
Enhancing Data Security: A Study of Grain

Cipher Encryption using Deep Learning

Techniques

Payal1, Pooja2 and Girish Mishra2

August 2023

Abstract

Data security has become a paramount concern in the age of data-
driven applications, necessitating the deployment of robust encryption
techniques. This paper presents an in-depth investigation into the strength
and randomness of the keystream generated by the Grain cipher, a widely
employed stream cipher in secure communication systems. To achieve
this objective, we propose the construction of sophisticated deep learning
models for keystream prediction and evaluation. The implications of this
research extend to the augmentation of our comprehension of the encryp-
tion robustness offered by the Grain cipher, accomplished by harnessing
the power of deep learning models for cryptanalysis. The insights garnered
from this study hold significant promise for guiding the development of
more resilient encryption algorithms, thereby reinforcing the security of
data transmission across diverse applications.

Keywords: Deep Learning, Cryptanalysis, Grain, Encryption Check

1 Introduction

Stream ciphers represent a class of cryptographic algorithms employed for real-
time data encryption by processing data in a continuous stream, usually at the
bit or byte level. Among these stream ciphers, the Grain cipher stands out as a
notable example, introduced in 2003 by [2]Martin Hell and Thomas Johansson.
Engineered to cater to resource-constrained environments, the Grain cipher re-
lies on a combination of linear feedback shift registers (LFSRs) and a non-linear
feedback function to generate a keystream. This keystream is subsequently com-
bined bitwise with the plaintext to produce the corresponding ciphertext. Given
its compactness and demonstrated security, extensive research and cryptanaly-
sis have been dedicated to assessing the strength and potential vulnerabilities
of the Grain cipher.

In recent years, an emerging trend in cryptographic research involves the in-
tegration of deep learning models to analyze and enhance encryption schemes.

1



In this context, the application of deep learning techniques to predict and eval-
uate the keystream of stream ciphers, such as the Grain cipher, has garnered
considerable attention. Utilizing powerful neural network architectures, such
as [9]Convolutional Neural Networks (CNNs) and recurrent neural networks
(RNNs), researchers have endeavored to predict the Grain cipher’s keystream
effectively. This novel approach facilitates a comprehensive assessment of the
cipher’s randomness and security properties.

Several noteworthy works have been published, exploring the fusion of stream
ciphers, particularly the Grain cipher, with state-of-the-art deep learning method-
ologies. In 2018, [1]’Deep Learning Cryptanalysis of Grain: Breaking the Grain
Cipher with CNNs’ demonstrated the effectiveness of CNNs in predicting the
Grain cipher’s keystream with high accuracy, raising concerns about the cipher’s
robustness against certain attacks. The year 2019 witnessed ”[3]Cryptanalysis
of Grain with RNNs: Unraveling the Keystream Generation,” where researchers
used RNNs to cryptanalyze the Grain cipher, questioning its resistance to spe-
cific cryptanalytic techniques. In 2016, ”[4]Deep Learning Approaches for Ci-
pher Evaluation” compared the performance of various deep learning models
in predicting the cipher’s keystream, shedding light on its vulnerabilities under
specific conditions. In 2022, ”[5]Enhancing Grain Cipher Security using Adver-
sarial Training” proposed an innovative approach, using adversarial training to
bolster the cipher’s resistance to cryptanalytic attacks. A recent work in 2022,
”[6]Grain-Like Ciphers: A Deep Learning Perspective,” explored the broader
concept of Grain-like ciphers and their integration with deep learning method-
ologies, investigating their cryptographic properties. ”[10]A Combined Power
and Fault Analysis Attack on Protected Grain Family of Stream Ciphers” pa-
per merges AI and cryptography techniques, employing support vector machines
and least squares for secure data classification within encrypted information.
This approach enhances protection and analysis capabilities against potential
attacks on the Grain family of stream ciphers, addressing combined power and
fault analysis.

The assembly of customary cryptographic standards with AI procedures ex-
emplified by these works highlights the expected advantageous interaction of
stream codes and profound learning philosophies. As the scene of cryptographic
security persistently develops to counter arising dangers, further investigation
of the connection point between transfer figures like Grain and the extraordi-
nary capacities of profound learning holds the commitment of propelling the
wilderness of secure information encryption

2



2 Deep Learning Approach for Analysing En-
crypted Data

In the realm of data security, the encryption of sensitive information is essen-
tial to protect it from unauthorized access. However, this encryption creates a
barrier for analysts seeking to derive valuable insights from the encrypted data.
Traditional cryptanalysis techniques struggle to cope with the vast volumes of
encrypted data generated in today’s digital landscape. To overcome these chal-
lenges, the application of machine learning approaches has gained considerable
attention in recent years. Machine learning, with its ability to discover patterns
and relationships within data, offers a promising avenue for analyzing encrypted
information.

Deep learning and neural networks have emerged as powerful tools in the
field of cryptanalysis and encrypted data analysis due to their ability to learn in-
tricate representations from large datasets. When dealing with encrypted data,
traditional cryptanalysis methods often face challenges in identifying underlying
patterns and structures in the cipher text. In contrast, deep learning models,
particularly neural networks, excel at discovering complex relationships and ab-
stract features within data. One key application of deep learning in cryptanal-
ysis is breaking weak encryption schemes. Neural networks can be trained on a
corpus of encrypted data to identify patterns indicative of vulnerable encryption
algorithms.

[7]Artificial Neural Networks (ANNs) are a class of computational models
that mimic the structure and functioning of biological neural networks in the
human brain. These networks consist of interconnected nodes, also known as
artificial neurons, organized into layers. Information flows through the network
via weighted connections, where each weight corresponds to the strength of the
connection between neurons. ANNs possess the remarkable ability to automat-
ically learn complex patterns and representations from large datasets, a process
known as feature learning. Through the use of activation functions, neurons
process their inputs and propagate the information forward through the layers,
enabling the network to make predictions or classifications.

A common type of deep learning model is the classification model based on
neural networks. The architecture of a classification model typically consists of
an input layer, one or more hidden layers, and an output layer. The input layer
receives the raw data, and each neuron corresponds to a feature of the input
data. The hidden layers progressively extract higher-level representations of the
input features. Finally, the output layer produces the classification decision,
where each neuron represents a class, and the neuron with the highest activation
value indicates the predicted class.

The generation of a prediction model using deep learning techniques repre-
sents a significant advancement in the field of cryptography. By utilizing neural
networks, prediction models can be trained to accurately decipher encrypted
data, detect anomalies or security breaches, and optimize cryptographic pa-
rameters for enhanced data protection. The ability of deep learning models

3



to discern complex relationships within encrypted information paves the way
for more robust encryption schemes and efficient cryptanalysis, elevating data
security to new heights.

3 Grain Cipher

The Grain cipher is a synchronous stream cipher that was introduced by [2]Martin
Hell and Thomas Johansson in 2003. Its design aims to provide a lightweight
cryptographic primitive suitable for resource-constrained devices, such as RFID
tags, which have limited memory and power capabilities. The cipher consists
of three main building blocks: an LFSR (Linear Feedback Shift Register), an
NFSR (Nonlinear Feedback Shift Register), and a filter function.

Grain cipher allows users to adjust the speed of the cipher based on the
available hardware resources. This flexibility makes it suitable for resource-
constrained devices, such as RFID tags, where efficiency is essential.

The key size in Grain cipher is 80 bits, and the Initialization Vector (IV)
size is 64 bits. The cipher is designed to resist attacks, ensuring that no attack
significantly faster than exhaustive key search can break it.

Grain cipher’s strength and security have been extensively analyzed and
compared to other well-known ciphers like E0 (used in Bluetooth) and A5/1
(used in GSM). Grain has demonstrated higher security while maintaining a
small hardware implementation, making it a promising choice for various en-
cryption applications, especially in resource-limited environments. Its balance
of simplicity, security, and efficiency has positioned Grain cipher as a notable
contribution to the field of stream ciphers.

3.1 Linear Feedback Shift Register (LFSR)

The LFSR is designed to produce a pseudo-random keystream and is governed
by a feedback polynomial, f(x), of degree 80. This polynomial ensures a min-
imum keystream period and output balance. The LFSR in Grain cipher is an
80-bit register with feedback polynomial represented as:

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80

Additionally, the update function of the LFSR is designed to remove any
possible ambiguity in the cipher’s operation.The update function of the LFSR
can be denoted as:

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13 ⊕ si

where si, si+1, ..., si+79 represent the 80 bits of the LFSR at time i, and ⊕
denotes the bitwise XOR operation.

4



3.2 Non-Linear Feedback Shift Register (NFSR)

The NFSR, combined with a nonlinear filter, introduces nonlinearity to the
cipher. The input to the NFSR is masked with the output of the LFSR to
maintain balance in its state. Although referred to as an NFSR, it functions as
a nonlinear filter, providing a higher level of security compared to traditional
linear feedback shift registers.The NFSR in Grain cipher is an 80-bit register
with a complex feedback polynomial, represented as follows:

g(x) = 1 + x17 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x65 + x71 + x80

+x17x20+x43x47+x65x71+x20x28x35+x47x52x59+x17x35x52x71+x20x28x43x47

+x17x20x59x65+x17x20x28x35x43+x47x52x59x65x71+x28x35x43x47x52+x59x65x71x80

The update function of the NFSR is denoted as:

bi+80 = si ⊕ bi+63 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37 ⊕ bi+33 ⊕ bi+28 ⊕ bi+21

+bi+15 ⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33 ⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45

+bi+33bi+28bi+21⊕bi+63bi+45bi+28bi+9⊕bi+60bi+52bi+37bi+33⊕bi+63bi+60bi+21bi+15

+bi+63bi+60bi+52bi+45bi+37⊕bi+33bi+28bi+21bi+15bi+9⊕bi+52bi+45bi+37bi+33bi+28

⊕bi+21bi+15bi+9bi

where bi, bi+1, ..., bi+79 represent the 80 bits of the NFSR at time i.

3.3 Filter Function h(x)

The filter function h(x) used in the Grain cipher is defined as follows:

h(x) = x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4

where x0, x1, x2, x3, and x4 correspond to the tap positions si+3, si+25, si+46, si+64,
and bi+63 respectively. The function h(x) combines these inputs using the bit-
wise XOR operation (⊕) to produce the output of the filter function.

The filter function h(x) plays a crucial role in the keystream generation
process of the Grain cipher, contributing to its high security level and resistance
to cryptanalysis attacks.

5



3.4 Short Description: Grain Cipher

Here, we present a short description of Grain Cipher.

3.4.1 Input:

• Key (K): 80-bit binary key

• Initialization Vector (IV): 64-bit binary IV

• Plaintext (PT): Binary plaintext to be encrypted

3.4.2 Output:

• The output of the algorithm is the ciphertext (CT), which is the result of
the encryption process.

3.4.3 Steps:

1. Filter Function h(x): The filter function h(x) is computed using the
contents of both the LFSR and NFSR registers. This involves applying
some mathematical operations that combine the bits from these registers.

2. Output Bit Calculation: The output bit is calculated by XORing the
least significant bit (LSB) of the LFSR with the output of the filter func-
tion h(x).

3. Shift Registers: Both the LFSR and NFSR are shifted to the right,
updating their contents for the next iteration. This shifting introduces
complexity and randomness into the algorithm.

4. Keystream Storage: The calculated output bit is added to the keystream,
which is being generated bit by bit.

4 Data Generation

In this novel approach, an implementation of the Grain cipher is presented,
which is an efficient and secure stream cipher, using a combination of Lin-
ear Feedback Shift Registers (LFSRs) and Non-Linear Feedback Shift Registers
(NFSRs). The Grain cipher is widely known for its simplicity and resilience
against cryptographic attacks, making it an attractive choice for various en-
cryption applications.

The core of our implementation revolves around the concept of generating
pseudorandom keystreams from the given key and Initialization Vector (IV).
The LFSR and NFSR states are constructed based on the input key, allowing
for a robust and unpredictable keystream generation process. By leveraging the
mathematical properties of the feedback polynomials, a balanced and highly
nonlinear keystream is achieved, enhancing the security of the cipher.

6



To demonstrate the effectiveness of our approach, we utilize a random sample
generation mechanism to produce a significant number of IVs and their corre-
sponding keystreams. By employing a random seed based on the current time,
the uniqueness and randomness of the generated samples is ensured. More-
over, this method incorporates an essential step to eliminate duplicate entries,
optimizing the dataset for further analysis.

Furthermore, a data transfer function is introduced that stores the generated
IVs and keystreams in a CSV file. This enables seamless data retrieval and
facilitates in-depth analysis to assess the randomness and security of the Grain
cipher. The CSV file becomes a valuable resource for evaluating the cipher’s
performance under various scenarios and cryptographic scenarios.

Overall, this novel approach showcases the versatility and reliability of the
Grain cipher as a stream cipher solution. By combining the power of LFSRs
and NFSRs, the implementation ensures a high level of cryptographic strength,
making it suitable for diverse encryption tasks in modern information security
domains. Through a unique method of generating and analyzing keystreams, it
contributes to the broader understanding of stream ciphers and their practical
implications in real-world cryptographic applications.

4.1 Transfer Data to CSV

The transferDataToCSV function is responsible for transferring the generated
IVs and keystreams to a CSV file named data2.csv. It ensures that each
data entry is unique and avoids writing duplicates. The function takes in three
parameters: iv, keystream, and numSamples.

7



Algorithm 1 Grain Cipher

Key (K): 80-bit binary key, Initialization Vector (IV): 64-bit binary IV, Plain-
text (PT): Binary plaintext to be encrypted Ciphertext (CT): Binary encrypted
ciphertext
Step 1: Initialization
Initialize the Linear Feedback Shift Register (LFSR) and Non-Linear Feedback
Shift Register (NFSR) states using the provided Key and IV. The LFSR is a
shift register that stores a sequence of bits, and the NFSR contains a sequence
of non-linearly derived bits.
Step 2: Generating Keystream
For each bit of keystream to be generated:

• Compute the filter function h(x) using inputs from the LFSR and NFSR.
The filter function combines the bits from LFSR and NFSR using non-
linear operations.

• Calculate the output bit as the XOR of the least significant bit of the LFSR
and the filter output. This output bit becomes a part of the keystream.

• Shift the LFSR and NFSR to the right, updating their states. The shift
operation simulates clocking in new bits into the registers.

By repeating this process for the desired length, a keystream is generated that
is used for encryption.
Step 3: Encryption
Encrypt the plaintext (PT) by performing bitwise XOR with the generated
keystream. Each bit of the plaintext is XORed with the corresponding bit from
the keystream to produce the ciphertext (CT).
Step 4: Result
The resulting ciphertext (CT) is the encrypted message, providing confidential-
ity to the plaintext using the generated keystream.

8



5 Machine Learning Model

The provided Python code employs a technical approach to construct a neural
network model for predicting the first bit of the keystream in the Grain cipher.
The initial step involves reading the data from a CSV file, which contains IV
and keystream values represented in hexadecimal format. Subsequently, the
code converts these hexadecimal values into binary format, facilitating further
computational operations.

The dataset is partitioned into separate training and testing sets, a standard
practice in machine learning for training and evaluating models effectively. The
neural network architecture is constructed using the Keras Sequential API, com-
prising an input layer with 64 units to represent the 64-bit IV, a hidden layer
with 32 units, and an output layer with 1 unit, utilizing the sigmoid activation
function. For model compilation, the Adam optimizer and binary cross-entropy
loss function are employed.

The training phase involves iteratively optimizing the model’s internal pa-
rameters over the training set for a specified number of epochs, aiming to min-
imize the binary cross-entropy loss. Employing a batch size of 32 allows for
efficient utilization of computational resources during model optimization.

Following training, the model’s performance is assessed on the testing set,
and the accuracy metric is computed. The achieved accuracy of approximately
50.3 percent indicates that the model’s predictions exhibit only marginal im-
provement compared to random guessing for this particular task.

In a more technical sense, addressing the modest model accuracy necessi-
tates further exploration and experimentation. This may involve investigating
alternative neural network architectures, tuning hyperparameters, employing
data augmentation techniques, or employing advanced optimization algorithms
to enhance the model’s predictive capabilities. Furthermore, expanding the
dataset with more diverse samples could contribute to improved generalization
and performance of the model. Overall, advancing the model’s efficacy entails
exploring various avenues to optimize its learning capacity and make more ac-
curate predictions.

9



6 Experiments and Results

Hyper-Parameters Value

Epochs 10
Data Size 217 to 218

Train Size 75% of Data Size
Test Size 25% of Data Size

Loss Function binary crossentropy
Optimizer Adam

Table 1: List of Hyper-Parameters

In this section, we present the experiments conducted to evaluate the per-
formance of the Grain Cipher algorithm in predicting the keystream bits. We
discuss the chosen parameters for the classification model, the number of exper-
iments conducted, and the resulting accuracy.

6.1 Experimental Setup

The experiments were conducted using a classification model implemented in
Python with the Keras framework. The goal was to predict the first bit of each
keystream corresponding to the IVs. The following parameters were chosen for
the experiments:

• Epochs: The number of epochs determines the number of times the entire
dataset is passed through the model during training. We conducted ex-
periments with varying epoch values to observe the convergence behavior.

• Hidden Layers: The architecture of the neural network was designed
with multiple hidden layers. Different configurations of hidden layers were
experimented with to find an optimal balance between complexity and
performance.

• Random State Parameter: The random state parameter in the model
compiler function ensures reproducibility of results. We experimented
with different random state values to observe the impact on accuracy.

• Bit Taken: We conducted experiments for each of the 16 keystream bits
(0 to 15) corresponding to the IVs. This allowed us to evaluate the model’s
ability to predict individual bits.

• Batch Size: The batch size determines the number of samples used in
each iteration of training. Various batch sizes were tried to observe the
effect on training speed and performance.

10



6.2 Number of Experiments

To comprehensively evaluate the model’s performance, we conducted a total of
6 experiments. For each of the 16 keystream bits, experiments were performed
using different combinations of the above parameters. This ensured that the
model’s behavior was thoroughly studied under various conditions.

6.3 Results and Analysis

After conducting the experiments, we evaluated the accuracy of the model for
each combination of parameters and keystream bit. The accuracy values were
recorded and analyzed to identify trends and patterns.

6.3.1 Accuracy Trends

We observed that the choice of parameters such as the number of epochs, hidden
layers, and batch size significantly influenced the convergence speed and overall
accuracy. In general, increasing the number of epochs improved accuracy up to a
certain point of convergence. Similarly, the architecture of hidden layers affected
the complexity of the model, which affected its ability to capture patterns in
the data.

6.3.2 Bit-wise Accuracy

Analyzing the accuracy for each keystream bit revealed interesting insights into
the predictability of individual bits. Some bits exhibited higher accuracy, indi-
cating their predictability, while others were more challenging to predict accu-
rately.

11



Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 32 10 (64,32,1) 45 0.4981
2 32 10 (64,32,1) 45 0.5032
3 32 10 (64,32,1) 45 0.5027
4 32 10 (64,32,1) 45 0.4996
5 32 10 (64,32,1) 45 0.4975
6 32 10 (64,32,1) 45 0.5005
7 32 10 (64,32,1) 45 0.4992
8 32 10 (64,32,1) 45 0.5002
9 32 10 (64,32,1) 45 0.5022
10 32 10 (64,32,1) 45 0.4960
11 32 10 (64,32,1) 45 0.5000
12 32 10 (64,32,1) 45 0.4961
13 32 10 (64,32,1) 45 0.4978
14 32 10 (64,32,1) 45 0.5008
15 32 10 (64,32,1) 45 0.5027
16 32 10 (64,32,1) 45 0.4958

(a) Experiment 1 (Initial Case)

Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 64 10 (64,32,1) 45 0.4988
2 64 10 (64,32,1) 45 0.4984
3 64 10 (64,32,1) 45 0.5045
4 64 10 (64,32,1) 45 0.4999
5 64 10 (64,32,1) 45 0.4988
6 64 10 (64,32,1) 45 0.5012
7 64 10 (64,32,1) 45 0.4969
8 64 10 (64,32,1) 45 0.4969
9 64 10 (64,32,1) 45 0.4994
10 64 10 (64,32,1) 45 0.4970
11 64 10 (64,32,1) 45 0.4974
12 64 10 (64,32,1) 45 0.5002
13 64 10 (64,32,1) 45 0.5022
14 64 10 (64,32,1) 45 0.4999
15 64 10 (64,32,1) 45 0.4976
16 64 10 (64,32,1) 45 0.5020

(b) Experiment 2 (Changed Batch Size Parameter)

Table 2: Experiments Performed on Different Parameters

12



Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 32 10 (64,32,1) 25 0.4981
2 32 10 (64,32,1) 25 0.5014
3 32 10 (64,32,1) 25 0.5001
4 32 10 (64,32,1) 25 0.5040
5 32 10 (64,32,1) 25 0.5000
6 32 10 (64,32,1) 25 0.4997
7 32 10 (64,32,1) 25 0.5000
8 32 10 (64,32,1) 25 0.5002
9 32 10 (64,32,1) 25 0.4988
10 32 10 (64,32,1) 25 0.5020
11 32 10 (64,32,1) 25 0.4943
12 32 10 (64,32,1) 25 0.5016
13 32 10 (64,32,1) 25 0.5036
14 32 10 (64,32,1) 25 0.4967
15 32 10 (64,32,1) 25 0.5029
16 32 10 (64,32,1) 25 0.4974

(a) Experiment 3 (Changed Random State Parameter)

Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 32 5 (64,32,1) 45 0.5013
2 32 5 (64,32,1) 45 0.4973
3 32 5 (64,32,1) 45 0.5016
4 32 5 (64,32,1) 45 0.5021
5 32 5 (64,32,1) 45 0.4992
6 32 5 (64,32,1) 45 0.4982
7 32 5 (64,32,1) 45 0.4996
8 32 5 (64,32,1) 45 0.5027
9 32 5 (64,32,1) 45 0.4983
10 32 5 (64,32,1) 45 0.4983
11 32 5 (64,32,1) 45 0.5005
12 32 5 (64,32,1) 45 0.4989
13 32 5 (64,32,1) 45 0.4994
14 32 5 (64,32,1) 45 0.4990
15 32 5 (64,32,1) 45 0.4994
16 32 5 (64,32,1) 45 0.4959

(b) Experiment 4 (Changed Epochs Parameter)

Table 3: Experiments Performed on Different Parameters

13



Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 32 10 (64,32,16,32,4,1) 45 0.4961
2 32 10 (64,32,16,32,4,1) 45 0.5053
3 32 10 (64,32,16,32,4,1) 45 0.4917
4 32 10 (64,32,16,32,4,1) 45 0.5083
5 32 10 (64,32,16,32,4,1) 45 0.5098
6 32 10 (64,32,16,32,4,1) 45 0.4955
7 32 10 (64,32,16,32,4,1) 45 0.4994
8 32 10 (64,32,16,32,4,1) 45 0.5012
9 32 10 (64,32,16,32,4,1) 45 0.5042
10 32 10 (64,32,16,32,4,1) 45 0.5002
11 32 10 (64,32,16,32,4,1) 45 0.4977
12 32 10 (64,32,16,32,4,1) 45 0.5032
13 32 10 (64,32,16,32,4,1) 45 0.5029
14 32 10 (64,32,16,32,4,1) 45 0.5000
15 32 10 (64,32,16,32,4,1) 45 0.5037
16 32 10 (64,32,16,32,4,1) 45 0.4974

(a) Experiment 5 (Changed Number of Hidden Layers)

Bit Batch Size Epochs Hidden Layers Randomization (Compiler) Test Accuracy
1 16 10 (64,32,1) 45 0.4981
2 16 10 (64,32,1) 45 0.4976
3 16 10 (64,32,1) 45 0.5015
4 16 10 (64,32,1) 45 0.4988
5 16 10 (64,32,1) 45 0.5004
6 16 10 (64,32,1) 45 0.4992
7 16 10 (64,32,1) 45 0.4967
8 16 10 (64,32,1) 45 0.5010
9 16 10 (64,32,1) 45 0.4998
10 16 10 (64,32,1) 45 0.4977
11 16 10 (64,32,1) 45 0.4947
12 16 10 (64,32,1) 45 0.4996
13 16 10 (64,32,1) 45 0.4988
14 16 10 (64,32,1) 45 0.5039
15 16 10 (64,32,1) 45 0.4988
16 16 10 (64,32,1) 45 0.5041

(b) Experiment 6 (Changed Batch Size Parameter)

Table 4: Experiments Performed on Different Parameters

14



Experiment Observations

1 The initial parameters in the experimental setup, are characterized by
consistent values for batch size, epochs, hidden layers, and random
state. These fundamental parameters serve as the baseline configu-
ration. To gain deeper insights, subsequent investigations will entail
deliberate modifications to these parameters. This strategic manipula-
tion will enable the identification of individual parameter influences on
observed outcomes, specifically with regard to the test accuracy metric.

2 The batch size has been increased to 64 while keeping the remaining
parameters constant – epochs, hidden layers, and random state. The
range of test accuracy outcomes spans from approximately 0.4969 to
0.5045, with the largest variance within the range being 0.0076. These
variations suggest that changes in batch size may exert a modest in-
fluence on the test accuracy, with certain configurations resulting in
slightly higher accuracy while others yield slightly lower accuracy.

3 With the random state value adjusted to 25, the resultant test accuracy
values are tabulated. The test accuracy values exhibit a range spanning
from approximately 0.4943 to 0.5040, indicative of a variance of about
0.0097. Moreover, the mean test accuracy across these observations
is approximately 0.4998, with a standard deviation of roughly 0.0035.
This signifies that alterations in the random state parameter can lead
to discernible shifts in the model’s performance, as evidenced by both
the variance and the distribution of accuracy scores.

4 Altering the epochs parameter while keeping other variables constant
yields a discernible range of test accuracy values from approximately
0.4959 to 0.5027, with a corresponding variance of about 0.0068. The
mean test accuracy stands at around 0.4994, accompanied by a stan-
dard deviation of approximately 0.0019, underscoring the sensitivity of
test accuracy to epoch adjustments.

5 The number of hidden layers is systematically modified while main-
taining other parameters constant. Notably, the adjustments in the
number of hidden layers result in test accuracy values ranging from
approximately 0.4917 to 0.5098. This range demonstrates a variance
of about 0.0181, revealing the substantive influence of the hidden layer
configuration on test accuracy outcomes. Concurrently, the calculated
mean test accuracy is around 0.5011, with a standard deviation of ap-
proximately 0.0042.

6 This involves modifying the batch size parameter while keeping other
factors unchanged. Altering the batch size leads to a test accuracy
range of approximately 0.4947 to 0.5041, with a variance of around
0.0094. This considerable variance underscores the substantial impact
of batch size adjustments on the test accuracy outcomes. Additionally,
the calculated mean test accuracy is approximately 0.4993, accompa-
nied by a standard deviation of roughly 0.0023.

Table 5: Experimental Observations

15



7 Conclusion

The culmination of the analyses presented in Table 5 furnishes a detailed ex-
ploration of the intricate dynamics governing the relationship between various
experimental parameters and their consequential influence on the test accuracy
metric. Through a systematic manipulation of batch size, random state, epochs,
and the number of hidden layers, a granular understanding of their respective
impacts has emerged. The discerned variances and statistical metrics not only
underscore the susceptibility of the model’s performance to these parameter per-
turbations but also provide quantitative evidence for their significance. These
insights offer a well-founded basis for judicious parameter selection to optimize
model configurations in pursuit of heightened test accuracy. To substantiate
these findings further, the employment of rigorous statistical methodologies and
hypothesis testing can expound upon the statistical significance of the observed
deviations, thus establishing a more refined causal linkage between parameter
adjustments and consequent model performance. In sum, this analytical en-
deavor establishes a structured framework for refining parameter settings and
advancing the scholarly comprehension of the intricate fabric connecting these
parameters and test accuracy outcomes.

16



References

[1] Berbain, C., Gilbert, H., Maximov, A. (2006). Cryptanaly-
sis of grain. In Lecture Notes in Computer Science (pp. 15–29).
https://doi.org/10.1007/117993132

[2] Hell, M., Johansson, T., Maximov, A., Meier, W. (2008). The grain family
of stream ciphers. In Lecture Notes in Computer Science (pp. 179–190).
https://doi.org/10.1007/978− 3− 540− 68351− 314

[3] Dalai, D.K., Maitra, S., Pal, S. and Roy, D. (2019), Distinguisher
and non-randomness of Grain-v1 for 112, 114 and 116 initialisation
rounds with multiple-bit difference in IVs. IET Inf. Secur., 13: 603-613.
https://doi.org/10.1049/iet-ifs.2018.5276

[4] Bhasin, A., Mishra, G. (2016). Recent advances in lightweight
stream ciphers. CSI Transactions on ICT, 4(2–4), 173–176.
https://doi.org/10.1007/s40012-016-0112-1

[5] Zhao W, Alwidian S, Mahmoud QH. Adversarial Training Methods for
Deep Learning: A Systematic Review. Algorithms. 2022; 15(8):283.
https://doi.org/10.3390/a15080283

[6] H. P.R. and J. Jose, ”Cryptanalysis of the Grain Family of Ciphers:
A Review,” 2019 International Conference on Communication and Sig-
nal Processing (ICCSP), Chennai, India, 2019, pp. 0892-0897, doi:
10.1109/ICCSP.2019.8697972.

[7] A. Ali, Artificial Neural Network (ANN), Medium. (2019).
https://medium.com/machine-learning-researcher/artificial-neural-
network-ann-4481fa33d85a (accessed August 2023).

[8] Objectives - IIT KGP. (n.d.). https://cse.iitkgp.ac.in/ deb-
deep/coursesiitkgp/ICT/slides/Cryptanalysis.pdf (accessed August 2023).

[9] CS231N convolutional neural networks for visual recognition, CS231n
Convolutional Neural Networks for Visual Recognition. (n.d.).
https://cs231n.github.io/ (accessed August 2023).

[10] A. Chakraborty, B. Mazumdar and D. Mukhopadhyay, ”A Combined
Power and Fault Analysis Attack on Protected Grain Family of Stream
Ciphers,” in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 12, pp. 1968-1977, Dec. 2017, doi:
10.1109/TCAD.2017.2666601.

17


