
Homomorphic polynomial evaluation using Galois
structure and applications to BFV bootstrapping

Hiroki Okada2, Rachel Player1, and Simon Pohmann1

1 Royal Holloway, University of London, UK
2 KDDI Research, Japan

Abstract. BGV and BFV are among the most widely used fully homo-
morphic encryption (FHE) schemes. Both schemes have a common plain-
text space, with a rich algebraic structure. Our main contribution is to
show how this structure can be exploited to more efficiently homomor-
phically evaluate polynomials. Namely, using Galois automorphisms, we
present an algorithm to homomorphically evaluate a polynomial of degree
d in only 3 log(d) (in some cases only 2 log(d)) many ciphertext-ciphertext
multiplications and automorphism evaluations, where d is bounded by
the ring degree. In other words, as long as the degree of the polynomial
is bounded, we achieve an exponential speedup compared to the state
of the art. In particular, the approach also improves on the theoretical
lower bound of 2

√
d many ciphertext-ciphertext multiplications, which

would apply if automorphisms were not available.
We investigate how to apply our improved polynomial evaluation to the
bootstrapping procedure for BFV, and show that we are able to signif-
icantly improve its performance. We demonstrate this by providing an
implementation of our improved BFV bootstrapping using the Microsoft
SEAL library. More concretely, we obtain a 1.6× speed up compared
to the prior implementation given by Chen and Han (Eurocrypt 2018).
The techniques are independent of, and can be combined with, the more
recent optimisations presented by Geelen et al. (Eurocrypt 2023).
As an additional contribution, we show how the bootstrapping approach
used in schemes such as FHEW and TFHE can be applied in the BFV
context. In particular, we demonstrate that programmable bootstrapping
can be achieved for BFV. Moreover, we show how this bootstrapping
approach can be improved in the BFV context to make better use of
the Galois structure. However, we estimate that its complexity is around
three orders of magnitude slower than the classical approach to BFV
bootstrapping.

Keywords: homomorphic encryption, bootstrapping, implementation

1 Introduction

Fully homomorphic encryption (FHE) allows computations on encrypted data,
without decrypting it or having access to the secret key. After the existence of

2 Hiroki Okada, Rachel Player, and Simon Pohmann

such schemes had been an open problem for many years, Gentry [23] proposed
the first FHE scheme based on lattices. Since then, much work has been done
to develop more efficient and practical schemes. The BFV scheme [20] and the
related BGV scheme [8], which follow from the line of work [9, 7], are among the
most widely implemented today. Other FHE schemes include the TFHE family of
schemes [27, 18, 17]. Notable also is the CKKS scheme [15], which is technically
similar to BFV and BGV, but which differs in that it is an approximate rather
than an exact scheme and in that it encrypts real numbers rather than elements
in a polynomial ring.

The schemes [20, 8, 27, 18, 17, 15] all base their security on the Learning
with Errors (LWE) problem [48], and hence add some noise when encrypting a
message. For the exact schemes, as long as this noise is small enough, it can be
removed during decryption and the exact message can be recovered. However, ho-
momorphic operations increase the noise, and after a sufficiently long sequence of
operations, the noise will exceed a certain threshold and decryption will fail. The
breakthrough of [23] that allows arbitrary computations is the technique called
bootstrapping, that provides a mechanism to periodically refresh the noise. The
idea is simple: to perform the decryption homomorphically, using an encryption
of the secret key. This way, the party performing the bootstrapping does not
need the actual secret key in order to evaluate the decryption. However, it does
require an additional circular security assumption that, roughly speaking, states
that publishing an encryption of the secret key does not help break the scheme.

Bootstrapping for BGV and BFV has traditionally been considered together,
due to the technical similarities between the two schemes. Early work approached
BGV and BFV bootstrapping via boolean circuits [25]. The main idea was to
represent the bootstrapping procedure using bitwise operations, making“simple”
operations like multiplication quite expensive.

The algebraic structure of BGV and BFV enables their plaintext spaces to be
decomposed into slots, providing single-instruction-multiple-data (SIMD) paral-
lelism [50]. This speed up can be applied to improve bootstrapping [26]. This
technique is absolutely vital for performance, and has equally been applied to
present batched bootstrapping for the FHEW and TFHE scheme [45, 28].

Starting with [2], a line of work [30, 12, 22] then developed an approach for
bootstrapping that avoids using boolean circuits. The main insight is that it is
possible to use the algebraic structure of the plaintext space “naturally” during
homomorphic decryption. In doing so, algebraic operations can directly be im-
plemented via the corresponding homomorphic operations, vastly decreasing the
overhead. However, non-algebraic operations (in particular, rounding) become
more expensive, as they have to be implemented with polynomials.

In this paper, we continue the line of work [2, 30, 12, 22], and present new
algebraic optimisations that can further improve the bootstrapping procedure
for the BFV and BGV scheme. While we will perform our analysis only on BFV,
we remark that the same techniques can be applied to BGV in a straightforward
way.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 3

1.1 Our contribution

Many BFV and BGV parameter sets used in practice have the apparent dis-
advantage of providing few plaintext slots of high algebraic rank, leading to a
loss of parallelism. Our first main contribution is to show an advantage of the
algebraic structure of these high rank slots. Namely, we show that the algebraic
structure can be exploited to evaluate scalar polynomials more efficiently than is
possible using generic approaches (e.g. Paterson-Stockmeyer), or with the prior
methods of [47, 43]. In particular, we show how one can use the Galois structure
within these high-rank slots to evaluate polynomials using only 3 log2(d) key-
switch operations (or in some cases even only 2 log2(d) key-switch operations).
This significantly improves on the previously required number of at least 2

√
d

key switches. We apply this technique to the evaluation of the lifting polynomials
used during BFV bootstrapping in power-of-two cyclotomic rings.

We remark that our techniques for improved polynomial evaluation are not
just applicable to bootstrapping. Intuitively speaking, they can be used for any
homomorphic evaluation of a polynomial, where the plaintext space has a high
algebraic rank and the polynomial is only evaluated on elements of the prime
field (respectively prime ring). As such, our results may be of wider interest.

Our second main contribution is to provide a new implementation of BFV
bootstrapping in the Microsoft SEAL [49] library. This incorporates our im-
proved approach to evaluating the lifting polynomials using the Galois struc-
ture. A previous implementation of BFV bootstrapping in SEAL has been re-
ported [12], but the source code is not publicly available. Our performance results
show that our new techniques give a notable speedup compared to the previous
state of the art, being a factor of 1.6 faster than [12].

Our third main contribution is to consider the applicability to BFV of the
bootstrapping techniques used in the TFHE family of schemes [27, 18, 17]. In
particular, we demonstrate that so-called programmable bootstrapping, usually
considered possible only in the TFHE context (see e.g. [4]), can also be achieved
for BFV. Programmable bootstrapping refers to computing an arbitrary, unary
function during the bootstrapping process. We propose new optimisations that
again make use of the Galois structure to improve the applicability of these tech-
niques in the BFV context. We present a theoretical comparison of a TFHE-style
bootstrapping for BFV to the classical approach, which shows that it is expected
to be at least three orders of magnitude slower, and so we did not implement it.
Nevertheless, we expect this contribution to be of theoretical interest.

1.2 Improved polynomial evaluation

Our improvements for polynomial evaluation in BFV rely on the use of Galois
theory and the field-theoretic norm N(·) and trace Tr(·). As observed in previous
work (see e.g. [29, 24]), we can compute them in a BFV plaintext slot

S := Fp[X]/(f), where f ∈ Fp[X] is irreducible,

4 Hiroki Okada, Rachel Player, and Simon Pohmann

using only 2 log([S : Fp]) operations. We first combine this with the fact that

N(α− x) = MiPo(α)(x)

when α generates S as a ring and x ∈ Fp, where MiPo(α) the minimal polynomial
of α. This enables us to evaluate irreducible polynomials of degree bounded by
[S : Fp] using only logarithmically many operations. Furthermore, this naturally
extends to plaintext slots of the form (Z/peZ)[X]/(f), and we also study to what
extent this can be used to evaluate non-irreducible polynomials.

Additionally, we introduce an alternative to the above norm-based approach,
which instead uses the field trace. We discuss how the trace-based approach
eliminates the need for heuristic assumptions, and has the advantage of being
applicable to a broader range of problems. These include the evaluation of low-
degree multivariate polynomials, especially of bilinear forms, and the evaluation
of multiple polynomials in the same point. On the other hand, the trace-based
approach has slightly worse performance and is more complicated that the norm-
based approach.

The trace-based approach to evaluate a polynomial g ∈ Fp[X] at x ∈ Fp can
be summarised as follows. First, we compute the value

β :=
∑
i

xiζi,

where ζ is a generator of S with certain properties (it turns out that a root of
unity works). Then, we multiply β by a constant cg to get an element β′ whose
constant coefficient (i.e. coefficient of ζ0) is g(x). Finally, we use the field trace
to extract this constant coefficient, thus finding f(x).

1.3 Programmable bootstrapping for BFV

Programmable bootstrapping is a feature currently offered by the family of
TFHE-type schemes, and refers to computing an arbitrary unary function implic-
itly during the bootstrapping procedure. In other words, a high-noise encryption
of a message m is transformed into a low-noise encryption of f(m). In TFHE-
type schemes, the motivation for computing a function during bootstrapping
is that the decryption algorithm requires a rounding operation. Since rounding
cannot be naturally represented by algebraic operations, it is computed homo-
morphically using techniques for computing a generic function. Thus, replacing
the rounding function by another function that additionally transforms the mes-
sage does not incur additional overhead.

In BFV, this is not completely true, as an algorithm called digit extraction
is known that can compute a rounding operation faster than a generic function
(see Section 3.2). Nevertheless, in cases where a generic function is required to
be computed, it might still be faster to combine evaluation and bootstrapping
into one step. To investigate this, we try to modify the TFHE-bootstrapping
procedure for BFV.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 5

One of the most surprising ideas in TFHE bootstrapping is that, during
the bootstrapping process, messages are stored in the exponent of some basis,
usually a root of unity ζ. At first, this seems strange, because now even addition
of messages requires an expensive homomorphic multiplication. However, this
gives an advantage in the situation that we want to compute an arbitrary unary
function. Namely, given an encryption of ζµ (where µ is the message) and a
sequence ai of elements, we find that the constant coefficient of(∑

aiζ
−i
)
ζµ

is aµ. The use of this phenomena is called blind rotation, since we “rotate” the
sequence ai by the unknown message µ. When this is done, a clever key-switching
technique can be used to retrieve the constant coefficient, i.e. aµ. For details, see
e.g. this excellent guide [34]. While this latter part is scheme-specific3 , a similar
approach might still have some advantages for BFV. Abstractly, an arbitrary
function on the group ⟨ζ⟩ ⊆ F∗

pd is much cheaper to compute than on Z/tZ
(assuming t ≈ ord(ζ)), since we can exploit Galois structure.

To be somewhat more concrete, consider the following simplified scenario:
Assume we have a generic function f : Z/tZ → {0, 1} that we want to evaluate
on a message µ ∈ Z/tZ. However, now suppose that instead of µ, we are given
ζµ where ζ ∈ Fpd is a t-th root of unity. Then f can be computed as

ζµ 7→
∑

y s.t. f(y)=1

1−N(ζµ − ζy)p−1,

where N(·) denotes the field-theoretic norm in Fpd . A fundamental optimization
in the case of BFV would be to replace the basis (i.e. the root of unity ζ) by a
primitive element of Fpd , i.e. a generator α of F∗

pd . Note that this idea does not
work in TFHE, since the norm of encrypted messages in TFHE must be small to
prevent huge noise growth. For BFV however, we can now choose a very small
prime p (e.g. p = 2) and d = logp(t) = log(t), which results in a multiplicative
depth of only log log(t). To compare, if we wanted to compute f(x) directly from
x using a circuit over Z/tZ, this would require multiplicative depth log(t).

Since the repeated computation of the norm is inefficient, we also investigate
other methods with slightly larger multiplicative depth that have better runtime
characteristics. However, we find that all these methods for ‘programmable boot-
strapping’ in BFV are slower than the classical approach for BFV bootstrapping
by about three orders of magnitude.

1.4 Related work

Bootstrapping for the BFV/BGV family of schemes has been developed in the
line of work [30, 12, 21, 22]. We especially want to highlight [21], who also

3 It relies on the fact that in TFHE, two schemes are used. The bootstrapped scheme
is based on LWE, and the “intermediate” scheme uses Ring-LWE.

6 Hiroki Okada, Rachel Player, and Simon Pohmann

proposed an optimisation for lifting polynomial evaluation during bootstrapping.
As we will explain in Section 4.2, their techniques are entirely independent of
ours and can also be combined, for even better performance.

Concurrent to works on BFV/BGV, there is a lot of work being done on
bootstrapping in the TFHE-family. The pioneering works [3, 18] form the ba-
sis of a bootstrapping procedure that uses completely different techniques than
BFV. While these schemes only bootstrap the encryption of a single bit, they
are also much faster. The succeeding works [16, 17] reduced the required time
to lower than 0.1 seconds. More recent work has focused more on key sizes and
formats [35, 39] and decreasing the amortised bootstrapping time when boot-
strapping many messages jointly [44, 45, 28, 40, 41].

An interesting hybrid in this context is [42], in which it is proposed to use
BFV techniques to bootstrap many TFHE-ciphertexts in parallel. To achieve the
best amortised timing, the authors of [42] consider a setting with the maximal
number of slots, whereas our approach gives a speed up when there are fewer
slots of high rank. Combining the two works might thus present an interesting
tradeoff for amortised bootstrapping of TFHE-type ciphertexts via BFV.

Finally, there is also a line of work focusing on bootstrapping for CKKS
[14, 11, 31, 32, 5, 37, 38, 36, 6]. As an approximate homomorphic scheme that
performs non-exact computations on real numbers, the concept of bootstrapping
in CKKS is slightly different. A high-level, non-technical comparison of different
approaches to bootstrapping is given in [4].

1.5 Organisation of the paper

The remainder of the paper is organised as follows. In Section 2, we provide
notation and preliminaries. In Section 3, we give an overview of the classical
approach to bootstrapping, as developed in [30, 12]. In Section 4, we present our
norm-based and trace-based improvements to polynomial evaluation for BFV,
and discuss their application to bootstrapping. In Section 5, we report on our
new implementation of BFV bootstrapping in SEAL, which includes the norm-
based improvements to evaluating the lifting polynomials. In Section 6, we study
the applicability of programmable bootstrapping techniques in the BFV context.

2 Preliminaries

2.1 Algebraic background

We denote by MiPo(α) the minimal polynomial of a field extension element α.
For an integer m and a prime p with p ∤ m, we consider the m-th cyclotomic
polynomial Φm = MiPo(exp(2πi/m)). Mostly, we will assume m = 2N to be
a power of two, and consider Φ2N = XN + 1. We will consider the ring R =
Z[X]/(XN + 1) and its reduction modulo some prime power R/peR.

In this work, we will often require the Galois automorphism of the corre-
sponding field extension (R ⊗ Q)/Q. It is a result of algebraic number theory

Homomorphic polynomial evaluation and applications to BFV bootstrapping 7

that R = OR⊗Q is the ring of integers in R⊗Q, and so there is no confusion if we
denote the Galois group by Gal(R/Z). Furthermore, each Galois automorphism
σ ∈ Gal(R/Z) also induces a natural automorphism

σ : R/peR → R/peR.

Note that the reverse is not true, i.e. there might be automorphisms R/peR →
R/peR that are not induced by a Galois automorphism of R. Hence, we will
sometimes talk about the Galois group Gal((R/peR)/(Z/peZ)) and mean the
group of all automorphisms R/peR → R/peR that are induced by a Galois
automorphism of R.

We note that modulo p, XN +1 factors into n distinct polynomials4 of degree
d, where d = ord(Z/2NZ)∗(p). This factorisation lifts to a factorisation modulo pe

via Hensel’s lemma, and so we see that

R/peR ∼=
n⊕

i=1

S,

where S ⊇ Z/peZ is a free ring extension of rank d. We remark that this situation
behaves almost the same as the simpler case e = 1, in which S ∼= Fpd . In
particular, there is a subgroup G ≤ Gal((R/peR)/(Z/peZ)) of size d that map S
to S, if we fix an embedding S ↪→ R/peR. We denote it by Gal(S/(Z/peZ)) := G.
These are exactly the automorphisms induced by the splitting group

GB = {σ ∈ Gal(R/Z) | σ(B) = B},

where B is any prime ideal of R over p (see e.g. [46, Chapter I.9]).

2.2 The BFV scheme

The basic parameters for the BFV scheme are the ciphertext modulus q, the
plaintext modulus t and the power-of-two cyclotomic ring R. In this paper, we
will always have t = pe, for a prime p. The plaintext space of BFV is then given
as P := R/tR and the ciphertext space is C := (R/qR)2

A BFV ciphertext (c0, c1) ∈ C encrypts a message m ∈ P, if

c0 + c1s =
q

t
m+ ϵ,

where s ∈ R is the secret key, and ϵ ∈ (R ⊗ R)/qR is the noise5, which has to
be small. More precisely, for ϵ =

∑
ϵiX

i ∈ (R ⊗ R)/qR, we define the “norm”
∥ϵ∥ (although it is not a norm) as the ℓ∞-norm of the smallest representative in
R⊗ R. In other words, set

∥ϵ∥ := max
i

∥ϵi∥ := max
i

min
z∈R

z≡ϵi mod qZ

|z|.

4 Since we assume that p ∤ m.
5 A short note on the algebraic structures: Clearly we have a well-defined multiplication
R×R/qR → R/qR, which we can use to define c1s. Furthermore, while (R⊗R)/qR
is not a ring anymore, it is an additive group, which suffices at this place.

8 Hiroki Okada, Rachel Player, and Simon Pohmann

This yields the following description of the BFV cryptosystem:

KeyGen: Choose s ∈ R with coefficients si uniformly in {−1, 0, 1}, i.e. ∥s∥ ≤ 1.
Then sample a ∈ R/qR uniformly and ϵ ∈ R/qR according to a discrete
Gaussian distribution. Output

sk = s, pk = (as+ ϵ, a).

Enc: To encrypt a message m ∈ R/tR with pk = (b, a), sample ϵ, ϵ′ ∈ R/qR
from the discrete Gaussian distribution and u ∈ R uniformly in {−1, 0, 1}
s.t. ∥u∥ ≤ 1. Output

(c0, c1) =
(
bu+ ϵ+

⌊q
t
m
⌉
, au+ ϵ′

)
.

Dec: To decrypt a ciphertext (c0, c1) ∈ C with secret key s, we compute

m =

⌊
t

q
(c0 + c1s)

⌉
.

Decryption correctly recovers the message, if the noise c0 + c1s− q
tm is smaller

than q
2t . Homomorphic addition of ciphertexts is achieved by summing the input

ciphertexts componentwise. Homomorphic multiplication is more complicated,
and we do not present the full details, referring the reader to [20]. We note that
homomorphic multiplication relies on a technique called key switching.

Key switching. Key switching takes an encryption of a message m under a secret
key s, and transforms it into an encryption of m under a different secret key s′.
For this, a key switching key is needed, which is intuitively an encryption of s
under s′.

Apart from supporting multiplication, key switching also allows us to com-
pute the Galois automorphisms Gal(R/Z) homomorphically, since they preserve
the “norm” ∥ · ∥. Namely, if (c0, c1) encrypts m and σ ∈ Gal(R/Z), we have

σ(c0) + σ(c1)σ(s) = σ(c0 + c1s) = σ(q/t m+ ϵ) =
q

t
σ(m) + σ(ϵ).

Therefore, (σ(c0), σ(c1)) is an encryption of σ(m) under σ(s). After key-switching,
we then obtain an encryption of σ(m) under s, since ∥σ(ϵ)∥ = ∥ϵ∥.

Performance and noise growth. In terms of performance, key switching is the
bottleneck of homomorphic computations (and thus the bottleneck in ciphertext-
ciphertext multiplications and evaluation of Galois automorphisms). On the
other hand, additions and plaintext-ciphertext multiplications are almost free.
Because of this, we will measure the performance of different algorithms by the
number of key switches that are required to compute them.

For noise growth, the picture is slightly different. In particular, ciphertext-
ciphertext multiplications cause significant noise growth, while Galois automor-
phisms or additions cause almost negligible noise growth.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 9

Division by p. In BFV bootstrapping, the exact division by p as

p(R/peR) → R/pe−1R, x 7→ x/p

is an important operation. Note that here, we change the plaintext modulus from
pe to pe−1. From the definition of a BFV ciphertext, it is immediately obvious
that we can implement this operation as the identity without any noise growth,
if the value x is exactly divisible by p (i.e. is contained in p(R/peR)). On the
other hand, if x is not exactly divisible by p, it is impossible to naturally perform
the operation homomorphically.

Modulus switching. It is also possible to change the ciphertext modulus q to
another ciphertext modulus q′, by computing

(c′0, c
′
1) :=

(⌊
q′

q
c0

⌉
,

⌊
q′

q
c1

⌉)
.

The secret key and message remain unchanged, but some additional additive
error is introduced. In this work, we only use this technique to switch to the
encrypted message to a small ciphertext modulus directly before beginning the
bootstrapping procedure.

3 Bootstrapping in BFV

In this section, we recall the classical approach to BFV bootstrapping [30, 12].
The BFV bootstrapping procedure is summarised in Fig. 1. Concretely, given a
ciphertext (c0, c1) ∈ C encrypting a message in R/prR, we proceed as follows.
First, we perform a modulus-switch to bring c0, c1 into the plaintext space R/peR
where e > r. The space R/peR is sometimes called the intermediate plaintext
space, as it is only used during bootstrapping. Next, we compute the noisy
message m̃ = c0 + c1s. Next, we perform a linear transformation to extract the
individual coefficients m̃i ∈ Z/peZ of m̃. Next, we compute the rounded division
mi = ⌊m̃i/p

e−r⌉ ∈ Z/prZ (this is known as digit extraction). Finally, we perform
the inverse linear transformation to combine the rounded coefficients mi into the
result m ∈ R/prR.

Slots and the linear transform. The digit extraction procedure can only ever
compute the rounded quotient ⌊m̃i/p

e−r⌉ for a scalar value m̃i ∈ Z/peZ. In
bootstrapping, digit extraction must be called for every coefficient of the noisy
message, i.e.N times. We can use plaintext slots to parallelise this process, noting
that if the plaintext space decomposes into a direct sum of rings S ⊇ Z/peZ as

R/peR ∼=
n⊕

i=1

S,

then we can perform n scalar digit extractions at once, as displayed on the left
side in Fig. 2. To make use of this, we need to move the coefficients of the

10 Hiroki Okada, Rachel Player, and Simon Pohmann

(c0, c1) ∈ C

c0, c1 ∈ R/peR

s ∈ R c0 + c1s =
∑

m̃iX
i

m̃0 m̃1
... m̃N−1

m0 m1 ... mN−1

m =
∑

miX
i

Modulus switch

Lin. transform

Digit extract

Lin. transform

Fig. 1. The abstract bootstrapping procedure for BFV, without using slots. Each
rectangle represents one ciphertext.

noisy message into the slots and back. In [26] it was shown how one can use the
Galois automorphisms to do so. Commonly, this step is referred to as the linear
transformation, even though we are just interested in one specific Z/peZ-linear
map R/prR → R/prR.

Thin/slim bootstrapping. In [12], the authors introduced the notion of “slim
bootstrapping”, displayed on the right in Fig. 2. This refers to the case that the
message to bootstrap contains only one scalar value (i.e. value in Z/prZ) in each
slot. In this case, we do not have to perform digit extraction on each of the N
coefficients, but we only have to retrieve n scalar values. So, we can interchange
the linear transform and the inner product step.

3.1 The linear transform

The basic idea underlying the linear transformation is the fact, established
by [30], that any Z/peZ-linear transform can be written as

α 7→
∑
σ∈G

aσσ(α),

where aσ ∈ R/peR and G = Gal((R/peR)/(Z/peZ)). We can evaluate this some-
what efficiently using a baby-step-giant-step approach: First, we choose subsets

Homomorphic polynomial evaluation and applications to BFV bootstrapping 11

(c0, c1) ∈ C

c0, c1 ∈ R/peR

s ∈ R c0 + c1s =
∑

m̃iX
i

m̃0
... m̃n−1 m̃N−n ... m̃N−1...

...m0 ... mn−1 mN−n ... mN−1

m =
∑

miX
i

Modulus switch

Lin. transform

Digit extract

Lin. transform

m0 ... mn−1

m =
∑

miX
di

(c0, c1) ∈ C

c0, c1 ∈ R/peRs ∈ R

c0 + c1s =
∑

m̃iX
i

m̃0 m̃d
... m̃N−d

m0 m1 ... mn−1

Lin. transform

Digit extract

Lin. transform

Fig. 2. The abstract bootstrapping procedure for BFV using slots, with “fat” boot-
strapping on the left and “thin” bootstrapping on the right. Each rectangle represents
one ciphertext.

G1, G2 ⊆ G of size approximately
√
N such that G1 · G2 = G. Then we can

precompute σ(α) for all σ ∈ G1 and output∑
τ∈G2

τ
(∑
σ∈G1

τ−1(aτσ)σ(α)
)
.

In our case that R = Z[X]/(XN +1) is a power-of-two cyclotomic ring, no better
approach is known. However, if R = Z[X]/(Φm) is the m-th cyclotomic ring such
that m has a nontrivial factorization into coprime factors m1, . . . ,mr, we can do
better (see e.g. [22]).

3.2 Digit Extraction

The idea of digit extraction is to write an input x ∈ Z/peZ in base-p represen-
tation as

x =

e−1∑
i=0

xip
i, for xi ∈ {0, ..., p− 1},

and give an arithmetic circuit for the “extraction function” x 7→ x0. This is done
by the lifting polynomials, defined as follows.

12 Hiroki Okada, Rachel Player, and Simon Pohmann

Proposition 3.1 ([30]). There exists a polynomial f ∈ Z[X] of degree at most p
such that for all 1 ≤ i ≤ e, z0 ∈ {0, ..., p− 1}, and z1 ∈ Z, have

f(z0 + piz1) ≡ z0 mod pi+1.

Proof. Constructed via polynomial interpolation, see Corollary 5.5 in [30].

In particular, a repeated application of this polynomial will “extract” the
least significant digit (in base-p representation) of an input x ∈ Z/peZ. Hence,
for any x ∈ Z/peZ, we find that

x− f◦(e−1)(x) = x− f(...f︸ ︷︷ ︸
(e − 1) times

(x))

is divisible by p, and quotient (x − f◦(e−1)(x))/p is the result of the floor divi-
sion ⌊x/p⌋. By adding p/2 before doing this, we can then compute the rounded
division ⌊x/p⌉.

Extracting multiple digits. Note that we want to compute the rounded division
⌊x/pe−r⌋, i.e. we want to remove the v := e − r least significant digits from x.
Naively, we could do so by removing one digit after another, i.e., we iteratively
compute

x(1) =
x− f◦(e−1)(x)

p
, x(2) =

x(1) − f◦(e−2)(x(1))

p
, . . . ,

x(v) − f◦(r)(x(v))

p
,

and output x(v). This approach has multiplicative depth proportional to ev. To
do better, note that to extract the second least-significant digit of x, it suffices to
run the digit extraction procedure on (x−f(x))/p instead of (x−f◦(e−1)(x))/p.
Note that in the expression x− f(x), the digits 2, . . . , e− 1 may be altered, but
the second digit is still the same as the second least-significant digit of x (and the
least-significant digit is zero). This leads to a triangular computation pattern,
as displayed in [12].

For example, assume e = 5 and r = 2. Then we compute the values as
in Fig. 3 where xij = xi + pj+1z for some z ∈ Z with the p-adic decomposition
x =

∑
xip

i, xi ∈ {0, ..., p− 1}.

Improvements for larger r. Chen and Han [12] proposed the use of a second poly-
nomial in addition to the lifting polynomial, which can reduce the multiplicative
depth in the case r > 1.

Proposition 3.2 (Adapted from [12, Lemma 3]). There is a polynomial g ∈ Z[X]
of degree at most (e − 1)(p − 1) + 1 such that for z0 ∈ {−⌊p−1

2 ⌋, ..., ⌈p−1
2 ⌉} and

z1 ∈ Z we have

g(z0 + pz1) ≡ z0 mod pe.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 13

x x01 x02 x03 x04

x10 x11 x12 x13

x20 x21 x22

Fig. 3. Multiple digit extraction illustration for e = 5 and r = 2.

In other words, this directly extracts the least-significant digit of x. Or, to
phrase it in terms of Fig. 3, we directly compute xi0 7→ xi(e−i−1). Since we require
the intermediate values xij for i+ j ≤ v to compute x(i+j)0, we can only use this
to “shorten the tail” in Fig. 3, i.e. to avoid computing xij for v− i ≤ j < e− i−1.
However, if r > 1, this leads to an improvement in terms of multiplicative depth,
which increases as r increases.

The work [21] characterises of all polynomials g ∈ Z[X] such that

g(z0 + pz1) ≡ z0 mod pe

for all z0 ∈ {−⌊p−1
2 ⌋, ..., ⌈p−1

2 ⌉}. In particular, if e > 1, the ring Z/peZ is no
longer a field, and there can be many such polynomials, any of which would suffice
for bootstrapping. This includes both the lifting polynomials from Prop. 3.1 and
the polynomials from Prop. 3.2. Moreover, it is also shown in [21] how to find
other polynomials that have lower degree or other favourable properties.

4 Evaluating polynomials

In this section, we present our improvements to the classical approach to BFV
bootstrapping, as described in Section 3.

We have seen that for the digit extraction step during BFV bootstrapping,
we have to homomorphically evaluate a polynomial f ∈ (Z/peZ)[X] of degree p
(or even of degree (e− 1)(p− 1) + 1) at a point in Z/peZ. Since this polynomial
is the result of interpolation, there seems to be no special structure that we can
exploit for more efficient computation. Hence, we are interested in methods to
evaluate a fixed, generic polynomial.

We note that efficient computations of generic polynomials (often viewed as
“lookup tables”) have already been discussed in the literature (e.g. [33]), and
in many cases, the Galois structure is used. We will also use a Galois-based
technique to efficiently compute a function R/pR → Z/pZ in Section 6.1. This
section differs from these examples mainly in the fact that the functions we

14 Hiroki Okada, Rachel Player, and Simon Pohmann

consider are over the scalar ring Z/peZ. At first glance, one might think that
this eliminates all possibilities for using the Galois group action, but this is not
the case, as we will see soon.

As ciphertext-ciphertext multiplications (as opposed to plaintext-ciphertext
multiplications or additions) require key switches, they are the most expen-
sive operations. Therefore, we seek to minimise this kind of operation. In alge-
braic complexity theory, this metric is also known as nonscalar complexity (since
plaintext-ciphertext multiplications are considered scalar operations). In e.g. [10,
Prop. 9.2], it is shown that the best way to evaluate a polynomial as an arith-
metic circuit is the Paterson-Stockmeyer method, a variant of which was also
used by [12, 21].

Paterson-Stockmeyer. In spirit, the Paterson-Stockmeyer approach uses a baby-
step-giant-step idea. Assume the polynomial f of degree d is given by

f =

d∑
i=0

aiX
i.

On input x, we can now compute the values

1, x, x2, ..., xm

for m = ⌈
√
d⌉ using m− 1 multiplications. Now write f as

f =

⌊d/m⌋∑
i=0

Xmi
m−1∑
j=0

aim+jX
j

︸ ︷︷ ︸
=:fi

.

Since we have precomputed xj for j ≤ m, we can now evaluate all fj at x without
further ciphertext-ciphertext multiplication. After that, since we also have xm,
we can compute f(x) from the fi(x) using Horner’s method, i.e., as

f(x) = f0(x) + xm
(
f1(x) + xm

(
...

(
f⌊d/m⌋−1(x) + xmf⌊d/m⌋(x)

)
...
))

using ⌊d/m⌋ ≤ m further multiplications. This results in nonscalar complexity
2
√
d. We remark that this has a low nonscalar complexity, but a (relatively)

high multiplicative depth ≥
√
d. For FHE computations, it can thus be better to

use variants with slightly higher nonscalar complexity but multiplicative depth
logarithmic in d.

The Paterson-Stockmeyer method is optimal for generic (more precisely,
Zariski-all) polynomials in the arithmetic circuit model. However, in addition
to additions and multiplications, we can also homomorphically compute the Ga-
lois automorphisms, and thus go beyond that model. In the rest of this section,
we show how to exploit this to compute the polynomial evaluation using signif-
icantly less than 2

√
d multiplications/key-switches.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 15

4.1 Using the norm

When the polynomials and the inputs are given in plain, using Galois auto-
morphisms can already lead to small improvements, as shown in [19]. Yet their
usefulness is somewhat limited by the fact that arithmetic in algebraic extension
fields with nontrivial Galois group is very expensive. If Galois structure is used,
it is often to reduce the situation to the scalar case. In contrast, in our situa-
tion, since the high ring degree of the plaintext/ciphertext space is necessary for
security, we get the extension field arithmetic “for free”. This opens up a lot of
possibilities, even in the case where all inputs are already in the prime field.

In this subsection we show how to improve polynomial evaluation using the
norm in the ring extension S ⊇ (Z/peZ) of rank d = 2l. As in the field case, we
define the norm of α ∈ S as

NS/(Z/peZ)(α) := det(mα),

where mα : S → S, x 7→ αx is the multiplication-by-α map. Then, NS/(Z/peZ)(α)
is also the constant coefficient in MiPo(α) and

NS/(Z/peZ)(α) =
∏

σ∈Gal(S/(Z/peZ))

σ(α),

given that S = (Z/peZ)[α].
The connection to polynomial evaluation is given by the next standard result

of field theory.

Proposition 4.1. Assume S = (Z/peZ)[α]. Then for x ∈ Z/peZ have

NS/(Z/peZ)(α− x) = MiPo(α)(x).

Proof. If S = (Z/peZ)[α] then also S = (Z/peZ)[α − x], and so α − x also has
degree d over Z/peZ. Now MiPo(α)(T + x) has the root α − x and is of degree
d, so MiPo(α− x) = MiPo(α)(T + x). If we now set MiPo(α) =

∑
aiT

i, we see
that

MiPo(α− x) =

d∑
i=0

ai(T + x)i =

d∑
i=0

i∑
j=0

(
i

j

)
aiT

jxi−j =

d∑
j=0

T j
d∑

i=j

(
i

j

)
aix

i−j

has the constant coefficient

d∑
i=0

(
i

0

)
aix

i = MiPo(α)(x).

The constant coefficient of the minimal polynomial is the norm, and the claim
follows.

As mentioned before, the norm can also be described as

NS/(Z/peZ)(α) =
∏

σ∈Gal(S/(Z/peZ))

σ(α).

16 Hiroki Okada, Rachel Player, and Simon Pohmann

As in the case of finite fields, we know that Gal(S/(Z/peZ)) is cyclic of order d
and generated by the Frobenius automorphism6 π : S → S. In the case that we
are most interested in, d is a power of two, and so we can factor the norm as

NS/(Z/peZ)(·) = (id · π) ◦ (id · π2) ◦ (id · π4) ◦ ... ◦ (id · πd/2).

This gives us an algorithm to compute the norm of an arbitrary element in S,
using only log2(d) ciphertext-ciphertext multiplications and as many Galois au-
tomorphisms. To use this for the evaluation of polynomials, we need the following
additional assumption.

Heuristic 4.2. Let f ∈ (Z/peZ)[T] be a polynomial. Then there is g =
∑

aiX
2i ∈

(Z/peZ)[T] of degree less than deg(f) such that f + g is irreducible.

Note that the fraction of monic irreducible polynomials of degree r in Fp[T]
is about 1/r, and the corresponding result then also holds for the irreducible
polynomials in (Z/peZ)[X]. Hence, if we assume the heuristic that any given
polynomial of degree r is irreducible with probability 1/r (and this is independent
for all polynomials), the probability that Heuristic 4.2 holds for deg(g) = 1 (i.e.
there is c with f + c is irreducible) is about

1− (1− 1/r)p ≳ 1− exp(−1) > 0.6

as wlog r ≤ p. This probability goes very close to 1 as deg(g) increases. Thus,
we find Heuristic 4.2 a reasonable assumption.

Corollary 4.3. Let f ∈ (Z/peZ)[T] with deg(f) < 2l = d. Assume Heuristic 4.2
for a polynomial depending on f . Then we can evaluate f at x ∈ Z/peZ using
3l key switches and multiplicative depth l (over S).

Proof. Consider f ′ = T d+f(T) and g ∈ (Z/peZ)[T] such that f ′+g is irreducible.
Then there is α ∈ S such that MiPo(α) = f ′ + g. Hence, on input x ∈ Z/peZ,
we first compute the values

1, x, x2, x4, ..., x2l

using l multiplications. From this, we can then compute g(x) without further
multiplications. Finally, we compute

NS/(Z/peZ)(α− x)

6 This is no longer the map α 7→ αp, but the unique map π that makes the diagram

S S

Fpd Fpd

π

mod p mod p
α 7→ αp

commute. It is induced by a σ ∈ Gal(R/Z) s.t. σ : R/B → R/B is the Frobenius,
where B ≤ R is a prime over p.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 17

using l multiplications and l automorphisms, and output

f(x) = NS/(Z/peZ)(α− x)− xd − g(x).

For certain polynomials which wish to evaluate in practice, we can do even
better. In particular, we assume the following stronger version of Heuristic 4.2.

Heuristic 4.4. Let f ∈ (Z/peZ)[X] be a polynomial. Then it is quite likely that
there is c ∈ Z/peZ such that f + c is irreducible.

While Heuristic 4.4 does not hold in many cases, there are still relevant
situations in which it does. In particular, bootstrapping for some parameters
sets is among them, as we will illustrate in Example 4.6.

Corollary 4.5. Let f ∈ Fp[T] monic of degree deg(f) = 2l + 1, and have d = 2l.
Assume Heuristic 4.4 for a polynomial depending on f . Then we can evaluate f
at x ∈ Z/peZ using 2l + 1 key switches and multiplicative depth l + 1 (over S).

Proof. Write f =
∑d+1

i=0 aiT
i and consider the polynomial

f ′ =

d∑
i=0

ai+1T
i.

We assume there is c ∈ Z/peZ such that f ′ + c is irreducible, so there is α ∈ S
with MiPo(α) = f ′ + c. Now we can compute

f(x) = (NS/(Z/peZ)(α− x)− c) · x+ a0.

To summarise, the results of this subsection show how, if a particular heuris-
tic assumption holds, we can evaluate a polynomial f using only 2 log2(deg(f))
key switch operations. This is a significant speedup compared to the 2

√
deg(f)

key switch operations required for the Paterson-Stockmeyer method. In Exam-
ple 4.6 we show that this can be applied to the lifting polynomials during BFV
bootstrapping for certain parameter sets.

Example 4.6 (Applicability of Heuristic 4.4 in the case p = 257). A popular
parameter choice for bootstrapping is the case p = 257 and e = 3. In this case,
we have d = 256 and n = N/d for N ≥ 210. Furthermore, the lifting polynomial
flift ∈ (Z/2573Z)[x] is

flift = x257 + 16941697x256 + 12048417x257 + ...+ 11690673x2 + 12066407x.

Since we want to use Corollary 4.5, we want to compute flift/x fast. Note here
that flift has no constant term, so we can just divide out x.

By Hensel’s lemma, irreducibility only depends on the value modulo p, so it
suffices to consider f := flift/x mod 257 ∈ F257[x]. Since irreducibility testing
for polynomials over F257 is available in all major algebra packages, it is trivial to
check for all c ∈ F257 whether f+c is irreducible. Using SAGE, we find that f+3
is indeed irreducible. Now we can extract a root α̃ ∈ F257256 = S/pS of f + 3.
Using the algorithmic version of Hensel’s lemma, we can then lift α̃ ∈ F257256 to
a root α ∈ S := (Z/257256Z)[ζ] of flift/x+3. Finally, we compute the evaluation
as

flift(x) = (NS/(Z/2573Z)(α− x)− 3) · x.

18 Hiroki Okada, Rachel Player, and Simon Pohmann

4.2 Using the trace

In this subsection we show how to improve polynomial evaluation using the trace
in the ring extension S ⊇ (Z/peZ) of rank d = 2l. As for the norm, we define the
trace as the trace of the multiplication-by-α map mα : x 7→ αx. As expected, it
is equal to

TrS/(Z/peZ)(α) =
∑

σ∈Gal(S/(Z/peZ))

σ(α).

This avoids the heuristics needed in Section 4.1 and may be applicable to improve
the evaluation of a broader class of polynomials. The trace approach has further
advantages, that we describe in Section 4.3. However, to our knowledge, the
trace approach cannot match the number of 2 log2(d) key switches, and will thus
perform worse than the norm approach described in Section 4.1. For this reason,
we did not implement the trace approach.

For this subsection, we assume further that S is generated by a primitive
2N -th root of unity ζ with N a power of two. This is exactly the case that we
are typically interested in for FHE.

Lemma 4.7. Given x ∈ S, we can compute α1, ..., αl in 2l−2 multiplications and
multiplicative depth l, where

αk :=

2k−1∑
i=0

xi.

Proof. We have the factorisation

αk =

2k−1∑
i=0

xi =

k−1∏
i=0

(1 + x2i).

Hence, we can first compute the values x, x2, x4, ..., x2l−1

using l− 1 multiplica-
tions, and then compute the product

(1 + x)(1 + x2)(1 + x4)...(1 + x2l−1

).

using l − 1 more multiplications. Note that computing this product from left
to right, we achieve multiplicative depth l and produce all the αi, i < l as
intermediate results.

Lemma 4.7 applied to xζ allows us to jointly compute all the powers of x up
to a point. This way, we find

2l−1∑
i=0

xiζi.

To deduce the value of any polynomial f(x) with deg(f) ≤ 2l − 1 from this,
it is then sufficient to compute a Z/peZ-linear transformation. However, if we
want to be able to do this in logarithmically many key switches, we still have to

Homomorphic polynomial evaluation and applications to BFV bootstrapping 19

choose a linear transformation that we can compute extraordinarily fast. As it
turns out, the trace in the ring extension S/(Z/peZ) is suitable for this.

First, we prove that the minimal polynomial of ζ is sparse in a certain sense.

Lemma 4.8. MiPo(ζ) = T d + aT d/2 + b for a, b ∈ Z/peZ.

Proof. A proof is given in the Supplementary Material of the full version.

Lemma 4.8 clearly implies that Tr(ζk) = 0 for k < d, unless k ∈ {0, d/2}. We
want to use this to compute the linear transform

S → S,
∑
i

aiζ
i 7→ a0

using only logarithmically many Galois operations.

Lemma 4.9. Let d = 2l and consider α =
∑d−1

i=0 xiζ
i ∈ S. We can compute x0

and xd/2 from α using l Galois automorphisms (and no nonscalar multiplica-
tions).

Proof. Lemma 4.8 yields that MiPo(ζ) = T d + aT d/2 + b, and so

Tr(ζk) =

d if k = 0,

−a if k = d/2,

0 otherwise.

Now note that π(ζd/2) = −ζd/2 and π2i(ζd/2) = ζd/2 for any i > 0. This means
we can compute

β :=
(
(id + π2) ◦ (id + π4) ◦ ... ◦ (id + πd/2)

)
(α)

and it takes us l−1 Galois automorphisms to do so. Now we have by the linearity
of Tr function,

Tr(α) = (id + π)(β) = dx0 + (−a)xd/2, and

Tr(αζd/2) = (id− π)(β)ζd/2 = (−a)x0 + Tr(ζd)︸ ︷︷ ︸
=a2−bd

xd/2.

Finally, we can solve the system for x0 to find constants c0, c1 depending only
on a, b, d such that

x0 = c0(id + π)(β) + c1(id− π)(β)ζd/2

and constants c′0, c
′
1 such that

xd/2 = c′0(id + π)(β) + c′1(id− π)(β)ζd/2.

This only requires computing one more Galois automorphism, namely π(β).

20 Hiroki Okada, Rachel Player, and Simon Pohmann

Combining Lemma 4.9 with Lemma 4.7 enables us to compute polynomials.

Corollary 4.10. Let f ∈ (Z/peZ)[T] with deg(f) < 2l = d. Assume that deg(f) <
d/2 or MiPo(ζ) = T d + a. Then we can evaluate f at x ∈ Z/peZ using 3l − 2
key switches and multiplicative depth l (over S).

Proof. First, compute

α =

D−1∑
i=0

xiζi

as in Lemma 4.7, where D = d/2 if deg(f) < d/2 and D = d otherwise. Let
f =

∑
aiT

i. Then compute (without any further key switches)

β =
(deg(f)∑

i=0

aiζ
−i
)
α =

(deg(f)∑
i=0

aiζ
−i
)(D−1∑

i=0

xiζi
)
=

D−1∑
i=− deg(f)

ζi
D−1∑
j=0

aj−ix
j ,

where we set ai = 0 if i > deg(f) or i < 0. Now the constant term of β is clearly
f(x) =

∑
aix

i, since by assumption no ζi for i ∈ {−deg(f), ..., D− 1} \ {0} has
any constant term. Finally, extract that constant term using Lemma 4.9.

4.3 Advantages of the trace approach

Evaluating bivariate polynomials. In contrast to the norm-based methods, we
can use the trace-based approach for evaluating a wider class of polynomials.
For example, we can evaluate a bivariate polynomial f ∈ (Z/peZ)[X,Y] with
bounded degree in each variable degX(f),degY (f) < 2⌊l/2⌋. This is done by first
computing

α1 =

2⌊l/2⌋−1∑
i=0

xiζi and α2 =

2⌊l/2⌋−1∑
i=0

yiζ2
⌊l/2⌋i

and then using Lemma 4.9 to extract the constant term from cα1α2, where
c ∈ S is an appropriate constant. While this may not be directly applicable to
bootstrapping, it might still be valuable for other homomorphic operations.

Evaluating many polynomials at one point. The trace based approach is advan-
tageous in the case that we want to evaluate multiple polynomials f1, ..., fs of
degree d in the same point x. Using a variant of Paterson-Stockmeyer, we can
do this in 2

√
ds multiplications (using

√
ds baby steps and s times

√
d/s giant

steps). The norm-based method still improves on that, and would give 2s log(d)
key switches. However, for the trace method, we only have to compute

α =

d−1∑
i=0

xiζi

once, using 2 log(d) multiplications. Evaluating then every fj(x) from α then
only takes log(d) further key switches, thus in total (s+2) log(d) < 2s log(d) key
switches.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 21

p N r e n d Corollary 4.5 usable? log2(q) Estimated levels

127 215 1 3 64 512 No 881 34/10

257 215 1 2 128 256 Yes 881 33/19

Table 1. Parameter sets used in our BFV bootstrapping implementation. The set
(p, e) = (257, 2) has a small chance of noise-related decryption failure. This can be
mitigated either by choosing e = 3 and accepting fewer levels, or by using a somewhat
sparse secret for reduced noise growth.

This situation is relevant to bootstrapping. For example, it is shown in [21]
how to decrease the multiplicative depth in the case r > 0 by evaluating multiple
digit retain polynomials in the same point x with respect to different e.

Another example of this situation is in [33], where the evaluation requires
the output of a scalar function to be put into the exponent, i.e. it is required to
compute

f̃ : Z/pZ ⊆ R/pR → R/pR, a 7→ γf(a)

for some function f : Z/pZ → Z. This is implemented by decomposing f into its
bits, i.e. f(x) =

∑
2ifi(x), and then computing

f̃(x) =
∏
i

(
fi(x)γ

2i + (1− fi(x))
)

so that all the functions fi are evaluated at the same point x ∈ Z/pZ.

5 Implementation and results

We implemented classical BFV bootstrapping with our norm-based improve-
ments from Section 4 in the Microsoft SEAL library [49]. We note that the
advantages of the trace-based approach discussed in Section 4 are not relevant
for the application to bootstrapping, and hence we did not implement it.

To our knowledge, this is the second implementation of BFV bootstrapping
in SEAL, the first one being [12]. However, their source code does not seem to be
publicly available. Some of the parameter choices also differ, as explained below.

Parameters. Our performance results are given for two different parameter sets,
which are summarised in Table 1. These parameter sets are similar to the ones
used by [12], with the following exceptions. First, we used a uniform ternary
secret distribution, instead of a sparse secret. This change affects noise growth
and security. To compensate for the increased noise, we choose e = 3 for p = 127
instead of e = 2. Also, since sparse secrets are expected to be less secure, a
smaller ciphertext modulus q (with log2(q) = 806) was used in [12], whereas
we are able to use a larger q. In our implementation, the ciphertext modulus q
was automatically chosen by SEAL to target a security level of 128 bits for ring
dimension N , Gaussian error distribution with standard deviation σ = 3.2, and
uniform ternary secret.

22 Hiroki Okada, Rachel Player, and Simon Pohmann

Settings that are out of scope. In our implementation, we only consider parameter
sets with r = 1. In the case r > 1, we would also have to implement digit retain
polynomials and the techniques of [21] to achieve state-of-the-art performance
and noise growth. Note that these techniques can be combined with our trace-
based improvements as described in Section 4.2. However, choosing the right
digit retain polynomial is highly nontrivial, and we decided not to include it in
our implementation.

Since our optimizations require high algebraic rank, we also do not consider
parameters that provide a high number of low-rank slots, as e.g. used in [30, 13,
21]. Note that these settings require either very large plaintext moduli or non-
power-of-two cyclotomic rings, both of which have significant disadvantages.

Finally, we also do not want to compare with schemes that bootstrap together
with every operation. This includes the classical TFHE family of schemes [17, 18],
their batched variants [44, 45, 28] and also the BFV-based bootstrapping scheme
for TFHE [42]. Such a comparison is difficult, as the number of bootstrapping
executions in our case is not necessarily proportional to the number of gates, but
depends significantly on the shape of the evaluated circuit.

Performance. The implementation was tested on a system with an Intel i7-
7700K 4.20GHz CPU and 16GB Ram. This system is slightly faster than the
one used by [12], with an Intel i7-4770 3.40GHz CPU and 32 GB Ram. However,
the difference in system speed is much smaller than our speedup, demonstrating
that the new techniques can indeed improve bootstrapping performance. Both
implementations are single-threaded.

The performance for slim bootstrapping with both parameter sets is dis-
played in Table 2 and Table 3. Note that the performance is expected to be
quite sensitive to parameter choices, since the choice of prime p influences the
number of slots, the degree of the lifting polynomial, and whether we can use
the improved variant of norm-based evaluation given by Corollary 4.5. While [12]
does not report timings for the parameter set (p, e) = (127, 3), we do not expect
our implementation to yield a significant speedup here. The reason is that we
decrease the number of key-switches during digit extraction from about 2

√
p to

3 log2(p), but

2
√
127 ≈ 23 and 3 log2(127) ≈ 21.

The situation is different for p = 257, not only due to the larger difference
between

√
p and log2(p) in this case, but also since this parameter set supports

the improved version of Corollary 4.5 and so costs only 2 log2(p) key switches.
We see from Table 3 that our norm-based improvements result in a speed up of
1.6× compared to the prior reported implementation [12].

Source code. The source code is available at our github repository7. Our im-
plementation provides a convenient interface to compute arbitrary linear trans-
formations efficiently. However, the interface to use the advanced polynomial
evaluation techniques currently requires complicated precomputations of the

7 https://github.com/FeanorTheElf/galois-bootstrapping

https://github.com/FeanorTheElf/galois-bootstrapping

Homomorphic polynomial evaluation and applications to BFV bootstrapping 23

Key switches Time (our impl)

Slots to Coeffs 22 7.5s

Coeffs to Slots 30 7.8s

Digit Extract 63 17.0s

Total 115 32.3s

Table 2. Performance data for the (p, e) = (127, 3) dataset. Since [12] uses sparse
secrets, they do not consider this dataset but instead choose (p, e) = (127, 2).

Key switches Time (our impl) Time [12]

Slots to Coeffs 22 7.9s -

Coeffs to Slots 30 8.6s -

Digit Extract 17 5.6s -

Total 69 22.1s 36.8s

Table 3. Performance data for the (p, e) = (257, 2) dataset. Here we also included the
timings that were reported by [12].

polynomials. To present the implementation results in this paper, these pre-
computations were done using SAGE and the results were hardcoded.

6 TFHE-style programmable bootstrapping for BFV

In this section, we depart from the classical approach to BFV bootstrapping, as
described in Section 3, and as improved upon in Section 4. Instead, we consider
a new approach to bootstrapping BFV using techniques from the literature on
TFHE bootstrapping. As a main feature, this enables us to demonstrate pro-
grammable bootstrapping for BFV in Algorithm 1. For full details of the TFHE
bootstrapping procedure we refer the reader to the excellent guide [34].

6.1 A TFHE-style bootstrapping approach for BFV

Recall that BFV decryption is given as

m =

⌊
t

q
(c1s+ c0)

⌉
∈ R/tR,

where the ciphertext ring is R/qR and the plaintext ring is R/tR, where R is
generated by a 2N -th primitive root of unity ζ. Before evaluating decryption
homomorphically, we will perform a modulus switch such that c0, c1 ∈ R/TR,
where T < q is a ciphertext modulus as small as possible, without exceeding the
noise threshold. Then, we are left instead with evaluating the expression

m =

⌊
t

T
(c1s+ c0)

⌉
∈ R/tR .

24 Hiroki Okada, Rachel Player, and Simon Pohmann

While we still work in the ring R, assume for now that our message is scalar,
i.e. m ∈ Z/tZ. Thus, the first step is to compute the noisy message

m̃ = c00 + c10s0 −
N−1∑
i=1

c1isN−i ∈ Z/qZ,

the constant coefficient of c0 + c1s, where

ci =
∑

cijX
j and s =

∑
sjX

j .

As in TFHE bootstrapping, we do not directly compute m̃ but instead αm̃ where
α ∈ S = Fpd is a primitive element of one degree-d slot S. In particular, this
allows us to take a very small bootstrapping plaintext modulus p < t during
bootstrapping, since we only require that T ≤ pd. While a small plaintext mod-
ulus decreases noise, this now requires a vast number of multiplications. Namely,
we have to compute

αm̃ = αc0(αs0)c10
N−1∏
i=1

(α−si)c1(N−i) .

Usually, we would do this in N log(T) multiplications, by providing encryptions

of α±si2
j

in the bootstrapping key (for all j). After we homomorphically compute
αm̃, we then can proceed to find

f(⌊t/T · m̃⌉) ∈ {0, 1, ..., p− 1}.

Here, we assume that f : Z/tZ → Z/pZ has outputs in Z/pZ. As in TFHE, we
do this by a “homomorphic lookup table”, which in our case could correspond to
computing

f(⌊t/T · m̃⌉) =
∑

y∈Z/pZ

y
∑

x∈Z/TZ s.t.
f(⌊t/T ·x⌉)=y

1−N(αx − αm̃)p−1.

Using the fact that N(x) =
∏

σ σ(x) where σ runs through the Galois automor-
phisms of Fpd , we can expand this and find∑

y∈Z/pZ

y
∑

x∈Z/TZ s.t.
f(⌊t/T ·x⌉)=y

1−N(αx − αm̃)p−1 = G(σ0(α
m̃), σ1(α

m̃), ..., σd−1(α
m̃))

for some polynomial G ∈ Fpd [X0, ..., Xd−1] of degree p− 1 in each variable, and
Gal(Fpd/Fp) = {σ0, ..., σd−1}. Naively, we can already use this to compute the
result f(⌊t/T · m̃⌉), but it requires pd key-switches. To do better, write

G =
∑
I

XI0
0 ...X

Id/2−1

d/2−1 ·GI(Xd/2, ..., Xd−1),

Homomorphic polynomial evaluation and applications to BFV bootstrapping 25

where I runs over {0, ..., p − 1}d/2 and the GI are multivariate polynomials in
d/2 variables, and degree p− 1 in each variable. On input (x0, ..., xd−1), we can
now precompute all monomials of the form

mI = xI0
0 ...x

Id/2−1

d/2−1 and m′
J = xJ0

d/2...x
Jd/2−1

d−1 .

Now each GI(xd/2, ..., xd−1) is just a linear combination of the m′
J , and so we

find
G(x) =

∑
I

mIGI(xd/2, ..., xd−1)

using just 3pd/2 key-switches. The multiplicative depth is very low, namely
log(p− 1) + log(d). The bootstrapping process is summarised in Algorithm 1.

Algorithm 1: TFHE-style programmable bootstrapping for BFV.

Input: Ciphertext (c0, c1) ∈ (R/qR)2 encrypting scalar message m ∈ Z/tZ;
Bootstrapping keys (k

(i,j)
0 , k

(i,j)
1) encrypting αs02

j

resp. α−si2
j

;

Decomposition of G =
∑

I X
I0
0 ...X

Id/2−1

d/2−1 GI(Xd/2, ..., Xd−1)

Output: Output (c′0, c
′
1) ∈ (R/qR)2 encrypting scalar message f(m) ∈ Z/pZ

with low noise
1 Modulus switch (c0, c1) to (c̃0, c̃1) in R/TR

2 Decompose c̃1 as
∑

i

∑
j cij2

jXi with cij ∈ {0, 1}
3 Compute ciphertext ct as homomorphic evaluation of

m̃ := αc̃0
∏
j

(αs02
j

)c0j
∏
i>0,j

(α−sN−i2
j

)cij

4 Consider tables ct[I], ct′[I] of ciphertexts where I ∈ {0, ..., p− 1}d/2
5 for i ∈ {0, ..., d/2− 1} do
6 Compute ct[ei] as homomorphic evaluation of the Galois conjugate σi(m̃)

(ei ∈ {0, ..., p− 1}d/2 is the unit vector)
7 Compute ct′[ei] as homomorphic evaluation of σi+d/2(m̃)

8 end

9 for I ∈ {0, ..., p− 1}d/2 \ {ei} ordered by ascending ℓ1-norm do
10 Compute ct[I] as encrypted product of ct[⌊I/2⌉] and ct[I − ⌊I/2⌉]
11 Compute ct′[I] as encrypted product of ct′[⌊I/2⌉] and ct′[I − ⌊I/2⌉]
12 (During rounding in ⌊I/2⌉, assume we round up respectively down

alternately)
13 end

14 for I ∈ {0, ..., p− 1}d/2 do
15 Compute homomorphic evaluation of gI :=

∑
J aJm

′
J(σd/2m̃, ..., σd−1m̃)

where GI =
∑

J aJm
′
J as linear combination of the ct′J

16 Compute ct′′I as encrypted product of gI and mI(σ0m̃, ..., σd/2−1m̃)

17 end
18 Output

∑
I ct

′′
I

26 Hiroki Okada, Rachel Player, and Simon Pohmann

Caveats. While Algorithm 1 can be implemented, we made some assumptions
that might be inconvenient in practice. First and foremost, we assumed that
our unary function f : Z/tZ → Z/pZ has images in Z/pZ. While we can easily
homomorphically compute the map Z/pZ → Z/tZ if p | t, this still limits the
amount of possible output values.

Furthermore, we assumed that the message m is scalar, i.e., an element of
Z/tZ. In practice, we are interested in full messages that are any element of
R/tR, or at least in messages containing one scalar in each slot. The only way
Algorithm 1 can be used to bootstrap many scalars is to use slots for SIMD
parallelism. However, this conflicts with the choice of a very small intermediate
plaintext modulus p (such as p = 2 or p = 3). Apart from performance, such
a choice can also greatly reduce the noise cause by BFV multiplications, as the
growth is proportional to the plaintext modulus.

Complexity. We now give a theoretical analysis of the complexity of TFHE-style
BFV bootstrapping. The first step is to homomorphically compute αm̃ using
N log(T) multiplications and multiplicative depth log(N) + log log(T). Then,
we perform the “homomorphic lookup table” step to compute f(⌊t/Tm̃⌉), using
3pe/2 key-switches and multiplicative depth log(p − 1) + log(e). Up to now, we
implicitly assumed e = d, but by choosing α to be a generator of a Galois subring
of a slot, we can instead work with any e | d. Hence, the total number of key
switches is

N log(T) + 3pe/2 = (1 + o(1))
(
N log(T) + 3

√
T
)
.

Furthermore, the total multiplicative depth is

⌈log(N) + log log(T)⌉+ ⌈log(p− 1)⌉+ log(e) ≤ log(N log(T)(p− 1)e) + 2.

Since the error per multiplication in BFV is (2+ o(1))(pN2) [20, Lemma 2], this
yields a total bootstrapping error of

(1+o(1)) log(pN2)(log(N log(T)(p−1)e)+2) = (1+o(1)) log(pN2) log(Npe log(T))

bits. If we assume that p is a small constant, we find e = O(log(T)) and so the
expression of the error simplifies to

(2 + o(1)) log(N) log(N log(T)2) = (1 + o(1))
(
2 log(N)2 + 4 log(N) log log(T)

)
.

For parameters used in practice, this is slightly lower than the noise of standard
bootstrapping, mainly due to the choice of a very small plaintext modulus.

6.2 Comparison with classical BFV bootstrapping

In this subsection, we give a theoretical comparison of the classical approach to
BFV bootstrapping with our alternative, TFHE-style approach. The comparison
shows that the TFHE-style approach would be significantly slower than the
classical approach, and so we did not implement it.

Homomorphic polynomial evaluation and applications to BFV bootstrapping 27

Classical
TFHE-style
(Algo. 1)

Both

e Exponent e | d
t Input plaintext modulus t = p

T Intermediate plaintext modulus T = pe T = pe − 1 T ≥ 4Nt

d, n Slot rank, slot count N = nd, d = ord(p)

P Input plaintext space P = R/tR

P ′ Bootstrapping plaintext space P ′ = R/TR P ′ = R/pR

Table 4. Parameter constraints for BFV bootstrapping approaches.

Classical (slim)
bootstrapping

TFHE-style bootstrapping
(Algorithm 1)

Input scalar message m ∈ P, sparsely packed m ∈ Z/tZ ⊆ P
Total key-switches* 4

√
n+ 3

2
log(p)(e− 1)2 N log(T) + 3pe/2

if T ≈ pe, p, n constant ≈ 3
2
log(T)2 ≈ N log(T) + 3

√
T

Multiplicative depth ≤ (e− 1) log(p) + 2 ≤ log(N log(T)(p− 1)e) + 2

if T ≈ pe, p constant = (1 + o(1)) log(T) = (1 + o(1)) log(N log(T)2)

Bootstrapping noise bits* log(T) log(N2T) log(Npe log(T)) log(N2p)

if T ≈ pe, p constant = log(T)2 + 2 log(T) log(N)
≈ 2 log(N)2 +

4 log(N) log log(T)

Table 5. An estimate of the performance of classical (slim) bootstrapping (as described
in Section 3 and Section 4, using sparsely packed plaintexts) and TFHE-style pro-
grammable bootstrapping (as described in Section 6.1). Metrics marked with * are
only given up to a factor of (1 + o(1)).

Parameters. In order to compare the both the classical and the TFHE-style
bootstrapping approaches, we need to establish a set of shared parameters that
we can use in the analysis. We summarise the constraints on the parameters
in Table 4.

Results. In Table 5 we give a performance comparison of both bootstrapping
approaches. The asymptotic values for the TFHE-style bootstrapping are as ex-
plained in Section 6.1. For classical bootstrapping, the asymptotics are obtained
by an analogous, straightforward computation, and include the improvements to
classical bootstrapping that we have presented in Section 4.

In Table 6 we then give an example of concrete parameters for each boot-
strapping approach, and corresponding concrete costs according to Table 5. The
concrete values are obtained by evaluating the asymptotic expressions, ignoring
the (1 + o(1)) factor. The security estimates were computed using the Lattice
Estimator of [1].

28 Hiroki Okada, Rachel Player, and Simon Pohmann

Classical (slim)
bootstrapping

TFHE-style bootstrapping
(Algorithm 1)

N 216 215

p 257 3

T 2573 316 − 1

t 257 257

(n, d) (64, 210) (4, 213)

Key switches 1.4 · 102 8.5 · 105

Noise (worst-case, bits) 1345 798

Ciphertext mod q (bits) 1410 840

Security (bits) 128 100

Total complexity 238 · c 248 · c

Table 6. Example concrete parameters for both bootstrapping approaches, with an
estimate of their security, and an estimate of their complexity, based on Table 5. The
parameters are chosen based on a simple worst-case noise analysis, hence they do not
match the parameters used in our implementation in Section 5.

We remark that our estimates of the noise relies on a worst-case analysis.
An average noise noise analysis may enable us to choose a smaller ciphertext
modulus q. This in turn improves security, which then might allow smaller ring
dimension N . However, we believe that the results of the comparison would not
look significantly different under an average-case analysis, hence we are satisfied
with the simpler, worst-case estimates.

The “total complexity” metric of Table 6 gives a basic approximation of the
total number of operations required for the computation. We still only count key
switches, but each key switching operation performs

c log(q)N log(N), c constant

constant-size arithmetic instructions where c > 0 is some constant, using either
the base-decomposition method, or an RNS implementation. We expect the time
required for each approach to be proportional to the estimate of the total com-
plexity given in Table 6. That is, we estimate that the TFHE-style bootstrapping
would be about 210 ≈ 1000 times slower than a classical BFV bootstrapping,
and thus entirely impractical.

Acknowledgements

Simon Pohmann was supported by the EPSRC and the UK Government as
part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/S021817/1).

Homomorphic polynomial evaluation and applications to BFV bootstrapping 29

References

[1] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015).

[2] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
1–20. Springer (2013).

[3] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014. pp.
297–314. Springer International Publishing, Berlin, Heidelberg (2014)

[4] Badawi, A.A., Polyakov, Y.: Demystifying bootstrapping in fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2023/149 (2023), https://eprint.
iacr.org/2023/149

[5] Bossuat, J., Mouchet, C., Troncoso-Pastoriza, J.R., Hubaux, J.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In:
Canteaut, A., Standaert, F. (eds.) Advances in Cryptology – EUROCRYPT 2021,
Proceedings, Part I. pp. 587–617. Springer (2021)

[6] Bossuat, J., Troncoso-Pastoriza, J.R., Hubaux, J.: Bootstrapping for approximate
homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In: Ateniese, G., Venturi, D. (eds.) Applied Cryptography and
Network Security ACNS 2022. pp. 521–541. Springer (2022)

[7] Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology
– CRYPTO 2012. pp. 868–886. Springer (2012).

[8] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryp-
tion without bootstrapping. Cryptology ePrint Archive, Paper 2011/277 (2011),
https://eprint.iacr.org/2011/277

[9] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryp-
tology – CRYPTO 2011. pp. 505–524. Springer International Publishing, Berlin,
Heidelberg (2011)

[10] Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory,
vol. 315. Springer Science & Business Media (2013)

[11] Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. pp. 34–54. Springer (2019).

[12] Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2018. pp. 315–337. Springer (2018)

[13] Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. Cryptology ePrint Archive, Paper 2018/067 (2018), https://eprint.
iacr.org/2018/067

[14] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approxi-
mate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2018. pp. 360–384. Springer (2018).

[15] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
– ASIACRYPT 2017. pp. 409–437. Springer (2017).

[16] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.

https://eprint.iacr.org/2023/149
https://eprint.iacr.org/2023/149
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2018/067
https://eprint.iacr.org/2018/067

30 Hiroki Okada, Rachel Player, and Simon Pohmann

(eds.) Advances in Cryptology – ASIACRYPT 2016. pp. 3–33. Springer Interna-
tional Publishing, Berlin, Heidelberg (2016)

[17] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020).

[18] Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EU-
ROCRYPT 2015. pp. 617–640. Springer International Publishing, Berlin, Heidel-
berg (2015)

[19] Elia, M., Rosenthal, J., Schipani, D.: Polynomial evaluation over finite fields: new
algorithms and complexity bounds. Applicable Algebra in Engineering, Commu-
nication and Computing 23(3-4), 129–141 (2012)

[20] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144

[21] Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions
modulo pe and faster bootstrapping for homomorphic encryption. In: Hazay, C.,
Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 257–286.
Springer Nature Switzerland (2023).

[22] Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV revisited. Journal
of Cryptology 36(2), 12 (3 2023).

[23] Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)

[24] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style
homomorphic encryption. Cryptology ePrint Archive, Paper 2012/240 (2012). ,
https://eprint.iacr.org/2012/240

[25] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2011/680 (2011), https://eprint.
iacr.org/2011/680

[26] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology –
EUROCRYPT 2012. pp. 465–482. Springer (2012).

[27] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 75–92. Springer
International Publishing, Berlin, Heidelberg (2013)

[28] Guimarães, A., Pereira, H.V.L., van Leeuwen, B.: Amortized bootstrapping re-
visited: Simpler, asymptotically-faster, implemented. Cryptology ePrint Archive,
Paper 2023/014 (2023), https://eprint.iacr.org/2023/014

[29] Halevi, S., Shoup, V.: Algorithms in HElib. In: Advances in Cryptology –
CRYPTO 2014. pp. 554–571. Springer (2014)

[30] Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1), 7
(2021)

[31] Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete fourier trans-
forms and FHE bootstrapping. IEEE Access 7, 57361–57370 (2019)

[32] Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) Topics in Cryptology - CT-RSA 2020. pp. 364–390. Springer
(2020)

[33] Iliashenko, I., Izabachène, M., Mertens, A., Pereira, H.V.: Homomorphically
counting elements with the same property. Proceedings on Privacy Enhancing
Technologies 4, 670–683 (2022)

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/240
https://eprint.iacr.org/2011/680
https://eprint.iacr.org/2011/680
https://eprint.iacr.org/2023/014

Homomorphic polynomial evaluation and applications to BFV bootstrapping 31

[34] Joye, M.: Guide to fully homomorphic encryption over the [discretized] torus.
Cryptology ePrint Archive, Paper 2021/1402 (2021), https://eprint.iacr.org/
2021/1402

[35] Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with ex-
tended keys. In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptology,
and Machine Learning. pp. 1–18. Cham (2022)

[36] Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate HE. In: Dunkelman, O., Dziembowski, S. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2022, Proceedings, Part I. pp. 491–520.
Springer (2022)

[37] Lee, J., Lee, E., Lee, Y., Kim, Y., No, J.: High-precision bootstrapping of RNS-
CKKS homomorphic encryption using optimal minimax polynomial approxima-
tion and inverse sine function. In: Canteaut, A., Standaert, F. (eds.) Advances
in Cryptology – EUROCRYPT 2021, Proceedings, Part I. pp. 618–647. Springer
(2021)

[38] Lee, Y., Lee, J., Kim, Y., Kim, Y., No, J., Kang, H.: High-precision bootstrap-
ping for approximate homomorphic encryption by error variance minimization. In:
Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT
2022, Proceedings, Part I. pp. 551–580. Springer (2022)

[39] Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.:
Efficient FHEW bootstrapping with small evaluation keys, and applications to
threshold homomorphic encryption. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology – EUROCRYPT 2023, Proceedings, Part III. pp. 227–256. Springer
(2023)

[40] Liu, F., Wang, H.: Batch bootstrapping I: - A new framework for SIMD boot-
strapping in polynomial modulus. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology – EUROCRYPT 2023, Proceedings, Part III. pp. 321–352. Springer
(2023)

[41] Liu, F., Wang, H.: Batch bootstrapping II: - bootstrapping in polynomial modulus
only requires õ(1) FHE multiplications in amortization. In: Hazay, C., Stam, M.
(eds.) Advances in Cryptology – EUROCRYPT 2023, Proceedings, Part III. pp.
353–384. Springer (2023)

[42] Liu, Z., Wang, Y.: Amortized functional bootstrapping in less than 7ms, with Õ(1)
polynomial multiplications. Cryptology ePrint Archive, Paper 2023/910 (2023),
https://eprint.iacr.org/2023/910

[43] Maeda, D., Morimura, K., Narisada, S., Fukushima, K., Nishide, T.: Efficient
homomorphic evaluation of arbitrary uni/bivariate integer functions and their ap-
plications. Cryptology ePrint Archive, Paper 2023/366 (2023). , https://eprint.
iacr.org/2023/366

[44] Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In:
Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018.
pp. 100:1–100:14 (2018).

[45] Micheli, G.D., Kim, D., Micciancio, D., Suhl, A.: Faster amortized FHEW boot-
strapping using ring automorphisms. Cryptology ePrint Archive, Paper 2023/112
(2023), https://eprint.iacr.org/2023/112

[46] Neukirch, J.: Algebraic number theory, vol. 322. Springer Science & Business
Media (2013)

[47] Okada, H., Cid, C., Hidano, S., Kiyomoto, S.: Linear depth integer-wise homo-
morphic division. In: WISTP 2018. pp. 91–106. Springer (2019)

https://eprint.iacr.org/2021/1402
https://eprint.iacr.org/2021/1402
https://eprint.iacr.org/2023/910
https://eprint.iacr.org/2023/366
https://eprint.iacr.org/2023/366
https://eprint.iacr.org/2023/112

32 Hiroki Okada, Rachel Player, and Simon Pohmann

[48] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of STOC ’05. p. 84–93. Association for Computing Machinery
(2005)

[49] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (1 2023),
microsoft Research, Redmond, WA.

[50] Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes
and cryptography 71, 57–81 (2014)

https://github.com/Microsoft/SEAL

	Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping
	1 Introduction
	1.1 Our contribution
	1.2 Improved polynomial evaluation
	1.3 Programmable bootstrapping for BFV
	1.4 Related work
	1.5 Organisation of the paper

	2 Preliminaries
	2.1 Algebraic background
	2.2 The BFV scheme

	3 Bootstrapping in BFV
	3.1 The linear transform
	3.2 Digit Extraction

	4 Evaluating polynomials
	4.1 Using the norm
	4.2 Using the trace
	4.3 Advantages of the trace approach

	5 Implementation and results
	6 TFHE-style programmable bootstrapping for BFV
	6.1 A TFHE-style bootstrapping approach for BFV
	6.2 Comparison with classical BFV bootstrapping

