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Abstract. Recent works have revisited blockcipher structures to achieve
MPC- and ZKP-friendly designs. In particular, Albrecht et al. (EURO-
CRYPT 2015) first pioneered using a novel structure SP networks with
partial non-linear layers (P-SPNs) and then (ESORICS 2019) repopu-
larized using multi-line generalized Feistel networks (GFNs). In this pa-
per, we persist in exploring symmetric cryptographic constructions that
are conducive to the applications such as MPC. In order to study the
minimization of non-linearity in Type-II Generalized Feistel Networks,
we generalize the (extended) GFN by replacing the bit-wise shuffle in a
GFN with the stronger linear layer in P-SPN and introducing the key
in each round. We call this scheme Generalized Extended Generalized
Feistel Network (GEGFN). When the block-functions (or S-boxes) are
public random permutations or (domain-preserving) functions, we prove
CCA security for the 5-round GEGFN. Our results also hold when the
block-functions are over the prime fields Fp, yielding blockcipher con-
structions over (Fp)∗.

Keywords: blockciphers ·Generalized Feistel networks · substitution-permutation
networks · provable security · prime fields

1 Introduction

The Feistel network has become one of the main flavors of blockciphers. A clas-
sical Feistel network, as shown in Fig. 1 (a), proceeds with iterating a Feis-
tel permutation ΨF (A,B) := (B,A ⊕ F (B)), where F is a domain-preserving
block-function. The generalized Feistel network (GFN) is a generalized for-
m of the classical Feistel network. A popular version of GFN, called Type-
II, show in Fig. 1 (b), in which a single round uses a block-function F to
map an input (m1,m1, ...,mw) to (c1, c2, ..., cw) =

(
m2,m3 ⊕ F (m4),m4,m5 ⊕
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F (m6), ...,mw,m1 ⊕ F (m2)
)
. As we can see, this operation is equivalent to ap-

plying Feistel permutation for every two blocks and then performing a (left)
cyclic shift of sub-blocks.

Type-II GFNs have many desirable features for implementation. In partic-
ular, they are inverse-free, i.e., they allow constructing invertible blockciphers
from non-invertible block-functions with small domains. This reduces the imple-
mentation cost of deciphering and has attracted attention. A drawback, however,
is the slow diffusion (when w is large), and security can only be ensured with
many rounds [35,23,33]. To remedy this, a series of works [32,5,7,10] investigat-
ed replacing the block-wise cyclic shift with more sophisticated (though linear)
permutations. These studies build secure GFN ciphers having fewer rounds than
Type-II, while simultaneously ensuring simplicity of structure and without in-
creasing the implementation cost as much as possible. Thus, a common feature
of linear permutations is block-wise operations.
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Fig. 1. Different blockcipher structures. (a) Feistel network; (b) multi-line generalized
Feistel, with 4 chunks; (c) the classical SPN; (d) partial SPN.

Motivated by new applications such as secure Multi-Party Computation (M-
PC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZKP),
the need for symmetric encryption schemes that minimize non-linear operations
in their natural algorithmic description is apparent. This can be primarily at-
tributed to the comparatively lower cost of linear operations compared to non-
linear operations.

In recent years, many works have been devoted to the research of construc-
tion strategies for symmetric cryptographic structures that are advantageous for
applications such as secure MPC. Initiated by Zorro [14] and popularized by
LowMC [2], a number of blockcipher designs followed an SPN variant depicted
in Fig. 1 (d). This structure was named SP network with partial non-linear lay-
ers [4] or partial SPN (P-SPN). Guo et al. [19] establish strong pseudorandom
security for different instances of partial SPNs using MDS linear layers. The re-
cent HADES design [16,18] combines the classical SPN (shown in Fig. 1 (c)) with
the P-SPN, where a middle layer that consists of P-SPN rounds is surrounded by
outer layers of SPN rounds. Albrecht et al. [1] study approaches to generalized
Feistel constructions with low-degree round functions and introduce a new vari-
ant of the generalized Feistel networks, which is called “Multi-Rotating Feistel
network” that provides extremely fast diffusion.

Our Results. In this work, we continue the exploration of construction strate-
gies for constructions for symmetric cryptography, which benefits applications
such as MPC. Particular emphasis is placed on the investigation of the Type-II
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GFNs. By the nature of the problem, we are interested in two different metrics.
One metric refers to what is commonly called multiplicative complexity (MC),
and the other metric refers to the multiplicative depth (AND Depth). Our aim
is to minimize both of these metrics as much as possible.

Due to the use of stronger diffusion layers, SPNs and P-SPNs enjoy much bet-
ter diffusion than Type-II GFNs. This is also indicated by provable CCA security
results: the best Type-II GFN variant [5] needs 10 rounds and 5w block-function
applications, while the SPN, resp. P-SPN, requires only 3 rounds, resp. 5 round-
s, and 3w, resp. 5w/2, block-function applications. It is thus natural to ask if
the non-linear operations can reduce by leveraging the relatively cheaper linear
operations, such as strong diffusion layers in SPNs and P-SPNs.
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Fig. 2. Partial SPNs (with rate 1/2) and GEGFNs, with w = 8.

Regarding the above question, a natural idea is to “inject” the (strong) diffu-
sion layers of SPNs/P-SPNs into Type-II GFNs, as shown in Fig. 2 (right). This
model further generalizes the (extended) GFN by replacing the linear layer and
permutation layer in [5] with strong diffusion layers in SPNs and P-SPNs, and
introducing the key in each round. We call this scheme Generalized Extended
Generalized Feistel Networks (GEGFNs).

From an alternative perspective, GEGFN is very similar to the so-called
rate-1/2 partial Substitution-Permutation Networks (P-SPNs), as shown in Fig.
2 (left). We can also get our construction by replacing the non-linear layer of
P-SPN with the non-linear layer of Type-II GFN. GEGFN allows enjoying “the
best of the two worlds”– the stronger diffusion provided by the P-SPN construc-
tion, along with the inverse-free of the Type-II GFN construction.

To provide a theoretical justification, we investigate the CCA security of
GEGFNs. Noting that a number of recent MPC- and ZKP-friendly blockciphers
operate on the prime field Fp [17,3], we consider general block-functions fi :
FN → FN with N equals 2n or some prime p and addition +© over FN instead
of the typical XOR action ⊕ (as indicated in Fig. 2 right).



4 Yuqing Zhao, Chun Guo, and Weijia Wang

Table 1. Comparison to existing wide SPRP structures. The Rounds column presents
the number of rounds sufficient for birthday-bound security, where λ(w) = dlog2 1.44we.
For Type-II GFN (i.e., GFNs with w/2 block-functions per round, see Fig. 1 (b)), note
that 2λ(w) = 2dlog2 1.44we ≥ 6 when w ≥ 4. Depth stands for AND Depth and Inv-
free means Inverse-free. Parameters in the MC and AND Depth columns are relative
w.r.t. the S-box. The mode XLS [31] is excluded due to attacks [28,29]. Tweakable
blockcipher-based modes [6,26,27] are also excluded due to incomparability.

Structure Rounds MC Depth Inv-free? Reference

Optimal Type-II GFN 2λ(w) wλ(w) 2λ(w) X [32,10]

Extended GFN 10 5w 10 X [5]

Linear SPN 3 3w 3 7 [11]

HADES 4 3w 4 7 [13]

CMC - 2w 2w 7 [21]

EME & EME∗ - 2w + 1 3 7 [22,20]

Rate 1/2 P-SPN 5 2.5w 5 7 [19]

GEGFN 5 2.5w 5 X Theorems 1 and 2

We first note that the 3-round GEGFN is insecure: the attack idea against
3-round P-SPN [19] can be (easily) adapted to GEGFN and extended to the
more general field FN . Towards positive results, we follow Dodis et al. [12,11]
and model the block-functions as public, random primitives available to all par-
ties, while the diffusion layer T as linear permutations. With these, we prove
CCA security up to N1/2 queries (i.e., the birthday bound over FN ) for 5-round
GEGFNs, in two concrete settings:

(i) The block-functions are random permutations over FN ;

(ii) The block-functions are random functions from FN to FN .

In both cases, the linear layer T shall satisfy a certain property similar to [19]
(generalized to the setting of FN ), which is slightly stronger than an MDS trans-
formation. To show the existence of such linear permutations, we exhibit exam-
ples in Appendix D.

Discussion. Being compatible with non-bijective block-functions is valuable
for MPC-friendly ciphers. For example, as commented by Grassi et al. [15], if
constructions incompatible with non-bijective block-functions (e.g., SPNs) are
used then designers have to adopt functions of degree at least 3 over Fp. They
eventually resorted to a variant of Type-III GFNs. This work provide another
choice.

On the other hand, while (GE) GFNs allow using non-bijective block-functions,
our treatments include random permutation-based GEGFNs to justify using bi-
jective block-functions. In fact, practical GFN blockciphers such as LBlock [34],
Twine insist on using bijections, probably due to the difficulty in designing good
non-bijective block-functions. Though, for certain bijections such as the power
function x 7→ x3, x ∈ Fp, designers are reluctant to use their inefficient in-
verse in deciphering. These motivated using inverse-free constructions, including
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blockcipher structures and protocols, and permutation-based GEGFNs may offer
solutions.

As shown in Table 1, GEGFNs do enjoy fast diffusion, which is comparable
with P-SPNs. In addition, in the CCA setting, its non-linearity cost is compa-
rable with P-SPNs. This means it can be a promising candidate structure for
blockciphers with low multiplicative complexities. In this respect, its inverse-
freeness increases flexibility by allowing for more choices of S-boxes. On the
other hand, the linear layer of GEGFNs is much more costly than the “ordi-
nary” GFNs [32,7,10] (including the “extended” GFN [5]). Therefore, GEGFNs
are better used in settings where non-linear operations are much more costly
than linear ones (e.g., the MPC setting).

Lastly, as in similar works [35,24,32,5,12,9,19], provable security is limit-
ed by the domain of the block-functions and becomes meaningless when the
block-functions are small S-boxes. E.g., the block-function in Twine is a 4-bit
S-box, and our bounds indicate security up to 22 queries. Though, blockcipher
structures are typically accomplished by such small-box provable security justifi-
cation, and we refer to [35,24,32,5] as examples. Meanwhile, recent blockciphers
such as the Rescue [3] also used large block-functions f : FN → FN , N ≈ 2252,
on which the provable result may shed more light.

Organization. Sect. 2 presents notations, definitions and tools. Then, we de-
scribe the attack against 3-round GEGFNs in Sect. 3. In Sect. 4 and Sect. 5,
we prove SPRP security for 5-round GEGFNs with random permutations and
functions, respectively. We finally conclude in Sect. 6.

2 Preliminaries

(FN ,+, ·) ≡ (GF(N),+, ·), where N is either a power of 2 or a prime number and
where + and · are resp. the addition and the multiplication in GF(N). We view
N as a cryptographic security parameter. For any positive integer w, we consider
a string consisting of w field elements in FN , which is also viewed as a column
vector in FωN , where w is also called width. Indeed, strings and column vectors
are just two sides of the same coin. Let x be a column vector in FwN , then xT is a
row vector obtained by transposing x. Throughout the remaining, depending on
the context, the same notation, e.g., x, may refer to both a string and a column
vector, without additional highlight. In the same vein, the concatenation x‖y is
also “semantically equivalent” to the column vector

(
x
y

)
.

In this respect, for x ∈ FwN , we denote the j-th entry of x (for j ∈ {1, ..., w})
by x[j] and define x[a..b] := (x[a], ..., x[b]) for any integers 1 ≤ a < b ≤ w. Let’s
assume that w is an even number. We define x[even] := (x[2], x[4], . . . , x[w]) and
x[odd] := (x[1], x[3], . . . , x[w − 1]). For x, y ∈ FwN , we denote the difference of x
and y by

(x[1]− y[1])‖(x[2]− y[2])‖...‖(x[w]− y[w]),

where − represents ⊕ when N is a power of 2 and represents
(
(x[i] − y[i])

mod N
)

when N is a prime number.
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The zero entry of FN is denoted by 0 and we write 0w for the all-zero vector
in FwN . We write P(w) for the set of permutations of FwN and F(w) for the set
of functions of FwN .

Let T be a matrix. We denote by Toe the submatrix composed of odd rows
and even columns of matrix T , by Too the submatrix composed of odd rows and
odd columns of matrix T , by Tee the submatrix composed of even rows and even
columns of matrix T , and by Teo the submatrix composed of even rows and odd
columns of matrix T .

Given a function f : FN → FN , for any positive integer m and any vector
x ∈ FmN , we define f(x) :=

(
f(x[1]), ..., f(x[m])

)
. For integers 1 ≤ b ≤ a, we

write (a)b := a(a− 1)...(a− b+ 1) and (a)0 := 1 by convention.

MDS Matrix. For any (column) vector x ∈ FwN , the Hamming weight of x is
defined as the number of non-zero entries of x, i.e.,

wt(x) :=
∣∣{i|x[i] 6= 0, i = 1, . . . , w}

∣∣.
Let T be a w × w matrix over FN . The branch number of T is the minimum
number of non-zero components in the input vector x and output vector u = T ·x
as we search all non-zero x ∈ FwN , i.e., the branch number of w × w matrix T
is minx∈FwN ,x 6=0{wt(x) + wt(T · x)}. A matrix T ∈ Fw×wN reaching w + 1, the
upper bound on such branch numbers, is called Maximum Distance Separable
(MDS). MDS matrices have been widely used in modern blockciphers, including
the AES, since the ensured lower bounds on weights typically transform into
bounds on the number of active S-boxes.

GEGFNs. When we replace the linear layer of Type-II GFN with the linear
layer of P-SPN and introduce the key in each round, we get our construction Cλfk
(shown in Fig. 2 (right)) that is defined by linear permutations {Ti ∈ Fw×wN }λ−1i=1

and a distribution K over K0× . . .×Kλ and that take oracle access to λ public,
random functions f = {fi : FN → FN}λi=1, where k = (k0, . . . , kλ) and λ is the
number of rounds. Given input x ∈ FwN , the output of the GEGFN is computed
as follows:

– Let u1 := k0 + x.
– for i = 1, . . . , λ− 1 do:

1. vi := PGFfi(ui), where
PGFfi(ui) =

(
ui[1] + fi(ui[2])

)
‖ui[2]‖ . . . ‖

(
ui[w − 1] + fi(ui[w])

)
‖ui[w].

2. ui+1 = ki + Ti · vi.
– vλ := PGFfλ(uλ).
– uλ+1 = kλ + vλ.
– Outputs uλ+1.

SPRP Security of GEGFNs. Following [11], we consider GEGFN construc-
tion and analyze the security of the construction against unbounded-time attack-
ers making a bounded number of queries to the construction and to f. Formally,
we consider the ability of an adversary D to distinguish two worlds: the “real
world”, in which it is given oracle access to f and Cλfk (for unknown keys k
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sampled according to K), and an “ideal world” in which it has access to f and
a random permutation P : FwN → FwN . We allow D to make forward and inverse
queries to Cλfk or P , and we always allow D to make forward queries to ran-
dom functions f = {f1, ..., fλ}. However, whether D makes inverse queries to f
depends on whether f are random permutations. With these, for a distinguisher
D, we define its strong-PRP advantage against the construction Cλfk as

AdvsprpCλf
k

(D) :=
∣∣∣Pr

[
k

$←− K : DCλ
f
k,f = 1

]
− Pr

[
P

$←− P(w) : DP,f = 1
]∣∣∣,

where f = (f1, . . . , fλ) are λ independent, uniform functions on FN . The strong-
PRP (SPRP) security of Cλfk is

AdvsprpCλf
k

(qC , qf ) := max
D

{
AdvsprpCλf

k

(D)
}
,

where the maximum is taken over all distinguishers that make most qC queries
to their left oracle and qf queries to their right oracles.

A Useful Operator on the Linear Layer. We will frequently write M ∈
Fw×wN in the block form of 4 submatrices in Fw/2×w/2N . For this, we follow the
convention using u, b, l, r for upper, bottom, left, and right resp., i.e.,

M =

(
Mul Mur

Mbl Mbr

)
.

We use brackets, i.e., (M−1)xx, xx ∈ {ul,ur,bl,br}, to distinguish submatrices
of M−1 (the inverse of M) from M−1xx , the inverse of Mxx.

As per our convention, we view u, v ∈ FwN as column vectors. During the
proof, we will need to derive the “second halves” u2 := u[w/2 + 1..w] and v2 :=
v[w/2 + 1..w] from the “first halves” u1 := u[1..w/2], v1 := v[1..w/2], and the
equality v = T · u. To this end, we follow [19] and define an operator on T :

T̂ :=

(
−T−1ur · Tul T−1ur

Tbl − Tbr · T−1ur · Tul Tbr · T−1ur

)
, (1)

which satisfies

v = T · u ⇔
(
u2
v2

)
= T̂ ·

(
u1
v1

)
.

3 A Chosen-Plaintext Attack on 3 Rounds

Guo et al. [19] showed a chosen-plaintext attack on 3-round P-SPN. We adapt
that idea to our context.5 Concretely, let C3fk be the 3-round GEGFN using any
invertible linear transformations T1, T2. I.e.,

C3fk(x) := k3 + PGFf3
(
k2 + T2 ·

(
PGFf2

(
k1 + T1 ·

(
PGFf1(k0 + x)

))))
.

5We followed the attack idea in [19]. However, due to the difference between our
construction and the P-SPN in the round function, the collision-inducing positions
considered in our attack are distinct.



8 Yuqing Zhao, Chun Guo, and Weijia Wang

We show a chosen-plaintext attacker D, given access to an oracle O : FwN → FwN ,
that distinguishes whether O is an instance of C3fk using uniform keys or a
random permutation. The attacker D proceeds as follows:

1. Fix δ ∈ FN\{0} in arbitrary, let ∆3 = δ‖0w/2−1, and compute two differences
∆1 := (T1)−1eo ·∆3 and ∆2 := (T1)oo ·∆1. Note that this means(

T1 ·
(
∆1[1]‖0‖∆1[2]‖0‖ . . . ‖∆1[w/2]‖0

))
[odd] = ∆2,(

T1 ·
(
∆1[1]‖0‖∆1[2]‖0‖ . . . ‖∆1[w/2]‖0

))
[even] = ∆3.

2. For all δ∗ ∈ FN (we note that if f2 is permutation, we have δ∗ ∈ FN\{0}),
compute

∆∗ : = T2 ·
(
∆2[1]⊕ δ∗‖∆3[1]‖∆2[2]‖∆3[2]‖ . . . ‖∆2[w/2]‖∆3[w/2]

)
= T2 ·

(
∆2[1]⊕ δ∗‖δ‖∆2[2]‖0‖ . . . ‖∆2[w/2]‖0

)
,

and add ∆∗[even] into a set Set.6

3. Choose inputs x, x′ such that (x− x′)[odd] = ∆1 and (x− x′)[even] = 0w/2,
query O(x) and O(x′) to obtain y and y′ respectively, and compute the
output difference ∆4 := y − y′.

4. If ∆4[even] ∈ Set then output 1; otherwise, output 0.

It is not hard to see that if O is a w width random permutation then D outputs
1 with probability O(N/Nw/2). On the other hand, we claim that when O is an
instance of the 3-round GEGFN then D always outputs 1.

For this, consider the propagation of the input difference∆∗1 , where∆∗1[odd] =
∆1 and ∆∗1[even] = 0w/2. By step 1, the 2nd round input difference must be ∆∗2,
where ∆∗2[odd] = ∆2 and ∆∗2[even] = ∆3. Since ∆3 = δ‖0w/2−1, the output dif-
ference of the 2nd function f(∆3) action must be in the set {δ∗‖0w/2−1}δ∗∈FN
of size at most N . This means the 3rd round input difference, denoted ∆∗3, must
be in a set of size N . Since the 3rd round PGFf3 action does not affect ∆∗3[even],
it can be seen ∆4[even], is also in a set of size N . Furthermore, this set is the
set Set derived in step 2. This completes the analysis.

4 SPRP Security at 5 Rounds with Public permutations

We will prove security for 5-round GEGFNs built upon 5 “S-boxes”/random
permutations S = {S1, S2, S3, S4, S5} and a single linear layer T . Formally,

C5Sk(x) := k5 + PGFS5
(
k4 + T ·

(
PGFS4

(
k3 + T ·

(
PGFS3

(
k2 + T ·

(
PGFS2

(
k1 + T ·

(
PGFS1(k0 + x)

))))))))
. (2)

6Here we consider the information-theoretic setting, with no limit on the time com-
plexity. In practice, N is usually small, especially in the binary fields, and this enumer-
ation remains feasible.
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Using a single linear layer simplifies the construction. Recall from our con-
vention that Toe, . . . , (T

−1)ee constitute the eight submatrices of T and T−1. In
fact, (T−1)oe, . . . , (T

−1)ee can be derived from Toe, . . . , Tee, but the expressions
are too complicated to use.

We next characterize the properties on T that are sufficient for security.

Definition 1 (Good Linear Layer for 5 Rounds with Permutations). A
matrix T ∈ Fw×wN is good if T is MDS, and the 6 induced matrices Teo, −T−1eo ·
Tee ·Teo−Too,

(
Toe−Too ·T−1eo ·Tee

)
·Teo, (T−1)eo, (T−1)oo−Too ·T−1eo ·(T−1)eo,

and T−1eo · (T−1)eo are such that:
1. They contain no zero entries, and
2. Any column vector of the 6 induced matrices consists of w/2 distinct entries.

We remark that, as T is MDS, all the four matrices Toe, Too, Teo and Tee are
all MDS (and invertible). A natural question is whether such a strong T exists
at all. For this, we give several MDS matrices in Appendix D that follow our
definition.

With such a good T , we have the following theorem on 5-round GEGFNs
with public random permutations.

Theorem 1. Assume w ≥ 2, and qS + wqC/2 ≤ N/2. Let C5Sk be a 5-round,
linear GEGFN structure defined in Eq. (2), with distribution K over keys k =
(k0, . . . , k5). If k0 and k5 are uniformly distributed and the matrix T fulfills
Definition 1, then

AdvsprpC5Sk
(qC , qS) ≤ 12wqCqS + 7w2q2C

2N
+

2q2C
Nw/2

. (3)

All the remaining of this section devotes to proving Theorem 1. We employ
Patarin’s H-coefficient method [30], which we recall in Appendix A. Following the
paradigm of H-coefficient, we first establish notations in the Sect. 4.1. We then
complete the two steps of defining and analyzing bad transcripts and bounding
the ratio µ(τ)/ν(τ) for good transcripts in Sect. 4.2 and 4.3 resp.

4.1 Proof Setup

Fix a deterministic distinguisher D. Wlog assume D makes exactly qC (non-
redundant) forward/inverse queries to its left oracle that is either C5Sk or P , and
exactly qS (non-redundant) forward/inverse queries to each of the oracle Si on
its right side. We call a query from D to its left oracle a construction query and
a query from D to one of its right oracles an S-box query.

The interaction between D and its oracles is recorded in the form of 6 lists
of pairs QC ⊆ FwN × FwN and QS1 , . . . , QS5 ⊆ FN × FN . Among them, QC =
((x(1), y(1)), . . . , (x(qC), y(qC))) lists the construction queries-responses of D in
chronological order, where the i-th pair (x(i), y(i)) indicates the i-th such query
is either a forward query x(i) that was answered by y(i) or an inverse query y(i)

that was answered by x(i). QS1 , . . . , QS5 are defined similarly with respect to
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queries to S1, . . . , S5. Define QS := (QS1
, . . . , QS5

). Note that D’s interaction
with its oracles can be unambiguously reconstructed from these sets since D is
deterministic. For convenience, for i ∈ {1, 2, 3, 4, 5} we define

Domi :=
{
a : (a, b)∈ QSi for some b∈ FN

}
, Rngi :=

{
b : (a, b)∈ QSi for a∈ FN

}
.

Following [8], we augment the transcript (QC , QS) with a key value k =
(k0, . . . , k5). In the real world, k is the actual key used by the construction. In
the ideal world, k is a dummy key sampled independently from all other values
according to the prescribed key distribution K. Thus, a transcript τ has the final
form τ = (QC , QS ,k).

4.2 Bad Transcripts

Let T be the set of all possible transcripts that can be generated by D in the ideal
world (note that this includes all transcripts that can be generated with non-zero
probability in the real world). Let µ, ν be the distributions over transcripts in
the real and ideal worlds, respectively (as in Appendix A).

We define a set T2 ⊆ T of bad transcripts as follows: a transcript τ =
(QC , QS ,k) is bad if and only if one of the following events occurs:

1. There exist a pair (x, y) ∈ QC and an index i ∈ {2, 4, . . . , w} such that
(x+ k0)[i] ∈ Dom1 or (y − k5)[i] ∈ Dom5.

2. There exist a pair (x, y) ∈ QC and distinct i, i′ ∈ {2, 4 . . . , w} such that
(x+ k0)[i] = (x+ k0)[i′] or (y − k5)[i] = (y − k5)[i′].

3. There exist distinct (x, y), (x′, y′) ∈ QC and distinct i, i′ ∈ {2, 4, . . . , w} such
that (x+ k0)[i] = (x′ + k0)[i′] or (y − k5)[i] = (y′ − k5)[i′].

4. There exist two indices i, ` ∈ {1, . . . , qC} such that ` > i, and:
• (x(`), y(`)) was due to a forward query, and y(`)[even] = y(i)[even]; or,
• (x(`), y(`)) was due to a inverse query, and x(`)[even] = x(i)[even].

Let T1 := T \T2 be the set of good transcripts.
To understand the conditions, consider a good transcript τ = (QC , QS ,k) and

let’s see some properties (informally). First, since the 1st condition is not fulfilled,
each construction query induces w/2 inputs to the 1st round S-box and w/2
inputs to the 5th round S-box, the outputs of which are not fixed by QS . Second,
since neither the 2nd nor the 3rd condition is fulfilled, the inputs to the 1st round
(5th round, resp.) S-boxes induced by the construction queries are distinct unless
unavoidable. These ensure that the induced 2nd and 4th intermediate values are
somewhat random and free from multiple forms of collisions. Finally, the last
condition will be crucial for some structural properties of the queries that will
be crucial in the subsequent analysis (see Appendix B.2, the proof of Lemma 2).

Let’s then analyze the probabilities of the conditions in turn. Since, in the ide-
al world, the values k0, k5 are independent of QC , QS and (individually) uniform
in FwN , it is easy to see that the probabilities of the first three events do not exceed

wqCqS/N ,
(
w/2
2

)
· 2qCN ≤ w2qC/4N , and

(
w/2
2

)
·
(
qC
2

)
· 2
N ≤ w2qC(qC − 1)/8N ≤

w2qC(qC − 1)/4N , respectively.
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For the 4-th condition, consider the `-th construction query (x(`), y(`)). When
it is forward, in the ideal world, it means D issued P (x(`)) to the w width random
permutation P and received y(`), which is uniform in Nw − ` + 1 possibilities.
Thus, when ` ≤ qC ≤ Nw/2,

Pr
[
∃i ≤ `− 1 : y(`)[even] = y(i)[even]

]
=

∑
i≤`−1,z∈Fw/2N

Pr
[
y(`) =

(
z‖y(i)[even]

)]
≤ (`− 1) ·Nw/2

Nw − `+ 1
≤ 2(`− 1)

Nw/2
.

A similar result follows when (x(`), y(`)) is inverse. A union bound thus yields

Pr
[
ν ∈ T2

]
≤ wqCqS

N
+
w2q2C
4N

+

qC∑
`=1

2(`− 1)

Nw/2
≤ wqCqS

N
+
w2q2C
4N

+
q2C
Nw/2

. (4)

4.3 Bounding the Ratio µ(τ )/ν(τ )

Let ΩX =
(
P(1)

)5×K be the probability space underlying the real world, whose
measure is the product of the uniform measure on (P(1))5 and the measure
induced by the distribution K on keys. (Thus, each element of ΩX is a tuple
(S,k) with S = (S1, . . . , S5), S1, . . . , S5 ∈ P(1) and k = (k0, . . . , k5) ∈ K.) Also,

let ΩY = P(w) ×
(
P(1)

)5 × K be the probability space underlying the ideal
world, whose measure is the product of the uniform measure on P(w) with the
measure on ΩX .

Let τ ′ = (Qτ
′

C , Q
τ ′

S ,k
τ ′) be a transcript. We introduce four types of compati-

bility as follows.

• First, an element ω = (S∗,k∗) ∈ ΩX is compatible with τ ′ if: (a) k∗ = kτ
′
,

and (b) S∗i (a) = b for all (a, b) ∈ Qτ ′Si , and (c) C5S∗k∗ (x) = y for all (x, y) ∈ Qτ ′C .
• Second, an element ω = (P ∗,S∗,k∗) ∈ ΩY is compatible with τ ′ if: (a)

k∗ = kτ
′
, and (b) S∗i (a) = b for all (a, b) ∈ Qτ ′Si , and (c) P ∗(x) = y for all

(x, y) ∈ Qτ ′C . We write

ω ↓ τ ′

to indicate that an element ω ∈ ΩX ∪ΩY is compatible with τ ′.
• Third, a tuple of S-boxes S∗ ∈ (P(1))5 is compatible with τ ′ = (Qτ

′

C , Q
τ ′

S ,k
τ ′),

and write S∗ ↓ τ ′, if (S∗,k) ∈ ΩX is compatible with τ ′, where k is the key
value of the fixed transcript τ .

• Last, we say that (P ∗,S∗) ∈ P(w)×(P(1))5 is compatible with τ ′ = (Qτ
′

C , Q
τ ′

S ,

kτ
′
) and write (P ∗,S∗) ↓ τ ′, if (P ∗,S∗,kτ ′) ↓ τ ′.

For the rest of the proof, we fix a transcript τ = (QC , QS ,k) ∈ T1. Since
τ ∈ T , it is easy to see (cf. [8]) that

µ(τ) = Pr[ω ← ΩX : ω ↓ τ ], ν(τ) = Pr[ω ← ΩY : ω ↓ τ ],
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where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure. We bound µ(τ)/ν(τ) by
reasoning about the latter probabilities. In detail, with the third and fourth
types of compatibility notions, the product structure of ΩX , ΩY implies

Pr[ω ← ΩX : ω ↓ τ ] = Pr[k∗ = k] · PrS∗ [S∗ ↓ τ ],

Pr[ω ← ΩY : ω ↓ τ ] = Pr[k∗ = k] · PrP∗,S∗ [(P
∗,S∗) ↓ τ ],

where S∗ and (P ∗,S∗) are sampled uniformly from (P(1))5 and P(w)× (P(1))5,
respectively. Thus,

µ(τ)

ν(τ)
=

PrS∗ [S∗ ↓ τ ]

PrP∗,S∗ [(P ∗,S∗) ↓ τ ]
.

By these, and by |QC | = qC , |QS1
| = . . . = |QS5

| = qS , it is immediate that

PrP∗,S∗
[
(P ∗,S∗) ↓ τ

]
=

1

(Nw)qC ·
(
(N)qS

)5 .
To compute PrS∗ [S∗ ↓ τ ], we start by writing

PrS∗ [S∗ ↓ τ ] = PrS∗ [S∗ ↓ (QC , QS ,k)]

= PrS∗ [S∗ ↓ (∅, QS ,k)] · PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)]

=
1

((N)qS )5
· PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)].

To analyze PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)], we proceed in two steps.
First, based on QC and two outer S-boxes S∗1 , S

∗
5 , we derive the 2nd and 4th

rounds intermediate values: these constitute a special transcript Qmid on the
middle 3 rounds. We characterize conditions on S∗1 , S

∗
5 that will ensure certain

good properties in the derived Qmid, which will ease the analysis. Therefore, in
the second step, we analyze such “good” Qmid to yield the final bounds. Each
of the two steps will take a paragraph as follows.

The outer 2 rounds. Given a tuple of S-boxes S∗, we let Bad(S∗) be a predicate
of S∗ that holds if any of the following conditions is met:

• (B-1) There exist (x, y) ∈ QC and i ∈ {2, 4, . . . , w} such that
(
T ·(PGFS

∗
1 (x+

k0)) + k1
)
[i] ∈ Dom2 or

(
T−1 · (((PGFS

∗
5 )−1(y − k5))− k4)

)
[i] ∈ Dom4.

• (B-2) There exist (x, y) ∈ QC and distinct indices i, i′ ∈ {2, 4, . . . , w} such

that
(
T · (PGFS

∗
1 (x+ k0)) + k1

)
[i] =

(
T · (PGFS

∗
1 (x+ k0)) + k1

)
[i′], or

(
T−1 ·

(((PGFS
∗
5 )−1(y − k5))− k4)

)
[i] =

(
T−1 · (((PGFS

∗
5 )−1(y − k5))− k4)

)
[i′].

• (B-3) There exist distinct pairs (x, y), (x′, y′) ∈ QC and two indices i, i′ ∈
{2, 4, . . . , w} such that:

1. x[even] 6= x′[even], yet
(
T · (PGFS

∗
1 (x+ k0)) + k1

)
[i] =

(
T · (PGFS

∗
1 (x′ +

k0)) + k1
)
[i′]; or
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2. x[even] = x′[even], i 6= i′, yet
(
T · (PGFS

∗
1 (x + k0)) + k1

)
[i] =

(
T ·

(PGFS
∗
1 (x′ + k0)) + k1

)
[i′]; or

3. y[even] 6= y′
[
even

]
, yet it holds

(
T−1 · (((PGFS

∗
5 )−1(y − k5)) − k4)

)
[i] =(

T−1 · (((PGFS
∗
5 )−1(y − k5))− k4)

)
[i′]; or

4. y[even] = y′
[
even

]
, i 6= i′, yet

(
T−1 · (((PGFS

∗
5 )−1(y − k5)) − k4)

)
[i] =(

T−1 · (((PGFS
∗
5 )−1(y − k5))− k4)

)
[i′].

(B-1) captures the case that a 2nd round S-box input or a 4th round S-box input
has been in QS , (B-2) captures collisions among the 2nd round S-box inputs &
4th round S-box inputs for a single construction query, while (B-3) captures
various collisions between the 2nd round S-box inputs, resp. 4th round S-box
inputs from two distinct queries. Note that essentially, Bad(S∗) only concerns the
randomness of the outer 2 S-boxes S∗1 and S∗5 . For simplicity, define Good(S∗) :=
(S∗ ↓ QS) ∧ ¬Bad(S∗). Then it holds

PrS∗
[
S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)

]
≥ PrS∗

[
S∗ ↓ (QC , QS ,k) ∧ Good(S∗) | S∗ ↓ (∅, QS ,k)

]
= PrS∗

[
Good(S∗) | S∗ ↓ (∅, QS ,k)

]
· PrS∗

[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
. (5)

Hence, all that remains is to lower bound the two terms in the product of (5).
We serve the result below and defer the proof to the Appendix B.1.

Lemma 1. When qS + w ≤ N/2, we have

PrS∗
[
Bad(S∗) | S∗ ↓ (∅, QS ,k)

]
≤ 4wqCqS + w2qC + w2q2C

2N
. (6)

Analyzing the 3 middle rounds. Our next step is to lower bound the term
PrS∗

[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
from Eq. (5). Given S∗ for which Good(S∗)

holds, for every (x(i), y(i)) ∈ QC , we define u
(i)
1 := x(i) + k0, v

(i)
1 := PGFS

∗
1 (u

(i)
1 )

(this means v
(i)
1 [even] = u

(i)
1 [even]), u

(i)
2 := T · v(i)1 + k1; v

(i)
5 := y(i) − k5, u

(i)
5 :=(

PGFS
∗
5
)−1

(v
(i)
5 ) (where v

(i)
5 [even] = u

(i)
5 [even]), v

(i)
4 := T−1 · (u(i)5 − k4). With

these, we obtain

Qmid =
((
u
(1)
1 , u

(1)
2 , v

(1)
4 , v

(1)
5

)
, . . . ,

(
u
(qC)
1 , u

(qC)
2 , v

(qC)
4 , v

(qC)
5

))
,

in which the tuples follow exactly the same chronological order as in QC . Define

C3S
∗

(k2,k3)
(u) = PGFS

∗
4
(
T ·
(
PGFS

∗
3
(
T ·
(
PGFS

∗
2 (u)

)
+ k2

))
+ k3

)
,

and write S∗ ↓ (Qmid, QS ,k) for the event that “C3S∗(k2,k3)(u2) = v4 for every

(u1, u2, v4, v5) in the set Qmid”. Then it can be seen

PrS∗
[
S∗ ↓(QC , QS ,k) | Good(S∗)

]
= PrS∗

[
S∗ ↓(Qmid, QS ,k) | Good(S∗)

]
. (7)

To bound Eq. (7), we will divide Qmid into multiple sets according to collisions
on the “even halves” u1[even] and v5[even], and consider the probability that S∗
is compatible with each set in turn. In detail, the sets are arranged according to
the following rules:
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• Qm1
:=
{

(u1, u2, v4, v5) ∈ Qmid : u1[even] = u
(1)
1 [even]

}
;

• For ` = 2, 3, . . ., if ∪`−1i=1Qmi = Qm1
∪ Qm2

∪ . . . ∪ Qm`−1
⊂ Qmid, then

we define Qm` . Let j be the minimum index such that (u
(j)
1 , u

(j)
2 , v

(j)
4 , v

(j)
5 )

remains in Qmid\ ∪`−1i=1 Qmi . Then:

– If v
(j)
5 has collisions, i.e., there exists (u∗1, u

∗
2, v
∗
4 , v
∗
5) ∈ ∪`−1i=1Qmi such

that v∗5 [even] = v
(j)
5 [even], then we define Qm` :=

{
(u1, u2, v4, v5) ∈

Qmid\ ∪`−1i=1 Qmi : v5[even] = v
(j)
5 [even]

}
. We call such sets Type-II.

– Else, Qm` :=
{

(u1, u2, v4, v5) ∈ Qmid\ ∪`−1i=1 Qmi : u1[even] = u
(j)
1 [even]

}
.

We call such sets as well as Qm1 Type-I.

Assume that Qmid is divided into α disjoint sets by the above rules, with
|Qm` | = β`. Then

∑α
`=1 β` = qC , and

PrS∗
[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]
=

α∏
`=1

PrS∗
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1i=1Qmi , QS ,k) ∧ Good(S∗)

]
. (8)

Now we could focus on analyzing the `-th set Qm` . Assume that

Qm` =
((
u
(`,1)
1 , u

(`,1)
2 , v

(`,1)
4 , v

(`,1)
5

)
, . . . ,

(
u
(`,β`)
1 , u

(`,β`)
2 , v

(`,β`)
4 , v

(`,β`)
5

))
.

The superscript (`, i) indicates that it is the i-th tuple in this `-th set Qm` .

For this index `, we define six sets ExtDom
(`)
i and ExtRng

(`)
i , i = 2, 3, 4, as

follows:

ExtDom
(`)
2 :=

{
u2[j] : (u1, u2, v4, v5) ∈ ∪`−1i=1Qmi , j ∈ {2, 4, . . . , w}

}
ExtRng

(`)
2 :=

{
S∗2 (a) : a ∈ ExtDom

(`)
2

}
ExtDom

(`)
3 :=

{(
T·
(
PGFS

∗
2 (u2)

)
+k2

)
[j] :(u1,u2,v4,v5)∈∪`−1i=1Qmi ,j∈{2,4, . . . ,w}

}
ExtRng

(`)
3 :=

{
S∗3 (a) : a ∈ ExtDom

(`)
3

}
ExtDom

(`)
4 :=

{
v4[j] : (u1, u2, v4, v5) ∈ ∪`−1i=1Qmi , j ∈

{
2, 4, . . . , w

}}
ExtRng

(`)
4 :=

{
S∗4 (a) : a ∈ ExtDom

(`)
4

}
Note that, conditioned on S∗ ↓ (∪`−1i=1Qmi , QS ,k) ∧ Good(S∗), the values in

ExtDom
(`)
i and ExtRng

(`)
i , i = 2, 3, 4, are compatible with the set ∪`−1i=1Qmi . For

Qm` , two useful properties regarding the arrangement of tuples and the derived
intermediate values resp. could be exhibited.

Lemma 2. Consider the `-th set Qm` =
(
(u

(`,1)
1 , u

(`,1)
2 , v

(`,1)
4 , v

(`,1)
5 ), . . .

)
. If it is

of Type-I, then the number of tuples (u1, u2, v4, v5) ∈ ∪`−1i=1Qmi with u1[even] =

u
(`,1)
1 [even] is at most 1; if it is of Type-II, then the number of (u1, u2, v4, v5) ∈
∪`−1i=1Qmi with v5[even] = v

(`,1)
5 [even] is also at most 1.
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The proof is deferred to the Appendix B.2.

Lemma 3. Consider the `-th set Qm` and any two distinct elements
(
u
(`,i1)
1 , u

(`,i1)
2 ,

v
(`,i1)
4 , v

(`,i1)
5

)
and

(
u
(`,i2)
1 , u

(`,i2)
2 , v

(`,i2)
4 , v

(`,i2)
5

)
in Qm` . Then, there exist two in-

dices j1, j2 ∈ {2, 4, . . . , w} such that,

• when Qm` is of Type-I: u
(`,i1)
2 [j1] /∈ Dom2∪ExtDom

(`)
2 , u

(`,i2)
2 [j2] /∈ Dom2∪

ExtDom
(`)
2 , and (u

(`,i1)
2 [j1], u

(`,i1)
2 [j2]) 6= (u

(`,i2)
2 [j1], u

(`,i2)
2 [j2]);

• when Qm` is of Type-II: v
(`,i1)
4 [j1] /∈ Dom4∪ExtDom

(`)
4 , v

(`,i2)
4 [j2] /∈ Dom4∪

ExtDom
(`)
4 , and (v

(`,i1)
4 [j1], v

(`,i1)
4 [j2]) 6= (v

(`,i2)
4 [j1], v

(`,i2)
4 [j2]).

The proof is deferred to the Appendix B.3. With the help of these two lemmas,
we are able to bound the probability that the randomness is compatible with
the `-th set Qm` .

Lemma 4. For the `-th set Qm` , it holds

PrS∗
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1i=1Qmi , QS ,k) ∧ Good(S∗)

]
≥
(

1− 12β`w(qS + wqC/2) + 3β2
`w

2

4N

)
· 1

Nwβ`
. (9)

The proof is deferred to the Appendix B.4.
From Eq. (9), Eq. (8), and using

∑α
`=1 β` = qC , we obtain

PrS∗
[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]
≥

α∏
`=1

((
1− 12β`w(qS + wqC/2) + 3β2

`w
2

4N

)
· 1

Nwβ`

)

≥
(

1−
α∑
`=1

12β`w(qS + wqC/2) + 3β2
`w

2

4N

)
· 1

Nw
∑α
`=1

β`

≥
(

1− 12wqC(qS + wqC/2) + 3w2q2C
4N

)
· 1

NwqC
.

Gathering this and Eqs. (7), (6), and (5), we finally reach

µ(τ)

ν(τ)
≥
(

1− 4wqCqS + w2qC + w2q2C
2N

)(
1− 12wqC(qS + wqC/2) + 3w2q2C

4N

)
· (N

w)qC
NwqC

≥
(

1− 4wqCqS + w2qC + w2q2C
2N

)(
1− 12wqC(qS + wqC/2) + 3w2q2C

4N

)
·
(

1− q2C
Nw

)
≥1− 20wqCqS + 13w2q2C

4N
− q2C
Nw

≥ 1− 20wqCqS + 13w2q2C
4N

− q2C
Nw/2

.

Further, using Eq. (4) yields the bound in Eq. (3) and completes the proof.

5 SPRP Security at 5 Rounds with Public Functions

In this section, we will prove security for 5-round GEGFNs built upon 5 random
functions F = {F1, F2, F3, F4, F5} and a single linear layer T . Firstly, we modify
the definition 1 to apply to the situation of using random functions.
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Definition 2 (Good Linear Layer for 5 Rounds with Functions). A ma-
trix T ∈ Fw×wN is good if T is MDS, and the 2 induced matrices Teo and (T−1)eo
are such that:
1. They contain no zero entries, and
2. Any column vector of the 2 induced matrices consists of w/2 distinct entries.

With a good linear layer in Definition 2, we have the following theorem on 5-
round GEGFNs with public random functions.

Theorem 2. Assume w ≥ 2. Let C5Fk be a 5-round, linear GEGFN structure
defined in Eq. (10), with distribution K over keys k = (k0, . . . , k5) and public
functions F = (F1, F2, F3, F4, F5).

C5Fk(x) := k5 + PGFF5
(
k4 + T ·

(
PGFF4

(
k3 + T ·

(
PGFF3

(
k2 + T ·

(
PGFF2

(
k1 + T ·

(
PGFF1(k0 + x)

))))))))
. (10)

If k0 and k5 are uniformly distributed and the matrix T fulfills Definition 2, then

AdvsprpC5Fk
(qC , qF ) ≤ 20wqCqF + 9w2q2C

8N
+

2q2C
Nw/2

. (11)

Since C5Fk is defined on random functions instead of random permutations,
which slightly deviates from the permutation case, for the proof, we only need
to make some moderate modifications to the previous proof for C5Sk . We follow
the proof idea of C5Sk and reduce proof as follows.

Proof Setup. Fix a deterministic distinguisher D. Similar to Sect. 4.1, we
assume D makes exactly qC (non-redundant) forward/inverse queries to its left
oracle that is either C5Fk or P , and exactly qF (non-redundant) forward queries
to each of the oracle Fi on its right side. We call a query from D to its left oracle
a construction query and a query from D to one of its right oracles a function
query.

The interaction between D and its oracles is recorded in the form of 6 lists
of pairs QC ⊆ FwN × FwN and QF1 , . . . , QF5 ⊆ FN × FN . The definition of QC
remains unchange, QF1 , . . . , QF5 are defined similarly with respect to queries to
F1, . . . , F5. Define QF := (QF1

, . . . , QF5
). For convenience, for i ∈ {1, 2, 3, 4, 5}

we define

Domi :=
{
a : (a, b)∈ QFi for some b∈ FN

}
,Rngi :=

{
b : (a, b)∈ QFi for a∈ FN

}
.

Similar to Sect. 4.1, we augment the transcript (QC , QF) with a key value
k = (k0, . . . , k5). Thus, a transcript τ has the final form τ = (QC , QF,k).

Completing the Proof. Note that since Fi is a random function, for a new
input x, the function value Fi(x) is uniform in FN , for i = 1, 2, 3, 4, 5, i.e., for
any y, the probability of Fi(x) = y is 1/N . This is the main difference from the
proof of C5Sk .

In detail, we recall the definition of bad transcripts in Sect. 4.2 and we also
have the same definition of bad transcripts in C5Fk . Therefore,
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Lemma 5. The upper bounding of getting bad transcripts in the ideal world is

Pr
[
ν ∈ T2

]
≤ wqCqS

N
+
w2q2C
4N

+

qC∑
`=1

2(`− 1)

Nw/2
≤ wqCqF

N
+
w2q2C
4N

+
q2C
Nw/2

. (12)

Then, following the idea as before, we bound the ratio µ(τ)/ν(τ). Let ΩX =(
F(1)

)5 × K be the probability space underlying the real world and ΩY =

P(w) ×
(
F(1)

)5 × K be the probability space underlying the ideal world. We
fix a transcript τ = (QC , QF,k) ∈ T1. Since τ ∈ T , it is easy to see (cf. [8]) that

µ(τ) = Pr[ω ← ΩX : ω ↓ τ ] = Pr[k∗ = k] · PrF∗ [F
∗ ↓ τ ],

ν(τ) = Pr[ω ← ΩY : ω ↓ τ ] = Pr[k∗ = k] · PrP∗,F∗ [(P
∗,F∗) ↓ τ ],

where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure and F∗ and (P ∗,F∗) are
sampled uniformly from (F(1))5 and P(w)× (F(1))5, respectively. Thus,

µ(τ)

ν(τ)
=

PrF∗ [F
∗ ↓ τ ]

PrP∗,F∗ [(P ∗,F
∗) ↓ τ ]

.

By these, and by |QC | = qC , |QF1 | = . . . = |QF5 | = qF , it is immediate that

PrP∗,F∗
[
(P ∗,F∗) ↓ τ

]
=

1

(Nw)qC ·
(
NqF

)5 .
To compute PrF∗ [F

∗ ↓ τ ] we start by writing

PrF∗ [F
∗ ↓τ ] = PrF∗ [F

∗ ↓ (QC , QF,k)]

= PrF∗ [F
∗ ↓(∅, QF,k)] · PrF∗ [F

∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)]

=
1

(NqF )5
· PrF∗ [F

∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)].

Now let’s focus on PrF∗ [F
∗ ↓ (QC , QF,k) | F∗ ↓ (∅, QF,k)]. To analyze

PrF∗ [F
∗ ↓ (QC , QF,k) | F∗ ↓ (∅, QF,k)], we proceed in two steps. First, based

on QC and two outer random functions F ∗1 , F
∗
5 , we derive the 2nd and 4th rounds

intermediate values: these constitute a special transcript Qmid on the middle
3 rounds. We characterize conditions on F ∗1 , F

∗
5 that will ensure certain good

properties in the derived Qmid, which will ease the analysis. Therefore, in the
second step, we analyze such “good” Qmid to yield the final bounds. Thus,

PrF∗
[
F∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)

]
≥ PrF∗

[
F∗ ↓(QC , QF,k) ∧ Good(F∗) | F∗ ↓(∅, QF,k)

]
= PrF∗

[
Good(F∗) | F∗ ↓(∅, QF,k)

]
· PrF∗

[
F∗ ↓(QC , QF,k) | Good(F∗)

]
. (13)

In the first step, we define Bad(F∗) the same as Bad(S∗). So we have the
following lemma,
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Lemma 6.

PrF∗
[
Bad(F∗) | F∗ ↓ (∅, QF,k)

]
≤ 4wqCqF + w2qC + w2q2C

4N
. (14)

The proof is deferred to the Appendix C.1.
Then, in the second step, we analyze PrF∗

[
F∗ ↓ (QC , QF,k) | Good(F∗)

]
.

We define Qmid as before and we have PrF∗
[
F∗ ↓ (QC , QF,k) | Good(F∗)

]
=

PrF∗
[
F∗ ↓ (Qmid, QF,k) | Good(F∗)

]
.

Lemma 7. For the set Qmid, it holds

PrF∗
[
F∗ ↓(Qmid, QF,k) | Good(F∗)

]
≥
(

1− 4wqC(qF + wqC/2)+w2q2C
8N

)
· 1

NwqC
.

(15)

The proof is deferred to the Appendix C.2.
Gathering Eq. (13) and Eqs. (14) and (15), we finally reach

µ(τ)

ν(τ)
≥
(

1− 4wqCqF + w2qC + w2q2C
4N

)(
1− 4wqC(qF + wqC/2) + w2q2C

8N

)
· (N

w)qC
NwqC

≥
(

1− 4wqCqF + w2qC + w2q2C
4N

)(
1− 4wqC(qF + wqC/2) + w2q2C

8N

)
·
(

1− q2C
Nw

)
≥1− 12wqCqF + 7w2q2C

8N
− q2C
Nw
≥ 1− 12wqCqF + 7w2q2C

8N
− q2C
Nw/2

.

Further, using Eq. (12) yield the bound in Eq. (11) and complete the proof.

6 Conclusion

In this paper, we explore the problem of minimizing non-linearity in Type-II
Generalized Feistel Networks. Inspired by the fast diffusion of SPNs, we consid-
er incorporating their (strong) diffusion layers into Type-II Generalized Feistel
Networks and introduce the key in each round. Thus, we introduce a new variant
of the generalized Feistel Networks, which we call GEGFN. To provide a theoret-
ical justification, we study SPRP security of GEGFN using random permutation
or function in binary fields F2n and prime fields Fp, with p being prime. Our
research proves birthday-bound security at 5 rounds.
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A The H-coefficient Technique

We use Patarin’s H-coefficient technique [30] to prove the SPRP security of
GEGFNs. We provide a quick overview of its main ingredients here. Our presen-
tation borrows heavily from that of [8]. Fix a distinguisher D that makes at most
q queries to its oracles. As in the security definition presented above, D’s aim is
to distinguish between two worlds: a “real world” and an “ideal world”. Assume
wlog that D is deterministic. The execution of D defines a transcript that in-
cludes the sequence of queries and answers received from its oracles; D’s output
is a deterministic function of its transcript. Thus, if µ, ν denote the probability
distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance

Dist(µ, ν) :=
1

2

∑
τ

∣∣µ(τ)− ν(τ)
∣∣, (16)

where the sum is taken over all possible transcripts τ .
Let T denote the set of all transcripts such that ν(τ) > 0 for all τ ∈ T . We

look for a partition of T into two sets T1 and T2 of “good” and “bad” transcripts,
respectively, along with a constant ε1 ∈ [0, 1) such that

τ ∈ T1 =⇒ µ(τ)/ν(τ) ≥ 1− ε1. (17)

It is then possible to show (see [8] for details) that

Dist(µ, ν) ≤ ε1 + Pr[ν ∈ T2] (18)

is an upper bound on the distinguisher’s advantage.

B Deferred Proofs for Theorem 1

B.1 Proof of Lemma 1

This requires to bound PrS∗
[
(B-`) | S∗ ↓ (∅, QS ,k)

]
for ` = 1, 2, 3. Consider

condition (B-1) first. Fix some (x, y) ∈ QC and an index i ∈ {2, 4, . . . , w}. Since
τ is good, (x+ k0)[w] /∈ Dom1, and (x+ k0)[w] 6= (x+ k0)[i′] for i′ 6= w. So after
conditioning on S∗ ↓ (∅, QS ,k) and the values of S∗1 ((x+ k0)[i′]) for i′ 6= w, the
value S∗1 ((x + k0)[w]) is uniform in a set of size N − qS − w/2 + 1. The MDS
property implies that every entry in the (w− 1)-th column of T is non-zero, and
thus

PrS∗
[(
T · (PGFS

∗
1 (x+ k0)) + k1

)
[i] ∈ Dom2 | S∗ ↓(∅, QS ,k)

]
≤ qS
N − qS − w/2

.

Similarly by symmetry, we have

PrS∗
[(
T−1 ·(((PGFS

∗
5 )−1(y − k5))− k4)

)
[i] ∈ Dom4 | S∗ ↓(∅, QS ,k)

]
≤ qS
N − qS − w/2

.
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Summing over (x, y) ∈ QC , i ∈ {2, 4, . . . , w}, we reach

PrS∗
[
(B-1) | S∗ ↓ (∅, QS ,k)

]
≤ wqCqS
N − qS − w/2

. (19)

Next, consider (B-2). Fix (x, y) ∈ QC and i, i′ ∈ {1, 2, . . . , w/2}, and let

u1 = x + k0, u2 = T · (PGFS
∗
1 (u1)) + k1. Then the “even half” u2[even] =

Teo · S∗1
(
u1[even]

)
+ Teo · u1[odd] + Tee · u1[even] + k1[even]. Since T is MDS, Teo

is nonsingular. This means Teo is invertible, and further that the i-th and i′-th
rows of Teo are linearly independent and, in particular, there exists an index
j0 ∈ {1, . . . , w/2} such that the (i, j0)-th and (i′, j0)-th entries of Teo are not
equal. After conditioning on S∗ ↓ (∅, QS ,k) and the values of S∗1 (u1[2 · j1]) for
j1 6= j0, the value of S∗1 (u1[2·j0]) is uniform in N−qS−w/2+1 values. Therefore,

PrS∗
[
u2[2 · i] = u2[2 · i′] | S∗ ↓ (∅, QS ,k)

]
≤ 1

N − qS − w/2
.

Similarly by symmetry, the probability of have
(
T−1 · (((PGFS

∗
5 )−1(y − k5)) −

k4)
)
[2·i] =

(
T−1·(((PGFS

∗
5 )−1(y−k5))−k4)

)
[2·i′] is also at most 1/(N−qS−w/2).

By a union bound over all pairs (x, y) ∈ QC and all i, i′ ∈ {1, . . . , w/2}, we reach

PrS∗
[
(B-2) | S∗ ↓ (∅, QS ,k)

]
≤

(
w/2

2

)
· 2qC
N − qS − w/2

≤ w2qC
4(N − qS − w/2)

. (20)

We now consider (B-3). We first fix (x, y), (x′, y′) ∈ QC and i, i′ ∈ {2, 4, . . . , w}
with x[even] 6= x′[even] for the 1st condition. This means x[j0] 6= x′[j0] for some
j0 ∈ {2, 4, . . . , w}. Since τ is good, for j1 ∈ {2, 4, . . . , w}, (x+k0)[j0] 6= (x+k0)[j1]
for all j1 6= j0 and (x+ k0)[j0] 6= (x′ + k0)[j1] for all j1. So after conditioning on
S∗ ↓ (∅, QS ,k) and the values of S∗1 ((x+k0)[j1]) for j1 6= j0 and S∗1 ((x′+k0)[j1])
for j1 ∈ {2, 4, . . . , w}, the value of S∗1 ((x+k0)[j0]) is uniform in ≥ N−qS−w+1
possibilities. Because every entry in the (j0 − 1)-th column of T is non-zero, we
have

PrS∗
[(
T (PGFS

∗
1 (x+ k0)) + k1

)
[i] =

(
T (PGFS

∗
1 (x′ + k0)) + k1

)
[i′] | S∗ ↓ (∅, QS ,k)

]
≤ 1

N − qS − w
.

We next fix (x, y), (x′, y′) ∈ QC and i 6= i′ ∈ {2, 4, ..., w} with x[even] =
x′[even] for the 2nd condition. While this case concerns distinct construction
queries, the argument is an extension of that of (B-2). In detail, let u1 = x+ k0,

u2 = T · (PGFS
∗
1 (u1)) + k1, u′1 = x′ + k0, and u′2 = T · (PGFS

∗
1 (u′1)) + k1. By the

analysis for (B-2), we have PrS∗
[
u2[i] = u2[i′] | S∗ ↓ (∅, QS ,k)

]
≤ 1

N−qS−w/2 .

Since x[even] = x′[even], it can be seen as u′2 − u2 = T · (x′ − x) , meaning that

u′2[i′] = u2[i′] +
(
Teo · (x′[odd]− x[odd])

)[
i′/2

]︸ ︷︷ ︸
δ

.

The offset δ is fixed by τ and is independent of S∗1 . Therefore,

PrS∗
[
u2[i] = u′2[i′] | S∗ ↓ (∅, QS ,k)

]
≤ PrS∗

[
u2[i] = u2[i′] + δ | S∗ ↓ (∅, QS ,k)

]
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≤ 1

N − qS − w/2
.

For each choice of (x, y), (x′, y′), the 1st and 2nd conditions are mutual-
ly exclusive (i.e., only one may be fulfilled). Hence, summing over all pairs
(x, y, i), (x′, y′, i′) ∈ QC × {2, 4, . . . , w}, the probability that either of the two
is fulfilled is at most(

wqC/2

2

)
· 1

N − qS − w
≤ w2q2C

8(N − qS − w)
.

Similarly by symmetry, the probability that either the 3rd or the 4th condition

is fulfilled is at most
w2q2C

8(N−qS−w) . Thus

PrS∗
[
(B-3) | S∗ ↓ (∅, QS ,k)

]
≤ w2q2C

4(N − qS − w)
. (21)

Summing over Eqs. (19), (20), and (21), we reach Eq. (6):

PrS∗
[
Bad(S∗) | S∗ ↓ (∅, QS ,k)

]
≤ wqCqS
N − qS − w/2

+
w2qC + w2q2C

4(N − qS − w)
.

B.2 Proof of Lemma 2

Wlog, consider the case of Type-I Qm` , as the other case is just symmet-

ric. Assume otherwise, and assume that tuple1 =
(
u
(j1)
1 , u

(j1)
2 , v

(j1)
4 , v

(j1)
5

)
and

tuple2 =
(
u
(j2)
1 , u

(j2)
2 , v

(j2)
4 , v

(j2)
5

)
in ∪`−1i=1Qmi are such two tuples with the small-

est indices j1, j2. Wlog assume j2 > j1, i.e., tuple2 was later. Then tuple2 was

necessarily a forward query, as otherwise u
(j1)
1 [even] = u

(j2)
1 [even] would con-

tradict the goodness of τ (the 4th condition). By this and further by the 4th

condition, v
(j2)
5 [even] is “new”, and tuple2 cannot be in any Type-II set Qmi ,

i ≤ ` − 1. This means there exists a Type-I set Qmi , i ≤ ` − 1, such that
tuple2 ∈ Qmi . By our rules, the tuples in the purported Qm` should have been
Qmi , and thus Qm` should not exist, reaching a contradiction.

B.3 Proof of Lemma 3

Wlog consider a Type-I Qm` . First, note that by ¬(B-1) (the 1st condition),

u
(`,i1)
2 [j] /∈ Dom2 and u

(`,i2)
2 [j] /∈ Dom2 for any j ∈ {2, 4, . . . , w}. We then

distinguish two cases depending on ∪`−1i=1Qmi (which contribute to ExtDom
(`)
2 ):

Case 1: u
(`,i1)
1 [even] 6= u1[even] for all (u1, u2, v4, v5) ∈ ∪`−1

i=1Qmi . Then

by ¬(B-3), u
(`,i1)
2 [j], u

(`,i2)
2 [j] /∈ ExtDom

(`)
2 for all j ∈ {2, 4, . . . , w}. Among these

w/2 indices, there exists j1 such that u
(`,i1)
2 [j1] 6= u

(`,i2)
2 [j1], as otherwise, it

would contradict the “qC non-redundant forward/inverse queries”. Therefore,
we complete the argument for this case.
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Case 2: there exists (u∗
1,u

∗
2,v

∗
4,v

∗
5)∈∪`−1

i=1Qmi with u∗
1[even]=u

(`,i1)
1 [even].

Then by construction, we have u
(`,i1)
2 [even] = u∗2[even] +∆i1 and u

(`,i2)
2 [even] =

u∗2[even] + ∆i2 , where ∆i1 = Teo ·
(
u
(`,i1)
1 [odd] − u∗1[odd]

)
and ∆i2 = Teo ·(

u
(`,i2)
1 [odd]−u∗1[odd]

)
. Let Ji1 be the subset of {2, 4, . . . , w} such that ∆i1 [j] 6= 0

iff. j ∈ Ji1 , and Ji2 ⊆ {2, 4, . . . , w} be such that ∆i2 [j] 6= 0 iff. j ∈ Ji2 . We dis-
tinguish three subcases depending on Ji1 and Ji2 :
• Subcase 2.1: Ji1\Ji2 6= ∅. Then, let j1 ∈ Ji1\Ji2 , and j2 ∈ Ji2 in arbitrary.

This means j1 6= j2, ∆i1 [j1] 6= 0 but ∆i2 [j1] = 0, and then u
(`,i1)
2 [j1] 6=

u
(`,i2)
2 [j1]. Moreover,

– u
(`,i1)
2 [j1] 6= u∗2[j3] for any j3 /∈ {2, 4, . . . , w}\{j1}, by ¬(B-3) (the 2nd

condition); u
(`,i1)
2 [j1] 6= u∗2[j1] since j1 ∈ Ji1 . Thus u

(`,i1)
2 [j1] /∈ ExtDom

(`)
2 .

Similarly for u
(`,i2)
2 .

– u
(`,i1)
1 [even] 6= u∗∗1 [even] for any (u∗∗1 , u

∗∗
2 , v

∗∗
4 , v∗∗5 ) 6= (u∗1, u

∗
2, v
∗
4 , v
∗
5) in

∪`−1i=1Qmi (by Lemma 2), and thus u
(`,i1)
2 [j1] 6= u∗∗2 [j′] for any j′ ∈

{2, 4, . . . , w} by ¬(B-3) (the 1st condition). Similarly for u
(`,i2)
2 .

• Subcase 2.2: Ji2\Ji1 6= ∅. Then, let j2 ∈ Ji2\Ji1 , and j1 ∈ Ji1 , and the
argument is similar to subcase 2.1 by symmetry.
• Subcase 2.3: Ji1 = Ji2 . Then there exists j ∈ Ji1 such that ∆i1 [j] 6= ∆i2 [j],

as otherwise ∆i1 = ∆i2 , meaning a contradiction. Let j1 = j2 = j, then it’s
easy to see all the claims hold.

By the above, for Type-I sets, the claims hold in all cases. Thus the claim.

B.4 Proof of Lemma 4

We distinguish two cases depending on the type of Qm` .

Case 1: Qm` is Type-I. By our dividing rules, the tuples in this Qm` may
have the same inputs to the 2nd round S-boxes. We define a bad predicate BadII`
that concerns with the 2nd round outputs v

(`,1)
2 := PGFS

∗
2 (u

(`,1)
2 ), . . . , v

(`,β`)
2 :=

PGFS
∗
2 (u

(`,β`)
2 ). With these notations, BadII`(S∗) is fulfilled, if either (C-1) or

(C-2) is fulfilled:
• (C-1) S∗2 leads to unfresh intermediate values: there exists i ∈ {1, . . . , β`}

and j ∈ {1, 3, . . . , w − 1} such that u
(`,i)
3 [j + 1] ∈ Dom3 ∪ ExtDom

(`)
3 , or

(v
(`,i)
3 [j] − u

(`,i)
3 [j]) ∈ Rng3 ∪ ExtRng

(`)
3 , or (v

(`,i)
4 [j] − u

(`,i)
4 [j]) ∈ Rng4 ∪

ExtRng
(`)
4 .

• (C-2) S∗2 leads to colliding intermediate values: there exists distinct (i1, j1),

(i2, j2) ∈ {1, . . . , β`}×{1, 3, . . . , w−1} such that u
(`,i1)
3 [j1+1] = u

(`,i2)
3 [j2+1],

or v
(`,i1)
3 [j1] − u(`,i1)3 [j1] = v

(`,i2)
3 [j2] − u(`,i2)3 [j2], or v

(`,i1)
4 [j1] − u(`,i1)4 [j1] =

v
(`,i2)
4 [j2]− u(`,i2)4 [j2].

Consider (C-1) first. Fix (i, j) ∈ {1, . . . , β`} × {1, 3, . . . , w− 1}, and consider

the condition u
(`,i)
3 [j+1] ∈ Dom3∪ExtDom

(`)
3 first. By Lemma 3, conditioned on

Good(S∗) and the values in Rng2∪ExtRng
(`)
2 , there exists j′ ∈ {2, 4, . . . , w} such



26 Yuqing Zhao, Chun Guo, and Weijia Wang

that v
(`,i)
2 [j′−1]−u(`,i)2 [j′−1] = S∗2

(
u
(`,i)
2 [j′]

)
is uniform in at leastN−qS−wqC/2

possibilities. Since

u
(`,i)
3 [even] = Teo ·v(`,i)2 [odd] + Tee ·u(`,i)

2 [even]+k2[even]

= Teo ·S∗2
(
u
(`,i)
2 [even]

)
+Teo ·u(`,i)

2 [odd]+Tee ·u(`,i)
2 [even]+k2[even], (22)

and since every entry in the (j′/2)-th column of Teo is non-zero, for any j ∈
{1, 3, . . . , w − 1}, we have

PrS∗
[
u
(`,i)
3 [j+1]∈(Dom3∪ExtDom

(`)
3 ) | S∗ ↓(∪ −̀1i=1Qmi , QS ,k)∧Good(S∗)

]
≤ qS+wqC/2

N−qS−wqC/2
.

We proceed to consider v
(`,i)
3 [j]− u(`,i)3 [j] and v

(`,i)
4 [j]− u(`,i)4 [j]. Note that

(u
(`,i)
4 − k3)[1]

(u
(`,i)
4 − k3)[2]

. . .

(u
(`,i)
4 − k3)[w]

=T ·


v
(`,i)
3 [1]

v
(`,i)
3 [2]
. . .

v
(`,i)
3 [w]

⇔
(

(u
(`,i)
4 − k3)[even]

(u
(`,i)
4 − k3)[odd]

)
=

(
Tee Teo

Toe Too

)
︸ ︷︷ ︸

T1

·

(
v
(`,i)
3 [even]

v
(`,i)
3 [odd]

)
,

and (
v
(`,i)
3 [odd]

u
(`,i)
4 [odd]

)
= T̂1 ·

(
v
(`,i)
3 [even]

(u4 − k3)(`,i)[even]

)
+

(
0
w
2

k3[odd]

)
.

By Eq. (1), it can be seen v
(`,i)
3 [odd]− u(`,i)3 [odd] is written as

v
(`,i)
3 [odd]−u(`,i)3 [odd]

=
(
−T−1eo ·Tee ·Teo−Too

)
·v(`,i)2 [odd]+g1

(
u
(`,i)
2 [even], v

(`,i)
4 [even], k2, k3

)
=
(
−T−1eo ·Tee ·Teo−Too

)
·S∗2
(
u
(`,i)
2 [even]

)
+g2

(
u
(`,i)
2 [even], u

(`,i)
2 [odd], v

(`,i)
4 [even], k2, k3

)
, (23)

where g1 and g2 are (complicated) functions of u
(`,i)
2 [even], u

(`,i)
2 [odd], v

(`,i)
4 [even],

k2, and k3. Similarly,

v
(`,i)
4 [odd]−u(`,i)4 [odd]

=−
(
Toe − Too ·T−1eo ·Tee

)
·Teo ·v(`,i)2 [odd]+g3

(
u
(`,i)
2 [even], v

(`,i)
4 , k2, k3

)
=−

(
Toe − Too ·T−1eo ·Tee

)
·Teo ·S∗2

(
u
(`,i)
2 [even]

)
+g4

(
u
(`,i)
2 , v

(`,i)
4 , k2, k3

)
, (24)

where g3 and g4 are (complicated) functions of u
(`,i)
2 , v

(`,i)
4 , k2, and k3. As we

assumed that neither −T−1eo ·Tee·Teo−Too nor −
(
Toe−Too·T−1eo ·Tee

)
·Teo contains

zero entries (see Definition 1), and,—by Lemma 3,—conditioned on Good(S∗)
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and the values in Rng2 ∪ ExtRng
(`)
2 , there exists j′ ∈ {2, 4, . . . , w} such that

S∗2
(
u
(`,i)
2 [j′]

)
is uniform in ≥ N − qS − wqC/2 possibilities, the probability of

having (v
(`,i)
3 [j]− u(`,i)3 [j]) ∈ Rng3 ∪ ExtRng

(`)
3 , or (v

(`,i)
4 [j]− u(`,i)4 [j]) ∈ Rng4 ∪

ExtRng
(`)
4 is at most qS+wqC/2

N−qS−wqC/2 .

Summing over the β`w/2 choices of (i, j) ∈ {1, . . . , β`}×{1, 3, . . . , w−1}, we
reach

PrS∗
[
(C-1) | S∗ ↓ (∪`−1i=1Qmi , QS ,k) ∧ Good(S∗)

]
≤ 3β`w(qS + wqC/2)

2(N − qS − wqC/2)
.

Next, consider (C-2). Depending on whether i1 = i2, we will divide the
discussion into two cases.

For the case of i1 = i2 ∈ {1, . . . , β`}, fix distinct j1, j2 ∈ {1, 3, . . . , w −
1}. Consider the condition u

(`,i1)
3 [j1 + 1] = u

(`,i1)
3 [j2 + 1] first. By Lemma 3,

conditioned on Good(S∗) and the values in Rng2 ∪ ExtRng
(`)
2 , there exists j3 ∈

{2, 4, . . . , w} such that S∗2
(
u
(`,i1)
2 [j3]

)
is uniform in at least N − qS − wqC/2

possibilities. We refer to Eq. (22) for the expression of u
(`,i)
3 [even]. By the 2nd

condition in Definition 1, the
(
(j1+1)/2, j3/2

)
-th and

(
(j2+1)/2, j3/2

)
-th entries

of Teo are not equal. So, the probability of having u
(`,i1)
3 [j1 + 1] = u

(`,i1)
3 [j2 + 1]

is equal to the probability that S∗2
(
u
(`,i1)
2 [j3]

)
equals some fixed value, which is

at most 1/(N − qS − wqC/2).

For condition v
(`,i1)
3 [j1] − u(`,i1)3 [j1] = v

(`,i2)
3 [j2] − u(`,i2)3 [j2] and v

(`,i1)
4 [j1] −

u
(`,i1)
4 [j1] = v

(`,i2)
4 [j2]−u(`,i2)4 [j2], the arguments follow similar flows. Concretely,

we refer to Eq. (23) and (24) for the expressions of v
(`,i)
3 [odd] − u(`,i)3 [odd] and

v
(`,i)
4 [odd] − u

(`,i)
4 [odd] resp. By the 2nd condition in Definition 1, the

(
(j1 +

1)/2, j3/2
)
-th and

(
(j2 + 1)/2, j3/2

)
-th entries of −T−1eo · Tee · Teo − Too differ;

the
(
(j1 + 1)/2, j3/2

)
-th and

(
(j2 + 1)/2, j3/2

)
-th entries of −

(
Toe − Too · T−1eo ·

Tee
)
· Teo differ. By these, the probability of having v

(`,i1)
3 [j1] − u

(`,i1)
3 [j1] =

v
(`,i2)
3 [j2]− u(`,i2)3 [j2] or v

(`,i1)
4 [j1]− u(`,i1)4 [j1] = v

(`,i2)
4 [j2]− u(`,i2)4 [j2] is at most

1/(N − qS − wqC/2).
For the case of i1 6= i2, fix j1, j2 ∈ {1, 3, . . . , w−1}. By Lemma 3, there exists

j3, j4 ∈ {2, 4, . . . , w} such that:

• u(`,i1)2 [j3] /∈ Dom2 ∪ ExtDom
(`)
2 , u

(`,i2)
2 [j4] /∈ Dom2 ∪ ExtDom

(`)
2 , and

• either u
(`,i1)
2 [j3] 6= u

(`,i2)
2 [j3] or u

(`,i1)
2 [j4] 6= u

(`,i2)
2 [j4].

Wlog assume u
(`,i1)
2 [j3] 6= u

(`,i2)
2 [j3]. Note that, by ¬(B-3) (the 2nd condition),

u
(`,i1)
2 [j3] 6= u

(`,i2)
2 [j5] for any j5 ∈ {2, 4, . . . , w}\{j3}. Therefore, conditioned on

the values in Rng2∪ExtRng
(`)
2 , on the w/2−1 values

{
S∗2
(
u
(`,i1)
2 [j]

)}
j∈{2,4,...,w}\{j3}

,

and on the w/2 values
{
S∗2
(
u
(`,i2)
2 [j]

)}
j∈{2,4,...,w}, S

∗
2

(
u
(`,i1)
2 [j3]

)
remains uniform

in at least N − qS − wqC/2 possibilities. By this,
• since (the

(
j3/2)-th column of) Teo has no zero entry, the probability of hav-

ing u
(`,i1)
3 [j1+1] = u

(`,i2)
3 [j2+1] is equal to the probability that S∗2 (u

(`,i1)
2 [j3])

equals some fixed value, which is at most 1/(N − qS − wqC/2);
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• since −T−1eo · Tee · Teo − Too has no zero entry, the probability of having

v
(`,i1)
3 [j1]−u(`,i1)3 [j1] = v

(`,i2)
3 [j2]−u(`,i2)3 [j2] is at most 1/(N − qS −wqC/2).

• since −
(
Toe−Too ·T−1eo ·Tee

)
·Teo has no zero entry, the probability of having

v
(`,i1)
4 [j1]−u(`,i1)4 [j1] = v

(`,i2)
4 [j2]−u(`,i2)4 [j2] is at most 1/(N − qS −wqC/2).

By a union bound over the conditions and over all i1, i2, j1, j2, we reach

PrS∗
[
(C-2) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
≤

(
wβ`/2

2

)
· 3

N − qS − wqC/2
.

Using qS + wqC/2 ≤ N/2, we finally have

PrS∗
[
BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
≤ 12β`w(qS + wqC/2) + 3β2

`w
2

4N
.

Now, conditioned on ¬BadII`(S∗), S∗ ↓ (∪`−1i=1Qmi , QS ,k), and Good(S∗), the
event that S∗ ↓ (Qm` , QS ,k) is equivalent to S∗3 and S∗4 satisfying wβ` new and

distinct equations, i.e., S∗3
(
u
(`,i)
3 [j]

)
= v

(`,i)
3 [j − 1] − u(`,i)3 [j − 1], S∗4

(
u
(`,i)
4 [j]

)
=

v
(`,i)
4 [j − 1] − u

(`,i)
4 [j − 1], i = 1, . . . , β`, j ∈ {2, 4, . . . , w}: they are new due

to ¬(C-1) and ¬(B-3), and they are distinct due to ¬(C-2) and ¬(B-3). The
probability that S∗3 and S∗4 satisfy these equations is at least 1/Nwβ` . Therefore,

PrS∗
[
S∗ ↓ (Qm` , QS ,k) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥ PrS∗
[
S∗ ↓ (Qm` , QS ,k) ∧ ¬BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

= PrS∗
[
¬BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

· PrS∗
[
S∗ ↓ (Qm` , QS ,k) | ¬BadII`(S∗) ∧ S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

=
(
1− PrS∗

[
BadII`(S∗) | S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]
]
)

· PrS∗
[
S∗ ↓ (Qm` , QS ,k) | ¬BadII`(S∗) ∧ S∗ ↓ (∪`−1

i=1Qmi , QS ,k) ∧ Good(S∗)
]

≥
(

1− 12β`w(qS + wqC/2) + 3β2
`w

2

4N

)
· 1

Nwβ`
.

Case 2: Qm` is Type-II. The argument is symmetric to the above for Type-
I group. More concretely, we define a bad predicate BadII` that concerns the
4nd round S-box inputs as well as the other values involved in the inverse

computation. For every (u
(`,i)
1 , u

(`,i)
2 , v

(`,i)
4 , v

(`,i)
5 ) ∈ Qm` , i = 1, . . . , β`, define

u
(`,i)
4 :=

(
PGFS

∗
4
)−1

(v
(`,i)
4 ), v

(`,i)
3 := T−1 ·

(
u
(`,i)
4 − k3

)
,

(u
(`,i)
3 − k2)[1]

(u
(`,i)
3 − k2)[2]

. . .

(u
(`,i)
3 − k2)[w]

=T ·


v
(`,i)
2 [1]

v
(`,i)
2 [2]
. . .

v
(`,i)
2 [w]

⇔
(

(u
(`,i)
3 − k2)[even]

(u
(`,i)
3 − k2)[odd]

)
=

(
Tee Teo

Toe Too

)
︸ ︷︷ ︸

T2

·

(
v
(`,i)
2 [even]

v
(`,i)
2 [odd]

)
,

and (
v
(`,i)
2 [odd]

u
(`,i)
3 [odd]

)
= T̂2 ·

(
v
(`,i)
2 [even]

(u3 − k2)(`,i)[even]

)
+

(
0
w
2

k2
[
odd]

)
.
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These indicate

v
(`,i)
3 [even] = −(T−1)eo ·S∗4

(
v
(`,i)
4 [even]

)
+g5

(
v
(`,i)
4 [even], v

(`,i)
4 [odd], k3

)
,

v
(`,i)
3 [odd]−u(`,i)

3 [odd] = −
(
(T−1)oo − Too ·T−1

eo ·(T−1)eo
)
·S∗4 (v

(`,i)
4

[
even

]
)

+g6
(
v
(`,i)
4 , u

(`,i)
2

[
even

]
, k2, k3

)
,

v
(`,i)
2 [odd]−u(`,i)

2 [odd] = −T−1
eo ·(T−1)eo ·S∗4 (v

(`,i)
4

[
even

]
)+g7

(
v
(`,i)
4 , u

(`,i)
2 , k2, k3

)
,

where g5, g6, g7 are (complicated) functions of parameters. Then, BadII`(S∗) is
fulfilled, if either (C-1) or (C-2) is fulfilled:

• (C-1) There exists i ∈ {1, . . . , β`} and j ∈ {1, 3, . . . , w−1} such that v
(`,i)
3 [j+

1] ∈ Dom3∪ExtDom
(`)
3 , or v

(`,i)
3 [j]−u(`,i)3 [j] ∈ Rng3∪ExtRng

(`)
3 , or v

(`,i)
2 [j]−

u
(`,i)
2 [j] ∈ Rng2 ∪ ExtRng

(`)
2 .

• (C-2) There exists distinct pairs (i1, j1), (i2, j2) ∈ {1, . . . , β`}×{1, 3, . . . , w−
1} such that v

(`,i1)
3 [j1 + 1] = v

(`,i2)
3 [j2 + 1], or v

(`,i1)
3 [j1] − u

(`,i1)
3 [j1] =

v
(`,i2)
3 [j2]− u(`,i2)3 [j2], or v

(`,i1)
2 [j1]− u(`,i1)2 [j1] = v

(`,i2)
2 [j2]− u(`,i2)2 [j2].

The argument then follows similarly, using the goodness (see Definition 1) of the
three matrices (T−1)eo, (T−1)oo − Too · T−1eo · (T−1)eo and T−1eo · (T−1)eo, and
yielding wβ` new and distinct equations on S∗2 and S∗3 . Thus Eq. (9) remains
true.

C Proof of Theorem 2

C.1 Proof of Lemma 6

Note that since Fi is a random function, for a new input x, the function val-
ue Fi(x) is uniform in FN , for i = 1, 2, 3, 4, 5, i.e., for any y, the probability
of Fi(x) = y is 1/N . This is the main difference from the proof of C5Sk . We
define Bad(F∗) the same as Bad(S∗). Since we use the random function, the
probabilities are as follows:

(i) PrF∗
[
(B-1) | F∗ ↓ (∅, QF,k)

]
≤ wqCqF

N ,

(ii) PrF∗
[
(B-2) | F∗ ↓ (∅, QF,k)

]
≤
(
w/2
2

)
· 2qCN ≤ w2qC

4N ,

(iii) PrF∗
[
(B-3) | F∗ ↓ (∅, QF,k)

]
≤ w2q2C

4N .

Summing the probabilities above, we have the Lemma 6.

C.2 Proof of Lemma 7

We still assume that Qmid is divided into α disjoint sets by the above rules, with
|Qm` | = β`. Then

∑α
`=1 β` = qC , and

PrF∗
[
F∗ ↓ (Qmid, QF,k) | Good(F∗)

]
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=

α∏
`=1

PrF∗
[
F∗ ↓ (Qm` , QF,k) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
. (25)

Now we could focus on analyzing the `-th set Qm` . Assume that

Qm` =
((
u
(`,1)
1 , u

(`,1)
2 , v

(`,1)
4 , v

(`,1)
5

)
, . . . ,

(
u
(`,β`)
1 , u

(`,β`)
2 , v

(`,β`)
4 , v

(`,β`)
5

))
.

The superscript (`, i) indicates that it is the i-th tuple in this `-th set Qm` .

For this index `, we define six sets ExtDom
(`)
i and ExtRng

(`)
i , i = 2, 3, 4, as

follows:

ExtDom
(`)
2 :=

{
u2[j] : (u1, u2, v4, v5) ∈ ∪`−1i=1Qmi , j ∈ {2, 4, . . . , w}

}
ExtRng

(`)
2 :=

{
F ∗2 (a) : a ∈ ExtDom

(`)
2

}
ExtDom

(`)
3 :=

{(
T·
(
PGFF

∗
2 (u2)

)
+k2

)
[j] :(u1,u2,v4,v5)∈∪`−1i=1Qmi ,j∈{2,4, . . . ,w}

}
ExtRng

(`)
3 :=

{
F ∗3 (a) : a ∈ ExtDom

(`)
3

}
ExtDom

(`)
4 :=

{
v4[j] : (u1, u2, v4, v5) ∈ ∪`−1i=1Qmi , j ∈

{
2, 4, . . . , w

}}
ExtRng

(`)
4 :=

{
F ∗4 (a) : a ∈ ExtDom

(`)
4

}
Note that, conditioned on F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗), the values in

ExtDom
(`)
i and ExtRng

(`)
i , i = 2, 3, 4, are compatible with the set ∪`−1i=1Qmi . For

Qm` , Lemma 2 and 3 will also be hold. With the help of these two lemmas, we
are able to bound the probability that the randomness is compatible with the
`-th set Qm` .

Following the idea as before, we define BadII`(F
∗):

• (C-1) F ∗2 (or F ∗4 ) leads to unfresh intermediate values: there exists i ∈
{1, . . . , β`} and j ∈ {2, 4, . . . , w} such that u

(`,i)
3 [j] ∈ Dom3 ∪ ExtDom

(`)
3 .

• (C-2) F ∗2 (or F ∗4 ) leads to colliding intermediate values: there exists distinct

(i1, j1), (i2, j2) ∈ {1, . . . , β`} × {2, 4, . . . , w} such that u
(`,i1)
3 [j1] = u

(`,i2)
3 [j2].

The probabilities make the following modifications:

(i) PrF∗
[
(C-1) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
≤ β`w(qF+wqC/2)

2N ,

(ii) PrF∗
[
(C-2) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
≤
(
wβ`/2

2

)
· 1
N ≤

w2β2
`

8N .

We finally have

PrF∗
[
BadII`(F

∗) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)
]

≤ 4β`w(qF + wqC/2) + β2
`w

2

8N
.

Now, conditioned on ¬BadII`(F∗), F∗ ↓ (∪`−1i=1Qmi , QF,k), and Good(F∗), the
event that F∗ ↓ (Qm` , QF,k) is equivalent to F ∗3 and F ∗4 satisfying wβ` new
and distinct equations, or F ∗3 and F ∗2 satisfying wβ` new and distinct equations.
They are new due to ¬(C-1) and ¬(B-3), and they are distinct due to ¬(C-2) and
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¬(B-3). The probability that F ∗3 and F ∗4 (or F ∗3 and F ∗2 ) satisfy these equations
is 1/Nwβ` . Therefore,

PrF∗
[
F∗ ↓ (Qm` , QF,k) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
≥ PrF∗

[
F∗ ↓ (Qm` , QF,k) ∧ ¬BadII`(F∗) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
=
(
1− PrF∗

[
BadII`(F

∗) | F∗ ↓ (∪`−1i=1Qmi , QF,k) ∧ Good(F∗)
])

· PrF∗
[
F∗ ↓(Qm` , QF,k) | ¬BadII`(F∗) ∧ F∗ ↓(∪`−1i=1Qmi , QF,k) ∧ Good(F∗)

]
≥
(

1− 4β`w(qF + wqC/2) + β2
`w

2

8N

)
· 1

Nwβ`
. (26)

From Eq. (26) and using
∑α
`=1 β` = qC , we obtain the Lemma 7.

D MDS Candidates in FN

An important question is whether such a strong T in Definition 1 exists at all.
Note that if a strong T in Definition 1 exists, then T in Definition 2 naturally
exists. Therefore, we give candidates in FN , where N is either a power of 2 or a
prime number.

D.1 MDS in Binary Field

Using the primitive polynomial x8 +x4 +x3 +x2 + 1, two candidates for N = 28

and w = 8, 16, respectively, are as follows. We employ Vandermonde matrices [25]
to generate these MDS matrices.

0x87 0xB3 0x1D 0xC7 0x27 0x12 0x5A 0x83
0x86 0x3C 0xE6 0x3E 0x0D 0xBA 0xE9 0x3D
0x5D 0xF4 0x4A 0x1C 0x0C 0x3B 0x79 0xB0
0x51 0xB1 0xA6 0xA5 0x34 0x6A 0xA7 0x1B
0x63 0x66 0xBC 0x83 0x02 0xC9 0x63 0x93
0x61 0xB5 0xB6 0x97 0xEE 0x67 0x09 0x74
0x62 0x9E 0x42 0xC4 0x50 0x35 0xDA 0xC4
0xA5 0x65 0xFB 0x90 0xFC 0x8E 0xC9 0x11

 ,



0x52 0xE7 0xAE 0x82 0x5E 0x47 0x66 0x1C 0x7C 0x35 0x68 0xBE 0x96 0x13 0xD1 0x30
0xFB 0xA2 0x7B 0xAB 0x2E 0x8E 0x5A 0xF9 0x8C 0x07 0xE2 0xC3 0x82 0xc8 0x89 0xE2
0xD4 0xFA 0xEC 0x33 0x7E 0xE6 0x04 0xBC 0x2D 0x43 0x2B 0x7E 0xAB 0xDF 0x58 0xC7
0xC4 0xBF 0xAF 0x1A 0x7A 0xDF 0xBD 0xFE 0x67 0x5F 0xDB 0x3E 0x52 0xA7 0xDA 0xE6
0xC1 0x18 0xDE 0x5C 0x1B 0x26 0x3D 0xC8 0x10 0x4D 0xC4 0xD0 0x0D 0x62 0x91 0x25
0x81 0xD8 0x77 0x92 0x12 0x6A 0x92 0x3A 0x8B 0xCF 0xAD 0x43 0xC4 0xFD 0x44 0xBA
0xDF 0x67 0x52 0xE2 0xCB 0xCC 0x8E 0xEC 0x1E 0xEF 0x71 0xDC 0xD7 0xD1 0x95 0xA3
0xE4 0x3C 0x88 0xE7 0xD2 0x41 0x01 0x20 0x3E 0x56 0x11 0x9B 0x09 0xFD 0xD2 0xC0
0xF7 0x33 0x8F 0x55 0x79 0x65 0x27 0x29 0x48 0x39 0x96 0xB9 0xF6 0xBF 0xA5 0xBF
0xAB 0xEF 0xA0 0x9C 0xA7 0x6A 0xF0 0x44 0x57 0x63 0xAF 0x0F 0x79 0x6A 0xBA 0x3D
0x66 0x52 0x58 0xB5 0x17 0x1B 0x58 0xBE 0x9C 0xBA 0x77 0xD6 0x30 0xEA 0xA1 0xCE
0xC6 0x9D 0x9C 0xD2 0x89 0x02 0x5F 0x25 0x90 0x25 0x34 0x21 0xD1 0xE9 0x2F 0x52
0xE9 0x37 0xB1 0xF3 0x88 0x0F 0x5F 0xE7 0xCA 0x0D 0xF9 0x52 0x9F 0x80 0xF5 0x24
0x13 0xB4 0xF3 0x71 0x0A 0x7C 0x13 0xCC 0xC2 0x04 0x43 0xD3 0xC0 0xAC 0x9B 0x2C
0xBE 0x01 0x7B 0x40 0x54 0x49 0x73 0xD9 0x2E 0x47 0xA5 0x55 0x3B 0x55 0xF7 0x32
0x5F 0xA6 0x19 0x03 0x4D 0x3F 0x9E 0xE8 0x9D 0x54 0xC0 0xB6 0x62 0x5C 0xE8 0x8F


.

Using the primitive polynomial x11 + x2 + 1 a candidate for N = 211 and w = 8
is as follows: 

0x078 0x166 0x14D 0x019 0x1C8 0x098 0x187 0x09C
0x257 0x436 0x7F9 0x644 0x0F9 0x370 0x634 0x260
0x777 0x721 0x309 0x609 0x158 0x59B 0x353 0x2C7
0x5FC 0x6D8 0x63A 0x21A 0x78B 0x483 0x252 0x65F
0x74C 0x4B3 0x068 0x1B5 0x103 0x273 0x263 0x330
0x568 0x45F 0x401 0x5EE 0x25B 0x541 0x2D4 0x517
0x60C 0x53B 0x7EB 0x30F 0x0B8 0x52D 0x35C 0x11B
0x67C 0x77C 0x388 0x749 0x216 0x742 0x52B 0x5BF

 .

We have also found plenty of candidates for other parameters, which are
however omitted for the sake of space.
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D.2 MDS in Prime Field

Rescue [3] is a symmetric cryptographic algorithm in the prime field. [3] offers
to use m× 2m Vandermonde matrices using powers of an FN primitive element.
This matrix is then echelon reduced after which the m ×m identity matrix is
removed and the MDS matrix is obtained.

The field is FN where N = 261 + 20 · 232 + 1 and the state consists of w = 12
elements. We get an MDS matrix T 12×12 that satisfies Definition 1. Because the
matrix is large, we give four submatrices of T 12×12 for convenience.

Remark 1. Our results also apply to some finite commutative rings if these rings
exist MDS matrix. We assume that R is a finite commutative ring with identity
and U(R) be the set of unit elements in R. We note that a square matrix M
over R is an MDS matrix if and only if the determinant of every submatrix of
M is an element of U(R).
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