
Quantum Attacks on Hash Constructions with
Low Quantum Random Access Memory

Xiaoyang Dong1,2,6,7(B), Shun Li3(B), Phuong Pham3(B), and Guoyan
Zhang4,5,7(B)

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
xiaoyangdong@tsinghua.edu.cn

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China
3 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore, shun.li@ntu.edu.sg, pham0079@e.ntu.edu.sg
4 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,

China, guoyanzhang@sdu.edu.cn
5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China
6 Zhongguancun Laboratory, Beijing, China

7 Shandong Institute of Blockchain, Jinan, China

Abstract. At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert pro-
posed the quantum herding attacks on iterative hash functions for the
first time. Their attack needs exponential quantum random access mem-
ory (qRAM), more precisely 20.43n quantum accessible classical memory
(QRACM). As the existence of large qRAM is questionable, Benedikt
et al. leave an open question on building low-qRAM quantum herding
attacks.
In this paper, we answer this open question by building a quantum herd-
ing attack, where the time complexity is slightly increased from Benedikt
et al.’s 20.43n to ours 20.46n, but it does not need qRAM anymore (abbre-
viated as no-qRAM). Besides, we also introduce various low-qRAM or
no-qRAM quantum attacks on hash concatenation combiner, hash XOR
combiner, Hash-Twice, and Zipper hash functions.

Keywords: Quantum computation · qRAM · Herding Attack · Hash
Combiner

1 Introduction

Shor’s seminal work [59] shows that sufficiently large quantum computers al-
low factorization of large numbers and computation of discrete logarithms in
polynomial time, potentially dooming many public-key schemes in use today.
To meet the challenges posed by quantum computers, the public-key cryptogra-
phy community and standardization organizations have invested a lot of effort
in the research of post-quantum public-key schemes. In particular, NIST has
initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptography algorithms [55]. For symmetric cryptography,

2 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

the community has also recently witnessed many important quantum cryptanal-
ysis results [41,48,16,38,15,17,25] since the initial work of Kuwakado and Morii,
who showed that the classically provably secure Even-Mansour cipher and the
three-round Feistel network can be broken in polynomial time with the help
of quantum computers [46,47]. Most of these attacks that enjoy exponential
speedup rely on Simon’s algorithm [60] to find a key-dependent hidden period
where access to a quantum superposition oracle of key primitives is necessary.
This is a fairly strong (computation) model, and its actual relevance is some-
times questioned [13]. Therefore, a more complex attack still makes sense if it
does not require online queries to the superposition oracles of the keyed primi-
tives [13,35,18,14,57].

For keyless primitives, especially hash functions, quantum attacks are easier
to launch, since there is no need for online queries and all computations can be
done offline. The classical algorithm finds collisions of n-bit output hash func-
tions with time complexity O(2n/2). In the quantum setting, the BHT algorithm
[20] finds collisions with a query complexity of O(2n/3) if O(2n/3) quantum ran-
dom access memory (qRAM) is available. However, it is generally acknowledged
that the difficulty of fabricating large qRAMs is enormous [32,31]. So quantum
algorithms (even has relatively high time complexity) using less or no qRAM is
desirable. At ASIACRYPT 2017, Chailloux, Naya-Plasencia and Schrottenloher
first overcome the O(2n/2) classical bound without using qRAM [21]. The time
complexity of the algorithm is O(22n/5), and the classical memory is O(2n/5).
Also, a quantum algorithm for the generalized birthday problem (or the k-XOR
problem) in settings with and without large qRAM can be found in [33,53].
Besides the generic attacks on hash functions, the first dedicated quantum at-
tack on hash functions was presented at EUROCRYPT 2020 by Hosoyamada
and Sasaki [36], showing quantum attacks on AES-MMO and Whirlpool by ex-
ploring differentials whose probability is too low to be useful in the classical
setting. Later, refined collision and preimage attacks on hash functions have
been presented subsequently by Dong et al. [27,28,26], Flórez Gutiérrez et al.
[29], Hosoyamada and Sasaki [37], Schrottenloher and Stevens [58].

The Merkle-Damg̊ard construction [22,52] is a popular way to build hash
functions, where a single compression function is iteratively called to extend the
input domain from a fixed length to arbitrary length and the digest length is
usually the same as that of the internal state. However, some widely deployed
hash function standards (such as MD5 and SHA-1) based Merkle-Damg̊ard con-
struction have been broken [62,63,61]. Besides, Kelsey and Schneier [43] have
demonstrated a generic second-preimage attack against all hash functions based
on the classical Merkle-Damg̊ard construction, when the challenge message is
long. At CRYPTO 2004, Joux [40] introduced multi-collision attacks on iter-
ated hash functions. At EUROCRYPT 2006, Kelsey and Kohno introduced the
herding attack (also known as nostradamus attack) [42], in which the adversary
commits to a hash value T of an iterated hash function H , such that when
later given a message prefix P , the adversary is able to find a suitable “suffix
explanation” S with H(P∥S) = T .

Quantum Attacks on Hash Constructions 3

In order to obtain a more secure hash function, and to ensure compatibility,
researchers and developers try to combine the output of two (or more) indepen-
dent hash functions to provide better security in case one or even both hash
functions are weak. Practical examples can be found in TLS [23] and SSL [30].
There are several common hash combiners, such as concatenation combiner [56],
XOR combiner, Hash-Twice [3], and Zipper hash [50]. However, the security of
these hash combiners has also been challenged. At CRYPTO 2004, Joux [40]
revealed that the concatenation combiner provides at most n/2-bit security for
collision resistance and n-bit security for preimage resistance. Leurent and Wang
[49] and Dinur [24] showed that the combiners may be weaker than each hash
function. Besides, various cryptanalysis results [4,3,51,2,8,6] have been achieved
on the hash combiners.

At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [9] considered quan-
tum nostradamus attacks on iterative hash functions for the first time, and
realized attacks of complexity O(23n/7). The attack requires exponentially large
qRAM, which is inherited from the BHT algorithm [20]. Since fabricating large
qRAMs is difficult to realize [32,31], Benedikt et al. [9] left open questions for
building low-qRAM quantum herding attack. In 2022, Bao et al. [7] built a low-
qRAM quantum herding attack based Chailloux et al.’s multi-target preimage
algorithm [21]. However, we find their algorithm is flawed and incorrect when
building diamond structure for herding8. Therefore, the question is still open.
Besides the quantum herding attack, Bao et al. also gave some quantum attacks
on hash XOR and concatenation combiners, including collision, preimage, and
herding attacks [7].

Our contributions.

In this paper, for the first contribution, we answer the open question by
Benedikt et al. [9] to build the first valid low-qRAM quantum herding attack
on iterated hash functions. We first convert Benedikt et al.’s quantum diamond-
building algorithm (it needs exponential qRAM, i.e., 23n/7 quantum accessible
classical memory (QRACM)) into an algorithm that does not need qRAM any-
more. The new algorithm is highly based on Chailloux et al.’s collision finding
algorithm [21] with various adaptions. In our herding attack, we choose the leaves
of the diamond structure to be prefixed with r-bit zeros, then apply Chailloux et
al.’s collision finding to find the linking message S such that H(P∥S) hits one of
the leaves of the diamond structure. Note a previous work by Bao et al. [7] also
built a quantum herding attack. However, in their attack, the Chailloux et al.’s
multi-target preimage algorithm [21] is applied, which can not take the advan-
tage of the ability that attacker can choose the prefixed leaves of the diamond
structure.

As the second contribution, for the quantum preimage attack on hash
XOR combiners, we introduce an efficient low-qRAM quantum algorithm to

8 Please find the detailed comments on Bao et al’s attacks in Appendix A and B.

4 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

build Leurent and Wang’s interchange structure [49]. Then, based on Schrotten-
loher and Stevens’s quantum Meet-in-the-Middle attack [58], or Ambainis’ ele-
ment distinctness algorithm [1], or Jaques and Schrottenloher’s golden collision
finding algorithm [39], we propose three different low-qRAM quantum preim-
age attacks on hash XOR combiner. Especially, our attack based on Jaques and
Schrottenloher’s method [39] reduces the 20.143n qubits of previous attack [7] to
ours 20.013n qubits, without quantum accessible quantum memory (QRAQM).
Moreover, the time complexity is also reduced from previous 20.495n to ours
20.493n.

For hash concatenation combiner, we introduce a no-qRAM quantum colli-
sion attack and a no-qRAM quantum herding attack. In [7], both attacks need
20.143n qubits or 20.333n QRAQM . However, our attacks do not need qRAM and
the number of qubits needed is also of polynomial size. We also introduce quan-
tum herding attacks on other important hash combiners, including Hash-Twice,
and Zipper hash function, by exploiting their different features. All the attacks
are summarized in Table 1.

Table 1: A Summary of the Attacks. QRACM: quantum accessible classical mem-
ory, QRAQM: quantum accessible quantum memory, cRAM: classical random
access memory

Target Attacks Settings Time Qubits QRACM QRAQM cRAM Generic Ref.

H Herding
Classical 20.67n - - - 20.67n - [42]
Quantum 20.43n O(n) 20.43n - - - [9]
Quantum 20.46n O(n) - - 20.23n - Sect. 4

H1 ⊕H2 Preimage

Classical 20.83n - - - 20.33n 2n [49]
Classical 20.67n - - - - 2n [24]
Classical 20.612n - - - 20.61n 2n [6]
Quantum 20.476n O(n) - 20.333n - 20.5n [7]
Quantum 20.495n 20.143n 20.033n - 20.2n 20.5n [7]
Quantum 20.493n 20.013n 20.047n - 20.2n 20.5n Sect. 5.3
Quantum 20.485n O(n) 20.057n 20.0285n 20.2n 20.5n Sect. 5.3
Quantum 20.485n O(n) 20.043n 20.0285n 20.2n 20.5n Sect. 5.3

H1∥H2

Collision

Classical 20.5n - - - - 2n [40]
Quantum 20.333n O(n) - 20.333n - 20.67n [7]
Quantum 20.43n 20.143n - - 20.2n 20.67n [7]
Quantum 20.4n O(n) - - 20.2n 20.67n Sect. 6

Herding

Classical 20.67n - - - 20.33n - [3]
Quantum 20.444n O(n) - 20.333n - - [7]
Quantum 20.49n 20.143n - - 20.2n - [7]
Quantum 20.467n O(n) - - 20.2n - Sect. 7

Hash-Twice Herding
Classical 20.667n - - - 20.33n - [3]
Quantum 20.467n O(n) - - 20.2n - Sect. 8

Zipper Herding
Classical 20.667n - - - 20.33n - [3]
Quantum 20.467n O(n) - - 20.2n - Sect. 9

Quantum Attacks on Hash Constructions 5

2 Preliminaries

2.1 Quantum Computation and Quantum RAM

The state of the n-qubit quantum system can be described as the unit vector {|i⟩ :
0 ≤ i < 2n} in C2n under the orthogonal basis. Quantum algorithms are typically
implemented by manipulating the state of an n-qubit system through a series of
unitary transformations and measurements, where all unitary transformations
can be implemented as a series quantum gates in quantum circuit models [54].
The efficiency of a quantum algorithm is quantified based on the number of
quantum gates used.

Superposition Oracles for Classical Circuit. Let the quantum oracle of a
function f : Fm

2 7→ Fn
2 be the unitary operator Uf that Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩

with x ∈ Fm
2 and y ∈ Fn

2 . When Uf acts on superposition states, we have

Uf

∑

x∈Fn
2

ai |x⟩ |y⟩

 =

∑

x∈Fn
2

ai |x⟩ |y ⊕ f(x)⟩ . (1)

Variations on Grover’s Algorithm. The task is to find the labeled element
from the set X. Suppose we denote the subset of labeled elements by M ⊂ X and
know the fraction of the labeled elements ϵ = |M |/|X|. The classical algorithm
to solve this problem needs O(1/ϵ) iterations. A quantum algorithm can be
expressed as a function of two parameters.

– Setup operation, i.e., sampling a uniform element from X. Denote the cost
(execution time) of Setup as |Setup|RT .

– Checking operation, i.e. checking if an element is labeled. Denote the cost
(execution time) of Checking as |Checking|RT .

Grover’s algorithm [34] is a quantum search process for finding the labeled el-
ements, whose complexity is a function of the quantum Setup cost |Setup|RT

of construction of uniform superposition of all elements from X, and the quan-
tum Checking cost |Checking|RT . The time complexity of Grover’s algorithm is√
1/ϵ · (|Setup|RT + |Checking|RT). Assuming the Setup and Checking steps are

simple, Grover’s algorithm can find the element x ∈ M at a cost of O(
√

1/ϵ).
Grover’s algorithm can also be described as a special case of quantum ampli-

tude amplification (QAA), which is a quantum algorithm introduced by Bras-
sard, Høyer, Mosca, and Tapp [19]. Intuitively, assuming there exists an quan-
tum algorithm A to produce a superposition of the good subspace and the bad
subspace of X. Let a be the initial success probability that the measurement
of A |0⟩ is good. Let B be a function that classifies the outcomes of A as either
good or bad state. Quantum Amplitude Amplification (QAA) technique achieves
the same result as Grover’s algorithm with a quadratic improvement. The time
complexity of QAA is about

√
1/a · (|A|RT + |B|RT). (2)

6 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Quantum Random Access Memories (qRAM) can be conceptualized as
the quantum counterpart of classical random access memory (RAM). In the clas-
sic setup, RAM facilitates access (read and write operations) to memory elements
in time O(1) regardless of storage size. Following [58,45], qRAM comes in two
flavors: Quantum Accessible Classical Memory (QRACM), which enables access
to classical data in quantum superposition; and Quantum Accessible Quantum
Memory (QRAQM), where data is stored in quantum memory. Consider a sce-
nario where we intend to store a list of data, denoted as D = (x0, x1, · · · , x2k−1),
with each xi representing an n-bit data. In this context, the qRAM for accessing
the data D is established as a quantum gate. This qRAM is defined through a
unitary operator UqRAM (D), which is expressed as follows:

UqRAM (D) : |i⟩ |x0, x1, · · · , x2k−1⟩ |y⟩ → |i⟩ |x0, x1, · · · , x2k−1⟩ |y ⊕ xi⟩ ,

Here, i takes values from the set {0, 1}k, and y represents an n-bit value. In both
QRACM and QRAQM, we assume that this gate costs O(1). For QRACM, i is
superposed but the xi are classical; For QRAQM, both i and xi are superposed.
For example, the BHT collision finding algorithm [20] requires QRACM, the
quantum element distinctness [1] and quantum meet-in-the-middle attack [58]
require QRAQM. Obviously, QRAQM is the strongest quantum memory model.

For the time being, it is unknown how a working qRAM (at least for large
qRAMs) can be built. Nevertheless, this disappointing fact does not stop re-
searchers from working in a model where large qRAMs are available, in the same
spirit that people started to work on classical and quantum algorithms long be-
fore a classical or quantum computer had been built. From another perspective,
the absence of large qRAMs makes it quite meaningful to conduct research in
an attempt to reduce or even avoid the use of qRAM in quantum algorithms.

Quantum Element Distinctness Problem.

Problem 1. Given a set S = {x1, x2, · · · , xN}, does it exist i, j such that 1 ≤ i <
j ≤ N and xi = xj? If yes, return i, j.

In 2007, Ambainis proposed the quantum walk algorithm for the element dis-
tinctness problem [1] and achieved time complexity of O(N2/3) with O(N2/3)
QRAQM. At SAC 2020, Jaques and Schrottenloher [39] solved the element dis-
tinctness problem (or golden collision problem by [39]) in the plain quantum
circuit model (i.e., the computation is a sequence of basic quantum gates applied
to a pool of qubits) in time complexity of O(N6/7) with O(N2/7) qubits without
qRAM.

CNS collision finding algorithm [21]. At ASIACRYPT 2017, Chailloux,
Naya-Plasencia and Schrottenloher [21] introduced the first quantum collision
finding algorithm without any qRAM. Their algorithm is denoted as CNS algo-
rithm in this paper. The time complexity of the algorithm is O(22n/5), with a
classical memory of O(2n/5). The CNS algorithm is based on a quantum mem-
bership algorithm.

Quantum Attacks on Hash Constructions 7

Definition 1. Given a set L of 2k n-bit strings, a classical membership oracle
is a function fL that computes: fL(x) = 1 if x ∈ L and 0 otherwise.

A quantum membership oracle for L is an operator OL that computes fL:

OL(|x⟩ |b⟩) = |x⟩ |b⊕ fL(x)⟩ .

When the set L of size 2k is stored in some classical memory, Chailloux et
al. implement the quantum operator OL with n2k simple operations and 2n +
1 qubits. Since in the following, the time complexity is number of queries of
the compression functions of hash function, the n2k simple operations are then
recorded as O(2k) time complexity. The CNS collision finding algorithm can be
divided into two parts, i.e., the precomputing part and the matching part.

Precomputing Part: Given a hash function h that h(m) = T , the CNS
algorithm first builds a table L of size 2k, where the r-bit most significant bits
(MSB) of all x ∈ L are zero, and store L in a classical memory. The way to
build L is to perform 2k times of Grover’s algorithm with time complexity of
2k × 2r/2 = 2k+r/2.

The Matching Part: Apply the QAA algorithm. In the setup phase A, the
Grover’s algorithm is applied to produce a superposition of m, where the r-bit
MSBs of m are zero. The time of the setup phase is |A|RT = 2r/2. Then, in the
checking phase B, a quantum membership algorithm is applied to classify that if
m is in L or not. |B|RT = 2k. Since the initial probability, that the measurement

of A |0⟩ is good, is a = 2k

2n−r (since only the last n− r bits should be matched).
According to Equation (2), time complexity of this part is

√
2n−r

2k
· (2r/2 + 2k). (3)

Totally, the time of the CNS algorithm is

√
2n−r

2k
· (2r/2 + 2k) + 2k+r/2. (4)

By assigning r = 2k = 2n/5, the complexity given in Equation (4) will be
optimal, which is O(22n/5). The number of qubits used is O(n). The classical
memory is 2n/5 to store L.

In this paper, the CNS algorithm is frequently used. In several applications
of our paper, only the Matching Part of the CNS algorithm is used with a
given L, while L may be built in a different way than the Precomputing Part
and thus have a different complexity than 2k+r/2. For example, in our quantum
herding attack in Section 4, the time to build L is the time to build the diamond
structure. Therefore, the time complexity of the Matching Part should be
weighed against the different time complexity of constructing L. To use the
CNS algorithm more flexibly, we define the Matching Part as CNSh(m,L) in
Definition 2 for a given table L and h in the following.

8 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Definition 2. Let CNSh(m,L) be the matching part of CNS algorithm, which
finds m so that h(m) ∈ L. Given the table L of size 2k stored in classical memory,
whose elements are prefixed with r-bit zeros, the time complexity |CNSh(m,L)|RT =√

2n−r

2k
· (2r/2 + 2k).

Quantum Meet-in-the-Middle Algorithm. At CRYPTO 2022, Schrotten-
loher and Stevens [58] applied the quantum two-list merging algorithm to build
the quantum MitM attack: For a given global guess G ∈ Fg

2, two small lists are
computed and merged to on the fly. Suppose the two small lists are L1 and L2,
the goal is to determine if there are elements x ∈ L1 and y ∈ L2 such that x = y
(called a solution). Let Omerge be the unitary operator that

Omerge(|G⟩ |b⟩) = |G⟩ |b⊕ f(G)⟩ ,where f(G) =

{
1 if a solution occurs
0 otherwise

. (5)

Lemma 1. [58] Assume that there exists an implementation of Omerge with time
complexity T . Then there is a quantum MitM attack with time complexity:

(
π

4
2g/2 + 1)× T. (6)

The T is roughly estimated by

min(|L1|, |L2|) +
√
max(|Lmerge|, |L1|, |L2|)), (7)

where Lmerge is the merged list. The QRAQM needed is of size min(|L1|, |L2|).

2.2 Iterated Hash Constructions

Iterated hash functions H(IV,M) = T commonly first pad and split the message
M into message blocks of fixed length, i.e., M = m1∥m2∥ · · · ∥mL. The message
blocks are processed sequentially and iteratively by the compression function h,
i.e., xi = h(xi−1,mi), where x0 = IV is a public value, T = xL is the n-bit
digest, the chaining value xi ∈ Fn

2 . Two commonly used iterated hash construc-
tions are the Merkle-Damg̊ard construction [22,52] and the HAIFA construction
[11]. In this paper, we only consider the Merkle-Damg̊ard construction and its
extensions.

The concatenation combiner H1(IV1,M)∥H2(IV2,M) = T1∥T2 is one of the
most studied hash combiner, which is first described by Preneel in 1993 [56]. In
2004, Joux [40] described the multi-collision attack on the 2n-bit output hash
combiner with 2n/2 time complexity for collision attack and 2n time complex-
ity for preimage attack. Besides the concatenation combiner, there are other
constructions:

– The XOR hash combiner H1(IV1,M)⊕H2(IV2,M) = T .
– Hash-Twice is originally defined in [3]: H2(H1(IV,M),M) = T shown in

Figure 1.

– Zipper hash [50] is defined as H2(H1(IV,M),
←
M) = T shown in Figure 2.

Quantum Attacks on Hash Constructions 9

IV1

IV2

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL ⊕

H1(M)

H2(M)

H(M)

Fig. 3: The XOR combiner

Generic attacks. To the best of our knowledge, no preimage attacks have been
shown against the XOR combiner. Therefore, the preimage security of the XOR
combiner against generic attacks is still an open problem and will be one of the
main topics of our work.

Security proof. Theoretically, the XOR combiner is robust concerning PRF
(Pseudo-Random Function) and MAC (Message Authentication Code) in the
black-box reduction model [Leh10]. Since the XOR combiner is length-preserving,
from the conclusions regarding the minimum output length of robust combiners,
it is not robust for collision resistance and preimage resistance. However, the
work of Hoch and Shamir [HS08] actually proves the security of the XOR com-
biner as an intermediate result: it is also indifferentiable from a random oracle
up to 2n/2 queries in the weak random oracle model. In particular, this proves
there are no generic attacks with complexity less than 2n/2. For collision resis-
tance, the bound is tight, since it is matched with the generic birthday attack
bound. On the other hand, for preimage resistance, there exists a gap between
the n/2-bit proven bound and the n-bit expected ideal security bound. Note
that the non-robustness result regarding preimage security does not imply that
the XOR of two concrete hash functions is weak, and the simplicity and short
output of this construction still make it quite attractive.

Analysis of Hash-Twice. Hash-Twice is a folklore hash construction that
hashes a (padded) message twice, with the output of the first hash value as
the value of the initialization vector of the second hash. In its original defini-
tion [ABDK09], the two underlying hash functions are identical, i.e., HT (M) ,
H(H(IV, M), M); here, we consider a generalized version, where the underlying
hash functions are independent, i.e., HT (M) , H2(H1(IV, M), M) (see Fig. 4).

IV1

xL

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

xL

H(M)

Fig. 4: The Hash-Twice

Generic attacks. Towards the three basic security requirements, a second-preimage
attack on Hash-Twice (HT (M) , H(H(IV, M), M)) has been published by An-

7

Fig. 1: Hash-Twice Construction

dreeva et al. in [ABDK09]. The attack is based on a herding attack, which
exploits the diamond structure originally used in the herding attack on a single
hash function [KK06] (see Sect. 2.3 for an introduction). The complexity of the
attack is approximately 2(n+t)/2 + 2n−` + 2n−t, where 2t is the width of the
diamond structure, and 2` is the length of the challenge.

Security proof. To the best of our knowledge, there is no published formal proof
regarding the security of Hash-Twice. However, we can claim that they are at
least as secure as the original functions: a generic collision attack requires at
least 2n/2 (because we need a collision in one of the compression functions);
a preimage attack requires at least 2n (because we need a preimage for the
finalization function); a second-preimage requires at least 2n/2 (because it implies
a collision).

Analysis of the Zipper hash. The Zipper hash has been proposed with the
goal of constructing an ideal hash function from weak ideal compression functions
(by “weak ideal”, it means that the compression function is vulnerable to strong
forms of attack but is otherwise random). Similar to Hash-Twice, it cascades two
independent hash functions evaluating the same (padded) message. The differ-
ence is that the second hash processes the message blocks in reverse order, i.e.,
ZH , H2(H1(IV1, M),←−M) (see Fig. 5). Note that the messages are first padded
by a padding scheme and split into message blocks, and then they are processed
in forward and reverse order sequentially. Thus, the padded message block mL

is processed at the end of the first hash computation and at the beginning of the
second hash computation, i.e., in the middle of the whole processing procedure.
The padding scheme of Zipper was specified to be any injective function of the
message [Lis06]. In this paper, and as for all other combiners, we take the length
padding of the MD construction as the padding scheme.

IV1

H(M)

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

y L
=

x
L

Fig. 5: The Zipper hash

Generic attacks. To the best our knowledge, no generic attacks on the Zip-
per hash regarding the three basic security notions have been shown. However,
there are a number of works that consider other security notions, such as multi-
collision, herding attack or attacks assuming weak compression functions. Ex-
amples include [NS07,HS06,ABDK09,CJ15,JN15], some of which also consider
the corresponding security of Hash-Twice.

8

Fig. 2: Zipper Hash Construction

3 Basic techniques and their quantum versions

In this section, we give brief introductions of Joux’s multi-collision technique,
diamond structure (DS) and their quantum versions.

3.1 Joux’s multi-collision

At CRYPTO 2004, Joux [40] introduced an efficient method to build multi-
collision on iterated hash functions. As shown in Figure 3, started from x0, the
attacker performs t birthday attacks to find t collisions. Based on the message
blocks m1,m2, · · ·mt and m′1,m

′
2, · · ·m′t, the attacker can build 2t collision mes-

sage pairs (denoted as 2t-MMC), e.g., (m1∥m′2∥ · · · ∥mt,m
′
1∥m2∥ · · · ∥m′t,). The

time complexity to build the 2t collision message pairs is t · 2n/2. In quantum
setting, Bao et al. [7] first applied CNS’s algorithm to build Joux’s multi-collision,
where one collision is built in time 22n/5. Therefore, the time to build 2t-MMC is
t · 22n/5. The quantum attack only uses a classical memory 2n/5.

Evaluating the Security of Merkle-Damgård Hash Functions and Combiners in Quantum Settings 7

3.1 Multi-Collision (MC [24]).

Joux in [24] proposes an efficient way to obtain a large set of messages mapping a starting state to
a common ending state on iterated hash functions, which is known as Joux’s multi-collisions.

x0

m1

m′
1

m2

m′
2

xt

mt

m′
t

≡ x0 xt

t

Figure 4: Multi-collision and its condensed representation in R.H.S. [23]

Multi-Collision (MC) in Quantum Settings. In Scenario R1, the t birthday attacks for finding t
collisions to build a 2t-MMC can be done by calling t times of BHT algorithm. As a result, the total
complexity, which is t ⋅ 2n/2 in the classical setting, is t ⋅ 2n/3 in the quantum setting. The quantum
counterpart of building a 2t-MMC is given in Algorithm 1.

The complexity of Algorithm 1 is dominated by calling the BHT algorithm t times; hence, it requires

Algorithm 1: Building a 2t-Joux’s MC in Quantum Settings
Require: Given an oracle of the compression hash function h, an initial value x0 and qRAM.
1. Initialize the data structure MMC to store pairs of message blocks.
2. For i = 1, ..., t:

(a) Start a BHT algorithm by querying 2n/3 message blocks m′
j to the oracle of h, sort according to the second

entry and store all the pairs in list L, if L contains a collision, output the collision immediately.
Store all pairs (m′

j , h(xi−1, m′
j)) in L to qRAM.

Construct the oracle: F ∶ {0, 1}n → {0, 1} by defining F (m) = 1 if and only if there exist (m′
j , h(xi−1, m′

j))
in qRAM such that h(xi−1, m′

j) = h(xi−1, m) and m′
j ≠m.

(b) In the BHT algorithm, apply the Grover’s search algorithm using oracle F :
i. Initialize the state of the Grover’s search to be the uniform superposition of 2n messages;

ii. After running about π

4 ⋅ 2n/3 Grover steps, measure the state and return a pair of message blocks
(mi, m′

i) such that h(xi−1, mi) = h(xi−1, m′
i).

(c) Obtain xi = h(xi−1, mi), append (mi, m′
i) to MMC.

3. Output (xt,MMC).
O(t ⋅ 2n/3) quantum queries, O(t ⋅ 2n/3) computations, and O(2n/3) qRAM.

In Scenario R2, we can replace the BHT algorithm with the algorithm in [11], which requires
O(22n/5) computations and O(2n/5) classical memory. Then, the resulted quantum algorithm 1
requires O (t ⋅ 22n/5) quantum queries and O(2n/5) classical memory.

Note that this quantum version of the Joux’s multi-collision will be used in building more
complex structures (interchange structure in Sect. 3.4), and in the presented preimage attacks
(Sect. 5.1 and 5.2).

3.2 Expandable Message (EM [26]).

Kelsey and Schneier in [26] invented the expandable message, which is similar to Joux’s multi-
collision. By generating t collisions with pairs of message fragments of length (1, 2i + 1) for i ∈{0, 1, . . . , t− 1}, one can get 2t colliding messages whose lengths cover the range of [t, t+ 2t − 1] (see
Fig. 5). The complexity is of 2t + t ⋅ 2n/2 computations. This expandable message can be used to
bypass the Merkle-Damgård strengthening and carry out a long message second-preimage attack
on MD with roughly 2n/L computations for a given challenge of L blocks.

Fig. 3: Joux’s multi-collision [40]

10 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

3.2 Diamond structure and its New Quantum Algorithm in
no-qRAM setting

Kelsey and Kohno in [42] invented the diamond structure. Similar to Joux’s
multi-collisions and Kelsey and Schneier’s expandable message [43], diamond
is also a kind of multi-collision. The difference is that, instead of mapping a
single starting state to a final state in the form of sequential chain like Joux’s
multi-collisions, a 2t-diamond maps a set of 2t leaf states to a common root
state as shown in Figure 4. In classical setting, several improvements [12,44] on
building diamond structure have been proposed. The time complexity to build

a 2t-diamond is
√
t · 2n+t

2 evaluations of the compression function of the hash
function. Based on the diamond structure, Kelsey and Kohno [42] introduced the

herding attack with time complexity
√
t ·2n+t

2 +2n−t, which achieve the optimal
O(22n/3) when t = n/3. The memory complexity is bounded by building 2t-
diamond, which is O(2(n+t)/2) = O(22n/3) [42,12].

Evaluating the Security of Merkle-Damgård Hash Functions and Combiners in Quantum Settings 9

x1

x2

x3

x4

x5

x6

x7

x8

x10

x11

x12

x13

x20

x21

x�

m
00

m01

m
02

m03

m
04

m05

m
06

m07

m
10

m11

m
12

m13

m
20

m
21

Figure 6: A 23-diamond

In Algorithm 2, according to [8], to find a perfect matching4 in G, the probability p for each pair of
vertices being connected by an edge should be no less than (ln 2t)/2t ≈ t⋅2−t. So, for each state xi, the
required number of other states that can lead to a collision with xi is t. At this condition, we repeat
Grover’s algorithm t times for each state in Step 2. Then, the probability for each pair of (xi, xj)
being mapped to a collision is p ≈ (t⋅(L⋅S))/2n. That requires p ≈ (t⋅(L⋅S))/2n = (t⋅2n−t)/2n. That is,

L ⋅S ≈ 2n−t. Let
⎧⎪⎪⎨⎪⎪⎩

L = td1 ⋅ 2ℓ,

S = td2 ⋅ 2s,
then

⎧⎪⎪⎨⎪⎪⎩
d1 + d2 = 0,

ℓ + s = n − t.
To balance the complexity of Step 1 and Step

2, we set 2t ⋅t ⋅√S = 2t ⋅L, that is,
⎧⎪⎪⎨⎪⎪⎩

2 + d2 = 2d1,

s = 2ℓ.
Accordingly, we have

⎧⎪⎪⎨⎪⎪⎩
d1 = 2/3, ℓ = (n − t)/3
d2 = −2/3, s = 2(n − t)/3.

Therefore,
⎧⎪⎪⎨⎪⎪⎩

L = t2/3 ⋅ 2(n−t)/3
S = t−2/3 ⋅ 22(n−t)/3.

As a conclusion, using the above method in Scenario R1, the total

time complexity for building t layers of a 2t-diamond is O(t2/3 ⋅ 2(n+2t)/3), and memory complexity
is O(t2/3 ⋅ 2(n+2t)/3) qRAM.

In Scenario R2, the time complexity to find a collision is of (2n−t)2/5 computations. Therefore,
building a 2t-diamond structure requires O(t2/3 ⋅ 2t ⋅ 22(n−t)/5) = O(t2/3 ⋅ 2(2n+3t)/5) computations,
with O(t2/3 ⋅ 2t ⋅ 2(n−t)/5) = O(t2/3 ⋅ 2(n+4t)/5) classical memory.

This quantum version of the diamond structure will be used in the presented quantum herding
attack on the MD hash function (Sect. 4.3) and the quantum herding attack on combiners (Sect.
5.3).

3.4 Interchange Structure (IS [28]).

Leurent and Wang in [28] invented the interchange structure, which is used to devise a preimage
attack on the XOR combiner. The interchange structure contains a set of messages MIS and two
sets of states A and B, such that for any pair of states (Ai, Bj ∣ Ai ∈ A, Bj ∈ B), one can pick a
message M from MIS such that Ai = H1(IV1, M) and Bi = H2(IV2, M). To build a 2t-interchange
structure (with 2t states for each hash function), one can cascade 22t − 1 building modules named
switches. The effect of a switch is that a state in one computation chain of one hash function can
make pair with two states in two computation chains of the other hash function. A switch can be
built using multi-collisions and the birthday attack (see Fig. 7a). The total complexity to build a
2t-interchange structure is of Õ(22t+n/2) computations.

4 In graph G, if there exists a set of edges, no two of which share a vertex, then the set of edges is called a matching.
M is a maximum matching in G if no matching in G contains more edges than M does. If matching M in G contains
every vertex, then M is called a perfect matching. Our goal here, is to find a perfect matching in G = (V,E), of
which the vertex set is V = {x1, . . . , x2t} and (xi, xj) ∈ E if xi and xj generate an obtained collision.

Fig. 4: 23-diamond [7]

Bao et al. [7] initially introduced the quantum diamond structure algorithm
for both qRAM and no-qRAM scenarios. However, when we tried to replicate
their algorithm, we find their no-qRAM algorithm is incorrect and for more
details please refer Appendix A.

Later, at ASIACRYPT 2022, Benedikt, Fischlin, Huppert [9] presented a
quantum diamond structure algorithm utilizing exponential QRACM, resulting
in a time complexity of t1/3 · 2(n+2t)/3. Consider a level s of the 2t-diamond
structure and try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise manner.
Benedikt et al. split the 2s nodes into a upper and a lower half of 2s−1 nodes
each. For the upper half, they compute a list Y of 2l hash evaluations h(mj , xs,i)
with i = 1, · · · , 2s−1, which equally spread out over the 2s−1 nodes. Hence, for

each node, there are 2l

2s−1 hash evaluations. Store Y in QRACM, and apply
Grover’s algorithm to connect the first value xs,2s−1+1 of the lower half to some

Quantum Attacks on Hash Constructions 11

of these 2l values with some message block m′. Once a connection message is
found, remove the partner node from the upper half and all of its 2l/2s−1 entries
from Y . Then, add this amount of new values, again equally spread out over
the remaining 2s−1 − 1 values paired up, to fill the list Y up to 2l elements
again. Then connect the second node xs,2s−1+2 to Y . Continue till all 2s nodes
are connected, then proceed with the next level s − 1 until the entire tree is
built. Benedikt et al. choose l = n+2s

3 to achieve optimal complexity to build the

2t-diamond structure, where s ≤ t. Therefore, the size of Y is about 2l = 2
n+2t

3 .

To build the quantum herding attack with a 2t-diamond structure, Benedikt
et al. applied the BHT algorithm to find the Mlink (as shown in Figure 6).
The overall complexity of the herding attack includes the complexity of building
2t-diamond structure and finding the Mlink, which is roughly O(2(n+2t)/3 +
2(n−t)/2). The optimal complexity is achieved when t = n/7, i.e., the optimal
time complexity is O(23n/7) with QRACM of size O(2(n+2t)/3) = O(23n/7) to
store Y when building 2t-diamond structure.

xs,5

xs,4

xs,3

xs,2

xs,1

r1︷︸︸︷
0 · · · 0 ∥⋆

Grover

xs,5

xs,4

xs,3

xs,2

xs,1

xs−1,3

r1︷︸︸︷
0 · · · 0 ∥⋆

del/add

xs,5

xs,4

xs,3

xs,2

xs,1

xs−1,3

upper

lower

Fig. 5: Building diamond

A new no-qRAM quantum algorithm to build the diamond structure.
In this section, we introduce a quantum algorithm to build the diamond structure
in no-qRAM setting based on Benedikt et al.’s [9] method and CNS collision
finding algorithm [21]. As shown in Figure 5, again consider a level s of the
2t-diamond structure and try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise
manner.

12 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

1. Begin with 2t leaf nodes that share a common suffix of r0 0s for the purpose
of connection9.

2. Let’s consider a specific level s ≤ t of the tree where we aim to connect
the 2s nodes {xs,1, . . . , xs,2s} pairwise. Divide the 2s nodes into two halves,
the upper half with 2s−1 nodes {xs,1, · · · , xs,2s−1} and the lower half with
2s−1 nodes {xs,2s−1+1, xs,2s−1+2, · · · , xs,2s}. For the upper half, compute a
list Y of 2l hash values h(mj , xs,i) with i = 1, · · · , 2s−1, where the r1 MSBs
of h(mj , xs,i) are zero. The 2l hash values equally spread out over the 2s−1

nodes, with 2l

2s−1 hash values for each node. Here, similar to CNS algorithm
in Section 2.1 to build L whose elements are prefixed with r-bit zero, we also
apply Grover’s algorithm to build Y . For each node xs,i with i = 1, · · · , 2s−1,
run Grover’s algorithm to findmj so that the r1 MSBs of h(mj , xs,i) are zero.

The time to find one mj is 2r1/2. In order to find 2l

2s−1 such mj for node xs,i,

we apply 2l

2s−1 times of Grover’s algorithm. Therefore, to build Y , the total
time complexity is

2l × 2r1/2 = 2l+
r1
2 . (8)

3. Store Y in a classical memory with 2l elements (h(mj , xs,i),mj , xs,i) indexed
by h(mj , xs,i). For the first node xs,2s−1+1 of the lower half, apply CNS
algorithm in Section 2.1 to find a message block m′ so that h(m′, xs,2s−1+1)
hits one of the entries of Y . According to Definition 2, apply CNSh(m

′, Y)
to find such m′, whose time complexity is

√
2n−r1

2l
· (2r1/2 + 2l). (9)

4. After m′ is found, delete the partner node and all of its 2l/2s−1 entries
from Y . Add 2l/2s−1 new values for Y with similar ways to Step 2 to fill
Y up to 2l elements again. Now each node of the upper half corresponds to
2l/(2s−1 − 1) elements. Delete the first node xs,2s−1+1 from lower half. The
time complexity to fill Y again is

2l/2s−1 × 2r1/2 = 2l−s+1+
r1
2 . (10)

5. Repeat Step 3 and Step 4 until the lower half is empty. That means all the
nodes of the layer of level s have been connected pairwise.

9 Leaf nodes with r0 0s suffix are used for the following herding attack in Section 4,
and are not relevant to this diamond building algorithm. After a diamond is built
whose leaves are suffixed with r00, we can apply the CNS algorithm (see Definition
2) to find a linking message whose digest collides to one of those leaves. Similar
techniques for constructing distinguished points (e.g., leaves suffixed with r00) are
often used in cryptanalysis, e.g., the quantum collision or preimage finding algorithm
[10,5,21], quantum k-XOR algorithm [33,53], and many classical attacks e.g. [24], to
name a few. However, our Algorithm 1 is the first to apply this technique to quantum
herding attack.

Quantum Attacks on Hash Constructions 13

To build the layer of level s in Step 2, 2s nodes are divided into the upper half
and the lower half, each with 2s−1 nodes. We are going to connect all the 2s−1

nodes in the lower half to the upper half. In step 3, the CNS algorithm (i.e.,
CNSh(m

′, Y)) is applied to connect one node of the lower half (e.g., the first
node xs,2s−1+1) to one node of the upper half by hitting one of the elements in
Y . In Step 4, after the i-th node xs,2s−1+i (i = 1, · · · , 2s−1 − 1) in the lower

half has been connected to Y , 2l

2s−1−(i−1) elements will be deleted from Y , and

therefore, the same amount of new elements should be generated to fill up Y to
2l again, whose time complexity is

2l

2s−1 − (i− 1)
× 2r1/2. (11)

Since we have to connect all nodes in the lower half to the upper half, the
elements in Y must be repeatedly deleted and filled up Y to 2l for all i =
1, 2, 3, . . . , 2(s−1) − 1. For each i, the time to fill up Y is estimated by Equation
(11). Note that for the last node, i.e., the i = 2s−1-th node xs,2s in the lower
half, we only need to apply the CNS algorithm to find a match in Y to connect
the last node to the upper half, and we do not need to fill up Y again after that.
Therefore, we got the component of summation in Equation (12). Since Step
3 will be repeated for each node of the lower half, hence, CNSh(m

′, Y) will be
repeated for 2s−1 times. Therefore, the total time complexity to build the layer
of level s is

Ts = 2l×2r1/2+2s−1 ·
√

2n−r1

2l
·(2r1/2+2l)+

2s−1−1∑

i=1

2l

2s−1 − (i− 1)
×2r1/2. (12)

To build the 2t-diamond structure which includes t layers, the total time is

1∑

s=t

Ts. (13)

We could calculate

Ts = 2s−1·
√

2n−r1

2l
·(2r1/2+2l)+2l·2r1/2·

2s−1∑

j=1

1

j
= 2s−1·

√
2n−r1

2l
·(2r1/2+2l)+O(s·2l+r1/2)

using
∑q

j=1
1
j ≤ ln q+ c for the harmonic series. Then Ts could be minimized to

O(s1/5 · 2(2n+4s+4)/5) by setting r1 = 2l and l = n+2s+2−2 log2 s
5 .

The final complexity is obtained from summing over all t levels:

t∑

s=1

O(s1/5 · 2(2n+4s+4)/5) ≤ O(2(2n+4+log2 t)/5 ·
t∑

s=1

2
4s
5)

= O(2(2n+4+log2 t)/5 · 2 4t
5)

14 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

= O(2(2n+4t+4+log2 t)/5),

which is about O(2(2n+4t)/5). The classical memory is dominated by O(2(n+2t)/5)
to store Y for the first layer. The number of qubits is O(n).

4 Herding Attack in Quantum Settings with no-qRAM

The herding attack on iterated hash function is first given by Kelsey and Kohno
[42]. In the attack, the adversary chooses a public hash value hT , and then, she
is challenged with a prefix P . Her goal is to find a suffix S such that hT =
H(P∥S). At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [9] presented
the quantum herding attack with 3

√
n ·23n/7 on iterated hash function with n-bit

digest based on BHT algorithm. Their quantum attack also needs exponential
qRAM inherited from the BHT algorithm [20], i.e., 23n/7 QRACM. Therefore
they left an open question on how to devise quantum herding attacks with low-
qRAM. In this section, we answer the open question positively. As shown in

which leads to the same final hash value hT . She then publicizes hT to commit.588

After receiving the challenged message P , the attacker applies Grover’s algorithm589

to find a suffix message block S. The detailed attack is described in Algorithm 5.590

Algorithm 5: Herding Attack on MD Hash in Quantum Settings
1. Build the diamond structure using the quantum algorithm describe in Sect. 3:

from 2k starting hash values D = {xi}2k

i=1 to the root value hT . This step can be
done in O(k2/3 ⋅ 2(n+2k)/3) computations. Commit hT and publicize it.

2. Receive the challenged prefix: P .
3. Find a linking message: apply Grover’s algorithm to search for a single block

message Mlink such that the value h(P ∥Mlink) collides with some value xj in
D. This step can be done in O(2(n−k)/2) quantum queries and returns Mlink.

4. Produce the message: M = P ∥Mlink∥Mj where Mj is a sequence of message
blocks linking xj to hT following the diamond structure built before.

hT

x1

x2k

MDS

IV

P

xj

Mlink
Mj

(Step 1)

(Step 2)
(Step 3) (Step 4)

Attack in Scenario R1. The total complexity of the herding attack is k2/3 ⋅591

2(n+2k)/3 + 2(n−k)/2 quantum computations, with O(k2/3 ⋅ 2(n+2k)/3) quantum592

memory.593

The best-case Complexity. The best complexity is achieved when n + 2k

3
=594

n − k

2
, i.e. k = n

7
, which results in the optimal Õ(23n/7) quantum computations.595

596

Attack in Scenario R2. In this model, the 2k-diamond structure can be built597

with time complexity of O(k2/3 ⋅ 2(2n+3k)/5); and the search of Mlink can be done598

by using multi-target preimage algorithm with time complexity of O(2n/2−k/6).599

Then the total complexity is O(k2/3 ⋅2(2n+3k)/5+2n/2−k/6) quantum computations,600

with O(k2/3 ⋅ 2(n+4k)/5) classical memory.601

The best-case Complexity. The optimal time complexity is achieved when602

2n + 3k

5
= n

2
− k

6
, i.e., k = 3n

23
, which results in Õ(211n/23) time complexity and603

Õ(27n/23) classical memory.604

5 Security of Hash Combiners in Quantum Settings605

In this section, we present quantum attacks on hash combiners. For preimage,606

second-preimage, and herding attacks, the ideal quantum security are all 2n/2
607

20

Submission number 403 to Asiacrypt 2020: DO NOT DISTRIBUTE!

Fig. 6: Herding Attack on Iterated Hash Function [7]

Figure 6, our herding attack consists in four steps:

– Step 1 is to build a 2k-diamond structure. In classical herding attack by
Kelsey and Kohno [42] and the quantum one by Benedikt et al. [9], the
leaves xi (1 ≤ i ≤ 2k) are randomly chosen. In our quantum attack, the r
most significant bits (MSB) of xi are zero. Store the leaves inD with classical
memory

– Step 2 and Step 3 is to find a single block messageMlink such that h(P∥Mlink)
collides with some value xj ∈ D.

– Step 4 is to produce the message M = P∥Mlink∥Mj , where Mj is a sequence
of message blocks linking xj to hT with the diamond structure.

Our quantum herding attack is given in Algorithm 1.

Quantum Attacks on Hash Constructions 15

Algorithm 1: Herding Attack on Iterated Hash Function without
qRAM

1 Off-line precomputation: Precompute the diamond structure using CNS

quantum collision algorithm. Collect 2k starting chaining values
D = {x1, x2, · · · , x2k}, where the r MSBs of xi ∈ Fn

2 are zero. The root is
denoted as hT and publish hT .

2 On-line precomputation:
3 begin
4 Receive the challenged prefix P and compute the chaining value after

absorbing the message P : x̄ = H̄(IV, P).
5 /* Finding the linking message Mlink by applying variant of CNS

collision-finding algorithm: */

6 Store D = {x1, x2, · · · , x2k} in a classical memory L.
7 Define

Sh
r := {(m,h(x̄,m)) : ∃z ∈ {0, 1}n−r, h(x̄,m) = 0 · · · 0︸ ︷︷ ︸

r times

∥z, z ∈ {0, 1}n−r},

where h is the compression function with n-bit chaining value x̄. Let
fh
L(m) := 1 if ∃x′ ∈ L, h(x̄,m) = x′, and fh

L(m) := 0 otherwise.
8 Apply quantum amplification algorithm:
9 begin

10 The setup A is the construction of |ϕ⟩ := 1√
|Sh

r |

∑
m∈Sh

r

|m,h(x̄,m)⟩.

11 The projector is a quantum oracle query to Ofh
L
meaning that

Ofh
L
(|m,h(x̄,m)⟩|b⟩) = |m,h(x̄,m)⟩|b⊕Ofh

L
(m)⟩. (14)

12 end
13 Let Mlink = m and produce the message: M = P∥Mlink∥Mj , where Mj is

a sequence of message blocks linking xj to hT following the diamond
structure built before.

14 end

Complexity. The time complexity to build the 2k diamond structure is k1/5 ·
2(2n+4k)/5 with a classical memory k3/5 · 2(n+2k)/5. The time complexity of the
setup phase is 2r/2 with Grover algorithm. According to the quantum member-
ship algorithm [21], the time complexity to implementOfh

L
is 2k. For (m,h(x̄,m)) ∈

Sh
r , f

h
L(m) = 1 holds with probability of 2k−(n−r). Therefore, about 2

n−r−k
2 calls

of A, A†, Ofh
L
, O†

fh
L

are needed to produce the correct Mlink = m. Hence, the

time complexity to find the Mlink in Line 8 is 2
n−r−k

2 (2r/2 +2k) with a classical
memory 2k to store L. Hence, the total time complexity is

2
n−r−k

2 (2r/2 + 2k) + k1/5 · 2(2n+4k)/5. (15)

The classical memory complexity is bounded by the construction of the diamond
structure, i.e., k3/5 · 2(n+2k)/5.

16 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

The best-case complexity. The optimal complexity is to balance the three for-
mulas, i.e., n−k

2 , n−r+k
2 , and 2n+4k

5 . When k = n/13 and r = 2n/13, the optimal

complexity is achieved which results in O(26n/13) = O(20.46n) time complexity
and O(23n/13) = O(20.23n) classical memory.

Remark. Bao et al. [7] also proposed a no-qRAM herding attack based on a
flawed method of building the diamond structure as shown in Section 3.2. After
correcting with our right algorithm in Section 3.2, Bao et al.’s no-qRAM herding
attack needs a time complexity of O(214n/29) = O(20.48n) with a classical mem-
ory O(27n/29) = O(20.24n), which is inferior to our attacks. For more details,
please refer to Appendix B.

5 Interchange Structure and Preimage attack on XOR
combiners

5.1 Basic Interchange Structure Technique [49]

At EUROCRYPT 2015, Leurent and Wang [49] invented the interchange struc-
ture (IS), which is used to devise a preimage attack on the XOR combiner,
i.e., H1(IV1,M) ⊕ H2(IV2,M) = T . The interchange structure contains a set
of messages MIS and two sets of states A and B, so that for any state pair
(Ai, Bj |Ai ∈ A, Bj ∈ B), the attacker can pick a message M ∈ MIS such that
Ai = H1(IV1,M) andBj = H2(IV2,M). Suppose there is a 2k-interchange struc-
ture (the sizes of A and B are both 2k). In order to reach the target value T , they
select a random block m, and evaluate L1 = {A′i = h1(Ai,m), i = 1 · · · 2k} and
L2 = {B′j = T ⊕ h2(Bj ,m), j = 1 · · · 2k}, where h1 and h2 are the compression
functions. If there is a match between the two lists L1 and L2, then

h1(Ai,m) = T ⊕ h2(Bj ,m) ⇔ H1(IV1,M∥m)⊕H2(IV1,M∥m) = T. (16)

The above technique is exactly a Meet-in-the-Middle approach. For a given m, it
produce the preimage with probability 22k−n with time complexity 2k. Therefore,
to find the preimage, 2n−2k m should be exhausted with a time complexity of
2n−2k × 2k = 2n−k.

To build a 2k-interchange structure (the sizes of A and B are both 2k), the
classical time complexity is Õ(22k+n/2) in [49].

5.2 Low qRAM Quantum Version of Interchange Structure

For the hash XOR combiners H1(IV1,M)⊕H2(IV2,M) = T , the basic technique
to build interchange structure is to build a single switch, which allows to jump
from an already reachable pair of chains (ai, bk) to (aj , bk) as shown in Figure
7(a). As shown in Figure 7(a), given the multi-collision set MMC of size 2

t, ∀M ∈
MMC, h

∗
2(bk,M) = b′k. The single switch algorithm (Alg. 2) is to find a pair

M̂, M̂ ′ ∈ MMC, such that h∗1(aj , M̂) = h∗1(ai, M̂
′).

Quantum Attacks on Hash Constructions 17

Algorithm 2: Building a Single Switch in Quantum Settings with Low
qRAM

1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t

messages for h∗2 that link the starting state bk to the same state b′k, i.e.,
∀M ∈ MMC, h

∗
2(bk,M) = b′k. The number of message blocks of M is t. Denote

the i-th collision message blocks in Joux’s multi-collision are (m0
i ,m

1
i),

1 ≤ i ≤ t, which are stored in QRACM L1, whose size is about O(t · n).
2 Given |l1, l2, ..., lt⟩ 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt⟩|0⟩) = |l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩ by accessing

QRACM L1. Therefore, we can obtain the superposition of Eq. (18)
a) Apply Hadamard H to the first t qubits of |0⟩, we get∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|0⟩. (17)

b) Apply Of to the superposition, we get

|ϕ⟩ =
∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩. (18)

3 // the following lines are the CNS collision finding algorithm [21]

4 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of a′j = h∗1(aj ,M) are zero.
Store (a′j ,M) in classical memory L2, whose size is about 2x. Apply Grover
algorithm to produce L2 (combining with Eq. (18)) with complexity of
2x · 2r/2 = 2x+r/2.

5 Let M = (ml1
1 ,ml2

2 , ...,mlt
t) ∈ MMC, and define g

h∗
1

L2
(M) := 1 if

a′i = h∗1(ai,M) ∈ L2, and g
h∗
1

L2
(M) := 0 otherwise. // quantum membership

checking

6 Define

S
h∗
1

r := {M : ∃z ∈ {0, 1}n−r, h∗1(ai,M) = 0 · · · 0︸ ︷︷ ︸
r times

∥z, z ∈ {0, 1}n−r,M ∈ MMC}.

7 Apply quantum amplification algorithm (QAA) to determine the collision.

a) The setup phase of QAA is to compute the following superposition together with
Eq. (18)

|ϕr⟩ :=
1√
|Sh∗

1
r |

∑
M∈S

h∗
1

r

|M⟩ (19)

b) The projector of the QAA is applying quantum oracle O
g
h∗
1

L2

, let

M = (ml1
1 ,ml2

2 , ...,mlt
t),

O
g
h∗
1

L2

|M⟩|y⟩ = |M⟩|y ⊕ g
h∗
1

L2
(M)⟩ (20)

18 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

In Scenario R2, the time complexity to find a collision is of 22(n−t)/5 computa-477

tions. Therefore, building a 2t-diamond structure requires O(t2/3 ⋅ 2t ⋅ 22(n−t)/5) =478

O(t2/3 ⋅ 2(2n+3t)/5) computations, with O(t2/3 ⋅ 2t ⋅ 2(n−t)/5) = O(t2/3 ⋅ 2(n+4t)/5)479

classical memory.480

Interchange Structure (IS [28]). Leurent and Wang in [28] invented the481

interchange structure, which is used to devise a preimage attack on the XOR482

combiner. The interchange structure contains a set of messages MIS and two483

sets of states A and B, such that for any pair of states (Ai, Bj ∣ Ai ∈ A, Bj ∈ B),484

one can pick a message M from MIS such that Ai = H1(IV1, M) and Bi =485 H2(IV2, M). To build a 2t-interchange structure (with 2t states for each hash486

function), one can cascade 22t−1 building modules named switches. The effect of a487

switch is that a state in one computation chain of one hash function can make pair488

with two states in two computation chains of the other hash function. A switch489

can be built using multi-collisions and the birthday attack (see Fig. 7a). The total490

complexity to build a 2t-interchange structure is of Õ(22t+n/2) computations.491

The interchange structure is used in the preimage attack on the XOR combiner492

to enables a meet-in-the-middle procedure, of which the optimal complexity is493

Õ(25n/6).494

H2

H1

bk

ai

aj

b′
kMMC

MMC

MMC
a′

j

a′
i

M̂

M̂ ′

M̂

(a) Building a switch

H1

H2

IV1

IV2

A0

B0

A1

B1

A2

B2

A3

B3

M ′ M M M M M ′ M M M M M

(b) Interchange structure

Figure 7: Interchange structure and its building block

Interchange Structure (IS) in Quantum Settings. The interchange structure starts495

with building a single switch, which is constructed by building a 2n/2-Joux’s496

multi-collision for the hash function H2 and finding a collision between the hash497

value of H1 from different states (ai, aj) and some pair of message (M̂, M̂ ′).498

These two steps can be replaced by the quantum algorithm for building Joux’s499

multi-collisions and the quantum walk algorithm for the element distinctness500

problem. The quantum algorithm for building a single switch is described as501

follows in Algorithm 3.502

16

Submission number 403 to Asiacrypt 2020: DO NOT DISTRIBUTE!

Fig. 7: Interchange structure and its building block [7]

Complexity of Algorithm 2:

– In Line 1, the time to build 2t-MMC is t · 22n/5, with classical memory 2n/5

by applying CNS algorithm directly.
– In Line 4, with the superposition in Eq. (18), Grover algorithm is applied to

determine a M = (ml1
1 ,m

l2
2 , ...,m

lt
t), such that the r MSBs of h∗1(aj ,M) are

zero, whose time complexity is 2r/2. To find 2x such M , the time complexity
is 2x+r/2. A classical memory of size 2x is needed to store L2.

– In Line 7 a), the setup phase is to produce the superposition of |ϕr⟩, whose
time complexity is about 2r/2.
In Line 7 b), the projector is a quantum membership checking, whose time
complexity is about 2x. To ensure that there is at least one collision, we have
2t−r × 2x ≥ 2n−r, i.e., t+ x ≥ n. The total time complexity is

2
n−r−x

2 · (2r/2 + 2x) + 2x+r/2 + t · 22n/5. (21)

When x = r
2 = n

5 and t = 4n
5 , we get the optimal time complexity, i.e.,

O(4n5 ·22n/5). The QRACM to store L1 is of polynomial size, which is O(t·n).
The classical memory used to store L2 and in Line 1 is O(2n/5).

Comparison between our herding attack and the interchange structure
building algorithm. The highlevel framework for herding attack (Algorithm
1) and the interchange structure (Algorithm 2) is different, but they both apply
variants of CNS collision finding algorithm [21]. As shown in Section 2.1 of our
paper, the original full CNS algorithm is divided into two parts: the Precom-
puting Part to prepare L and the Matching Part to find collision with L. For
our herding attack, we mainly modify the Precomputing Part of the original
CNS to prepare the diamond whose leaf nodes are then stored in L. For inter-
change structure, we mainly modify the Matching Part. It is because different

Quantum Attacks on Hash Constructions 19

from original CNS algorithm whose messages to collide with L are chosen freely,
and thus an easy Hadamard transform applied to |0⟩⊗n is enough to get the
quantum superposition of the messages. However, in our attack (Algorithm 2),
the messages have to be chosen from the set MMC built by Joux’s multi-collision
algorithm. Hence, the superposition of those messages is not trivial to obtain.
To deal with it, we introduce an efficient way to build this superposition and
make the attack successful.

5.3 Preimage attack on XOR combiners with Low qRAM

In classical setting, Leurent and Wang [49] built preimage attack on the XOR
combiner with an Meet-in-the-Middle approach. Leurent and Wang first built a
2k-interchange structure (the sizes of A and B are both 2k) as shown in Section
5.1. In this section, in quantum setting, we perform three quantum attacks on
XOR combiners based on three different quantum algorithms.

Attack based on Schrottenloher-Stevens’ quantum MitM attack [58].
As shown in Section 5.1, the sizes of L1 and L2 should be equal in Leurent
and Wang’s classical attack to achieve the optimal time complexity. However,
in quantum MitM attack, according to Equation (7), L1 and L2 should be of
different sizes. According to (16), the matching bits are n bits, therefore, the
size of Lmerge that contains messages satisfy (16) is very small when compared
to L1 and L2. Actually, we only find one preimage, so that |Lmerge| is about 1.
Without loss of generality, we assume |L1| is bigger. Then (7) is simplified as

|L2|+
√

|L1|. (22)

To reach an optimal balance, we choose |L1| = 22k and |L2| = 2k, so that
the complexity of the quantum merging algorithm is O(2k). We denote this
kind of interchange structure as (22k, 2k)-interchange structure, which is built
by applying 23k − 1 quantum single switches (Algorithm 2) as the following:

1. Build a single switch from (a0, b0) to each of (a0, bj) j = 0, ..., 2k − 1,
2. For each j, build switches from (a0, bj) to all (ai, bj) for all i = 0, ..., 22k − 1,
3. To reach the chain (ai, bj) from (a0, b0), we first find the switch to jump from

(a0, b0) to (a0, bj) in the first step, then find the switch to jump from (a0, bj)
to (ai, bj) in the second step (see Figure 7(b)).

The time complexity is O(4n5 · 23k+2n/5) with O(2n/5) classical memory to build
the (22k, 2k)-interchange structure.

According to Lemma 1, we first guess the message blockm ∈ Fg
2, and compute

the two lists L1 and L2 with |L1| = 22k and |L2| = 2k, then build the Omerge with
complexity O(2k) according to Equation (22). To find at least one preimage, we
have 2g+k+2k = 2n, so that g = n − 3k. According to Equation (6), the time

complexity of the quantum MitM attack is about 2
n−3k

2 ×2k = 2
n−k

2 . During the
quantum MitM attack, the (22k, 2k)-interchange structure precomputed should

20 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

be stored in QRACM, and L2 should be stored in QRAQM. Therefore, the
qRAM needed is 22kQRACM+2kQRAQM.

The overall time complexity, including the time to build (22k, 2k)-interchange

structure and the quantum MitM attack, is 4n
5 · 23k+2n/5 + 2

n−k
2 . The optimal

complexity is 217n/35 = 20.485n by setting k = n/35. The classical memory is
O(2n/5). The qRAM is 20.0571nQRACM+20.0285nQRAQM.

We would like to thank one of the reviewers from ASIACRYPT 2023 for
pointing out an error in the preliminary version of the attack based on Schrottenloher-
Stevens’ method [58], and also thank him for inspiring the following two attacks.

Attack based on Ambainis’ element distinctness algorithm [1]. To apply
Ambainis’ algorithm, a (2k, 2k)-interchange structure is first prepared and stored
in QRACM of size about 2k. For a guessed message block m ∈ Fg

2, we build two
lists L1 and L2 of equal size 2k, then apply Ambainis’ quantum element dis-
tinctness algorithm to detect the collision with the time complexity of 22(k+1)/3

and 22(k+1)/3 QRAQM. When applying Grover’s algorithm on m ∈ Fg
2, the over-

all time complexity (including the time to build (2k, 2k)-interchange structure)
to find the preimage of XOR combiner is 4n

5 · 22k+2n/5 + 2(n−2k)/2+2(k+1)/3 ≈
2(2k+2n/5)+2(n/2−k/3). The optimal time complexity is achieved when k = 3n/70,
i.e., the time is 2(17n/35) = 2(0.485n), with 22(k+1)/3 = 20.0285n QRAQM, 2k =
20.043n QRACM, and 2n/5 classical memory .

Attack based on Jaques-Schrottenloher’s golden collision finding algo-
rithm [39]. To apply Jaques-Schrottenloher’s algorithm, a (2k, 2k)-interchange
structure is first prepared and stored in QRACM of size about 2k. In [7], Bao
et al. applied Jaques and Schrottenloher’s method [39] to find the collision be-
tween L1 and L2. Here we also apply this method in our attack. Note that
Jaques and Schrottenloher found the single collision in a set of size N with N6/7

time complexity and N2/7 qubits, without QRAQM. Therefore, with a (2k, 2k)-
interchange structure, the time complexity of our preimage attack on XOR com-
biner is 2(2k+2n/5) +2(n−2k)/2+6(k+1)/7 ≈ 22k+2n/5 +2n/2−k/7 with 22k/7 qubits,
and 20.2n classical memory. The optimal time complexity is achieved when
k = 7n/150, where the time complexity is 237n/75 = 20.493n, with 2n/75 = 20.0133n

qubits, 2k = 20.047n QRACM, and 20.2n classical memory.
In the no-QRAQM scenario, when compared our attack with the attack by

Bao et al. [7], the time complexity is reduced from 20.495n to 20.493n, and the
number of qubits is significantly reduced from 20.143n to our 20.0133n.

6 Collision attack on Concatenation Combiners in
Quantum Settings

For a hash concatenation combiner H1(IV1,M)∥H2(IV2,M) = T1∥T2, the colli-
sion attack is to find two distinct M and M ′, so that H1(IV1,M)∥H2(IV2,M) =
H1(IV1,M

′)∥H2(IV2,M
′). Classically, based Joux’s multi-collision method [40],

Quantum Attacks on Hash Constructions 21

the collision attack can be built in O(2n/2). Here, we introduce a new quantum
collision attack on the hash combiners in Algorithm 3.

Complexity of Alg. 3. Alg. 3 is quite similar to Alg. 2. When we let t = n,
x = 2n/5, r = 22n/5, the attack is optimal. The time complexity is n · 22n/5 with
a classical memory of 2n/5 and polynomial number of qubits.

7 Herding Attack on Concatenation Combiners in
Quantum Setting

Algorithm 7: Herding Attack on Concatenation Combiners in Quantum
Settings
Phase 1 - off-line precomputation.
(a) Build a diamond MDS1 for H1, which starts from 2k states D1 = {xi}2k

1 and are
all mapped to the root value xT . That can be done using the quantum algorithm
in Sect. 3. From the hash value xT , build a 2n−k-Joux’s multi-collision MMCs, in
which all messages map xT to a state xM0 . Continue to build a 2nk/2-Joux’s
multi-collision (consists of k fragments and each fragment is of length n/2) onH1 from the starting state xM0 and mapping to the state T1, and denote it byMMCℓ. Denote the terminal states of each of the k fragments of MMCℓ by xMi

for i from 1 to k (note that xMk = T1).
(b) Build a diamond MDS2 for H2, which starts from 2k states D2 = {yi}2k

1 . The
messages used to building MDS2 are all chosen from the set MMCℓ. For example,
the messages mapping the first layer of 2k states to the 2k−1 states in MDS2
are chosen from the set of 2n/2 messages in the first fragment of MMCℓ mapping
xM0 to xM1 . To build the next layer from D2, use the quantum walk algorithm
to find a collision in the set of 2n/2 messages for pairs of states in D2, with
O(2n/3) quantum computations. Repeats this step until reaching a root T2 forMDS2. Note that, the building method for MDS2 is different from the quantum
algorithm describe in Sect. 3. That is because, the messages should be selected
from the set MMCℓ, which is limited. Therefore, building the diamond structureMDS2 costs O(2k ⋅ 2n/3) = O(2(n+3k)/3) computations.

(c) Commit T1∥T2 to the public.
Phase 2 - on-line. Being challenged with a prefix P , proceed as follows.
(a) Compute the two intermediate states xP = h∗1(IV1, P) and yP = h∗2(IV2, P).
(b) Search for a message block m∗ that maps xP to one of the leaf states xj ofMDS1. This is done by using Grover’s algorithm, which accesses the quantum

oracle of h1 to find m∗ in O(2(n−k)/2 steps.
(c) Retrieve the message S1 in MDS1 that maps xj to the root. Compute yT =

h∗2(IV2, P ∥m∗∥S1).
(d) Search for a message fragment S2 among MMCs that maps yT to one of the leaf

states yi of MDS2. This is done by using Grover’s algorithm again.
(e) Retrieve the message fragment S3 in MDS2 that maps yi to the root, which is

T2. Due to the way of construction of MDS2 in Phase 1, for H1, the message
fragment S3 also maps the starting state of MMCℓ to T1.

(f) Response with M = P ∥m∗∥S1∥S2∥S3.

xT

x1

x2k

MDS1

IV1

P
m∗ S1

xM0 T1

S2 S3

(Phase 1)

(Phase 2)

T2

y1

y2k

MDS2

IV2

P S1m∗
S2

S3

(Phase 1)

(Phase 2)

26

Submission number 403 to Asiacrypt 2020: DO NOT DISTRIBUTE!

Fig. 8: Herding Attack on Concatenation Combiners in quantum settings [7]

The herding attack on concatenation combiners in quantum settings is given
in Figure 8 and Algorithm 4. In the off-line precomputation phase (Line 2 to 6),
two diamond structures MDS1 and MDS2 are built, two Joux’s multi-collisions
MMCs and MMCℓ are built. The root node of MDS1 is xT . The 2t-Joux’s multi-

collision MMCs links xT to xM0 . Then the 2k·
4n
5 -Joux’s multi-collision MMCℓ is

built to link xM0 and T1. After that, 2k-diamond MDS2 is built. Here, we only
apply the CNS collision finding algorithm to build the diamond without using the
method given in Section 3.2. This is because, in the diamond building algorithm
given in Section 3.2, one has to frequently apply Grover’s algorithm to find
message blocks to fill up Y to 2l. For herding attack on MD hash (Algorithm
1), the message blocks are freely chosen. Therefore, the superposition of the
message for Grover’s algorithm is easy to generate, and a trivial Hadamard
transformation on |0⟩⊗n is enough. However, when building the 2k-diamond
MDS2, those message blocks have to be selected from a prefixed message set
constructed by Joux’s multi-collision algorithm, i.e., MMCℓ . To frequently build
the superposition of messages from MMCℓ for applying Grover’s algorithm is

22 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Algorithm 3: Collision attack on Concatenation combiners in Quan-
tum Settings with Low qRAM

1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t

messages for H2 that link the starting state IV2 to the same state T2, i.e.,
∀M ∈ MMC,H2(IV2,M) = T2. The block length of M is t. Denote the i-th
collision message blocks in Joux’s multi-collision are (m0

i ,m
1
i), 1 ≤ i ≤ t.

Store (m0
i ,m

1
i) in QRACM L1 (to be used in the construction of

superposition), whose size is about O(t · n).
2 Given |l1, l2, ..., lt⟩ 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt⟩|0⟩) = |l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩ by accessing

QRACM L1. Therefore, we can obtain the superposition of Eq. (24)
a) Apply Hadamard H to the first t qubits of |0⟩, we get∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|0⟩. (23)

b) Apply Of to the superposition, we get

|ϕ⟩ =
∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩. (24)

3 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of T1 = H1(IV1,M) are zero.
Store (T1,M) in classical memory L2, whose size is about 2x. L2 is produced
by applying Grover algorithm and combining with Eq. (24). The time
complexity is 2x · 2r/2 = 2x+r/2.

4 Let M = (ml1
1 ,ml2

2 , ...,mlt
t) ∈ MMC, and define gH1

L2
(M) := 1 if

y = H1(IV1,M) ∈ L2, and gH1
L2

(M) := 0 otherwise. /* The quantum

membership algorithm. */

5 Define SH1
r := {M : ∃z ∈ {0, 1}n−r,H1(IV1,M) = 0 · · · 0︸ ︷︷ ︸

r times

∥z, z ∈

{0, 1}n−r,M ∈ MMC}.
6 /* Run a variant of CNS algorithm. Apply quantum amplification

algorithm (QAA). */

7 The setup phase of QAA is the construction

|ϕr⟩ :=
1√
|SH1

r |

∑
x∈SH1

r

|M⟩ (25)

8 The projector of the QAA is applying quantum oracle O
g
H1
L2

, let

M = (ml1
1 ,ml2

2 , ...,mlt
t),

O
g
H1
L2

|M⟩|y⟩ = |M⟩|y ⊕ gH1
L2

(M)⟩ (26)

Quantum Attacks on Hash Constructions 23

Algorithm 4: Quantum Herding Attack on Concatenation Combiners
with low qRAM

1 Off-line precomputation:
2 begin

3 Build a diamond MDS1 for H1, which starts from 2k states D1 = {xi}2
k

1 ,
where the r MSBs of xi ∈ Fn

2 are zero. To build MDS1, we do not use the
method given in Section 3.2, but only use CNS algorithm to build each
collision until the root xT is derived. Totally,
2k−1 + 2k−2 + · · ·+ 1 = 2k − 1 times of CNS are applied with time
complexity 2k+2n/5 and memory complexity of 2n/5. The root is xT .
From the hash value xT , build a 2t-Joux’s multi-collision MMCs , in which

all messages map xT to a state xM0 . Continue to build a 2k·
4n
5 -Joux’s

multi-collision MMCℓ (consists of k fragments and each fragment is of
length 4n/5) on H1 from the starting state xM0 and mapping to the state
T1. Denote the terminal states of each of the k fragments of MMCℓ by xMi

for i from 1 to k (note that xMk = T1).

4 Build a diamond MDS2 for H2, which starts from 2k states D2 = {yi}2
k

1 ,
where the r MSBs of yi ∈ Fn

2 are zero.. The messages used to building
MDS2 are all chosen from the set MMCℓ . For example, the messages
mapping the first layer of 2k states to the 2k−1 states in MDS2 are chosen
from the set of 24n/5 messages in the first fragment of MMCℓ mapping
xM0 to xM1 . To build MDS2, we do not use the method given in Section
3.2, but only apply 2k − 1 times CNS algorithm variant given by
Algorithm 2 to find 2k − 1 collisions in MMCℓ . Note that Algorithm 2 is
exactly the method to find two messages from a set of multi-collisions
that make two states collides (as shown in Figure 7(a)). The time to
build MDS2 is O(2k+2n/5) with a classical memory 2n/5.

5 Commit T1∥T2 to the public.

6 end
7 On-line phase:
8 begin
9 Receive the challenged prefix P and compute the internal chaining value

xP = h∗1(IV1, P) and yP = h∗2(IV2, P).
10 /* Finding the linking message m∗ by applying variant of CNS

collision-finding algorithm: */

11 Store D1 in a classical memory L1.
12 Apply Line 6 to 12 of Algorithm 1 to determine linking message m∗ that

maps xP to one of the leaf state xj of MDS1, and retrieve the message S1

that link the leaf xj to the root xT .
13 Compute yT = h∗2(IV2, P∥m∗∥S1).
14 /* Finding the linking message S2 by applying variant of CNS

collision-finding algorithm: */

15 Store D2 in a classical memory L2.
16 Apply CNS algorithm variant given by Algorithm 2 to find S2 ∈ MMCs ,

which maps yT to one of the leaf state yj of MDS2, and retrieve the
message S3 that link the leaf yj to the root T2.

17 M = P∥m∗∥S1∥S2∥S3 is the returned message.

18 end

24 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

not easy. Therefore, we use the trivial method that only uses CNS collision
finding algorithm here. Since there are 2k − 1 collisions in a 2k-diamond, 2k − 1
times of CNS algorithm are needed to build the diamond. To build the 2k-
diamond MDS1, we can freely use diamond building algorithm in Section 3.2
or apply CNS algorithm trivially, since the time to build MMCℓ already bound
the complexity, we just choose CNS algorithm trivially to build MDS1 without
increasing the overall complexity. Similar reason also prevents us from applying
diamond building algorithm given in Section 3.2 to Algorithm 5.

Complexity of Algorithm 4.

– In the off-line precompuation phase (Line 2 to 6), the time complexity to
build MDS1, MMCs , MMCℓ , and MDS2 is

2k+2n/5 + t · 22n/5 + 4nk/5 · 22n/5 + 2k+2n/5 ≈ 2k+2n/5,

where t = O(n).
– In the online phase (Line 8 to 18), the time to find m∗ and S2 are both

2
n−r−k

2 (2r/2 + 2k).

Therefore, the overall optimal time complexity of Algorithm 4 is O(27n/15) by
balancing the off-line and on-line computation phases and assigning k = n/15,
r = 2k, and t = n. The memory cost is dominated by building Joux’s multi-
collision with CNS, i.e., O(2n/5) classical memory.

8 Quantum Herding attack on Hash-Twice

The attack on Hash-Twice shares the fundamental ideas of the attack on the
concatenation combiners, as depicted in Figure 9. The attacker selects T2 as their
commitment and subsequently faces a challenge involving an unknown prefix P .
The attack is the same to the attack on concatenation combiner. Please see
Algorithm 4 for details. The only difference is that the IV2 is replaced by T1.
Therefore, the overall optimal time complexity is also O(27n/15) with a classical
memory of O(2n/5).

9 Quantum Herding Attack on Zipper Hash

As stated by Andreeva et al. [3], the traditional herding attack with a prefix P
can not be applied to Zipper Hash. Therefore, Andreeva et al. [3] gave a variant
of the herding attack, where the challenge is placed at the end: as shown in
Figure 10, the adversary commits to a hash value hT , then she is challenged
with a suffix S, and has to produce S1∥m∗ such that H(IV, S1∥m∗∥S) = hT .
The complexity of Andreeva et al.’s classical attack is O(22n/3).

In this section, we introduce a quantum version Andreeva et al.’s attack in
Algorithm 5. The complexity of the off-line phase dominated by building MDS,

which is about O(2k+2n/5). The on-line phase is 2
n−r−k

2 · (2r/2 +2k) with t = n.
Let k = n

15 , r = 2k, the optimal complexity is achieved to be 27n/15. The memory

is 2n/5.

Quantum Attacks on Hash Constructions 25

xT

x1

x2k

MDS1

IV

P
m⇤ S1

xM0 T1

S2 S3

(Phase 1)

(Phase 2)

T2

y1

y2k

MDS2

T1

P S1m⇤ S2
S3

(Phase 1)

(Phase 2)

Fig. 9: Herding attack on Hash-Twice

IV xM0 x̄

Sm∗S1

hT

y1

y2k

SS1 m∗
ȳ

(Phase 1)

(Phase 2)

Fig. 10: Herding attack on Zipper Hash

Conclusion

This paper evaluated the quantum attacks on iterated hash functions and various
important hash combiners. Most of the attacks do not need qRAM anymore, and
the quantum preimage attack on hash XOR combiner is improved by significantly
reducing the number of qubits from previous 20.143n to the current 20.013n. Since
the existence of large qRAM is still questionable, building quantum attacks with
low-qRAM is of more practical relevance. Since for hash functions, the attackers
do not need online superposition queries, quantum attacks on hash functions
are more friendly than on other keyed primitives like block ciphers. Therefore,
exploring the quantum attacks on hash functions is of more practical relevance.

Acknowledgements. We thank the anonymous reviewers of ASIACRYPT
2023 for their insightful comments, and a special thanks to our shepherd for
providing so much wonderful guidance and co-inventing some algorithms that

26 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Algorithm 5: Quantum Herding attack on Zipper Hash with Low
qRAM

1 Off-line phase: begin

2 Build a 2k·
4n
5 -Joux’s multi-collision MMC1 (consists of k fragments and each

fragment is of length 4n/5) that link IV and xM0 . Denote the terminal
states of each of the k fragments of MMC1 by xMi for i from k − 1 to 0.

3 Build 2t-Joux’s multi-collision MMC2 from xM0 to x̄.

4 Build MDS, which starts from 2k leaf states D = {yi}2
k

1 to the root state
hT , where the r MSBs of yi ∈ Fn

2 are zero. Similar to Line 4 of Algorithm
4, we apply 2k − 1 times of Algorithm 2 to build MDS, which needs
2k+2n/5 time and 2n/5 memory.

5 Commit hT .

6 end
7 On-line phase: begin

8 Given the suffix S, compute ȳ = h∗2(h
∗
1(x̄, S),

←
S).

9 Apply the variant of CNS to find the m∗ ∈ MMC2 to connect ȳ with the yj
one of the leaf states of MDS, and retrieve the corresponding message
S1 ∈ MMC2.

10 Output the message S1∥m∗∥S.
11 end

greatly improved the paper. This work is supported by the National Key R&D
Program of China (2022YFB2702804, 2018YFA0704701), the Natural Science
Foundation of China (62272257, 62302250, 62072270, 62072207), Shandong Key
Research and Development Program (2020ZLYS09), the Major Scientific and
Technological Innovation Project of Shandong, China (2019JZZY010133), the
Major Program of Guangdong Basic and Applied Research (2019B030302008,
2022A1515140090), Key Research Project of Zhejiang Province, China (2023C01025).

A On Bao et al.’s diamond structure building algorithm

In [7, Section 3.3], the authors proposed a quantum algorithm for building dia-
mond structure with exponential large QRAQM in their Algorithm 2. After that,
they try to study the no-qRAM version. However, they only give the following
sentences for their no-qRAM algorithm [7, Page 12]:

“In Scenario R2, the time complexity to find a collision is of (2(n−t))2/5

computations. Therefore, building a 2t-diamond structure requires O(t(2/3)·
2t · 2(2(n−t)/5)) = O(t2/3 · 2(2n+3t)/5) computations, with O(t2/3 · 2t ·
2(n−t)/5) = O(t2/3 · 2(n+4t)/5) classical memory. (see [7, Page 12])”

The authors do not give concrete steps for this no-qRAM algorithm. After
communicating with the authors, we know that they just estimated the time
complexity by replacing the Grover’s algorithm with CNS algorithm [21] and

Quantum Attacks on Hash Constructions 27

use classical memory to store the data instead of qRAM. They do not give the
concrete steps at all.

However, the conversion is not trivial as estimated by the authors of [7]. In
fact, we use almost two pages in Section 3.2 to reveal the no-qRAM algorithm.
When we try to rebuild the steps with CNS collision algorithm [21] for building
diamond, we find the final time complexity is 2(2n+4t)/5, which is different from
the time 2(2n+3t)/5 claimed in [7]. Then, we communicated with the authors of
[7] again, and they admitted our steps and time evaluation are correct.

Since the authors of [7] do not publish or give us their concrete steps for their
claimed no-qRAM algorithm, we can not check which step is possibly wrong or
which step leads to the different complexities. Since the herding attack is based
on diamond structure, Bao et al’s [7] herding attack in no-qRAM setting is also
flawed.

B On Bao et al.’s quantum herding attack

In the original estimation by Bao et al. [7, Section 4.3], the overall time com-
plexity of the no-qRAM herding attack is about 2((2n+3k)/5) +2(n/2−k/6), where
2((2n+3k)/5) is the time to build a 2k-diamond, and the time 2(n/2−k/6) is to find
the linking messageMlink to the diamond based on Chailloux et al.’s multi-target
preimage algorithm [21]. After tradeoff between the two, it achieves optimal when
k = 3n/23, which results in the overall time complexity 2(11n/23) = 2(0.478n),
classical memory 2(7n/23) = 2(0.304n). Even if we compare our no-qRAM herding
attack in Section 4 (i.e., time 20.46n, classical memory 20.23n) with this original
complexity estimation of [7], the improvement of our attack is obvious.

However, the algorithm of building diamond structure of [7] is flawed as
shown in Appendix A. Their herding attack based on diamond is also wrong. In
fact, the time 2((2n+3k)/5) will be 2((2n+4k)/5) when using our correct diamond
building algorithm given in Section 3.2. Therefore, the complexity of Bao et al.’s
no-qRAM herding attack becomes 2((2n+4k)/5) + 2(n/2−k/6) time and 2(n+2k)/5

classical memory, which achieves optimal when k = 3n/29, that results in time
2(14n/29) = 2(0.4827n), classical memory 2(7n/29) = 2(0.24n). When compared with
this corrected Bao et al.’s attack, our attack in Section 4 (time=20.46n, classical
memory=20.23n) is still better obviously.

References

1. Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J.
Comput., 37(1):210–239, 2007.

2. Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque,
Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. New second-
preimage attacks on hash functions. J. Cryptol., 29(4):657–696, 2016.

3. Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and John Kelsey. Herding,
second preimage and trojan message attacks beyond merkle-damg̊ard. In Michael
J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Ar-
eas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary,

28 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Alberta, Canada, August 13-14, 2009, Revised Selected Papers, volume 5867 of
Lecture Notes in Computer Science, pages 393–414. Springer, 2009.

4. Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John
Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage attacks on dithered
hash functions. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, vol-
ume 4965 of Lecture Notes in Computer Science, pages 270–288. Springer, 2008.

5. Gustavo Banegas and Daniel J. Bernstein. Low-communication parallel quantum
multi-target preimage search. In Carlisle Adams and Jan Camenisch, editors, Se-
lected Areas in Cryptography - SAC 2017 - 24th International Conference, Ottawa,
ON, Canada, August 16-18, 2017, Revised Selected Papers, volume 10719 of Lecture
Notes in Computer Science, pages 325–335. Springer, 2017.

6. Zhenzhen Bao, Itai Dinur, Jian Guo, Gaëtan Leurent, and Lei Wang. Generic
attacks on hash combiners. J. Cryptol., 33(3):742–823, 2020.

7. Zhenzhen Bao, Jian Guo, Shun Li, and Phuong Pham. Evaluating the security of
merkle-damg̊ard hash functions and combiners in quantum settings. In Xingliang
Yuan, Guangdong Bai, Cristina Alcaraz, and Suryadipta Majumdar, editors, Net-
work and System Security - 16th International Conference, NSS 2022, Denarau
Island, Fiji, December 9-12, 2022, Proceedings, volume 13787 of Lecture Notes in
Computer Science, pages 687–711. Springer, 2022.

8. Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. Functional graph revisited:
Updates on (second) preimage attacks on hash combiners. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 404–427. Springer, 2017.

9. Barbara Jiabao Benedikt, Marc Fischlin, and Moritz Huppert. Nostradamus goes
quantum. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology
- ASIACRYPT 2022 - 28th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part III, volume 13793 of Lecture Notes in Computer Science, pages
583–613. Springer, 2022.

10. Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete. SHARCS 2009 9: 105.

11. Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA.
IACR Cryptol. ePrint Arch., page 278, 2007.

12. Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the complexity
of the herding attack and some related attacks on hash functions. Des. Codes
Cryptogr., 64(1-2):171–193, 2012.

13. Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki, and
André Schrottenloher. Quantum attacks without superposition queries: The of-
fline Simon’s algorithm. In Advances in Cryptology - ASIACRYPT 2019 - 25th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, pages
552–583, 2019.

14. Xavier Bonnetain and Samuel Jaques. Quantum period finding against symmetric
primitives in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):1–27,
2022.

Quantum Attacks on Hash Constructions 29

15. Xavier Bonnetain, Gaëtan Leurent, Maŕıa Naya-Plasencia, and André Schrotten-
loher. Quantum linearization attacks. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Sin-
gapore, December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes
in Computer Science, pages 422–452. Springer, 2021.

16. Xavier Bonnetain and Maŕıa Naya-Plasencia. Hidden shift quantum cryptanalysis
and implications. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory
and Application of Cryptology and Information Security, Brisbane, QLD, Aus-
tralia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in
Computer Science, pages 560–592. Springer, 2018.

17. Xavier Bonnetain, Maŕıa Naya-Plasencia, and André Schrottenloher. On quantum
slide attacks. In Selected Areas in Cryptography - SAC 2019 - 26th International
Conference, Waterloo, ON, Canada, August 12-16, 2019, Revised Selected Papers,
pages 492–519, 2019.

18. Xavier Bonnetain, André Schrottenloher, and Ferdinand Sibleyras. Beyond
quadratic speedups in quantum attacks on symmetric schemes. In Orr Dunkel-
man and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-
ings, Part III, volume 13277 of Lecture Notes in Computer Science, pages 315–344.
Springer, 2022.

19. Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.

20. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and
claw-free functions. In LATIN ’98: Theoretical Informatics, Third Latin American
Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings, pages 163–169,
1998.

21. André Chailloux, Maŕıa Naya-Plasencia, and André Schrottenloher. An efficient
quantum collision search algorithm and implications on symmetric cryptography.
In Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part II, pages 211–240, 2017.

22. Ivan Damg̊ard. A design principle for hash functions. In Advances in Cryptology
- CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, pages 416–427, 1989.

23. Tim Dierks and Christopher Allen. The tls protocol version 1.0. Technical report,
1999.

24. Itai Dinur. New attacks on the concatenation and XOR hash combiners. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceed-
ings, Part I, volume 9665 of Lecture Notes in Computer Science, pages 484–508.
Springer, 2016.

25. Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum attacks on some
feistel block ciphers. Des. Codes Cryptogr., 88(6):1179–1203, 2020.

26. Xiaoyang Dong, Jian Guo, Shun Li, and Phuong Pham. Triangulating rebound
attack on aes-like hashing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,

30 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

Proceedings, Part I, volume 13507 of Lecture Notes in Computer Science, pages
94–124. Springer, 2022.

27. Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on aes-like hashing with low quantum random access
memories. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science,
pages 727–757. Springer, 2020.

28. Xiaoyang Dong, Zhiyu Zhang, Siwei Sun, Congming Wei, Xiaoyun Wang, and Lei
Hu. Automatic classical and quantum rebound attacks on aes-like hashing by ex-
ploiting related-key differentials. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Com-
puter Science, pages 241–271. Springer, 2021.

29. Antonio Flórez-Gutiérrez, Gaëtan Leurent, Maŕıa Naya-Plasencia, Léo Perrin,
André Schrottenloher, and Ferdinand Sibleyras. New results on gimli: Full-
permutation distinguishers and improved collisions. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I, volume 12491 of
Lecture Notes in Computer Science, pages 33–63. Springer, 2020.

30. Alan Freier, Philip Karlton, and Paul Kocher. The secure sockets layer (ssl) pro-
tocol version 3.0. Technical report, 2011.

31. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quan-
tum random access memory. Physical Review A, 78(5):052310, 2008.

32. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access
memory. Physical review letters, 100(16):160501, 2008.

33. Lorenzo Grassi, Maŕıa Naya-Plasencia, and André Schrottenloher. Quantum al-
gorithms for the k -xor problem. In Advances in Cryptology - ASIACRYPT 2018
- 24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part I, pages 527–559, 2018.

34. Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219, 1996.

35. Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key schemes
with online classical queries and offline quantum computations. In Topics in Cryp-
tology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference 2018,
San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 198–218, 2018.

36. Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum com-
puters by using differential trails with smaller probability than birthday bound.
IACR Cryptology ePrint Archive, 2020:213, 2020.

37. Akinori Hosoyamada and Yu Sasaki. Quantum collision attacks on reduced SHA-
256 and SHA-512. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume 12825 of
Lecture Notes in Computer Science, pages 616–646. Springer, 2021.

Quantum Attacks on Hash Constructions 31

38. Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum chosen-ciphertext attacks against feistel ciphers. In Mitsuru
Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The Cryptographers’ Track
at the RSA Conference 2019, San Francisco, CA, USA, March 4-8, 2019, Proceed-
ings, volume 11405 of Lecture Notes in Computer Science, pages 391–411. Springer,
2019.

39. Samuel Jaques and André Schrottenloher. Low-gate quantum golden collision find-
ing. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Se-
lected Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax,
NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers, volume
12804 of Lecture Notes in Computer Science, pages 329–359. Springer, 2020.

40. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO
2004, 24th Annual International CryptologyConference, Santa Barbara, California,
USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer
Science, pages 306–316. Springer, 2004.

41. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
207–237, 2016.

42. John Kelsey and Tadayoshi Kohno. Herding hash functions and the nostradamus
attack. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer, 2006.

43. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2 n work. In Advances in Cryptology–EUROCRYPT 2005: 24th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24, pages 474–490.
Springer, 2005.

44. Tuomas Kortelainen and Juha Kortelainen. On diamond structures and trojan
message attacks. In Kazue Sako and Palash Sarkar, editors, Advances in Cryp-
tology - ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December
1-5, 2013, Proceedings, Part II, volume 8270 of Lecture Notes in Computer Science,
pages 524–539. Springer, 2013.

45. Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In Simone Severini and Fernando G. S. L. Brandão,
editors, 8th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2013, May 21-23, 2013, Guelph, Canada, volume 22 of
LIPIcs, pages 20–34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

46. Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round feistel cipher and the random permutation. In IEEE International Sym-
posium on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA,
Proceedings, pages 2682–2685, 2010.

47. Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type even-
mansour cipher. In Proceedings of the International Symposium on Information
Theory and its Applications, ISITA 2012, Honolulu, HI, USA, October 28-31, 2012,
pages 312–316, 2012.

32 Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang

48. Gregor Leander and Alexander May. Grover meets simon - quantumly attack-
ing the FX-construction. In Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II,
pages 161–178, 2017.

49. Gaëtan Leurent and Lei Wang. The sum can be weaker than each part. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 345–367. Springer, 2015.

50. Moses D. Liskov. Constructing an ideal hash function from weak ideal compression
functions. In Eli Biham and Amr M. Youssef, editors, Selected Areas in Cryptog-
raphy, 13th International Workshop, SAC 2006, Montreal, Canada, August 17-18,
2006 Revised Selected Papers, volume 4356 of Lecture Notes in Computer Science,
pages 358–375. Springer, 2006.

51. Florian Mendel, Christian Rechberger, and Martin Schläffer. MD5 is weaker than
weak: Attacks on concatenated combiners. In Mitsuru Matsui, editor, Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages
144–161. Springer, 2009.

52. Ralph C. Merkle. A certified digital signature. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, pages 218–238, 1989.

53. Maŕıa Naya-Plasencia and André Schrottenloher. Optimal merging in quantum
k-xor and k-xor-sum algorithms. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Sci-
ence, pages 311–340. Springer, 2020.

54. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information (10th Anniversary edition). Cambridge University Press, 2016.

55. NIST. The post quantum project. https://csrc.nist.gov/projects/

post-quantum-cryptography.
56. Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit te Leuven Leuven, 1993.
57. André Schrottenloher. Quantum linear key-recovery attacks using the QFT. In

Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 258–291, Cham, 2023. Springer Nature Switzerland.

58. André Schrottenloher and Marc Stevens. Simplified MITM modeling for permuta-
tions: New (quantum) attacks. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages
717–747. Springer, 2022.

59. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pages 124–134, 1994.

60. Daniel R. Simon. On the power of quantum computation. SIAM journal on
computing, 26(5):1474–1483, 1997.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Quantum Attacks on Hash Constructions 33

61. Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
The first collision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 570–596. Springer,
2017.

62. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005.

63. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 19–35. Springer, 2005.

	Quantum Attacks on Hash Constructions with Low Quantum Random Access Memory

