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spapini@starkware.co, uhaboeck@polygon.technology

September 18∗, 2023

Abstract

In this informal note, we instantiate the Goldwasser-Kalai-Rothblum
(GKR) protocol to prove fractional sumchecks as present in lookup argu-
ments based on logarithmic derivatives, with the following impact on the
prover cost of [Hab22]: When looking up M ≥ 1 columns in a (for the
sake of simplicity) single column table, the prover has to commit only to
a single extra column, i.e. the multiplicities of the table entries. In or-
der to carry over the GKR fractional sumcheck to the univariate setting,
we furthermore introduce a simple, yet (as far as we know) novel trans-
formation for turning a univariate polynomial commitment scheme into
a multilinear one. The transformation complements existing approaches
[ZXZS20, BCHO22, CBBZ22, Ham22, KT23] and might be of independent
interest for its elegant way to prove arbitrary powers of the lexicographic
shift over the Boolean hypercube.
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1 Notation

Throughout this note we assume that F is a finite field of characteristic larger
than 2, i.e. char(F ) > 2, F ∗ its multiplicative group, and Hn denotes the
n-dimensional Boolean hypercube {±1}n as a subgroup of (F ∗)n. A multi-
linear polynomial in n variables is a polynomial p(X1, . . . , Xn) over F with
individual degrees at most 1, i.e. degXi

p(X1, . . . , Xn) ≤ 1 for all i = 1, . . . , n.
Whenever convenient we shall use vector notation for the variables, for exam-
ple p((X1, . . . , Xn)) or p((X1, . . . , Xk), (Xk+1, . . . , Xn)) for p(X1, . . . , Xn). The
Lagrange kernel for Hn is the (2 · n)-variate multilinear polynomial

Ln(X⃗, Y⃗ ) =
1

2n
·

n∏
i=1

(1 +Xi · Yi),

with X⃗ = (X1, . . . , Xn) and Y⃗ = (Y1, . . . , Yn). Taking Y⃗ = y⃗ from the Boolean

hypercube gives the Lagrange polynomial Ln(X⃗, y⃗) which is the unique multi-

linear polynomial equal to 1 if X⃗ = y⃗, and equal to zero elsewhere over Hn.
For our purpose all multilinear polynomials p(X⃗) in n variables will be given

in Lagrange representation, i.e. by their values over Hn. To emphasize this fact,
we describe our protocols as what is called a Lagrange interactive oracle proof
in [Hab22], in which the oracles are loaded with a set of values over Hn (the
Lagrange representations), and later accessed via tensor queries (in other words,
evaluation queries for the Lagrange representation).

2 logUp in a nutshell

In logUp, which is the current unofficial name for the lookup argument from
[Hab22], the prover is given the values over Hn (the “witness columns”) of

M ≥ 1 multilinear polynomials w1(X⃗), . . . , wM (X⃗), and wishes to convince the
verifier that these are all members of a predefined table given by the values
of another multilinear polynomial t(X⃗) over Hn. (Without loss in generality,
we assume that the values of t over Hn are all distinct.) For this, the prover

provides the (Lagrange representation of the) multilinear polynomial m(X⃗), the
values of which correspond to the overall multiplicities m(x⃗) of the table values
t(x⃗) as they occur in the witness columns, i.e.

m(x⃗) =

M∑
i=1

|{y⃗ ∈ Hn : wi(y⃗) = t(x⃗)}| ,
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for every x⃗ ∈ Hn. In order to convince verifier upon the virtual identity

M∏
i=1

∏
x⃗∈Hn

(X − wi(x⃗)) =
∏

x⃗∈Hn

(X − t(x⃗))m(x⃗), (1)

the prover shows instead1the equality of their (formal) logarithmic derivatives,

M∑
i=1

∑
x⃗∈Hn

1

X − wi(x⃗)
=
∑
x⃗∈Hn

m(x⃗)

X − t(x⃗)
, (2)

which is reduced to a sumcheck of rational terms by evaluating at a random
α←$ F provided by the verifier,

∑
x⃗∈Hn

(
m(x⃗)

α− t(x⃗)
−

M∑
i=1

1

α− wi(x⃗)

)
= 0. (3)

The way logUp handles the rational sumcheck is by the common approach,
which transforms it into a polynomial one: In the most elementary variant
of the protocol, the prover provides additional helper columns for each of the
fractional terms, corresponding to multilinear polynomials

h(X⃗) and h1(X⃗), . . . , h⃗M (X⃗),

which equal 1
α−t(x⃗) and

1

α−w1(X⃗)
, . . . , 1

α−wM (X⃗)
overHn, respectively, and proves

them correct using the corresponding domain identities. With these helper
polynomials, the prover then shows that

∑
x⃗∈Hn

(
m(x⃗) · h(x⃗)−

M∑
i=1

hi(x⃗)

)
= 0,

using the multivariate sumcheck protocol. For details, see [Hab22].

The main advantage of logarithmic derivatives (or, fractional decomposi-
tions) are their amenability for sumchecks. Sumchecks are more efficiently
proven than grand products, and sumchecks can be efficiently combined with
further sumchecks in the context of larger protocols. Even the above described
elementary variant of logUp already improves over the multivariate variant of
plookup [GW20] by essentially halving the number of additional columns the
prover has to provide. Moreover, the performance can be optimized by a com-
mon trade-off between the number of helper functions and the algebraic degree
of the sumcheck polynomial (c.f. [Hab22]). However, one can do significantly
better: Inspired by Lasso [STW23] we take the Goldwassser-Kalai-Rothblum
(GKR) protocol for directly proving the rational sumcheck (3) without provid-
ing multilinear variants of the fractional expressions (the helper functions).

1In order that the polynomial identity (1) and the fractional identity (2) are equivalent,
one needs to demand that the total number of elements to be looked up does not exceed the
characteristic of the field, M · |Hn| < char(F ). See [Hab22] for details.
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3 GKR for fractional sumchecks

Given multilinear polynomials p(X⃗) and q(X⃗) in n variables over a finite field
F , we show in this section how to use the Goldwasser-Kalai-Rothblum protocol
[GKR08] to prove ∑

x⃗∈Hn

p(x⃗)

q(x⃗)
= 0, (4)

where Hn is the n-dimensional Boolean hypercube. We remark that everything
in this section can be generalized in a straight-forward manner to higher-degree
expressions of n-variate multilinear polynomials w1(X⃗), . . . , wM (X⃗),∑

x⃗∈Hn

P (w1(x⃗), . . . , wM (x⃗))

Q(w1(x⃗), . . . , wM (x⃗))
= 0,

but for the sake of simplicity we keep with the more elementary variant given
by Equation (4).

3.1 The circuit

We define a layered circuit for computing the cumulative sums of the fractions
using projective coordinates for the additive group of the finite field F . The
addition of two projective representations (a0, b0) and (a1, b1) from F 2 is

(a0, b0) +F (a1, b1) = (a0 · b1 + a1 · b0, b0 · b1),

where we write +F for not confusing it with an ordinary vector sum. In other
words, we consider formal fractions over F , which are pairs (a, b) ∈ F 2 composed
of a numerator a and a denominator b. For notational convenience, we consider
our circuit built from gates with projective input and outputs, rather than a
circuit with field-valued wire states. This leads to a somewhat non-standard
presentation of the GKR protocol, but clarifies the recursively defined depen-
dency between two adjacent layers of the circuit. The intermediate results of
the circuit, which are throughout projective representations, are arranged along
a binary tree of height n, reflecting the topology given by the hypercube. That
is, the nodes at layer k of the tree, 1 ≤ k ≤ n, correspond to the k-dimensional
hypercubeHk, and the children of a x⃗ ∈ Hk correspond to (x⃗,+1) and (x⃗,−1) in
Hk+1 (using the simplified notation for appending ±1 to x⃗). Layer k = 0 corre-
sponds to the top node of the tree, having the children ±1 from H1. We consider
H0 as that single node set, with x⃗ ∈ H0 being the empty coordinate-vector.

The circuit is as follows. The inputs are supplied to the bottom layer, i.e.
layer n, from which the values of the further layers, i.e. layer n− 1, n− 2, . . .,
are obtained step by step, until ending up with a projective representation of
the overall sum (4) at layer 0.

• On layer n, we start with the values of the fractions p(x⃗)
q(x⃗) in projective

representation

(pn(x), qn(x)) = (p(x⃗), q(x⃗)), x⃗ ∈ Hn.
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• On level k, 0 ≤ k < n, for each node x⃗ in Hk the projective representation
(pk(x⃗), qk(x⃗)) is the sum of the projective representations carried by its
children nodes (x⃗,+1) and (x⃗,−1) from Hk+1, i.e.

pk(x⃗) = (pk+1(x⃗,+1) · qk+1(x⃗,−1) + pk+1(x⃗,−1) · qk+1(x⃗,+1),

qk(x⃗) = qk+1(x⃗,+1) · qk+1(x⃗,−1).

In this manner, in each layer k the nodes x⃗ ∈ Hk carry a projective representa-
tion (pk(x⃗), qk(x⃗)) for the cumulative sum of the fractions “below”, i.e.

pk(x⃗)

qk(x⃗)
=

∑
y⃗∈Hn−k

p(x⃗, y⃗)

q(x⃗, y⃗)
.

(Using again the simplified notation (x⃗, y⃗) for the appended vector x⃗∥y⃗.) In
particular, at top layer 0 of the tree we obtain the projective representation
(p0, q0) of the overall sum

p0
q0

=
∑
y⃗∈Hn

p(y⃗)

q(y⃗)
.

3.2 The GKR protocol

We do a minor variation of the GKR protocol to serve our design decision for
the circuit, having gates with inputs and outputs being throughout projective
representations.2 In the first round k = 0, the claims for

p1(+1), q1(+1), p1(−1), q1(−1)

are reduced by a random µ0 ←$ F from the verifier to a “single-point” claim on

p1(r0), q1(r0),

where r0 = 1− µ0, using linearity of p1 and q1.
In each further layer k, 1 ≤ k ≤ n− 1, the k-variate multilinear polynomials

pk and qk depend on pk+1 and qk+1 from the next layer by the two linear
relations

pk(X⃗) =
∑
y⃗∈Hk

Lk(X⃗, y⃗) ·
(
pk+1(y⃗,+1) · qk+1(y⃗,−1) + pk+1(y⃗,−1) · qk+1(y⃗,+1)

)
,

qk(X⃗) =
∑
y⃗∈Hk

Lk(X⃗, y⃗) · qk+1(y⃗,+1) · qk+1(y⃗,−1).

Taking the claims on pk and qk at the random point r⃗k from the previous layer,
the two sumchecks for pk(r⃗k) and qk(r⃗k) are combined into a single sumcheck

2Again, we point out that this non-standard presentation of GKR, having two separate
polynomials pk and qk at each layer, is for notational convenience only. The entire circuit
can be written using a single multilinear polynomial vk per layer, which combines the two
polynomials as vk(x⃗, 1) =

1+y
2

· pk(x⃗) + 1−y
2

· qk(x⃗), e.g.
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for pk(r⃗k) + λk · qk(r⃗k), using a further randomness λk ←$ F , which is then
reduced by the sumcheck protocol to evaluation claims for

pk+1(ρ⃗k,+1), qk+1(ρ⃗k,+1), pk+1(ρ⃗k,−1), qk+1(ρ⃗k,−1),

with ρ⃗k ∈ F k being the randomnesses sampled in the course of the protocol.
Like in the first round, these two-point claims are combined by means of a
further random µk ←$ F into the single-point claim for

pk+1(r⃗k+1), qk+1(r⃗k+1),

with r⃗k+1 = (ρ⃗k, 1− µk).
After the last round k = n− 1, the initial evaluation claims for p1 and q1 at

±1 are reduced to evaluation claims of pn(X⃗) = p(X⃗) and qn(X⃗) = q(X⃗) at the
random point r⃗n obtained in that round. If the latter claims are proven true,
and if

p1(+1) · q1(−1) + p1(−1) · q1(+1) = 0,

as well as
q1(+1) · q1(−1) ̸= 0,

then the verifier accepts that
∑

x⃗∈Hn

p(x⃗)
q(x⃗) = 0.

Taking the soundness errors of the batching steps involving the µk, k =
0, . . . , n − 1 and the λk, k = 1, . . . , n − 1, into account, the overall soundness
error is as follows.

Proposition 1. The soundness error εGKR of the above described GKR protocol

for proving that
∑

x⃗∈Hn

p(x⃗)
q(x⃗) = 0 is bounded by

εGKR ≤
2 · (n− 1) + 1

|F |
+

n−1∑
k=1

εSumcheck(|Hk|) ≤
1

2
· n · (3 · n+ 1)

|F |
,

using εSumcheck(|Hk|) ≤ 3·k
|F | for the soundness error of the sumcheck protocol for

a degree d = 3 expression over the Boolean hypercube of size |Hk|.

We will provide a formal security analysis of the protocol in another docu-
ment.

3.3 Computational cost

Let us count the number of field operations involved in the GKR fractional
sumcheck. The sumcheck in round k, 1 ≤ k ≤ n − 1, is subject to the degree
d = 3 expression

pk(r⃗k) + λk · qk(r⃗k)

=
∑
y⃗∈Hk

Q
(
Lk(rk, y⃗), pk+1(y⃗,+1), pk+1(y⃗,−1)qk+1(y⃗,+1), qk+1(y⃗,−1)

)
,
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with

Q(L, p+1, p−1, q+1, q−1) = L ·
(
p+1 · q−1 + p−1 · q+1 + λk · q+1 · q−1

)
.

The value of Q as a polynomial in ν = 5 variables, can be computed within
|Q|M = 5 multiplications, and |Q|A = 2 additions. Using the approximate
formula (12) from [Hab22], the prover cost of the sumcheck is about

|Hk| · (d+ 1) ·
(
(ν + |Q|M) ·M+ (ν + |Q|A) · A

)
= |Hk| · (40 ·M+ 28 · A) ,

given the values of pk+1, qk+1 over Hk+1, and of Lk( . , r⃗k) over Hk. (Here, and
in the sequel, A and M denote field additions and multiplications.) Summing
over 1 ≤ k ≤ n− 1 yields about

|Hn| · (40 ·M+ 28 · A) ,

and together with cost for computing the values of all intermediate values of
the circuit, which is about

|Hn| · (3 ·M+ 1 · A),

we end up with the total cost of

|Hn| · (43 ·M+ 29 · A) (5)

for the entire GKR fractional sumcheck over Hn.

4 Application to logUp

For simplicity we assume that the number of columns subject to the lookup
argument is equal to M = 2k − 1, so that we have in total 2k columns of length
2n, including the table column. To prove the fractional sumcheck Equation (3),
one simply applies the GKR protocol as described in Section 3 to the combined
multilinear polynomial in n+ k variables,

p(X⃗, Y⃗ ) = Lk(Y⃗ , 1⃗) ·m(X⃗)−
∑

y⃗∈Hk\{1⃗}

Lk(Y⃗ , y⃗) · 1,

q(X⃗, Y⃗ ) = Lk(Y⃗ , 1⃗) · (α− t(X⃗)) +
∑

y⃗∈Hk\{1⃗}

Lk(Y⃗ , y⃗) · (α− wi(y⃗)(X⃗)),

where 1⃗ = (1, . . . , 1), and i(y⃗), y⃗ ∈ Hk \ {⃗1}, is an enumeration of {1, . . . ,M}.
This reduces the sumcheck claim to evaluation claims for t(X⃗), m(X⃗) and

w1(X⃗), . . . , wM (X⃗) at a random point r⃗ ∈ Fn. The verifier queries the ora-
cles for their values at r⃗, and accepts if the answers are consistent with the
claims.

In regards of the soundness error, there is as good as no change. The sound-
ness error of reducing the “virtual” fractional identity (2) to the fractional sum-
check (3) still dominates.
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Proposition 2 (logUp-GKR Soundness). Let M ≥ 1 be an integer, F a finite
field with characteristic char(F ) > M · 2n. The soundness error ε for logUp
on M witness columns and a single table column over Hn, using GKR for the
fractional sumcheck, is bounded by

ε ≤ (M + 1) · 2n − 1

|F | − |H|
+ εGKR(|Hn+m|),

where εGKR(|Hn+m|) is the soundness error of the GKR protocol over a domain
of size |Hn+m|, and m = ⌈log2(M + 1)⌉.

As pointed out in Section 2, the constraint on the number of elements to
be looked up is essential for the uniqueness of fractional decompositions. The
first term of the soundness error bound is due to the above mentioned reduction
from fractional identity to sumcheck, whereas for completness of the protocol
the random point needs to be taken from F \H. We will give a formal description
of the protocol, including its security analysis in another document.

Let us estimate the performance impact of using GKR for fractional sum-
checks. In our proposed variant of logUp, the prover only needs to provide a
single additional column, the one for the multiplicities as recorded by m(X⃗).
According to Equation (5), the computational cost for the rational sumcheck is
about

|Hn+m| · (43 ·M+ 29 · A) , (6)

which amounts to 43 ·M+29 ·A per element to be looked up (for large numbers
of witness columns, so that we can neglect the table size). This is only about
the double of the arithmetic costs for the elementary variant of logUp described
in Section 2, which is about

|Hn+m| · (19 ·M+ 16 · A) , (7)

the commitment effort for the (M + 1) helper functions left aside. (The arith-
metic costs are about the half of (7), when combining the sumcheck with others.)
Depending on the used commitment scheme, we expect the following impact on
the prover costs:

• Elliptic curve based schemes consume an equivalent of several hundreds
multiplications and additions per committed field element (see Table 1 in
[Hab22]), yielding an at least 10-fold advantage,

• For Reed-Solomon code based schemes the difference from (7) (or the half
of it) to (6) is already largely consumed by the encoding alone. Depending
on the concrete hash function, we expect the advantage ranging from about
2-fold up to 10-fold.

We are curious of how well this operation count based forecast will be met
in practice.
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5 How to tackle the univariate case

In order to apply the fractional sumcheck GKR to univariate logUp, we intro-
duce a simple univariate IOP for turning a univariate polynomial commitment
scheme into a multilinear one. Contrary to the existing approaches [ZXZS20,
BCHO22, CBBZ22, Ham22] and most recently [KT23], our transform works
throughout with Lagrange representations (multilinear and univariate ones),
i.e. we identify values on the hypercube with values over the univariate domain.
This leads to a very elementary transformation which might be also of interest
in other applications. (One application is complementary to [Ham22, KT23]
and given in Appendix A.2.)

5.1 A simple univariate IOP for multilinear evaluation

As in the above mentioned track of work, we identify the univariate cyclic do-
main H = {x ∈ F : x2n = 1} with the Boolean hypercube Hn = {±1}n, using
the bit decomposition of the indices

i = i0 + i1 · 2 + . . .+ in−1 · 2n−1,

which yields the bijective map ι : H → Hn according to the following commu-
tative diagram. (Here, and in the sequel, g is a generator of the cyclic domain.)

{0, 1}n [0, 2n)

Hn = {±1}n H

((−1)i0 ,...,(−1)in−1 )

i0+i1·2+...+in−1·2n−1

gi

ι

We recall that the map ι is not a homomorphism between the two groups.

By means of ι we identify values over the Boolean hypercube as values over
the univariate domain. In terms of Lagrange representations, given

f(X⃗) =
∑
x⃗∈Hn

v(x⃗) · Ln(X⃗, x⃗),

we commit to the univariate Lagrange representation over H given by v ◦ ι,
which corresponds to the unique polynomial

uf (X)

of degree deg uf (X) ≤ 2n − 1 such that

vi = uf (g
i) = v

(
(−1)i0 , . . . , (−1)in−1

)
,

for every index i ∈ [0, 2n), where (i0, . . . , in−1) are the binary digits of it.
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The evaluation proof for f at a multivariate query point t⃗ = (t0, . . . , tn−1)
from (F \ {−1})n is as follows.3 As [ZXZS20] we represent f at t⃗ as inner
product, which in our case is between the values given by v and the column c
for the values of the multivariate Lagrangians Ln(⃗t, x⃗) over Hn, i.e.

f(t0, . . . , tn−1) =

2n−1∑
i=0

vi · ci, (8)

where

ci =
1

2n
·
n−1∏
k=0

(1 + (−1)ik · tk). (9)

In the first round the prover provides a Lagrange oracle for the unique univariate
polynomial

c(X)

of degree deg c(X) ≤ 2n − 1, which extends the values of the column c = (ci)
(i.e. c(gi) = ci). Correctness of the additional oracle c(X) is directly enforced
by the following periodic constraints over H,

c0 =
1

2n
· (1 + t0) · . . . · (1 + tn−1), (10)

and

ci+2k−1 = ci ·
1− tk−1

1 + tk−1
, i ∈ 2k · Z ∩ [0, 2n), (11)

for k = 1, . . . , n. (These constraints yield quadratic identities over H, and their
selector polynomials have a succinct rational representation. See Section A.1.)
It then runs the univariate sumcheck protocol for

f(t0, . . . , tn−1) =
∑
x∈H

uf (x) · c(x), (12)

leading to another quadratic identity over H. We assume that the reader
is familiar with univariate sumcheck techniques (see [BSCR+19, CHM+20] or
[HGdB21]), and skip an explicit description of the complete IOP.

Proposition 3. Assume that F is a finite field with a two-adic multiplica-
tive subgroup H of order 2n. The above sketched protocol defines a univariate
polynomial IOP for proving the value f (⃗t0, . . . , t⃗n−1) of the unique multilinear

polynomial f(X⃗), which extends the set of values over Hn given by uf (X) over
H via uf ◦ ι−1. Its soundness error ε is bounded by

ε ≤ 2 · dmax

|F |
+ εsumcheck,

where dmax is the maximum degree of oracle polynomials, and εsumcheck is the
soundness error of the univariate sumcheck argument.

3We remark that the assumption on the coordinates can be dropped by a more careful
setup of the constraints. However, in most applications (as ours) the query point is, or can
be made random, with a sampling set that avoids the case −1.
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The protocol is zero-knowledge if the used sumcheck argument is, and is
easily extended to a batch evaluation proof, proving the values of several mul-
tilinear polynomials f1(X⃗), . . . , fM (X⃗) at given points t⃗1, . . . , t⃗M , respectively.
We will provide a formal security analysis in another document.

Remark 1. In a similar manner one can modify the transformation from
[ZXZS20] into one with a succinct verifier. Given a multilinear polynomial with

respect to the monomial basis, f(X⃗) =
∑

ci0,...,in−1
·Xi0

0 · . . . ·X
in−1

in−1
, the prover

simply provides the univariate oracle w(X) for the column w of the monomial
values at t⃗,

wi = ti01 · . . . · t
in−1

n−1 ,

for i = 0, . . . , 2n − 1, again with (i0, . . . , in−1) being the bit representation of
the index i. Correctness of w(X) is enforced by the periodic constraints w0 = 1,
and

wi+2k−1 = wi · tk, i ∈ 2k · Z ∩ [0, 2n),

for k = 1, . . . , n. The approach can be generalized to multivariate polynomial
of larger individual degree, but at the cost of having non-periodic constraints
instead (unless the field has multiplicative subgroup of suitable order). These
non-periodic constraints can be handled in the style of Plonk [GWC19] via pre-
computed selector polynomials.

5.2 Univariate logUp with GKR

For simplicity we again assume a single-colum table t, and that we have M =
2k − 1, k ≥ 1, witness columns w1, . . . , wM (X) subject to the lookup.

Regarding values over the univariate domain H as values over the Boolean
hypercube {±1}n, as in Section 5.1, we run the GKR protocol for the fractional
sumcheck as described in Section 4. The GKR protocol eventually ends up with
evaluation claims for the multilinear extensions t(X⃗) and w1(X⃗), . . . , wM (X⃗),

and m(X⃗) at a random point r⃗ = (r0, . . . , rn−1),

t(r⃗) = vt, m(r⃗) = vm,

wi(r⃗) = vi, i = 1, . . . ,M,

which are then reduced to a single evaluation claim on a random linear combi-
nation,

t(X⃗) + λ ·m(X⃗) +

M∑
i=1

λi+1 · wi(X⃗),

at X⃗ = r⃗, using λ ←$ F . This claim is proven by the univariate IOP from
Section 5.1.

The soundness error ε for this protocol variant, which we call univariate
logUp/GKR, increases at most by the soundness error of the PCS transforma-
tion,

ε ≤ εMV logUp + εtrafo,

10



where εMV logUp is the soundness error of the multivariate logUp/GKR protocol
(Proposition 1), and εtrafo is the soundness error of our univariate IOP for
multilinear evaluation (Proposition 3). Again, we postpone a formal security
analysis to another document.
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constraints are as follows. We take the non-normalized quotients

sk(X) =
vHn

(X)

vHk
(X)

=
X2n − 1

X2k − 1
,

as selector polynomials for the periodic constraints (10) and (11). The selector
sk(X) is zero over H, except for points in the subgroup Hk of the (2k)-th roots

of unity, generated by g2
n−k

. The polynomial form of (10) is

s0(X) ·
(
c(X)− 1

2n
· (1 + t0) · . . . · (1 + tn−1)

)
= 0, (13)

and for (11), k = 1, . . . , n, we have

sk−1(X) ·
(
(1− tn−k) · c(X) + (1 + tn−k) · c(g2

n−k

·X)
)
= 0, (14)

all identities over H, i.e. modulo vH(X). Recall that t⃗ ∈ (F \ {−1})n, so all
coordinates of t⃗ are different from −1, so that the coefficient (1 + tn−k) in (14)
is non-zero for every k.

Let us dwell on the necessity and sufficiency of the constraints. First of all,
notice that the domain points are subject to a varying number of transitional
constraints, depending in which of the subgroups Hk, k = 0, . . . n− 1, they are
contained. Since these form an increasing chain

{1} = H0 ⊂ H1 ⊂ . . . ⊂ Hn−1 ⊂ Hn,

a point x = gi that is in Hk′ but not in Hk′−1, corresponding to an index i which
is an odd multiple of 2n−k′

, has the constraints (14) active only for k > k′. This
means that x is constrained to index transitions of smaller step size only, i.e.
those with offset 2n−k, k > k′, each of which leads into a larger (or “finer”)
subgroup (for offset 2n−k we end up in Hk). The constraint (13) enforces the
correct Lagrange value at index i = 0. Since t⃗ ∈ (F \ {−1})n, each of the active
constraints from (14) enforces the proper replacement quotient in the Lagrange
product, when flipping the corresponding bit from zero to one. This shows that
the constraints are necessary. To see that this they are sufficient, consider the
following path of subsequent transitions: We start at the trivial index with bit
representation (0, . . . , 0), and successively add to the index the non-zero bits of
our target index i, starting with the most significant one, and going down to the
least significant. The value at (0, . . . , 0) is enforced correct by the constraint
(10). In each transition step, corresponding to a non-zero bit in−k ̸= 0, we
leave the subgroup from the last step, corresponding to some Hk′ with k′ < k,
and enter the subgroup Hk. By the preceeding discussion, the constraint (11)
is active and enforces the proper quotient for the transition triggered by in−k.
Since the target index i was arbitrary, the proof is complete.
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A.2 Proving the lexicographical shift on the hypercube

The univariate IOP for multilinear evaluation from Section 5.1 can be easily
extended to prove openings of functions under the lexicographical shift on the
Boolean hypercube more elegantly as in [Ham22] and [KT23].

The lexicographical shift T on the Boolean hypercube Hn = {±1}n is the
circular rotation induced by the lexicographical order on Hn. It sends each
element x⃗ to its upper neighbor with respect to the lexicographical order, except
the largest element −1⃗ = (−1, . . . ,−1), which is mapped to the smallest element
1⃗ = (+1, . . . ,+1). Assuming that F admits a multiplicative subgroup H of
order 2n, and using the identification ι : H 7→ Hn from Section 5.1, where g is
a generator of H, the lexicographical shift translates to the multiplication by g
over the univariate domain H,

T = ι ◦ Tg ◦ ι−1,

where Tg : x 7→ g · x. More generally the k-th power T k translates to T k
g ,

which corresponds to the multiplication by gk. Thus, for proving the multilinear
opening of the shift of a function f over Hn at a point t⃗ ∈ Fn,

⟨f ◦ T, Ln( . , t⃗)⟩ = v,

the protocol simply uses uf (g · X) in the univarate sumcheck for the inner
product with the Lagrange column c for t⃗, i.e.

(f ◦ T )(t0, . . . , tn−1) =
∑
x∈H

uf (g · x) · c(x).

This protocol is easily extended to opening higher order shifts at the same point,

(f ◦ T k)(t0, . . . , tn−1) =
∑
x∈H

uf (g
k · x) · c(x),

and across multiple polynomials, which is the typical situation that arises in mul-
tivariate variants of AIR [BSBHR18, BSGKS20, Sta21], and Plonk [GWC19].

We note that unlike [Ham22] and [KT23], in which values over the hypercube
are identified as coefficients of the univariate polynomial, no degree proofs are
needed, and no elements over the trace domain need to be kept free. To the best
of our knowledge the above described evaluation proof is the first solution that
does not have any restriction on the power of the shift. We will provide a mul-
tivariate protocol for efficiently proving arbitrary powers of the lexicographical
shift in another document.
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