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Abstract. Motivated by proof-of-stake (PoS) blockchains such as Ether-
eum, two key desiderata have recently been studied for Byzantine-fault
tolerant (BFT) state-machine replication (SMR) consensus protocols: Fi-
nality means that the protocol retains consistency, as long as less than a
certain fraction of validators are malicious, even in partially-synchronous
environments that allow for temporary violations of assumed network
delay bounds. Accountable safety means that in any case of inconsis-
tency, a certain fraction of validators can be identified to have provably
violated the protocol. Earlier works have developed impossibility results
and protocol constructions for these properties separately. We show that
accountable safety implies finality, thereby unifying earlier results.

1 Introduction

Consensus. The purpose of a consensus protocol for state-machine replication
(SMR) is for a set of parties to reach agreement on how to sequence incoming
transactions into a linear order called a ledger. This task is non-trivial because
communication between parties might be delayed, and some parties might devi-
ate from the protocol in an arbitrary manner (Byzantine faults) with the goal to
undermine consensus. A consensus protocol is secure if even in the presence of
these disturbances, it guarantees two complementary properties: safety, mean-
ing that the ledgers output by non-faulty parties across time are consistent, and
liveness, meaning that transactions make it to the output ledger ‘soon’. The pro-
tocol is then called Byzantine-fault tolerant (BFT), and the fraction of faulty
parties it can tolerate while remaining secure is called its resilience.

Finality. This basic formulation has been extended in two directions. On the one
hand, while some early consensus protocols [9] assume that network communica-
tion always obeys a known delay upper-bound (i.e., synchronous network [17]),
later constructions [10,5] pushed to strengthen security to ensure consistency
also under temporary network delay-bound violations (i.e., partially-synchronous
network [10]). Such periods of asynchrony might be caused, for instance, by
temporary network partitions. The strengthened safety property that ensures
consistency also under periods of asynchrony is called finality [3,24].

Accountable Safety. On the other hand, consensus protocols for proof-of-stake
(PoS) blockchains such as Ethereum seek to strengthen safety to enable ac-
countability [3,4,25,24,29,21,7,2,13,14,27]. In permissionless blockchains, parties
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are no longer inanimate computers which might exhibit technical faults but are
otherwise aligned under the control of one organizational entity. Instead, parties
are controlled by different mutually distrusting self-interested players that might
deviate from the protocol if they expect a profit from doing so. In this setting, it
was proposed to strengthen safety to accountable safety, where besides ensuring
consistency up to some adversarial resilience, if the adversary exceeds that re-
silience and causes a safety violation, then a certain fraction of parties can also
be identified to have provably violated the protocol.

Prior Works. Various works have studied the fundamental limits of finality [11,10,12]
and of accountable safety [29], as well as their relationships to other desiderata
such as liveness under dynamic participation [16,25], and how protocols can be
constructed that achieve various combinations of these properties [24,25]. While
finality and accountable safety ‘feel similar’, characterizing their exact relation
has remained open. For instance, some protocols provide finality but do not pro-
vide accountable safety [29,22]. On the other hand, we readily observe (details in
Section 5) that an additional round of voting to ‘checkpoint’ the output ledger of
a consensus protocol1 designed for synchronous networks can also be used to up-
grade that ledger to provide accountable safety, but does not yield a protocol for
partially-synchronous networks. In particular, the so-extended protocol may not
recover from liveness faults induced during a period of asynchrony (Section 5).

Main Result. We show that accountable safety implies finality (Section 3). To
this end, on a high level, we show that for any given protocol, if there exists an
adversary strategy that leads to a safety violation under partial synchrony, then
there exists an adversary strategy that leads to a safety violation but not enough
adversary parties can be identified as protocol violators, even if the network is
delay-free, i.e., messages arrive instantly. Intuitively, the more constraints there
are on network delays, the easier it is for a protocol to guarantee accountable
safety. Our argument shows that even the weakest form of accountable safety,
namely for delay-free networks, is still so strong that it implies finality.

Our result unifies prior works and directs future work (Section 4): The
availability–accountability dilemma [25] turns out to be implied by the availability–
finality dilemma [24], a blockchain-variant of the CAP theorem [12,16]. Impossi-
bilities for accountability and liveness resiliences [29] turn out to be implied by
impossibilities for consensus under partial synchrony [10]. Upgrading a ledger to
provide accountable safety [25,21] implies adding finality [3,28,31,8,30,19].

2 Model

Notation. For m ∈ N, let [m] ≜ {1, 2, ...,m}. An event happens with probability
negligible in the security parameter λ if its probability is o(1/ poly(λ)).

Replicas and Clients. SMR consensus protocols have two types of participants:
replicas and clients. Replicas are input transactions by the environment, interact

1 A ‘lock and vote’ add-on was contemporaneously used for the unrelated problems of
resilience-optimal flexible consensus [20] and of using Bitcoin as a staking asset [32].
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with each other towards agreeing on how these transactions should be ordered,
and make some protocol messages (e.g., blocks, votes) available to clients upon
request. Clients query replicas for these protocol messages, and, upon collecting
messages from a sufficiently large subset of replicas, output a sequence of trans-
actions called the ledger and denoted by LOG. The goal of the SMR protocol is
to ensure that clients agree on a single ever-growing transaction sequence.

Environment and Adversary. Each of the n replicas has a (unique) crypto-
graphic identity that is known to all parties. Up to f replicas can be corrupted
at the beginning of the protocol execution by a computationally-bounded ad-
versary A, which then obtains the internal state of these replicas, and can make
them deviate from the protocol in arbitrary ways (Byzantine faults). The re-
maining (n− f) replicas are honest and follow the protocol as specified.

Time proceeds in slots. Replicas can exchange messages, subject to adversary
delays. We consider a partially-synchronous network with adversary-environment
tuple (Ap,Zp), where the adversary can delay messages arbitrarily until a global
stabilization time GST that can be chosen adaptively by the adversary. After
GST, Ap has to deliver messages within a delay upper-bound of ∆ which is
known to the protocol. If GST is known and zero, then the network is said to be
synchronous, and denoted by (As,Zs). Furthermore, a network is called delay-
free and denoted by (Ai,Zi) if all messages reach their recipients instantaneously,
i.e., the network is synchronous with ∆ = 0. The three network models are
ordered in the sense that from partial synchrony to synchrony to delay-freeness,
for fixed ∆, the adversary’s capabilities are strictly increasingly constrained.

Safety and Liveness Resiliences. Let LOGcl
t denote the ledger in the view of a

client cl at time slot t.

Definition 1. A consensus protocol is secure with confirmation time Tconf iff:

– Safety: For all t, t′ and cl, cl′, either LOGcl
t is a prefix of LOGcl′

t′ , or vice versa.
– Liveness: If some tx is input to an honest replica by some t, then, for all

t′ ≥ max(t,GST) + Tconf , and all cl, tx ∈ LOGcl
t′ .

A protocol is said to provide f -safety (f -liveness) if the protocol satisfies safety
(liveness), except with negligible probability, for any adversary controlling at
most f replicas. Here, f is the protocol’s safety (liveness) resilience.

Definition 2. A consensus protocol satisfies f -finality ( i.e., is f -final) if it sat-
isfies f -safety under a partially-synchronous network.

Note that f -finality does not imply f -liveness after GST. An f -final protocol may
not be secure under partial synchrony due to liveness violations (cf. Section 5).

Accountable-Safety Resilience. Building on α-accountable-safety [3,21], the accountable-
safety resilience of a protocol is defined (see [25] for details on replica–client
interaction and forensic algorithm, there called ‘adjudication function’):

Definition 3. A consensus protocol provides accountable safety with resilience
fa ( i.e., is fa-accountable safe) iff whenever there is a safety violation, except
with negligible probability, (i) at least fa adversarial replicas are identified by a
forensic algorithm as protocol violators, and (ii) no honest replica is identified.
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Fig. 1. Execution of a consensus protocol with four replicas. World 0 is partially-
synchronous, worlds 1, 2 and 3 are delay-free. Red replica P4 is adversary in all worlds.
Orange replicas are adversary but do not violate the protocol rules other than delaying
the sending/receiving of messages to/from the honest replica. Green replicas are honest.

Specifically, if clients cl, cl′ at t, t′ disagree on the output ledger, they exchange

the protocol messages that led to their respective LOGcl
t , LOG

cl′

t′ . Given a set of
messages such that there are two subsets based on which a client would confirm
two conflicting ledgers, each client can invoke the protocol’s forensic algorithm
to identify fa replicas who have provably violated the protocol [29]. Note that the
functioning of the forensic algorithm is not conditional on assumptions such as
a fraction of replicas being honest, and it does not falsely accuse honest replicas.

3 Accountability Implies Finality

By Definition 3, if a protocol provides (f + 1)-accountable safety under partial
synchrony (which is the strongest form of accountable safety, considering that
among the models considered here, the adversary’s capabilities are least con-
strained in the partially-synchronous model), then it also satisfies safety under
partial synchrony with up to f adversary replicas, i.e., it is f -final. (This is
because if the number of adversary replicas is less than f + 1, the forensic algo-
rithm cannot identify at least f+1 adversary replicas, implying that the protocol
must be safe.) Perhaps more surprisingly, Theorem 1 below proves that if a pro-
tocol provides (f + 1)-accountable safety in a delay-free network (which is the
weakest form of accountable safety, since the adversary’s capabilities are most
constrained in the delay-free network model), it must still be the case that the
protocol is f -final. This immediately implies that for all network delay models,
(f + 1)-accountable safety of a protocol implies f -finality for that protocol.

Theorem 1. If a consensus protocol provides (f + 1)-accountable safety in a
delay-free network, then it also satisfies f -finality.

Intuition. For intuition, consider the scenario with n = 4, f = 1. We argue
the equivalent claim that without 1-finality, there is no 2-accountable safety. For
contradiction, consider a consensus protocol executed by four replicas Pi, i ∈ [4],
that is not 1-final, yet 2-accountable safe under a delay-free network.

Consider the following executions: In world 0 (Figure 1), the network is
partially-synchronous, and P4 (red in Figure 1) is adversary. Besides protocol
deviations of P4, the adversary delays messages among honest replicas to cause
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a safety violation (which is possible because the protocol is assumed not 1-final).
In worlds 1, 2, and 3 (Figure 1), the network is delay-free, and there are three
adversary replicas. The replica P4 is adversary, and in all of these worlds behaves
the same as in world 0. The remaining adversary replicas (orange in Figure 1) be-
have like their honest counterparts in world 0, except they emulate the message
delivery schedule an honest replica would have had in their place in world 0, by
delaying the sending/receiving of messages to/from the honest replica. Clients
observing the protocol cannot distinguish between any of the worlds 0, 1, 2, and
3. Therefore, there is a safety violation in worlds 1, 2, and 3 as well.

Finally, since the protocol is assumed to be 2-accountable safe in a delay-
free network, the forensic algorithm called by the clients identifies 2 replicas as
protocol violators in each of the worlds 1, 2 and 3. However, as these worlds are
indistinguishable, there is a non-negligible probability that the forensic algorithm
wrongly identifies an honest replica, which is a contradiction, as desired.

Proof (of Theorem 1). We prove the contrapositive. For contradiction, suppose
a protocol does not satisfy f -finality, yet provides (f + 1)-accountable safety
under a delay-free network. We consider a world 0 with a partially-synchronous
network, and n− f worlds indexed by i ∈ [n− f ] with delay-free networks.

World 0: Consider clients cl, cl′ and n replicas. The network is partially-
synchronous and the adversaryAp controls f replicas, denoted by Pn−f+1, . . . , Pn.
The remaining replicas are honest. Safety is violated and the clients cl and cl′

output conflicting ledgers with some non-negligible probability.

World i: Consider clients cl, cl′ and n replicas. The network is delay-free and the

adversary A(i)
s of world i corrupts all replicas except Pi. The f replicas that were

adversary in world 0 behave the same as in world 0. The remaining adversary
replicas behave like the corresponding honest replicas in world 0, except they also
emulate the network delay of world 0: For each message sent by Pi, adversary
replicas pretend as if the message was delivered at the time slot in which it was
delivered in world 0, even though it was in fact delivered instantly in world i.
Adversary replicas also send the same messages to Pi as in world 0, but they
ensure that these messages are delivered to Pi at the same time slots within
world i as they were delivered in world 0, by delaying the sending if necessary
(after delayed sending, the delay-free network will deliver them instantly).

As Pi receives the same messages at the same time slots in world i and world
0, it cannot distinguish the worlds, and Pi shows the same behavior in both.

As the adversary replicas simulate their behavior from world 0 within world
i, and Pi shows the same behavior in both worlds, cl and cl′ cannot distinguish
the two worlds 0 and i. Thus, they output conflicting ledgers with non-negligible
probability. In this case, by the assumed (f+1)-accountable safety of the protocol
under delay-free networks, the forensic algorithm, invoked with the information
received by these clients from the replicas, identifies at least f + 1 replicas as
protocol violators in world i with non-negligible probability.

Finally, since the two worlds 0 and i are indistinguishable for cl and cl′ for
all i, the worlds i ∈ [n− f ] are indistinguishable as well for cl and cl′. Thus, as
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long as n = O(poly(λ)), the forensic algorithm has a non-negligible probability
to falsely accuse an honest replica, which is a contradiction. ⊓⊔

Theorem 1 holds even if the forensic algorithm were to know whether the
network is partially-synchronous or delay-free (while we block clients and replicas
from learning this). In the proof above, indistinguishability between worlds 0 and
i is used to infer that (i) safety is violated in world i as it is in world 0, and (ii)
worlds i, j > 0 are indistinguishable, and thus an honest replica is likely falsely
accused. The argument for (i) remains, but since the forensic algorithm can now
distinguish worlds 0 and i, we must argue for (ii) directly. Indeed, as worlds
i, j > 0 are all delay-free, and this is the only extra information given to forensic
algorithm, worlds i, j still cannot be distinguished by the forensic algorithm.

4 Simplification of Earlier Results

Impossibility of Finality =⇒ Impossibility of Accountability. Earlier
work [29, Theorem B.1] shows that no protocol can be fa-accountable safe and
fl-live for 2fl + fa > n under a synchronous or partially-synchronous network.
This result follows directly from Theorem 1, combined with the safety–liveness
bound under partial synchrony ([10, Theorem 4.4]) restated below:

Proposition 1 (From [10], see also [23,15,18]). No protocol can satisfy fs-
finality, and fl-liveness under a delay-free network, for 2fl + fs ≥ n.

In other words, given fs, fl, 2fl+fs ≥ n, no protocol can simultaneously preserve
its safety under asynchrony with fs adversary replicas, and remain live with fl
adversary replicas, even if the network is delay-free. This is stronger than the
claim that no protocol provides fs-safety and fl-liveness under partial synchrony,
yet this stronger result directly follows from the proof of [10, Theorem 4.4].
Combining Proposition 1 with Theorem 1, one readily obtains that no protocol
can be fa-accountable safe and fl-live under a synchronous network for any ∆,
including a delay-free network, if 2fl + fa > n:

Corollary 1. No protocol can be fa-accountable safe and fl-live, for 2fl+fa > n,
under a synchronous or partially-synchronous network, for any ∆.

Availability–Finality Dilemma =⇒ Availability–Accountability Dilemma.
To state the availability–accountability dilemma, we recall the formal model for
dynamic participation (i.e., temporary crash faults) [25,26]. Before a global awake
time GAT, the adversary A can determine for every honest replica and time slot,
whether the replica is awake (i.e., online) or asleep (i.e., offline) in that slot.
After GAT, all honest replicas are awake. Awake replicas follow the protocol.
Asleep replicas have a temporary crash fault, and do not execute the protocol in
the respective time slot. Adversary replicas are always awake. Messages sent to
a replica while asleep are processed by the replica whenever it wakes up. The
adversary-environment tuple (Apda,Zpda) models a partially-synchronous net-
work with GST < ∞ and GAT ∈ [0,∞) that can be adaptively chosen by Apda
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and which are not known by honest replicas or the protocol designer. Let β de-
note the largest fraction across all time slots, of adversary replicas among awake
replicas. Below, βs-safety, βl-liveness, βf -finality, and βa-accountable safety are
defined analogously to their definitions in Section 2. Using this model, we restate
the blockchain CAP theorem ([16, Theorem 4.1]):

Proposition 2 (From [16], see also [12]). No protocol provides both βf-
finality and βl-liveness for any βf , βl ≥ 0 under (Apda,Zpda).

One readily obtains the availability–accountability dilemma of [25] as a corollary
of Theorem 1 and Proposition 2.

Corollary 2. No protocol provides both βa-accountable safety and βl-liveness
for any βa > 0, βl ≥ 0 under (Apda,Zpda).

5 Finality, Accountable Safety, and Security under
Partial Synchrony

We clarify the relations among finality, accountable safety, and security under
partial synchrony. Specifically, even though (f + 1)-accountable safety implies
f -finality, it does not imply security under partial synchrony. To illustrate this,
we consider n, f with n = 3f + 1, and construct a protocol called SyncFin that
is (f + 1)-accountable safe (and f -safe under partial synchrony by Theorem 1),
yet cannot recover liveness after GST under partial synchrony, even though it is
f -live under synchrony (the largest possible liveness resilience, cf. Corollary 1).

The SyncFin protocol consists of (i) an underlay consensus protocol executed
by the n replicas and secure under synchrony (e.g., Sync HotStuff [1], Sync-
Streamlet [6]), and (ii) an add-on ‘gadget’ of ‘finality signatures’ on the ledgers
output by the underlay protocol. The gadget works as follows: Once for the
first time at some height h a block is confirmed by the underlay protocol in
the view of a replica, the replica ‘votes for’ that respective chain in the gadget
by broadcasting a finality signature on the block to all other replicas. A replica
creates at most one finality signature per height, on the first block observed
to be confirmed at that height by the underlay protocol. If it later observes a
conflicting block become confirmed by the underlay protocol at the same height,
it does not sign that block (or any descendent thereof). Clients confirm a block
of this new protocol that is a composite of the underlay and finality-signature
gadget, upon observing 2f + 1 finality signatures on a block and its prefix. A
similar add-on was contemporaneously used for unrelated problems in [20,32].

Theorem 2. SyncFin is (f + 1)-accountable safe and f -live under synchrony.

Proof (Sketch). If clients output conflicting ledgers, they must have observed
conflicting blocks at the same height, each with 2f +1 finality signatures. Since
signing different blocks at the same height is a protocol violation, the forensic
algorithm then identifies f + 1 adversarial replicas by inspecting the double-
signers. Thus, SyncFin is (f + 1)-accountable safe. As the underlay protocol is
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Finality

Live
after GST

Accountable
safe

Secure under
dynamic participation

PBFTSyncFin HotStuff-null Nakamoto consensus

Fig. 2. Venn diagram of protocols satisfying finality, accountable safety, security under
partial synchrony, and dynamic participation. The key Theorem 1 of this work means
that accountable safe protocols are contained in the set of final protocols.

f -safe and f -live under synchrony, SyncFin is live under synchrony if there are
2f + 1 or more honest replicas sending finality signatures. ⊓⊔

The SyncFin protocol is, however, not live under partial synchrony with any
resilience. Before GST, the adversary can, with the help of a single adversary
replica, cause two honest replicas to confirm conflicting, different blocks in the
underlay, and send finality signatures on their respective blocks. After signing
the blocks, the honest replicas refuse to sign any conflicting block, implying that
even after GST, no block is guaranteed to receive finality signatures from 2f +1
replicas. Hence, SyncFin is not live after GST.

We summarize the relation among protocols that satisfy finality, accountable
safety, security under partial synchrony, and security under dynamic participa-
tion in Figure 2. The blue set contains protocols with n = 3f + 1 replicas that
are f -final. The green set contains f +1-accountable safe protocols, whereas the
red one contains protocols that, in addition to being f -final, are also f -live after
GST, i.e., they are f -secure under partial synchrony. Since (f + 1)-accountable
safety implies f -finality (Theorem 1), the green set is within the blue one. By
Proposition 2, no protocol is βf -final and βl-live under a dynamically available
network for any βf , βl ≥ 0, i.e., the blue and the yellow sets do not intersect (and
as a consequence, the green and yellow sets do not intersect—the availability–
accountability dilemma, Corollary 2). Finally, Theorem 2 shows that SyncFin
is f -accountable safe and f -live under synchrony, but as we have seen above,
it is not f -live after GST under partial synchrony, so it is not in the red set.
PBFT [5] is both f -accountable safe [29] and f -safe and live under partial syn-
chrony. An example of a protocol that is not accountable safe, yet secure under
partial synchrony is HotStuff-null [29].
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