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Abstract. This research paper explores the vulnerabilities of the lightweight
block cipher SPECK 32/64 through the application of differential analy-
sis and deep learning techniques. The primary objectives of the study are
to investigate the cipher’s weaknesses and to compare the effectiveness
of ResNet as used by Aron Gohr at Crypto2019 and DenseNet . The
methodology involves conducting an analysis of differential characteris-
tics to identify potential weaknesses in the cipher’s structure. Experi-
mental results and analysis demonstrate the efficacy of both approaches
in compromising the security of SPECK 32/64.
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1 Introduction

Cryptography is the technique of converting data into an incomprehensible form
known as cipher text. It is done by using mathematical principles and algorithms.
This crucial sector ensures the security and privacy of modern digital communi-
cations and data storage. Throughout history, critical information ranging from
military communications[1] to commercial transactions[2] have been protected
via cryptographic processes.

Over the centuries, cryptography has been an art practised by many who have
invented techniques to meet some of the information security requirements. The
previous two decades have seen the field evolve from an art to a science[3].

Data secrecy,integrity and authenticity are the main goals of cryptography.
Confidentiality ensures that only authorised personnel may access the informa-
tion. Integrity ensures that the data is unchanged throughout transmission or
storage. Authentication makes sure that only reliable sources are sharing infor-
mation

With the aid of encryption algorithms[4], cryptography secures data and com-
munication. This is achieved by converting plaintext into ciphertext, a form
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that cannot be deciphered. On the other side, Cryptanalysis is the science of
analysing cryptographic systems to find vulnerabilities. These weaknesses can
be exploited to obtain the original plaintext or encryption keys. Lightweight
block ciphers serve a critical role in cryptography in situations where computa-
tional resources are constrained. These ciphers’ low computational and memory
overhead makes them ideal for secure, effective encryption[5].

The study of decrypting cryptographic methods, or cryptanalysis, is a crucial
area for maintaining the security of encryption systems. It involves investigating
the mathematical features and design choices to find the flaws in the cipher . Un-
derstanding these flaws allows cryptanalysts to create more successful attacks.
This helps in increasing the security of the cryptographic systems.

Numerous fields, including cryptanalysis[6], have seen the emergence of machine
learning and deep learning as highly effective tools. These methods make use
of the models’ computational capabilities. They can automatically identify pat-
terns, detect features, and generate predictions.Machine learning techniques can
be used in the context of cryptanalysis as well[7]. It can be used to analyse
and categorise cryptographic data, such as ciphertexts, plaintexts, or encryption
keys.

Deep learning, a branch of machine learning, has achieved outstanding results
in a number of fields. Ranging from speech recognition[8], computer vision[9] to
natural language processing[10]. Deep neural networks are able to learn complex
data representations and identify deep correlations.
In this paper, we investigate the use of deep learning methods, more specifi-
cally DenseNet and ResNet. They are used for differential cryptanalysis on the
lightweight block cipher SPECK 32/64. We intend to compare the effectiveness
of ResNet and DenseNet. It ultimately helps us in understanding of the security
of the SPECK 32/64 cipher by utilising the expressive potential of deep neural
networks.

2 SPECK 32/64 Overview

SPECK is a lightweight block cipher developed by the National Security Agency
(NSA). It was a part of the Lightweight Cryptography Project of the NSA. Here,
the term "lightweight" refers to cryptographic algorithms that are designed for
efficient operation and low resource consumption.

This qualifies them for usage in environments with limited resources such
as Internet of Things devices[11], wireless sensor networks[12], and embedded
systems[13].

The SPECK family consists of a variety of block and key sizes. The block is
made up of 2 words, and is of the form 2n. Here, n is the size of the word which
may be 16, 24, 32, 48 or 64 bits. The key size(k) is mn bits. The key contains 2,3
or 4 words depending on the variant. Hence, the SPECK family is of the form
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SPECK 2n/mn and has ten variants. We use SPECK 32/64 in our work, which
denotes 2 words of 16-bits each and 4 keys of 16-bits each as well.

The SPECK family cipher is made up of a Feistel network structure[14]. In
this network, the input block is split into two equally sized halves. Encryption
rounds are then performed on these halves using a subkey. A different subkey
is derived for each round. The number of rounds differ in each variant of the
family.

The round function of SPECK 32/64 uses a range of bitwise operations for
its cryptographic operations. It includes rotation, XOR, and modular addition,
to induce confusion and diffusion features, assuring the security of the cipher.

2.1 Round Function

Speck’s round function is very simple.It is an ARX structure, which means it is
made out of the fundamental functions of modular addition (mod 2k), bitwise
rotation, and bitwise addition. They are denoted by ⊞, ≫ and ⊕ respectively.
SPECK n/m represents Speck with n bit block size and m bit key size. It
produces the next round state (Li+1,Ri+1) with an input k -bit subkey K and
the current cipher state consisting of two k -bit words (Li,Ri). The algorithm is
as follows:

Li+1 = ((Li ≫ α)⊞Ri)⊕K

Ri+1 = (Ri ≪ β)⊕ Lii+1

The values of α and β are constant: (α = 7, β = 2) for Speck32/64 and (α =
8, β = 3) for other members of the Speck family. The cipher text output is
generated by applying the round function on the plain text input for 22 rounds
in the case of Speck 32/64. However, we refer to round reduced speck in this
paper. The key used in each round is generated from a master key by applying
a key schedule. The key schedule depends on the member of the Speck family,
we refer to Beaulieu et al[15] in this paper for the key scheduling.

3 ResNet and DenseNet Architectures

3.1 ResNet

ResNet or Residual Network is a powerful deep learning architecture first pub-
lished by Kaiming[16]. Resnet is intended to address the issue of disappearing
gradients[17] in very deep neural networks. It does so, by incorporating resid-
ual connections[18] or skip connections, which enable the building of deeper and
more precise models.

ResNet is composed of many residual blocks or towers that are layered on top
of each other and contain a sequence of convolutions and a skip connection. The
skip connection is added to a block’s output and then passed on to the following
block. This helps in reducing the vanishing gradient problem and allows for
better model training. Figure 2 depicts the working of a skip connection.
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Fig. 1: General round of Speck

ResNet Structure The ResNet structure used in this work is the one used by
Gohr in 2019[19]. It consists of a residual tower of depth ten, having a two layer
convolutional network. The convolutional network has 32 filters.

First, Convolution is applied followed by a Batch normalization[20] for faster
and stable training . It is followed by a Rectified Linear Unit layer[21] which
introduces Non-linearity to the model. Then a skip/jump connection at the end
adds the output of the final rectifier layer of the block to the convolutional block’s
input and forwards the result to the next block.

The initial layer is a bit-sliced 1 Dimensional Convolution with 32 output chan-
nels, which is followed by Batch normalization. Finally, a Rectified Linear Unit
is applied to the preceding layer’s output. The final result is a 32x16 matrix that
is fed into the depth-10 Residual Tower.

Finally, the data is flattened and transmitted to the prediction layer. This fi-
nal layer consists of two densely linked hidden layers of 64 units each, followed
by batch normalization, a Rectified Linear unit, and sigmoid activation for a
single output head.

3.2 DenseNet

DenseNet is made up of Dense blocks and transition layers. DenseNet, which
stands for "Densely Connected Networks" is a deep learning architecture de-
signed by Gao Huang et al. originally published in their paper[22] in 2017.

DenseNet, like ResNet, aims to solve the vanishing gradient problem by max-
imising feature reuse. DenseNet introduces dense connections between layers and
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Fig. 2: Skip Connection

blocks as opposed to traditional neural networks, which connect layers sequen-
tially. Unlike ResNet, which utilises an additive approach of adding previous
layer output to subsequent layers, DenseNet uses all past outputs as input for
future layers. As a result, each layer is directly linked to all the following layers.

Fig. 3: Dense Connection

DenseNet Structure The first layer, like the one in the Resnet model, is a
bit-sliced 1 Dimensional Convolution with 32 output channels.It is followed by
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Batch normalisation, and lastly a Rectified Linear Unit is applied to the output
of the preceding layer. The resulting 32x16 matrix is passed into the Dense Net-
work.

DenseNet is made up of Dense blocks and transition blocks.The dense block
has a depth-8 and is made up of two layers of 1D-convolution, Batch normali-
sation, and a Rectified linear unit layer. The convolution layer is made up of 64
filters and a kernel with a size of 3.Finally, the output is concatenated with the
layer’s input and handed on to the next layer.This occurs eight times since the
depth is eight.

To restrict the amount of feature maps and minimise spatial dimensions, tran-
sition layers are inserted between dense blocks. The transition layer is made up
of 1D convolution with 32 filters, batch normalisation, a ReLu layer, and 1D
average pooling. The transition layer’s output is subsequently passed on to the
following dense block.

The dense block and transition layers are now merged with a depth of 2. This
indicates alternating dense block and transition layer, followed by a final dense
block. The final result is an overall structure of three dense blocks and two tran-
sition layers.

Finally, the data is flattened and transmitted to the prediction layer. This predic-
tion layer consists of two dense hidden layers of 64 units each, followed by batch
normalisation, Rectified linear unit, and sigmoid activation, similar to ResNet.

3.3 Input Data

Input data: Input consists of a pair of cipher texts (C0, C1). They are transformed
into a 4x16 matrix with each row consisting of a word of the ciphertext. This way
the data consists of four 16-bit words and therefore the input layer has 64 units.
This input data is then passed into the ResNet and DenseNet architecture.

4 Experimental Setup and Methodology

4.1 Data Generation

The data generation methodology used is similar to the one used by Aron Gohr
in 2019. A random number generator is used to create evenly distributed keys
Ki and plain text pairings Pi with the input difference ∆ = 0x0040/0000, along
with a vector of binary-valued real/random labels Yi. If Yi is set(=1), the plain
text pair Pi is encrypted for k rounds to create training or validation data for
k-round Speck, and if not, the second plain text in the pair is changed to a newly
created random plain text. This way we have cipher texts belonging to 2 classes:
Chosen Input difference ( Y = 1 ) and random input difference ( Y = 0 ). As a
result we have 106 samples for our dataset for training and validation.
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4.2 Training and Testing Procedure:

The data set of 106 samples is used for training in batches of 5000 and run for
20 epochs as opposed to 200 epochs by Gohr .
Mean Square Error (MSE)[23] loss is used with L2 weights regularization using
the Adam algorithm[24] for optimization. This is a down scaled version of Gohr’s
experiment in which he used 107 samples for training for 200 epochs.

Testing data also contains a set of 106 samples with 2 classes. One of the cho-
sen input difference and the other of random input difference. Table 1. provides
the list of hyper-paramaters used in training with their values.

Hyper-parameters values

Sample Size 106

Batch Size 5000
Epochs 20

Encryption Rounds 5,6,7,8
Optimizer Adam

Loss function MSE loss
Cyclic Learning Rate 0.002-0.0001

Table 1: Hyper-parameters for training of model

5 Results and Analysis:

In this section, we present the findings of our experiments on the differential
cryptanalysis of the round reduced ( rounds 5,6,7,8 ) SPECK 32/64 lightweight
block cipher using the ResNet and DenseNet architectures. R5, R6, R7 & R8
refers to the ResNet architecture for rounds 5, 6, 7 and 8 respectively, and simi-
larly D5, D6, D7 & D8 refers to the DenseNet architecture. Table 2 depicts the
training and validation accuracy for both the models.

Rounds R (ResNet) D (DenseNet)
Training Validation Training Validation

5 0.9332 0.6779 0.9309 0.7005
6 0.7952 0.5874 0.7917 0.5923
7 0.6096 0.5267 0.6053 0.5313
8 0.5012 0.4996 0.4998 0.5002

Table 2: Training and Validation accuracy for ResNet and DenseNet models
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The DenseNet model achieved slightly better validation accuracy than the
ResNet model for rounds 5, 6 and 7. For round 8, both the models failed to
give a prominent result since the models could not learn an accurate pattern.
Figure 4 below shows the comparison of accuracy for both the models.

(a) 5 Rounds (b) 6 Rounds

(c) 7 Rounds (d) 8 Rounds

Fig. 4: Validation Accuracy comparison

6 Conclusions

In this paper, we compared the ResNet and DenseNet architectures for differ-
ential cryptanalysis of the SPECK 32/64 lightweight block cipher. Our analysis
attempted to evaluate their accuracy in deciphering the cipher’s complicated
differential behaviour.
According to our findings, the DenseNet architecture outperforms the ResNet
architecture marginally. DenseNet achieved slightly higher predictions of cipher-
text differences in the context of differential cryptanalysis. However, neither
model produced a satisfactory result for an 8-round (or higher rounds) encryp-
tion cipher.
As of now, this work does not include a key retrieval approach. At last, our
findings highlight the importance of architecture selection in differential crypt-
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analysis. The observed accuracy improvements of DenseNet support its use in
scenarios requiring lightweight block cipher analysis.
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