
Revisiting the Differential Meet-In-The-Middle
Cryptanalysis

Ling Song1, Qianqian Yang2B, and Huimin Liu1

1 College of Cyber Security, Jinan University, Guangzhou, China
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
songling.qs@gmail.com,yangqianqian@iie.ac.cn,liuhuimin301@gmail.com

Abstract. The differential meet-in-the-middle (MITM) attack is a new
cryptanalysis technique proposed at Crypto 2023 recently. It led to greatly
improved attacks on round-reduced SKINNY-128-384 and AES-256. In this
paper, we revisit the differential MITM attack and propose several variants
by absorbing techniques widely used in the classical differential attack. In
particular, we present a new differential MITM attack that generalizes the
basic differential MITM attack in several aspects. As for applications, we
make refinements to the 24-round attack on SKINNY-128-384; on 12-round
AES-256, we show that the classical differential attack and the generalized
differential MITM attack perform better than the basic differential MITM
attack.

Keywords: Differential cryptanalysis, Differential meet-in-the-middle
cryptanalysis, Key recovery, SKINNY, AES

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS90,
BS91], is one of the most powerful cryptanalytic approaches for assessing the
security of block ciphers. The basic idea is to exploit non-random propagation of
input difference to output difference, i.e., high-probability differentials. The first
step to mount a differential attack is to find a high-probability differential covering
a large number of rounds. This procedure has been extensively studied and many
approaches have been proposed [Mat94, MWGP11, MP13, SHW+14, SWW21].
Once an r-round high-probability differential of a certain cipher has been found,
one could add some outer rounds and restrict the possible values of key bits in
the outer rounds. Indeed, the right key of the outer rounds will allow her to
observe the non-randomness of the differential.

Since the introduction of differential cryptanalysis, many improvements have
been proposed: structures of data [BS92], conditional differentials [KMN10],
probabilistic neutral bits [AFK+08], the early abort technique [LKKD08] and
refinements in the key recovery process. Recently at Crypto 2023, Boura et al.
introduced a new cryptanalysis technique, called the differential meet-in-the-
middle (MITM) attack [BDD+23]. It provides a novel way to do the key recovery

in a differential attack (or it can be seen as a new way to do MITM attacks). In
classical differential attacks, pairs of data that potentially satisfy the differential
are constructed, and each key suggested by the data is a candidate whose number
of occurrences is counted. The right key is then among the candidates and is
likely to be the one that occurs most often. In the differential MITM attack,
it constructs pairs of data that potentially satisfy the differential in an MITM
manner, which leads to good results on block ciphers SKINNY-128-384 and AES-256.
Especially for SKINNY-128-384, the differential MITM attack can cover 24 and
even 25 rounds in the single-key setting while the best previous attack reaches 23
rounds only. Besides, the differential MITM attack is elegant and easy to use. In
regard to this new cryptanalysis technique, some questions arise. How does the
differential MITM attack compare to the classical differential attack? In which
case is the differential MITM attack more advantageous?

Our contribution. With these questions in mind, we revisit the differential MITM
attack and make extensions to it. Also, we make a clearer comparison between
the differential MITM attack and the classical differential attack.

1. We propose some basic variants of the differential MITM attack, which allow
one to use (partial) structures of plaintexts and flexibly select the number
of key candidates for the exhaustive search. We highlight two notions in the
computation of time complexity and stress to treat them carefully. As an
example, we revisit the differential MITM attack on SKINNY-128-384 and
make refinements to it.

2. We give classical differential attacks on 12-round AES-256 in the related-key
setting, whose time complexity can reach 2145. Note the basic differential
MITM attack in this case has a time complexity of 2208.

3. We propose a new differential MITM attack called GDMA, which generalizes the
basic differential MITM attack in several aspects. Unlike the basic differential
MITM attack, the GDMA does not have to traverse all possible values for the
involved key bits of the outer rounds in the MITM phase; it stores pairs
of data rather than single messages so that filters on both sides can be
exploited in the MITM phase. Consequently, the GDMA allows more balanced
complexities and potentially leads to better results.

4. We apply the GDMA to AES-256 and have an attack on 12-round AES-256 whose
time complexity is optimized and as good as the classical differential attack.

In comparison, GDMA can be seen as a variant of the classical differential attack
by implementing the steps of partial encryption/decryption and construction of
pairs in an MITM manner. Whether the GDMA is more advantageous depends on
many parameters. In most cases, GDMA is paralleled with the classical differential
MITM attack. Roughly speaking, it is more likely to be suitable to the case where
a relatively large number of rounds are added around the differential. In such
cases, the key size is much larger than the block size. This confirms the analysis
with the authors of [BDD+23].

2

Organization. The rest of the paper is organized as follows. In Section 2, we recall
the differential MITM attack and the classical differential attack. In Section 3, we
propose some basic variants of the differential MITM attack and revisit the attack
on 24-round SKINNY-128-384. Section 4 presents the generalized differential MITM
attack and compares it with the classical differential attack via the applications
to AES-256. Some simple rules for doing key recovery attacks in differential
cryptanalysis are also given. We conclude the paper in Section 5.

2 Preliminaries

2.1 Differential MITM Attacks

We first briefly recall the differential meet-in-the-middle attack. We use the same
notations as in [BDD+23] for convenience.

Given an n-bit block cipher E with a k-bit key, we treat it as the composition
of three sub-ciphers: E = Eout ◦Em ◦Ein, as depicted in Figure 1. For Em there
is a differential ∆x → ∆y of probability 2−p. When we extend the differential
outwards with probability 1, ∆x will propagate to plaintext difference ∆in over
E−1

in and ∆y will propagate to ciphertext difference ∆out over Eout. Let all
possible ∆in span a space with dimension ℓin. Similarly, let all possible ∆out
span a space with dimension ℓout. Suppose that it requires subkey information kin

(resp. kout) to verify the difference ∆x (resp. ∆y) for plaintext (resp. ciphertext)
pairs. The differential attack aims to recover kin, kout and further the master key
of E based on the differential.

The differential MITM attack integrates the meet-in-the-middle technique
with the differential attack. It can be divided into two phases.

1. MITM phase.
Choose 2p plaintexts. For each one:
(a) Given the plaintext P , for each guess i for kin, we can compute the

associated P̃ i that ensures Ein(P) ⊕ Ein(P̃ i) = ∆x. There are 2|kin|

possible (i, P̃ i). Acquire the associated ciphertexts Ĉi = E(P̃ i) with calls
to the encryption oracle and store (Ĉi, i) in a hash table H.

(b) Given C = E(P), for each guess j for kout, we can compute the associated
C̃j that ensures E−1

out(C) ⊕ E−1
out(C̃j) = ∆y. There are 2|kout| possible

(j, C̃j).
(c) Match C̃j with Ĉi by looking up the table H. Each collision of (Ĉi, C̃j)

suggests an associated key guess kin = i, kout = j, that we will consider
as a candidate. The number of expected collisions for one plaintext P is
2|kin|+|kout|−|kin∩kout|−n.

2. Exhaustive search phase.
(a) Guess the remaining key bits (if there are) and test the guess with

additional pairs.

3

P

P̃

Ein Em

C

C̃

Eout
∆x

2−p

∆y∆in ∆out

`in
`out

kin
︸ ︷︷ ︸ ︸ ︷︷ ︸

kout

Figure 1: A high-level description of the differential MITM attack

Complexity. The time complexity of this attack can be estimated as

T = 2p ×
(

2|kin| + 2|kout|
)

+ 2|kin∪kout|−n+p + 2k−n+p, (1)

where the first term corresponds to the computations done in the upper part
Ein and the lower part Eout, the second one to the number of expected key
candidates for kin ∪ kout and the last one to the exhaustive search.

The data complexity of this first version of the attack can be roughly estimated
as D = min

(
2n, 2p+min(|kin|,|kout|)) . The memory complexity is given by M =

2min(|kin|,|kout|), but it can be improved to 2min(|kin|,|kout|)−|kin∩kout| by guessing
the common key material at the beginning.

2.2 Classical Differential Attacks

Since the introduction of the differential attack [BS90,BS91], key recovery attacks
were considered alongside. The classical differential key recovery attack mainly
proceeds in the following phases.

1. Generate pairs of plaintexts that potentially suggest candidates for kin and
kout.

2. Extract the key candidates suggested by the pairs.
3. For all or partial candidates for kin and kout together with other needed key

bits, test exhaustively until the right master key is found.

The main property of the classical differential attack is that pairs of plaintexts
or ciphertexts are generated at first. For an n-bit block cipher, there is an n-bit
filter for kin and kout when we extract candidates for them from pairs of data.
Particularly, the n filtering bits are used step by step. On the contrary, in the
differential MITM attack, these filtering bits are used together in one step when
pairs of data that suggest key candidates are generated.

4

Usually, the number of occurrences of each suggested key is counted. When
the number of right pairs that follow the differential is large enough, the right
key is likely to be the one that occurs most often. One can pick one or a list
of candidates that are counted most often for exhaustive searches. An extreme
case is to test all the candidates as the original differential MITM attack does.
The ratio of tested key candidates will affect the success probability of the
attack [Sel08,BGT11].

Another common idea to improve differential cryptanalysis is to use plaintext
structures. A plaintext structure takes all possible values for the ℓin bits and
chooses a constant for the remaining n− ℓin bits. It allows to enjoy the birthday
effect and potentially attack more rounds without increasing the data complexity.

3 Basic Variants of the Differential MITM Attack

In this section, we first propose two variants of the differential MITM attack.
We highlight two notions in the computation of time complexity and stress to
treat them carefully. Then we revisit the differential MITM attack on 24-round
SKINNY-128-384 from [BDD+23] and design refinements for it.

3.1 Basic Variants

Basic ideas. We observe that the differential MITM attack can be refined by
absorbing some techniques widely used in the classical differential attack.

Avoid the full code book. In classical differential attacks, the data complexity
depends only on the probability 2−p of the differential, no matter how many active
bits the plaintext has, i.e., regardless of ℓin. However, in the differential MITM
attack, when ℓin = n, a full codebook is required. In this case, we propose to use
a partial structure of plaintexts to avoid the requirement of the full codebook3,
as in the classical differential attacks. More generally, when p + 1 < ℓin, a partial
structure of plaintexts can be used.

Balance the time complexities. In the original differential MITM attack, all the
key candidates are tested. In some cases, the time complexity of the exhaustive
search may dominate the overall complexity. Instead of testing all candidates,
we may choose to test a list of most likely key candidates, which may reduce
the overall time complexity by increasing the data by a small factor, say 4. In
order to count the occurrences of each possible key candidate, an extra memory
is needed.

Concrete variants. We incorporate the above ideas and propose two variants
DMA-1 and DMA-2 of the differential MITM attack, as shown in Figure 2. The
first variant follows the original differential MITM and enumerates every key
candidate while the second variant borrows the so-called counting method from
the classical differential attack.
3 In [BDD+23], a similar idea was used, which allows for reducing the data without

increasing the time complexity in certain cases. However, the partial structure
technique is slightly different and more generic.

5

Differential MITM attack 1 (DMA-1) based on the enumeration method

1. If ℓin ≤ p + 1:
2. Construct a structures of 2s = 2ℓin plaintexts.
3. else:
4. Construct a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts.
5. Query for the ciphertexts. Store the plaintext-ciphertext pairs in S.
6. For each (P, C) from the structure S:
7. Guess u for k∩:
8. Guess i for k⋆

in:
9. Compute P̃ from P such that ∆x is reached under (u, i).

10. // The test below is needed when a partial structure is used.
11. If P̃ /∈ S, go to Step 8; otherwise, let Ĉ = E(P̃).
12. If (C, Ĉ) have no difference on the n− ℓout bits, store (Ĉ, i) in a table H.
13. Guess j for k⋆

out:
14. Compute C̃ from C = E(P) such that ∆y is reached under (u, j).
15. For each i ∈ H(C̃):
16. Get candidate (u, i, j) and do an exhaustive search.
17. Repeat Step 1 ∼ 15 about 2p−ℓin+1 times if ℓin ≤ p + 1.

Differential MITM attack 2 (DMA-2) based on the counting method

1. If ℓin ≤ p + 1:
2. Construct 2p−ℓin+1 structures, each of 2s = 2ℓin plaintexts.
3. else:
4. Construct a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts.
5. Query for the ciphertexts. Store the plaintext-ciphertext pairs in S.
6. Guess u for k∩:
7. For each structure S∗ in S:
8. For each (P, C) from the structure S∗:
9. Guess i for k⋆

in:
10. Compute P̃ from P such that ∆x is reached under (u, i).
11. If P̃ /∈ S∗, go to Step 9; otherwise, let Ĉ = E(P̃).
12. If (C, Ĉ) have no difference on the n− ℓout bits, store (Ĉ, i) in a table H.
13. Guess j for k⋆

out:
14. Compute C̃ from C = E(P) such that ∆Y is reached under (u, j).
15. For each i ∈ H(C̃):
16. Get candidate (u, i, j) and update the key counters.
17. Test a fraction 2−h of key candidates with top counters, 0 ≤ h ≤ |k⋆

in|+ |k⋆
out|.

Figure 2: Two variants of the basic differential MITM attack.

We define k∩ = kin ∩ kout, k⋆
in = kin − k∩, and k⋆

out = kout − k∩. In the
MITM phase, the common information of the key k∩ is guessed at first. Also,
both variants use structures of plaintexts. When ℓin > p + 1, a partial structure
is enough due to the birthday effect. Therefore, the data complexity for both

6

variants is the same, namely,

D =
{

2p+1, if ℓin ≤ p + 1
2(p+ℓin+1)/2, otherwise.

Note that when we compute P̃ from P under the guessed kin, P̃ may not fall
in the partial structure. Thus a check is needed. Since a random pair from
a structure satisfies the input difference ∆x with probability 2−ℓin , a partial
structure as described in Figure 2 will lead to about 2p pairs satisfying the input
difference of the differential. This explains the usage of partial structures.

The DMA-1 variant based on the enumeration method has the following memory
and time complexities4.

MDMA-1 = max{2s, min{2|k⋆
in|, 2|k⋆

out|} × 2ℓout−n},
TDMA-1 = D × (2|kin| + 2|kout| + 2|kin|+|kout|−n−fextra) + 2k−n+p+|kextra|,

(2)

where fextra ≤ |k∩|, |kextra| ≥ 0. We will explain later why we introduce the two
additional notations fextra and kextra.

In the DMA-2 variant, as there is an extra need for storing the counters of
the key, the memory complexity may increase. In order to save the memory for
storing the counters of k∩, we store the whole data instead and extract k⋆

in and
k⋆

out under each guess of k∩, as shown in line 6 of DMA-2. However, we can also do
it the other way around if it is more beneficial. Therefore, the memory complexity
is

MDMA-2 = min{max{D, 2|k⋆
in|+|k⋆

out|}, max{2s, 2|kin∪kout|}}.
The time complexity of the DMA-2 variant is

TDMA-2 = D × (2|kin| + 2|kout| + 2|kin|+|kout|−n−fextra) + 2k−n+p+|kextra|−h, (3)

where 0 ≤ h ≤ |k⋆
in|+ |k⋆

out| can be used to trade the data complexity for lower
time complexity.

The reason for introducing fextra and kextra. In the matching and filtering phase
of the attack, when looking up the hash table, we combine values for kin and
kout by matching Ĉ and C̃. This implies an n-bit filter. Besides, there might exist
redundancy between kin and kout that can also act as filters. We denote it as
a fextra-bit filter. Specifically, in DMA-1 and DMA-2, fextra = |k∩|, namely assume
k∩ has an explicit form and can be guessed before the MITM phase. In certain
cases, even though k∩ is not empty, it may not have an explicit form, and thus
fextra may be smaller than |k∩|.

In the exhaustive search phase, to recover the master key, the remaining key
information outside kin∪kout is required for testing. Theoretically, k−|kin∪kout|
4 One may wonder if the time complexity doubles when compared to the original differ-

ential MITM attack due to D = 2 ·2p. It is not true. In the original differential MITM
attack, it is assumed implicitly that (P, P̃) and (P̃ , P) do not appear simultaneously.
We do not have such an assumption.

7

more bits are needed, but for concrete ciphers in practice, k − |kin ∪ kout| bits
may not be enough and an extra part of key materials kextra may be used.

If we take fextra = |k∩| and kextra = ∅, DMA-1 has the same time complexity as
the original differential MITM attack [BDD+23]. This means all the redundancy
between kin and kout can be used at once as filters when we look up the hash
table and that exact k − |kin ∪ kout| more bits are required for recovering the
master key. In Appendix A.1, we take the block cipher SPECK as an example to
show that a nonempty kextra may be needed and that fextra may be smaller than
|k∩|. Our analysis shows that the values for kextra and fextra should be taken
carefully.

In the following subsection, we revisit the attack on 24-round SKINNY, and
make refinements by giving an explicit form of k∩ and computing fextra correctly.

3.2 Refined Attack on 24-Round SKINNY-128-384

Description of SKINNY. SKINNY [BJK+16] is a family of lightweight tweak block
ciphers whose tweakey schedule adopts the TWEAKEY framework [JNP14].
Members of SKINNY are denoted by SKINNY-n-tk, where n ∈ {64, 128} is the block
size and tk ∈ {n, 2n, 3n} is the tweakey size. The internal states of SKINNY are
represented as 4× 4 arrays of cells with each cell being a nibble in case of n =
64 bits and a byte in case of n = 128 bits. The tweakey state is seen as a group
of z 4× 4 arrays, where, z = tk/n. The arrays are marked as TK1, (TK1, TK2)
and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by matrix

M . The inverse MixColumns operation employs M−1 instead.

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 M−1 =

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

The tweakey schedule of SKINNY is linear. The tweakey is first loaded into z 4×4

tweakey states. After each ART step, a cell-wised permutation P is applied to each
tweakey state, where P is defined as: P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4,
5, 6, 7]. Then cells in the first two rows of all tweakey states but TK1 are
individually updated using LFSRs. For complete details of the tweakeys scheduling
algorithm, one can refer to [BJK+16].

8

The Original Attack. In [BDD+23], the authors gave a 23-round attack on
SKINNY-128-384 using the basic differential MITM described in Section 2.1 and
then extended it to 24 rounds by a technique called parallel partitions.

The attacks utilize a 13-round differential ∆x → ∆y with a probability
2−105.9. The 23-round attack adds five rounds before and after the distinguisher,
respectively, as shown in Figure 3, where kin contains 31 subtweakey bytes, kout

32 subtweakey bytes, and kin ∩ kout 15 subtweakey bytes. Based on the 23-round
attack, the 24-round attack was obtained by appending one more round and
has the same time complexity of 2361.9. For completeness, we recall the original
attacks in Appendix A.2.

Motivation for refinements. In the original 24-round attack, the authors men-
tioned 248 filtering bits, namely, 120 filtering bits (15 bytes) between the two
parts of the key, 64 filtering bits from the last subtweakey K23, and 64 filtering
bits on the last two rows of the ciphertext difference. If so, the time complexity
is 2425.9 instead of the claimed 2361.9. The inconsistency lies in that another 64
filtering bits are missed in [BDD+23]. In fact, on top of the mentioned filters,
the difference on the first two rows of ciphertext should be equal as well.

In addition, the 24-round attack does not give an explicit way to exploit all
the filters efficiently. If the three sets of filters are used one by one, the time
complexity will be high. Suppose the ciphertexts are matched to ensure P̃ and
C̃ are valid plaintext and ciphertext at first, and then the consistency between
kin and kout is checked. In this case, the number of candidates for (kin, kout) is
2|kin|+|kout|−n+p, which will be reduced to 2|kin|+|kout|−n+p−|k∩| = 2|kin∪kout|−n+p

afterwards. Thus, a large term 2|kin|+|kout|−n+p appears which may dominant
the overall time complexity. In such MITM procedures, a key point to have a
low time complexity is to utilize all the filters before or when the hash table is
looked up.

Questions. When we figure out all the filters, we are left to design a method
that exploits them cleverly. The 128-bit filter on the ciphertext difference can
be considered easily. Then the question is: How does the differential MITM
attack proceed to exploit the |kin ∩ kout|-bit filter and the 64-bit filter on the last
subtweakey of SKINNY while or before the hash table is looked up? Next, we will
answer the question and give a refined attack on 24-round SKINNY-128-384.

Refined Attacks. We provide solutions to the above question in the following
two observations. According to the tweakey schedule of SKINNY-128-384, each
subtweakey byte is a linear combination of bytes at the same position of the
master tweakey states. In addition, the bytes in the tweakey states are permuted
simultaneously during the tweakey schedule. Therefore, knowing three subtweakey
bytes that are computed from the same master tweakey bytes is equivalent to
knowing the three involved master tweakey bytes.

A typical case in the attack on SKINNY-128-384 is that for the three master
tweakey bytes at the same position, kin consists of two-byte information of them

9

Figure 3: 23-round attack on SKINNY-128-384 [BDD+23]. The blue key bytes are needed
to compute the values of green ones. Both white and red bytes have zero difference, but
the red ones are required to compute green bytes.

and so does kout. Namely, k∩ = kin ∩ kout contains one byte for this position.
Theoretically, as described in the DMA-1 and DMA-2 (see Figure 2), guessing k∩ in
advance helps to utilize the |k∩|-bit filter before looking up the hash table. An
explicit way to achieve it is given in Observation 1 for SKINNY. For cases other

10

than kin and kout sharing one-byte information for a position, it is trivial to deal
with.
Observation 1 Let L,R be the matrices corresponding to the two LFSRs used
in the tweakey schedule and tki ∈ F8

2, i ∈ {1, 2, 3} unknown vectors. For distinct
i, j, k > 0, let

a = tk1 + tk2 + tk3,

b = tk1 + Li · tk2 +Ri · tk3,

c = tk1 + Lj · tk2 +Rj · tk3,

d = tk1 + Lk · tk2 +Rk · tk3.

Then there exists m = X · a + Y · b = Z · c +W · d, where X ,Y,Z,W are 8× 8
binary matrices.

Without loss of generality, let W = I. From the equation m = X · a + Y · b =
Z · c + I · d, we can get three equations

X + Y + Z = I,

X + Y · A1 + Z · A2 = A3,

X + Y · B1 + Z · B2 = B3.

For the attack on SKINNY-128-384, (i, j, k) are either (1, 10, 11) or (1, 9, 10). For
both cases, we can derive invertible matrices X ,Y and Z from the three equations
via a simple computation.

The 24-round attack starts from a set of 264 ciphertexts. The basic MITM
phase, which still covers the first 23 rounds, builds a hash table for all elements
in the set. Denote the state before the ART of Round 23 as S23. Then we have
C⊕ C̃ = MC◦SR(S23⊕ S̃23⊕∆K23), which is a 128-bit filter. Also, when the table
is looked up, the plaintext P and ciphertext C should match individually. That
is, (SR−1 ◦ MC−1(C) ⊕ f(kin))[0 : 63] = S23 ⊕ g(kout)[0 : 63], where f(kin) and
g(kout) are computed from kin and kout respectively and constitute K23. This is
a 64-bit filter. The exact expression of f(kin) and g(kout) can be obtained using
Observation 2, which is verified experimentally as well.
Observation 2 Let L,R be the matrices corresponding to the two LFSRs used
in the tweakey schedule and tki ∈ F8

2, i ∈ {1, 2, 3} unknown vectors. For distinct
i, j, k, ℓ > 0, let

a = tk1 + tk2 + tk3,

b = tk1 + Li · tk2 +Ri · tk3,

c = tk1 + Lj · tk2 +Rj · tk3,

d = tk1 + Lk · tk2 +Rk · tk3,

e = tk1 + Lℓ · tk2 +Rℓ · tk3.

Suppose a, b, c, d are known and there exist matrices X ,Y,Z such that X ·a+Y·b =
Z · c + d. Then there exists e = f(a, b) + g(c, d) = U · a + V · b +M· c + d, where
U ,V,M are 8× 8 binary matrices.

11

Revised attacks. Based on the two observations, we give procedures for the 24-
round attack such that the time complexity reaches the claimed one in [BDD+23].

1. Ask for the encryption of the whole codebook.
2. Pick 264 plaintext/ciphertext pairs (Pℓ, Cℓ) such that MC−1(Cℓ) is constant

on the last two rows.
3. For each possible value u of k∩:

(a) Compute all possible tuples (Pℓ, P̃ i
ℓ , i) for each value i of k⋆

in and each
Pℓ from the structure defined at the previous step such that the state
difference after the 6th S-box layer is 0x02. Store (Cℓ ⊕ C̃i

ℓ, (SR−1 ◦
MC−1(Cℓ)⊕ f(kin))[0 : 63], i) in a hash table. The memory complexity is
2128+64 = 2192 320-bit words.

(b) For each value j of k⋆
out and each state S23,ℓ (the state after SC of Round

23), compute all possible tuples (S23,ℓ ⊕ S̃j
23,ℓ, S23,ℓ ⊕ g(kout), j) so that

the difference on the state before the 19th S-box layer is 0x64 on the four
active bytes.

(c) Check for possible matches on the hash table. The match is now performed
on C⊕C̃ = MC◦SR(S23,ℓ⊕S̃23,ℓ⊕∆K23) and (SR−1◦MC−1(Cℓ)⊕f(kin))[0 :
63] = S23,ℓ ⊕ g(kout)[0 : 63]. This is a 192-bit filter.

(d) Test candidates for (kin, kout) against very few additional plaintexts.
4. Repeat from Step 2 about 241.9 times until the right key is retrieved.

Now fextra = |k∩|+ |K23| = 184 and thus the time complexity is

T = 241.9×2120×
(
2128+64 + 2136+64)

+241.9+120+128+64+136+64−192+2384−128+105.9 = 2361.9.

4 Generalized Differential MITM Attacks and
Comparisons

In this section, we revisit the differential attack on 12-round AES-256 and compare
the two types of differential attacks, i.e., the differential MITM attack and the
classical differential attack. Our analysis shows that the classical differential
attack can actually perform better than the basic differential MITM attack on
12-round AES-256. Inspired by this, we propose a generalized differential MITM
attack that enjoys a greater level of flexibility.

4.1 Generic Classical Differential Attacks

In this subsection, we first consider classical differential attacks in a simple case
and then extend it to generic cases.

A simple case. Consider a simple case where only some rounds are added before
the differential, namely, Eout = I. Assume ℓin ≤ p + 1, so multiple structures are
used.

As in the differential MITM attack, the attacker can guess kin. Following
this, a classical differential attack named CDA-1 arises as shown in Figure 4. Since

12

Classical differential attack 1 (CDA-1) where Eout = I, ℓin ≤ p + 1

1. For each of 2p−ℓin+1 plaintext structures:
2. Guess kin:
3. Do partial encryption.
4. Get 2ℓin−n−1 plaintext pairs that satisfy both ∆x and ∆y.
5. Update the key counters or test directly.

D = 2p+1; T = D × 2|kin| + Tsearch; M = max{2ℓin , 2|kin|} or 2ℓin according to Step 5.

Classical differential attack 2 (CDA-2) where Eout = I, ℓin ≤ p + 1

1. For each of 2p−ℓin+1 plaintext structures:
2. Store the data into a hash table according to the ciphertext.
3. Select ciphertext pairs satisfying ∆y. There will be 22ℓin−1−n pairs.
4. For each of such pairs:
5. Extract 2|kin|−ℓin candidates for kin, under which ∆x can be reached.
6. Update the key counters or test directly.

D = 2p+1; T = D × (1 + 2ℓin−n−1 + 2|kin|−n−1 · ϵ) + Tsearch; M = max{2ℓin , 2|kin|} or
2ℓin according to Step 6.

Classical differential attack 3 (CDA-3) where Eout = I, ℓin ≤ p + 1

1. For each of 2p−ℓin+1 plaintext structures:
2. Guess k′

in, 0 ≤ |k′
in| ≤ |kin|:

3. Do partial encryption.
4. Get 22ℓin−1−n−ℓ′

in pairs having fixed difference on the filtering bits.
5. For each of such pairs:
6. Extract 2|k∗

in|−ℓ∗
in candidates for k∗

in, under which ∆x can be reached.
7. Update the key counters or test directly.

D = 2p+1; T = D × (2|k′
in| + 2|k′

in|+ℓin−ℓ′
in−n−1 + 2|kin|−n−1 · ϵ) + Tsearch; M =

max{2ℓin , 2|kin|} or 2ℓin according to Step 7.

Figure 4: Classicial differential attacks in the simple case

the time complexity of the exhaustive search varies with the ratio of tested key
candidates, we mainly focus on the time complexity of the attack excluding the
exhaustive search.

In classical differential attacks, it permits guessing none of the key bits and
this corresponds to CDA-2. The key candidates can be obtained via computations
or accesses to some precomputed tables. Given a pair of plaintexts from the same
structure, it suggests about 2|kin|−ℓin candidates for kin. Suppose extracting this
number of candidates takes a time complexity of 2|kin|−ℓin · ϵ, ϵ ≥ 1. Particularly,
if the assumption below holds, ϵ will be as small as 1.

13

Assumption 1 Given a pair of plaintexts that suggests N > 0 possible candi-
dates for the key, assume these candidates can be extracted with a time complexity
as small as N .

More generally, assume k′
in, a part of kin, is guessed, where 0 ≤ |k′

in| ≤ |kin|.
Suppose there are additional ℓ′

in filtering bits under the guess of k′
in. Let k∗

in =
kin − k′

in, ℓ∗
in = ℓin − ℓ′

in. A more general attack named CDA-3 is given in Figure
4 and covers CDA-1 and CDA-2, i.e., CDA-1 and CDA-2 are its special cases.

Generic cases. Generally, some rounds may also be added to the differential in a
differential attack and ℓin ≤ p + 1 does not necessarily hold. With this in mind,
we extend CDA-3 and give the generic classical differential attack named GCDA, as
shown in Figure 5, where notations k′

out, k∗
out and ℓ′

out, ℓ∗
out are defined similarly.

The time complexity consists of four parts:
– T0 = 2|k′

in∪k′
out| ×D for partial encryption and decryption;

– T1 = 2|k′
in∪k′

out| ×D × 2s−1+ℓout−n−ℓ′
in−ℓ′

out for getting the pairs that satisfy
some filtering conditions where 2s is the structure size;

– T2 = 2|kin∪kout|+p−n · ϵ for extracting all the key candidates;
– T3 = Tsearch for the exhaustive search, respectivley.

The formula for the overall time complexity is

T = 2|k′
in∪k′

out| ×D(1 + 2s−1+ℓout−n−ℓ′
in−ℓ′

out) + 2|kin∪kout|+p−n · ϵ + Tsearch. (4)

Remark 1. When Assumption 1 holds, the basic differential MITM attack is
not better than the classical differential attack. Check a special case of the GCDA
where k′

in = kin and k′
out = ∅. The time complexity for this case is

T = 2|kin| ×D(1 + 2s−1+ℓout−n−ℓin) + 2|kin∪kout|+p−n + Tsearch.

As s− 1 + ℓout − n− ℓin < 0, the above time complexity is not larger than the
time complexity in Equation (2).

Take the attack on 23-round SKINNY-128-384 as an example where |kin| = 248,
|kout| = 256, |kin ∩ kout| = 120 and ℓin = ℓout = 128. Suppose only kin is
guessed in the GCDA. The partial structure has a size of 2s = 2116.95 and the data
complexity is D = 2s+1 = 2117.95, and the time complexity is

T = 2248 × 2117.95(1 + 2−11.05) + 2361.9 · ϵ + 2361.9.

Therefore, if ϵ can be as small as 1, the basic differential MITM is not better.
However, making ϵ as small as possible itself is a challenge in classical differential
attacks.

4.2 Attacks on AES and Comparisons
Description of AES Advanced Encryption Standard (AES) [DR02] is a block
cipher that encrypts 128-bit plaintext with the secret key of sizes 128, 192, and
256 bits. Its internal state can be represented by a 4× 4 matrix whose elements
are byte values in a finite field of GF (28). As shown in Figure 6, the round
function consists of four basic transformations in the following order:

14

Generic classical differential attack (GCDA)

1. S ← ∅
2. If ℓin ≤ p + 1:
3. S ← 2p−ℓin+1 structures, each of 2s = 2ℓin plaintexts
4. else:
5. S ← a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts
6. Guess k′

in and k′
out, 0 ≤ |k′

in| ≤ |kin|, 0 ≤ |k′
out| ≤ |kout|:

7. For S∗ ∈ S:
8. Do partial encryption and decryption for elements in S∗ if k′

in ∪ k′
out ̸= ∅.

9. // Additional ℓ′
in, ℓ′

out filtering bits are obtained, respectively.
10. Store the data into a hash table indexed by the filtering bits.
11. Get 22s−1+ℓout−n−ℓ′

in−ℓ′
out pairs having fixed difference on the filtering bits.

12. For each of such pairs:
13. Extract 2|k∗

in|−ℓ∗
in candidates for k∗

in, under which ∆x can be reached.
14. Extract 2|k∗

out|−ℓ∗
out candidates for k∗

out, under which ∆y can be reached.
15. Update the key counters or test directly.

– When ℓin ≤ p + 1, D = 2p+1; otherwise, D = 2(p+ℓin+1)/2.
– M = max{2|k∗

in∪k∗
out|, D} or min{D, 2ℓin} depending on Step 15.

Figure 5: The generic classical differential attack (GCDA).

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

- ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum Distance
Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or with the round key.

SB

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC
AK

4
1 9

8

11
10

13
12

15
14

0

6
5

2
3 7

Figure 6: AES round function and the ordering of bytes

At the beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns. AES-128, AES-192,
and AES-256 share the same round function with a different number of rounds:
10, 12, and 14, respectively. AES-256 has a 256-bit key, which is twice as large as
the internal state and derives round keys from the master key based on the key
schedule illustrated in Figure 7. We refer to [DR02] for more details.

15

<<

S

S

Figure 7: Key schedule of AES-256

Differential MITM Attack on 12-round AES-256 In [BDD+23], to show
the power of the differential MITM attack, a 12-round attack on AES-256 was
proposed. This attack requires a pair of related keys. The attacker chooses two
bytes a and b such that the differential transition b → a through the S-box
happens with probability 2−6. The attacker then injects the difference b on the
first byte of the round key k8 and MC(a, 0, 0, 0) to the first column of the round
key k9. Figure 8 displays the attack on AES-256, where ui, 0 ≤ i ≤ 9 are unknown
key differences.

... ...

Any possible difference Unknown fixed difference Zero difference

Figure 8: Differential attack on 12-round AES-256 where a, b are chosen and known.

16

The differential used for the attack starts from columns 0 and 3 of the state
w0 and columns 1 and 2 of z1 and stops at state x11. The differential holds
with a probability of 0.25. When it does, its probability is 2−86. To verify the
input difference of the differential, it involves 15 key bytes, namely, kin contains
k0[0, 2, 3, 4, 7, 8, 9, 13, 14], k1[5, 10] and k3[12, 13, 14, 15]. Similarly, to verify the
output difference of the differential, it requires the information of 8 key bytes,
i.e., kout consists of k11[12, 13, 14, 15] and k12[0, 4, 8, 12], from which an extra key
byte k10 can also be derived. These key bytes are highlighted as red squares in
Figure 8. The remaining information of the master key contains 9 bytes. Applying
the differential MITM attack presented in Section 2.1, one can have an attack of
data, memory, and time5 complexities D = 289, M = 289 and T = 2214, as

T = 2p ×
(

2|kin| + 2|kout|
)

+ 2|kin∪kout|−n+p + 2k−n+p

= 286 ×
(
2120 + 264)

+ 2120+64−128+86 + 2256−128+86 (5)
= 2206 + 2142 + 2214 ≈ 2214.

From Equation (5), the time for the exhaustive search dominates the overall
time complexity. In this case, DMA-2 in Figure 2 can be applied to lower this
term and make the time complexity 288 ×

(
2120 + 264)

+ +2120+64−128+88 +
2256−128+88−10 = 2208 (there are 4 right pairs) but the memory complexity
becomes 2|kin∪kout| = 2184.

Classical Differential Attacks on 12-round AES-256 We apply the GCDA
to AES-256 and give the following attack using the same differential trail. The
plaintext difference falls in a space of dimension 11× 8 since ∆k0[1] = ∆k0[5].
The attack starts with preparing a structure of 288 plaintexts under both related
keys, respectively.

1. Guess k3[12, 13, 14, 15],k11[13], and k12[8, 12]:
(a) Compute differences (u0, u1, u2, u3) from k3[12, 13, 14, 15] and (2a, a, a, 3a);

compute u5 from b and k10[12] = k12[8]⊕k12[12]; compute u6 from a and
k11[13].

(b) Initialize counters for all possible values of k0[0, 2, 3, 4, 7, 8, 9, 13, 14], k1[5, 10]
and k11[12, 14, 15], k12[0, 4].

(c) Construct 216 pairs of structures. Each pair has fixed differences on 7
plaintext bytes at positions 1, 5, 6, 10, 11, 12, 15. For each pair of struc-
tures:

i. Do partial encryptions and decryptions.
ii. Using a hash table, generate 272×2−9×8−2×8 pairs of data such that

1) the last three rows of the ciphertext difference satisfy the pattern
of ∆k12 and 2) ∆x11[8, 12] are u5.

iii. For each pair of data, extract the other bytes of kin by guessing
∆w0[5, 10]:

5 We contacted the authors of [BDD+23] and confirmed that they mistook the time
complexity 2p ·max{2120, 264}+ 2p+56+72 = 2214 for 2p ·max{2120, 264, 272} = 2206.

17

– Compute the two middle columns of ∆z0. From ∆x0 and ∆z0,
derive x0 at the 9 active bytes as well as k0[0, 2, 3, 4, 7, 8, 9, 13, 14].
Compute w0[5, 10].

– Among the bytes of ∆z1[0, 1, 2, 3] and ∆w1[0, 1, 2, 3], four bytes
are known. From them, compute ∆z1[1, 2]. From ∆x1[5, 10] and
∆z1[1, 2], recover x1[5, 10] and k1[5, 10] = w0[5, 10]⊕ x1[5, 10].

iv. For each pair of data, extract the other bytes of kout :
– As ∆k12[0] = u6 + b, ∆k12[4] = u6, and ∆x11[0] = ∆x11[4] = u5,

compute ∆z11[0, 4] and derive z11[0, 4], k12[0, 4].
– Let (u7, u8, u9) = ∆C[1, 2, 3]. As ∆k11[14, 15, 12] S−→ (u7, u8, u9),

derive k11[14, 15, 12].
v. Update the counters.

(d) Select the key value with the largest counter. Together with the guessed
key bytes and all possible values for another 9 bytes outside kin ∪ kout,
test exhaustively to find the right master key.

The data complexity is still 289. The data and the counters should be stored,
so the memory complexity is max{289, 216×8} = 2128. The time complexity is

T = 256 × 216 × (272 + 256 + 272 + 272) ≈ 2145,

which is much smaller than the time complexity 2208 by the differential MITM
attack. The expected number of right pairs from the data is 4, so the right key
ranks first with a high probability.

An alternative attack. However, the memory complexity of the above attack
is higher than the differential MITM attack. In fact, if we guess more key
bytes in advance, the memory consumption for the counters decreases. Suppose
k0[0], k12[0, 4] and k0[2, 3] are also guessed. Then for each pair of structures,
272×2−9×8−5×8 = 232 pairs of data can be generated in Step (ii). Consequently,
the time complexity becomes

T = 296 × 216 × (272 + 232 + 232 + 272) ≈ 2185,

and the memory complexity decreases to max{289, 211×8} = 289. This attack has
the same data and memory complexities as the basic differential MITM attack
but a lower time complexity.

Remark 2. In the attack on AES-256, the number of key candidates in total
is 2144. In the classical differential attack, these candidates can be extracted with
a time complexity as small as 2144, which means Assumption 1 holds for this
attack. Recall that in this case, the classical differential attack is not worse than
the basic differential MITM attack. Our dedicated attacks on AES also confirm
this.

In the differential MITM attack, we could split the time complexity into
three parts: Tmitm = D × (2|kin| + 2|kout|) for the basic MITM step, Tcandidates =
2|kin|+|kout|−n−fextra for accessing the hash table to get the key candidates, and
Tsearch = 2k−n+p+|kextra| for the exhaustive search. When Tsearch is dominant, we

18

could turn to DMA-2 and adjust it. When Tmitm is much larger than Tcandidates

(this is the case for the attack on AES-256 due to 2208 > 2144), guessing fewer key
bits than max{|kin|, |kout|} might be beneficial, but how the key is guessed is
fixed in the differential MITM attack. On the contrary, the strategy for guessing
the key is flexible in the classical differential attack. To relax this limitation, we
propose generalized differential MITM attacks in the next subsection.

4.3 Generalized Differential MITM Attack

In this subsection, inspired by the results on AES-256, we propose generalized
differential MITM attacks, which enjoy much greater flexibility than the basic
differential MITM.

Guessing A Subset of kin and kout The differential MITM attack on 12-
round AES-256 is not as good as the classical differential attacks. One limitation
of the differential MITM is that the way of guessing key bits is fixed. Can it
be generalized? Inspired by the GCDA, a variant of the differential MITM attack,
named DMA-3, is proposed in Figure 9. It allows one to guess a subset of the keys
in the upper and lower parts, respectively. When the upper part and the lower
part meet in Step 15, pairs of data that satisfy some of the filtering conditions,
are obtained. Thus, like the GCDA, it may need to take further actions to extract
the remaining information of kin ∪ kout using the remaining filters.

We apply DMA-3 to AES-256 reduced to 12 rounds. Let k′
in = ∅, k′

out = kout.
Then k∗

in = kin contains 15 bytes, ℓ∗
in = 88, ℓ∗

out = 0. M = 2184, and the time
complexity is T = 2176 + 2112 + 2144 · ϵ + Tsearch and ϵ = 1.

Remark 3. We could not make the first term lower and the time complexity is
still higher than the the time complexity of classical differential attacks. Note
that there are 8× 9 filtering bits for the ciphertext difference. However, in the
differential MITM attack, these filtering bits cannot be used for the upper part.
To overcome this, we propose a variant of the differential MITM attack, named
DMA-4, in Figure 10. DMA-4 stores pairs of data so that filters of the ciphertext
difference can be used for the upper part even before the match.

Storing Pairs Instead of Single Messages In DMA-4, the MITM procedure is
carried out for all the data in a structure rather than for a single (P, C). Without
the pivot (P, C), both ciphertexts C, C̃ are stored in Step 11. Then a match
happens in Step 15 with probability 2−2s+1 as there are 22s−1 pairs in total for
a structure. From the formula of the time complexity, this variant is equivalent
to the original differential MITM attack.

Combining Both The generalized differential MITM attack, named GDMA can
be obtained by combining DMA-3 and DMA-4, as shown in Figure 11. It supports
guessing a subset of kin and kout, as well as exploiting the filtering bits of the

19

Differential MITM attack 3 (DMA-3)

1. If ℓin ≤ p + 1:
2. Construct 2p−ℓin+1 structures, each of 2s = 2ℓin plaintexts.
3. else:
4. Construct a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts.
5. Query for the ciphertexts. Store the plaintext-ciphertext pairs in S.
6. Guess u for k′

∩ ⊂ k∩:
7. For each structure S∗ in S:
8. For each (P, C) from the structure S∗:
9. Guess i for k′

in and let k∗
in = kin − k′

in − k′
∩:

10. Compute 2ℓ∗
in P̃ from P such that ℓ′

in condition bits are satisfied.
11. If P̃ /∈ S∗, go to Step 9; otherwise, let Ĉ = E(P̃).
12. If (C, Ĉ) have no difference on the n− ℓout bits, store (Ĉ, i) in a table H.
13. Guess j for k′

out and let k∗
out = kout − k′

out − k′
∩:

14. Compute 2ℓ∗
out C̃ from C such that ℓ′

out more bits of ∆Y are satisfied.
15. For each i ∈ H(C̃):
16. Get (P, P̃) and (u, i, j). Extract 2|k∗

in∪k∗
out|−ℓ∗

in−ℓ∗
out candidates for k∗

in∪
k∗

out for each pair.
17. Update the key counters or test directly.

– When ℓin ≤ p + 1, D = 2p+1; otherwise, D = 2(p+ℓin+1)/2.
– Depending on Step 17, M = min{max{D, 2|kin∪kout|−|k′

∩|}, max{2s, 2|kin∪kout|}}
or max{2s, min{2|k′

in|+ℓ∗
in , 2|k′

out|+ℓ∗
out} × 2ℓout−n}.

– T0 = D×(2|k′
∩|+|k′

in|+ℓ∗
in +2|k′

∩|+|k′
out|+ℓ∗

out), T1 = D×2|k′
∩|+|k′

in|+|k′
out|+ℓ∗

in+ℓ∗
out−n ·

2s−ℓin , T2 = 2|kin∪kout|+p+1−n · ϵ, Tsearch
a, and T = T0 + T1 + T2 + Tsearch.

a There is a ‘+1’ in T1 as P̃ may be chosen as P . We take redundant pairs into
consideration.

Figure 9: The differential MITM attack that allows any possible key guessing strategy.

ciphertext difference for the upper part. Like the GCDA, its time complexity also
has four parts: T3 = Tsearch and

– T0 = D · (2|k′
∩|+|k′

in| + 2|k′
∩|+|k′

out|) for partial encryption and decryption;
– T1 = D · 2|k′

∩|+|k′
in|+s+ℓout−n−1−ℓ′

in + D · 2|k′
∩|+|k′

out|+s+ℓout−n−1−ℓ′
out + D ·

2|k′
∩|+|k′

in|+|k′
out| · 2s+ℓout−n−1−ℓ′

in−ℓ′
out for getting pairs that satisfying some

conditions;
– T2 = 2|kin∪kout|+p−n · ϵ.

The GDMA covers all the variants from DMA-1 to DMA-4. This attack is comparable
with the GCDA in Figure 5. Since T2, T3 of the time complexity for both attacks are
the same if the key bits to be guessed are the same, we focus on the comparison
of T0, T1. When |k′

in| = 0 or |k′
out| = 0, it becomes a classical differential attack

as the meet-in-the-middle phase disappears. Therefore, we restrict |k′
in| > 0 and

|k′
out| > 0 for the GDMA.

20

Differential MITM attack 4 (DMA-4)

1. If ℓin ≤ p + 1:
2. Construct 2p−ℓin+1 structures, each of 2s = 2ℓin plaintexts.
3. else:
4. Construct a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts.
5. Query for the ciphertexts. Store the plaintext-ciphertext pairs in S.
6. Guess u for k∩:
7. For each structure S∗ in S:
8. Guess i for k′

in where kin − k∩ = k′
in:

9. Do partial encryption.
10. Get 22s−1−ℓin+ℓout−n pairs (P, P̃) satisfying ℓin + ℓout − n condition bits.
11. Store (C, C̃, i) in a table H.
12. Guess j for k′

out where kout − k∩ = k′
out:

13. Do partial decryption.
14. Get 22s−1−n pairs (C, C̃) satisfying ∆y.
15. For each i ∈ H(C, C̃):
16. Get (u, i, j).
17. Update the key counters or test directly.

– When ℓin ≤ p + 1, , D = 2p+1; otherwise, D = 2(p+ℓin+1)/2.
– Depending on Step 17, M = min{max{D, 2|kin∪kout|−|k∩|}, max{2s, 2|kin∪kout|}}

or max{2s, min{22s−1−ℓin+ℓout−n+|k′
in|, 22s−1−n+|k′

out|}}.
– The time complexity is

T = D · (2|kin| + 2|kin|+s−ℓin+ℓout−n−1 + 2|kout| + 2|kout|+s−n−1) + 2|kin∪kout|+p−n + Tsearch

≈ D · (2|kin| + 2|kout|) + 2|kin∪kout|+p−n + Tsearch

Figure 10: The differential MITM attack that stores pairs of data.

Let us look into T0 and T1. For the partial encryption and decryption, T GDMA
0

is smaller than T GCDA
0 . For GDMA, T1 has three terms:

T GDMA
1,0 = D × 2|k′

∩|+|k′
in|+s−ℓ′

in+ℓout−n−1,

T GDMA
1,1 = D × 2|k′

∩|+|k′
out|+s+ℓout−n−1−ℓ′

out ,

T GDMA
1,2 = D × 2|k′

∩|+|k′
in|+|k′

out|+s+ℓout−n−1−ℓ′
in−ℓ′

out .

Note that T GDMA
1,2 = T GCDA

1 . When ℓ′
in < |k′

in| and ℓ′
out < |k′

out|, T GDMA
1,1 and T GDMA

1,0 are
smaller than T GDMA

1,2 = T GCDA
1 .

Applying the GDMA to AES-256. Using the GDMA, let k′
in = k3[12, 13, 14, 15], k′

out =
(k11[13], k12[8, 12]), and we have M = 2|kin∪kout| = 2184, T = D(232 + 232 + 224 +
224) + 2128 + 2144 · ϵ + Tsearch = 2144. Now the overall time complexity is as
good as the time complexity of GCDA. The comparison of key recovery attacks on
12-round AES-256 is shown in Table 1.

21

Generalized differential MITM attack (GDMA)

1. If ℓin ≤ p + 1:
2. Construct 2p−ℓin+1 structures, each of 2s = 2ℓin plaintexts.
3. else:
4. Construct a partial structure of 2s = 2(p+ℓin+1)/2 plaintexts.
5. Query for the ciphertexts. Store the plaintext-ciphertext pairs in S.
6. Guess u for k′

∩ and let k∗
∩ = k∩ − k′

∩:
7. For each structure S∗ in S:
8. Guess i for k′

in, |k′
in| > 0 and let k∗

in = kin − k′
in − k′

∩:
9. Do partial encryption (and decryption).

10. Get 22s−1−ℓ′
in+ℓout−n pairs (P, P̃) satisfying ℓ′

in + ℓout − n condition bits.
11. Store (C, C̃, i) in a table H.
12. Guess j for k′

out, |k′
out| > 0 and let k∗

out = kout − k′
out − k′

∩:
13. Do partial decryption (and encryption).
14. Get 22s+ℓ∗

out−1−n pairs (C, C̃) satisfying n− ℓ∗
out bits of ∆y.

15. For each i ∈ H(C, C̃):
16. Get (P, P̃) and (u, i, j). Extract 2|k∗

in∪k∗
out|−ℓ∗

in−ℓ∗
out candidates for k∗

in ∪
k∗

out for each pair.
17. Update the key counters or test directly.

– When ℓin ≤ p + 1, , D = 2p+1; otherwise, D = 2(p+ℓin+1)/2.
– Depending on Step 17, M = min{max{D, 2|kin∪kout|−|k′

∩|}, max{M0, 2|kin∪kout|}}
or max{2s, min{22s−1−ℓin+ℓout−n+ℓ∗

in+|k′
in|, 22s−1−n+ℓ∗

out+k′
out}}.

– The time complexity

T = D · (2|k′
∩|+|k′

in| + 2|k′
∩|+|k′

in|+s−ℓ′
in+ℓout−n−1 + 2|k′

∩|+|k′
out| + 2|k′

∩|+|k′
out|+s+ℓout−n−1−ℓ′

out

+ 2|k′
∩|+|k′

in|+|k′
out|+s+ℓout−n−1−ℓ′

in−ℓ′
out) + 2|kin∪kout|+p−n · ϵ + Tsearch

Figure 11: Generalized differential MITM attack.

Table 1: Comparisons of key recovery attacks on 12-round AES-256.
Data Time Memory Type

289

2214 289 DMA-1 [BDD+23]
2208 2184 DMA-2
2176 2184 DMA-3
2144 2184 GDMA
2145 2128 GCDA
2185 289 GCDA

Remark 4. Given a differential and the numbers of added rounds, the term
2|kin∪kout|+p−n is fixed and the time complexity can never be smaller than it.
In either the classical differential attack or the differential MITM attack, if the
overall time complexity is as small as 2|kin∪kout|+p−n, the time complexity of the

22

attack is optimized. We can see that the time complexity of the 12-round attack
on AES-256 is already optimal for both GCDA and GDMA.

4.4 Comparison and Discussion

With GCDA and GDMA proposed, the comparison between the differential MITM
attack and the classical differential attack becomes more apparent. In essence,
GDMA can be seen as a variant of GCDA by implementing the partial encryp-
tion/decryption and construction of pairs in an MITM manner. The following
are some suggestions for a differential attack.

– Choose GCDA in the following cases: Ein = I or Eout = I; k′
∩∪k′

in or k′
∩∪k′

out

is empty.
– When 2|k′

∩∪k′
in∪k′

out| ·D > 2k, choose GDMA as GDMA has a lower complexity
for doing partial encryption/decryption.

– In other cases, compute the complexities for both and choose the better one.
• When ℓ′

in ≤ |k′
∩ ∪ k′

in| and ℓ′
out ≤ |k′

∩ ∪ k′
out|, choose GDMA if the time

complexity is of the greatest concern.

4.5 Application to GIFT-64

Besides AES-256, we compare the GCDA and GDMA on another cipher GIFT. GIFT
is a lightweight block cipher proposed by Banik et al. at CHES’ 2017 [BPP+17].
According to the block sizes, GIFT has two versions GIFT-64 and GIFT-128. Both
versions use a 128-bit master key. We revisit the differential attack on 26-round
GIFT-64 from [SWW21] (see Figure 13) as this attack covers the largest number
of rounds to date.

The attack exploits an 18-round related-key differential trail of probability
2−p = 2−58 and adds three and five rounds before and after the differential trail,
respectively. The parameters of the attack are as follows: ℓin = 56, ℓout = 64; kin

contains 40 key bits while kout consists of 112 key bits. In addition, kin∩kout = kin.
The attack in [SWW21] fits in with the GCDA well, where none of the key bits is
guessed and ϵ = 223.9 · 1

16·26 = 215.2 26-round encryptions. Using 23.96 pairs of
structures, the attack can be mounted with data and time complexities 260.96

and 2123.23. If the full kin is guessed in advance, an attack can be mounted with
similar complexities.

In this case, the basic different MITM attack does not work as |kout| is too
large. Can the GDMA be applied? In GDMA, k′

∩∪k′
out should not be empty. The same

applies to the other side. There would be 259.96+56 ·2|k′
∩|+|k′

out|−ℓ′
out possible (C, C̃)

in the MITM phase. As the last three rounds are fully active, it requires guessing
a lot of key bits before reaching some filters. In fact, more than 40 key bits should
be guessed before reaching a filter, i.e., ℓ′

out > 0. As a result, |k′
∩∪k′

out| should be
less than 12 as 259.96+56 · 2|k′

∩|+|k′
out|−ℓ′

out < 2128. Let k′
in = kin, |k′

out| > 0, and
|k′

∩|+ |k′
out| < 12. Then T2, T3 remain as in the GCDA but T1 is larger. However,

T2 is the dominant term. Therefore, a generalized differential MITM attack is
possible, but it is not better than the classical differential attack.

23

5 Conclusion

In this paper, we revisit the differential MITM attack which was proposed recently
in [BDD+23]. Inspired by the commonly-used techniques used in the classical
differential attack, we propose several variants of the differential MITM attack and
present a new one by generalizing the basic differential MITM attack in several
aspects. As for applications, we revise the 24-round attack on SKINNY-128-384 and
provide better results on 12-round AES-256 using the classical differential attack
and the generalized differential MITM attack. Unlike the basic differential MITM
attack, the generalized differential MITM attack supports various strategies
for guessing the key. Future work would be to build an automatic system for
searching for the best guessing strategy.

References

AFK+08. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: Analysis of Salsa,
ChaCha, and Rumba. In Kaisa Nyberg, editor, Fast Software Encryption,
15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in
Computer Science, pages 470–488. Springer, 2008.

BDD+23. Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and
María Naya-Plasencia. Differential meet-in-the-middle cryptanalysis. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part III, volume 14083 of Lecture Notes in Computer Science, pages 240–272.
Springer, 2023.

BGT11. Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses.
Des. Codes Cryptogr., 59(1-3):3–34, 2011.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

BPP+17. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards
reaching the limit of lightweight encryption. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-
28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 321–345. Springer, 2017.

BS90. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances

24

in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

BS91. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. J. Cryptol., 4(1):3–72, 1991.

BS92. Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round
DES. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92,
12th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in
Computer Science, pages 487–496. Springer, 1992.

BSS+13. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., page 404, 2013.

Din14. Itai Dinur. Improved differential cryptanalysis of round-reduced SPECK. In
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography
- SAC 2014 - 21st International Conference, Montreal, QC, Canada, August
14-15, 2014, Revised Selected Papers, volume 8781 of Lecture Notes in
Computer Science, pages 147–164. Springer, 2014.

DR02. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

JNP14. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

KMN10. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional
differential cryptanalysis of NLFSR-based cryptosystems. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture
Notes in Computer Science, pages 130–145. Springer, 2010.

LKKD08. Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving
the efficiency of impossible differential cryptanalysis of reduced Camellia
and MISTY1. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008,
The Cryptographers’ Track at the RSA Conference 2008, San Francisco,
CA, USA, April 8-11, 2008. Proceedings, volume 4964 of Lecture Notes in
Computer Science, pages 370–386. Springer, 2008.

Mat94. Mitsuru Matsui. On correlation between the order of S-boxes and the
strength of DES. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume
950 of Lecture Notes in Computer Science, pages 366–375. Springer, 1994.

MP13. Nicky Mouha and Bart Preneel. A proof that the ARX cipher Salsa20 is
secure against differential cryptanalysis. IACR Cryptol. ePrint Arch., page
328, 2013.

25

MWGP11. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun
Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptol-
ogy - 7th International Conference, Inscrypt 2011, Beijing, China, November
30 - December 3, 2011. Revised Selected Papers, volume 7537 of Lecture
Notes in Computer Science, pages 57–76. Springer, 2011.

Sel08. Ali Aydın Selçuk. On probability of success in linear and differential
cryptanalysis. Journal of Cryptology, 21(1):131–147, 2008.

SHW+14. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 158–178. Springer, 2014.

SWW21. Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of dif-
ferential and linear characteristics with the SAT method. IACR Trans.
Symmetric Cryptol., 2021(1):269–315, 2021.

A Supplementary Materials

A.1 Differential MITM Attack on SPECK

In this subsection, we take SPECK as an example to show that an extra key
material kextra might be needed for recovering the master key.

Description of SPECK. SPECK [BSS+13] is a family of lightweight block ciphers
based on addition, rotation, and XOR operations. Its members SPECK2n-mn
are characterized by the block size 2n and key size mn. Figure 12 provides a
schematic view of the round function and the key schedule of SPECK. The round
function of SPECK is defined as:

(xi+1, yi+1) = Rki
(xi, yi) = (((xi ≫ a)⊞yi)⊕ki, (yi ≪ b)⊕((xi ≫ a)⊞yi)⊕ki),

where ki is the round key, a, b are constants. The key schedule takes an initial
m-word master key (lm−2, . . . , l0, k0) and from it generates a sequence of round
key words k0, k1, . . . via:

li+m−1 = (ki ⊞ (li ≫ a))⊕ i, ki+1 = (ki ≪ b)⊕ li+m−1.

The key schedule has a property that if m consecutive round keys of SPECK are
known, we can efficiently invert the key schedule to determine the original m
master key words.

Differential attacks on SPECK. In [Din14], Dinur mounted differential attacks
on SPECK using existing differential trails. As the first round of SPECK acts as
a whitening layer, it can be covered for free. Take SPECK32-64 as an example.

26

xi yi

≫ a

≪ b

xi+1 yi+1

ki

li+m−2 li

li+1

ki

ki+1

Ri

...

Figure 12: The round function and the key schedule of SPECK. Ri is the round function
with i acting as the round key.

Given an r-round differential trail of probability 2−p, where p is smaller than but
very close to 2n, 1 + r + 4 rounds are attacked in [Din14]. The attack extracts
candidates for the last four round keys. With four consecutive round keys, the
master key can be computed by performing the key schedule backward. Further,
test the correctness of the master key by trial encryptions.

In the differential MITM attack, adding four rounds after the differential trail
does not work but it is possible to attack 1 + 2 + r + 2 rounds. In this case, kin

contains the first two round keys and kout consists of the last two round keys.
The time complexity for the attack excluding the exhaustive search would be
2p × (232 + 232) + 232+32−32+p. The number of candidates for the four round
keys is about 232+p, which is smaller than but very close to 2k if p is close to k.
Note that these four round keys are not consecutive and it is hard to derive the
master key from them. We find that neither the original differential MITM attack
nor DMA-1 works, but DMA-2 does. The idea is to shortlist the candidates and
guess two neighboring round keys (i.e., |kextra| = 32) so that deriving the master
key becomes easy and the time complexity would not exceed 2k. This requires
k− 2n + p + |kextra| −h < k, i.e., only a fraction 2−h, h > p of the candidates are
selected for exhaustive search. To make the right key fall in the shortlist with
high probability, the data complexity needs to be doubled or tripled.

In the case where p is small, say p < 16, i.e., the differential is of very high
probability, it is possible to attack 1 + 3 + r + 3 rounds. That is, both kin and
kout have three round keys and kin ∩ kout has two words. As the relation between
kin and kout is highly complicated, kin ∩ kout has no explicit form. Thus, the
|kin∩kout|-bit filter can be used only when combinations of (kin, kout) are formed,
which makes fextra = 0.

27

A.2 Original Differential MITM Attacks on SKINNY-128-384

The 23-Round Attack We almost copy the core attack against 23-round
SKINNY-128-384 from [BDD+23] below.

1. Ask for the encryption of the whole codebook.
2. Randomly pick one plaintext/ciphertext pair (P, C).
3. For each possible value i of kin, compute the tuple (P, P̃ , i) so that the

difference on the state after the 6th S-box layer is exactly the input difference
∆x of the distinguisher. Get Ĉ = E(P̃) from the codebook. Store all (Ĉ, i)
in a hash table. This step requires guessing kin.

4. Similarly, for each possible value j of kout, compute the tuple (C, C̃, j) so
that the difference on the state before the 19th S-box layer is exactly the
output difference ∆y of the disignuisher.

5. For each of C̃, check for possible matches on the hash table. The match is
performed on both the new ciphertext (i.e., C̃ = Ĉ) as well as on the linear
relations between the subkey bytes of the upper and lower guess.

6. Each match leads to a (full) key candidate that can be tried against very few
additional plaintexts.

7. Repeat from Step 2 until the right key is retrieved.

The data complexity of this attack is 2128 as it uses the full codebook. The
memory complexity is determined by the hash table, which takes 231∗8 = 2248.
The time complexity is

T = 2105.9 ×
(
2248 + 2256)

+ 2248+256−128+105.9−15∗8 + 2384−128+105.9 = 2361.9.

The 24-Round Attack The attack on 23-round SKINNY-128-384 can be ex-
tended to an attack on 24 rounds without increasing the overall time complexity.
The attack adds one more round to the end and exploits the fact that the round
key is only applied to the first two rows of the internal state.

1. Ask for the encryption of the whole codebook.
2. Pick 264 plaintext/ciphertext pairs (Pℓ, Cℓ) such that MC−1(Cℓ) is constant

on the last two rows.
3. Compute all possible tuples (Pℓ, P̃ i

ℓ , i) for each value i of kin and each Pℓ

from the structure defined at the previous step such that the state difference
after the 6th S-box layer is 0x02. Store them in a hash table. The memory
complexity is 2248+64 = 2312 504-bit words.

4. For each value j of kout and each state S23,ℓ (the state after SC of Round
23) coherent with Step 2 (i.e., 264 states, one for each possible value of the
subtweakey of Round 23), compute all possible tuples (S23,ℓ, S̃j

23,ℓ, j) so that
the difference on the state before the 19th S-box layer is 0x64 on the four
active bytes.

5. Check for possible matches on the hash table. The match is now performed
on three quantities:

28

– the difference between the last states: C ⊕ C̃ = MC ◦ SR(S23⊕ S̃23). This
is a 64-bit filter because the difference is zero on the two last rows since
MC−1(C) is constant on these rows.

– the filter on the keys (from key schedule equations): a 120-bit filter.
– the filter on the subtweak K23. Indeed, since kin ∪ kout generates the

master key, K23 can be rewritten as f(kin)⊕ g(kout) where f and g are
both linear and, because of the linearity of all the operations, the equation
C = MC(SR(S23 ⊕K23)) can thus be rewritten as C ⊕ MC(SR(f(kin)) =
MC(SR(S23⊕ (kout))). This represents a 64-bit filter.

6. Each match leads to a (full) key candidate that can be tried against very few
additional plaintexts.

7. Repeat from Step 2 until the right key is retrieved.

Since 264 plaintext/ciphertexts are involved in the basic MITM step, the mem-
ory complexity is increased by 264. In Step 5, only 64 + 120 + 64 = 248
filtering bits are mentioned, leading to a time complexity 241.9 ×
2248+64+256+64−64−120−64 = 2425.9, but the authors claimed the time com-
plexity remains 2361.9.

29

A.3 Figure for the 26-Round Attack on GIFT-64306 Accelerating the Search with the SAT Method

X0

Y 0

RK0

X1

0X 1X 2X 3X

GS

0X
48

1X
1

2X
18

3X
35

4X 5X 6X 7X

GS

4X
32

5X
49

6X
2

7X
19

8X 9X 10X 11X

GS

8X
16

9X
33

10X
50

11X
3

12X 13X 14X 15X

GS

12X
0

13X
17

14X
34

15X
51

16X 17X 18X 19X

GS

16∆
52

17X
5

18X
22

19X
39

20X 21X 22X 23X

GS

20∆
36

21∆
53

22X
6

23X
23

24X 25X 26X 27X

GS

24X
20

25∆
37

26X
54

27X
7

28X 29X 30X 31X

GS

28X
4

29X
21

30X
38

31X
55

32X 33X 34X 35X

GS

32X
56

33∆
9

34X
26

35X
43

36X 37X 38X 39X

GS

36X
40

37X
57

38X
10

39X
27

40X 41X 42X 43X

GS

40∆
24

41X
41

42X
58

43X
11

44X 45X 46X 47X

GS

44∆
8

45∆
25

46X
42

47X
59

48X 49X 50X 51X

GS

48X
60

49X
13

50X
30

51X
47

52X 53X 54X 55X

GS

52X
44

53X
61

54X
14

55X
31

56X 57X 58X 59X

GS

56X
28

57X
45

58X
62

59X
15

60X 61X 62X 63X

GS

60X
12

61X
29

62X
46

63X
63

0

97

1

113

2

98

3

114

4

99

5

115

6

100

7

116

8

101

9

117

10

102

11

118

12

103

13

119

14

104

15

120

16

105

17

121

18

106

19

122

20

107

21

123

22

108

23

124

24

109

25

125

26

110

27

126

28

111

29

127

30

112

31

128

0∆ 1∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ 8∆ 9∆ 10∆ 11∆ 12∆ 13∆ 14∆ 15∆ 16∆ 17∆ 18∆ 19∆ 20∆ 21∆ 22∆ 23∆ 24∆ 25∆ 26∆ 27∆ 28∆ 29∆ 30∆ 31∆ 32∆ 33∆ 34∆ 35∆ 36∆ 37∆ 38∆ 39∆ 40∆ 41∆ 42∆ 43∆ 44∆ 45∆ 46∆ 47∆ 48∆ 49∆ 50∆ 51∆ 52∆ 53∆ 54∆ 55∆ 56∆ 57∆ 58∆ 59∆ 60∆ 61∆ 62∆ 63∆X1

Y 1

RK1

X2

0X 1X 2X 3X

GS

0

48

1

1

2

18

3X
35

4X 5X 6X 7X

GS

4∆
32

5

49

6

2

7

19

8∆ 9∆ 10X 11X

GS

8

16

9∆
33

10

50

11

3

12X 13X 14X 15X

GS

12

0

13

17

14X
34

15

51

16X 17X 18X 19X

GS

16

52

17

5

18

22

19X
39

20X 21X 22X 23X

GS

20X
36

21

53

22

6

23

23

24∆ 25∆ 26X 27X

GS

24

20

25∆
37

26

54

27

7

28X 29X 30X 31X

GS

28

4

29

21

30X
38

31

55

32X 33X 34X 35X

GS

32∆
56

33

9

34

26

35

43

36∆ 37∆ 38X 39X

GS

36

40

37∆
57

38

10

39

27

40X 41X 42X 43X

GS

40

24

41

41

42X
58

43

11

44X 45X 46X 47X

GS

44

8

45

25

46

42

47X
59

48X 49X 50X 51X

GS

48X
60

49

13

50

30

51

47

52∆ 53∆ 54X 55X

GS

52

44

53∆
61

54

14

55

31

56X 57X 58X 59X

GS

56

28

57

45

58X
62

59

15

60X 61X 62X 63X

GS

60

12

61

29

62

46

63X
63

0

65

1

81

2

66

3

82

4

67

5

83

6

68

7

84

8

69

9

85

10

70

11

86

12

71

13

87

14

72

15

88

16

73

17

89

18

74

19

90

20

75

21

91

22

76

23

92

24

77

25

93

26

78

27

94

28

79

29

95

30

80

31

96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32∆ 33∆ 34∆ 35∆ 36∆ 37∆ 38∆ 39∆ 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56∆ 57∆ 58∆ 59∆ 60∆ 61∆ 62∆ 63∆X2

Y 2

RK2

X3

0 1 2 3

GS

0

48

1

1

2

18

3

35

4 5 6 7

GS

4

32

5

49

6

2

7

19

8 9 10 11

GS

8

16

9

33

10

50

11

3

12 13 14 15

GS

12

0

13

17

14

34

15

51

16 17 18 19

GS

16

52

17

5

18

22

19

39

20 21 22 23

GS

20

36

21

53

22

6

23

23

24 25 26 27

GS

24

20

25

37

26

54

27

7

28 29 30 31

GS

28

4

29

21

30

38

31

55

32∆ 33∆ 34X 35X

GS

32

56

33∆
9

34

26

35

43

36X 37∆ 38X 39X

GS

36

40

37

57

38∆
10

39

27

40 41 42 43

GS

40

24

41

41

42

58

43

11

44 45 46 47

GS

44

8

45

25

46

42

47

59

48 49 50 51

GS

48

60

49

13

50

30

51

47

52 53 54 55

GS

52

44

53

61

54

14

55

31

56∆ 57∆ 58X 59X

GS

56

28

57∆
45

58

62

59

15

60X 61∆ 62X 63X

GS

60

12

61

29

62∆
46

63

63

0

33

1

49

2

34

3

50

4

35

5

51

6

36

7

52

8

37

9

53

10

38

11

54

12

39

13

55

14

40

15

56

16

41

17

57

18

42

19

58

20

43

21

59

22

44

23

60

24

45

25

61

26

46

27

62

28

47

29

63

30

48

31

64

0 1 2 3 4 5 6 7 8 9∆ 10∆ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45∆ 46∆ 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

18-round related-key differential distinguisher

X21

Y 21

RK21

X22

0 1 2 3∆

GS

0X
48

1X
1

2X
18

3X
35

4 5∆ 6 7

GS

4X
32

5X
49

6X
2

7∆
19

8 9 10 11

GS

8

16

9

33

10

50

11

3

12 13 14 15

GS

12

0

13

17

14

34

15

51

16 17 18 19

GS

16

52

17

5

18

22

19

39

20 21 22 23

GS

20

36

21

53

22

6

23

23

24 25 26 27

GS

24

20

25

37

26

54

27

7

28 29 30 31

GS

28

4

29

21

30

38

31

55

32 33∆ 34 35

GS

32X
56

33X
9

34X
26

35∆
43

36 37 38 39∆

GS

36X
40

37X
57

38X
10

39X
27

40 41 42 43

GS

40

24

41

41

42

58

43

11

44 45 46 47

GS

44

8

45

25

46

42

47

59

48 49 50 51

GS

48

60

49

13

50

30

51

47

52 53 54 55

GS

52

44

53

61

54

14

55

31

56 57 58 59

GS

56

28

57

45

58

62

59

15

60 61 62 63

GS

60

12

61

29

62

46

63

63

0

71

1

85

2

72

3

86

4

73

5

87

6

74

7

88

8

75

9

89

10

76

11

90

12

77

13

91

14

78

15

92

16

79

17

93

18

80

19

94

20

65

21

95

22

66

23

96

24

67

25

81

26

68

27

82

28

69

29

83

30

70

31

84

0 1X 2X 3 4 5 6 7 8 9X 10X 11 12 13 14 15 16 17 18X 19∆ 20 21 22 23 24 25 26X 27X 28 29 30 31 32X 33 34 35X 36 37 38 39 40X 41 42 43∆ 44 45 46 47 48X 49X 50 51 52 53 54 55 56X 57X 58 59 60 61 62 63X22

Y 22

RK22

X23

0 1X 2X 3

GS

0X
48

1X
1

2X
18

3X
35

4 5 6 7

GS

4

32

5

49

6

2

7

19

8 9X 10X 11

GS

8X
16

9X
33

10X
50

11X
3

12 13 14 15

GS

12

0

13

17

14

34

15

51

16 17 18X 19∆

GS

16X
52

17X
5

18X
22

19X
39

20 21 22 23

GS

20

36

21

53

22

6

23

23

24 25 26X 27X

GS

24X
20

25X
37

26X
54

27X
7

28 29 30 31

GS

28

4

29

21

30

38

31

55

32X 33 34 35X

GS

32X
56

33X
9

34X
26

35X
43

36 37 38 39

GS

36

40

37

57

38

10

39

27

40X 41 42 43∆

GS

40X
24

41X
41

42X
58

43X
11

44 45 46 47

GS

44

8

45

25

46

42

47

59

48X 49X 50 51

GS

48X
60

49X
13

50X
30

51X
47

52 53 54 55

GS

52

44

53

61

54

14

55

31

56X 57X 58 59

GS

56X
28

57X
45

58X
62

59X
15

60 61 62 63

GS

60

12

61

29

62

46

63

63

0

39

1

53

2

40

3

54

4

41

5

55

6

42

7

56

8

43

9

57

10

44

11

58

12

45

13

59

14

46

15

60

16

47

17

61

18

48

19

62

20

33

21

63

22

34

23

64

24

35

25

49

26

36

27

50

28

37

29

51

30

38

31

52

0 1X 2 3X 4 5X 6 7X 8 9X 10 11X 12 13X 14 15X 16X 17 18X 19 20X 21 22X 23 24X 25 26X 27 28X 29 30X 31 32 33X 34 35X 36 37X 38 39X 40 41X 42 43X 44 45X 46 47X 48X 49 50X 51 52X 53 54X 55 56X 57 58X 59 60X 61 62X 63X23

Y 23

RK23

X24

0 1X 2 3X

GS

0X
48

1X
1

2X
18

3X
35

4 5X 6 7X

GS

4X
32

5X
49

6X
2

7X
19

8 9X 10 11X

GS

8X
16

9X
33

10X
50

11X
3

12 13X 14 15X

GS

12X
0

13X
17

14X
34

15X
51

16X 17 18X 19

GS

16X
52

17X
5

18X
22

19X
39

20X 21 22X 23

GS

20X
36

21X
53

22X
6

23X
23

24X 25 26X 27

GS

24X
20

25X
37

26X
54

27X
7

28X 29 30X 31

GS

28X
4

29X
21

30X
38

31X
55

32 33X 34 35X

GS

32X
56

33X
9

34X
26

35X
43

36 37X 38 39X

GS

36X
40

37X
57

38X
10

39X
27

40 41X 42 43X

GS

40X
24

41X
41

42X
58

43X
11

44 45X 46 47X

GS

44X
8

45X
25

46X
42

47X
59

48X 49 50X 51

GS

48X
60

49X
13

50X
30

51X
47

52X 53 54X 55

GS

52X
44

53X
61

54X
14

55X
31

56X 57 58X 59

GS

56X
28

57X
45

58X
62

59X
15

60X 61 62X 63

GS

60X
12

61X
29

62X
46

63X
63

0

7

1

21

2

8

3

22

4

9

5

23

6

10

7

24

8

11

9

25

10

12

11

26

12

13

13

27

14

14

15

28

16

15

17

29

18

16

19

30

20

1

21

31

22

2

23

32

24

3

25

17

26

4

27

18

28

5

29

19

30

6

31

20

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 11X 12X 13X 14X 15X 16X 17X 18X 19X 20X 21X 22X 23X 24X 25X 26X 27X 28X 29X 30X 31X 32X 33X 34X 35X 36X 37X 38X 39X 40X 41X 42X 43X 44X 45X 46X 47X 48X 49X 50X 51X 52X 53X 54X 55X 56X 57X 58X 59X 60X 61X 62X 63XX24

Y 24

RK24

X25

0X 1X 2X 3X

GS

0X
48

1X
1

2X
18

3X
35

4X 5X 6X 7X

GS

4X
32

5X
49

6X
2

7X
19

8X 9X 10X 11X

GS

8X
16

9X
33

10X
50

11X
3

12X 13X 14X 15X

GS

12X
0

13X
17

14X
34

15X
51

16X 17X 18X 19X

GS

16X
52

17X
5

18X
22

19X
39

20X 21X 22X 23X

GS

20X
36

21X
53

22X
6

23X
23

24X 25X 26X 27X

GS

24X
20

25X
37

26X
54

27X
7

28X 29X 30X 31X

GS

28X
4

29X
21

30X
38

31X
55

32X 33X 34X 35X

GS

32X
56

33X
9

34X
26

35X
43

36X 37X 38X 39X

GS

36X
40

37X
57

38X
10

39X
27

40X 41X 42X 43X

GS

40X
24

41X
41

42X
58

43X
11

44X 45X 46X 47X

GS

44X
8

45X
25

46X
42

47X
59

48X 49X 50X 51X

GS

48X
60

49X
13

50X
30

51X
47

52X 53X 54X 55X

GS

52X
44

53X
61

54X
14

55X
31

56X 57X 58X 59X

GS

56X
28

57X
45

58X
62

59X
15

60X 61X 62X 63X

GS

60X
12

61X
29

62X
46

63X
63

0

101

1

121

2

102

3

122

4

103

5

123

6

104

7

124

8

105

9

125

10

106

11

126

12

107

13

127

14

108

15

128

16

109

17

113

18

110

19

114

20

111

21

115

22

112

23

116

24

97

25

117

26

98

27

118

28

99

29

119

30

100

31

120

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 11X 12X 13X 14X 15X 16X 17X 18X 19X 20X 21X 22X 23X 24X 25X 26X 27X 28X 29X 30X 31X 32X 33X 34X 35X 36X 37X 38X 39X 40X 41X 42X 43X 44X 45X 46X 47X 48X 49X 50X 51X 52X 53X 54X 55X 56X 57X 58X 59X 60X 61X 62X 63XX25

Y 25

RK25

X26

0X 1X 2X 3X

GS

0X
48

1X
1

2X
18

3X
35

4X 5X 6X 7X

GS

4X
32

5X
49

6X
2

7X
19

8X 9X 10X 11X

GS

8X
16

9X
33

10X
50

11X
3

12X 13X 14X 15X

GS

12X
0

13X
17

14X
34

15X
51

16X 17X 18X 19X

GS

16X
52

17X
5

18X
22

19X
39

20X 21X 22X 23X

GS

20X
36

21X
53

22X
6

23X
23

24X 25X 26X 27X

GS

24X
20

25X
37

26X
54

27X
7

28X 29X 30X 31X

GS

28X
4

29X
21

30X
38

31X
55

32X 33X 34X 35X

GS

32X
56

33X
9

34X
26

35X
43

36X 37X 38X 39X

GS

36X
40

37X
57

38X
10

39X
27

40X 41X 42X 43X

GS

40X
24

41X
41

42X
58

43X
11

44X 45X 46X 47X

GS

44X
8

45X
25

46X
42

47X
59

48X 49X 50X 51X

GS

48X
60

49X
13

50X
30

51X
47

52X 53X 54X 55X

GS

52X
44

53X
61

54X
14

55X
31

56X 57X 58X 59X

GS

56X
28

57X
45

58X
62

59X
15

60X 61X 62X 63X

GS

60X
12

61X
29

62X
46

63X
63

0

69

1

89

2

70

3

90

4

71

5

91

6

72

7

92

8

73

9

93

10

74

11

94

12

75

13

95

14

76

15

96

16

77

17

81

18

78

19

82

20

79

21

83

22

80

23

84

24

65

25

85

26

66

27

86

28

67

29

87

30

68

31

88

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 11X 12X 13X 14X 15X 16X 17X 18X 19X 20X 21X 22X 23X 24X 25X 26X 27X 28X 29X 30X 31X 32X 33X 34X 35X 36X 37X 38X 39X 40X 41X 42X 43X 44X 45X 46X 47X 48X 49X 50X 51X 52X 53X 54X 55X 56X 57X 58X 59X 60X 61X 62X 63X

X The value of the bit should be known. ∆ The difference is known and must be nonzero. The value of the subkey bit should be known.

i The subkey bit equals the i-th bit of the master key. i The master key bit with the nonzero difference.

Figure 9: Key-recovery attack on 26-round GIFT-64.

• T ∅Cry: runtime using Cryptominisat without bounding condition.

• TR−1
Cry : runtime using Cryptominisat with the set C(∗,R−1).

• T 0
Cry: runtime using Cryptominisat with the set C(0,∗).

Please find in Table 12 - 21 for the experimental results of PRESENT, GIFT-64, RECTANGLE,
LBlock, TWINE and all versions belonging to SPECK family of block ciphers. Note that the
values of TMILP for SPECK32 and SPECK48 stem from [ZSCH18], where the authors claimed
that the tests employed 16 threads of a server with Intelr Xeonr E5-2637V3 CPU 3.50
GHz.

Figure 13: Differential attack on 26-round GIFT-64 [SWW21].

30

	Revisiting the Differential Meet-In-The-Middle Cryptanalysis
	1 Introduction
	2 Preliminaries
	2.1 Differential MITM Attacks
	2.2 Classical Differential Attacks

	3 Basic Variants of the Differential MITM Attack
	3.1 Basic Variants
	3.2 Refined Attack on 24-Round SKINNY-128-384
	Description of SKINNY.
	The Original Attack.
	Refined Attacks.

	4 Generalized Differential MITM Attacks and Comparisons
	4.1 Generic Classical Differential Attacks
	4.2 Attacks on AES and Comparisons
	Description of AES
	Differential MITM Attack on 12-round AES-256
	Classical Differential Attacks on 12-round AES-256

	4.3 Generalized Differential MITM Attack
	Guessing A Subset of kin and kout
	Storing Pairs Instead of Single Messages
	Combining Both

	4.4 Comparison and Discussion
	4.5 Application to GIFT-64

	5 Conclusion
	A Supplementary Materials
	A.1 Differential MITM Attack on SPECK
	A.2 Original Differential MITM Attacks on SKINNY-128-384
	The 23-Round Attack
	The 24-Round Attack

	A.3 Figure for the 26-Round Attack on GIFT-64

