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Abstract. Emails have improved our workplace efficiency and communication. However, they are often

processed unencrypted by mail servers, leaving them open to data breaches on a single service provider.

Public-key based solutions for end-to-end secured email, such as Pretty Good Privacy (PGP) and

Secure/Multipurpose Internet Mail Extensions (S/MIME), are available but are not widely adopted due

to usability obstacles and also hinder processing of encrypted emails.

We propose PrivMail, a novel approach to secure emails using secret sharing methods. Our framework

utilizes Secure Multi-Party Computation techniques to relay emails through multiple service providers,

thereby preventing any of them from accessing the content in plaintext. Additionally, PrivMail supports

private server-side email processing similar to IMAP SEARCH, and eliminates the need for cryptographic

certificates, resulting in better usability than public-key based solutions. An important aspect of our

framework is its capability to enable third-party searches on user emails while maintaining the privacy

of both the email and the query used to conduct the search.

We integrate PrivMail into the current email infrastructure and provide a Thunderbird plugin3 to

enhance user-friendliness. To evaluate our solution, we benchmarked transfer and search operations

using the Enron Email Dataset and demonstrate that PrivMail is an effective solution for enhancing

email security.

Keywords: Email, secret sharing, outsourcing, private keyword search, secure two-party computation,

private information retrieval

∗Please cite the proceedings version of this paper published at ESORICS’23 [26].
3https://encrypto.de/code/PrivMail

https://orcid.org/0000-0002-3189-8066
https://orcid.org/0000-0002-6667-3641
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0002-5164-7758
https://encrypto.de/code/PrivMail


Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work & Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 End-to-End Encryption (E2EE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Searchable Symmetric Encryption (SSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Secure Multi-Party Computation (MPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Secure Pattern Matching (SPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Private Set Intersection (PSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Private Information Retrieval (PIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 PrivMail Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Integration with the Existing Email Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Sharing Optimization using Pseudo Random Function (PRF) Keys . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Security Guarantees of PrivMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Private Queries using MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Private Search FSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Instantiating FSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 Query Chaining / Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Private Fetch FFetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Implementation and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Email Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Email Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Communication Phase in PrivMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B Private Queries using MPC (§5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.1 Length-Hiding Keyword Search (§5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.2 Multi-Word Search for Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.3 Index Table Updates (§5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



1 Introduction

Despite the widespread use of social media, text messages, and online messaging services such as WhatsApp,
Signal, and Telegram, electronic mail (email) is still a popular method of communication, and it has a growing
user base. In 2020, there were roughly 4 billion users of email; by 2024, it is predicted that there would be
nearly 4.5 billion users, with an annual growth rate of 3% [53, 50]. The majority of email users are corporate
companies and small businesses. For instance, 81% of small businesses rely on email as their primary customer
acquisition channel, and 80% for retention [42].

As the use of emails has grown in popularity, it has also caught the attention of attackers who endanger
security and privacy. One significant issue is related to data breaches, in which email servers are frequently
targeted [124, 96]. Attackers may publicly release the breached data or attempt to profit by selling or
negotiating with the email service provider [92, 45]. For example, the ‘Collection #1’ breach revealed 2.7
billion identification records with 773 million emails and made the data available for sale online [114]. Data
breaches also threaten the economy significantly, with the average cost of a breach increasing by 15% from 2020
to 4.45 million USD in 2023 [61]. Another concern is the privacy of email content from the Service Provider (SP).
Often, emails are processed without encryption by mail servers or are encrypted by the SP, requiring users
to trust them completely. However, with the growing concern for individual privacy and the implementation
of privacy laws like the EU General Data Protection Regulation (GDPR) and California Consumer Privacy
Act (CCPA) [112], many users are hesitate to use email for communicating sensitive information.

The aforementioned concerns led to the emergence of service providers such as ProtonMail [115] and
Tutanota [119], who developed solutions for private emails using E2EE techniques. These techniques addressed
privacy issues regarding the SP, while also allowing the users to perform search on emails. However, they
pose other limitations, for example, only the user can perform the search [81, 118]. Furthermore, solutions
such as E2EE, which keep the email content hidden from the SP, may not be enough in some situations
and require other options. To better illustrate these concerns, we will use a company’s email system as an
example and provide more information below.

Example Use Case — Company Email System Consider PrivCorp, a company that wants to establish
an email infrastructure for its employees while upholding individual data privacy. PrivCorp is concerned
about the potential impact of data breaches, which have recently hit a number of enterprises. Furthermore,
unlike some companies that monitor employee emails with or without their consent based on legal jurisdiction,
PrivCorp is committed to implementing email monitoring in a privacy-preserving manner. In summary,
PrivCorp’s email infrastructure development goals include:

1. Privacy from SP: The email content4 should be hidden from the Service Provider (SP). To achieve the
desired goal, the company is willing to use multiple SPs, if needed.

2. Data breach protection: The email should remain private even if all but one of the SPs are compromised.
3. Spam filtering: The company should be able to analyse external emails and perform spam filtering in a

privacy-preserving manner to respect the privacy of the email content.
4. Unintended data leakage prevention: The company should be able to monitor emails from its employees to

the outside world in a privacy-preserving manner for accidental data leaks or other content that violates
company policies such as defamation against the company, character assaults, and abusive content.

To address goals (1) and (2) above, a simple approach is to use E2EE methods, like PGP [6] and
S/MIME [108], in which emails are encrypted and signed by the sender using public-key cryptography and
decrypted and verified by the receiver. However, the strong privacy guarantees of E2EE make achieving goals
(3) and (4) extremely difficult, as both require some sort of processing over the encrypted email content by
an external entity.

Even when only goals (1) and (2) are considered, many of the current E2EE implementations suffer from
usability issues [107, 105]. For instance, a usability study by Reuter et al. [102] showed that approximately

4Mostly the subject and content fields but not other meta data.
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60% of the participants have never even heard of PGP and 64% never of S/MIME. In addition, some email
clients do not even support S/MIME, making adoption difficult. Furthermore, these methods have been found
to be vulnerable to practical attacks [110]. These attacks exploit outdated cryptographic primitives and force
email clients to use a back-channel to extract the plaintext of encrypted emails [99] (see §2.1 for more details).

In terms of goals (3) and (4), the company wants to perform some sort of processing, such as a keyword
search, on the email content in a private manner. While SSE [113] appears to be a promising choice for
this task, it is less suited to our usecase for two main reasons. Firstly, the use of SSE would necessitate key
establishment and management by the email sender and receiver, and the search could only be performed by
these two parties. Secondly, practical SSE methods have limitations in terms of information leakage, which
can compromise the privacy of the encrypted data [69, 91, 54]. Email services such as ProtonMail [115] and
Tutanota [119] have developed mechanisms to permit the receiver to search over encrypted emails, similar to
SSE systems [81, 118]. Even so, these approaches are not applicable to our scenario because they do not offer
search by an external agent.

To achieve the aforementioned four goals simultaneously and efficiently, we combine MPC [52, 16] and
PIR [31, 38] techniques. Figure 1 depicts an overview of our approach utilizing two MPC servers, which can
easily be extended to a larger number of servers.

Fig. 1: Illustration of PrivMail as a secure gateway within a company’s system to effectively monitor external
spam emails and prevent the unintentional transmission of sensitive data from internal systems to external
sources. In the event that spam or leakage is detected, the gateway stops email transmission to the destination.

Overview of Our Solution At a high level, the idea behind PrivMail is to use multiple email Service
Providers (SPs) and secret sharing techniques to ensure that no individual SP sees the email content in the
clear. Our idea was inspired by the observation that most people already have multiple email accounts for
varied purposes such as personal and professional correspondence, with the average user having 1.75 email
accounts [53, 121]. Figure 1 illustrates how PrivMail can be used to establish an email infrastructure that
meets the goals of PrivCorp. For simplicity, we assume that two non-colluding MPC servers serve as email
service providers. Such a distributed system has proven practical in several real-world deployments, including
the widely-used private aggregate statistics service by Mozilla Firefox Telemetry [18], Brave [35] and ISRG.5

In our approach, rather than encrypting emails with cryptographic keys, we secret share them (both
subject and content) between multiple service providers using MPC techniques. For example, if PrivCorp

5https://divviup.org
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uses two SPs, say gmail.com and outlook.com, then each employee with id empid is assigned two email
addresses, e.g., empid@gmail.com and empid@outlook.com. The sender splits the email content into two
secret shares, each of which is sent as a regular email to one of the two email addresses, and the employee
can reconstruct the shares locally to retrieve the content. We provide additional optimizations to ensure
that the total communication is nearly equivalent to that of sending a single unencrypted email. With
this approach, the users are only required to exchange email addresses except some simple splitting and
reconstruction operations (cf. §4). In contrast to exchanging cryptographic keys or certificates needed with
PGP and S/MIME [53, 121], such email addresses can be easily shared by the users (e.g., by writing on
business cards or websites).

Regarding PrivCorp’s goals, data privacy from SP is achieved because each SP sees only a secret share of
the email, leaking no information about the actual content. Moreover, an attacker must compromise both
servers in order to gain any meaningful information, making it resistant to data breaches. Service providers
can perform privacy-preserving MPC computations on secret shared emails to accomplish goals (3) and
(4), such as utilizing MPC for privacy-preserving implementation of machine learning-based spam filtering
systems [93, 56, 88]. However, we cannot assure privacy if a government agency compels access to all servers.
In this situation, the most effective approach is to choose servers located in various jurisdictions, ensuring
that at least one server remains uncompromised.

Our Contributions In this paper, we propose PrivMail, a privacy-preserving system for emails. PrivMail
provides a secure way to transfer and store emails without requiring to use keys or certificates. Our main idea
is to secret share emails between multiple (non-colluding) mail servers (e.g., Gmail, Outlook, etc.), thereby
keeping the data on each server private. Our approach has the advantage that privately sending and receiving
emails can directly run on the existing email infrastructure without server-side modifications. PrivMail offers
resilience against data breaches since the attacker must breach all of the email service providers involved in
order to obtain any useful information. Furthermore, it reduces the usability issues that have been observed
for schemes such as PGP and S/MIME [53, 121].

A key feature of PrivMail is its support for privacy-preserving server-side processing on secret shared
emails. We propose privacy-preserving drop-in replacements for the standard Internet Message Access
Protocol (IMAP) SEARCH and FETCH commands, allowing a search agent to securely and efficiently search
for keyword(s) over secret shared emails and retrieve the results. Our scheme combines techniques from
Secure Multi-Party Computation (MPC) and Private Information Retrieval (PIR) while avoiding leakages
and the key management required by schemes like Searchable Symmetric Encryption (SSE) [69, 91, 54].

We provide a Proof-of-Concept (PoC) proxy service, which implements our system seamlessly in any
arbitrary email client. On top of this, we provide a PoC Thunderbird6 plugin, which makes a seamless
user experience possible, since our framework is activated via a single button and could be even made as
the default setting. We want to emphasize that our PoC software are simple and possible to code without
using any advanced cryptography (only PRFs), which decreases the likelihood of serious security flaws being
introduced during the development. We also simulate Simple Mail Transfer Protocol (SMTP) servers and
run extensive benchmarks on private keyword search over the Enron Email Dataset [74]. We are able to
demonstrate practical performance, which can encourage real-world email service providers to incorporate
PrivMail’s private search functionalities into their existing feature set.

The contributions in this paper are summarised as follows:

1. We propose PrivMail, a privacy-preserving framework for emails that enhances usability and data breach
resilience without needing keys or certificates.

2. PrivMail offers privacy-preserving server-side processing on secret shared emails, facilitating private
searches and retrieval while avoiding key management issues and leakages. We also propose multiple
efficient keyword search techniques, utilizing specific properties of email text and language.

3. We published an open-source prototype implementation of PrivMail7 and demonstrated its practicality
via benchmarks on private keyword searches on the Enron Email Dataset [74].

6https://www.thunderbird.net
7https://encrypto.de/code/PrivMail
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2 Related Work & Background Information

In this section, we discuss several works that are closely related to our work. We focus on the following
topics: End-to-End Encryption (§2.1),Searchable Symmetric Encryption (§2.2), Secure Multi-Party Com-
putation (§2.3), Secure Pattern Matching (§2.4), Private Set Intersection (§2.5), and Private Information
Retrieval (§2.6).

2.1 End-to-End Encryption (E2EE)

End-to-End Encryption (E2EE) allows users to send emails privately by encrypting the mail at the sender’s
end s.t. only the receiver with the corresponding decryption key can decrypt the mail. This technique prevents
any third party from reading an intercepted mail including the email service provider. There are several
solutions for sending E2EE mails. Using End-to-End (E2E) encryption schemes such as S/MIME [108] and
PGP [6] is a simple way to achieve private email transfer. Moreover, there has been an explosion in E2EE
solutions, where more and more email services, for instance ProtonMail [115] and recently Gmail [43], are
providing support for E2EE email transfers.

However, since Whitten and Tygar’s seminal “Why Johnny Can’t Encrypt” paper [123], there has been
a long-standing debate about the usability of the schemes like S/MIME and PGP, owing primarily to the
requirement for a more complex initial configuration [123, 107]. While works like [7, 9, 106] were curious
about the role of key exchange, trust, and transparency in PGP usability, [102] used online surveys and user
testing to find out. According to these surveys, a large number of users do not use these solutions due to the
requirement of tricky configurations. Concerns have also been raised about the impact of E2E encryption on
the ability to monitor citizen communications for national security threats, prompting several countries to
prohibit applications that use end-to-end encryption [39]. These concerns stem from the fact that server-side
searches on E2E encrypted mails can not be performed easily. Furthermore, in cases where one of the users
(the sender or the receiver) is not using the same E2EE solution or none at all, then the mails can no longer
be encrypted. The E2EE solution proposed by Gmail [43] does not encrypt the mail in case the receiver does
not have the same system setup. Even though ProtonMail [115] provides support for encrypting incoming
mails from non-encrypting senders, it does not have solution for sending to a receiver without E2EE setup.
Tutanota [119], on the other hand, provides a solution for this issue where the receiver is taken to the Tutanota
website to enter a password which then opens the mail in clear. Although this feature is now enabled with
some services, it is still not widespread and the existing solutions are cumbersome for the receiver.

2.2 Searchable Symmetric Encryption (SSE)

Another method for implementing server-side mail processing is to use SSE, which allows searches on encrypted
data. The first SSE scheme was presented for the problem of secure searches on mail servers [113]. Since then,
the field of SSE has been extensively researched, with notable works including [70, 25, 49]. Practical SSE
frequently leaks information about the search query, which can be exploited to reveal information about the
encrypted data. Two main sources of leakage in these schemes are access patterns and search patterns. Even
though later works hide the access pattern, it was shown that it is not sufficient to prevent the attacks [91].
Several attacks on such SSE systems have been devised on these pattern leakages [66, 24, 127, 69, 17, 91].
Although recent schemes, such as TWINSSE [8], are shown to be resistant to some of the attacks [24, 130],
they still leak certain search patterns, which may in the future be susceptible to new attacks. A recent work
by Gui et al. [54] gives even more insight on how difficult it is to build secure and efficient SSE schemes in
practice underlining the fundamental problems related to SSE. Besides, schemes based on Oblivious RAM
(ORAM) [46] that completely hide the search pattern typically incur very high communication cost making
them unusable for practical purposes. Furthermore, the use of SSE would still necessitate key setup and
management by the parties. As a result, we avoid employing SSE algorithms for keyword searches in our work.
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2.3 Secure Multi-Party Computation (MPC)

MPC [52, 16] allows N parties to jointly compute a public function f(x1, . . . , xN ) on their private in-
puts x1, . . . , xN while maintaining input privacy. MPC protocols are classified as either high-throughput [52,
34, 72] or low-latency [126, 12]. The low-latency protocols are built with Garbled Circuits (GCs) and produce
constant-round solutions [76, 129, 14, 104]. For high-throughput protocols, Secret Sharing (SS)-based solutions
have been used, but they require a number of communication rounds linear in the multiplicative depth
of the circuit [4, 3, 85, 29, 22, 30, 94]. To achieve practical efficiency, several MPC protocols resort to
the preprocessing model, where the input-independent computations (function-independent in general) are
performed beforehand to facilitate a fast input-dependent online phase [11, 21, 15, 77, 78].

2.4 Secure Pattern Matching (SPM)

SPM [117, 57, 128, 122] entails a server with text x ∈ Σn (over some alphabet Σ) and a receiver with
pattern p ∈ Σm with m ≤ n. Without revealing additional information, the receiver learns where the pattern
occurs as a substring of the server’s text. SPM is a highly researched field with applications in various areas
such as database search [47, 28], network security [87], and DNA analysis [90]. Circuit-based approaches for
pattern matching techniques have been proposed in [67, 71]. These circuits are designed primarily for genomic
computing and DNA matching, thus they aren’t directly applicable in our context of keyword search (cf. §5.2).
Later works such as [10, 58, 128] presented techniques based on homomorphic encryption. However, in these
works, one of the parties involved owns the keyword while another (or a group of parties) owns the database,
so they are not directly applicable to our case. As shown in §5.2, we create custom circuits for our use cases
in PrivMail.

2.5 Private Set Intersection (PSI)

PSI [82, 60, 59, 64, 98, 86] allows users to compute the intersection of their private sets without revealing any
information about the other elements in the set. PSI is used for various applications like contact discovery [68],
Google’s join and compute [64] for gaining aggregated insight about other party’s data, and many more. PSI
can also be used to compute keyword searches in email databases. This can be achieved by computing the
intersection between the set of words in the mail and the set of search keywords. If the intersection is empty,
there were no matches. Otherwise at least one match was found. However, this technique does not possess
the flexibility that our search techniques, especially the circuit-based technique (§5.2), offer. For example,
partial matches will no longer be possible when using PSI, and composing multiple queries together would
incur higher cost in PSI. Therefore, we refrain from using PSI for our search instantiations.

2.6 Private Information Retrieval (PIR)

PIR [31, 37, 83, 38] allows a client to privately query a database D without the server hosting the database D
learning which entry was searched. The trivial solution of sending the whole D to the client requires too
much communication, so PIR asks for communication complexity sub-linear in the size of the database. The
first PIR scheme was introduced in [31] in an information theoretic setting by considering multiple servers.
Currently, PIR is available in two deployment models: multi-server and single-server. In multi-server PIR [31,
13, 51, 89, 37, 38], the database D is replicated over two or more non-colluding servers, and the client sends a
query to each server and then combines all replies. In [79], single server PIR was introduced, eliminating
the need for replicating the database among multiple servers. Single-server PIR [23, 27, 48, 83] protocols
require substantially more computation than multi-server PIR as they must rely on cryptographic hardness
assumptions. However, they avoid assuming non-colluding servers. We require PIR in PrivMail to enable
search agents to securely retrieve the required emails, without which an attacker can mount statistical analysis,
resulting in information leakage [69]. We do, however, modify the standard 2-server PIR with replicated
database to accommodate secret shared databases (cf. §5.4).

7



3 Preliminaries

The generic design of PrivMail allows to seamlessly use any MPC protocol for secure computation. However,
in this work, we focus on the well-explored setting with two servers (n = 2), and the scheme is explained
using this setting in the majority of the sections. Our system is comprised of four entities: the sender (S) and
receiver (R) of an email, a collection of MPC servers, and a search agent (A).

Threat Model All entities in PrivMail are considered to be semi-honest. The two MPC servers are assumed
to be non-colluding. This is justifiable given that the MPC servers in our case are well-established email
service providers such as Gmail and Outlook. Because their reputation is at stake, these service providers have
strong incentives to follow the protocol and not conspire with other service providers to leak their information.
They could even operate in different countries with different legislations. Such setup of non-colluding servers
have already been deployed in the real-world for services such as Firefox telemetry [18], privacy-preserving
machine learning [63], cryptocurrency wallets [111, 44], and COVID-19 exposure notification analytics [2].
The search agent A will be either the email sender or receiver, or a pre-consented third party (for instance, in
the use-case mentioned in §1, the company PrivCorp’s email filtering service) and is expected to semi-honestly
follow the protocol specifications.

Notations We use the following logical gates: XOR (⊕), AND (∧), OR (∨), and NOT (¬). Since XOR and
NOT gates can be evaluated locally in SS-based MPC, an OR gate can be realised at the cost (communication)

of an AND gate as a ∨ b = ¬(¬a ∧ ¬b). Given a set of m bits b1, . . . , bm,
m∧
i=1

bi = b1 ∧ b2 ∧ · · · ∧ bm

represents the cumulative AND and the other logic operators follow similarly. When performing boolean
operations with a single bit b and a binary string v ∈ {0, 1}ℓ, we assume that the same bit b is used to
perform the operation with each bit in the string v.

The values in PrivMail are secret shared between the two MPC servers via boolean sharing [52]: For a
secret x, the i-th server, for i ∈ {1, 2}, holds the randomly chosen share ⟨x⟩i such that x = ⟨x⟩1 ⊕ ⟨x⟩2. We
sometimes abbreviate the notation and use xi instead of ⟨x⟩i for the sake of brevity.

Existing Email Architecture In a standard email communication as depicted in Figure 2, the sender S
sends a message to the receiver R via a Mail User Agent (MUA) such as Thunderbird as follows. First, the
MUA converts the message to email format and sends it to a Mail Transfer Agent (MTA). Upon receiving
the email, the MTA transmits it to the receiver’s Mail Delivery Agent (MDA) via the Simple Mail Transfer
Protocol (SMTP). Note that a single email can pass through multiple MTAs before arriving at its final
destination. Finally, the MDA delivers the mail to R’s mailbox. We leave out low-level details such as domain
validation and refer to [73] for specifics.

Mail User
Agent (MUA)

Mail User
Agent (MUA)

  Mail Transfer  
  Agent (MTA) 

SMTP Servers

                Mail Delivery 
                Agent (MDA) 

Fig. 2: Overview of existing email architecture.
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On the receiver’s side, R uses the Internet Message Access Protocol (IMAP) [33]8 to retrieve the email
from the receiving server. In more detail, the two functionalities IMAP SEARCH [33, §6.4.4] and FETCH [33,
§6.4.5] are used to accomplish this. SEARCH provides a comprehensive search interface similar to the
Structured Query Language (SQL), where the search criteria can be single or combinations of multiple
keywords, and the response contains a list of message sequence numbers corresponding to those messages
that match the search criteria. FETCH retrieves all the emails from the mail server corresponding to the
list returned by the SEARCH functionality. Therefore, opening a mailbox can be viewed as an invocation of
SEARCH with criteria set to ALL, followed by a FETCH using the list returned by SEARCH.

4 PrivMail Architecture

In this section, we specify the architecture of our PrivMail framework. To keep things simple, we start with
the assumption that all the senders and receivers are using PrivMail for email communication. In §4.1, we
will demonstrate how to integrate our framework into the existing email infrastructure. Figure 3 depicts the
email communication in PrivMail, which operates on n different email providers. In concrete terms, each
mail provider owns an email path that connects the sender’s Mail Transfer Agent (MTA) to the receiver’s
Mail Delivery Agent (MDA). This means that every PrivMail user will be registered with each of the n
email providers.

Mail User
Agent (MUA)

Mail User
Agent (MUA)

PrivMail
Servers

PMS1

PMS2

PMSn

PMS1

PMS2

PMSn

MTAs MDAs

1 Sender submits the email. 2 Email (Subject and Body) is split into n shares. 3 Each share is
communicated via a different email provider. 4 The email shares are combined at the receiver’s end.
5 Receiver obtains the intended email.

Fig. 3: PrivMail: Communication Phase.

At a high level, the sender S splits the original email (Subject, Body) into n shares and sends them
to the receiver R via the n SPs, denoted by PrivMail Servers (PMS). The SPs are not required to perform
any additional work to support our email transfer because the email shares are simply treated as regular
emails, thus standard SMTP servers are sufficient for this. The email is retrieved by the receiver R by locally
reconstructing the shares received from the SPs. Unlike an end-to-end encrypted email system (like PGP or
S/MIME), this approach does not require either the sender or the receiver to handle any cryptographic keys
or certificates. This also eliminates the challenges associated with implementing PGP or S/MIME in practice,
where the users have to setup, manage and exchange keys and certificates [108, 107, 105]. PrivMail guarantees
confidentiality, integrity and correctness. Confidentiality and correctness of PrivMail are ensured by the
security of the underlying MPC protocols, while its integrity is assured as the MPC servers are assumed to
be semi-honest. These security properties are analysed in detail in §4.3.

8The older Post Office Protocol (POP) downloads the email from the server and optionally deletes it from the server,
but in contrast to IMAP provides no server-side search.
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Two Server Case: Now, we explain the communication phase using the most simple example, where both the
sender S and the receiver R have mail accounts with two different non-colluding mail providers. As illustrated
in Figure 4, the first step is to split the email E = (Subject,Body) into secret shares as per the underlying
MPC protocol. The secret sharing can be done either at S’s Mail User Agent (MUA) using a custom plug-in
for mail clients like Thunderbird or Outlook, or using a Sender Client Proxy (SCP) service between S’s MUA
and MTAs. In this work, we use the latter method as it is independent of the specific MUA. The email is
shared as boolean shares, i.e., E = E1 ⊕ E2 with E1 ∈R {0, 1}|E|.9 Each of the email shares are now treated as
independent emails and are sent using the sender’s respective mail accounts using the regular email procedure.
Similar to the SCP, we use a Recipient Client Script (RCS) at the receiver’s end to reconstruct the original
email from the shares. We provide more details on our implementations of SCP and RCS in §A.

MUA

MTA1 MDA1

 Sender Client
Proxy (SCP) 

 Recipient Client 
Script (RCS) MUA

MTA2 MDA2=

Fig. 4: PrivMail Communication: 2 Server Case.

4.1 Integration with the Existing Email Infrastructure

So far, we have assumed that each user sends and receives emails through a fixed set of distinct SPs. This
assumption, however, may take some time to be adopted in practice, so we will now discuss how our scheme
can be integrated with the existing email infrastructure.

The basic goal is to provide a private alternative on top of the existing email system such that the users
can choose to communicate their emails either via PrivMail or via the existing email system. Let the sender S
be registered to NS SPs and let PMSS be the set of these outgoing mail servers. Similarly, PMSR denotes the
set of incoming email servers of receiver R of size NR. Furthermore, we assume that both S and R have chosen
their respective PMS servers in such a way that not all of the servers in their respective set will collude. We
will now discuss approaches to integrate PrivMail to the existing email infrastructure, each with its own set
of trade-offs in terms of communication and privacy.

Fig. 5: Näıve Approach

The näıve approach In this method (Figure 5), the sender S splits the
email into NS · NR shares using an n-out-of-n secret sharing scheme. Each
server PMSSi on the sender’s end will receive NR shares, one for each of the
NR servers on the receiver’s end. When PMSSi receives the email shares, it
sends them to the corresponding servers at the receiver’s end, treating them
as regular mails. This setting corresponds to having a path between each
pair of PMSSi and PMSRj .

We emphasize that standard SMTP servers are able to perform all the
needed steps here without any modifications. In order to save storage, we
can let PMSSi and PMSRj perform an XOR of all the NR shares and save
only the result as its share for the mail. However, this is naturally not a
standard operation for a SMTP server, and therefore we give it here just as
an optimization idea. We also highlight that the communication and storage
costs reduce dramatically anyway when utilizing our sharing optimization using PRF keys (see §4.2), which
is compatible with standard SMTP servers.

9Later in §4.2 we describe an optimization to send a seed for a PRF instead of the whole share E1.
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Before looking deeper into the security of this approach, we define the term secure path in the context of
email servers at the sender’s and recipient’s ends.

Definition 1. A path connecting outgoing mail server PMSSi ∈ PMSS and incoming mail server PMSRj ∈
PMSR is said to be “secure” if neither PMSSi nor PMSRj colludes with the other servers in the set PMSS∪PMSR.

Here, NS,NR ≥ 2, where NS = |PMSS| and NR = |PMSR|.

Privacy: Let Nmin = min(NS,NR). Considering the entire set of servers, i.e., PMSS ∪ PMSR, the approach is
secure as long as the adversary compromises no more than Nmin-1 servers. This is due to the fact that in this
case, there will be at least one secure path (cf. Definition 1) from PMSS to PMSR, and one share out of the
NS · NR shares will be communicated via this path. Because the adversary has no knowledge of this share,
the email content’s privacy is guaranteed due to the privacy guarantee of the underlying n-out-of-n secret
sharing scheme.

We observe that it is preferable to consider security at S’s and R’s ends separately rather than combining
them, since in real-world scenarios, the servers in PMSS and PMSR may be from different legal jurisdictions.
In such cases, the number of servers at the clients side does not ensure additional security. As a result of
treating the servers separately, the scheme’s security is preserved at the S’s (or R’s) end as long as not all
servers in PMSS (or PMSR) are compromised. In such cases, even if NS < NR, an adversary may find it
difficult to corrupt the servers in PMSS when compared to NR. As a result of treating the servers separately,
the scheme’s security is preserved at the sender’s end as long as not all servers in PMSS are compromised.
Similarly, security at the receiver’s end is maintained as long as there exists at least one non-colluding server
in PMSR.

Note that the näıve approach requires a communication of NS · NR email shares. We now present an
optimized approach that reduces the communication between PMSS and PMSR to max(NS,NR) email shares.

Fig. 6: Optimized Approach

Optimized Approach In this method (Figure 6), the sender splits the
email into Nmax = max(NS,NR) shares as per the underlying MPC protocol.
Without loss of generality, consider the case where NS < NR and the other
case follows similarly. Once the email shares are generated, SCP at S’s
end will compute a mapping from the servers in PMSS to PMSR. If there
are common servers, i.e., PMSS ∩ PMSR ̸= ∅, then a mapping is formed
between the corresponding servers for each server in the intersection (e.g.,
in Figure 6, Gmail server PMSS1 is mapped to Gmail server PMSR1 ). The
remaining servers are then assigned a random mapping so that each of the
servers in PMSR receives exactly one email share. When NS ≥ NR, the
mapping is such that each server in PMSS is assigned exactly one email
share, whereas servers at the receiver’s end may receive multiple shares.

Privacy: Similar to the näıve approach, the privacy of the optimized approach
is ensured as long as there is at least one secure path between the servers at the S’s and R’s ends. As a side
note, if we are only concerned with overall privacy that allows collusion of at most Nmin-1 servers (cf. privacy
of Approach I), then this scheme can be modified to split the email content into only Nmin shares and consider
the remaining shares to be zero. This will reduce the communication from Nmax to Nmin emails.

4.2 Sharing Optimization using PRF Keys

In the two approaches mentioned in §4.1, each share is of the same size as the original mail. Therefore, the
total communication required for sending a mail of size |E| would be max(NS,NR) · |E| for the optimized
approach.

To further optimize the communication and storage, we can adopt techniques similar to those used in
multi-server PIR schemes [31, 37, 38], that also use n-out-of-n secret sharing to split the PIR query. In
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these works, the query is partitioned into several chunks. In line with this technique, we divide each mail E
into n chunks of size |E|/n each. Each chunk is then shared among the servers PMSi using boolean sharing
such that chunkj = flipj ⊕n

i=n,i̸=j rnd
j
i , where flip is a boolean share and rndji = PRG(keyi)[j], where keyi

is a 128-bit symmetric key. Server i then receives the tuple (flipi, keyi) as its share of the mail which has
size |E|/n + 128 bits. The mail can thus be reconstructed by concatenating all the chunks together, i.e.,
chunk1∥chunk2∥ · · · ∥chunkn. For the correctness of this sharing, we set the number of chunks n = max(NS,NR).
This reduces the total communication of the optimized approach to |E|+max(NS,NR) · 128 bits, which is
about the size of the original email |E|.

4.3 Security Guarantees of PrivMail

In this section, we go over the security guarantees offered by PrivMail. We consider confidentiality, integrity,
and authenticity (non-repudiation) in our analysis.

Confidentiality: PrivMail achieves confidentiality at the sender’s end as long as there is one server in PMSS

that is not colluding with the other servers in the set. The guarantee for the receiver follows similarly. When
looking at the entire set of email servers (PMSS ∪ PMSR), the email content is secure as long as there is a
secure path (cf. Definition 1) between PMSS and PMSR. We note that in cases where email providers use
external MX servers to relay emails, there may be instances where one MX server handles emails for multiple
email providers. In such cases, the security of our scheme is maintained as long as the group of compromised
MX servers does not control all of the n shares.

Integrity: The integrity of the email content is ensured because we assumed the MPC servers to be semi-honest
in PrivMail. Here we assume that the email in transit is not modifiable by an adversary. However, if considering
such an adversary then adding TLS security for the transmission of mails will ensure the integrity of the
mails. In the case of malicious servers (which we leave as future work), the underlying MPC protocol is
responsible for providing integrity, which is typically achieved using authentication tags for protocols in the
dishonest-majority setting. In the case of emails, however, an honest sender can simply append a salted (to
make two sharings of the same email appear different) SHA256 hash of the email content together with the
salt to each shared email. When the email is reconstructed, the receiver can verify that it matches both
hashes/salts. This is secure as long as one of the servers is not corrupted and the sender is honest.

Authenticity: PrivMail ensures the correctness of email transfer once the email shares are generated by the
sender (due to the correctness of the MPC protocol). However, it does not address the issue of authenticity
or non-repudiation. As our scheme is fully compliant with S/MIME and PGP, one of these can be added on
top to ensure authenticity and non-repudiation when the receiver knows the sender’s certified public key.

5 Private Queries using MPC

The main advantage of PrivMail is that private server-side processing of the mails is easily possible because
the emails are secret shared among the servers. This allows commonly used functions like keyword search
to be implemented using various MPC techniques. Furthermore, keyword searches can be utilised for other
functionalities, such as checking for data leakage in outgoing emails or detecting spam in incoming emails,
as in our PrivCorp’s use-case in Figure 1. Given the ubiquituous usage of keyword search in the existing
email infrastructure, we present multiple private keyword search techniques and discuss optimizations and
extensions. Note that the search agent A can be either of the email users, i.e., S or R, or a third party with
prior consent, e.g., a company mail service.

The discussion that follows assumes that the communication phase (cf. §4) has been completed and that
the email content has been secret shared among the PrivMail servers (PMSs). Furthermore, we consider
keyword search over the email shares among the servers at the recipient’s end (PMSR). The same method
can be used to search through the email shares of PMSS. Consider a mailbox containing p emails that are
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secret shared among n non-colluding servers. Given a keyword K, the private query phase (Figure 7) proceeds
using two sub-protocols: i) Private Search (FSearch) emulating IMAP SEARCH and ii) Private Fetch (FFetch)
emulating IMAP FETCH, which are executed in the order detailed next.

Search
Agent

PrivMail
Servers

1 Search agent submits keyword and obtains a list of email ids containing the keyword. 2 Search agent
retrieves the intended email by submitting the respective id.

Fig. 7: PrivMail: Private Query Phase.

1. The search agent A secret shares the keyword K among the n servers in accordance with the underlying
MPC protocol.

2. Upon receiving the shares of K, the servers initiate the FSearch functionality that enables A to obtain a
list of indices that corresponds to emails containing the keyword. Concretely, A obtains a p-bit vector
H⃗ ∈ {0, 1}p with H[i] = 1 if the ith email contains K and 0 otherwise. We instantiate FSearch using different
techniques in §5.2.

3. A and the n servers jointly execute FFetch to privately fetch each email from the mailbox. We efficiently
instantiate FFetch using an extension of 2-server PIR to a secret shared database (see §5.4).

To summarize, FSearch and FFetch provide a privacy-preserving drop-in replacement for the standard
Internet Message Access Protocol (IMAP) [33] functionalities SEARCH and FETCH respectively. We note
that the recent revision of IMAP in [84] has only minor modifications on the most interesting parts on the
keyword search for PrivMail, and for simplicity, we keep referring to [33] throughout this paper. We begin
with the details of the FSearch functionality.

5.1 Private Search FSearch

Recall from §4 that our basic approach secret shares the email’s subject and body fields in their original form.
One disadvantage of this strategy is that the private search becomes case-sensitive. Working over the actual
shares with MPC incurs additional computation and communication to provide a solution similar to the
standard IMAP SEARCH, which is case-insensitive. A simple way to avoid this overhead is to let the sender S
secret share a lowercase version of the email as well, which doubles the size of the email. The FSearch function
will then be performed over these shares, and the actual shares will be used to reconstruct the original email
(in FFetch). The search’s efficiency can be further improved by employing a special encoding described next.

Special Encoding We define our own special 6-bit character encoding without losing much information for
standard emails in English text that use 7-bit ASCII character encoding, similar to the SixBit ASCII code by
AIS [101]. The encoding space is sufficient for all the lowercase alphabets and numbers (0–9) along with 28
special characters.10 For this, we omit all ASCII control characters as well as a small set of special characters
that are uncommon for a keyword. We call this 6-bit encoded email a compact email from now on. As
shown later in §5.2, the bit length reduction due to this encoding also helps to improve the performance of
the FSearch protocols.

Moreover, by adding extra signal bits to each character in the compact email, we can effectively reconstruct
the original email. For instance, these signal bits can indicate whether a letter is uppercase or not, and

10We define a special padding character for later usage (cf. §5.2). Hence, the scheme can encode at most 63 characters
for the keyword search.
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for special characters, they can represent the omitted ones in the compact version. Consequently, keyword
searches would exclusively target the compact emails while disregarding the signal bits.

Computing Servers (CSs) Now that FSearch operates over shares of the compact email and these operations
are computationally intensive (as will be evident from the subsequent sections), the PMS servers can use
powerful dedicated servers for this task, especially for scalability. Henceforth, we refer to the servers for FSearch

as Computing Servers (CSs). Note that the PMS servers can be used as the CSs as well.
Figure 8 depicts the case in which each of the PMS servers hires one CS. These additional servers essentially

act as proxy for the PMS servers. This approach will not hamper the basic architecture discussed in §4
because communication with both S and R will continue to go through the PMS servers.

PMS1

PMS2

1

2

2

3 54

1

Search
Agent

Fig. 8: Private Query—Individual Computation Servers.

As shown in Figure 9, the PMS servers could also agree and hire a set of N servers to perform the
computation. The main difference between this approach and the previous one is that these outsourced N
servers will act as another instance of MPC rather than a proxy. One advantage of this approach is that
the servers can be instantiated using a more efficient MPC protocol in settings like honest majority over
three [95, 77] and four [78] servers.

PMS1

PMS2

1

2

2

54

1

3

Search
Agent

Fig. 9: Private Query—Outsourced Computation Servers.

The values secret shared among the PMS servers must be re-shared among these outsourced servers in
order for computation to be possible. However, in our case, this is simple because each of the PMS servers
can distribute its share (corresponds to the Secure Two-Party Computation (STPC) protocol in our case)
among the outsourced servers using the appropriate MPC protocol, and these shares can be locally added to
obtain re-sharing of the same secret.

FSearch for the 2-Server Case As before, we resort to a simple setting of two servers and use a Secure
Two-Party Computation (STPC) protocol for our computations, where the CSs enact the role of MPC servers
for the private query phase. The ideal functionality FSearch, depicted in Figure 10, takes the secret shares
of the keyword being searched and the emails as input and returns the shares of the p-bit binary vector H⃗.
Looking ahead, in the protocol, the shares of the keyword are generated by the search agent A and sent
to the corresponding servers (the PRF optimization from §4.2 can be used here as well for long keywords).
Furthermore, both shares of the result of FSearch are given to A, who reconstructs the result locally.
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Functionality FSearch

Consider a mailbox of p emails E1, . . . ,Ep and a s-character keyword K.

Input: CSi provides (⟨K⟩i , (⟨E1⟩i , . . . , ⟨Ep⟩i)) for i ∈ {1, 2}.
Computation: FSearch proceeds as follows:

1. Reconstruct K = ⟨K⟩1 ⊕ ⟨K⟩2 and Ej = ⟨Ej⟩1 ⊕ ⟨Ej⟩2, for j ∈ {1, . . . , p}.
2. Compute vector H⃗ ∈ {0, 1}p: H[j] = 1, if K is a substring of Ej , and 0 otherwise.

3. Sample random ⟨H⃗⟩1 ∈R {0, 1}p and set ⟨H⃗⟩2 = H⃗⊕ ⟨H⃗⟩1.

Output: FSearch sends ⟨H⃗⟩i to server CSi.

Fig. 10: Ideal Functionality for Keyword Search

Remarks When the search agent A is the email user (S or R), it may be preferable to download the entire
mailbox and perform keyword search locally over the cleartext. Though this näıve solution appears to be
much cheaper for the CSs, it may not always be an ideal solution from the perspective of the email user due
to factors such as limited (mobile) bandwidth, local storage, battery usage, or cross-device accessibility.

5.2 Instantiating FSearch

Here, we look at concrete instantiations of the FSearch functionality. First, we discuss a generic instantiation,
called Circuit-Based search, that can be applied with keywords of any length and frequency. Later, we present
two optimizations to the Circuit-Based search: i) Bucketing-Based, and ii) Indexing-Based searches, where
the Bucketing-Based search is more efficient for single word keywords, while the Indexing-Based search is
more efficient for keywords with higher frequency of appearance in the text. Each of these approaches are
discussed primarily in the context of a two-server setting, but can be generalized to multiple servers.

Circuit-Based Search Consider a text W = w1∥ · · · ∥wt of length t and a keyword K = k1∥ · · · ∥ks of
length s, with s ≤ t. Let b denote the bit-length of characters (e.g., b = 7 for ASCII characters and b = 6
for compact emails, cf. §5.1). At a high level, the strategy is as follows: beginning with the i-th character

position of W, a block of s characters denoted by W̃i is derived and compared to the keyword K. We use an
equality test functionality FEQ over ℓ-bit inputs to compare K and W̃i, defined as Fℓ

EQ(x, y) = 1 if x = y, and
0 otherwise. We use the EQ circuit of [76, 75, 109] to instantiate FEQ which is defined as follows:

EQℓ(x, y) =

ℓ∧
i=1

¬(xi ⊕ yi). (1)

The EQ protocol essentially XORs the strings x and y and checks for a zero string as the result. This is
equivalent to checking whether the result’s flipped bits are all ones and can be computed using a cumulative
AND operation.

There is a total of t− s+ 1 blocks (W̃i) with one EQ protocol executed per block. All of these executions
are independent and can be carried-out in parallel. Once the results have been evaluated, a cumulative OR of
the results can be used to find at least one matching block. To summarize, the search circuit SC is defined as

SC( K,W ) =

t− s+ 1∨
i=1

EQ sb (K, W̃i). (2)

# blocks

bit length(Keyword, Text)
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Complexity: An instance of EQ over ℓ bit inputs require a total of ℓ− 1 AND gates (cf. Eq. (1)) and has a
multiplicative depth of ⌈log2 ℓ⌉ when evaluated as a tree. The SC consists of t− s+ 1 such EQ circuits and
additionally t − s AND gates (as OR can be implemented via AND). Moreover, another ⌈log2(t− s+ 1)⌉
rounds are required to compute the final result. Hence, for ℓ = sb in our case, the SC circuit has a total
of (t+1)sb− s2b− 1 (≈ tsb, when t≫ s, b) AND gates and a depth of ⌈log2 sb⌉+ ⌈log2(t− s+ 1)⌉. Note that
the depth of the circuit can be further reduced at the expense of increased communication using multi-input
AND gates [94, 78, 40, 20].

The method described above assumes that the lengths of the text and the keyword are known to all
Computing Servers (CSs). In our case, because the subject and body of an email are the text, hiding its length
during computation is impractical for efficiency reasons. However, we can hide the length of the s-length
keyword by padding it to a fixed length, which results in the following modifications to the above approach.

Length-Hiding Keyword Search Given two ℓmax-bit values x, y, let the functionality FLEQ be defined as

F
ℓmax,ℓ
LEQ (x, y) = 1 if x[i] = y[i] for i ≤ ℓ and 0 otherwise. For a given ℓ ≤ ℓmax, FLEQ returns 1 if the first ℓ-bits

of x match with y and 0 otherwise. To hide the length ℓ = sb bits of keyword K, we use an additional ℓmax-bit
length mask11 of the form Mx = m1∥ · · · ∥mℓmax = {1}ℓ∥{0}ℓmax−ℓ. Given these values, we instantiate FLEQ

by using a length hiding equality test circuit LEQ, which is defined as

LEQℓmax(x, y,Mx) =

ℓ∧
i=1

¬((xi ⊕ yi) ∧mi). (3)

The logic of the LEQ circuit is similar to that of EQ (Eq. (1)) in that the bits of x, y are compared, but
the result for the padded bits (last ℓmax − ℓ bits) is discarded by ANDing them with the zero bits of the Mx

value. This only adds a layer of parallel AND gates to the EQ circuit.

Fig. 11: Length-Hiding Keyword Search.

To hide the keyword length s, the search circuit SC (cf. Eq. (2)) must now consider blocks (W̃i) starting
at every character position of the text W until the end of the last character. As a result, the number of LEQ
circuits in SC is t. However, this raises an issue with the blocks of W that begin after t− smax + 1 characters,
where smax denotes the length of the padded keyword. In these cases, the length of the block will be less than
the length of the keyword, making a direct comparison impossible. A simple solution would be to pad the
text W with smax − 1 characters before the protocol’s execution as shown in Figure 11. These characters can
be random and do not affect the computation’s correctness. However, by searching over fewer characters and
using the mask’s information, the number of AND gates required for these corner cases can be reduced even
further. Furthermore, the masking as mentioned above can be modified to allow wildcard keyword search as
well. The details of these approaches are provided in §B.1.

11The agent A generates the shares of the mask and sends them with the keyword shares.
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Optimizations to the Circuit-Based Search: We further optimize the Circuit-Based search using different
properties of the mail text and keywords. If the keyword contains no spaces, i.e., is a single word, it is
beneficial to “jump” over spaces in the target text to avoid unnecessary comparisons. However, checking for
spaces in the Circuit-Based Search is difficult as the entire email is treated as a single string. Including the
logic to check for spaces within the search circuit SC (cf. Eq. (2)) is costly. Therefore, for our optimizations,
each mail is considered as a collection of distinct words rather than a continuous string of characters. This
also gives us advantages when the mail contains repeated words, since now we can omit the duplicates from
the search.

Bucketing-Based Search To search on distinct words, we let the sender S secret share each word in the
email text individually rather than the entire text. This, however, would expose structural information in the
original text, which an adversary could exploit. To address this, we recognize that the order of the words is
irrelevant to the search and could be randomized. Furthermore, repeated words can simply be omitted, and
the lengths of the remaining words can be masked by padding them to some fixed length.

Padding for length obfuscation should be done with caution, as it is a trade-off between efficiency and
privacy. Padding every word to a large fixed length would yield maximum privacy. However, the efficiency may
now be even worse than that of the Circuit-Based Search. On the other hand, the padding can be removed
completely to maximize efficiency. As a compromise, we propose a bucketing technique that allows users to
tailor the trade-off between efficiency and privacy to their specific needs.

A näıve way of instantiating a search given a list of secret shared words and a keyword would be to
use a circuit-based PSI protocol [59, 97, 86] (see §2.5). However, linear complexity PSI does exact but not
sub-string matches, and thus it is not possible for the user to add padding to the words for increased privacy.
Therefore, we adopt a strategy similar to our Circuit-Based Approach (see §5.2) to search through the list of
words in the email.

The idea behind bucketing is to select buckets for different ranges of character length and do the padding
accordingly. For example, if we define a bucket for words with lengths ranging from 1 to 4 characters, each
word of that range in the bucket is padded to 4 characters. Furthermore, the search keyword must be padded
in accordance with the bucketing scheme. To facilitate substring matches, the search must be performed over
the bucket defined for the keyword length as well as the buckets for longer words. As a result, the bucketing
technique is more efficient for longer keywords as the shorter buckets can be ignored. In order to hide the
actual length of the keyword, we must use the LEQ circuit, see Eq. (3) for the equality tests. The bucketing
idea described above can be extended to multi-word search queries and is discussed in §B.2.

Indexing-Based Search All search approaches described before were primarily concerned with searching
over each email individually. Multiple emails in a mailbox, on the other hand, are likely to have many words
in common. With this observation, we further optimize the Bucketing-Based Search for single-word search
and build a search index for all emails in a mailbox. We give a description of the structure of the search index
and its operations and a detailed discussion is provided in §B.3.

Consider a mailbox containing p emails {E1, . . . ,Ep} and let d be the number of distinct words in those
emails. As shown in Table 1, each distinct word Wi forms one row of the table and is associated with a p-bit
string. The vector is referred to as occurrence bit-string and has the following format: B⃗Wi = BWi

1 ∥ · · · ∥BWi
p .

Here, BWi
j = 1 denotes the presence of word Wi in the email Ej and 0 denotes its absence.12 The index table

is then secret shared among the Computing Servers (CSs).

Remember that in the previous approaches, a bit value is returned for each email immediately following
the execution of the search circuit SC. On the other hand, in the indexing-based approach, a keyword is first
searched against all the distinct words in the table and a d-bit string u⃗ = u1∥ · · · ∥ud is generated, where d is
the number of distinct words. The final search result is nothing but a cumulative OR of all the occurrence

12The keyword can be a part of multiple distinct words in the index table as a substring.
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Table 1: Search index for emails {E1, . . . ,Ep} with d distinct words. BWi
j = 1, if Wi ∈ Ej , and 0 otherwise.

Distinct Words Occurrence Bit-String

W1 B⃗W1 = BW1
1 ∥B

W1
2 ∥ · · · ∥BW1

p

W2 B⃗W2 = BW2
1 ∥B

W2
2 ∥ · · · ∥BW2

p
...

...

Wd B⃗Wd = BWd
1 ∥B

Wd
2 ∥ · · · ∥BWd

p

bit-strings corresponding to the matched rows. Formally, the p-bit result of the search is

Search Result =

d∨
i=1

ui · B⃗Wi , (4)

where the OR operations over a bit vector are simply the operator applied to each bit position.

Given the secret shares of u⃗ among the CSs, one method for completing the above task is to involve the
search agent A. The vector u⃗ is reconstructed by A and the corresponding occurrence bit strings are obtained
securely using FFetch (as will be explained later in §5.4). The agent can then perform the OR operation locally
to obtain the final result. Another method that avoids agent intervention is to let the CSs compute the
expression in Eq. (4) using the underlying MPC protocol.

To hide the keyword length, we use the bucketing technique (cf. §5.2) on top of the indexing approach.
This basically means that each bucket has its own index table. This has advantages for longer keywords
because we can safely skip index tables for smaller buckets. Furthermore, this approach makes the search
complexity independent of the number of mails, except the final small computation of Eq. (4), making it more
efficient for large mail boxes.

The process for creating the index table is discussed in §B.3. We propose two approaches: i) client updates
and ii) server updates. The former focuses on using the receiver R’s assistance while the latter focuses on
minimizing the receiver R’s involvement.

Comparison: Each of the search techniques discussed above, i.e., Circuit-Based, Bucketing-Based and Indexing-
Based, have their own pros and cons depending on the search keyword length, number of mails in the mailbox
and the occurrence of the distinct keywords. The user or the email client can therefore decide the most
beneficial technique according to their requirements. In Table 2, we give a comparison between the different
techniques for various use-cases, highlighting the most efficient techniques for each use-case.

Table 2: Efficiency comparison of the different search techniques for different types of keywords. The most
efficient technique is marked in bold.

Circuit Bucket Index

Longer Keywords More efficient for longer key-
words than for smaller.

Significantly more efficient
as smaller buckets will be
completely skipped.

Efficient only if the keyword is
frequent in the text.

Higher Frequency
Keywords

Efficiency remains the same as
for any keyword.

Efficient if the keyword is of
longer length.

Very efficient for frequent
words in the text.

Partial Matches Very efficient as the text is
consisered as a continuous
string of characters.

Would incur higher cost to im-
plement.

Would incur higher cost to im-
plement.

Special Words Efficient, as all words are
treated with same priority.

Efficient if the word is of
medium to long length.

Not very efficient as the word
won’t be frequent in the text.
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5.3 Query Chaining / Filtering

So far, our discussions have been limited to the email’s Subject and Body fields. However, the Internet
Message Access Protocol (IMAP) SEARCH [33, §6.4.4.] provides a comprehensive interface for filtering
results using multiple keys. By default, “When multiple keys are specified, the result is the intersection (AND
function) of all the messages that match those keys” [33]. The process of combining results for multiple
keyword searches is referred to as Query Chaining in PrivMail and is discussed further below.

Case 1: Filtering non-private fields. It is simple to incorporate the standard filters provided by the IMAP
SEARCH in our framework as the SMTP servers are regular email providers.13 Consider the following
example from the IMAP [33, §6.4.4.] specification.

SEARCH FLAGGED SINCE 1-Feb-1994 NOT FROM ‘‘Smith’’

The above filter uses the email’s Flagged, Date and From fields and returns the list of all the flagged
emails sent by all people except Smith beginning on 1st February, 1994.

Note that using private keyword searches in conjunction with filters like this helps to reduce the number
of emails in the search domain, resulting in better efficiency. We note that the effect of narrowing down the
target emails is less visible in the case of index-table based search (§5.2), because the search must still traverse
the entire index. For a mailbox of p emails, the servers can safely ignore the occurrence bits corresponding to
emails outside the filtered space by using a public mask string of the form f⃗ = f1∥ · · · ∥fp. If the email Ei is
in the set of filtered emails, fi = 1, otherwise 0. Servers will then use these masked occurrence bit strings
(⃗f · B⃗Wi) to compute the Search Result in Eq. (4).

Case 2: Hiding the query for non-private fields. The preceding case assumed that queries for non-private
fields were revealed in clear to the SMTP servers. If the privacy of these queries is a concern, we can extend
the FSearch functionality (cf. §5.1) to these non-private fields as well. The search agent A proceeds by secret
sharing the query among the computing servers. Servers, on the other hand, are aware of the other input
and can treat it as a public value within the MPC computation. This approach will necessitate fewer AND
computations14 than the case with fields like Subject, Body which are only secret shared among the servers.

The approach is slightly different for the Date field, because the search queries do not always look for a
substring match, but instead perform comparison operations such as before, after, or exactly on. To accomplish
this, the equality circuit EQ (cf. Eq. (1)) is replaced with a comparison circuit (e.g., based on [109] or [94]).
Instead of directly comparing the Date field, it can be converted to an integer for greater efficiency. For e.g.,
an integer representation using Unix timestamp15 preserves the date and time with excellent accuracy.

Case 3: Chaining multiple queries. Assume that the search agent A wants to find the emails in a mailbox
of p emails that contain both the keywords security and conference in the email body. Two independent
FSearch instances are used for this, with the keywords q1 = security and q2 = conference. Remember

from Eq. (2) that this will result in the generation of two p-bit vectors, H⃗q1 and H⃗q2 . The final result is easily

obtained by performing a bitwise AND operation over these vectors denoted by H⃗q1 ∧ H⃗q2 , i.e., Hq1 [i] ∧ Hq2 [i]
for all i ∈ {1, . . . , p}. Similarly, for emails containing either of the two keywords, the same procedure could

be used, with the exception that the final result is computed as H⃗q1 ∨ H⃗q2 . Finally, when the query is for
emails containing security but not conference, the result is simply H⃗q1 ∧ ¬(H⃗q2). Note that this approach
extends easily when searching across multiple fields as well.

The approaches mentioned above can be further modified to reduce information leakage in relation to the
query. Alternatively, we can use standard Private Function Evaluation (PFE) techniques [120, 80, 1] to hide
how the sub-queries are combined which we leave for future investigation.

13Concretely, SMTP servers can first filter out the results locally and then pass this information to the CS servers, if
they are distinct (see Figure 8).

14Due to the linearity of the underlying MPC scheme
15https://www.unixtimestamp.com
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Case 4: Hiding the query structure. Here, we concentrate on completely hiding the structure of the query
chaining. The chaining is accomplished solely through the use of AND and OR functions, with NOT being
used to flip the result for some of the queries. To hide the structure, we make the chaining appear to be made
up of only AND operations and the other two operators (OR and NOT) will be obfuscated.

Consider a set of γ queries denoted by q⃗ = q1, . . . , qγ and the respective responses be H⃗q = H⃗q1 , . . . , H⃗qγ .

The NOT operations are handled with a flip-bit string denoted by flip ∈ {0, 1}γ with flip[i] = 1 indicating

that the NOT operation should be performed on result of the ith query qi, denoted as H⃗qi . Agent A generates
a secret sharing (boolean) of this vector among the CSs and they compute the result locally as H⃗q ⊕ flip.

For AND and OR operations, we associate a control bit vector α⃗ ∈ {0, 1}γ−1 generated by the agent A
(one bit per chaining operator). In this case, αi = 1 indicates that the corresponding operator should be an
OR and 0 represents AND. For two queries q1, q2 with one control bit α, the servers will now compute

chain(q1, q2) = α ⊕ ((α ⊕ H⃗q1) ∧ (α ⊕ H⃗q2)) .

Note that the above expression evaluates to H⃗q1 ∧ H⃗q2 when α = 0 and H⃗q1 ∨ H⃗q2 when α = 1. Similarly, for
three queries, chain(q1, q2, q3) is given as

α1 ⊕ ((α1 ⊕ H⃗q1) ∧ (α1 ⊕ (α2 ⊕ ((α2 ⊕ H⃗q2) ∧ (α2 ⊕ H⃗q3)))))

and Table 3 summarises the result for various choices of the control bit.

Table 3: Computing chained query results using the results of individual queries (using AND and XOR).

α1 α2 chain(q1, q2, q3)

0 0 H⃗q1 ∧ H⃗q2 ∧ H⃗q3

0 1 H⃗q1 ∧ H⃗q2 ∨ H⃗q3

1 0 H⃗q1 ∨ H⃗q2 ∧ H⃗q3

1 1 H⃗q1 ∨ H⃗q2 ∨ H⃗q3

Similar to flip, A prepares and secret shares the control bit vector α⃗ among the CSs. Combining the use
of flip and α⃗ completely hides the query chaining structure as desired. Note that this method currently does
not support the use of brackets symbol present in the IMAP SEARCH and is left for future exploration.

Case 5: Hiding full query. Let {W1, . . . ,Wf} denote a collection of f target fields on which an agent A
can perform a query. This case aims at hiding the field on which a query is made from the CSs. The basic
idea is to use FSearch to search all possible fields and then use a selection bit vector to filter out the results for
the desired field. We define a select bit-string of the form β⃗ = β1∥ · · · ∥βf , where βi = 1 if Wi is the desired

target field, and 0 otherwise. For a query q, let H⃗q
i denote the result obtained from FSearch over the field Wi

for i ∈ {1, . . . , f}. Now, the output can be calculated as

f⊕
i=1

H⃗q
i ∧ βi .

This method adds an extra round to the total. Performing a search over the Body field of the email every
time is expensive, so that field can be treated separately and avoided from the approach described above.
Also, the keyword’s length can reveal information about the actual target field. As a result, categorizing
the fields and performing the search only on the relevant category using the approach described above will
provide a better trade-off between efficiency and privacy. In our case for emails, some possible candidates for
categories include: i) flags, ii) date, and ii) address. We anticipate that these approaches will be more useful
when our techniques are extended to other domains, such as document processing.
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5.4 Private Fetch FFetch

The FFetch functionality (Figure 12), enables the search agent A to privately retrieve emails from the
Computing Servers (CSs). FFetch takes the p-bit string as input and returns the mails corresponding to the
bit positions with value 1. In theory, A can use the standard IMAP FETCH [33, §6.4.5] command to retrieve
the desired email shares from each server. As the email was originally secret shared, this method ensures the
confidentiality of the retrieved email while only revealing the email number to the servers. However, in the long
run, statistical analysis of which emails are frequently retrieved can reveal details of the search queries to the
servers, particularly the keywords used [69]. As a result, to instantiate FFetch, we adapt multi-server Private
Information Retrieval (PIR) [31, 37, 38, 55], where the database is replicated among multiple non-colluding
servers.

Functionality FFetch

Consider a mailbox of p emails E1, . . . ,Ep.

Input: Server CSi provides (⟨E1⟩i , . . . , ⟨Ep⟩i) for i ∈ {1, 2}; search agent A provides an index ind ∈ {1, . . . , p}.

Output: FFetch sends (⟨Eind⟩1 , ⟨Eind⟩2) to search agent A.

Fig. 12: Ideal Functionality for Fetching Email

At a high level, to enable multi-server PIR on a secret shared (email) database, we let each CS symmetrically
encrypt its share and send that to the other CS. Moreover, the decryption keys are known to the secret
agent A. We extend the multi-server PIR protocol RAID-PIR [37], to work on our secret shared email
database as detailed below.

Consider a database D containing p emails with the server CSi holding the share Di = {⟨D1⟩i , . . . , ⟨Dp⟩i},
where each ⟨D⟩i = (flipi∥keyi) for i ∈ {1, 2} (see §4.2). First, the client A samples two symmetric keys sk1, sk2
for a symmetric-key encryption scheme Enc() and sends key ski to server CSi. The next step, on a high
level, is that each CSi will encrypt its share (corresponding to each email) with ski and send this to the

other server. Let D̃i denote the encrypted database share of CSi. The encrypted database is now defined as
D̃ = D̃1∥D̃2. Then the client A sends the shares of the selection bit vector b⃗ to each server and the servers

compute b⃗i · D̃ and send the result to A. The client A then combines these results by XORing them and
decrypts the result using the encryption keys to obtain the queried email.

The communication between the client and the servers can be further optimised by precomputing the
results of one of the servers [55]. For this, the client A sends a seed s to a PRG to CS2. The server CS2
pre-computes its result with the random bit vector generated using this seed. Later, in the online phase, the
client computes the bit vector share b⃗1 such that b⃗ = b⃗1 ⊕ PRG(s). Then A sends b⃗1 to the server CS1 and
the server computes its result as discussed above. The combining of the results from the servers can be done
in one of two ways, 1) server CS2 sends its results to CS1, then CS1 sends the combined result to the client,
or 2) CS1 and CS2 send their results directly to the client A and A combines the two results. As the final
step, the client decrypts the combined result using its encryption keys and retrieves the queried email.

Remarks: It is specified in FFetch that the agent A provides an index ind in the range of 1 to p as the
functionality’s input. In the protocol, however, A creates a bit vector b⃗ ∈ {0, 1}p with b[ind] = 1 and all other
bits set to zero. A then secretly distributes this bit vector to the servers CS1 and CS2.

For external searches, search agent A is assumed to be semi-honest and is only supposed to fetch emails
for which the corresponding keyword search is a hit rather than a miss. A malicious agent, on the other hand,
can send a malformed bit string b⃗ as input to FFetch in order to retrieve an unintended email from the mailbox
(or some function on the unintended emails, depending on the FFetch instantiation). To prevent this type of
attack, servers can use the keyword search result as follows: remember that the output of FSearch (Figure 10)

is a p-bit vector H⃗ ∈ {0, 1}p, with H[i] = 1 indicating that the ith email contains K and 0 otherwise. The

servers can use b⃗ ∧ H⃗ instead of b⃗ as the input to FFetch. This will set all unintended positions of b⃗ to zero.

21



Now, to instantiate the symmetric key encryption scheme Enc(), we can encrypt each email individually
using a standard symmetric encryption cipher such as Advanced Encryption Standard (AES) in Counter
Mode (CTR). This, however, requires a new nonce (a.k.a. Initialization Vector (IV)) for the encryption of
each ⟨Di⟩j , i ∈ {1, . . . , p}. Since email numbers are unique, the email number i concatenated with the counter

part can be used as the counter block.16 Note that the key schedule in AES only needs to be run once,
and the encryption (and decryption) can be done in parallel. Furthermore, the approach described above
eliminates the need to communicate the nonce used in the encryption to the client A. When new emails
arrive, the servers can simply encrypt and distribute the shares corresponding to the new emails, as described
above. When the client A is an external agent other than the receiver R, the servers can still use an already
prepared encrypted database. For this, the servers simply send the corresponding symmetric keys (provided
by R) to A, and the rest of the procedure is the same as before.

6 Implementation and Benchmarks

In this section, we describe our implementation of PrivMail and evaluate the performance of reconstruction
and keyword search over secret shared emails using our approaches from §5.1.

6.1 Email Transfer

The implementation of PrivMail consists of several parts, which were discussed in §4. Our implementation of the
Sender Client Proxy (SCP) runs in a Docker container [41] and works with any Mail User Agent (MUA) that
allows the user to manually specify the outgoing SMTP server (i.e., basically any email client). Additionally,
we implemented a plugin for Thunderbird to showcase the ease of use of PrivMail (see §6.1 for more details).
We also implemented a simple Recipient Client Script (RCS) for email reconstruction at the receiver’s end
and use it for performance evaluation. We simulate the SMTP servers in our local network, where the roles
of a Mail Transfer Agent (MTA) and a Mail Delivery Agent (MDA) are combined into a single entity for
convenience. We use the YAML data-serialization language [125] to store the emails in the filesystem.

Thunderbird Plugin The PrivMail Thunderbird plugin [26] integrates PrivMail with the current email
infrastructure as described in §4.1. Our implementation demonstrates how easy it is to use PrivMail in
practice, since an email is sent securely via a single button “PrivMail Send” as seen in Figure 13.

Fig. 13: Thunderbird “Write” view with PrivMail plugin installed. The “PrivMail Send” button on the right
initiates secret sharing and securely sends the email to the receiver.

16Since the nonce is not random in our case, the nonce and counter should be concatenated (e.g., storing the nonce in
the upper 64 bits and the counter in the lower 64 bits of a 128-bit counter block) and not added or XORed.
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The sender defines at least two sender accounts17 (the “From” field) and at least two receiver addresses
(the “To” field). The software attempts to find matching servers based on the domain names to find at least
one secure path (see Definition 1) and proceeds with the optimized approach in §4.1. If the sender and receiver
use a completely different set of email providers, the software uses the näıve approach (see §4.1).

The reconstruction of the shares to the original email is enabled with a single button as well, which is
shown whenever a received email is opened. The only assumption for the reconstruction is that all the shares
are in some of the accounts of the currently open Thunderbird profile.

Reconstruction Performance The reconstruction of the shares consists of three steps: fetching of the email
shares from the (IMAP) servers, pairing, and finally combining the shares. For the Thunderbird plugin (§6.1),
the retrieval is handled as for any regular email, i.e., automatically based on the Thunderbird settings (by
default, fetches new emails periodically or when the inbox is opened). We pair the shares using the Unique
Identifier (UID) (see §A) and Thunderbird query() API [116]. More precisely, the command structure is
messenger.messages.query( ‘subject’: UID );, which is a fast lookup over the subject fields of all the
emails. After all the shares are found based on the UID, the shares are combined and the original email is
displayed on a new Thunderbird tab. For two inboxes containing 500 emails each, the pairing and combining
a single email takes under 10 milliseconds on a regular laptop using Intel Core i7–8565U.

For our Recipient Client Script (RCS), the retrieval is handled using the imaplib module [62] and after
each fetch, the email is stored in a dictionary, where the email’s UID is the key and the share is the value.
In the second step, the dictionaries are combined together. Since the dictionaries are hash maps in Python
and the keys are random looking identifiers, the lookup for each email is a constant time operation [100].
The runtime to pair and combine 500 emails from two servers takes only around 0.235 seconds, giving us
a throughput of 2,127 emails per second. The runtime of the fetching step depends on the IMAP server
capacity, geographic location, and network setup, but is likely to be dominant (throughput was only 20 emails
per second in our experiments). Thus the overhead introduced by PrivMail compared to fetching and viewing
regular emails is negligible.

6.2 Email Search

We implement the private queries described in §5 using the mixed-protocol Secure Multi-Party Computation
(MPC) framework MOTION [19]. We use the boolean GMW protocol [52, 36] between two parties for our
performance evaluation, but our implementation can also be used in the N -party setting with full threshold.
Our code is publicly available under the MIT License [26].18

Benchmark Settings for Search We tested all three approaches from §5.2 for private search (Circuit-
Based, Bucketing-Based, and Index-Based) on a real-world dataset with varying parameters, using our special
encoding from §5.1. For the Bucketing-Based approach, we chose to create four buckets, each of size 5
characters, i.e., buckets for words with (1-5, 6-10, 11-15, 16-20) characters. All words that are more than 20
characters long are ignored. We instantiate the MPC protocols with computational security parameter 128
and statistical security parameter 40.

We run experiments against subsets of the publicly available Enron Email Dataset [74], which contains
over 500,000 emails, with each email containing on average 1,607 characters and 237 words. On examining
the distribution of distinct words in this database, we conclude that the bucket size distribution for our
chosen buckets are (18.8%, 50.6%, 21.7%, 8.9%). This implies that, on average, more than half of the words
are between 6 and 10 characters long. Our benchmark subsets are drawn from Kenneth Lay’s inbox.

The benchmarks are run on two dedicated simulation machines, each with an Intel Core i9–7960X (16
physical cores @ 2.8 GHz) processor and 8× 16 GB DDR4 RAM. We simulate a Wide Area Network (WAN)

17For convenience and testing purposes, we enabled the use of only one sender account but display a warning message,
since the outgoing server can reconstruct the original email from all the shares in this case. This setting can be disabled
by changing strictSecurity value to true.

18https://encrypto.de/code/PrivMail
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setting with bandwidth limited to 100 Mbit/s, and Round-Trip Time (RTT) of 100 ms. To ensure consistency,
we iterate each simulation 5 times and compute the mean for the final result.

Search Performance We begin with the Circuit-Based Search from §5.2. This is the simplest method
of searching, but reveals the keyword length. Table 4 summarizes our benchmarks for search across four
different keyword lengths, s ∈ {3, 8, 13, 18} (corresponding to the average of our bucket sizes), on email sets
of sizes 100 and 200. We parallelize each equality test circuit (see Eq. (1)) with Single Instruction, Multiple
Data (SIMD) operations, which results in an almost linear total runtime with respect to the keyword length.
The minor difference in online runtime is caused by runtime fluctuations in our WAN simulation and can be
evened out with additional iterations. The remaining cumulative OR in Eq. (2) dominates the online runtime,
giving a nearly constant runtime.

Table 4: Evaluation of (non-length hiding) circuit-based search (§5.2). Runtime (Time) is in seconds and
communication (Comm.) between the servers in mebibytes (MiB).

Keyword
Length

s

# Emails

Phase 100 200

Time (s) Comm. (MiB) Time (s) Comm. (MiB)

3
Online 4.80 1.22 11.67 2.72
Total 12.19 63.42 33.45 145.28

8
Online 5.20 3.12 10.15 7.03
Total 20.96 174.25 48.65 399.61

13
Online 5.12 5.03 11.35 11.33
Total 25.33 284.15 60.43 652.05

18
Online 4.31 6.89 9.40 15.52
Total 32.47 393.07 73.74 902.54

While the approach is practical in the online phase, we find that the total communication overheads in
Table 4 are prohibitively high and do not scale for large settings. However, as evident from the table, the
overheads for the online phase are significantly lower than the total, and the setup phase is the bottleneck
in our case. For example, in the largest test case online communication accounts for only 1.7% of the total
communication, and online runtime accounts for 12.7% of the total runtime. We point out that this is due to
the Secure Two-Party Computation (STPC) protocol that we used in our benchmarking, and not a problem
with the approach. For example, evaluating each AND gate using the ABY [36] protocol necessitates the use
of two instances of Oblivious Transfer (OT) during the setup phase. This translates to roughly 64× more
communication in the setup than online when instantiated with the OT extension protocol of IKNP [65, 5].
This can be overcome by using recent optimizations for STPC, such as Silver [32] for OT in the setup phase
and ABY2.0 [94] for the online phases.

Analysis of Different Approaches We now compare our three search methods from §5.2 in terms of
practical performance. Since the Bucketing and Indexing-Based approaches already provide keyword length
hiding, we use the Circuit-Based search’s length hiding variant for a fair comparison. The Circuit-Based
approach thus requires an additional layer of AND gates over the keyword length non-hiding variant. We
only focus on the online phase, as we will subsequently address various methods to minimize overhead during
the setup phase. Detailed benchmarks concerning setup costs will also be discussed later in this section.

Table 5 compares the performance of our three search methods in the online phase across various keyword
lengths. Except for keyword length s = 3, we find that the Indexing-Based Approach outperforms the
other two approaches in all cases. This is justified because the search domain for both the bucketing and
Indexing-Based Approaches shrinks for long keywords due to the omission of buckets for short keywords.
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Table 5: Evaluation of online phase of keyword length-hiding search methods: circuit, bucketing and indexing.
Runtime (Time) is in seconds and communication (Comm.) between the servers in mebibytes (MiB). Best
results are in bold. The trade-offs between the methods are discussed in §5.2.

Keyword
Length
(s)

# Emails

Method 100 200

Time (s) Comm. (MiB) Time (s) Comm. (MiB)

3
Circuit 9.63 2.61 18.19 5.80
Bucketing 9.15 16.28 14.07 35.76
Indexing 3.57 6.41 6.58 11.22

8
Circuit 13.68 4.62 25.96 10.41
Bucketing 7.51 7.09 12.98 15.91
Indexing 3.19 3.73 5.22 6.97

13
Circuit 13.78 6.59 23.73 14.93
Bucketing 4.59 1.27 10.09 2.91
Indexing 2.48 0.63 4.26 1.48

18
Circuit 15.38 8.58 27.51 19.47
Bucketing 4.19 0.16 8.97 0.45
Indexing 2.68 0.06 3.96 0.25

For keyword length s = 3, we note that the use of the SIMD instruction in our implementation tends
to increase the communication overhead of bucketing and indexing-based approaches over circuit-based
approaches. In particular, while our implementation parallelizes the equality test circuits as previously
mentioned, the number of operations we can pack in an SIMD instruction for small buckets is relatively small,
undermining the effect. This is not a problem for the circuit-based search because the entire text acts as a
single long word. The reason mentioned above justifies the higher communication of the bucketing-based over
the circuit-based approach for the case of s = 8 as well.

Bucketing vs. Indexing: In Table 5, we see that the Indexing-Based Approach improves by ≈ 2× over the
Bucketing-Based Approach in terms of both runtime and communication. Furthermore, the Indexing-Based
method is expected to be more and more efficient compared to the other methods for a larger number of
emails, since it eliminates duplicate words across the entire email set. We remark that in settings where the
number of target documents is large and the document format is more regular, our indexing-based search can
be orders of magnitude more efficient than bucketing-based search.
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Fig. 14: Improvement (bucketing/indexing) in online runtime and communication for s = 13 character keyword.
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However, it is important to note that the values reported for the indexing-based approach do not include
the costs for building the search index (see §5.2). As previously stated, the cost of creating a search index is
determined by the index table updating mode (local or server-side) as well as the frequency of the updates.19

To get a clearer picture, we plot in Figure 14 the improvement of the runtime and communication in the
online phase of the indexing-based approach over the bucketing-based approach for the case of keyword length
s = 13 over 900 emails.

We can see that the bucketing-based search is twice as slow and uses twice as much communication for
200 emails. For 900 emails, the improvement factor rises to 3×. It is expected to improve more quickly as
the number of emails increases because we expect to see fewer and fewer new words in the emails, ideally
halting the index’s growth entirely. However, we cannot see this in Figure 14, owing to the fact that a set of
realistic email texts is diverse by nature, and our samples do not contain enough emails. We remark that
in settings where the number of target documents is large and the document format is more regular, our
indexing-based search can be orders of magnitude more efficient than bucketing-based search. For example, a
company’s human resources department will have documents that are mostly in predefined formats, with
personal information that varies from document to document.
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(c) Indexing-based (§5.2)

Fig. 15: Online runtimes for different search approaches over keyword lengths s ∈ {3, 8, 13, 18}.

In Figure 15, we plot the online runtimes for the three search approaches across different keyword lengths.
All of the runtimes increase roughly linearly, as expected. In general, we can conclude that the runtime of the
circuit-based search quickly exceeds practical limits for large keywords. When the keyword is long, bucketing
and indexing-based search produces more practical and efficient results. This is due to the bucketing scheme
used, which can be customized for various applications.

19Prior to the start of the computation, we used a Python script to create the search index from the emails. This is
similar to the local updates method of building a search index (see §B.3).
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Benchmarks in Detail We provide a comprehensive set of benchmarks in Table 6.

Table 6: Runtime (in seconds) and communication between the servers (Comm. in MiB) for different search
approaches over keywords of various length s. The overheads are divided into setup and online phases.

Circuit-based search (non length-hiding) (§5.2)

Number of Emails

Keyword
Length

s

100 200 300

Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB)

Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online

3 7.39 4.80 62.20 1.22 21.78 11.67 142.57 2.72 31.05 17.13 215.19 4.10
8 15.76 5.20 171.13 3.12 38.50 10.15 392.58 7.03 54.24 15.68 592.62 10.60
13 20.21 5.12 279.12 5.03 49.08 11.35 640.73 11.33 75.53 15.20 967.27 17.08
18 28.16 4.31 386.19 6.89 64.34 9.40 887.02 15.52 94.02 14.73 1,339.16 23.39

Circuit-based search (length-hiding) (§5.2)

Number of Emails

Keyword
Length

s

100 200 300

Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB)

Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online

3 14.44 9.63 128.21 2.61 36.80 18.19 293.87 5.80 51.95 21.11 443.60 8.74
8 24.56 13.68 255.27 4.62 51.59 25.96 585.52 10.41 77.12 24.95 883.89 15.70
13 36.37 13.78 381.25 6.59 77.27 23.73 874.99 14.93 108.42 32.59 1,320.92 22.52
18 43.22 15.38 506.14 8.58 95.18 27.51 1,162.29 19.47 145.36 44.04 1,754.73 29.37

Bucketing-based search (§5.2)

Number of Emails

Keyword
Length

s

100 200 300

Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB)

Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online

3 9.95 9.15 90.72 16.28 20.42 14.07 201.58 35.76 30.48 16.79 302.87 53.63
8 7.01 7.51 59.77 7.09 14.49 12.98 136.47 15.91 24.65 15.66 206.40 24.12
13 2.34 4.59 10.81 1.27 5.42 10.09 26.80 2.91 10.21 13.11 39.46 4.33
18 1.28 4.19 0.89 0.16 2.46 8.97 3.86 0.45 4.03 12.78 5.12 0.69

Indexing-based search (§5.2)

Number of Emails

Keyword
Length

s

100 200 300

Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB) Runtime (s) Comm. (MiB)

Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online

3 4.90 3.57 41.09 6.41 8.07 6.58 74.19 11.22 10.96 9.28 99.18 14.89
8 4.42 3.19 35.15 3.73 7.29 5.22 67.75 6.97 9.88 6.53 91.89 9.44
13 1.85 2.48 7.98 0.63 2.99 4.26 19.40 1.48 3.80 5.20 26.68 2.05
18 1.11 2.68 0.85 0.06 1.61 3.96 3.77 0.25 1.87 4.75 4.84 0.32

Implementation Optimizations The search approaches in PrivMail are implemented using the STPC
protocols of ABY [36] previously mentioned during the analysis of circuit-based approach and the setup
phase uses the IKNP [65, 5] Oblivious Transfer (OT) extension protocol. However, several optimizations for
both of these protocols were later proposed, from which we selected Silver [32] and ABY2.0 [94] as the best
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Table 7: Empirical evaluation of communication for search methods using optimizations from Silver[32] and
ABY2.0[94]. Searches are performed using a keyword of length s = 8 over 300 emails. ∗ corresponds to
protocols implemented in PrivMail (IKNP + ABY).

Method Techniques
Communication (MiB)

Setup Online

circuit
IKNP + ABY∗ 883.89 15.70
Silver + ABY 4.95 15.70
Silver + ABY2.0 18.45 7.85

bucket
IKNP + ABY∗ 206.40 24.12
Silver + ABY 1.16 24.12
Silver + ABY2.0 4.51 12.06

index
IKNP + ABY∗ 91.89 9.44
Silver + ABY 0.51 9.44
Silver + ABY2.0 1.90 4.72

candidates for the OT extension part in the setup and online phases, respectively. We then considered the
case of 8-length character keywords over 300 emails and estimated the communication costs for the search
approaches if they had been implemented with these protocols, with the results tabulated in Table 7.20 We
used our implementation as the baseline for the analysis and is denoted by IKNP + ABY∗ in Table 7. We
now consider the following two cases:

Replacing IKNP [65] with Silver [32]: In this case, instead of IKNP, the Silver protocol is used to perform the
OT computations during the setup phase. While generating m = 220 Correlated Oblivious Transfers (C-OTs),
Silver [32, Fig.6] demonstrated ≈ 178× improvement in communication over IKNP [65]. We note that our
protocols can gain the same benefit, and the impact is significant. For example, as shown in Table 7, the setup
communication of the circuit-based approach in our protocol is 883.89 MiB. This will be reduced drastically
to 4.95 MiB by using Silver, demonstrating the scheme’s practicality. It is worth noting that computing
an increased number of OTs in a single shot will increase Silver’s efficiency over IKNP even further. To be
more specific, Silver [32, Fig.6] requires only 2130× less communication than IKNP to generate m = 220

C-OTs. This is especially useful in cases like ours, where the search circuit corresponding to the circuit-based
approach contains over 27 million AND gates (each AND requires 2 C-OTs) for the given set of parameters.
The benefit of Silver over IKNP is clearly evident in other search approaches as well.

Replacing ABY [36] with ABY2.0 [94]: ABY2.0 improves on ABY’s online communication by using input-
dependent preprocessing while maintaining the same cost for the setup phase. In concrete terms, ABY
requires 4 bits of online communication per AND gate, whereas ABY2.0 requires only 2. Hence implementing
PrivMail using ABY2.0 will result in a 2× improvement in the online communication. However, as shown
in Table 7, this comes at the expense of increased setup costs. This is justified because in our analysis, we
consider the generation of random OTs using Silver, whereas ABY2.0 demanded OTs on predefined inputs.
To bridge this gap, we used the standard technique of preprocessing OTs [11] which resulted in an additional
3 bits of communication per random OT. However, we are not ruling out the possibility of generating the
necessary amount of OTs for ABY2.0 using Silver without incurring this overhead. Despite the increased
setup communication, combining Silver with ABY2.0 results in a protocol with better overall communication
than when Silver is used with ABY, for both the bucketing and index-based search approaches. This is
primarily due to the fact that online communication dominates communication during the setup phase for
these approaches.

20We stress that the calculations are only intended to provide a rough estimate for the comparison, and that the results
may vary significantly when implemented and benchmarked.
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MPC with Trusted-Setup Our keyword search implementation (cf. §6.2) scales to the N -party setting while
providing full threshold, meaning that the security is guaranteed even if N −1 parties are corrupted. Although
this ensures strong privacy, there are variants that can be more efficient. We evaluate the closest variant,
called MPC with trusted-setup [103], in this section to determine its impact on runtime and communication
overhead. We emphasize that it is also easy to incorporate other practical settings with PrivMail, such as the
honest-majority setting [85, 29, 78].

We ran experiments using the settings described in §6.2 over the circuit-based search (§5.2) without the
length-hiding feature. The results of these experiments, presented in Table 8, demonstrated a 3.2× improvement
in runtime and 52.2× reduction in communication. This reduction in communication is especially noteworthy,
as it decreased from almost 1 gigabyte of communication to 18.85 MiB. The runtime was also reduced down
by roughly 1/3 offering more acceptable overhead for real-time performance. Overall, these results advocates
the practicality of PrivMail in scenarios where low communications is necessary and the security model allows
a trusted third party to accelerate the protocols.

Table 8: Comparison of total runtime (in seconds) and communication between the servers (Comm. in MiB)
of our protocol and MPC using trusted-setup [103] for a keyword of length 13 characters over 300 emails.

Runtime (s) Comm. (MiB)

Circuit-based §5.2 90.73 984.35
Trusted-Setup [103] 28.19 18.85

Improvement 3.2× 52.2×

7 Conclusion

In this paper, we presented PrivMail, an efficient and usable solution for secure email communication. PrivMail
uses multiple email addresses and frees users from having to handle any cryptographic keys or certificates, as
is the case with existing methods like PGP and S/MIME. Our scheme offers flexibility in privacy options,
easy integration with the existing email infrastructures, and provides private server-side searches and filtering.
Additionally, our system supports external searches for pre-approved or consented parties, which we hope
will encourage email service providers to adopt our scheme. Overall, PrivMail is a promising alternative for
more accessible and secure email communication.
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A Communication Phase in PrivMail

Sending and receiving emails in PrivMail necessitates the use of software that splits the email into shares on
the sender’s side and reconstructs the original email content on the receiver’s side from the shares. When
compared to S/MIME or PGP, this software is much simpler and does not rely on certificates. This section
contains more information about the software’s requirements as well as information about our implementations
of Sender Client Proxy (SCP) and Recipient Client Script (RCS).

Sending emails in PrivMail: As described in §4, the subject and body of the email are split into n parts
and communicated via different email providers. This means that the sender must have access to n different
outgoing mail servers and know at least n distinct email addresses of the receiver. In our SCP, we have
a simple configuration file where the sender can define a bijective mapping from the servers to the email
addresses for each recipient. However, there are alternative ways to construct the map. For example, the
sender could have a pool of outgoing servers, which can be automatically used with any recipient. This
approach is more user friendly especially if the sender is using a custom plugin software on the mail client
instead of a proxy solution (like our SCP). The automatic selection must make sure that the privacy is not
jeopardized by having a single entity to control multiple paths (see §4.1 for more details). This is easy to do
by first mapping the same outgoing servers and email address domains together, e.g., use Google’s outgoing
server for a Gmail address.

The split parts of the email are binary data, thus we use the Base64 encoding and put the body inside a
block with specific starting and ending lines as in the example below:

-----BEGIN SECRET SHARE BLOCK Ver1.0-----

MQJ5HFRyE1sHHWsNHjFRM2gdLiJ8GFBMCTNfbmpDL

RmQKNDRhbA1+TFQnEhkcURx4VEBtZVgJBC9OCFQyG

L0MXbiYrAjQ6I04rSlUnDH5/dkpGdhguUH8SSQB0U

QiVdNiNd

-----END SECRET SHARE BLOCK Ver1.0-----

This approach was inspired by how S/MIME [108] and PGP [6] include encrypted data in emails.

The split subject parts are included as Base64 in the subject with no extra lines. However, we include
a 48-bit UID at the start of the subject to assist the receiver in reconstructing the original content using
the correct parts. We also note that if the receiver does not know how many parts are to be used for the
reconstruction, this information must be included in the emails. It is possible to use the same “block approach”
as described above for this. This method is also used to include different versions of the original body of the
email that are later used in the private queries (see §5).

Receiving emails in PrivMail: The receiver can fetch emails from its mailboxes as usual, since PrivMail does
not break the regular email format. In order to reconstruct the PrivMail emails, the receiver needs to first
recognize them and group the parts correctly. With our RCS, we can fetch a set of emails (e.g., unread) from
any number of mailboxes we have access to. Then we simply check if the body of the email contains the
specific starting and ending lines in order to determine if we have a PrivMail email part. We should also check
that the encoding of the block and subject field are valid. Then we use the UID to group the corresponding
email parts together and finally reconstruct the original content of the email.

B Private Queries using MPC (§5)

Here we provide additional details on the private search FSearch discussed in §5.
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B.1 Length-Hiding Keyword Search (§5.2)

Recall that the length mask for two ℓmax-bit strings x, y is of the form Mx = m1∥ · · · ∥mℓmax
= {1}ℓ∥{0}ℓmax−ℓ.

In our case, x and y are both character strings with smax characters each, and the bit length will be
ℓmax = b · smax. As a result, having only one mask bit per character is sufficient because the same mask bit
can be used to mask all of the b bits of it. This reduces the size of MK (corresponding to keyword K) from
ℓmax to smax, resulting in a b× improvement.

Another optimization concerns the number of AND gates required for the LEQ circuit. The LEQ circuits
operate over ℓmax-bit inputs in all the t instances, as shown in Figure 11. Consider the last instance,
LEQℓmax(K, W̃t,MK), in which the last character of W (wt) is compared to the first character of K (k1). If the
second character k2 is part of the actual keyword and not a random pad, the output should be 0 regardless
of whether wt = k1 or not. If, on the other hand, k2 is a random pad, this corresponds to K being a single
character keyword and we can safely take the result of comparing wt with k1 as the final result and discard
the rest. The problem now boils down to determining whether or not k2 is a part of the actual keyword K. To
our advantage, the length mask MK contains precisely this information. In particular, the second bit of the
mask m2 = 1 indicates that k2 is a part of K, and 0 otherwise. Hence, the last instance can be computed as

LEQℓmax(K, W̃t,MK) :⇔ LEQb(k1, wt,m1) ∧ (¬m2) . (5)

The LEQ operates over b bits rather than ℓmax, resulting in a tmax times improvement. The m2 part, on
the other hand, necessitates the use of an additional AND gate. Following the same approach, the (t− 1)th

instance LEQℓmax(K, W̃t−1,MK) can be computed as

LEQ2b(k1||k2, wt−1||wt,m1||m2) ∧ (¬m3) . (6)

A similar optimization can be done for all the LEQ instances from t− smax + 2.

Wildcard Keyword Search: The length masking scheme can be slightly tweaked to enable wildcard search on
the keywords at no extra cost. Remember from §5.2 that setting the mask bit for a character position to 0
effectively forces the search circuit SC to discard the comparison result at that position. We were interested in
checking the equivalence of the first s characters in our case, so the mask was set as a vector of s 1s followed
by 0s. As a result, it is sufficient to place the 0s of the mask at appropriate positions for the wildcard search.
For example, if the keyword is ‘secret’ and the mask is ‘101101’, it is equivalent to searching for ‘s*cr*t’,
where ‘*’ denote wildcard entries.

B.2 Multi-Word Search for Keywords

This section provides a high-level overview of approaches for extending the optimizations for single-word
keywords in Bucket-based (§5.2) and Index-based (§5.2) searches to multi-word searches. We emphasize that
by multi-word search, we mean a keyword that contains space character(s), and thus contains multiple words.

One straightforward approach might involve creating buckets for combinations of multiple words. While
this concept theoretically applies to any quantity of words, it becomes notably unfeasible as the number of
words grows. Also, index-based search has the advantage of only requiring a single search for texts (written
in the same language) that contain the same words multiple times. Unfortunately, this advantage dissipates
when dealing with combined multiple words.

Another option is to divide the multi-word search query into single-word searches and then combine
the results. One disadvantage of this method is that the word order cannot be preserved, resulting in
additional incorrect results. We note that although IMAP [33] supports multi-word searches, several Mail
User Agents (MUAs), particularly for mobile clients, implement the search interface in such a way that
multi-word keywords are split into separate single-word queries and any match is considered good, i.e., the
queries are combined using the OR key.

A complete privacy-preserving multi-word search solution would necessitate the sender S secret sharing
the word position number as well as the buckets. This should then be stored in the search index along with
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every occurrence bit, significantly increasing the index’s size. However, single-word searches can now be
combined with a circuit that verifies that the word position numbers are sequential. For the time being, we
leave a more formal description of this solution as future work and omit a more precise examination. We
anticipate that when the number of emails is not enormous, the regular multi-word search using circuit-based
search described in §5.2 will work more efficiently.

B.3 Index Table Updates (§5.2)

Here, we provide details for creating the index table required for the Index-based search discussed in §5.2.

Local Updates In this approach, the CSs seek the assistance of receiver R in building the index table. To
begin with, R creates a base index table with the most common words in the selected language, and the
corresponding occurrence bit-strings B⃗Wi are set to empty strings. This table is then secret shared among
the servers (CSs). The receiver will download the index table’s shares at regular intervals (e.g., once per
night), reconstruct and update it based on the emails received since the last update. This can be viewed as R
keeping a local copy of the index table corresponding to the emails received after the last table update and
updating the main table at regular intervals.

Consider the case where p′ new emails have been received since the last index table update. Allow these
emails to contain a total of d′ distinct words, where d′old represents the number of words already present in the
main index table. It is obvious that the updated index table will contain (d′ − d′old) more rows. Furthermore,
the size of each occurrence bit (corresponding to the table’s column size) will be increased by p′ bits. In order
to hide the number of new words added in each update (d′ − d′old), the base index table contains several
“dummy” words (e.g., using padding characters), which are later replaced with the new words by the receiver.
If the index becomes full, i.e., there are no more dummy words, R doubles the size of the table and adds new
dummy entries to it.

In cases where it is acceptable to reveal the number of new words added, communication with R

can be optimized further. When R requests an update, it first downloads all the shares of the distinct
words {W1, . . . ,Wd} from the servers, rather than the entire table. It computes the respective occurrence
bits for all the new p′ emails for all the words that are already in the table. If there are no new distinct
words (d′ = d′old), (only) these occurrence bits are secret shared among the servers. If not, R performs a full
update, which includes additionally downloading the shares of the occurrence bit-strings, adding rows for new
words, randomly permuting the index rows, and finally secretly sharing the new index table with the servers.
The rows are randomly permuted to avoid the servers map the newly added words to the respective email set.

Server-side Updates Here we focus on reducing receiver R’s intervention by offloading more tasks to the
servers. For ease of explanation, consider a new email Ej containing ξ distinct words K⃗j = {Kj

1, . . . ,K
j
ξ} and

let Kj
q be the qth word in the list for q ∈ {1, . . . , ξ}. Also, remember from the previous section that the index

table already has d distinct words {W1, . . . ,Wd} in it.

Step 1: Servers evaluate ξ · d instances of EQ circuits of the form EQ(Kj
q,Wi) for i ∈ {1, . . . , d}. As these

are independent, they can be evaluated in parallel. Furthermore, because we are dealing with distinct words,
there can only be at most one i for which EQ(Kj

q,Wi) = 1 for a given q, and vice versa.

Step 2: The email Ej ’s occurrence bit at the ith row BWi
j should be set to 1 if any of Kj

q matches with Wi

and 0 other wise. Using the observation above, it can be computed as

BWi
j =

ξ⊕
q=1

EQ(Kj
q,Wi). (7)

Step 3: To determine whether Kj
q is a new word not already in the index table, we use the bit TKj

q , which

is defined as 1 if Kj
q ∈ {W1, . . . ,Wd}, and 0 otherwise. This can be calculated using the results from Step 1
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above, in which Kj
q is compared against all of the d words in the index table, and is given as

TKj
q =

d⊕
i=1

EQ(Kj
q,Wi). (8)

Step 4: The servers compute TKj

= ¬(TK
j
1 ∧ · · · ∧ TK

j
ξ) where TKj

= 1 indicates that email Ej contains
at least one distinct keyword not found in the index table, and 0 otherwise.

Step 5: At this point, the servers reconstruct TKj

towards the receiver R, and the rest of the steps are
similar to those described earlier for a full update. If there are no new distinct words, this approach is
advantageous for R because it does not require updating. The computation and communication at R’s side
could be further reduced by batching the shares for several emails in one shot. R requires the distinct words
list (K⃗j) only for emails where TKj

= 1. This can be obtained securely from the CSs by invoking FFetch (§5.4).
Furthermore, R can skip the updates corresponding to words already present in the table, as this is already
done by the servers in Step 2. However, re-sharing of the updated index table is required, and in this approach,
the servers will only learn the number of new emails with distinct words.21

To completely eliminate the involvement of the receiver R while also preventing information leakage
regarding the update, the servers will update the table entries in an oblivious manner as shown next.

Server-side Updates without Receiver In this section, we will show how to perform the index table
update without the involvement of receiver R. Remember that the servers securely computed the bit value

TKj
q (in Step 3), which has a value of 1 if the keyword Kj

q is already in the index table, and 0 otherwise.

Consider a new distinct keyword Kq that does not exist in the index table, i.e., TKq = 0. Remember that
the index table is initially filled with dummy words in addition to the actual distinct words by the receiver.
These dummy entries are used to hide the addition of new words to the table, and they will be replaced with
actual distinct words as needed. The servers should now replace one of these dummy word entries with Kq

and update the corresponding occurrence bit string. To track the first dummy word entry in the index, we
define an entry-bit string of the form δ⃗ = δ1∥ · · · ∥δd. It is a binary string with all 0s except a 1 at position
i, which indicates that the first dummy word in the current index table is at the ith row. Initially, R sets
δ⃗ = 1∥{0}d−1 and secret shares it among the servers.

In order for the approach to work, both the dummy word and its occurrence bit string in the index table
must be set to a string of all 1s.22 This has no effect on the scheme’s privacy because the servers will be
unable to distinguish these entries from the others due to the privacy guaranteed by the underlying MPC
scheme’s secret sharing.

Corresponding to each row i of the index table, we define a boolean flag flagi = ¬TKq ∧ δi. Note that
flagi = 1 indicates that the keyword Kq can replace the entry at the ith row. Given this flag, the word in the

ith row of the table Wi is updated using an update function UD defined as

UD(Wi,Kq, flagi) = Wi ∧
(
Kq ∨ ¬flagi

)
. (9)

Case 1: When flagi = 0, the term (Kq ∨ ¬flagi) evaluates to all ones and hence UD(Wi,Kq, flagi) = Wi.
This means that the current entry is unaffected as desired.

Case 2: When flagi = 1, UD(Wi,Kq, flagi) = Wi ∧Kq. However, in this case, Wi is a dummy word and as
previously stated, it is simply a string of all 1s. Hence, the result of UD is simply Kq.

The same idea can be applied to the case of the occurrence bit string as well. The servers must update the
occurrence bit string to reflect the new distinct word Kq. If this keyword corresponds to the jth email (this

21This is equal to the number of FFetch instances and leakage can be reduced by using multi-block or volume-hiding PIR
to instantiate FFetch.

22This can also be viewed as treating a string of b 1 bits as a special dummy character.
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information is known to the servers), the occurrence bit string will be all zero except at position j, which will
be set to 1. Servers then locally generate a boolean sharing of this string as per the underlying MPC protocol.

Following the above set of operations with respect to a distinct word Kq, we should also update the

entry-bit string δ⃗. If there was an update (TKq = 0), the dummy word position in the bit string should be

moved by one bit position; otherwise, it should remain unchanged. Since δ⃗ is a bit vector with exactly one bit
set to 1, this can be accomplished by setting each of the bits as δi ← δi−1 ⊕

(
TKq ∧ (δi ⊕ δi−1)

)
with δi = 0.

The preceding procedure is repeated for each distinct word in a new email. In addition, to monitor when
the index table becomes full and needs to be extended/doubled, the servers reconstruct it and check if δd = 1.

In the above approach of index table updates without the involvement of the receiver, the servers would
have to update each entry in the index table for each set of distinct words in the new email. The problem of
finding an optimized solution for this case is left open for future work.
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