
Device-Oriented Group Messaging:
A Formal Cryptographic Analysis of Matrix’ Core

Martin R. Albrecht∗, Benjamin Dowling† and Daniel Jones‡
∗King’s College London, martin.albrecht@kcl.ac.uk

† Security of Advanced Systems Group, University of Sheffield, b.dowling@sheffield.ac.uk
‡Information Security Group, Royal Holloway, University of London, dan.jones@rhul.ac.uk

Abstract—Focusing on its cryptographic core, we provide the
first formal description of the Matrix secure group messaging
protocol. Observing that no existing secure messaging model
in the literature captures the relationships (and shared state)
between users, their devices and the groups they are a part of,
we introduce the Device-Oriented Group Messaging model to
capture these key characteristics of the Matrix protocol. Util-
ising our new formalism, we determine that Matrix achieves
the basic security notions of confidentiality and authentication,
provided it introduces authenticated group membership. On
the other hand, while the state sharing functionality in Matrix
conflicts with advanced security notions in the literature –
forward and post-compromise security – it enables features
such as history sharing and account recovery, provoking
broader questions about how such security notions should be
conceptualised.

1. Introduction

Matrix [1] is an open standard for interoperable, feder-
ated, real-time communication over the Internet. It consists
of a number of specifications which, together, define a
federated secure group messaging (SGM) protocol enabling
clients, with accounts on different Matrix servers, to ex-
change messages.

Matrix has seen wide adoption across the private and
public sectors. It is used in operation (to varying degrees)
by governmental organisations in Germany, France, Swe-
den, and Luxembourg. In particular, the German ministry
of defence and healthcare system both use Matrix in the
field. Matrix is a popular choice within the free and open-
source software (FOSS) ecosystem, with Mozilla, KDE and
the FOSDEM 2022 conference all using it. A number of
existing applications have developed Matrix integrations
including the email client Mozilla Thunderbird, the forum
software Discourse and the enterprise messaging platform
Rocket.Chat. Overall, Matrix reportedly has over 80 million
users. The IETF’s More Instant Messaging Interoperability
working group is currently discussing Matrix in their work
specifying a set of mechanisms to make messaging applica-
tions interoperable.

The Matrix specification enables end-to-end encryption
by default. While Matrix uses Transport Layer Security

(TLS) to secure communication between clients and servers
(and between servers for federation), end-to-end encryption
is realised using a bespoke cryptographic protocol called
Megolm which extends the pairwise protocol Olm to support
group chat. Every chat in Matrix is a group chat, including 1-
on-1 chats. Thus, the study of its group messaging protocol
is central to understanding its security guarantees.

1.1. Prior Work

Cryptanalysis. An audit of the Olm and Megolm protocols
(along with their implementations) was performed by NCC
Group in 2016 [2]; this audit found a number of security is-
sues that have since been fixed or recorded as limitations [3],
[4]. Since then, several further cryptographic vulnerabilities
have been reported, e.g. in CVE-2021-34813, CVE-2021-
40824 and [5, Chapter 11]. Moreover, several practically
exploitable vulnerabilities in both the Matrix specification
and the flagship client Element were recently reported [6].
The vulnerabilities found varied in their nature and were
distributed broadly across the subprotocols and libraries that
make up the cryptographic core of Matrix and Element. In
2022, Matrix started a series of audits of their (future) core
libraries [7], [8]. However, these vulnerabilities highlight the
need for a formal and thus rigorous cryptographic analysis
of the Matrix protocol, going beyond audits.

Formal analysis. Both Olm and Megolm build on existing
work, with Olm being a modified implementation of the
Signal protocol [4], [9] and Megolm sharing its architecture
with the Sender Keys variant of Signal [10]. As such,
existing analysis of these protocols will be relevant. The
Signal protocol has received multiple analyses over the
years, e.g. [11], [12], [13], while existing analysis of Sender
Keys based protocols is sparse [14]. In concurrent and
independent work, Balbás, Collins and Gajland provide a
security analysis and proof for Sender Keys as it is used
in WhatsApp [15].1 Nonetheless, no prior work currently
provides a security analysis and proof for Olm, Megolm or
their composition.

The majority of works that examine group messaging
protocols focus on the underlying group key exchange

1. A preliminary version appeared as [16].

https://element.io/case-studies/tchap
https://element.io/blog/dsam-och-esam-forordar-matrix-for-saker-och-federerad-kommunikation-inom-sveriges-offentliga-sektor/
https://element.io/blog/dsam-och-esam-forordar-matrix-for-saker-och-federerad-kommunikation-inom-sveriges-offentliga-sektor/
https://gouvernement.lu/en/actualites/toutes_actualites/communiques/2022/11-novembre/16-hansen-lancement.html
https://element.io/case-studies/bundeswehr
https://element.io/case-studies/bundeswehr
https://matrix.org/blog/2021/07/21/germanys-national-healthcare-system-adopts-matrix
https://wiki.mozilla.org/Matrix
https://dot.kde.org/2019/02/20/kde-adding-matrix-its-im-framework
https://matrix.org/blog/2022/02/07/hosting-fosdem-2022-on-matrix
https://meta.discourse.org/t/matrix-protocol-for-chat/210780
https://www.rocket.chat/press-releases/rocket-chat-leverages-matrix-protocol-for-decentralized-and-interoperable-communications
https://matrix.org/blog/2022/12/25/the-matrix-holiday-update-2022
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34813
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-40824
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-40824

(GKE) protocol, as this captures the cryptographic core of
secure group messaging protocols, see [17], [18], [19], [20],
[21], and for a systematisation of knowledge (SoK) of this
area see [22]. Overall, [23] comes closest to our work,
introducing SGM as an independent primitive and a model
to assess its security. However, this model is insufficient
for analysing subtle interactions in Matrix, as its design
distinguishes between secrets known by different devices
owned by the same user whilst allowing these secrets to be
shared among those devices according to certain policies.
Previous models for group messaging such as [14], [23],
do not distinguish between users and their devices. For an
SoK on multi-device secure messaging protocols (including
high-level descriptions of a number of Matrix’ key features)
in real-world protocols, see [24].

1.2. Contributions

Recent vulnerabilities [6] in Matrix motivate a compre-
hensive formal analysis of the Matrix protocol.

Contribution 1. Section 2 gives the first formal description
of the Matrix protocol’s cryptographic core. 2

Our description covers Olm, Megolm, Matrix’ Cross-
Signing Framework and its Key Request Protocol.3

Next, noting that the vulnerabilities discovered in [6]
relied on cross-protocol interactions, we introduce a mono-
lithic model for SGM protocols to capture the various sub-
protocols involved in modern messaging and their interac-
tion.

Contribution 2. Section 3 introduces the Device-Oriented
Group Messaging (DOGM) model for SGM protocols that
captures the messaging functionality, group management
and user/device identity management together. Additionally,
the State Share sub-protocol captures state sharing among
devices (as well as backup and recovery).

Our model enables capturing various security boundaries
and trade-offs between users and devices. Our adversarial
model captures a diverse range of temporal compromises
and full control over the network. In addition, the DOGM
experiment does not provide a trusted map from identity to
public key (as is standard in the literature [17], [20]). Rather,
the challenger allows the implementing protocol to set up
the requisite public-key infrastructure (PKI), then expects
the protocol to correctly use it. 4To avoid over-specialising

2. While the work of [6] focuses its description on the parts of Matrix
relevant to the attacks, our description abstracts out the implementation
details that may be necessary to fully describe attacks.

3. The description is a synthesis of the Matrix Client-Server API [1],
Olm [4], [9] and Megolm [3] specifications, the implementation guide [25],
source code of the matrix-react-sdk and matrix-js-sdk libraries
provided by the Matrix foundation and that of the flagship client, Element.

4. Sessions must then use their own keys (and signatures distributed
through the adversary) to determine their trust in the keys of other users
or devices. The adversary may also create their own users and devices
without the challenger’s help; such parties are not verified, and not tracked
by the security predicates. Our analysis will demonstrate such attacks will
not work.

the DOGM model to Matrix, we encode protocol-specific
security requirements in CONF and AUTH predicates. These
predicates track and define the cases where confidentiality
and authentication are expected to be broken by the adver-
sary: they capture “trivial wins” in the security game.5

Contribution 3. Section 4 states and proves Matrix’ con-
fidentiality and authentication guarantees, defined through
the predicates MTXCONF and MTXAUTH, under the ad-
versarial model defined by the DOGM security experiment
and against any PPT adversary.

Our proof is in the random oracle model (ROM) and
assumes that (a) the Gap Diffie-Hellman (Gap-DH) [26]
assumption holds on Curve25519 (b) Ed25519 provides
strong unforgeability under chosen message attacks (SUF-
CMA) [27], (c) HKDF is a secure key derivation function
(KDF) [28], (d) MgRatchet (see below) is a secure fast-
forwardable pseudorandom generator (FF-PRG) [29], and
(e) AES-CBC and HMAC (as combined in both Mg and
OlmAEAD) is a secure authenticated encryption with asso-
ciated data (AEAD) scheme.

In particular, the MTXCONF and MTXAUTH security
predicates (and the trivial attacks they encode) show that
compromising users and compromising their devices enable
distinct attacks in Matrix. We discuss these predicates, and
map them back to intuitive scenarios, in Section 4.1. These
form the basis of a broader discussion in Section 5, where
we discuss their impact on Matrix in its usage context.

1.3. Scope

We analyse Matrix in a computational rather than a
symbolic model to capture the often subtle interplay of
cryptographic components at a byte rather than a symbol
level. Indeed, recent work has shown that we must not
assume that the cryptographic components used in Matrix
are perfect [6]. This more in-depth approach comes at the
cost of breadth.

Backups and out-of-band verification. We do not cover
Matrix’ backup solutions for cryptographic key materials
(neither Server-side Megolm Backups nor SSSS). Neither
does this analysis cover the constituent protocols of the
verification framework (such as the SAS protocol [6, Fig.
11 and 12]). This is unfortunate, since these components
were the source of several recent vulnerabilities [6]. We
hope that our work will enable future work that analyses
these components in depth.

Olm channels. Whilst we do model the security of the Olm
channel itself, we do not model compromises of its session

5. For example, in Matrix if the adversary gains access to a Megolm
session secret, it is expected that it can decrypt all future messages in that
session (until a replacement session is created). Winning the experiment
through one of these ciphertexts is considered a “trivial win” and is captured
in the MTXCONF predicate. These trivial wins are protocol-specific,
however, and encode the security guarantees it provides.

https://github.com/matrix-org/matrix-react-sdk
https://github.com/matrix-org/matrix-js-sdk/tree/4721aa1d241a46601601259ec7ca6db9ff1bb5fb
https://github.com/vector-im/element-web/

state (only compromise of the device keys used to authen-
ticate new channels). We do this because Matrix uses Olm
in a manner that (partially) undermines its post-compromise
security (PCS) guarantees.6 As such, our approach captures
forward-secrecy of Olm channels, and is motivated by the
existing body of work on Olm and Signal mentioned above,
but does not capture post-compromise security. Thus, we
do not model exact nature of interactions with Megolm
due to Olm channel compromises. See [15] for a detailed
analysis of similar interactions between Sender Keys and the
underlying Signal channels (as they are used in WhatsApp).

Implementation issues. While we analyse Matrix in a
computational model, this does not cover implementation
issues and side-channels. This is despite this work having
to rely on implementation specific behaviour in the flagship
Element client to establish a formal model of Matrix’ in-
tended behaviour, since the specification is sparse in some
places.

Monolithic analysis. Our analysis treats the Matrix protocol
as one monolithic whole, rather than analysing each sub-
protocol in isolation before considering their composition,
as in [13].

1.4. Limitations

Group membership. As it stands, Matrix lacks crypto-
graphic authentication for (recipient) group membership [6].
We capture this limitation by modelling these attacks as
trivial wins; for example, if an adversary manages to add a
corrupted device to a session to break its confidentiality. We
note, however, that our model does allow us to capture au-
thenticated group membership and thus allows us to model
planned future versions of Matrix where this vulnerability
is addressed. We also note that, more generally, work on
modelling group administration [20], [23], [30] and out-of-
band authentication [31] has only recently picked up pace.

Verification of identities. Our security statements are only
valid when out-of-band verification is enforced, despite this
not being required by the Matrix specification [1].7

Tightness. Our model captures adaptive compromise of se-
crets at the session and device level, motivated by recent at-
tacks [6] and work [32] that demonstrated the limitations of
current models of PCS. However, in order for the challenger
to indistinguishably swap out key material and ciphertexts
with the output of other security experiments (such as those
output by the SUF-CMA challenger), they must correctly
guess which keys will be compromised by the attacker at

6. Matrix allows multiple active Olm channels between pairs of clients.
Access to device keys, therefore, enables attackers to establish new trusted
Olm channels (regardless of whether existing channels have recovered).

7. Element allows communication with unverified users/devices by de-
fault (with warnings in the user interface). An optional setting can disable
this behaviour. However, note that such behaviour is common among
deployments of secure messaging protocols.

the start of the experiment. As such, we face the commitment
problem [17], [33] and must guess the session/query to plant
our challenges into. This proof technique allows us to derive
a security result in the face of such a strong adversary, with
the caveat that we abort the experiment whenever one of our
guesses was incorrect. As a result, we obtain a loose bound
on the security of Matrix against adaptive attackers (rather
than a tighter bound against a non-adaptive attacker).

2. Secure Messaging in the Matrix Standard

The Matrix standard defines the interaction between
three types of entity: homeservers, users and devices. Home-
servers provide the primary point of contact into the Matrix
network for the users they host. Each user has an account on
a particular homeserver as well as a number of associated
devices.

All conversations occur within a room, each of which
is located within a particular homeserver. Users from dif-
ferent homeservers are able to converse across the net-
work thanks to federation i.e. a user with an account on
homeserver H1 can join and converse in rooms located
at homeserver H2 if H1 and H2 federate. For the pur-
pose of modelling end-to-end encryption, we consider the
network of federated homeservers as a single actor, H .
We represent users with identifiers U ∈ Uid of the form
@username:homeserver.tld. Devices also have their
own identifiers, which we represent as DU,i ∈ Did. Device
identifiers are allocated by the homeserver and are expected
to be unique within a single user. Our analysis indexes user
devices in creation order with the tuple (U, i) to distinguish
them without ambiguity.

The Cross-Signing module defines cryptographic iden-
tities for each user and their devices. It allows modelling re-
lationships between these identities using digital signatures.
The Verification Framework defines the Short Authen-
tication String (SAS) and QR code verification protocols
to allow verifying the cryptographic identities of users and
devices out-of-band. In particular, two users can perform
out-of-band verification. If the verification succeeds, they
will sign each other’s identities in a process known as
cross-signing. Similarly, a user might perform out-of-band
verification between two of their devices (one new and
another that is already verified). If the verification succeeds,
they will sign the new device’s identity with the user’s cross-
signing identity to establish that the new device has been
verified. This process is known as self-verification.

Matrix uses the Secure Secret Storage and Sharing
(SSSS) module to gossip user-level secrets between verified
devices, as well as to backup those secrets to the homeserver.

Together, cross-signing and self-verification provide
a cryptographic link from real-world identities to users
and their devices. The Olm protocol uses these crypto-
graphic links to provide secure channels between pairs
of devices. Olm uses a modified Triple Diffie-Hellman
(3DH) [34] handshake for the initial key exchange, com-
bining ephemeral keys with long-term device keys from the
cross-signing module, followed by the Double Ratchet for

continuous key exchange. It provides a secure, underlying
signalling layer between pairs of devices to the other sub-
protocols in Matrix.

Matrix uses the Megolm protocol to protect the contents
of conversations. Megolm provides a secure unidirectional
channel between one sending device and many receiving de-
vices. These channels use a symmetric ratchet, the Megolm
Ratchet, to provide (optional) forward security that can be
fast-forwarded. These unidirectional channels are composed
together to form a group chat. Megolm uses pairwise Olm
channels to distribute inbound Megolm sessions.

Separate to SSSS, the Key Request protocol allows
devices to share inbound Megolm sessions over Olm after
their initial distribution. This enables functionality such as
history sharing. The Server-side Megolm Backups module
enables a user’s devices to backup encrypted copies of
inbound Megolm sessions to the homeserver using a shared
secret.

2.1. Cross-signing & Verification Framework

The cross-signing protocol consists of five algorithms,
CS = (Init, SignUser, SignDevice, VerifyDevice), with the
following syntax:
• (U, stcs) ←$ CS.Init(1λ, A) takes as input a security
parameter and user identifier A. It initialises a cross-signing
identity for A, returning state stcs and a plaintext message
with the user’s public keys and signatures linking them
together.
• (stcs, uB) ← CS.SignUser(stcs, B,mpkB) takes as input
a cross-signing state stcs, a user identity B and their mas-
ter cross-signing identity mpkB , and is executed after the
user performs out-of-band verification with B. It returns an
updated cross-signing state stcs and a signed message tB
attesting that the user believes mpkB is owned by user B.
• (stcs, dtA,D) ← CS.SignDevice(stcs, A,D, dpk , ipk)
takes as input the executing user’s cross-signing state stcs,
user identifier A, and the device identifier D, device identity
key dpk and Olm identity key ipk . This algorithm is exe-
cuted after a user completes out-of-band verification with
one of their devices (self-verification). It returns an updated
cross-signing state stcs and a signed message dtA,D to attest
that D is one of user A’s devices.
• (B,E, dpk∗) ← CS.VerifyDevice(stcs, ipk∗) takes as in-
put cross-signing state stcs and an Olm identity key ipk∗. It
checks the signatures in stcs to determine the key’s user
B and device E, and ensures that the calling user has
performed out-of-band verification with B. If these checks
pass, it returns the verified user B and device E of ipk∗
alongside their cryptographic identity dpk∗. If not, it returns
(⊥,⊥,⊥).

We now give a brief description of the cross-signing
protocol (detailed in Fig. 1).

User setup. Each user sets up an account with a particular
homeserver, which allocates them a user identifier, A. Next,
the user generates their cross-signing keys (as described

TABLE 1: Summary of the keys used in Matrix.

Key Description

mskA mpkA Master signing key for user A
uskA upkA User signing key for user A
sskA spkA Self-signing key for user A
dskA,i dpkA,i Fingerprint/signing key for A’s ith device
iskA,i ipkA,i Olm identity key for A’s ith device
eskA,i,j epkA,i,j jth ephemeral Olm pre-key

for A’s ith device
fskA,i,j fpkA,i,j jth fallback Olm key for A’s ith device

by CS.Init). The master key (mskA,mpkA) serves as their
long-term identity. It is used to sign the user-signing key and
self-signing key. The user-signing key (uskA, upkA) signs
other user’s master keys. The self-signing key (sskA, spkA)
signs a user’s own device keys. Together, these enable each
pair of users to verify one another’s identities once, then rely
on the other user to verify their own devices (see Figure 2
and Table 1).

For example, when Alice adds a new device, they may
use sskA to sign the new device’s long-term identity keys
(dpkA,i , ipkA,i). Alice’s user-signing key uskA may sign
Bob’s master key mpkB after out-of-band verification, to
signify that they believe Bob is in control of the master
key mskB . The public parts of these keys are uploaded to
the homeserver and associated with the user account by the
homeserver.

Before signing a user’s keys (to indicate trust), the two
users can verify their identity out-of-band (using the afore-
mentioned verification framework). They then sign each
other’s master public key mpk with their own user signing
key usk . We do not model the out-of-band verification
process. Instead, we use CS.SignUser to simulate its result.

Device setup. When a new client logs in with their
account credentials, the homeserver allocates a device
identifier (denoted by DA,i). The client then generates
a cryptographic identity for this device to register it
with the homeserver, creating a non-cryptographic asso-
ciation between the user identifier, device identifier and
device keys. This identity includes: (1) Device Finger-
print/Signing Key (dskA,i , dpkA,i) and (2) Olm Key Bundle
(iskA,i, ipkA,i, eskA,i, epkA,i, fskA,i, fpkA,i).

The tuple (eskA,i, epkA,i) is a pre-key bundle:
ephemeral (single-use) keys distributed by the homeserver,
allowing other devices to initiate a key exchange asyn-
chronously as part of the Olm protocol (Section 2.2). The
tuple (fskA,i, fpkA,i) are bundles of one or more fallback
key pairs [35]. The public parts of each of these keypairs
are distributed to other devices through the homeserver (as
a bundle self-signed with dskA,i). The algorithm Mtx.Reg
(Section 2.5) details how the device identity and the self-
signed device keys are created.

Once a new device has setup their device identity,
an existing device (with possession of the user’s secret
cross-signing keys) can verify the new user’s device out-
of-band. This process is known as self-verification. Once
verification is complete, the verifying device signs a bundle

CS.Init(1λ, A)

(msk ,mpk)← DS.KGen(1λ)

(ssk , spk)← DS.KGen(1λ)

(usk , upk)← DS.KGen(1λ)

dt, ut← ∅, ∅
mm ← (mpk , CsMstr, A)

ms ← (spk , CsSelf, A)

mu ← (upk , CsUser, A)

σm ← DS.Sign(msk ,mm)

σd ← DS.Sign(msk ,ms)

σu ← DS.Sign(msk ,mu)

U← (mm, σm,ms, σd,mu, σu)

stcs ← (A,msk , usk , ssk , dt, ut)

return (U, stcs)

CS.SignUser(stcs, B,mpkB)

mB ← (mpkB , CsMstr, B)

σB ← DS.Sign(stcs.usk ,mB)

stcs.ut[B]← (mB , σB)

return (stcs, stcs.ut[B])

CS.SignDevice(
stcs, A,D, dpk , ipk)

mD ← (A,D, dpk , ipk , OlmAlg)

σD ← DS.Sign(stcs.ssk ,mD)

stcs.dt[ipk]← (mD, σD)

return (stcs, stcs.dt[ipk])

CS.VerifyDevice(stcs, ipk∗)

(mD, σD)← stcs.dt[ipk∗]

(B,D, dpk , ipk , alg)← mD

if (ipk 6= ipk∗) : return (⊥,⊥)
(mm, σm,ms, σs,mu, σu)← UB

(mpkB , CsMstr, B)← mm

(spkB , CsSelf, B)← ms

if !DS.Verify(spkB , σD,mD) : return (⊥,⊥)
if !DS.Verify(mpkB , σs,ms) : return (⊥,⊥)
if !DS.Verify(mpkB , σm,mm) : return (⊥,⊥)
if A = B : return (B,D, dpk)

(mB , σB)← stcs.ut[B]

if (!DS.Verify(stcs.U.upk , σB ,mB)

∨mB 6= (mpkB , CsMstr, B)) : return (⊥,⊥)
return (B,D, dpk)

Figure 1: Pseudocode describing the Cross-Signing protocol.

containing the new device’s long-term cryptographic keys
(dpkA,i , ipkA,i) with the user’s self-signing key sskA. The
signature bundle is uploaded to the homeserver, creating a
mapping from a user’s cross-signing identity to the new
device’s cryptographic identity. Clients use the verifica-
tion framework to perform the out-of-band verification.
CS.SignDevice (Fig. 1) simulates the result of this process.

The combination of out-of-band verification between
users (by verifying signatures of each other’s mpk with usk)
and user’s self-verification of their own devices (via signa-
tures of each device identity (dpk , ipk) with ssk) creates a
chain of trust that can be followed to determine whether a
given device really is controlled by a user. Figure 2 displays
two users, their individual key hierarchies and the relation
between them.

The algorithm CS.VerifyDevice(stcs, ipk∗) (Fig. 1) is
run by user A to determine the user and device identifiers
associated with the given device identity key ipk∗. Using
the verifying user’s cross-signing state, they ensure that ipk∗
is the verified by the person they expect to be contacting.
If a device passes these checks, it is considered trusted
by the client and CS.VerifyDevice outputs the verified user
identifier, device identifier and device key. We consider an
idealised Matrix implementation that will only interact with
trusted devices (as defined in CS.VerifyDevice).

We illustrate the sequence of algorithm calls and mes-
sages in Fig. 3.

2.2. The Olm Protocol

Olm is designed to create a secure channel between two
devices. It aims to provide confidentiality, authenticity, for-
ward secrecy (FS), PCS and deniability [4], [9].8 Following
the same broad design as the Signal protocol [34], [36], [37],
Olm uses a modified 3DH [34] for the initial key exchange,

8. Olm’s initial key exchange, as we describe it in this section, provides
deniability. However, since Matrix signs the ephemeral keys (see MtxOlm
in Fig. 9), this property is lost (in exchange for stronger FS) [9].

Alice Bob
mpkA

spkA upkA

(dpkA,1, ipkA,1)

· · · (dpkA,n, ipkA,n)

mpkB

spkBupkB

(dpkB,1, ipkB,1)

· · ·(dpkB,m, ipkB,m)

m
sk

A

m
sk

A

ss
k
A ssk

A

m
sk

B

m
sk

B
ss
k B ssk

B

usk
A

usk
B

Figure 2: The long-term key hierarchy for two users, Alice
and Bob, and each of their devices [1]. Each arrow de-
notes a signature. Dashed arrows denote signatures resulting
from an out-of-band verification between Alice and Bob.
Dotted arrows denote signatures resulting from an out-of-
band verification between a user cross-signing session and
a device (self-verification). Since the cross-signing session
exists on the first device where cross-signing is enabled, the
first device identity signed by each user is not the result of
an out-of-band verification. Diagram based on [1, #cross-
signing].

which we refer to as Olm Triple-Diffie Hellman (O3DH) [1],
[4], [9]. O3DH sets up the first epoch of the Double Ratchet
protocol [37].9 Olm consists of three algorithms, Olm =
(KGen, Enc, Dec), with the following syntax.
• (isk , esk , fsk), (ipk , epk , fpk)←$ Olm.KGen(1λ, ne, nf)
• (stolm, c)← Olm.Enc(stolm,m, iskA,i, ipkB,j , epkB,j,k)
• (stolm,m)← Olm.Dec(stolm, c, iskA,i, eskA,i)

We now give a brief description of the Olm protocol
(detailed in Fig. 4). Refer to Fig. 5 to see how they interact.

9. We combine our descriptions of the initial key exchange and Double
Ratchet protocol within the Olm.Enc and Olm.Dec algorithms to reflect
how the two intertwine in practice.

DA,i H DB,j

// Initialise cryptographic identity for DA,i

(dskA,i , dpkA,i)← X25519.KGen(1λ)
(skA,i, pkA,i)← Olm.KGen(1λ, ne, nf)

((iskA,i, eskA,i, fskA,i)
(ipkA,i, epkA,i, fpkA,i))← (skA,i, pkA,i)

md ← (D, DvSign, dpkA,i , DvIdent, ipkA,i)
me ← (DvEphm, epkA,i)
mf ← (DvFall, fpkA,i)

for X ∈ {d, e, f} do : σX ← DS.Sign(dskA,i ,mX)

// Initialise cryptographic identity for DB,j

(dskB,j , dpkB,j)← X25519.KGen(1λ)
(skB,j , pkB,j)← Olm.KGen(1λ, ne, nf)
((iskB,j , eskB,j , fskB,j)
(ipkB,j , epkB,j , fpkB,j))← (skB,j , pkB,j)
md ← (D, DvSign, dpkB,j , DvIdent, ipkB,j)
me ← (DvEphm, epkB,j)
mf ← (DvFall, fpkB,j)
for X ∈ {d, e, f} do : σX ← DS.Sign(dskB,j ,mX)pkA,i pkB,j

pkB,j pkA,i

// Initialise cross-signing identity for Alice

(UA, stcs)←$ CS.Init(1λ, A)
// Initialise cross-signing identity for Bob

(UB , stcs)←$ CS.Init(1λ, B)UA UB

UB UA

(D accepts UB as B’s unverified identity) (E accepts UA as A’s unverified identity)

// DA,i verifies itself using the cross-signing secrets for A

(stcs, dtA,i)← CS.SignDevice(
stcs, A,DA,i, dpkA,i , ipkA,i)

// DB,j verifies itself using the cross-signing secrets for B

(stcs, dtB,j)← CS.SignDevice(
stcs, B,DB,j , dpkB,j , ipkB,j)dtA,i dtB,j

dtB,j dtA,i

Out-of-Band Verification

(DA,i accepts UB as B’s verified identity) (DB,j accepts UA as A’s verified identity)

(stcs, utB)←$ CS.SignUser(1λ, B,mpkB) (stcs, utA)←$ CS.SignUser(1λ, A,mpkA)

(DA,i accepts DB,j as a verified device of B) (DB,j accepts DA,i as a verified device of A)utB utA

Figure 3: A demonstration of device setup, cross-signing setup and the user verification process between Alice A, Bob B
and their two devices (DA,i and DB,j respectively). To start, both users setup each device, initialise their cross-signing
setups and sign their first device. Since the device which initialises a user’s cross-signing identity already has the secret keys,
it does not need to perform self-verification with itself and can simply sign it’s device identity. Next, each user distributes
their device and cross-signing information through the homeserver. This identity is automatically accepted by the other
user’s devices but is marked as unverified. The two devices, DA,i and DB,j , perform out-of-band user-to-user verification
on behalf of Alice and Bob. Once complete, they each mark the other’s cross-signing identity as verified and, by following
the cross-signing signatures in D may now mark the other device as verified as well. Note that we model Matrix as only
accepting messages from verified devices, i.e. from this point onwards. However, in practice, Matrix would accept messages
from unverified users but display a warning in the user interface.

Key generation. Each device, say DA,i, maintains
three sets of keys: 1) a long-term identity
key pair (isk , ipk), 2) ne ephemeral key pairs
{(eskA,i,k, epkA,i,k) : 0 ≤ k < ne}, and 3) nf fallback key
pairs {(fskA,i,k, fpkA,i,k) : 0 ≤ k < nf}.

The O3DH key exchange combines a long-term identity
key and a single-use key from each device. The initiating de-
vice generates a single-use key and uses one ephemeral key
from the receiving device (provided by the homeserver).10

The fallback keys are used as a backup when no unused

10. Each ephemeral key pair should only be used once. Fallback keys
may be used multiple times but should be replaced as soon as possible.
Clients must enforce this themselves (rather than relying on the home-
server).

ephemeral keys available. DA,i generates these keys by
executing Olm.KGen, specifying the number of ephemeral
and fallback key pairs they need. The public parts of these
key pairs are distributed through the homeserver.

Session setup. We now describe the initial key exchange
and how it sets up (and intertwines with) the first epoch of
the Double Ratchet protocol (with epoch p = 0).

To initialise a session with Bob’s device DB,j , Alice’s
device DA,i first fetches Bob’s keys from the homeserver,
ipkB,j and epkB,j,k. A fallback key fpkB,j,k is used if no
ephemeral key pairs are available, in which case epkB,j,k

is swapped with fpkB,j,k in the explanation that follows.
Alice’s device should verify the keys that the homeserver

provided. Matrix achieves this with the cross-signing frame-
work.

DA,i then executes Olm.Enc, providing the first message
they would like to send, their private identity key and DB,j’s
keys. Olm.Enc initiates a 3DH key exchange between the
two parties. The algorithm generates a single-use key pair,
(eskA,i, epkA,i), to act as DA,i’s ephemeral contribution
to the key exchange. DA,i computes their side of the key
exchange using iskA,i, eskA,i, ipkB,j and epkB,j,k. The
pre-computation of epkB,j,k allows DA,i to compute the
shared secret without any interaction from DB,j .

Now, DA,i uses the shared secret to compute the initial
state of the Double Ratchet protocol. It derives the root
key rch0,0 and chain key ck0,0 from the shared secret
using HKDF-SHA-256. DA,i then uses ck0,0 to derive key
material for the first message. Messages sent when DB,j has
not yet responded are pre-key messages. These additionally
contain, as unauthenticated data wrapping the Olm cipher-
text, the public key pairs DB,j needs to derive the shared
secret for the first epoch: (1) ipkA,i (2) epkA,i (3) epkB,j,k.
Other than this, pre-key messages are encrypted as normal
Olm messages (as in Section 2.2). As such, DA,i generates
a new X25519 key pair and includes the public part as a
contribution towards the root key for the next epoch.

When DB,j receives a pre-key message, it executes
Olm.Dec which will calculate the shared secret then ini-
tialise the Double Ratchet protocol. DA,i may continue to
encrypt new messages by ratcheting the chain key forward,
which DB,j may similarly decrypt. The protocol progresses
to the next epoch when DB,j replies.

Messaging. To encrypt a message mp,q, the sending device
runs Olm.Enc to produce a ciphertext cp,q that can later
be decrypted by the receiving device using Olm.Dec. We
address messages by the current epoch p and chain index q.
An epoch represents an uninterrupted sequence of messages
sent by a single device. Within a single epoch, the symmetric
ratchet ckq is progressed to ckq+1 after each message is
encrypted. A new epoch starts when the receiving device of
the current epoch replies. We now describe this process.

If DB,j sends a message in an epoch where they are the
receiving party (i.e. in an epoch they did not initiate), they
increment the epoch p, reset the chain index q to zero and
progress the asymmetric ratchet. To do this, they compute
the next root key rchp and chain key ckp,0 using the ratchet
key rpkp−1 (provided in the most recent ciphertext sent by
DA,i) and a freshly generated ratchet key rskp. Otherwise,
if DB,j sends a message where they are already the sending
device (i.e. in an epoch they initiated) they simply increment
the symmetric ratchet counter q ← q + 1 (noting that DB,j

will have ratcheted forward the chain key to ckp,q+1 after
encrypting the previous message).

We now describe the process of encrypting (and decrypt-
ing) Olm messages. To encrypt mp,q, DB,j derives fresh
key material using the current chain key ckp,q. This key
material is provided to an AEAD scheme built from AES-
CBC and HMAC-SHA-256 which derives the keys needed
for each algorithm using HKDF. Each message includes the

current Olm protocol version, the ratchet key generated by
DB,j during encryption, and the current chain index q as
authenticated data as part of the ciphertext cp,q. Finally,
DB,j’s copy of the chain key is ratcheted forward, ready
to encrypt the next message mp,q+1.11

When DA,i receives cp,q, they first check if it has
initiated a new epoch (i.e. is this the first message they have
received from DB,j since they last sent a message). If so,
they update their copies of p and q, then use the ratchet
key rpkp in cp,q and their copy of rskp−1 to generate the
next root key rchp and chain key ckp,0. They then generate
the key material needed to verify and decrypt the message,
which they pass to OlmAEAD.Dec for decryption. Finally,
DA,i ratchets their copy of the chain key forward, ready to
decrypt the next message mp,q+1.

The protocol proceeds with alternating epochs, each
consisting of a sequence of messages from a single sender.
Each new epoch is initiated by a reply from the recipient of
the current epoch.

2.3. The Megolm Protocol

As described above, Megolm constructs a logical group
conversation from the composition of many unidirectional
channels (one for each sending party). It uses Olm channels
between pairs of participants to setup and manage each of
these Megolm sessions independently.

Each device generates their own Megolm session when
they first send a message to the group. The session (i.e. their
sender key) consists of two parts: an outbound session
used to encrypt messages and an inbound session used to
decrypt them. The inbound session is then distributed to
each member of the group individually over their respective
Olm channel.

It consists of four algorithms, Mg = (Init, Recv, Enc,
Dec), with the following syntax:
• Sgsk ,Sgpk , σmg ←$ Mg.Init(1λ) takes as input a security
parameter then generates a new Megolm session. It returns
the outbound session, inbound session and a signature over
the inbound session (created with the group signing key).
• Sgpk ← Mg.Recv(Sgpk , σmg) takes as input an inbound
Megolm session Sgpk and its signature σmg. It verifies the
signature using the group verification key gpk contained
within Sgpk . It returns Sgpk if the signature is valid and
⊥ if it is not.
• Sgsk , c ← Mg.Enc(Sgsk ,m) takes as input an outbound
Megolm session Sgsk and a plaintext message m. It encrypts
the message (using the ratchet R to generate symmetric key
material) then signs the encrypted message with the group
signing key gsk . The algorithm outputs an updated outbound
session Sgsk and the resulting ciphertext c. If the encryption
fails, it returns an updated outbound session Sgsk and ⊥.
• Sgpk ,m ← Mg.Dec(Sgpk , c) takes as input an inbound
Megolm session Sgpk and ciphertext c produced by Mg.Enc.

11. Old values of the root key rch , chain key ck , ratchet key (rsk , rpk),
message keys mk and AEAD keys (ke, kh, kiv) should be discarded to
preserve FS and PCS.

Olm.KGen(1λ, ne, nf)

(isk , ipk)←$ X25519.KGen(1λ)

for 0 ≤ k < ne do : (eskk, epkk)←$ X25519.KGen(1λ)

(esk , epk)← (esk0, . . . , eskne−1}, {epk0, . . . , epkne−1)

for 0 ≤ k < nf do : (fskk, fpkk)←$ X25519.KGen(1λ)

(fsk , fpk)← (fsk0, . . . , fsknf
}, {fpk0, . . . , fpknf−1)

return (isk , esk , fsk), (ipk , epk , fpk)

Olm.Enc(stolm,m, isk , ipk∗, epk∗)

if (stolm = ⊥) : // session setup

ρ← send; p← 0; q ← 0

(esk , epk)←$ X25519.KGen(1λ)

ms ← (epk∗)isk ‖ (ipk∗)esk ‖ (epk∗)esk

rch ‖ ck ← HKDF(0,ms, OlmRch0)[0 : 64]

(rsk , rpk)←$ X25519.KGen(1λ)

else :

(ρ, p, q, rch, ck , rsk , rpk , rpk∗)← stolm

if (ρ = recv) : // new epoch

ρ← send; p← p+ 1; q ← 0

(rsk , rpk)←$ X25519.KGen(1λ)

rch ‖ ck ← HKDF(rch, (rpk∗)rsk , OlmRch)[0 : 64]

elseif (ρ = send) : q ← q + 1 // existing epoch

mk ← HMAC(ck , 0x01)

c← OlmAEAD.Enc(mk , OlmKeys, (OlmVer, rpk , q),m)

ck ← HMAC(ck , 0x02)

if (p = 0) : c← (ipk , epk , epk∗) ‖ c
stolm ← (ρ, p, q, rch, ck , rsk , rpk , rpk∗)

return (stolm, c)

Olm.Dec(stolm, c, isk , esk)

if (stolm = ⊥) : // complete setup

ρ← recv; p← 0; q ← 0

(ipk∗, epk∗, epk , OlmVer, rpk∗, q∗, x, τ)← c

ms ← (ipk∗)esk ‖ (epk∗)isk ‖ (epk∗)esk

rch ‖ ck ← HKDF(0,ms, OlmRch0)[0 : 64]

else :

(ρ, p, q, rch, ck , rsk , rpk , rpk∗)← stolm

if (p = 0) : (ipk∗, epk∗, epk , OlmVer, rpk∗, q∗, x, τ)← c

else : (OlmVer, rpk∗, q∗, x, τ)← c

if (ρ = send) // new epoch

ρ← recv; p← p+ 1; q ← 0

rch ‖ ck ← HKDF(rch, (rpk∗)rsk , OlmRch)[0 : 64]

(rsk , rpk)← (⊥,⊥)
elseif (ρ = recv) q ← q + 1 // existing epoch

if q 6= q∗ : return (stolm,⊥)
mk ← HMAC(ck , 0x01)

ad,m← OlmAEAD.Dec(mk , OlmKeys, c)

if (ad,m) = (⊥,⊥) : return (stolm,⊥)
ck ← HMAC(ck , 0x02)

stolm ← (ρ, p, q, rch, ck , rsk , rpk , rpk∗)

return (stolm,m)

Figure 4: Pseudocode describing the Olm protocol.

The algorithm checks the signature, then decrypts the mes-
sage. It returns an updated inbound session Sgpk and plain-
text m if the decryption succeeds. If not, it returns an
updated inbound session Sgpk and ⊥.

We describe each algorithm in the sections that follow
(refer to Fig. 6 for a formal description).

Group initialisation and management. A Megolm session
consists of the current message index i, the internal ratchet
state R, and the group signing keypair (gsk , gpk).

A Megolm session can be either an outbound or inbound
session. Outbound sessions, Sgsk = (ver , i, R, gsk , gpk) are
kept by the sending device and used to encrypt messages to
the room. Inbound sessions, Sgpk = (ver , i, R, gpk), allow
other devices in the room to authenticate and decrypt these
messages. The protocol version is stored alongside each
session.

To begin a new session, the sending device executes
Mg.Init, which outputs the inbound and outbound sessions
separately. The inbound session is distributed individually
to each device in the room using Olm in session sharing
format12. When a device receives an inbound Megolm ses-
sion, they use the Mg.Recv algorithm to verify its signature
against the gpk it contains. If the verification succeeds, the
algorithm outputs the inbound session. If not, it outputs ⊥.

Messaging. To send a message, the sending device uses
the ratchet to generate a fresh set of symmetric keys for
authenticated encryption. It encrypts the message, appends
an HMAC tag, then signs the authenticated ciphertext with
the group signing key gsk . This ciphertext is sent to the
homeserver which distributes it to devices in the group.

To decrypt a message, receiving devices first verify the
signature with their copy of the group verification key gpk .
If successful, they ratchet their local R forward to the index
inside the message.13 The receiving device then uses their
copy of R to verify the MAC and decrypt the message.

We give a sequence diagram of an example execution
of the Megolm protocol in Fig. 7.

Session rotation. The application layer may also rotate
sessions during a conversation. For example, when a device
leaves a group, the sending device generates a new session
to ensure that the leaving device cannot decrypt future
messages. Similarly, the specification suggests that Megolm
sessions could be rotated regularly to enable PCS [3]14.

To rotate a Megolm session, the sending device simply
executes Mg.Init (effectively resetting the message index to
0, then generating a new ratchet state and group signing

12. Sgpk is output by Mg.Init in session export format [3]. When
combined with its signature, Sgpk ‖σmg, it is said to be in session sharing
format [3].

13. The Megolm specification recommends that sessions keep old copies
of the ratchet state but, since this is optional behaviour, we subsume it into
the Matrix protocol for a clearer description.

14. The PCS of an Olm channel relies on particular usage patterns and
it is not necessarily the case that Megolm session rotation follows such
patterns. The security model in [15] captures this relationship.

DA,i H DB,j

(skB,j , pkB,j)← Olm.KGen(1λ, ne, nf)
((iskB,j , eskB,j , fskB,j)
(ipkB,j , epkB,j , fpkB,j))← (skB,j , pkB,j)kB,j

(skA,i, pkA,i)← Olm.KGen(1λ, ne, nf)
((iskA,i, eskA,i, fskA,i)

(ipkA,i, epkA,i, fpkA,i))← (skA,i, pkA,i)
kA,i

kB,j kA,i

(stolm, c0,0)← Olm.Enc(
⊥,m0,0, iskA,i, ipkB,j , epkB,j) c0,0

(stolm,m0,0)← Olm.Dec(
⊥, c0,0, iskB,j , eskB,j)

(stolm, c1,0)← Olm.Enc(stolm,m1,0)c1,0

(stolm,m1,0)← Olm.Dec(stolm, c1,0)

(stolm, c2,0)← Olm.Enc(stolm,m2,0) c2,0

(stolm, c2,1)← Olm.Enc(stolm,m2,1) c2,1

(stolm,m2,0)← Olm.Dec(stolm, c2,1)

(stolm,m2,1)← Olm.Dec(stolm, c2,1)

Figure 5: Example execution of the Olm protocol. In Matrix, the device keys distributed by the homeserver are signed with
the device signing key dsk (although such behaviour is not mandated by the Olm protocol).

Mg.Init(1λ)

(i, R)←$ MgRatchet.Init(1λ)

(gsk , gpk)← DS.KGen(1λ)

σmg ← DS.Sign(gsk , (0x01, i, R, gpk))

Sgsk ← (0x01, i, R, gsk , gpk)

Sgpk ← (ver , i, R, gpk)

return (Sgsk ,Sgpk , σmg)

Mg.Recv(Sgpk , σmg)

(ver , i, R, gpk)← Sgpk

if DS.Verify(gpk , σmg,Sgpk) return Sgpk

else : return ⊥

Mg.Enc(Sgsk ,m)

(ver , i, R, gsk , gpk)← Sgsk

(i, R), (ke ‖ kh ‖ kiv)
← MgRatchet.Next((i, R))

c← AES-CBC .Enc(kiv , ke,m)

τ ← HMAC(kh, (ver , i, c))[0 : 8]

σ ← DS.Sign(gsk , (ver , i, c, τ))

c′ ← (ver , i, c, τ, σ)

Sgsk ← (ver , i, R, gsk , gpk)

return (Sgsk , c
′)

Mg.Dec(Sgpk , c)

(ver , i, R, gpk)← Sgpk ; (ver ′, i′, c′, τ, σ)← c

if !DS.Verify(gpk , σ, (ver , i′, c′, τ)) :

return (Sgpk ,⊥)
do (i, R), k ← MgRatchet.Next((i, R))

until i = i′ // (see Fn. 13)

(ke ‖ kh ‖ kiv)← k

if τ 6= HMAC(kh, (ver , i, c
′))[0 : 8] :

return (Sgpk ,⊥)
m← AES-CBC .Dec(kiv , ke, c

′)

Sgpk ← (ver , i, R, gpk)

return (Sgpk ,m)

Figure 6: Pseudocode describing the Megolm protocol (see Section A for information on MgRatchet).

keypair). Next, they distribute the new inbound session S′
gpk

over Olm to the current set of group members. The public
part of the Megolm signing key, gpk , is used to differentiate
between (sub)sessions. We note that, in practice, clients such
as Element keep a copy of old sessions and will accept
messages from them. Indeed, the Key Request protocol
mentioned below aims at sharing such old sessions.

2.4. Key Requests

There are a number of cases in Matrix where a device
should have access to an inbound Megolm session, but

missed its initial distribution. For example, when an existing
member of a room adds a new device, the latter is expected
to have access to all messages sent since the member first
joined the room.

The key request protocol provides a solution to this
problem. It allows devices in a group to request inbound
Megolm sessions (the secret keys they are missing) and for
devices (with possession of those sessions) to share them
where permitted. Now, when an existing member of a room
adds a new device, the new device may request old inbound
Megolm sessions from the member’s other devices.

The protocol consists of three algorithms, KS =

DA,i DB,j DC,k

Sgsk ,Sgpk , σmg ←$ Mg.Init(1λ) (Sgpk , σmg)

Sgpk ← Mg.Recv(Sgpk , σmg)
if Sgpk = ⊥ : exit

(Sgpk , σmg)

Sgpk ← Mg.Recv(Sgpk , σmg)
if Sgpk = ⊥ : exit

Sgsk , c0 ← Mg.Enc(Sgsk ,m0) c0

Sgpk ,m0 ← Mg.Dec(Sgpk , c0)
if m0 = ⊥ : exit

c0

Sgpk ,m0 ← Mg.Dec(Sgpk , c0)
if m0 = ⊥ : exit

Figure 7: An example execution of the Megolm protocol. To start, Alice’s sending device, DA,i, generates a new session
using Mg.Init. They keep their copy of Sgsk , then distribute the inbound session Sgpk and its signature σmg (together in
session sharing format) to Bob, DB,j and Claire, DC,k. These messages are sent using Olm (such messages are represented
with dotted arrows in the diagram). Bob and Claire both receive the inbound session and verify its signature. Now, Alice
encrypts a message m0 using their copy of the outbound session, generating a single ciphertext c0 that Bob and Claire
can both decrypt. All messages in this diagram implicitly pass through the homeserver (such that Alice may rely on the
homeserver to distribute c0 to all recepient devices).

KS.Request(A,D, ds, gpk†, ipk†, stcs)

ds← {(E, dpk , ipk) ∈ ds : CS.VerifyDevice(stcs, ipk) = (A,E, dpk)}
m← (MsgReq, request, A,D, MgAlg, gpk†, ipk†)

return (ds,m)

KS.Recover(A,D,E, dpk∗, ipk∗,m, stcs, ~stmg)

(MsgFwd, MgAlg, gpk†, dpk†, ipk†,Sgpk ,)← m

if CS.VerifyDevice(stcs, ipk∗) 6= (A,E, dpk∗) :

return (false, ~stmg)

~stmg[gpk†, ipk†]← (Sgpk , dpk†, true)

return (true, ~stmg)

KS.Share(A,D,m, stcs, ~stmg)

(t, a, B,E, alg, gpk†, ipk†)← m

if (t 6= MsgReq ∨ a 6= request

∨A 6= B ∨D = E) : return (⊥,⊥,⊥)
{ipkE} ← {ipk : (A′, E′, _, ipk , _) ∈ stcs.dt ∧A′ = A ∧ E′ = E}
(A′, E′, dpkE)← CS.VerifyDevice(stcs, ipkE)

if (A′, E′) 6= (A,E) : return (⊥,⊥,⊥)
(Sgpk , dpk†, F)← ~stmg[gpk , ipk]

if Sgpk = ⊥ : return (⊥,⊥,⊥)
m← (MsgFwd, MgAlg, gpk†, dpk†, ipk†,Sgpk)

return (dpkE , ipkE ,m)

Figure 8: Pseudocode describing the Key Request protocol.

(Request, Share, Recover), with the following syntax.

• (ds,m) ← KS.Request(A,D, ds, gpk†, ipk†, stcs) gener-
ates a set of key request messages. It takes as input the
executing device’s user identifier A, device identifier D, the
set of A’s devices ds, the group verification key of the
Megolm session to request gpk†, the Olm identity key of
the session owner ipk† and the user’s cross-signing state.
Each item in ds should contain its device identifier, device
signing key and Olm identity key. The algorithm will check
whether each device in ds has been self-verified by the
executing user. For each device that passes this check, a
plaintext MsgReq message requesting the session identified
by gpk . It returns a filtered list of devices ds and the message
m.
• (dpk∗, ipk∗,m)← KS.Share(A,D,m, stcs, ~stmg) takes as

input the user and device identifiers, a key request message
m, the executing device’s cross-signing state stcs and their
inbound Megolm session store ~stmg. After ensuring the
requesting device is a verified device from the same user, it
returns a plaintext m containing the requested key and the
verified cryptographic identity ipkE of the requesting device
dpkE . The caller must then encrypt this message over an
Olm channel.
• (t, ~stmg)← KS.Recover(A,D,E, dpk∗, ipk∗,m, stcs, ~stmg)
processes an incoming MsgFwd message and, if the sender
is a verified device from the same user, saves the inbound
Megolm session. It takes as input the executing device’s
user identifier A and device identifier D, the sending
device’s identifier E, the cryptographic identity of the
device which sent the Olm message (dpkE , ipkE), the

decrypted Olm message m containing the key share, the
executing device’s cross-signing state stcs and their Megolm
sessions ~stmg. If the Olm device that sent the message is
verified and from the same user, the algorithm will save
the session it has received in ~stmg then return (true, ~stmg).
If the verification fails, it will return (false, ~stmg) where
~stmg is unmodified.

We now give a brief description of the Key Request
protocol (detailed in Fig. 8).

Requesting keys. The protocol is triggered when a client
receives a ciphertext for which they are missing the Megolm
session needed to decrypt it. The client generates a MsgReq
message containing the gpk of the session they are request-
ing access to and the ipk of its presumed owner (sourced
from the metadata of the Megolm ciphertext). It is sent in
plaintext to all of the user’s verified devices. KS.Request
in Fig. 8 describes the process of generating a MsgReq
message in detail.

Sharing keys. When a device receives a MsgReq message,
they first determine whether to share the key with the
requesting device. Since the standard specifies that Megolm
sessions may only be shared between trusted (i.e. verified)
devices of the same user, they first verify the identity
contained in the MsgReq message. If these checks pass, the
sharing device packages their copy of the inbound Megolm
session in session export format [3] inside a MsgFwd mes-
sage [1] (alongside the claimed identity of the session
owner) to be sent over Olm. In our formulation of the
protocol, KS.Share returns the device identity, (dpk , ipk), of
the intended recipeint for the caller to encrypt appropriately.
Note that this is the only message in the key request protocol
that is sent over Olm. KS.Share in Fig. 8 describes the
process of processing a MsgReq message in detail.

Receiving keys. Upon receiving a MsgFwd message, the
requesting client checks that it came from an Olm channel
belonging to a verified device of the same user. If so, it
is saved to the receiving device’s Megolm session store.
KS.Recover in Fig. 8 describes the process of receiving a
MsgFwd message in detail.

2.5. The Matrix Secure Messaging Protocol

The Matrix protocol is a tuple of nine algorithms, Mtx
= (Gen, Reg, Init, Recv, Add, Remove, Enc, Dec, ReqKey).
These algorithms (detailed in Fig. 9) capture the interactions
of a single group, its users and their devices.

User and device setup. The Mtx.Gen algorithm captures
the initialisation of a user and their cryptographic identity
(described exactly by CS.Init). Mtx.Reg captures the initiali-
sation of a device and its cryptographic identity, then triggers
the self-verification process. Before initialising a group, each
user must initialise their cryptographic identity along with
one or more devices. Devices can be added later but the
Matrix protocol does not support device revocation.

Users perform out-of-band verification the first time
they interact. This process is modelled via calls to the
VF.User(stcs, B) algorithm which attempts an out-of-band
verification with the device DB,j . If successful, it returns the
user’s mpkB which is then signed using the CS.SignUser al-
gorithm. Self-verification of new devices is simulated during
device registration. In practice, the device holding the cross-
signing secrets will execute VF.Device(stcs, B, j) which,
upon successful verification, returns dpkB,j and ipkB,j .
Only then will CS.SignDevice be executed and sign the
device’s identity.15 See [6, Fig. 11 and 12] for a detailed
description of the Short Authentication String (SAS) proto-
col.

Group initialisation. Mtx.Init is executed by each device in
the group. Each device generates a Megolm session which
they will use to send messages to the group. The Mtx.Add
algorithm must then be executed by each device, for every
other device, to initialise the group membership.16

Adding devices. To add a device, all existing member’s
devices execute Mtx.Add, sharing a copy of their inbound
Megolm session state with the new device (over an Olm
channel). If no Olm channel exists, a new one will be created
(after checking whether that the device has been verified).

Removing devices. When a device is removed from the
group, the Mtx.Remove algorithm is run by each device
in the group. The generate a fresh Megolm session using
Mg.Init, then share the resulting inbound Megolm session
with the updated list.

In practice, these algorithms are only run when the
device next sends a message to the group. This also allows
batching of multiple membership changes into one opera-
tion, reducing the overall cost. Our description in Mtx.Add
and Mtx.Remove does not capture this.

Adding and removing users. Matrix also allows the ad-
dition (and removal) of users from the group in a single
operation. We capture this through the repeated application
of Mtx.Add (and Mtx.Remove, resp.) for each of the user’s
devices.

Message ordering. Individual Olm and Megolm sessions
can define a canonical message ordering on the sender and
receiver sides through their key schedules. However, since
Matrix allows multiple Olm channels to coexist between
a single pair of devices, canonical message ordering in
Olm and Megolm sessions does not translate to consistent
canonical message ordering within Matrix conversations.17

15. In practice, out-of-band verification can be triggered by users at
any time. This formalism captures the first time this process occurs in
the protocol.

16. It is possible for different devices in the group to have different
views of the group membership. This is possible in practice and in our
formalism.

17. Our security analysis (and predicates) are defined in terms of the
canonical ordering that are observed by the challenger in the experiment.

Mtx.Reg(1λ, A,D, stcs)

(Dsk ,D)← MtxOlm.KGen(

1λ, A,D, 10, 1)

(stcs, dt)← CS.SignDevice(

stcs, A,D,D.dpk ,D.ipk)

return (D, dt), (Dsk , stcs)

Mtx.Init(1λ, A,D,U,D, stcs,Dsk , G)

~stmg ← []; ~stolm ← []

CU ← {A};CD ← {(D,D.dpk ,D.ipk)}
(Sgsk ,Sgpk , σmg)←$ Mg.Init(1λ)

~stmg[gpk ,D.ipk]← (Sgpk ,D.dpk , false)

stmt ← (G,A,D,CU ,CD ,U,D, stcs,

dsk , isk , esk , fsk ,Sgsk , ~stmg, ~stolm)

return (stmt, G)

Mtx.Add(stmt, B,E, dpk∗, ipk∗)

if (B /∈ stmt.CU) :

mpk∗ ← VF.User(B)

if (mpk∗ = ⊥) : return (stmt,⊥)
(stmt.stcs, _)←

CS.SignUser(stmt.stcs, B,mpk∗)

stmt.CU ← stmt.CU ∪ {B}
(B,E, dpk∗)← CS.VerifyDevice(ipk∗)

if (B,E) ∈ {(⊥,⊥),
(stmt.A, stmt.D)} : return (⊥,⊥)

(ver , i, R, gsk , gpk)← stmt.Sgsk

Sgpk ← (ver , i, R, gpk)

σmg ← DS.Sign(gsk ,Sgpk)

mw ← (MgAlg, G,Sgpk , σmg)

(stmt, cw)← MtxOlm.Enc(

stmt, dpk
∗, ipk∗,mw)

stmt.CD ← stmt.CD ∪ {(E, dpk∗, ipk∗)}
return (stmt, cw)

Mtx.Remove(stmt, B,E, dpk∗, ipk∗)

stmt.CD ← stmt.CD \ {(E, dpk∗, ipk∗)}
if (6 ∃F : (B,F, _, _) ∈ stmt.CD) :

stmt.CU ← stmt.CU \ {B}
(Sgsk ,Sgpk , σmg)←$ Mg.Init(1λ)

stmt.~stmg[gpk ,D.ipk]← (Sgpk ,D.dpk , false)

stmt.Sgsk ← Sgsk

cs← {}; for (C,F) in stmt.CD

(stmt, c)← Mtx.Add(stmt, ipkC,F)

cs← cs ∪ {c}
return (stmt, cs)

Mtx.ReqKey(stmt, gpk , ipk)

(ds,m)← KS.Request(stmt.A,

stmt.D, stmt.CD , gpk , ipk , stmt.stcs)

return (stmt, ds,m)

Mtx.Recv(stmt, dpks , ipks,m)

(alg, G,S∗
gpk , σmg)← m

if (alg 6= MgAlg) ∨ (G 6= stmt.G)

: return (stmt,⊥)
S∗

gpk ← Mg.Recv(S∗
gpk , σmg)

if (S∗
gpk = ⊥) : return (stmt,⊥)

(Sgpk , dpks
′, F)← stmt.~stmg[S

∗
gpk .gpk , ipks]

if (Sgpk 6= ⊥) ∧ (Sgpk .i ≤ S∗
gpk .i)

: return (stmt,⊥)
stmt.~stmg[S

∗
gpk .gpk , ipks]← (S∗

gpk , dpks , F)

return (stmt, true)

Mtx.Enc(stmt,m)

ipk ← stmt.D.ipk ; gpk ← stmt.Sgsk .gpk

(stmt.Sgsk , c)← Mg.Enc(

stmt.Sgsk , (MsgPln, stmt.G,m))

cw ← (MsgEnc, MgAlg, gpk , ipk , c)

return (stmt, cw)

Mtx.Dec(stmt, cw)

(t, a, cw)← cw

if (t = MsgEnc) ∧ (a = MgAlg) :

(gpks, ipks, c)← cw

(Sgpk , dpks , F)← stmt.~stmg[gpks, ipks]

if (Sgpk = ⊥) : return (⊥,⊥)
_, (t, Gs,mw)← Mg.Dec(Sgpk , c)

if (Gs 6= stmt.G) : (⊥,⊥)
(t,m)← mw

if (t = MsgPln) :

return (stmt,m)

elseif (t = MsgEnc) ∧ (a = OlmAlg) :

(stmt, ipks,mw)

← MtxOlm.Dec(stmt, cw)

(Bin, Ain, dpks,in , dpkr,in , t,mw)← mw

(B,D, dpks)← CS.VerifyDevice(ipks)

if (dpkr,in 6= stmt.D.dpk ∨Bin 6= B ∨
dpks,in 6= dpks) : return (⊥,⊥)

if (t = MsgKey) :

return Mtx.Recv(stmt, dpks , ipks,m)

elseif (t = MsgFwd) :

(accept , ~stmg)← KS.Recover(

stmt.A, stmt.D,D, dpks , ipks,

m, stcs, stmt.~stmg)

if (accept) : stmt.~stmg ← ~stmg

return (stmt, accept)

elseif (t = MsgReq) :

m← cw

(dpks , ipks,m)← KS.Share(

stmt.A, stmt.D,m, stmt.stcs,

stmt.~stmg)

(stmt, cw)← MtxOlm.Enc(stmt,

dpks , ipks,mw)

return (stmt, cw)

return (⊥,⊥)

Figure 9: Pseudocode describing secure group messaging in Matrix.

Key sharing. When a device receives a ciphertext that it is
unable to decrypt, they may initiate the key request proto-
col using the Mtx.ReqKey algorithm. The device executes
Mtx.ReqKey(stmt, gpk , ipk) using the gpk and ipk from the
ciphertext they failed to decrypt. This, in turn, starts an
instance of the key request protocol by calling KS.Request.

3. Device-Oriented Group Messaging

A Device-Oriented Group Messaging (DOGM) protocol
is a tuple of algorithms DOGM = (Gen,Reg, Init,Add,
Remove,Encrypt,Decrypt). In addition, a group messaging
protocol may have additional functionality for state recov-
ery: StateShare. We define a DOGM protocol over sets
Pk,Sk,Gid,Did,Uid,ST , C,M where Pk and Sk are the

public and secret authenticator spaces, Gid,Did,Uid are the
group, device and user identifier spaces, respectively, ST is
the space of sessions’ local secret states, C is the space of
protocol ciphertexts, andM is the plaintext message space.

Algorithms Gen and Reg generate static authentication
values used across multiple protocol executions:

• Gen : N × Uid
$→ Pk × Sk – takes as input a security

parameter and user identifier and outputs public and secret
authenticator values. In Matrix, this corresponds to calling
Mtx.Init = CS.Init outputting (U, stcs).
• Reg : N × Uid × Did × Sk

$→ Pk × Sk – takes as
input a security parameter, user identifier, device identifier
and secret authenticator value and outputs public and secret
authenticator values. In Matrix, this corresponds to Mtx.Reg

MtxOlm.KGen(stmt, 1
λ, A,D, ne, nf)

(dsk , dpk)←$ DS.KGen(1λ)

((isk , esk , fsk), (ipk , epk , fpk)) \
←$ Olm.KGen(1λ, ne, nf)

md ← (D, DvSign, dpk , DvIdent, ipk)

me ← {(DvEphm, epkk) : epkk ∈ epk}
mf ← {(DvFall, fpkk) : fpkk ∈ fpk}
σd ← DS.Sign(dsk ,md)

σe ← {DS.Sign(dsk ,me,k) : me,k ∈ me}
σf ← {DS.Sign(dsk ,mf,k) : mf,k ∈ mf}
D← (md, σd,me, σe,mf , σf)

Dsk ← (dsk , isk , esk , fsk)

return (Dsk ,D)

MtxOlm.Enc(stmt, dpkr , ipkr,mw)

if (stmt.~stolm[ipkr] = ⊥) : t = 0

if !DS.Verify(dpkr ,Dr.σd, (D, DvSign,

dpkr , DvIdent, ipkr)) :

return (⊥,⊥)
if !DS.Verify(dpkr ,Dr.σe,k,

(DvEphm,Dr.me,k.epk)) :

return (⊥,⊥)
(epkr, epk)← (me.epk ,⊥)
stolm ← Olm.Enc(⊥,mw,

stmt.isk , ipkr,me,k.epk)

else : t = 1

(epkr, epk , stolm)

← MRU(stmt.~stolm[ipkr])

(stolm, c)← Olm.Enc(stolm,mw)

stmt.~stolm[ipkr][epkr, epk]← stolm

cw ← (MsgEnc, OlmAlg, stmt.D.ipk , t, c)

return (stmt, cw)

MtxOlm.Dec(stmt, cw)

(ipks, t, c)← cw

if (t = 0) :

(ipk ′
s, epks, epkk, v, rpks, q, x, τ)← c

if (ipk ′
s 6= ipks) : return (⊥,⊥)

stolm ← stmt.~stolm[ipks][epks, epkk]

if (stolm = ⊥) :
if (q 6= 0) : return (⊥,⊥)
(stolm,mw)← Olm.Dec(

stolm, c, stmt.isk , stmt.eskk)

stmt.eskk ← ⊥
else : (stolm,mw)← Olm.Dec(stolm, c)

elseif (t = 1) :

for (epks, epkk, stolm) in stmt.~stolm[ipks]

(stolm,mw)← Olm.Dec(stolm, c)

if (mw 6= ⊥) break

if (mw = ⊥) return (⊥,⊥)
stmt.~stolm[ipks][epks, epkk]← stolm

return (stmt, ipks,mw)

Figure 10: The MtxOlm algorithms form a wrapper around the Olm protocol, customised for Matrix’ inclusion of signed
ephemeral key pairs and multiple Olm channels.

outputting (D, dt) and (Dsk , stcs).

The following set of algorithms define the group mes-
saging protocol:

• Init : Uid × Did × ρ × Sk(×Gid)
$→ ST × Gid – takes

as input a user identifier, a device identifier, a secret au-
thenticator value, a role, and (optionally) group identifier
when instantiating a session for an existing group. It outputs
secret session state and the group identifier. In Matrix, this
corresponds to first calling Mtx.Init outputting (stmt, G)
for the sender and calling Mtx.Add to add each receiving
device. The final output is (stmt, G). Receiving devices
initialise the group by decrypting the Olm message with
Mtx.Dec then passing the inbound session to Mtx.Recv.
• Add : Sk×ST ×Uid×Did(×C)

$→ ST (×C)∪{⊥} – takes
as input a secret authenticator, secret state, user identifier,
device identifier and (potentially) a ciphertext, and outputs
updated state and (potentially) a ciphertext, or failure ⊥. In
Matrix, this calls Mtx.Add.
• Remove : Sk × ST × Uid ×Did(×C)→ ST (×C) ∪ {⊥}
– takes as input a secret authenticator, secret state, user
identifier, device identifier and (potentially) a ciphertext. It
outputs updated state and (potentially) a ciphertext, or failure
⊥. In Matrix, this calls Mtx.Remove.
• Encrypt : Sk×ST ×M

$→ ST ×C∪{⊥} – takes as input
a secret authenticator value, secret state and a plaintext, and
outputs an updated state and a ciphertext, or failure ⊥. In
Matrix, this encrypts plaintexts to the group via Mtx.Enc.
• Decrypt : Sk × ST × C

$→ ST (×M) ∪ {⊥} – takes as
input a secret authenticator, secret state and a ciphertext. It
outputs an updated state and a plaintext message, or failure.
In Matrix, this decrypts ciphertexts received by the session

via Mtx.Dec.
We introduce the StateShare protocol that allows adding

state sharing functionality to DOGM protocols:

• StateShare : Sk × ST (×Uid)(×Did)(×C)(×N)
$→

ST (×C) – takes as input a secret authenticator, secret state
and (optionally) a user identifier, device identifier, ciphertext
and a session stage index. It outputs an updated state and
(potentially) a ciphertext, or a failure state ⊥. In Matrix, this
uses Mtx.ReqKey to initiate the key request protocol.

3.1. Execution Environment

We now describe the DOGM execution environment.
Consider ExpIND-CCA,A

DOGM,nP ,nD,nI ,nS ,nM
(1λ) played between a

challenger C and an adversary A. The challenger C main-
tains a set of nP parties P1, . . . , PnP

∈ Uid (representing
users interacting with each other via the DOGM protocol).
A maximum of nD devices can be created for each party
PA, identified by DA,1, . . . , DA,nD ∈ Did. Each device can
run nI sessions of a probabilistic protocol DOGM, across
nS different stages, with each stage consisting of up to nM

messages. We use πs
A,i to refer both to the identifier of the

s-th instance of the DOGM being run by A’s device DA,i

and the collection of per-session variables πs
A,i maintains:

• A ∈ Uid – the User identifier for this party.
• DA,i ∈ Did – the Device identifier for this party.
• G ∈ Gid – the Group identifier for this session.
• ρ ∈ {send, recv} – the role of the party in the current
session. Note that parties can be directed to act as either a
send or recv in concurrent or subsequent sessions.
• t ∈ N – the current stage of the session.
• z ∈ N – the current message index of the current stage.

• α ∈ {⊥, active, reject} – the status of the session,
initialised by ⊥.
• CU [0], . . . , CU [nP] ∈ Uid – the current set of intended
communication partners, where CU [0] is the sending User.
• CD[0, 0], . . . , CD[0, nD], . . . CD[nP , nD] ∈ Did – the
current set of devices associated with the communication
partners CU [0] . . . CU [nP], where CD[0] is the sending
Device.
• T [t, z] ∈ C∗∪{⊥} – the z-th message sent in the t-th stage
sent or received by πs

A,i. We use |T [t]| as the shorthand for
the first value z such that T [t, z] = ⊥, or the number of
messages accepted in the t-th stage.18

• st ∈ {0, 1}∗ – any additional state used by the session
during protocol execution.

Recall that DOGM is a tuple of algorithms DOGM =
{Gen,Reg, Init,Add,Remove,Encrypt,Decrypt} with addi-
tional functionality {StateShare}.

The experiment begins with C running
DOGM.Gen(1λ, A) nP times to generate a public key pair
(pkA, skA) for each party A ∈ {P1, . . . , PnP

} and delivers
all public-keys pkA to A. A can now issue CorruptUser
queries listed in Section 3.2. After, C randomly samples a
bit b $← {0, 1} used to generate challenge ciphertexts, sets
a flag win ← false, and interacts with A via the queries
listed in Section 3.2 (except CorruptUser). C maintains
challenge ciphertexts in the set C through the experiment.

Eventually, A terminates and outputs a guess b′ of the
challenger bit b. A wins the DOGM experiment if b′ = b,
and the confidentiality predicate CONF is satisfied. A may
also win the DOGM experiment if win has been set to
true by a call to Decrypt. Before setting win ← true C
checks that the experiment satisfies the authenticity pred-
icate AUTH. To indicate that A has won, C immediately
terminates the experiment and returns 1.

3.2. Adversarial Model

We now define how the adversary in the DOGM secu-
rity experiment may interact with the challenger; in turn,
describing how an attacker may interact with sessions of
the Matrix protocol. These interactions define our adver-
sarial model. The adversary is in complete control of the
communication network – able to modify, inject, delete or
delay messages – and may additionally compromise secrets
at three levels:
1) Adaptive compromise of the current session state.
2) Adaptive compromise of a device’s long-term keys.
3) Non-adaptive compromise of a user’s long-term keys.

The first models state-compromising attacks (such as
temporary device access). The latter two capture key misuse,
as well as state-compromising attacks. This enables the
model to capture a nuanced understanding of PCS and FS.

The adversary interacts with C via the queries below.

18. We note that this assumes that it is possible for the challenger to
define a single global ordering of messages. However, this global ordering
needs only exist for the model: it does not have to be possible for the
receiving session to recover this ordering.

• Create(A, i) → {dpkA,i ,⊥}: allows A to create new
devices. C creates a new device DA,i owned by A, and runs
DOGM.Reg(1λ, A,DA,i, skA)

$→ (dpkA,i , dskA,i). If a de-
vice DA,i has already been created, C returns ⊥, otherwise,
dpkA,i .

• Init(A, i, ρ, (G))→ {(s, (gid)), (⊥)}: allows A to initiate
a session πs

A,i for device DA,i owned by A. It initiates πs
A,i,

i.e. C runs DOGM.Init(A,DA,i, ρ, (skA, dskA,i), (G))
$→

πs
A,i. If there already exists a session πs

B,j such that
πs
B,j .ρ = send, πs

A,i.G = πs
B,j .G and πs

A,i.ρ = recv, then
πs
A,i.CU ← πs

B,j .CU and πs
A,i.CD ← πs

B,j .CD.

• AddMember(A, i, s, B, j) → {c,⊥}: allows A to di-
rect session πs

A,i to add a new device DB,j owned
by party B to their group messaging session. C
runs DOGM.Add((skA,i, dskA,i), π

s
A,i.st, B,DB,j ,⊥) →

(πs
A,i.st, c) and returns c to A.

• RemoveMember(A, i, s, B, j) → {c,⊥}: allows A to
direct session πs

A,i to remove device DB,j owned by
party B from their group messaging session. C runs
DOGM.Remove((skA,i, dskA,i), π

s
A,i.st, B,DB,j ,⊥) →

(πs
A,i.st, c) and returns c to A.

• CorruptUser(A) → {skA,⊥}: allows A access to the
secret long-term key generated by a party A. C returns skA
to A.

• CorruptDevice(A, i) → {dskA,i ,⊥}: allows A access
to the secret long-term device key dskA,i generated upon
device creation. C returns dskA,i to A.

• Compromise(A, i, s) → {πs
A,i,⊥}: allows A to compro-

mise the current session state of πs
A,i.

19

• Encrypt(A, i, s,m0,m1) → {c,⊥}: allows A to en-
crypt messages from the session πs

A,i, depending on the
challenge bit b. Let t ← πs

A,i.t and z ← |πs
A,i.T [t]|.

If |m0| 6= |m1|, then C returns ⊥. Else, C computes
DOGM.Encrypt((skA, dskA,i), π

s
A,i.st,mb) → (πs

A,i.st
′, c)

then adds T [πs
A,i.t, π

s
A,i.z]← c. When m0 6= m1, then c is

a challenge ciphertext and C← c. C returns c to A.

• Decrypt(A, i, s, c)→ {m′,⊥}: allows A to direct session
πs
A,i to process a message and receive its output. C computes

DOGM.Exec((skA, dpkA,i), π
s
A,i.st, c) → (πs

A,i.st
′,m′)

(where Exec ∈ {Add,Remove,Decrypt,StateShare}). This
corresponds to C calling Mtx.Dec with the given ciphertext.
Let t∗ ← πs

A,i.t and z∗ ← |πs
A,i.T [t]|. We say that c was

honest if and only if there exists a session πs
B,j where

πs
B,j .ρ = send and πs

A,i.T [t
∗, z∗] = πs

B,j .T [t
∗, z∗] = c.20 If

c was decrypted by πs
A,i (i.e. m′ 6= ⊥), and c was not honest,

19. For Matrix, we model compromise of the current session state as
giving the adversary access to all the Megolm session states that this pro-
tocol execution has access to. In particular, Compromise(A, i, s) provides
the adversary with the contents of πs

A,i.st.
~stmg and πs

A,i.st.Sgsk . It does
not provide access to the Olm sessions states in πs

A,i.st.
~stolm.

20. Since the challenger defines the canonical ordering in our analysis
of Matrix, they check that the ratchet used by the receiver matches the one
used to encrypt the message (and that the message index matches).

then A forged the ciphertext c. Thus, C sets win ← true
and returns 1. Otherwise, C sets πs

A,i.st ← πs
A,i.st

′ and, if
c /∈ C, returns m′ to A, otherwise C returns ⊥.

• StateShare(A, i, s, t, B, j, c) → {c′,⊥}: allows A to
direct session πs

A,i to share their group state with ses-
sion πs

B,j on device DB,j owned by party PB . C
runs DOGM.StateShare((skA, dskA,i), π

s
A,i.st, B, j, c, t) →

(πs
A,i, c

′) and c′ is returned to A.

3.3. Predicates

Since some adversarial queries allow the adversary to
compromise secrets, this can lead to wins in the DOGM
security experiment that should not necessarily be consid-
ered breaks of the protocol. In the case of Matrix, for
example, the adversary could use the Compromise(A, i, s)
query to directly access the ratchet R currently being used
by πs

A,i to encrypt messages. If the adversary then calls
c← Encrypt(A, i, s,m0,m1), they may now use the ratchet
R to decrypt the ciphertext c, recover mb and return b, thus
winning the experiment due to the correctness of Megolm.

DOGM provides two predicates, AUTH and CONF, that
we use to capture trivial wins in the experiment. The AUTH
predicate is checked before the game accepts an authentica-
tion win (as part of a Decrypt call). The CONF predicate is
checked before the game accepts a confidentiality win (i.e.
when the adversary correctly guesses b at the end of the
game). If either of these fail (the predicates are not fulfilled),
then the experiment is aborted.

This ensures the adversary cannot gain an advantage
through expected protocol behaviour. These predicates en-
code the limitations of the analysed protocol and, thus,
should be interpreted as part of the security result. In par-
ticular, these predicates work in tandem with the adversarial
model in the DOGM security experiment: the former define
the guarantees that the protocol achieves under the adver-
sarial interactions defined by the latter. Note that DOGM
protocols with different security properties will restrict A
differently; we detail Matrix-specific predicates next.

4. Security Analysis of Matrix

Section 4.1 initiates our security analysis of the Ma-
trix protocol by defining the MTXCONF and MTXAUTH
predicates, accompanied by intuitive descriptions of the
cases they cover. These predicates, in combination with the
adversarial interactions defined in Section 3.2, specify the
confidentiality and authentication guarantees of the Matrix
protocol (that our results capture). Section 4.2 presents our
primary security statement, Theorem 1, accompanied by a
proof sketch.

4.1. Trivial Attacks in Matrix

We now enumerate the situations within the Matrix
protocol where the adversary is expected to be able to
decrypt or forge a ciphertext. We separate our analysis into

two cases: wins resulting from 1) an expected confidentiality
break, and 2) an expected authentication break. For each
case, we describe a set of attacks against the protocol and the
situations in which they could occur. These are formalised
in MTXCONF and MTXAUTH, resp.

Some of the trivial attacks we discuss in this section
are the result of the adversary directly compromising state
needed to break the respective security goal. Others rep-
resent limitations of the security guarantees the Matrix
protocol provides. For example, many exploit Matrix’ KS
feature, which essentially removes all boundaries between a
user and their verified devices and between verified devices
of a user. Other attacks exploit the virtual absence of PCS or
FS guarantees (between user devices), since Matrix allows
the establishment of fresh Olm channels using long-term
authentication keys, and old key material is not deleted.
In Section 5, we discuss the trade-offs these security predi-
cates represent, and how they may be interpreted in a real-
world context.

The first set of attacks target confidentiality, in the
context where πs

A,i has encrypted the challenge ciphertext
for which πs

B,j is an intended recipient, and are captured
by MTXCONF. In particular, c = Encrypt(A, i, s,m0,m1)
is a challenge ciphertext and gpk ′ is the matching public
key held by the recipient, identifying the session that c
corresponds to.

1) CorruptUser(B): If the recipient user, B, has had their
long-term secrets compromised, the adversary can generate
a new device identity, sign it, and request access to all the
inbound Megolm sessions that B has access to (through the
Key Request protocol). In particular, by assumption there
exists some device DB,j that can decrypt c. Thus, using the
long-term secrets recovered by corrupting B, the adversary
creates and signs a new device DB,k under its control. It
then establishes new pairwise Olm channels with DB,j of
the user and submits a MsgReq message for gpk ′.
2) CorruptDevice(B, k): Similarly, if the adversary gains
access to the long-term secrets of one of B’s devices
(including when k = j), they can use these to initi-
ate new Olm sessions with B’s other devices then use
the Key Request protocol to gain access to all the in-
bound Megolm sessions that B has access to. In partic-
ular, assume some device DB,j exists that can decrypt
c. While CorruptDevice(B, k) does not recover the Olm
states stolm that DB,k uses to communicate with DB,j ,
it recovers the long-term device secrets (dsk , isk) used to
create fresh Olm channels between devices (Matrix allows
multiple parallel Olm channels to coexist). At session setup
Olm.Enc(stolm,m, isk , esk , ipkB,j , epkB,j) takes esk which
can be freshly generated and signed by dsk , and isk (both
recovered by CorruptDevice(B, k)) and public inputs. The
attack then proceeds as for CorruptUser(B) by sending a
MsgReq message for gpk ′.
3) Compromise(B, j, s): If the adversary directly compro-
mises the Megolm session state of an intended recipi-
ent, they can trivially decrypt the ciphertext. Explicitly,
after running Compromise(B, j, s), the adversary is given

a copy of Sgpk with the required key material to decrypt
c = Encrypt(A, i, s,m0,m1).

Definition 1. A DOGM security experiment fulfils
the MTXCONF confidentiality predicate if, for all
Encrypt(A, i, s,m0,m1) queries placed by the adversary
during the experiment, where m0 6= m1, πs

A,i.t = t∗ and
πs
A,i.z = z∗, none of the following conditions are true:

1) CorruptUser(B) was issued for B ∈ Uid and where ∃k
s.t. CanDecrypt(B, k,A, i, s, t∗, z∗) = true.
2) CorruptDevice(B, j) was issued for B ∈ πs

A,i.CU and
j ∈ [nD], where ∃k s.t. CanDecrypt(B, k,A, i, s, t∗, z∗) =
true.
3) Compromise(B, j, s) was issued where CanDecrypt(
B, j,A, i, s, t∗, z∗) = true

where CanDecrypt(B, j,A, i, s, t∗, z∗) returns true when-
ever the session πs

B,j (with its current state at the time
of CanDecrypt being called) is able to decrypt the mes-
sage sent by πs

A,i at stage t∗ and message index z∗.
Precisely, CanDecrypt(B, j,A, i, s, t∗, z∗) is true iff, for
the session identified by πs

A,i.T [t
∗, z∗].gpk , πs

B,j’s copy
πs
B,j .st.~stmg[gpk , ipk] contains an index z less than or equal

to z∗.

The second set of attacks target authentication, in the
context where πs

A,i accepts a forged ciphertext c claiming to
be from πs

B,j , and are captured by the MTXAUTH predicate.
In particular, session πs

A,i has received a ciphertext c, and
successfully processes it with Decrypt(A, i, s, c). However,
the ciphertext c was not sent by a corresponding session
πs
B,j .

1) CorruptUser(A) or CorruptDevice(A, i′): If user A has
had their long-term secrets (or those of one of their devices,
DA,i′) compromised, the adversary can use the Key Request
protocol to inject an inbound Megolm session under their
control to πs

A,i. The adversary can claim that this session
is owned by another session πs

B,j with the only constraint
being that (B, j) 6= (A, i). In particular, assume that A
is a receiver but not also the sender. We exploit that KS
can inject arbitrary receiving Sgpk sessions on devices of
the same user. If CorruptUser(A) was called, A creates a
new device, authenticates it with the compromised user key
material and starts an Olm channel with device DA,i of A.
If CorruptDevice(A, i′) was called, A uses dsk , isk to start
an Olm channel with DA,i.

We now proceed in two cases. Case 1 is either
CorruptUser(A) or CorruptDevice(A, i′) with i 6= i′. The
attack proceeds by triggering device DA,i to request key
material for session gpk in epoch t∗ by sending a forged
ciphertext which DA,i cannot decrypt nor authenticate:
DA,i will then request the key material from its trusted
peer devices. A responds with gpk , which DA,i accepts.
Case 2 is CorruptDevice(A, i′) with i = i′. Here, A first
calls Create(A, k) for some k 6= i, which triggers A
creating an honest device. A then sends the forgery to
DA,k, which requests the missing key material for gpk ,
which A provides using the compromised credentials from
CorruptDevice(A, i). Finally A sends the forgery to DA,i

which will request gpk , which will be provided by the honest
device DA,k.
2) CorruptUser(B) or CorruptDevice(B, j): If A has
knowledge of the sending user’s long-term secrets (or those
of one of their devices), they may have used these long-term
secrets to initiate the epoch t∗ with a Sgsk they control.In
the first case, where the user’s long-term secrets have been
corrupted, the adversary could have generated a new device
(without the challenger’s help) and used this device to create
stage t∗. In the second case, where device DB,j’s long-term
secrets were corrupted before the initiation of stage t∗, the
adversary could have created the Megolm session, initiated
a new Olm channel using ephemeral keys signed with the
device’s long-term keys and distributed the inbound session
to πs

A,i.
21

3) Compromise(B, j, s): If A has directly compromised
the sending sessions, πs

B,j , this compromise includes the
outbound session secrets contained in Sgsk . This is an
outbound Megolm session, allowing it to encrypt, MAC then
sign the forged message. Since the symmetric key material
is ratcheted forward after each encryption, access to the
current outbound Megolm state does not allow the adversary
to forge messages with a lower message index (unless they
additionally have access to an earlier copy of the inbound
or outbound session).

Definition 2. A DOGM security experiment fulfils the
MTXAUTH authentication predicate if, processing a
Decrypt(A, i, s, c) query where πs

A,i.t = t∗ and πs
A,i.z = z∗,

none of the following conditions are true:
1) CorruptUser(A) or CorruptDevice(A, i′) was issued
when πs

A,i.t < t∗ and i′ ∈ [nD].
2) CorruptUser(B) or CorruptDevice(B, j) was issued such
that πs

A,i.CU [0] = B, πs
A,i.CD[0] = j when πs

A,i.t < t∗.
3) Compromise(B, j, s) was issued and πs

A,i.CU [0] = B,
πs
A,i.CD[0] = j when πs

B,j .t = t∗ and at least one of the
following is true:

a) πs
B,j .z ≤ z∗.

b) ∃ C ∈ Uid s.t. CorruptUser(C) has been called and
∃ k s.t. CanDecrypt(C, k,B, j, s, t∗, z∗) = true.
c) ∃ C ∈ Uid, k ∈ Did s.t. CorruptDevice(C, k) has
been called and ∃ l s.t. CanDecrypt(C, l, B, j, s, t∗, z∗) =
true.
d) ∃ C ∈ Uid, k ∈ Did s.t. Compromise(C, k, s) has been
called when CanDecrypt(C, l, B, j, s, t∗, z∗) = true.

4.2. Result

Theorem 1. Matrix (as described by Mtx) is IND-CCA-
secure under authentication predicate MTXAUTH and con-
fidentiality predicate MTXCONF in the random oracle
model. That is, for any PPT algorithm A in the DOGM secu-
rity experiment, AdvDOGM,A,MTXAUTH,MTXCONF

Mtx,nP ,nD,nS ,nM
(λ) is negli-

gible if the Gap-DH [26] assumption holds on Curve25519,

21. Note that, when this predicate is applied, the call to Decrypt
has ended the experiment. Thus, any calls to CorruptUser(B) or
CorruptDevice(B, j) within the experiment must have occurred prior to
the Decrypt call.

Ed25519 is SUF-CMA secure [27], HKDF is a secure
KDF [28], MgRatchet is a secure FF-PRG [29], and
AES-CBC and HMAC (as combined in both Mg and
OlmAEAD) is a secure AEAD scheme.

We separate the proof into two cases. In Case 1, we
consider the probability of the adversary winning the game
through an authentication break. In Case 2, we consider the
probability of the adversary winning the game through a
confidentiality break. We bound the advantage of winning
both cases and demonstrate that under certain assumptions,
A’s advantage of winning overall is negligible. A sketch
proof for each case is provided below (Section B contains
the complete proof).

Proof sketch of Case 1. Game 0 is the standard DOGM
game. In Game 1 and Game 2, we guess the accepting
session (A, i, s), accepting at stage T from believed device
DB,j at a cost of n2

P ·nI ·n2
D ·nS . In Game 3, we introduce

an abort event that triggers when a message is accepted
that was not sent by the genuine partner, and bound the
probability of this event in the remainder of the proof. In
Game 4 we replace the self-signing key sskB with the
public key from a SUF-CMA challenger, preventing Olm
Key Bundle forgeries by the SUF-CMA security of DS. We
proceed similarly in Game 5, but for the self-signing key of
A. In Game 6, we split our proof depending on which party
initiated an Olm channel with the other. The proof proceeds
identically, incurring a factor of two. In Game 7, we prevent
Olm ephemeral key injections from DA,i to DB,j , using
the SUF-CMA security of DS by replacing DA,i’s dpkA,i

from SUF-CMA challenger. In Game 8, we rely on the
Gap-DH assumption to argue that it is hard for A to query
to giskB,j ·eskA,i,k to a HKDF random oracle, rendering its
output (indistinguishable from) uniformly random. In Game
9, Game 10 and Game 11 we replace the Olm master secret
ms derived by DA,i, the Olm ratchet state until the target
Megolm ratchet is generated, and the encryption key used to
encrypt the target Megolm ratchet with uniformly random
values, each time relying on the KDF security of HKDF.
In Game 12, we prevent πs

A,i from accepting a ciphertext
containing the target Megolm session without being sent
by B, bound by the auth security of OlmAEAD. Finally,
in Game 13, we prevent πs

A,i from accepting a Megolm
ciphertext that DB,j did not send, by replacing gpk with a
public key from a SUF-CMA challenger.

Proof sketch of Case 2. Game 0 is the standard DOGM
game. Game 1 reduces the number of Encrypt(
πs
A,i,m0,m1) challenge calls (s.t. m0 6= m1) to one using

a hybrid argument at the cost of nQ, the polynomial upper
bound on the number of queries by A. In Game 2 we guess
the session πs

A,i that generated the challenge ciphertext cb at
the cost of nP ·nI ·nD·nS . Game 3 introduces the abort event
abortD,B triggered if B receives a device key package DA′

that was not generated by A′ (for each uncorrupted party
A′). This enables the self-signing key sskA′ of each party A′

to be replaced with the public key of a SUF-CMA challenge.
We reduce winning this game to the SUF-CMA security

of Ed25519 for each uncorrupted party (bounded by nP)
and the other winning conditions denoted by Adv(break3),
bounded by the following games. In Game 4 we gain a
factor of |πs

A,i.CU | since we will repeat the following games
for all partners of πs

A,i.CU . That is, Game 5 to 11 consider
the security of Olm channels between A and each of their
communicating partners B ∈ πs

A,i.CU . Game 5 restricts the
game to cases where B initiated the Olm channel between
A and B. Since the analysis proceeds equivalently, at the
cost of a factor of two. Game 6 replaces A’s dpkA,i with
the public key from a SUF-CMA challenge. Now, in the
remaining games, the device keys (ipkA,i, epkA,i,k) used
by B to initiate the Olm channel are known to be the keys
generated by A. In Game 7, we replace ipkB,j and epkA,i

with a Diffie-Hellman pair output by a Gap-DH challenger
and embed the Gap-DH problem into the computation of
HKDF(giskB,j ·esk‖geskB,j′ ·isk‖geskB,j′ ·esk). This allows us
to conclude that ms is (indistinguishable from) uniformly
random and independent of protocol execution. In Games
8 and 9, we replace each rch l, ck l with random values,
relying on the KDF security of HKDF, until DB,j outputs
the T -th Megolm session consisting of (Sgsk ,Sgpk , σmg).
In Game 10, we conclude that the message key mk l used to
encrypt the message containing the Megolm session is (in-
distinguishable from) uniformly random and independent of
protocol execution. This is done by replacing mk l with the
output of a KDF challenger to give m̂k l. In Game 11, we re-
place the Megolm inbound session Sgpk = (ver , i, R, gpk)
encrypted with OlmAEAD using m̂k l. In Game 12, we use
the key indistinguishability of the Megolm ratchet to demon-
strate that the key values output are uniformly random.
Finally, Game 13 utilises the confidentiality guarantee of
an authenticated encryption challenger (replacing the output
of Megolm’s encryption routine using k) to prove that the
adversary cannot distinguish the ciphertexts c0 and c1 with-
out winning the confidentiality game of the authenticated
encryption challenger.

Summary. Matrix achieves confidentiality and authenticity,
for a message m sent in stage t, if the adversary’s corrup-
tions only affect users (or their devices) that (1) are never a
member of the room, (2) not yet a member of the room or
(3) stopped being a member of the room before the sender
initialises stage t. Note that this result applies in the context
of the DOGM security experiment defined in this paper and
requires careful interpretation when applied to practical use.
We discuss these caveats in Sections C.1 to C.3 and 5.

5. Discussion

Our formal security statements should be interpreted
to mean that Matrix’ core cryptographic components can
achieve the stated security goals after the authentication vul-
nerabilities reported in [6] are fixed and formally analysed.
In particular, we reiterate that it is currently trivial for a
Matrix server to add a user as a recipient to a session or a
unverified new device to a user. Both of these will be visible
in the flagship Element client, but this behaviour is not

prevented (see Section 4.1). Furthermore, these guarantees
would also only apply when composed with a formally
analysed cryptographic backup solution, which is not cap-
tured by our model. Finally, our guarantees only cover when
devices only communicate with other verified devices. This
is our main take away for a general security audience.

Confidentiality and authentication between whom?
Matrix guarantees the confidentiality of a message between
the sender and the users the sender intended as recipients,
i.e. the list of group members displayed in the client. This
includes all of their verified devices: past, present and future.
However, since there is no cryptographic control of the list
of group members, the sender’s list of intended recipients is
controlled by the adversary.22

Matrix guarantees the authenticity of a message in that it
ensures its integrity and correctly identifies the user, device
and Megolm session it originated from. However, the Matrix
protocol will decrypt any message for which it has been sent
the necessary inbound Megolm session from a verified user
and device (regardless of the sender’s group membership
status, for example).23

A lack of canonical message order limits guarantees.
Our predicates define a canonical ordering of messages in
a Matrix conversation. Specifically, the challenger indexes
Matrix stages (and messages) based on the order they are
generated by the sender session in the experiment. Thus,
the guarantees we prove must be interpreted with respect to
this canonical ordering. However, this session ordering does
not map back intuitively to the message order that users
might observe in their clients. This is due to Matrix’ use
of multiple Olm channels in parallel, making it impossible
for receiving clients to determine a canonical ordering of
Megolm sessions (without trusting in the server to provide
one). For this reason, we suggest that future iterations of
the protocol disallow multiple Olm channels between any
single pair of devices. Section C.1 discusses this issue in
more detail.

FS and PCS enable user management. It is worth dis-
cussing the nature of FS and PCS guarantees in Matrix.
Typically in the context of secure messaging, FS ensures
that messages sent before compromise remain secure [38],
and PCS ensure that messages sent after compromise remain
secure (assuming the adversary remains passive) [39]. Our
trivial win conditions in Section 4.1 essentially establish
that neither security goal, as defined in the cryptographic
literature, is attained by Matrix when long-term secrets
are compromised.24 Indeed, once an adversary corrupts one
device of a user, the key sharing feature allows an attacker

22. This is distinct from the control over group membership that is af-
forded to the adversary as part of their role in the experiment (given through
access to the AddMember and RemoveMember adversarial queries).

23. This maps back to a particular sending session, such as πs
B,j , within

the DOGM experiment.
24. Our analysis shows that PCS can be achieved when only Megolm

states are compromised. We do not cover Olm state compromises.

to escalate that compromise to all other devices (and all
of their sessions). Furthermore, the Matrix specification
allows sessions to maintain old key materials, invalidating
FS guarantees. We found it useful to think of the combined
states of all of a user’s devices as one big meta state that
can be compromised in total and that offers essentially no
PCS nor FS guarantees when long-term key material is
compromised. Rather, the use of cryptographic techniques
typically deployed to achieve FS and PCS serve the purpose
of user management: when a new user joins and leaves a
room, keys are updated.

These are our main take aways for applied cryptographers.

Conclusion. It is for these reasons that we avoid the standard
terminology of “security proof” in this work, which can be
misunderstood as a “seal of approval”. That is, rather than
stating that Matrix is secure (or not), this work establishes
what security guarantees its core components can provide.
This is, of course, always what a cryptographic security
proof does, but we consider it imperative to stress here.
Despite this, our analysis suggests that current efforts by
the Matrix developers to remedy the attacks reported in [6],
combined with our suggested improvements, may suffice to
produce a secure protocol. These are our main takeaways
for the Matrix developers.

Open problems. A central open problem is to analyse the
authenticated group management currently in development
for Matrix as well as both of its backup mechanisms (Server-
side Megolm Backups and SSSS).

This work analyses Matrix within a single, monolithic
security model and experiment. Taking a more modular
approach, ideally reusing existing models and analysis25,
would provide further confidence in the overall design and
its components. Together, such works could enable a more
comprehensive model of secure group messaging.

Furthermore, while Matrix falls short of what the cryp-
tographic literature expects, this is only partially due to
avoidable design flaws (such as long-term authentication
keys circumventing PCS guarantees of Olm channels) but
partially also due to a deliberate design trade-off. That is,
some of the FS/PCS guarantees we establish here match
those intended by the Matrix designers who accept this
behaviour in favour of utility in a chat context: making
older messages available across devices. This design choice
limits the authenticity guarantees of the protocol. Whether
this trade-off is correct is a question that falls outside the
expertise of cryptography in a narrow sense. Indeed, recent
work has established that the FS/PCS guarantees provided
by cryptography do not align well with the needs of some
people reliant on secure messaging in a higher-risk environ-
ment [40]. Establishing what FS and PCS should be is an
exciting area for future multidisciplinary work.

The difficulty of establishing a consistent global ordering

25. For example, those from the SGM and continuous group key agree-
ment (CGKA) ecosystem.

of messages within Matrix poses an interesting question
about attacks that are possible due to inconsistent message
ordering in protocols that allow out-of-order decryption.
Some group messaging protocols such as Message Layer
Security [41] rely on the server to provide such a consistent
global ordering: determining the impact of this ability from
non-honest servers may be useful in formalising the security
of such protocols.

Finally, it was necessary for us to model the security
separation between users and devices in order to meaning-
fully capture how Matrix does not achieve this separation
(for the most part). However, there exist many real-world
configurations of SGM, each with their own set of differing
trade-offs. We hope that the DOGM model proves useful
in the analysis of such schemes, to capture the varying
degrees of user-device separation, FS and PCS security
guarantees that they can achieve. A natural open question
is whether stronger security guarantees can be achieved by
an alternative design whilst maintaining the same function
requirements of Matrix.

Acknowledgements

We thank our anonymous reviewers for their helpful
reviews, feedback and suggestions. D. Jones was supported
by the EPSRC and the UK Government as part of the Centre
for Doctoral Training in Cyber Security for the Everyday at
Royal Holloway, University of London (EP/S021817/1).

References

[1] The Matrix.org Foundation, “Client-Server API,” Jun. 2022, version:
unstable. [Online]. Available: https://spec.matrix.org/unstable/client-
server-api/

[2] J. Meredith and A. Balducci, “Matrix Olm Cryptographic Review,”
NCC Group, Tech. Rep., Nov. 2016, version 2.0. [Online].
Available: https://research.nccgroup.com/2016/11/01/public-report-
matrix-olm-cryptographic-review/

[3] The Matrix.org Foundation, “Megolm group ratchet,” May
2022. [Online]. Available: https://gitlab.matrix.org/matrix-org/olm/-
/raw/master/docs/megolm.md

[4] ——, “Olm: A Cryptographic Ratchet,” Nov. 2019. [Online].
Available: https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/
olm.md

[5] D. Wong, Real-world Cryptography. Manning Publications., 2021.

[6] M. R. Albrecht, S. Celi, B. Dowling, and D. Jones, “Practically-
exploitable cryptographic vulnerabilities in Matrix,” in 44th IEEE
Symposium on Security and Privacy, T. Ristenpart and P. Traynor,
Eds., 2023.

[7] M. Hodgson, “Independent public audit of Vodozemac,
a native rust reference implementation of Matrix end-
to-end encryption,” May 2022. [Online]. Available:
https://matrix.org/blog/2022/05/16/independent-public-audit-of-
vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-
end-encryption

[8] Anna Kaplan, Ann-Christine Kycler, Denis Kolegov, Jan Winkel-
mann, and Rai Yang, “Vodozemac Security Audit Report,” Least
Authority, Tech. Rep., Mar. 2022. [Online]. Available: https://matrix.
org/media/LeastAuthority-MatrixvodozemacFinalAuditReport.pdf

[9] The Matrix.org Foundation, “Signature keys and user identity in
libolm,” Nov. 2020. [Online]. Available: https://gitlab.matrix.org/
matrix-org/olm/blob/master/docs/signing.md

[10] M. Marlinspike, “Private Group Messaging,” May 2014. [Online].
Available: https://signal.org/blog/private-groups/

[11] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz,
“How secure is TextSecure?” in IEEE European Symposium on
Security and Privacy, EuroS&P 2016, 2016, pp. 457–472.

[12] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, no. 4, pp. 1914–1983, Oct. 2020.

[13] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet: Security
notions, proofs, and modularization for the Signal protocol,” in Ad-
vances in Cryptology – EUROCRYPT 2019, Part I, ser. Lecture Notes
in Computer Science, Y. Ishai and V. Rijmen, Eds., vol. 11476.
Darmstadt, Germany: Springer, Heidelberg, Germany, May 19–23,
2019, pp. 129–158.

[14] P. Rösler, C. Mainka, and J. Schwenk, “More is less: On the
end-to-end security of group chats in Signal, WhatsApp, and
Threema,” in 2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018. IEEE, 2018, pp. 415–429. [Online].
Available: https://doi.org/10.1109/EuroSP.2018.00036

[15] D. Balbás, D. Collins, and P. Gajland, “WhatsUpp with sender keys?
Analysis, improvements and security proofs,” in ASIACRYPT 2023,
ser. LNCS. Springer, Heidelberg, Dec. 2023, to appear.

[16] ——, “Analysis and improvements of the sender keys protocol for
group messaging,” in XVII Reunión española sobre criptología y
seguridad de la información (RECSI), D. S. Renedo, Ed., 2022.
[Online]. Available: https://arxiv.org/abs/2301.07045

[17] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis
and improvements for the IETF MLS standard for group messaging,”
in Advances in Cryptology – CRYPTO 2020, Part I, ser. Lecture Notes
in Computer Science, D. Micciancio and T. Ristenpart, Eds., vol.
12170. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 17–21, 2020, pp. 248–277.

[18] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk, “Continuous group
key agreement with active security,” in TCC 2020: 18th Theory of
Cryptography Conference, Part II, ser. Lecture Notes in Computer
Science, R. Pass and K. Pietrzak, Eds., vol. 12551. Durham,
NC, USA: Springer, Heidelberg, Germany, Nov. 16–19, 2020, pp.
261–290.

[19] J. Alwen, B. Auerbach, M. C. Noval, K. Klein, G. Pascual-Perez,
K. Pietrzak, and M. Walter, “CoCoA: Concurrent continuous group
key agreement,” in Advances in Cryptology – EUROCRYPT 2022,
Part II, ser. Lecture Notes in Computer Science, O. Dunkelman and
S. Dziembowski, Eds., vol. 13276. Trondheim, Norway: Springer,
Heidelberg, Germany, May 30 – Jun. 3, 2022, pp. 815–844.

[20] J. Alwen, D. Jost, and M. Mularczyk, “On the insider security of
MLS,” in Advances in Cryptology – CRYPTO 2022, Part II, ser.
Lecture Notes in Computer Science, Y. Dodis and T. Shrimpton,
Eds., vol. 13508. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 15–18, 2022, pp. 34–68.

[21] C. Brzuska, E. Cornelissen, and K. Kohbrok, “Security analysis of
the MLS key derivation,” in 2022 IEEE Symposium on Security and
Privacy. San Francisco, CA, USA: IEEE Computer Society Press,
May 22–26, 2022, pp. 2535–2553.

[22] B. Poettering, P. Rösler, J. Schwenk, and D. Stebila, “SoK: Game-
based security models for group key exchange,” in Topics in Cryp-
tology – CT-RSA 2021, ser. Lecture Notes in Computer Science,
K. G. Paterson, Ed., vol. 12704. Virtual Event: Springer, Heidelberg,
Germany, May 17–20, 2021, pp. 148–176.

[23] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Modular design
of secure group messaging protocols and the security of MLS,” in
ACM CCS 2021: 28th Conference on Computer and Communications
Security, G. Vigna and E. Shi, Eds. Virtual Event, Republic of Korea:
ACM Press, Nov. 15–19, 2021, pp. 1463–1483.

https://spec.matrix.org/unstable/client-server-api/
https://spec.matrix.org/unstable/client-server-api/
https://research.nccgroup.com/2016/11/01/public-report-matrix-olm-cryptographic-review/
https://research.nccgroup.com/2016/11/01/public-report-matrix-olm-cryptographic-review/
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/blog/2022/05/16/independent-public-audit-of-vodozemac-a-native-rust-reference-implementation-of-matrix-end-to-end-encryption
https://matrix.org/media/Least Authority - Matrix vodozemac Final Audit Report.pdf
https://matrix.org/media/Least Authority - Matrix vodozemac Final Audit Report.pdf
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/signing.md
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/signing.md
https://signal.org/blog/private-groups/
https://doi.org/10.1109/EuroSP.2018.00036
https://arxiv.org/abs/2301.07045

[24] A. Dimeo, F. Gohla, D. Goßen, and N. Lockenvitz, “SoK: Multi-
device secure instant messaging,” Cryptology ePrint Archive, Report
2021/498, 2021, https://eprint.iacr.org/2021/498.

[25] The Matrix.org Foundation, “End-to-End Encryption implementation
guide.” [Online]. Available: https://matrix.org/docs/guides/end-to-
end-encryption-implementation-guide

[26] T. Okamoto and D. Pointcheval, “The gap-problems: A new class of
problems for the security of cryptographic schemes,” in PKC 2001:
4th International Workshop on Theory and Practice in Public Key
Cryptography, ser. Lecture Notes in Computer Science, K. Kim,
Ed., vol. 1992. Cheju Island, South Korea: Springer, Heidelberg,
Germany, Feb. 13–15, 2001, pp. 104–118.

[27] J. Brendel, C. Cremers, D. Jackson, and M. Zhao, “The provable
security of Ed25519: Theory and practice,” in 2021 IEEE Symposium
on Security and Privacy. San Francisco, CA, USA: IEEE Computer
Society Press, May 24–27, 2021, pp. 1659–1676.

[28] H. Krawczyk, “Cryptographic extraction and key derivation: The
HKDF scheme,” in Advances in Cryptology – CRYPTO 2010, ser.
Lecture Notes in Computer Science, T. Rabin, Ed., vol. 6223. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 15–19,
2010, pp. 631–648.

[29] Y. Dodis, D. Jost, and H. Karthikeyan, “Forward-secure encryption
with fast forwarding,” in TCC 2022: 20th Theory of Cryptography
Conference, Part II, ser. Lecture Notes in Computer Science, E. Kiltz
and V. Vaikuntanathan, Eds., vol. 13748. Chicago, IL, USA:
Springer, Heidelberg, Germany, Nov. 7–10, 2022, pp. 3–32.

[30] D. Balbás, D. Collins, and S. Vaudenay, “Cryptographic adminis-
tration for secure group messaging,” in USENIX Security 2023: 33rd
USENIX Security Symposium. USENIX Association, 2023, to appear.

[31] B. Dowling and B. Hale, “Secure messaging authentication against
active man-in-the-middle attacks,” in 2021 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2021, pp. 54–70.

[32] C. Cremers, J. Fairoze, B. Kiesl, and A. Naska, “Clone detection in
secure messaging: Improving post-compromise security in practice,”
in ACM CCS 2020: 27th Conference on Computer and Communica-
tions Security, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. Virtual
Event, USA: ACM Press, Nov. 9–13, 2020, pp. 1481–1495.

[33] J. Jaeger and N. Tyagi, “Handling adaptive compromise for practical
encryption schemes,” in Advances in Cryptology – CRYPTO 2020,
Part I, ser. Lecture Notes in Computer Science, D. Micciancio and
T. Ristenpart, Eds., vol. 12170. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 17–21, 2020, pp. 3–32.

[34] M. Marlinspike, “Simplifying OTR deniability.” Jul. 2013. [Online].
Available: https://signal.org/blog/simplifying-otr-deniability/

[35] The Matrix.org Foundation, “MSC2732: Olm fallback keys,” Jun.
2021. [Online]. Available: https://github.com/matrix-org/matrix-spec-
proposals/pull/2732

[36] M. Marlinspike, “The X3DH Key Agreement Protocol,” Nov. 2016,
revision 1. [Online]. Available: https://signal.org/docs/specifications/
x3dh/

[37] ——, “The Double Ratchet Algorithm,” Nov. 2016. [Online].
Available: https://signal.org/docs/specifications/doubleratchet/

[38] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs,
“Ratcheted encryption and key exchange: The security of messaging,”
in Advances in Cryptology – CRYPTO 2017, Part III, ser. Lecture
Notes in Computer Science, J. Katz and H. Shacham, Eds., vol.
10403. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 20–24, 2017, pp. 619–650.

[39] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt, “On post-
compromise security,” in CSF 2016: IEEE 29th Computer Security
Foundations Symposium, M. Hicks and B. Köpf, Eds. Lisbon, Por-
tugal: IEEE Computer Society Press, Jun. 27–1, 2016, pp. 164–178.

[40] M. R. Albrecht, J. Blasco, R. B. Jensen, and L. Mareková, “Col-
lective information security in large-scale urban protests: the case
of hong kong,” in USENIX Security 2021: 30th USENIX Security
Symposium, M. Bailey and R. Greenstadt, Eds. USENIX Association,
Aug. 11–13, 2021, pp. 3363–3380.

[41] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara,
and K. Cohn-Gordon, “The Messaging Layer Security (MLS)
Protocol,” RFC 9420, Jul. 2023. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9420

[42] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,”
in PKC 2006: 9th International Conference on Theory and Practice
of Public Key Cryptography, ser. Lecture Notes in Computer Science,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., vol. 3958. New
York, NY, USA: Springer, Heidelberg, Germany, Apr. 24–26, 2006,
pp. 207–228.

[43] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang,
“High-speed high-security signatures,” Journal of Cryptographic En-
gineering, vol. 2, no. 2, pp. 77–89, Sep. 2012.

[44] “Secure hash standard,” National Institute of Standards and Technol-
ogy, NIST FIPS PUB 180-2, U.S. Department of Commerce, Aug.
2002.

[45] H. Krawczyk and P. Eronen, “RFC 5869: HMAC-based Extract-and-
Expand Key Derivation Function (HKDF),” May 2010. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc5869

[46] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing
for message authentication,” IETF Internet Request for Comments
2104, Feb. 1997.

[47] “Advanced Encryption Standard (AES),” National Institute of Stan-
dards and Technology, NIST FIPS PUB 197, U.S. Department of
Commerce, Nov. 2001.

[48] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: Methods and Techniques,” National Institute of Standards
and Technology, Tech. Rep. NIST Special Publication (SP) 800-38A,
Dec. 2001. [Online]. Available: https://csrc.nist.gov/publications/
detail/sp/800-38a/final

[49] R. Housley, “RFC 5652: Cryptographic Message Syntax (CMS),”
Internet Engineering Task Force, Sep. 2009. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5652

Appendix A.
Preliminaries

We reference the following primitives and algorithms:
• X25519 is the Curve25519 [42] based DH key exchange.
• Ed25519 is a SUF-CMA-secure digital signature
scheme [43], DS = (DS.KGen,DS.Sign,DS.Verify).
• HKDF(s, k, c) (or HKDF-SHA-256) is a Hash-based Key
Derivation Function constructed with SHA-256 [44] where
s is the salt, k is the secret key material and c is the
context [28], [45].
• HMAC(k,m) (or HMAC-SHA-256) is a Hash-based Mes-
sage Authentication Code constructed with SHA-256 [44]
taking as input a key k and message m [46]. Matrix truncates
HMAC outputs to 64 bits [6], [8] contrasting with the
HMAC RFC [46] which recommends at least 128 bits for
SHA-256.
• MgRatchet = (Init,Next) is the Megolm ratchet where
MgRatchet.Init takes a security parameter and outputs an
initial state (i, R) and MgRatchet.Next takes a current state
and outputs a new state and a key [3]. It can be seen as an
implementation of an FF-PRG [29, Def. 2] that we assume

https://eprint.iacr.org/2021/498
https://matrix.org/docs/guides/end-to-end-encryption-implementation-guide
https://matrix.org/docs/guides/end-to-end-encryption-implementation-guide
https://signal.org/blog/simplifying-otr-deniability/
https://github.com/matrix-org/matrix-spec-proposals/pull/2732
https://github.com/matrix-org/matrix-spec-proposals/pull/2732
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/
https://www.rfc-editor.org/info/rfc9420
https://www.rfc-editor.org/info/rfc9420
https://datatracker.ietf.org/doc/html/rfc5869
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://datatracker.ietf.org/doc/html/rfc5652

satisfies the security and correctness requirements in Def’s
3 and 4 of [29].
• AES(k,m) is AES [47] taking a key k and a message
block m of size 128 bits. Matrix uses AES-256, i.e. 256-bit
keys.
• AES-CBC .Enc(iv, k,m) and AES-CBC .Dec(iv, k, c) is
AES in cipher block chaining (CBC) mode [48] where iv is
the nonce, k is an AES encryption key m is a message
and c is a ciphertext. Matrix uses PKCS7 [49] padding
to split plaintexts into blocks for CBC mode in the Olm
and Megolm protocols, as well as the asymmetric Megolm
backup scheme.
• MRU abstracts iteration over a sequence, ordered by most
recent use.

Algorithms described in Section 2 may access the public
keys (and cross-signing signature hierarchy) of other users
and devices directly (through reference to UB , DB,E or
ipkB,E , for example). This simulates fetching these values
from an untrusted server using the given identifiers.

In Table 2 we map our pseudocode shorthand strings to
those used in Matrix.

Appendix B.
Security Analysis of Matrix

Proof. We begin by separating the proof into two cases
and denote with AdvDOGM,A,C`

Mtx,nP ,nD,nS ,nM
(λ) the advantage of

the adversary winning the DOGM security game in Case `.
These correspond to 1) A has triggered the authentication
win condition, 2) A has terminated the game and output a
guess bit b.
Since AdvDOGM,A

Mtx,nP ,nD,nS ,nM
(λ) ≤ AdvDOGM,A,C1

Mtx,nP ,nD,nS ,nM
(λ) +

AdvDOGM,A,C2

Mtx,nP ,nD,nS ,nM
(λ), we may bound the overall advan-

tage of winning by considering each case in turn. In doing
so, we demonstrate that under certain assumptions, A’s
advantage of winning overall is negligible.

Case 1: Adversary has triggered the authentication win
condition. We treat the advantage of A in triggering the
authentication win condition. We do this via the following
sequence of games.

Game 0 This is the standard DOGM game in Case 1. Thus
we have AdvDOGM,A,C1

Mtx,nP ,nD,nS ,nM
(λ) ≤ Adv(break0).

Game 1 In this game, we guess a session πs
A,i and

stage T to be the first session that causes the authenti-
cation flag win to be set when πs

A,i.t = T , and trigger
an abort event if any other session other than πs

A,i causes
win ← true. Specifically, at the beginning of the ex-
periment we guess a tuple of values (A, i, s) and abort
the game if the session processing a Decrypt call is πs

B,j

such that (B, j, s) 6= (A, i, s) and πs
B,j .t 6= T . Thus:

Adv(break0) ≤ nP · nI · nD · nS · Adv(break1).

Game 2 In this game, we guess a session πs
B,j to be the

sending partner and device communicating with πs
A,i, and

trigger an abort event if our guess is incorrect. Specifically,

at the beginning of the experiment we guess a tuple of
values (B, j) and abort the game if πs

A,i.CU [0] 6= B
and πs

A,i.CD[0] 6= j. Thus: Adv(break1) ≤ nP · nD ·
Adv(break2).

Game 3 In this game, the challenger will abort if πs
A,i

accepts a non-honest message. Specifically, we define an
abort event abortnp that triggers when πs

A,i sets win ←
true. Thus, by the definition of the case Adv(break2) = 0.
In what follows, we will bound the probability of abortnp.
Thus: Pr[abortnp] ≤ Adv(break3).

Game 4 In this game, we introduce an abort event
abortD,B that triggers if party A receives device keys
(dpkB,j , ipkB,j) ∈ dtB,j , but B did not generate
(dpkB,j , ipkB,j). Based on our partner guess from Game
2, we replace at the beginning of the game spkB with
pk from a strongly unforgeable digital signature challenger
CDS. Whenever B is required to sign a device key pack-
age dtB,j .mD using spkB , B instead queries dtB,j .mD to
CDS. Note that dtB,j .mD = (B, j, dpkB,j , ipkB,j , OlmAlg).
Thus, if party A receives key package dtB,j such
that DS.Verify(spkB , dtB,j .mD, dtB,j .σD) = 1, but
(dpkB,j , ipkB,j) were not generated honestly by B (and
thus would trigger the abort event abortD,B), then
dtB,j .mD, dtB,j .σD is a valid forgery, and breaks the strong
unforgeability of the digital signature scheme DS. Thus:
Adv(break3) ≤ Adv(break4) + AdvSUF-CMA

DS (B).

Game 5 In this game, we introduce an abort event
abortdt,A that triggers if party B receives device keys
(dpkA,i , ipkA,i) ∈ dtA,i, but A did not generate
(dpkA,i , ipkA,i). Based on our guess from Game 1, we
replace at the beginning of the game spkA with pk from
a strongly unforgeable digital signature challenger CDS.
Whenever A is required to sign a device key package
dtA,i.mD using spkA, A instead queries dtA,i.mD to CDS.
Thus, if party B receives a key package dtA,i such that
DS.Verify(spkA, dt.mD, dt.σD) = 1, but (dpkA,i , ipkA,i)
were not generated honestly by A (and thus would trig-
ger the abort event abortdt,A), then dtA,i.mD, dtA,i.σD is
a valid forgery, and breaks the strong unforgeability of
the digital signature scheme DS. Thus: Adv(break4) ≤
Adv(break5) + AdvSUF-CMA

DS (B).

Game 6 In this game, we introduce an abort event abort in
that triggers if device DB,j does not initiate the Olm channel
between DA,i and DB,j . We note that the proof proceeds
identically in either case, up to a change in notation, hence
the guess. Thus: Adv(break5) ≤ 2 · Adv(break6).

Game 7 In this game, we introduce an abort event abortD
that triggers if party B receives an Olm key package D, but
A did not generate (ipkA,i, epkA,i,k) ∈ D. Based on our
guess from Game 1, we replace (when A generates device i)
dpkA,i with pk from a strongly unforgeable digital signature
challenger CDS. Whenever A is required to sign device
keys, identity keys dpkA,i , ipkA,i ∈ md, ephemeral key
epkA,i,k ∈ me,k, or a fallback key fpkA,i,k ∈ mf,k C instead
queries these messages to CDS. Thus, if party B receives a

OlmAEAD.Enc(k, i, ad,m)

ke ‖ kh ‖ kiv ← HKDF(0, k, i)[0 : 80]

x← AES-CBC .Enc(kiv , ke,m)

τ ← HMAC(kh, ad ‖ x)[0 : 8]

return ad ‖ x ‖ τ

OlmAEAD.Dec(k, i, c)

ke ‖ kh ‖ kiv ← HKDF(0, k, i)[0 : 80]

ad ‖ x ‖ τ ← c

if τ 6= HMAC(kh, ad ‖ x)[0 : 8] :

return (⊥,⊥)
m← AES-CBC .Dec(kiv , ke, x)

return (ad,m)

Figure 11: OlmAEAD = (OlmAEAD.Enc,OlmAEAD.Dec) scheme for AEAD.

key package D such that DS.Verify(dpkA,i ,md, σd) = 1
or DS.Verify(dpkA,i ,me,k, σe,k) = 1, but (ipkA,i, epkA,i,k)
were not generated honestly by A (and thus would trigger
the abort event abortD), then either md, σd or me,k, σe,k

is a valid forgery, and breaks the strong unforgeability of
the digital signature scheme DS. Thus: Adv(break6) ≤
Adv(break7) + AdvSUF-CMA

DS (B).
Game 8 In this game, we introduce an abort event abortgdh
that triggers if the adversary queries giskB,j ·eskA,i,k to a
HKDF random oracle. Specifically, we initialise a Gap-DH
challenger CGap-DH that outputs a Diffie-Hellman pair X,Y ,
which we embed into ipkB,j and epkA,i,k (AUTH ensures
that C will not have to answer any query that leaks iskB,j ,
nor eskA,i,k).

We now turn to demonstrating how C may need to
perform computations using iskB,j , or eskA,i,k. In the
latter case, this is an ephemeral key that is explicitly
only used once, so C will not need eskA,i,k. In the
case of iskB,j , the challenger will instead pick random
keys for the output ms instead of deriving them via
HKDF(giskB,j ·esk‖geskB,j′ ·isk‖geskB,j′ ·esk). C maintains a
list of all sessions in which random keys should have been
substituted: this contains the random session keys and public
keys that should have been used to compute each component
of the master secret. C ensures that the key values used
are consistent with any giskB,j ·esk‖geskB,j′ ·isk‖geskB,j′ ·esk

queries that A makes to the random oracle. Before answer-
ing a random oracle query, C will go through each entry in
the above list of sessions: for each entry, it uses the CGap-DH’s
DDH oracle to check if the public keys that should have been
used to compute each component of the master secret match
the corresponding component gisk ·esk , gesk ·isk , gesk ·esk of
the random oracle query. If all components, when queried
in the DDH oracle, return 1, then C uses the randomly
chosen keys from that list as the random oracle response,
otherwise, C samples a new random value. Note that if A
causes (ipkB,j , epkA,i,k, g

iskB,j ·eskA,i,k) to be queried and
the response is 1, then A has solved the Gap-DH problem
and C submits giskB,j ·eskA,i,k to CGap-DH, which triggers
abortgdh. Finally, we note that as a result of this change,
the value ms computed by DA,i and DB,j is uniformly
random and independent of the protocol execution. Thus:
Adv(break7) ≤ Adv(break8) + AdvGap-DH

HKDF (B).
Game 9 In this game, we replace the computation of
rch0, ck0 in the Olm session between DA,i and DB,j with
uniformly random keys ˆrch0, ˆck0. Specifically, when com-

puting rch0, ck0, the challenger instead initialises a KDF
challenger Ckdf , and queries geskA,i,k·rsk , and replaces ms
with the output of said query. We note that by the Game 8
ms is already a uniformly random and independent value, so
this replacement is sound. We note that if the bit b sampled
by Ckdf is 0, then we are in Game 8, else we are in Game
9. Thus: Adv(break8) ≤ Adv(break9) + AdvkdfKDF(B).
Game 10 In this game, we repeat the process of replacing
the computation of rch l, ck l in the Olm session between
DA,i and DB,j with uniformly random keys ˆrch l, ˆck l until
DB,j produces the T -th Megolm Ratchet. Specifically, when
computing rch l, ck l, the challenger instead initialises a KDF
challenger Ckdf , queries grsk ·rsk , and replaces rch l, ck l with
the output of said query. This replacement is sound since,
by Game 9, ˆrchi−1 is already a uniformly random and
independent value. We note that if the bit b sampled by
Ckdf is 0, then we are in Game 9, else we are in Game 10.
Thus: Adv(break9) ≤ Adv(break10) + k · AdvkdfKDF(B).
Game 11 In this game, we replace the computation of mk l

in the Olm session between DA,i and DB,j with uniformly
random key m̂k l. Specifically, when computing mk l, the
challenger instead initialises a KDF challenger Ckdf , and
queries 0x01, and replaces mk l with the output of said
query. We note that by the Game 10 ˆck l is already a uni-
formly random and independent value, so this replacement
is sound. We note that if the bit b sampled by Ckdf is 0,
then we are in Game 10, else we are in Game 11. Thus:
Adv(break10) ≤ Adv(break11) + AdvkdfKDF(B).
Game 12 In this game, we introduce an abort event that trig-
gers if DA,i decrypts an Olm ciphertext (keyed by m̂k l), and
accepts a Megolm inbound session S′

gpk = (ver , i, R, gpk)

but the ciphertext was not output by DB,j . Specifically, the
challenger initialises an auth challenger Cauth, which the
challenger queries when DA,i needs to encrypt or decrypt
with m̂k l. The abort event only triggers if A can produce
a valid ciphertext that decrypts under m̂k l, and we can
submit the ciphertext to Cauth, breaking the auth security of
the aead scheme. By Game 11 m̂k l is already uniformly
random and independent and this replacement is sound.
Any A that can trigger the abort event can be used by
the challenger to break the auth security of aead. Thus:
Adv(break11) ≤ Adv(break12) + Advauthaead(B).
Game 13 In this game, we introduce an abort event
abortauth that triggers if πs

A,i decrypts a Megolm cipher-
text c′ = (ver , i, c, τ, σ), but c′ was not output by πs

B,j .

Specifically, whenever DB,j creates the Megolm inbound
session Sgpk encrypted under m̂k l, the challenge instead
replaces gpk with pk from a strongly unforgeable digital
signature challenger CDS. Whenever πs

B,j is required to
sign Megolm ciphertexts with gsk , πs

B,j instead queries
the ciphertext to CDS. Thus, if πs

A,i receives a Megolm
ciphertext c′ such that DS.Verify(gpk , (ver , i, c, τ), σ) = 1
but c′ = (ver , i, c, τ, σ) was not generated honestly by πs

B,j
(and thus would trigger the abort event abortauth), then
(ver , i, c, τ), σ is a valid forgery, and breaks the strong
unforgeability of the digital signature scheme DS. Thus:
Adv(break12) ≤ Adv(break13) + AdvSUF-CMA

DS (B).
Note that now A can never cause πs

A,i to accept a non-
honest ciphertext in stage T , and thus Adv(break13) = 0.

Case 2: Adversary terminates and outputs a bit b. Here,
we bound the probability that A correctly guesses the bit b
via the following sequence of games.

Game 0 This is the standard DOGM game in Case 2. Thus
we have AdvDOGM,A,C2

Mtx,nP ,nD,nS ,nM
(λ) ≤ Adv(break0).

Game 1 In this game, we transition to an adversary that
only makes a single Encrypt(πs

A,i,m0,m1) (where m0 6=
m1) query, via a hybrid argument. Since A is polynomially-
bounded, then this introduces a factor upper-bounded by the
number of queries that A can make, which we denote nQ.
Thus we find Adv(break0) ≤ nQ · Adv(break1).

Game 2 In this game, we guess a session πs
A,i and stage

T such that Encrypt(A, i, s,m0,m1) (where m0 6= m1) is
called when πs

A,i.t = T , and trigger an abort event if we are
not correct. Specifically, at the beginning of the experiment
we guess a tuple of values (A, i, s, T) and abort the game
if any other query Encrypt(B, j, t,m0,m1) is called such
that (B, j, t) 6= (A, i, s) or πs

A,i.t 6= T . Thus we find
Adv(break1) ≤ nP · nI · nD · nS · Adv(break2).

Game 3 In this game, for each party A′ that
A did not Corrupt at the beginning of the experi-
ment, we introduce an abort event abortdt,B that trig-
gers if another party B receives a device key bundle
(dpkA′,i′ , ipkA′,i′) ∈ dtA′,i′ , but A′ did not generate
(dpkA′,i′ , ipkA′,i′). We replace at the beginning of the
game (for each uncorrupted party A′) spkA′ with pk from
a strongly unforgeable digital signature challenger CDS.
Whenever C is required to sign a device key package
dtA′,i′ .mD using spkA′ , C instead queries dtA′,i′ .mD to
CDS. Thus, if party B receives a key package dtA′,i′

such that DS.Verify(spkA′ , dtA′,i′ .mD, dtA′,i′ .σD) = 1,
but (dpkA′,i′ , ipkA′,i′) were not generated honestly by
A′ (and thus would trigger the abort event abortdt,B),
then dtA′,i′ .mD, dtA′,i′ .σD is a valid forgery, and breaks
the strong unforgeability of the digital signature scheme
DS. There are at most nP uncorrupted parties, and thus:
Adv(break2) ≤ Adv(break3)+nPAdv

SUF-CMA
DS (B). We note

that by the cleanness predicate CONF, that all parties that
A encrypts to as a result of the Encrypt(A, i, s,m0,m1)
must be uncorrupted and thus, as a result of Game 3, A
has received all device public keys of their communicating

partners πs
A,i.CD without modification.

Game 4 Note that from Game 5 to Game 11 we re-
peat the actions for each communicating partner of πs

A,i,
i.e. for each B ∈ πs

A,i.CU . Let nU = |πs
A,i.CU | be the

number of communicating partners of πs
A,i. Thus we have:

Adv(break3) ≤ nU · Adv(break4).

Game 5 In this game, we introduce an abort event abort in
that triggers if device DB,j does not initiate the Olm channel
between DA,i and DB,j . We note that the proof proceeds
identically in either case, up to a change in notation. Thus:
Adv(break4) ≤ 2 · Adv(break5).

Game 6 In this game, we introduce an abort event abortD
that triggers if party B receives an Olm key package D, but
A did not generate (ipkA,i, epkA,i,k) ∈ D. Based on our
guess from Game 2, we replace (when A generates device i)
dpkA,i with pk from a strongly unforgeable digital signature
challenger CDS. Whenever A is required to sign device
keys, identity keys dpkA,i , ipkA,i ∈ md, ephemeral key
epkA,i,k ∈ me,k, or a fallback key fpkA,i,k ∈ mf,k C instead
queries these messages to CDS. Thus, if party B receives a
key package D such that DS.Verify(dpkA,i ,md, σd) = 1
or DS.Verify(dpkA,i ,me,k, σe,k) = 1, but (ipkA,i, epkA,i,k)
were not generated honestly by A (and thus would trigger
the abort event abortD), then either md, σd or me,k, σe,k

is a valid forgery, and breaks the strong unforgeability of
the digital signature scheme DS. Thus: Adv(break5) ≤
Adv(break6) + AdvSUF-CMA

DS (B).
Game 7 In this game, we introduce an abort event abortgdh
that triggers if the adversary queries giskB,j ·eskA,i,k to a
HKDF random oracle. Specifically, we initialise a Gap
Diffie-Hellman challenger CGap-DH that outputs a Diffie-
Hellman pair X,Y , which we embed into ipkB,j and
epkA,i,k. We note that our predicates ensure that C will not
have to answer any query that leaks iskB,j , nor eskA,i,k.

We now turn to demonstrating how C may need to
perform computations using iskB,j , or eskA,i,k. In the
latter case, this is an ephemeral key that is explicitly
only used once, so C will not need eskA,i,k. In the
case of iskB,j , the challenger will instead pick random
keys for the output ms instead of deriving them via
HKDF(giskB,j ·esk‖geskB,j′ ·isk‖geskB,j′ ·esk). The challenge
will maintain a list of all sessions in which random keys
should have been substituted: the list contains the random
session keys as well as the public keys that should have
been used to compute each component of the mast se-
cret. C will ensure that the key values used are consistent
with any giskB,j ·esk‖geskB,j′ ·isk‖geskB,j′ ·esk queries that A
makes to the random oracle. Before answering a random
oracle query, C will go through each entry in the above
list of sessions: for each entry, it uses the CGap-DH’s DDH
oracle to check if the public keys that should have been
used to compute each component of the master secret match
the corresponding component gisk ·esk , gesk ·isk , gesk ·esk of
the random oracle query. If all components, when queried
in the DDH oracle, return 1, then C uses the randomly
chosen keys from that list as the random oracle response,

otherwise, C samples a new random value. Note that if A
causes (ipkB,j , epkA,i,k, g

iskB,j ·eskA,i,k) to be queried and
the response is 1, then A has solved the Gap-DH problem
and C submits giskB,j ·eskA,i,k to CGap-DH, which triggers
abortgdh. Finally, we note that as a result of this change,
the value ms computed by DA,i and DB,j is uniformly
random and independent of the protocol execution. Thus:
Adv(break6) ≤ Adv(break7) + AdvGap-DH

HKDF (B).
Game 8 In this game, we replace the computation of
rch0, ck0 in the Olm session between DA,i and DB,j with
uniformly random keys ˆrch0, ˆck0. Specifically, when com-
puting rch0, ck0, the challenger instead initialises a KDF
challenger Ckdf , and queries geskA,i,k·rsk , and replaces ms
with the output of said query. We note that by the Game 7
ms is already a uniformly random and independent value, so
this replacement is sound. We note that if the bit b sampled
by Ckdf is 0, then we are in Game 7, else we are in Game
8. Thus: Adv(break7) ≤ Adv(break8) + AdvkdfKDF(B).
Game 9 In this game, we repeat the process of replacing
the computation of rch l, ck l in the Olm session between
DA,i and DB,j with uniformly random keys ˆrch l, ˆck l until
DB,j produces the T -th Megolm Ratchet. Specifically, when
computing rch l, ck l, the challenger instead initialises a KDF
challenger Ckdf , queries grsk ·rsk , and replaces rch l, ck l with
the output of said query. This replacement is sound since,
by Game 8, ˆrchi−1 is already a uniformly random and
independent value. We note that if the bit b sampled by
Ckdf is 0, then we are in Game 8, else we are in Game 9.
Thus: Adv(break8) ≤ Adv(break9) + k · AdvkdfKDF(B).
Game 10 In this game, we replace the computation of mk l

in the Olm session between DA,i and DB,j with uniformly
random key m̂k l. Specifically, when computing mk l, the
challenger instead initialises a KDF challenger Ckdf , queries
0x01, and replaces mk l with the output of said query. This
replacement is sound since, by Game 9, ˆck l is already a
uniformly random and independent value. Note that if the
bit b sampled by Ckdf is 0, we are in Game 9, else we
are in Game 10. Thus: Adv(break9) ≤ Adv(break10) +
AdvkdfKDF(B).
Game 11 In this game, we replace the plaintext (the
Megolm inbound session S′

gpk = (ver , i, R, gpk)) of the
Olm ciphertext keyed by m̂k l, with a new plaintext S′

gpk =
(ver , i, R∗, gpk), where R∗ is a uniformly random value
sampled from the Megolm ratchet space. Specifically, the
challenger initialises an aead conf challenger Cconf , which
the challenger queries when DA,i needs to encrypt with
m̂k l. If the bit b sampled by Cconf is 0, we are in Game
10, else we are in Game 11. We note that any adversary
A, capable of distinguishing between the two games can
be used to break the conf security of the aead scheme. By
Game 10 m̂k l is already uniformly random and indepen-
dent and this replacement is sound. Thus: Adv(break10) ≤
Adv(break11) + Advconfaead(B).
Game 12 In this game, we replace all outputs of the
Megolm ratchet in epoch T with uniformly random keys.

TABLE 2: Constants used in the Matrix, Olm, Megolm, Key
Request and Cross-Signing protocols.

Symbol Value

OlmAlg m.olm.v1.curve25519-aes-sha2
OlmVer 0x03
OlmRch0 OLM_ROOT
OlmRch OLM_RATCHET
OlmKeys OLM_KEYS
MgAlg m.megolm.v1.aes-sha
MgVerIKE 0x01
MgVerMsg 0x03
MgVerFwd 0x02
MgKeys MEGOLM_KEYS
CsMstr master
CsSelf self_signing
CsUser user_signing
DvSign device_keys_ed25519
DvIdent device_keys_curve25519
DvEphm one_time_keys
DvFall fallback_keys
MsgEnc m.room.encrypted
MsgPln m.room.message
MsgKey m.room_key
MsgReq m.room_key_request
MsgFwd m.forwarded_room_key
MsgWth m.room_key.witheld

Specifically, when πs
A,i generates the Megolm ratchet R, the

challenger now initialises a key indistinguishability FF-PRG
challenger Ckind that outputs a new initial ratchet state R′. In
addition, whenever πs

A,i encrypts a new message in epoch T ,
the challenger calls Update to Ckind to replace the key output
k of MgRatchet.Next. We note if the bit b sampled by Ckind
is 0, we are in Game 11, else we are in Game 12. We note
that any adversary A capable of distinguishing between the
two games can be used to break the kind security of the
Megolm FF-PRG. By Game 11, the Megolm ratchet main-
tained by πs

A,i and its communicating partners is already
uniformly random and independent of the protocol execu-
tion. Thus: Adv(break11) ≤ Adv(break12)+AdvkindFF-PRG(B).

Game 13 In this game, when A issues Encrypt(A, i, s,
m0,m1), the challenger instead initialises a confidential-
ity authenticated encryption challenger Cconf , and forwards
m0,m1 to Cconf . We note that by Game 12, the key k used
to encrypt the message by πs

A,i is uniformly random and in-
dependent of the protocol flow. When A terminates and out-
puts the bit b to the challenger, it simply forwards the guess
bit b to Cconf . It is straightforward to see that the advantage
of A guessing the bit b in the DOGM security experiment is
now exactly equal to the challenger’s advantage in guessing
Cconf ’s bit b and thus: Adv(break12) ≤ AdvconfAuthEnc(B).

Appendix C.
Extended Discussion

C.1. Message Order

This section describes how the Matrix specification (and
its flagship client Element) order messages. In particular, we

discuss the implicit ordering provided by the cryptographic
primitives and its interaction with message order displayed
to users. We finish by considering how the security result
in Section 4 should be interpreted in light of these discrep-
ancies.

C.1.1. In the Matrix specification. Neither the Matrix
Client-Server API [1] nor the end-to-end encryption imple-
mentation guide [25] give explicit instructions on the order
of end-to-end encrypted messages (regarding how they are
displayed or ordered internally). As previously discussed,
both the Olm and Megolm specifications do provide such an
ordering implicitly as part of their key schedule. However,
due to Matrix’ use of multiple Olm channels, this does not
map to a single canonical ordering of Megolm sessions.
Thus, messages sent in the composed protocol do not have
a canonical ordering. For this reason, our description of
Mtx.Dec (see Fig. 9) does not return a message index.26

C.1.2. In the Element client. Investigating Element’s im-
plementation, we see that the order in which it displays mes-
sages is not determined cryptographically (through its index
within a Megolm session, for example). Instead, clients use
a timestamp provided by the server to order their messages.

C.1.3. Implication for interpreting Theorem 1. The se-
curity predicates in Section 4.1 define in what cases Matrix
can guarantee confidentiality and authentication. These pred-
icates refer to messages using the stage index (identifying
a particular Megolm session) and message index (identify-
ing a particular message within that session). As we note
in Section 5, the former does not have a canonical ordering
from the perspective of individual clients. Our security proof
resolves this by indexing Megolm sessions with the order
they were initialised in the security experiment. In practice,
however, a client decrypting the message m does not know
where in the global ordering of events the corresponding
session was generated and, thus, we cannot reliably use the
security predicates to evaluate when the security guarantees
apply to a message displayed in the user interface. In
other words, it is not clear how our security result can be
interpreted in practice without trusting the server to provide
a consistent message order that matches the time of session
initialisation by the sending client.

Consider the case where Alice is on the third stage
(t = 2) of their sending session, having sent three out-
bound Megolm sessions to the other members of the group.
However, the homeserver has withheld the second of these
sessions from group member Bob, such that Bob views
Alice’s third session as her second. Since the security ex-
periment knows the global ordering of Megolm sessions,

26. We note that, additionally, protocols relying upon the Sender Keys
architecture (such as Megolm) are not able to determine a relative message
order between senders. This is because each sender maintains their own
independent sequence of Megolm sessions. However, since a lack of
consistent message ordering between senders does not affect how we track
the compromise of session secrets, this issue is not relevant to the discussion
that follows.

it has correctly set Bob’s receiving sessions current stage
to t = 2. Now, if Alice’s sending session is compromised
during t = 2, the security experiment tracks this and, if the
adversary wins the experiment through a forgery from Alice
to Bob, the experiment can correctly compare the stage and
messages indices to check whether the win was valid or
not (this is the third case of MTXAUTH, see Definition 2).
Despite Bob’s client having the wrong understanding of
message order, the security predicate is still able to correctly
determine when the security guarantees apply.

How does this issue affect real-world usage? In practice,
Bob (and their client) cannot reliably track the correct stage
index and are, thus, incapable of completing such a check.
But we would never expect it to be able to! The stage indices
exist inside the security experiment only; Matrix clients have
no awareness of them. We do not expect a receiving client to
find out if a particular session was compromised and react
accordingly in such situations. Instead, our security result
enables us to reason about how the protocol reacts to certain
types of compromises in general.27 In this example, the third
case of MTXAUTH, combined with our security proof, tells
us that we cannot guarantee the authenticity of messages
sent in a Megolm session after the corresponding outbound
session has been compromised (i.e. messages with indices
greater than or equal to the index of the compromised
outbound session). In other words, assuming neither of the
first two cases of MTXAUTH apply, we can guarantee
the authenticity of messages sent before the session was
compromised.

Nonetheless, sessions sent by the attacker using the
compromised session will appear in Element’s user interface
intertwined with sessions sent by Alice using the non-
compromised session. This behaviour is avoidable: if clients
were able to determine a canonical ordering of Megolm
sessions, they would be able to reject new messages from
old sessions (or, at the least, display them in the appropriate
part of the message history).

C.1.4. Recommendations. We recommend that future it-
erations of the protocol work to ensure clients can de-
termine a canonical cryptographic ordering of messages.
We acknowledge that the distributed nature of Matrix may
cause implementation challenges with the requisite design
and implementation. Requiring that at most one active Olm
channel can be used between any two devices at once is a
step towards this. Finally, the protocol should require that
clients use this canonical ordering to display messages. For
example, all messages sent in stage t must appear after all
message sent in stage t− 1.

C.2. Message History and State Sharing

Matrix provides a user’s new devices with message
history by sharing a copy of the inbound Megolm sessions

27. If such tracking of compromises were to be implemented, the natural
identifier to use for such checks would be the session identifier used by
Matrix, the group signing key gpk .

the user has access to as well as the original ciphertexts.
This requires clients to accept messages sent from historical
Megolm sessions (since there is no way for a client to
know whether a ciphertext was sent before the next Megolm
session was created or not). This issue is compounded by
Element’s use of server provided timestamps to determine
the display order of messages: historical Megolm sessions
can be used to send messages that appear to be new. If a
canonical message order were available, then (potentially
forged) messages sent from historical Megolm sessions
could appear alongside the other messages from that session
in the message history. This combination of features means
that it is practically impossible for Matrix to recover from
a compromised session.

We note that this implementation of history sharing re-
quires trust in more parties than is necessary. First, they must
trust the user’s other devices to distribute the correct inbound
Megolm sessions. Second, they must trust the owner of each
Megolm session not to modify their message history. Trust
in one of these two may be necessary in a protocol that aims
for deniability, since there should be no way to prove that a
historical message was sent by a particular user or device.
It is natural to place this trust in a device under the user’s
control rather than the original senders. The alternative
would require additional trust in every sending device across
all historical conversations. Trust in the original senders,
thus, proves problematic if the protocol wants to provide a
form of post-compromise security.

Importantly, however, trust in the original senders is
not necessary to share message history. A simpler solution,
where the historical messages are re-encrypted by the user’s
other devices would only require trust in those devices.
Alternative designs could avoid re-encryption by having the
sharing device include a commitment to the transcript along-
side the session keys. Such a protocol would still provide
a form of deniability (with the sharing devices claiming a
particular history to the user’s other trusted devices).

To summarise, as long as history sharing is implemented
in a manner that relies on trust in the original message
sender not to insert, edit or delete messages, it is not possible
for Matrix to recover authentication guarantees after a device
compromise.

C.2.1. Recommendations. In order to recover authentica-
tion guarantees after a device compromise, it is important
that there exists a canonical ordering of messages and that
this order is enforced by the client. Additionally, clients
should be prevented from accepting new messages sent to
historical Megolm sessions and, instead, should freeze the
history of the stage t−1 as soon as stage t is received. Matrix
should consider redesigning the state sharing protocol such
that it only requires trust in the user’s verified devices, not
also in the original owners of the Megolm session. This
could be implemented by including a hash of the stage
transcript alongside shared Megolm sessions. Alternatively,
they could redesign state sharing so that trusted devices
directly share messages history.

C.3. Group Membership

Matrix has two core weaknesses with respect to group
membership. First, there is no cryptographic control over
group membership. Second, clients do not enforce the group
membership when receiving messages. Both weaknesses are
consistent with an adversarial model that trusts the server to
control the group membership.

However, there is a meaningful separation between the
two, such that a protocol with both of these weaknesses is
weaker than a protocol with just one. Consider a variant
of Matrix where clients do enforce the group membership
when receiving messages. Such a protocol would be able
to guarantee that only the group members of a particular
stage can send and receive messages within that stage (even
though the group membership in that stage is controlled by
the adversary). As it stands, Matrix is only able to guarantee
the confidentiality of messages between the group members
(as well as correctly identifying the origin of any message
sent to the group).

C.3.1. Recommendations. We recommend that the Matrix
specification requires clients to enforce group membership
when receiving messages. Combined with the planned ad-
dition of cryptographic control over group membership for
clients, Matrix should provide stronger confidentiality and
authentication guarantees that better reflect the needs of
group messaging.

We note, however, that such a design should take into
account the issues with message order and history sharing
discussed in Sections C.1 and C.2. Without a canonical
ordering of messages, it is unclear how clients can determine
whether a message was sent by a user when they were
(or were not) a member. Additionally, without the user
interface both reflecting the cryptographic message order
and rejecting new messages from old sessions, removed
members may still be able to send messages to a group.
We highlight the existing issues with state sharing as an
example of such an issue.

	Introduction
	Prior Work
	Contributions
	Scope
	Limitations

	Secure Messaging in the Matrix Standard
	Cross-signing & Verification Framework
	The Olm Protocol
	The Megolm Protocol
	Key Requests
	The Matrix Secure Messaging Protocol

	Device-Oriented Group Messaging
	Execution Environment
	Adversarial Model
	Predicates

	Security Analysis of Matrix
	Trivial Attacks in Matrix
	Result

	Discussion
	References
	Appendix A: Preliminaries
	Appendix B: Security Analysis of Matrix
	Appendix C: Extended Discussion
	Message Order
	Message History and State Sharing
	Group Membership

