streebog uses n = b = 512, and its compression function is 12-rounds
AES-like block cipher in Miyaguchi-Preneel mode. The output length can be
either τ = 512 or 256 bits.

Streebog has two features that differentiate it from the “plain” MD cas-
cade:

– before processing the i-th block, the state is summed modulo 2 with
the number of already hashed bits;

1

– the last call of the compression function is used to “mix” the checksum
(modulo 2n) of all message blocks.

These features play an important role, especially when Streebog is used as
the core for a keyed cryptoalgorithm, for example, a message authentication
code (MAC) or a pseudorandom function (PRF).

Perhaps the most widespread and well-known way to construct a keyed
transformation from a keyless hash function H is HMAC [8]

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where K is obtained by padding the secret key K with zero bits, opad and
ipad are different nonzero constants. Streebog can also be used in HMAC
[2, 3], but security proofs [8, 12, 11, 14, 17] were proposed for HMAC with
the “plain” MD hash function and therefore cannot be directly applied for
HMAC-Streebog. The proof of the latter’s security was initially given in [16]
and later detailed in [32] by the reduction to the properties of g and not to
the hash function itself.

On the other hand, the features of Streebog give a rise to a more efficient
keyed mode, namely Streebog-K (“Keyed Streebog”) [32]

Streebog-K(K,M) = H(K||M),

where H is Streebog itself. Due to one hashing instead of two, the computation
speed increases up to two times compared to HMAC.

The checksum used in Streebog leads to many so-called related keys in-
side both HMAC-Streebog and Streebog-K even when these cryptoalgorithms
themselves are used in the single-key setting. The input of the last call of
g is the secret key K summed with the message’s blocks that are directly
controlled by the adversary. As far as we know, by now there are no at-
tacks for the compression function in the related-key setting that would be
better than generic ones. Non-trivial results [23] were proposed only for the
round-reduced version of g.

Despite this, generic related-key attacks have the great impact on the
security bounds. Guessing any one of the q related keys (and therefore all of
them due to known relations) can be q times faster than guessing a single
secret key. However, if different related keys are used to process different
inputs, then the adversary should choose a specific key when guessing, not
any one. This simple observation fortunately holds (sometimes partially) for
MACs based on Streebog.

We start by introducing the notation (section 2), and then provide high-
level description of Streebog and the analyzed MACs (section 3).

2

Next, in section 4 we develop the PRF -RKA threat model, which in-
cludes the above-mentioned observation by detailing the adversary’s re-
sources. We discuss the properties of g in the introduced model and give
the corresponding heuristic estimates.

Only one observation is not enough to obtain a result, in section 5 we
present a new security proof using the example of Streebog-K. Assuming
“good” properties of g the obtained security bounds can be described quite
simply: up to about 2n−k processed blocks, the only effective method of
forgery (or distinguishing) is guessing the k-bit secret key or the tag if it is
shorter than the key. For a k-bit key, in any case, it should be assumed that
the amount of data does not exceed 2k. Hence, if k ≤ n

2 , then Streebog-K can
be considered as “k-bit secure” without specifying the amount of material.

The attacks described in the sixth section demonstrate that the obtained
estimates cannot be further improved (with the possible exception of a small
multiplicative constant). In other words, each term in the upper bounds
corresponds to a certain attack that has almost the same probability (the
lower bound).

In the seventh section, similar results are given for HMAC-Streebog. Note
that if the 256-bit version of Streebog is used in HMAC, then the bound is
significantly worse (2

n
2−k).

2 Notations

We use the following notations throughout the paper:
n = 512 – block size in bits; k ≤ 512 – key size in bits; ⊕ – bitwise

XOR operation; �, � – addition and subtraction modulo 2n = 2512;
|| – concatenation of binary strings;

V n – the set of all n-bit strings with naturally defined operations “⊕”
and “�”;

sum�(M) = m1�m2� . . .�ml – the checksum (modulo 2n) of l blocks
from the padded message M ||10 . . . 0 = m1||m2||...||ml;

Func(X,Y) – the set of all mappings from the set X to the set Y;
X

R← X – uniform and random selection of element X from the set X.
The adversary is modeled by an interactive probabilistic algorithm that

has access to other algorithms (oracles). We denote by AdvTMAlg (A) a quanti-
tative characterization (advantage) of the capabilities of the adversary A in
realizing a certain threat, defined by the model TM , for the cryptographic
scheme Alg. The resources of A are measured in terms of time (t) and query
(q) complexities. The size of A description (its source code) is limited by

3

some small value. The query complexity q is measured in the number of
adaptively chosen input/output pairs. Without loss of generality, we assume
that A always uses exactly q unique queries (with no redundant or repeating
queries). The result of computations of A after interacting with oracle O is
some binary value x, which is denoted as AO ⇒ x.

The maximum of the advantage among all resource constrained adver-
saries is denoted by

AdvTMAlg (t, q) = max
A(t′,q′):t′≤t, q′≤q,

AdvTMAlg (A).

Some threat models, which would be addressed later, imply different types of
resources, like the number of queries to different oracles, the length of these
queries, etc. The advantage for such models is defined in similar way.

The cryptoalgorithm Alg is informally called secure in the threat model
TM (TM -secure) if AdvTMAlg (t, q) < ε, where ε is some small value determined
by the requirements for the strength of the cryptosystem and the resources
t and q are comparable to those available to the adversary in practice.

To demonstrate the practical sense of the obtained results, we substitute
heuristic estimates based on assumptions into derived security bounds. The
resulting estimates are denoted by symbol “/ ” meaning “less or equal if the
assumptions are true”.

Next, we prove anew (see also [32]) that HMAC-Streebog and Streebog-K
are secure presudorandom functions (PRF).

Definition. The advantage of A in the model PRF (PRF -CMA – in-
distinguishability from a random function under chosen message attack) for
the keyed cryptoalgorithm F : K×X→ Y is

AdvPRFF (A) = Pr
(
K

R← K;AFK(·) ⇒ 1
)
−Pr

(
R

R← Func(X,Y);AR(·) ⇒ 1
)
,

where K, X, Y are spaces of the keys, messages, and outputs respectively.
The resources of A are t computations and q queries to the oracle, l the
maximum length of the queries (in n-bit blocks) if elements from X have
variable length.

By “k-bit security” we informally mean that the probability of realizing a
certain threat (or the distinguishing advantage) with the time complexity t is
about t/2k. All our statements about “k-bit security” are, first of all, true for
the distinguishers in the PRF model, and, therefore, the same statements
is true for more dangerous threats, including forgeries [9] and key recovery
attacks.

4

3 Streebog and MACs

Streebog hashes the message M as follows. The text is padded with bit
string 10 . . . 0. At least one bit is always added, even if the message bit
length L < 2n is already divisible by n. The string M ′ = M ||10 . . . 0 is
divided into (l + 1) blocks of n = 512 bits M ′ = m0||m1|| . . . ||ml. The
compression function is sequentially applied to the previous state, the block
and the counter

hi+1 = g(hi,mi, i), i = 0, ..., l, h0 = IVτ ∈ V n,

where IVτ is a predefined constant which is different in both versions of the
hash function, τ ∈ {256, 512}, the n-bit counter i = (i · n) represents the
number of already hashed bits.

Two more transformations are performed at the finalizing stage: the bit
length L and the checksum Σ = sum�(M) = m0� ...�ml are “mixed” with
the state

hl+2 = g(hl+1, L,0), H = g(hl+2, Σ,0).

If 256-bit hash function is used, the output H is truncated to 256 bit. Here
and further, the integers at the input of g are implicitly converted into n-bit
vectors.

The compression function is based on a 12-rounds AES-like block cipher
E in Miyaguchi-Preneel mode

g(hi,mi, i) = E(hi ⊕ i,mi)⊕ hi ⊕mi = hi+1.

In [19], the equivalent representation was proposed (see also details in
[32]). The counter i ceases to be a parameter of the compression function.
The latter is simplified to g(h,m) = E(h,m) ⊕ h ⊕ m (and further in the
text, this is what is meant by g). After processing the i-th block, the state is
summed modulo 2 with the constant ∆i = i⊕ (i� 1), i = 0, . . . , l − 1, but
after the l-th block, another constant is used, namely ∆̃l = l, and ∆i 6= ∆̃i,
∀i = 0, ..., 2n − 1. Thus, both versions of Streebog can be expressed as

Hτ(M) = msbτ
(
g(g(. . . (g(g(IVτ ,m0)⊕∆0,m1)⊕∆1) . . .⊕ ∆̃l, L), Σ)

)
,

where msbτ : V n → V τ is the τ most significant bits. Next, we omit the
index τ if any of its values are suitable.

Various keyed cryptoalgorithms use Streebog in a black-box way, without
making any changes to the Streebog itself, but only preparing the input for
it. These algorithms are usually used as message authentication codes (MAC)
and key derivation functions (KDF).

5

Here we list the formulas of the analyzed algorithms based on Streebog
[2, 32], and also mention their features,

HMAC-Streebog(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

Streebog-K(K,M) = H(K||M).

The secret key K ∈ V k is padded with (n − k) zero bits if necessary
K = (K||0...0). Two different n-bit constants ipad 6= opad are used in
HMAC-Streebog.

The key length for HMAC-Streebog, according to [2], is 256 ≤ k ≤ 512
bits, and the same restriction is proposed in [32] for Streebog-K. Further, for
generality, we assume that k ≤ n.

HMAC-Streebog and Streebog-K can use both versions of H (with 256-bit
and 512-bit output). Due to the double hashing in the first one, this leads to
a significant impact on the security bounds.

Next, we describe our results using the example of Streebog-K, the last
section and Appendix B are devoted to HMAC-Streebog.

For the sake of consistency with the previously introduced notation, let
K = m0 and M = m1||...||ml (fig. 1). By the cascade transformation Csc we
mean further

Csc(KCsc,M) = g(. . . g(g(KCsc⊕∆0,m1)⊕∆1,m2) . . .⊕ ∆̃l, L), KCsc ∈ V n,

assuming that the input M of arbitrary bit length is padded by 10 . . . 0, and
the length L increases by n because of the key.

Figure 1: The equivalent representation of Streebog-K. The checksum is Σ = K � σ, and
σ = sum�(M). The result of cascade is Y = Csc(KCsc,M).

6

4 Related key settings

For all the considered cryptoalgorithms, security is reduced to the prop-
erties of the compression function g under the various related key attacks
(RKA). We capture all the required properties in the following definition.

Definition. The advantage of A in the model PRF -RKA� for the keyed
cryptoalgorithm F : K×X→ Y is

Adv
PRF -RKA�
F (A) = Pr

(
K

R← K;AFK�·(·) ⇒ 1
)
−

− Pr
(
K

R← K;Ri
R← Func(X,Y), ∀i ∈ K;ARK�·(·) ⇒ 1

)
,

where K, X, Y are spaces of the keys, messages, and outputs respectively.
The subset K ⊆ K and the w-ary operation “�” are the parameters of
the model. The query from A consists of the input x ∈ X and the relation
κ ∈ Kw−1. The response is the value y = FK�κ(x) (resp. y = RK�κ(x)). The
resources of A are t computations and q queries to the oracle. The content of
queries is limited by the number of relations (r) and by the number different
relations (d) queried with the same x (d ≤ r ≤ q).

We omit d in the notations if d ≤ r, and also omit r if r ≤ q.
Note, if “�” is the unary identity operation, then PRF -RKA� is essen-

tially the same as the usual PRF model.
Through the paper we instantiate the PRF -RKA� model using binary

operations “⊕” and “�” over V n. The HMAC-Streebog analysis also required
the introduction of a ternary operation, denoted by “� ◦ ⊕” (so, the key K
under the relation κ = (φ, σ) is (K⊕φ)�σ). Further in the text, “�” denotes
any of these three operations.

The main novelty introduced in the above definition is the parameter
d. We show its importance for the generic attacks against arbitrary PRF
F : K×X→ Y. Let, for example, � = � and K = K = V k.

In the absence of restrictions (d = r = q), the adversary can query
a single x under the different relations (x, κ1),...,(x, κq) and obtain y1,...,yq,
yi = FK�κi(x). Next, the adversary repeats t times: guess the key K̃; compute
ỹ = FK̃(x); find ỹ among the stored (y1, ..., yq). If K̃ is equal to any of the
related keys used (K � κ1, ..., K � κq), let this be K � κi, then certainly
ỹ = yi. Hence, the attacker obtains K̃ = K � κi and computes the key
K = K̃ � κi using the known relation κi. The success probability is upper
bounded by t · q · 2−k. False positives ỹ ∈ (y1, ..., yq) do not affect the essence
and are ignored here.

Now let d = 1 and r ≤ q. In this case, the queries are (x1, κ1),...,(xq, κq).
Regardless of the relations, all inputs are different, xi 6= xj, 1 ≤ i < j ≤ q.

7

Therefore, before the guessing attempt, the adversary can choose only one
key (i.e. under one relation) that he will try to find. In other words, he can
compute ỹ = FK̃(xi) and check ỹ = yi, hoping that K̃ = K�κi. Matches with
other keys K�κj, j 6= i, cannot be verified because of xi 6= xj. Therefore, in
such conditions, the success probability is about t · 2−k and does not depend
on the total number of queries.

Thus, assuming the absence of specific vulnerabilities, the best distin-
guishing method is key guessing, and the advantage is bounded by

AdvPRF -RKA�
F (t, q, r, d) /

t · d
2k
≤ t · r

2k
≤ t · q

2k
.

Note that the presented estimates are heuristic in nature. However, these
inequalities are easy to prove if F is considered as a family of 2k random
functions (i.e. in the so-called random oracle model). The same considerations
make it possible to ignore attacks based on “free” precomputations [15].

To the best of our knowledge, there are no attacks on the Streebog com-
pression function that would be better than the generic ones. The round-
reduced versions of g were considered in the secret-key [21, 22] and the
related-key settings [23]. The situation is similar with the keyless settings
(preimages and various collisions) [24, 25, 26, 27, 28, 29, 30, 31], that is also
an indirect argument in favor of good cryptographic properties under the
related key attacks.

Therefore, we use

Adv
PRF -RKA�
gO (t, q, r, d) /

t · d
2k

, (1)

as an heuristic estimate for gO
K

(·) = g(·, K), k ≤ n, K = {K : K ∈ V k},
K = V n, instead of t · q · 2−k used in [32].

If the secret key of g is the n-bit state h of the hash function,
g.h(·) = g(h, ·), then the bound [32] remains the same

Adv
PRF -RKA⊕
g. (t, q, r ≤ 2) /

2 · t
2n

+
q(q − 1)

2n+1
. (2)

Recall that, for all the cryptoalgorithms under consideration, g. is used with
no more than two related keys (d ≤ r ≤ 2). The relation is defined by
φi = ∆̃i⊕∆i, i = 1, ..., l. The second term in (2) arises due to the birthday-
paradox distinguisher (see also [22]).

We emphasize that some new effective attacks on full-round g can po-
tentially affect the heuristic estimates and, consequently, the claims about
“k-bit security”. We are convinced that the construction of such methods is

8

extremely difficult, but anyway the theorems presented below hold. Their
statements are essentially about the high-level design of the Streebog-based
cryptoalgorithms, and not the hash function itself.

5 Revision of PRF-security for Streebog-K

The PRF-security bound of Streebog-K (denoted here for compactness as
KH) presented in [32] as

AdvPRFKH (t, q, l) ≤AdvPRF -RKA�
gO (t′, q′, r = q′, d = q′)+

+q · l′ · Adv
PRF -RKA⊕
g. (t′, q, r = 2) +

q2 + q

2n+1
, (3)

where t′ = t+O(q · l), q′ = q + 1, l′ = l + 1.
Recall that the i-th message Mi is transformed as follows

KHK(Mi) = gO
K�σi

(Csc(gO
K

(IV),Mi)),

and KCsc = gO
K

(IV), the result of the cascade Yi = Csc(KCsc,Mi), the rela-
tion is determined by σi = sum�(Mi), 1 ≤ i ≤ q, (see fig. 1).

By “collision” in this section we mean the coincidence of any pair of el-
ements in the sequence IV, Y1, Y2, ..., Yq, and denote it as C, the opposite
event is denoted by C.

The term AdvPRF -RKA�
gO is the most significant when k < n, and is the

only term that depends on the key length k. With d = q′, the PRF -RKA�
model allows the inputs (x, σ) for gO to have any form, because of this,
the estimate increases by t · q′ · 2−k. Whereas in fact, until there has been a
“collision”, the values of x in all queries to gO are different (d = 1). Otherwise
(“collision” has occurred), the attacker has already achieved his goal, the
probability of this is taken into account in the third term of the bound.

The formalization of the above considerations is expressed by the follow-
ing theorem.

Theorem (PRF-security of Streebog-K). The advantage of the
adversary in the PRF model attacking Streebog-K is bounded by
AdvPRFKH (t, q, l) ≤

≤ AdvPRF -RKA�
gO (t′, q′, q′, d = 1) + AdvPRFCsc (t′, q, l′) +

q2 + q

2n+1
, (4)

where t′ = t+O(q · l), q′ = q + 1, l′ = l + 1.
Proof.

9

Let’s consider K̃H(Mi) = fK�σi(Csc(fK�0(IV),Mi)), the first and the last
calls of gO are replaced in KH by a family of 2n random functions f indexed by
σi. If the “collision” does not occur, then the cascade key KCsc = fK�0(IV)
is not observed by the attacker and is truly random. Moreover, under the
same conditions, K̃H is indistinguishable from a random function R, due to
the fact that regardless of σi, all values IV, Y1, ..., Yq requested from f are not
repeated.

The “collision” that occurred as a result of the adversary’s interaction with
KH is denoted as AKH(·) ⇒ (b,C). What we mean by this is that b ∈ {0, 1}
is the immediate result returned by the adversary, and the “collision” is an
implicit side result. Note that anyone who knows KCsc can easily determine
whether there was the “collision” or not. We omit b in the notation if its value
can be any, Pr(AKH(·) ⇒ C) = Pr(AKH(·) ⇒ (1,C)) + Pr(AKH(·) ⇒ (0,C)).

By the definition of the PRF model,

AdvPRFKH (A) = Pr(AKH(·) ⇒ 1)− Pr(AR(·) ⇒ 1).

Using the formula of total probability, we get

Pr(AKH(·) ⇒ 1) = Pr(AKH(·) ⇒ (1,C)) + Pr(AKH(·) ⇒ (1,C)).

As we explained above,

Pr(AR(·) ⇒ 1) = Pr(AK̃H(·) ⇒ (1,C)).

By grouping the terms and using the triangle inequality, we obtain
AdvPRFKH (A) =

=
(

Pr(AKH(·) ⇒ (1,C)) + Pr(AKH(·) ⇒ (1,C))
)
− Pr(AK̃H(·) ⇒ (1,C)) ≤

≤
(

Pr(AKH(·) ⇒ (1,C))− Pr(AK̃H(·) ⇒ (1,C))
)

+ Pr(AKH(·) ⇒ (1,C)) ≤

≤
(

Pr(AKH(·) ⇒ (1,C))− Pr(AK̃H(·) ⇒ (1,C))
)

+ Pr(AKH(·) ⇒ C) ≤

≤
(

Pr(AKH(·) ⇒ (1,C))− Pr(AK̃H(·) ⇒ (1,C))
)

+

+
(

Pr(AKH(·) ⇒ C)− Pr(AK̃H(·) ⇒ C)
)

+ Pr(AK̃H(·) ⇒ C) =

=ε+ εcoll + pcoll.

Let’s use both ε and εcoll at the same time. In other words, we utilize
in the single algorithm B1: the ability of A to distinguish between KH and
K̃H when there are no collisions (term ε); the advantage εcoll arising from the

10

difference in the probability of collisions. We assume that ε ≥ 0 and εcoll ≥ 0,
otherwise, we can invert the corresponding result.
B1 attacks gO in the PRF -RKA� model. Initially, B1 queries the cas-

cade key KCsc = O(IV, 0) from the oracle O ∈ {gO, f}. When processing
each query Mi from A, the algorithm B1 computes Yi = Csc(KCsc,Mi)
and σi = sum�(Mi). The value of Yi is written in memory. Next, B1

checks the “collision” condition. If Yi ∈ {IV, Y1, ..., Yi−1} then B1 returns
1 (due to εcoll ≥ 0, the “collision” is interpreted as an interaction with
KH) and turns off A (further interaction does not make sense). Otherwise
(Yi /∈ {IV, Y1, ..., Yi−1}), B1 makes query (Yi, σi) to the oracle and transmits
the response to A. If the “collision” conditions have never been met after q
queries, then the result of B1 is the result of A.

The computation resources of B1 is t′ = t+O(q · l), no more than (q+ 1)
queries are made to the oracle, the number of the related keys r ≤ q + 1, no
value is requested from the oracle twice, d = 1.

Until the “collision” occurs, B1, interacting with gO or f, perfectly simu-
lates for A oracles KH or K̃H respectively. The distinguishing advantage of
B1 is equal to

AdvPRF -RKA�
gO (B1) = Pr(BgO

K�·(·)
1 ⇒ 1)− Pr(BfK�·(·)

1 ⇒ 1) =

=
(

Pr(AKH(·) ⇒ (1,C)) + Pr(AKH(·) ⇒ C)
)
−

−
(

Pr(AK̃H(·) ⇒ (1,C)) + Pr(AK̃H(·) ⇒ C)
)

= ε+ εcoll.

All that remains is to limit the value of pcoll = Pr(AK̃H(·) ⇒ C). We
construct the algorithm B2 that can effectively distinguish Csc from a random
function R. B2 passes the request Mi from A to its own oracle O ∈ {Csc,R},
receives the response Yi and stores this value in memory. When processing
each query, B2 checks if the “collision” occurred. If it did, B2 returns 1 and
turns offA. Otherwise, B2 generates a random value (simulates f) and returns
it to A. If there is no “collision” after q queries, then the result of B2 is 0.
The advantage of B2 is lower bounded by

AdvPRFCsc (B2) = Pr(BCsc(KCsc,·)
2 ⇒ 1)− Pr(BR(·)

2 ⇒ 1) ≥

≥Pr(AK̃H(·) ⇒ C)−
(
q · (q − 1)

2n+1
+

q

2n

)
,

where
q

2n
is the probability of IV ∈ {Y1, ..., Yq}, and

q · (q − 1)

2n+1
corresponds

to the collision among q values Y1, ..., Yq returned from the random oracle

11

R(·). Therefore,

Pr(AK̃H(·) ⇒ C) ≤ AdvPRFCsc (B2) +
q2 + q

2n+1
.

B2 appends a block containing L to the messages from A, so that because of
the extra block we have l′ = l + 1. �

The PRF-security of the cascade Csc is proved in [32] as a separate lemma

AdvPRFCsc (t′, q, l′) ≤ q · l′ · Adv
PRF -RKA⊕
g. (t′, q, 2). (5)

Direct substitution of the heuristic estimate (2) into (5) leads to an inaccurate
result, due to the fact that (2) depends quadratically on q.

Hence, a more general bound, also stated in [32], is convenient for us here

AdvPRFCsc (A) ≤
q∑
i=1

l∑
j=1

Adv
PRF -RKA⊕
g. (Bi,j),

where Bi,j corresponds to some inner node of the special tree formed by
queries. The root of the tree is KCsc, the nodes are the intermediate secret
states, the results (Y1,...,Yq) are stored in leaves. Each edge of the tree is
labeled with the the block from the messages.

So, this tree has at least l and at most (1 + q · (l − 1)) ≤ ql nodes (the
multiplier in (5)). The lower bound is exact when all messages differ only in
the last l-th block. The opposite is achieved when all messages are different
in the first block. The adversary Bi,j makes 1 ≤ qi,j ≤ q queries to the oracle,
and qi,j also corresponds to the number of the edges from the node. So if qi,j
increases by one, then the number of leaves also becomes one more, but there
are no more leaves in total than q. Thus, we have inequality∑

i

∑
j

(qi,j − 1) ≤ q,

and the PRF-security of the cascade is estimated as AdvPRFCsc (t′, q, l′) /

/
q∑
i=1

l′∑
j=1

(
2 · t′

2n
+
qi,j · (qi,j − 1)

2n+1

)
≤ 2 · t′ · q · l′

2n
+

q2

2n+1
. (6)

By using the result (4) of the theorem and the estimates (1), (6), we
finally obtain

AdvPRFKH (t, q, l) /
t′

2k
+

2 · t′ · q · l′

2n
+
q2 + q

2n
, t′ ≈ t, l′ = l + 1, (7)

12

and make a claim about “k-bit security”. If the key length n
2 ≤ k ≤ n and

the amount of the processed blocks q · l < 2n−k−1, then the most significant
term is t

2k
the probability of successfully guessing the key. Obviously, the data

constraint q · l < 2k is always assumed. Hence, for a key of shorter length
k ≤ n

2 , again, the most significant term is the first one.
The statement above concerns distinguishing attacks, but the same holds

if the adversary’s goal is to forge. The probability of at least one successful
forgery in ν attempts is bounded by [9, Proposition 7.3] (SUF – Strong
UnForgeablility)

AdvSUFKH (t, q, l, ν) ≤ AdvPRFKH (t′, q + ν, l) +
ν

2τ
, t′ ≈ t.

So, if the output length is sufficiently large (τ ≥ k), then the statement
about “k-bit security” is also true in this case. For small τ < k, we make a
reservation that another attack strategy is tag guessing.

We emphasize that exceeding the border of 2n−k blocks may be quite
acceptable. The probability of a forgery in one attempt is greater than “ideal”
2−τ , but in most practical cases it is negligible, even if the number of the
processed blocks far exceeds 2n−k.

Note for completeness that the bound similar to (7) can be obtained by
using results of [14, 17] for the HMAC with the “plain” MD hash function, say
HMAC-SHA-512 [4]. However, SHA-512(K||·), unlike Streebog, is completely
insecure as PRF.

The “sponge”-based hash functions (for example, SHA-3 [5]) can be used
with the key in the prefix as a secure PRF. The security bound for the keyed
sponge [10, Theorem 1] is also close to (7) if we consider the sponge “capacity”
c as the state size n.

6 Attacks and tightness of the upper bounds

The attacks and the proofs are “the two sides of the same coin” [18]. The
proofs give us the upper bounds of the insecurity (it can’t be worse than
that), the attacks provide the lower bounds (the attacker can definitely act
with such an advantage or probability of success).

In this section we show that for Streebog-K “as a high-level design” both
bounds are close. Therefore, (7) cannot be improved by more than a small
multiplicative factor, so we can consider it tight enough.

On the contrary, we find it somewhat paradoxical that Streebog-K “as
a real MAC with a real compression function g” may be even more secure.

13

Further, it can be refuted by some kind of sophisticated attack showing that
(7) is tight for this case as well. Another way to refine the estimates seems
to be random oracle model, which in simple words means an unconditional
belief that g is a family of random functions.

The first term in (7) obviously corresponds to the straightforward key
guessing. We should consequently also note that 4 computations of g are
required to verify one key. Hence, the probability of success (correct guessing
using t computations) is 4 times less than the upper bound t · 2−k.

The third term in (7) is almost achievable with the birthday-paradox
attack. The adversary: queries tags Hi for the messages Mi = mi||m′i,
mi � m′i = const, 1 ≤ i ≤ q; looks for a collision (Hi = Hj); makes one
additional query Mi||P , P ∈ V n and obtains the tag Hq+1; finally makes
a forgery Mj||P with tag Hq+1. The probability of a collision is about
q2 · 2−(n+1), which is approximately half the upper estimate.

The reason for the above-mentioned “paradox” is the second term
t · q · l · 2−n arising from the imperfection of the cascade. If we consider time-
and data-balanced attacks (t ≈ q · l), then the bound depends quadratically
on the amount of data q2 · l2 · 2−n. From this point of view, the best known
attack is l times worse. The probability of the birthday-paradox attack equal
to ≈ q2 · l · 2−n if long l-block messages are used [20, 32]. We also don’t know
the matching attack for “real” Streebog-K if the computational power of the
adversary is greater (t� q · l).

The attack for the “plain” MD cascade (i.e. without counters and ∆i) with
tight distinguishing advantage t · q · l · 2−n can be easily constructed by using
the properties of the random mapping graph, but in HMAC and Streebog-K
the output of the cascade is not directly observed due to the key-dependent
finalization. Counters also make attacks more difficult.

To demonstrate the accuracy of the upper estimates, we use a rather
artificial trick proposed in [13, 14] for HMAC with the “plain” cascade. We
construct a weak compression function w so that the cascade degrades as well
as with g, but with w it would be easily exploited in an attack (see details
in Appendix A).

Proposition. For any arbitrary compression function g and any re-
sources (t, q) of the adversary there exists “weak” function w,

AdvPRF -RKA�
wO ≈ 3·AdvPRF -RKA�

gO , Adv
PRF -RKA⊕
w. ≈ 3·Adv

PRF -RKA⊕
g. = 3·ε..

If w is used in Streebog-K instead of g, then there is an attack with distin-
guishing advantage of about 1

2ε
. · q · l.

So we can imply ε. ≈ t · 2−n and obtain the matching attack for the

14

second term in (7).
It is interesting to note that w by construction depends on ε., and hence

on the resources of the adversary. All this only emphasizes the artificiality of
the approach.

Nevertheless, one way or another, each of the three terms in (7) cor-
responds to an attack with approximately the same advantage. Hence, the
proved security bound is tight.

7 HMAC-Streebog

The results obtained were presented using the example of Streebog-K,
but the main ideas are applicable to other cryptoalgorithms. Here we briefly
present our results for HMAC-Streebog, the proofs are given in Appendix B.

The relation between the keys is defined in HMAC-Streebog by “⊕” and
“�” simultaneously. When processing a message, up to 4 related keys are
used, two of them are new for each message (2 ·q in total), the two remaining
ones (K ⊕ ipad and K ⊕ opad) don’t change. The value of IV is queried at
least twice under the different related keys (gO

K⊕ipad(IV) and gO
K⊕opad(IV)),

hence, in the PRF -RKA�◦⊕ model, we are bounded by d = 2.
HMAC uses two hash function calls and consequently two cascades. When

analyzing the “collision” event, we look at the outputs of two transformations
at once, so two terms AdvPRFCsc arise.

The “k-bit security” statement holds for HMAC-Streebog-512, in fact, as
well as for Streebog-K. Whereas for the 256-bit version (τ = n

2), the “inner”
collision occurs after the first call of the hash function with the probability
≈ q2 · 2−n

2 +1, that strongly affects the estimate. Thus, we can speak about
“k-bit security” of HMAC-Streebog-256 only if q · l < 2

n
2−k.

Theorem (PRF-security of HMAC-Streebog). The advantage of the
adversary in the PRF model attacking HMAC-Streebog is bounded by

AdvPRFHMAC-Streebog(t, q, l) ≤Adv
PRF -RKA�◦⊕
gO (t′, q′, q′, d = 2)+

+AdvPRFCsc (t′, q, l′) + AdvPRFCsc (t′, q, l′τ) +
2q2 + q

2n
+

q2

2τ+1
,

where t′ = t+O(q · l), τ ∈ {256, 512}, q′ = 2 · q + 2, l′ = l + 1, l′τ ∈ {2, 3}.

15

8 Conclusion

The security of Streebog-based MACs (including HMAC-Streebog and
Streebog-K) as PRF and MAC in the single-key setting is reduced to the
security of the compression function in the related key settings (PRF -RKA).
We observed that, if the adversary does not query the same input under the
different related keys, then the advantage is many times lower than in the
general case. An appropriate refinement for the formal model was proposed,
and then we re-proved the PRF -security of the mentioned MACs based on
Streebog. The resulting security bounds are tight and cannot be significantly
improved.

In fact, up to 2n−k processed blocks, the only effective way of forgery (or
distinguishing) is guessing the k-bit key or tag, n = 512 is the bit length of
the hash function state. For HMAC-Streebog-256, this bound is worse and
is equal to 2

n
2−k. If the amount of data is much larger than 2n−k, then the

probability of forgery remains insignificant for most practical cases, we just
cannot talk about the “ideality”.

The new estimates are especially important in practice for the Streebog-
based MACs using relatively short keys (for example, 128 bit), and for some
lightweight Streebog-like solutions.

The security proofs themselves use only the “standard model” without
any heuristics. All statements about “k-bit security” are consequences that
are obtained under the assumption of “good” properties of the compression
function. The latter are confirmed by numerous negative results of cryptanal-
ysis.

As always, we warn that the estimates do not take into account, say,
side-channel attacks and other threats not included in the formal model. All
the presented results are about adaptively chosen messages attacks in the
single-key setting.

9 Acknowledgements

The author is grateful to Andrey Shcherbachenko and the anonymous
reviewer(s) of CTCrypt 2023 for the careful consideration of the article and
a lot of useful detailed comments and suggestions.

16

References
[1] GOST R 34.11-2012 – National standard of the Russian Federation – Information

technology – Cryptographic data security – Hash function, 2012.
[2] R 50.1.113-2016 – Information technology – Cryptographic data security – Crypto-

graphic algorithms accompanying the use of electronic digital signature algorithms and
hash functions, 2016.

[3] Smyshlyaev S., Alekseev E., Oshkin I., Popov V., Leontiev S., Podobaev V., Belyavsky
D., “RFC 7836 - Guidelines on the Cryptographic Algorithms to Accompany the
Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012”, March 2016.

[4] Secure Hash Standard (SHS) – NIST FIPS – 180-4, 2015.
[5] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions – NIST

FIPS – 202, 2015.
[6] Damg̊ard I., “A design principle for hash functions”, CRYPTO 1989, Lect. Notes

Comput. Sci., 435, 1990, 416–427.
[7] Merkle R., “One way wash functions and DES”, CRYPTO 1989, Lect. Notes Comput.

Sci., 435, 1990, 428–446.
[8] Bellare M., Canetti R., Krawczyk H., “Keying Hash Functions for Message Authen-

tication”, Crypto’96, Lect. Notes Comput. Sci., 1109, 1996, 1–15.
[9] Bellare M., Goldreich O., Mityagin A., “The power of verification queries in mes-

sage authentication and authenticated encryption”, Cryptology ePrint Archive: Report
2004/304, 2004.

[10] Bertoni G., Daemen J., Peeters M., Van Assche G., “On the security of the keyed
sponge construction”, Symmetric Key Encryption Workshop, 2011 (2011).

[11] Koblitz N., Menezes A., “Another look at HMAC”, J. Math. Cryptol., 7:3 (2013),
225–251.

[12] Bellare M., “New proofs for NMAC and HMAC: security without collision-resistance”,
CRYPTO 2006, Lect. Notes Comput. Sci., 4117, April 2014, 602–619.

[13] Krzysztof Pietrzak, “A Closer Look at HMAC”, 2013.
[14] Gaži P., Pietrzak K., Rybár M., “The Exact PRF-Security of NMAC and HMAC”,

CRYPTO 2014, Lect. Notes Comput. Sci., 8616, August 2014, 113–130.
[15] Bernstein D.J., Lange T., “Non-uniform cracks in the concrete: the power of free

precomputation”, ASIACRYPT 2013, Lect. Notes Comput. Sci., 8270, 2013, 321–
340.

[16] Alekseev E.K., Oshkin I.B., Popov V.O., Smyshlyaev S.V., “On the cryptographic
properties of algorithms accompanying the applications of standards GOST R 34.11-
2012 and GOST R 34.10-2012”, Mat. Vopr. Kriptogr., 7:1 (2016), 5–38.

[17] Nandi M., “A New and Improved Reduction Proof of Cascade PRF”, Cryptology
ePrint Archive: Report 2021/097, 2021.

[18] Bellare M., “Practice-Oriented Provable-Security”, ISW 97, Lect. Notes Comput. Sci.,
1396, 1998, 221–231.

[19] Guo J., Jean J., Leurent G., Peyrin T., Wang L., “The usage of counter revisited:
second-preimage attack on new Russian standardized hash function”, SAC 2014, Lect.
Notes Comput. Sci., 8781, 2014, 195–211.

[20] Dinur I., Leurent G., “Improved generic attacks against hash-based MACs and
HAIFA”, CRYPTO 2014, Lect. Notes Comput. Sci., 8616, 2014, 149–168.

[21] Abdelkhalek A., AlTawy R., Youssef A. M., “Impossible differential properties of
reduced round Streebog”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 274–286.

[22] Kiryukhin V. A., “Streebog compression function as PRF in secret-key settings”, Mat.
Vopr. Kriptogr., 13:2 (2022), 99–116.

[23] Kiryukhin V. A., “Related-key attacks on the compression function of Streebog”,Mat.
Vopr. Kriptogr., 14:2 (2023), 59–76.

[24] AlTawy R., Youssef A. M., “Preimage attacks on reduced-round Stribog”,
AFRICACRYPT 2014, Lect. Notes Comput. Sci., 8469, 2014, 109–125.

17

[25] AlTawy R., Kircanski A., Youssef A. M., “Rebound attacks on Stribog”, ICISC 2013,
Lect. Notes Comput. Sci., 8565, 2014, 175–188.

[26] Lin D., Xu S., Yung M., “Cryptanalysis of the round-reduced GOST hash function”,
Inscrypt 2013, Lect. Notes Comput. Sci., 8567, 2014, 309–322.

[27] Ma B., Li B., Hao R., Li X., “Improved cryptanalysis on reduced-round GOST and
Whirlpool hash function”, ACNS 2014, Lect. Notes Comput. Sci., 8479, 2014, 289–
307.

[28] Wang Z., Yu H., Wang X., “Cryptanalysis of GOST R Hash Function”, Information
Processing Letters, 114 (2014), 655–662.

[29] Kölbl S., Rechberger C., “Practical attacks on AES-like cryptographic hash func-
tions”, LATINCRYPT 2014, Lect. Notes Comput. Sci., 8895, 2014, 259–273.

[30] Ma B., Li B., Hao R., Li X., “Improved (pseudo) preimage attacks on reduced-round
GOST and Grøstl-256 and studies on several truncation patterns for AES-like com-
pression functions”, IWSEC 2015, Lect. Notes Comput. Sci., 9241, 2015, 79–96.

[31] Hua J., Dong X., Sun S., Zhang Z., Hu L., Wang X., “Improved MITM Cryptanalysis
on Streebog”, Cryptology ePrint Archive, Paper 2022/568, 2022.

[32] Kiryukhin V. A., “Keyed Streebog is a secure PRF and MAC”, Mat. Vopr. Kriptogr.,
14:2 (2023), 77–96.

A Attack on the “weakened” cascade

Let for some arbitrary compression function g

AdvPRF -RKA�
gO (t, q, q, 1) = εO,

Adv
PRF -RKA⊕
g. (t, q, 2) = ε.,

As a special illustrative case, we can consider εO = t · 2−k, ε. = 2 · t · 2−n,
and we also recall that t ≥ q · l.

We “spoil” two keys P, P ′ ∈ V n in gO and ε. · 2n keys in g.. Let W ⊂ V n

be the set of “weak” keys, |W| ≈ ε. · 2n. For any weak key W ∈W and any
constant ∆i = i ⊕ (i� 1), i = i · n, we require that (W ⊕ ∆i) ∈ W. Each
∆i belongs to the set

∆ = {(2u − 1) · n, 1 ≤ u ≤ (n− log2(n))} = {1,3,7,15, ...} .

We begin with an empty W, choose an arbitrary W /∈ W, add elements
from the following set to W:

{W} ∪ {W ⊕∆; ∆ ∈∆} ∪ {W ⊕∆⊕∆′; ∆,∆′ ∈∆};

continue until there are less than ε. · 2n elements in W. At each iteration,
no more than n2 elements are added to W. Therefore, the cardinality of W
can differ from ε. · 2n only by this insignificant value.

The “weakened” version of the compression function is defined as

w(x, y) =

{
W0, x ∈W and y ∈ {P, P ′},
g(x, y), otherwise,

18

where W0 ∈ W is some fixed element. Thus, in total we redefine 2 · |W|
values.

If the adversary does not interact with “weak” keys, then gO and wO

(also as g. and w.) are indistinguishable. In the first case (wO
K

(·) = w(·, K),
K ∈ V k), the interaction is carried out with q related-keys. The probability
that there are P or P ′ among them does not exceed a negligible 2·q

2k
. Only

two related keys are used in w.h(·) = w(h, ·), h ∈ V n, the probability of
their belonging to the set of weak ones is estimated as 2 · ε.. Thus, due to the
appearance of weak keys, the distinguishing advantage in both cases increases
slightly

AdvPRF -RKA�
wO (t, q, q, 1) ≤ εO +

2 · q
2k
≤ 3 · εO,

Adv
PRF -RKA⊕
w. (t, q, 2) ≤ ε. + 2 · ε. = 3 · ε..

In distinguishing attack on “weakened” Streebog-K (instantiated with w
instead of g), q2 pairs of queries (Mi,M

′
i) to the oracle O ∈ {Streebog-K,R}

are made

Mi = m
(1)
i ||m

(2)
i ||...||m

(l−2)
i ||P ||P ′,

M ′
i = m

(1)
i ||m

(2)
i ||...||m

(l−2)
i ||P ′||P,

and the tags obtained are Hi = O(Mi), H ′i = O(M ′
i), 1 ≤ i ≤ q

2 . The blocks
m

(j)
i are randomly chosen from {P, P ′}, 1 ≤ j ≤ l− 2. Note, that Mi 6= M ′

i ,
but the first (l − 2) blocks, the lengths, and the checksums are equal.

In the case O = Streebog-K, we assume, as usual, that after processing
the j-th block, the secret state looks random, but if the state falls into the
set W, then it remain as such until the end of the cascade. The longer the
message being processed, the more likely it is that a weak key will occur
during processing. We recall, that for all W ∈W the following holds

w(W,m
(j)
i) = W0 ∈W, W0 ⊕∆j ∈W,

w(W,P) = w(W,P ′) = W0 ∈W.

Hence, the probability of the collision Hi = H ′i for one pair (Mi,M
′
i) is about

≈ l · ε., and for q
2 attempts we have ≈ q

2 · l · ε
.. The collision event is used as

a distinguishing feature.
If the attacker interacts with a random function R, then the probability

of at least one collision among q
2 independent attempts is upper bounded by

q
2n . We emphasize that the collision is considered only between messages in
the same pair, and not among all possible pairs, and therefore the probability

19

increases linearly, not quadratically. Hence, the distinguishing advantage is
about

(
q
2 · l · ε

. − q
2n

)
≈ q

2 · l · ε
..

The resulting lower bound and the upper bound (q · l ·3ε.) differ by about
6 times, this is negligible. Thus, the described extremely synthetic example
shows, that the second term in (7) is also tight.

The same is true for “weakened” HMAC-Streebog.

B HMAC-Streebog

Theorem (PRF-security of HMAC-Streebog). The advantage of the
adversary in the PRF model attacking HMAC-Streebog is bounded by

AdvPRFHMAC-Streebog(t, q, l) ≤Adv
PRF -RKA�◦⊕
gO (t′, q′, q′, d = 2)+

+AdvPRFCsc (t′, q, l′) + AdvPRFCsc (t′, q, l′τ) +
2q2 + q

2n
+

q2

2τ+1
,

where t′ = t+O(q · l), τ ∈ {256, 512}, q′ = 2 · q + 2, l′ = l + 1, l′τ ∈ {2, 3}.
Proof.
Recall that HMAC-Streebog (for compactness, we denote it here as

HMAC) is represented as

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where ipad, opad ∈ V n, ipad 6= opad, K = (K||0...0) ∈ V n, K ∈ V k.
Streebog-512 or Streebog-256 can be used as H (see also figures 2 and 3).

Let the values in the first (resp. the second) call of the hash function be
indicated by the superscript “I” (resp. “O”)

KI = K ⊕ ipad, KO =K ⊕ opad,
KI

Csc = gOKI(IV), KO
Csc = gOKO(IV),

HI = H(KI ||M), HO = H(KO ||HI),

Y I = Csc(KI
Csc,M), Y O = Csc(KO

Csc, H
I),

σI = sum�(M), σO = sum�(HI).

Just as in the case of Streebog-K, we define “idealized” function

H̃MAC(M) = fKO�σO
i

(
...fKI�σI

i
(Csc(fKI�0(IV),Mi))

)
,

where the first and the last calls of gO in both hash functions are replaced
by a family of 2n random functions f indexed by (φ, σ) ∈ V n × V n. Related
keys can be represented as (K ⊕ φ)� σ, and φ ∈ {ipad, opad}.

20

The “collision” (C) here is treated as a coincidence among (2q+ 1) values

IV, Y I
1 , ..., Y

I
q , Y

O
1 , ..., Y

O
q .

As before, if there is no “collision” (C), then H̃MAC is indistinguishable
from a random function R(·),

Pr(AR(·) ⇒ 1) = Pr(AH̃MAC(·) ⇒ (1,C)),

and we obtain AdvPRFHMAC(A) =

=
(

Pr(AHMAC(·) ⇒ (1,C)) + Pr(AHMAC(·) ⇒ (1,C))
)
− Pr(AH̃MAC(·) ⇒ (1,C)) ≤

≤
(

Pr(AHMAC(·) ⇒ (1,C))− Pr(AH̃MAC(·) ⇒ (1,C))
)

+

+
(

Pr(AHMAC(·) ⇒ C)− Pr(AH̃MAC(·) ⇒ C)
)

+ Pr(AH̃MAC(·) ⇒ C) =

=ε+ εcoll + pcoll.

Algorithm B1 attacks gO in the PRF -RKA�◦⊕ model, its actions are also
similar to the previous case. Initially, B1 queries the cascade keys

KI
Csc = O(IV, (ipad, 0)) and KO

Csc = O(IV, (opad, 0)),

from the oracle O ∈ {gO, f}.
When processing each query Mi from A, the algorithm B1 computes

Y I
i = Csc(KI

Csc,Mi) and σIi = sum�(Mi).

The value of Y I
i is written in memory. Next, B1 checks the “collision” condi-

tion. If Y I
i ∈ {IV, Y I

1 , Y
O

1 ..., Y
I
i−1, Y

O
i−1} then B1 returns 1 and turns off A.

Otherwise, B1 makes query (Y I
i , (ipad, σ

I
i)) to the oracle, receives HI

i , com-
putes Y O

i = Csc(KO
Csc, H

I
i) and σOi = sum�(HI

i), saves Y O
i in memory. The

“collision” is checked again, if Y O
i ∈ {IV, Y I

1 , Y
O

1 ..., Y
I
i }, then B1 returns 1

and turns off A. Otherwise, B1 makes query (Y O
i , (opad, σ

O
i)) and transmits

the response to A.
If the “collision” conditions have never been met after q queries, then the

result of B1 is the result of A. No more than (2q+2) queries are made to the
oracle, only the IV value is requested from the oracle twice under different
keys, d = 2.

The distinguishing advantage of B1 is equal to

Adv
PRF -RKA�◦⊕
gO (B1) = Pr(B

gO
(K⊕·)�·(·)

1 ⇒ 1)− Pr(Bf(K⊕·)�·(·)
1 ⇒ 1) = ε+ εcoll.

21

We utilize pcoll in the algorithm B2 to distinguish between a pair
of cascades (Csc(KI

Csc, ·),Csc(KO
Csc, ·)) and a pair of random functions

(RI(·),RO(·)). Recall that in H̃MAC, keys KI
Csc and KO

Csc are random and
independent.

Algorithm B2 on the i-th query Mi from A: makes query Mi to the first
oracle (Csc(KI

Csc, ·) or RI(·)); obtains Y I
i ; checks “collision”. If so, then, B2

turns off A and returns 1. Otherwise, B2 generates random HI
i (simulation of

f), makes query HI
i to the second oracle (Csc(KO

Csc, ·) or RO(·)), and obtains
Y O
i (or finds this value in memory if HI

i was previously requested). If the
“collision” occurs, then B2 turns off A and returns 1. Otherwise, B2 passes
the randomly generated HO

i to A.
If there is no “collision” after q queries, then the result of B2 is 0.
Interaction with cascades makes it possible to perfectly simulate H̃MAC

for A, as long as there is no “collision”, hence

Pr(BCsc(KI
Csc,·),Csc(KO

Csc,·)
2 ⇒ 1) = Pr(AH̃MAC(·) ⇒ C).

The probability of “collision” in the case when B2 interacts with (RI(·),RO(·))
is estimated as

Pr(BRI(·),RO(·)
2 ⇒ 1) ≤ q2

2τ+1
+

(2q + 1) · (2q)
2n+1

,

where the first term takes into account the collision among HI
1 , ...H

I
q . Thus,

εCsc = Pr(BCsc(KI
Csc,·),Csc(KO

Csc,·)
2 ⇒ 1)− Pr(BRI(·),RO(·)

2 ⇒ 1) ≥

≥ Pr(AH̃MAC(·) ⇒ C)−
(

q2

2τ+1
+

2q2 + q

2n

)
,

pcoll = Pr(AH̃MAC(·) ⇒ C) ≤ εCsc +

(
q2

2τ+1
+

2q2 + q

2n

)
.

In turn, the advantage εCsc may simply be bounded by the “hybrid argument”

εCsc ≤ AdvPRFCsc (BI2) + AdvPRFCsc (BO2).

The algorithms BI2 and BO2 make q queries each. Queries from the first algo-
rithm are no longer than l′ = (l + 1) block. If τ = 256 (resp. τ = 512) then
BO2 makes 2-block (resp. 3-block) queries. �

By using the heuristic estimates (1), (6), we obtain
AdvPRFHMAC-Streebog(t, q, l) /

/
2 · t′

2k
+

(
2 · t′ · q · l′

2n
+

q2

2n+1

)
+

(
2 · t′ · q · l′τ

2n
+

q2

2n+1

)
+

2q2 + q

2n
+

q2

2τ+1
≤

≤ t′

2k−1
+
t′ · q · l′′

2n−1
+

3q2 + q

2n
+

q2

2τ+1
, (8)

22

where l′ = l + 1, l′τ ∈ {2, 3}, l′′ = l + 4.
Hence, for the case τ = n, estimate (8) is close to the same (7) for

Streebog-K.
However, for the 256-bit version (τ = n

2), the most significant may be the
last τ -dependent term. In this case, we can speak about “k-bit security” only
if ql < 2n−k−1 and q < 2

n
2−k. We don’t know the matching forgery attack for

this case, but the distinguishing is trivial. For q = 2
n
2−1, the probability of a

collision among the outputs of a random function is about half as low as the
corresponding probability for HMAC-Streebog-256.

Figure 2: HMAC-Streebog-512 with equivalent representation. The message M consists of
L < 512 bits.

23

Figure 3: HMAC-Streebog-256 with equivalent representation. The message M consists of
L < 512 bits.

24

