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Abstract

The powerful no-cloning principle of quantum mechanics can be leveraged to achieve interesting
primitives, referred to as unclonable primitives, that are impossible to achieve classically. In
the past few years, we have witnessed a surge of new unclonable primitives. While prior works
have mainly focused on establishing feasibility results, another equally important direction, that
of understanding the relationship between different unclonable primitives is still in its nascent
stages. Moving forward, we need a more systematic study of unclonable primitives.

To this end, we introduce a new framework called cloning games. This framework captures
many fundamental unclonable primitives such as quantum money, copy-protection, unclonable
encryption, single-decryptor encryption, and many more. By reasoning about different types of
cloning games, we obtain many interesting implications to unclonable cryptography, including
the following:

1. We obtain the first construction of information-theoretically secure single-decryptor en-
cryption in the one-time setting.

2. We construct unclonable encryption in the quantum random oracle model based on BB84
states, improving upon the previous work, which used coset states. Our work also provides
a simpler security proof for the previous work.

3. We construct copy-protection for single-bit point functions in the quantum random oracle
model based on BB84 states, improving upon the previous work, which used coset states,
and additionally, providing a simpler proof.

4. We establish a relationship between different challenge distributions of copy-protection
schemes and single-decryptor encryption schemes.

5. Finally, we present a new construction of one-time encryption with certified deletion.
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1 Introduction

Unclonable cryptography is a prominent research area that lies at the intersection of quantum
computing and cryptography. This research area consists of many fascinating primitives that solve
cryptographic problems using quantum information that are impossible to solve using only classical
technology. At the heart of this area is the no-cloning principle of quantum mechanics [WZ82, Die82],
which states that no universal cloner can clone arbitrary quantum states. Since Wiesner put forward
quantum money in 1983 [Wie83], a novel unclonable primitive that protects digital money against
counterfeiting attacks, there have been a myriad of interesting unclonable primitives proposed over
the years. They include variants of quantum money [AC12, Zha17, Shm22], quantum one-time
programs [BGS13], copy-protection [Aar09, AL20, ALL+20, CLLZ21], tokenized signatures [BS16,
CLLZ21, Shm22], unclonable encryption [Got02, BL20], secure software leasing [AL20, KNY21,
BJL+21], encryption with certified deletion [BI20] and certified zero-knowledge [HMNY22].

We discuss three unclonable primitives that are the main focus of this work1.

Unclonable Encryption. Roughly speaking, an unclonable encryption scheme, introduced by
[BL20], is a type of symmetric key encryption scheme that protects ciphertexts, encoded in quantum
states, from being illegally distributed. To formalize this, we first consider the following security
experiment. The adversary participating in the security experiment is referred to as a cloning
adversary, consisting of three algorithms, namely A, B and C. A receives a quantum state in the
setup phase. The quantum state is a ciphertext, which is an encryption of a message m computed
using a private key k. Then, A sends a bipartite state to the spatially separated parties (B, C) during
the splitting phase. Finally, B and C are asked to simultaneously pass verification in the challenge
phase. In more detail, in the challenge phase, B and C both receive the classical decryption key k
and B outputs bB while C outputs bC . We say that (A,B, C) wins if bB = bC = m.

Ch A
Enc(k, x)

Bk

bB

k

bC

C

A

With the above security experiment in mind, there are two ways to define security.

• Unclonability: In this case, m is sampled uniformly at random from the message space. We
say that the scheme is ε-secure if the probability that the adversary (A,B, C) wins is ε. Ideally,
we would require that ε is negligible in |m|.

• Unclonable-Indistinguishability: In this case, m is sampled uniformly at random2 from some
1An (impatient) reader familiar with the above primitives could skip directly to Section 1.1. We still recommend

going through the discussion before reading Section 1.1.
2We note that the security in the literature is stated slightly differently. A is given encryption of a message mb,

where b is picked uniformly at random and B, C is expected to simultaneously guess b. We note that this formulation
is identical to the above formulation.
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adversarially chosen set {m0,m1}. Similar to the above property, we can define ε-security.
Ideally, we would require ε to be negligibly close to 0.5.

Public-key unclonable encryption schemes have also been considered by [AK21, AKL+22].

Copy-Protection. Quantum copy-protection, introduced in [Aar09], is a functionality-preserving
compiler that transforms programs into quantum states. Moreover, we require that the resulting
copy-protected state should not allow the adversary to copy the functionality of the state.

The security experiment against cloning adversaries of the form (A,B, C) is formalized as fol-
lows3. A receives an unclonable copy-protected program ρf := CP(f), which can be used to evaluate
a classical function f4. In the challenge phase, B and C receive inputs xB, xC , sampled from a chal-
lenge distribution and are asked to output bB, bC . (A,B, C) wins if bB = f(xB) and bC = f(xC),
respectively.

Ch A
CP(f)

BxB

bB

xC

bC

C

A

Ideally, we would like to say that a copy-protection scheme is secure if the probability that (A,B, C)
wins is negligible in the output lengths. However, such a statement would be false if we are not
careful in choosing the distributions from which f is sampled and xB, xC are sampled. For example,
if f is sampled from a distribution with support size one, then the adversary (A,B, C) clearly
knows the function being copy-protected and can thus easily violate the security. Even if f is
sampled from a high-entropy distribution, we should also require xB and xC to come from high-
entropy distributions for the definition to be meaningful. For example, if we set xC to be a fixed
element, then (A,B, C) can always win by A first computing the value of the function f(xC) and
then handing over the copy-protected state to B and then handing over f(xC) to C. Moreover, our
definition should be robust in even handling functions with single-bit outputs. This suggests that
we must carefully examine the challenge distribution when evaluating results on constructions of
copy-protection schemes.

Single-Decryptor Encryption. A single-decryptor encryption, introduced in [GZ20, CLLZ21],
enables a user to delegate their decryption key, represented as a quantum state, such that the
delegated key cannot be used to illegally distribute two or more decryption keys that can decrypt
ciphertexts.

Formally, A receives an unclonable decryption key ρsk for an encryption scheme where the
encryption procedure and the message space are both classical. In the challenge phase, B and C

3The original formulation by [Aar09] is weaker than what is stated here. We follow the game-based definition
by [CMP20].

4We only consider classes of unlearnable functions which are functions that cannot be efficiently learned from its
input and output behavior. Copy-protection for learnable functions is impossible.
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respectively receive ciphertexts ctB, ctC encrypting messages mB,mC . They are then expected to
output bB, bC respectively.

Ch A
ρsk

BctB

bB

ctC

bC

C

A

Depending on the specification of the distributions from which the ciphertexts are sampled and how
bB, bC are defined, there are many ways to define security for single-decryptor encryption.

• We could require ctB = ctC (referred to as identical ciphertext distribution), in which case
mB = mC , or we could require that ctB and ctC to be sampled independently (referred to as
independent ciphertext distribution).

• Analogous to the unclonable encryption setting, we could require that the messages mB, mC
are picked from the uniform distribution, or they are sampled from a set of two messages
chosen by (A,B, C).

1.1 Complexity of Unclonable Primitives

Most prior works on unclonable encryption, copy-protection, single-decryptor encryption, and other
unclonable primitives mainly focus on feasibility. A few exceptions include the works of [CMP20,
AK21, SW22], who make partial progress in understanding the relationship between unclonable
encryption, copy-protection, and single-decryptor encryption.

In order to achieve a deeper understanding of the area, we need to move beyond the feasibility
results and investigate how different primitives are related to each other. There are many reasons
why we should care about understanding the relationship between unclonable primitives, and we
discuss some of them below.

Computational Assumptions. Firstly, it leads to a better understanding of the computational
assumptions necessary in the conception of unclonable primitives. While some primitives require
powerful cryptographic tools such as post-quantum indistinguishability obfuscation, some other
primitives can even be conceived information-theoretically. It would be interesting to classify the
unclonable primitives based on the computational assumptions necessary to construct them. In clas-
sical cryptography, via Impagliazzo’s five worlds [Imp95] and numerous black-box separations [IR90],
we have a solid understanding of the minimal computational assumptions necessary for the existence
of primitives. We have just begun to understand the assumptions necessary for achieving crypto-
graphic primitives in the quantum world [AQY22, MY22, BCQ22]. Investigating the implications
between the unclonable primitives will help us classify these primitives based on their computational
hardness.
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Types of States. Secondly, not all unclonable primitives use the same types of states. Given any
unclonable primitive, it is important to establish the types of states needed to achieve this notion.
Some primitives [Wie83, BI20, BL20] use BB84 states [BB20], some utilize subspace states [AC12,
Zha17] and others take advantages of coset states [VZ20, CLLZ21, AKL+22]. BB84 states are
preferred over subspace and coset states due to two facts: (a) they can be prepared easily (the
preparation requires only Hadamard and X gates), and (b) each qubit is unentangled with the
other qubits. Since maintaining entanglement has been challenging in the existing quantum systems,
understanding the feasibility of cryptographic systems using unentangled states is important. We
currently have a limited understanding of whether BB84 states are sufficient for constructing many
primitives. For instance, copy-protection for point functions with single-bit output seems to require
coset states [AKL+22] whereas copy-protection for point functions with multi-bit output requires
only BB84 states [CMP20].

Challenge Distributions. Unclonable primitives are often associated with challenge distribu-
tions. Thus, different feasibility results on the same unclonable primitive assuming different chal-
lenge distributions can be qualitatively incomparable. As was seen in the examples of unclonable
encryption, copy-protection and single-decryptor encryption, the security of an unclonable primitive
can be defined as a game between a challenger and an adversary composed of three parts (A,B, C).
First, A receives an unclonable state (a.k.a. a quantum token) from the challenger, and it outputs
a bipartite state shared by B and C. Then, B and C receive samples from a distribution, called a
challenge distribution, and they output answers.

It is often the case that security proven with respect to one challenge distribution does not nec-
essarily imply security proven for a different challenge distribution. For instance, as was discussed
earlier in the context of copy-protection, the choice of challenge distribution can qualitatively affect
the type of result we get. Discerning the relationship between security notions of different chal-
lenge distributions will enable us to compare different results based on the challenge distributions
they consider. Indeed, even in the literature, constructions of copy-protection for point functions
have considered different challenge distributions [CMP20, BJL+21, AKL+22], which makes their
results difficult to compare. Besides point functions, copy-protection was only known under certain
distributions (product distributions).

Porting Classical Techniques. It turns out to be challenging to adopt many standard techniques
employed to prove the security of cryptographic systems in the classical cryptography literature to
the unclonable setting. Let us take an example. Traditionally, encrypting multiple bits can be
generically reduced to encrypting single-bit messages in parallel using a simple hybrid argument.
The same transformation fails when applied to the setting of unclonable encryption. Even stan-
dard search-to-decision reductions, such as Goldreich-Levin [GL89], commonly used in the classical
cryptography literature, cannot be directly ported to the unclonable setting. In the context of
unclonable encryption, [AKL+22] discuss the challenges associated with using Goldreich-Levin and
more in Section 1.1 of their work.
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1.2 Our Contributions

In order to better understand the relationship between the unclonable primitives, we propose a new
framework called Cloning Games. Firstly, we observe that many5

fundamental unclonable primitives can be cast as cloning games. We establish the relationship
between large classes of cloning games. There are two directions we undertake to establish the
relationship between cloning games.

1. In the first approach, we show that, under some conditions, the relationship between dif-
ferent cloning games can be reduced to the existence of classical reductions between two
non-interactive assumptions. This approach gives a new toolkit to help us use classical tech-
niques and computational assumptions to build unclonable primitives. We give an overview
of this approach in Section 2.2.

2. In the second approach, using new techniques, we refurbish existing constructions of primitives
into generic transformations between cloning games. This approach leads to new constructions
of primitives with improved features over prior works. An overview of this approach is given
in Section 2.3.

As a consequence of the above two approaches, we obtain new results in unclonable cryptography.

Single-Decryptor Encryption. Existing constructions of single-decryptor encryption in the
public-key setting, are based on post-quantum indistinguishability obfuscation [GZ20, CLLZ21].
It is worth investigating whether we can achieve single-decryptor encryption in the private-key set-
ting based on well-studied assumptions. Indeed, even in the one-time setting, it was not known how
to achieve single-decryptor encryption without relying on strong assumptions. By one-time setting,
we mean that the adversary only gets one ciphertext computed using the private key. We show the
following.

Theorem 1 (Informal). There exists an information-theoretically secure one-time single-decryptor
encryption scheme for single-bit messages.

The ciphertext distribution we consider in the above result is the following:
The challenger chooses the messages mB

$←− {0, 1} and mC
$←− {0, 1}. It then encrypts mB (resp.,

mC) and gives the ciphertext to B (resp., C). Then, B and C are supposed to simultaneously guess
which bit was encrypted. The security of our construction states that the success probability of any
adversary is negligibly close to 0.5.

Although our construction is only for 1-bit messages, we hope the toolkit we develop (Theo-
rem 13) can be applied to obtain single-decryptor encryption for multi-bit messages in future work.

Unclonable Encryption and Copy-Protection. We revisit recent works that leveraged coset
states to achieve unclonable primitives. Specifically, we focus on two constructions of unclonable-
indistinguishable encryption and copy-protection for point functions by [AKL+22]. We show that
these two constructions can be obtained from any encryption scheme satisfying the unclonability
property in the quantum random oracle model. Ours is the first work to formally establish the
relationship between unclonability and unclonable-indistinguiushability properties.

5As far as we know, all unclonable primitives can be cast as cloning games by making reasonable minor modifica-
tions to the framework.
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Theorem 2. Assuming the existence of one-time encryption satisfying unclonability, there exists an
encryption scheme satisfying unclonable-indistinguishability in the quantum random oracle model.

Assuming the existence of one-time encryption satisfying unclonability, there exists a copy-
protection scheme for 1-bit output point functions in the quantum random oracle model.

Unclonable encryption can be constructed from BB84 states [BL20], and hence, as a consequence,
we can obtain unclonable-indistinguishable encryption and copy-protection for point functions lever-
aging just BB84 states.

Corollary 1 (Informal). There exists a (one-time) encryption scheme satisfying unclonable indis-
tinguishability property, based on BB84 states, in the quantum random oracle model.

There exists copy-protection for 1-bit output point functions, based on BB84 states, in the quan-
tum random oracle model.

In fact, [AK21] showed that encryption satisfying unclonability can be obtained from a vari-
ety of monogamy of entanglement games [TFKW13]. Consequently, we obtain both unclonable-
indistinguishable encryption and copy-protection schemes based on a variety of quantum states, not
just BB84 states.

Moreover, by plugging in the generic transformation from [AK21], we achieve public-key unclon-
able encryption based on BB84 states.

Relationship between Challenge Distributions. In both copy-protection and single-decryptor
encryption, the choice of challenge distribution plays a role in determining the usefulness of construc-
tions. This makes comparing results difficult. For instance, a priori, it is unclear how to compare
two different works constructing copy-protection for the same class of functions but with differ-
ent challenge distributions. Similarly, even for single-decryptor encryption, schemes with different
ciphertext distributions might be incomparable.

We make progress in understanding the relationship between different challenge distributions.
Although our result is more general, for the current discussion, let us focus on two types of distri-
butions:

• Identical: Both B and C get the same challenge (challenge refers to input in the case of
copy-protection and ciphertext in the case of single-decryptor encryption), drawn from some
distribution.

• Independent: B and C each get two challenges chosen independently from some distribution.

Although being quite similar, the relationship between security under identical-challenge cloning
experiments and independent-challenge cloning experiments was not known, as all the security proofs
of general copy-protection schemes [ALL+20, CLLZ21] were established with respect to independent-
challenge distributions6, and their security with respect to identical-challenge distributions was not
analyzed. Indeed, it turns out that the proof techniques in [ALL+20, CLLZ21] were tailored to the
independent challenge setting and they did not generalize to the identical challenge setting.

We address this issue by showing the following.
6With the exception of copy-protection of point functions [CMP20, AKL+22].
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Theorem 3 (Informal). A copy-protection scheme secure for a class of multi-bit output functions
in the independent challenge distribution setting is also secure in the identical challenge distribution
setting.

A single-decryptor encryption scheme in the independent challenge distribution setting is also
secure in the identical challenge distribution setting.

For the result on copy-protection, we remark that besides the fact that the output length of the func-
tions is large (more precisely, depends on the security parameter), our result is general and applies
to any class of functions. For the result of single-decryptor encryption, we consider the definition
where the adversary is given the encryption of a message chosen from the uniform distribution and
is supposed to predict the entire message.

In fact, in the technical sections, we prove a stronger theorem that generalizes for arbitrary
correlated distributions instead of just identical distributions! More precisely, suppose DB (resp.,
DC) is the challenge distribution for B (resp., C). Let D be the challenge distribution on B’s and
C’s challenge spaces, as long as the marginal distribution on B (or C respectively) of D corresponds
to DB (or DC , respectively). We show that a secure copy-protection scheme when the challenge
distribution is DB×DC , is also secure when the challenge distribution is D. Similar conclusions also
hold for single-decryptor encryption schemes.

Encryption with Certified Deletion. Another well-studied unclonable primitive is encryption
with certified deletion [BI20]. Certified deletion can be thought of as a weaker form of unclonability,
where the adversary is asked to provide a classical certificate of deletion before learning the secret
key.7 While it is unknown whether unclonable encryption is information theoretically possible,
encryption with certified deletion is known to be information theoretically possible [BI20, BK22].
We give an alternate construction and proof of security of this construction is based on the techniques
used for bounding monogamy-of-entanglement games [TFKW13]. Our techniques are conceptually
different from the existing works [BI20, BK22] who used entropic arguments to argue the same. En
route, we formally define the notion of deletion games, a subclass8 of cloning games.

2 Technical Overview

We first discuss our definition of cloning games, why it captures many existing unclonable primitives,
and then present techniques to relate different cloning games.

2.1 Definitional Contribution: Cloning Games

A cloning game consists of the following four procedures (Setup,GenT,GenC,Ver):

• A setup procedure Setup, on input a security parameter, outputs a secret key sk.

• A token generation procedure GenT that takes as input the secret key sk, a message m, and
outputs a quantum state ρ. As we will see later, ρ is expected to have some unclonability
properties.

7In contrast, unclonability allows B and C to both learn the secret key before passing verification. Note that we
use the word "weaker" qualitatively in this sentence, and do not claim that unclonability implies the existence of
certified deletion in general.

8Although this is not true for the initial definition we use to introduce cloning games, deletion games are captured
after considering a natural extension of cloning games, where B and C are not treated symmetrically.
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• A challenge generation procedure GenC, which takes sk,m together with random coins r, and
outputs a challenge ch.

• Finally, a verification procedure Ver, that takes sk,m, ch together with an alleged answer
(which can be either a classical string or a quantum state) and outputs either 0 (reject) or 1
(accept).

We also consider another (stateful) variant where Ver gets as input r, which are the random
coins used in GenC.

We require that a cloning game satisfies two properties: correctness and security. First, we discuss
correctness.

Correctness. The correctness property says that there always exists an (efficient) quantum algo-
rithm AG if all the procedures are executed honestly and in the order of (Setup,GenT,GenC,AG),
the verification procedure should almost always output 1 (accept). That is, AG takes as input the
state produced by GenT and the challenge produced by GenC and outputs an answer ans that is
accepted by Ver with probability negligibly close to 1.

AG (ch← GenC(sk,m; r))(GenT(sk,m)→ ρ)

ans

2.1.1 Instantiations

Before we discuss security, we demonstrate the power of cloning games by showing a couple of
examples. Below, we show that both unclonable encryption and copy-protection can be cast as
cloning games.

Unclonable Encryption. We cast unclonable encryption as a cloning game (Setup,GenT,GenC,Ver)
below.

• Setup in the cloning game corresponds to the key generation of the unclonable encryption
scheme. That is, Setup produces the secret key, denoted by sk, of the encryption scheme,

• GenT corresponds to the encryption algorithm,

• GenC produces the challenge ch = sk,

• Ver takes as input (sk,m, ch, ans) and outputs 1 if and only if ans = m.

• AG corresponds to the decryption algorithm. On input the ciphertext state produced by GenT
and the secret key, i.e., ch, it outputs the message m.
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Copy-Protection. We can similarly cast copy-protection using cloning games, as shown below.
We do not need to define Setup for copy-protection of classical programs and thus sk = ⊥.

• GenT takes sk = ⊥, message m = f , where f is the program to be copy-protection and
outputs a quantum state ρ. That is, GenT corresponds to the copy-protection algorithm,

• GenC takes as input sk = ⊥, m = f and samples a challenge ch := x according to the
distribution.

• Ver corresponds to the evaluation algorithm of the copy-protection scheme. That is, it takes
input ch := x and f , and tests whether f(x) = ans.

• AG corresponds to the evaluation algorithm. On input the copy-protected state of f and the
challenge input x, it outputs f(x).

Similarly, single decryptor encryption, tokenized signatures, primitives with certified deletion, and
many others can be cast as cloning games. We refer the reader to the main body for more details.

2.1.2 Security

In the security experiment, we consider cloning adversaries of the form (A,B, C). A receives as
input a quantum state ρ generated using GenT(sk,m). A then computes a bipartite state and sends
it to B and C. Both B and C then receive ch, where ch is produced by GenC(sk,m). (A,B, C) wins
if ansB produced by B and ansC produced by C are such that Ver accepts both ansB and ansC .

Ch A
GenT(sk,m)

Bch

ansB

ch

ansC

C

A

To define the security, we first define the trivial success probability of the adversaries in the
cloning game. We say that the cloning game is secure as long as any cloning adversary cannot
succeed with probability significantly larger than the trivial success probability. The trivial success
probability is calculated as follows: A gives the quantum token to B, and then B computes the
correct answer ansB. On the other hand, C outputs its best guess ansC . The probability that
(A,B, C) wins is precisely the trivial success probability.

The trivial success probability in an encryption scheme satisfying unclonability9 is 1
|M| , where

M is the message space, and the trivial success probability in a scheme satisfying unclonable-
indistinguishability is 1

2 .

9Please refer to the definition of unclonability of an unclonable encryption scheme in the introduction.
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Computational Complexity of the Attackers. We did not remark on the computational
complexity of (A,B, C). In this work, we mainly work with attackers where A,B, and C are all
computationally unbounded adversaries. Nevertheless, we can consider more general settings, where
all of them run in quantum polynomial time.

Message Distributions. In the security experiment, m is sampled from some distribution D.
There are two types of distributions we consider in this work: (1) D is uniform and, (2) Dm0,m1 is a
distribution parameterized by two messages m0,m1 and it outputs m0 or m1 with equal probability
1/2. When considering Dm0,m1 , we allow the adversary to choose the messages m0,m1.

Search and Decision Games. We consider a specific type of cloning games, called search games,
where the verification algorithm Ver is defined as follows: on input (sk,m, ch, ans), it outputs 1 (or
Valid) if and only if ans = m. We can consider two different security notions of search games.

• Unclonable-Search security: the message distribution D is uniform and,

• Unclonable-Indistinguishability security: the message distribution is Dm0,m1 , where (m0,m1)
is the pair of messages chosen by the cloning adversary.

In the context of unclonable encryption, the above two notions correspond to unclonability and
unclonable-indistinguishability properties.

We also define decision games, where ansB, ansC ∈ {0, 1}.

Extensions and Stateful games. For some applications, we need to generalize the algorithms
of the cloning games further. Firstly, we can generalize the challenge generation phase to the
asymmetric setting, where both B and C do not necessarily receive the same challenge. This is
formalized by defining an extended algorithm G̃enC which samples two random strings rB and rC
such that B (resp., C) receives a challenge generated using rB (resp., rC). Furthermore, we generalize
the verification algorithm Ver to also take as input the randomness used in the challenge generation
algorithm. This way, the pair of algorithms (GenC,Ver) acts as a stateful verifier, hence the term
stateful games.

Challenge Distributions. Finally, we need to remark on how the randomness for the challenge
generation is generated. There are two popular options:

• Identical challenge distribution: in this case, G̃enC generates rB = rC .

• Independent challenge distribution: in this case, G̃enC generates rB, rC such that rB and rC
are chosen independently.

We also consider more general challenge distributions where rB and rC are arbitrarily correlated.

2.2 Part I: Implications via Classical Reductions

In the classical cryptography literature, there is an abundance of techniques developed to show
the relationship between different primitives. Ideally, we would like to draw inspiration from these
techniques and/or rehash them to develop new relationships between unclonable primitives.
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We develop a new framework to relate cloning games using classical reductions. This new
framework presents a new approach of using classical techniques to build unclonable primitives.

Specifically, we show that the implication of a cloning game G = (Setup,GenT,GenC,Ver) to
another cloning game G′ = (Setup′,GenT′,GenC′,Ver′) can be based on a classical reduction that
transforms a probabilistic polynomial-time solver for one assumption into a solver for a different
assumption, where the assumptions are closely related to the games G,G′.

For the implication to hold, we require some extra (and mild) conditions. In the simplest case,
Setup = Setup′ and GenT′ = GenT. More generally, we require that the distribution of the states
generated by GenT is close (in trace distance) to the distribution of the states generated by GenT′.
Additionally, we require that in both games, the trivial success probability is negligible10.

Implications. As a result of the above implication, we obtain two interesting sets of results.
Firstly, we can show that many unclonable primitives (for instance, copy-protection and single-

decryptor encryption schemes secure with respect to independent challenge distribution are also
secure with respect to an arbitrary challenge distribution, as long as the marginals of the latter
distribution correspond to the independent challenge distribution. This follows from the fact that
changing the challenge distribution corresponds to only modifying the algorithms GenC and Ver.

Secondly, we show that any unclonable encryption scheme generically implies the existence
of single-decryptor encryption. The transformation leverages the classic Goldreich-Levin tech-
nique [GL89]. The setup and token generation of single-decryptor encryption are the same as
the setup and token generation of unclonable encryption. In particular, to generate the unclon-
able decryption key in a single-decryptor scheme, we sample a long random message x and encrypt
x to get |ctx⟩, using the unclonable encryption scheme. To encrypt a message m in the single-
decryptor scheme, one first sample random coins r (of the same length as m) and let the ciphertext
be (r, ⟨r, x⟩ ⊕m) together with the key to recover x from the encryption |ctx⟩. Since the setup and
the token generation algorithms remain the same, and only GenC and Ver need to be modified, we
obtain this implication.

2.2.1 From Classical Reductions to Reductions between Cloning Games

We establish the relationship between cloning games using classical reductions in the following steps:

• In the first step, we define a new notion of classical reductions called classical non-local re-
ductions. We then show that many natural classical (local) reductions can be upgraded to
classical non-local reductions.

• In the second step, we show how to generically lift classical non-local reductions into reductions
between cloning games. Specifically, we obtain a reduction between two games G and G′
such that a cloning adversary for G can be converted into a cloning adversary for G′. The
transformation only works in the setting when the challenge distribution associated with G
corresponds to an independent challenge distribution.

• In the third and final step, we show that, for any cloning game G, a cloning adversary suc-
ceeding in violating the security of G with respect to an arbitrary challenge distribution D can
also succeed in violating the security of G with respect to independent challenge distribution,
corresponding to the marginals of D.

10Our theorem is more general than what is stated here; refer to Theorem 13 for more details.
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Using the third step, we can now get an improved result in Step 2. Specifically, the reduction
between G and G′ holds even if the challenge distribution associated with G corresponds to an
arbitrary challenge distribution, as long as the marginal distributions for B and C remain the same.

We remark that in the third step, we only consider cloning games with trivial success probability
to be negligible. Thus, the resulting reductions between cloning games only hold for this setting.
Alternately, if we start with a cloning game G with respect to the independent challenge distribution
then we can still apply the first and second step to obtain a reduction between G and G′ even if the
trivial success probability is not negligible.

Step I: From Classical (Local) Reductions to Classical Non-Local Reductions. A reduc-
tion transforms a solver for a non-interactive assumption P into a solver for another non-interactive
assumption Q. Henceforth, we refer to reductions commonly studied in the literature, as local
reductions.

In this work, we consider a notion of reductions called non-local reductions. First, we need to
define non-local solvers. Suppose A is a non-interactive assumption (for example, learning with
errors). Then, a non-local solver for A consists of two algorithms (B, C) such that each of B and
C receives samples/challenges chB, chC from A and is supposed to solve the samples they receive.
Throughout the process, B and C cannot speak to each other, although they could have exchanged
some common information, denoted by ρ, before receiving chB, chC . The samples chB, chC can be
arbitrarily correlated. We denote the distribution that samples (chB, chC) to be DA.

A non-local reduction is a transformation that converts a non-local DP -solver (BP , CP ) for as-
sumption P into a non-local DQ-solver (BQ, CQ) for assumption Q, for some challenge distributions
DP and DQ. It turns out that we can lift local reductions into non-local reductions in the clas-
sical setting (i.e., when the solvers are classical algorithms) as long as the distribution DQ is an
independent challenge distribution and the trivial success probability of Q is small (for example,
negligible)11.

ρ
BQ

BP

CQ

CP
chB

ansB

chC

ansC

Step II: Lifting Classical Non-Local Reductions to Reductions Between Cloning Games.
To lift classical non-local reductions to reductions between cloning games, we take inspiration from
a recent work by [BBK22] (henceforth, referred to as BBK), who showed a lifting theorem that lifts
classical reductions into post-quantum reductions. Suppose we would like to convert a solver for
assumption P into a solver for assumption Q. The difficulty in porting classical reductions into

11One example of trivial success probability being large is non-local decision games, where B and C try to produce
binary answers simultaneously.
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post-quantum reductions stems from the fact that the Q-solver could run the P -solver multiple
times. Since the state of the P -solver could drastically change from one execution to the other
(due to the difficulty of rewinding), potentially, there could no longer be any guarantees from the
P -solver after the first execution.

To solve this issue, BBK prove a novel lifting theorem in three steps.

• Persistence theorem: in the first step, they show how to transform a P -solver into another
one, where the success probability of the P -solver does not decrease a lot even after executing
it multiple times. In other words, the P -solver does not lose the ability to solve instances of
P even after multiple executions. In more detail, suppose the P -solver, on input ρ, solved an
instance of P with probability p. Then we can convert the P -solver into another one, whose
success probability is at least p− ϵ, for some small ϵ > 0, even after multiple executions.

Ideally, we would like the P -solver to be stateless, i.e., it does not know whether it has ever
been executed in the past, in order for us to successfully reduce to the problem of solving Q.

• From persistence to memoryless: In the next step, they convert a persistent solver into another
one that is indistinguishable from a P -solver that is memoryless. A solver is memoryless if
the only thing it can remember is the number of times it has been executed so far.

• From memoryless to stateless: In the final step, they convert the solver from the second
step into another solver that is indistinguishable from a stateless solver. Roughly speaking,
a stateless solver is one that does not remember any information from one execution to the
next.

Our strategy to lift non-local reductions into reductions between cloning games is to use the BBK
approach. Similar to their work, we can define the notion of persistent, memoryless, and stateless
non-local solvers. Due to some nice structural properties of their transformation, it turns out that
the persistent to stateless transformation (the second and third steps above) extends directly to the
non-local setting.

Showing the non-local version of their persistence theorem (first bullet above) requires more
work. To see why, let us first recall the BBK approach to prove the persistence theorem. They
use two procedures, namely value estimation (ValEst) and repair (Repair) procedures, first defined
by [CMSZ21].

• ValEst has the guarantee that given an input state ρ and a verification algorithm Ver, it
outputs a number (probability) p such that E[p] = pacc and pacc is the probability that Ver
accepts ρ. If the output of ValEst is p, let the leftover state be ρp.

• Suppose we have computed the P -solver on ρp. The residual state ρ′p could be far from ρp and
more importantly, might not provide any guarantees. We would like to restore the success
probability on the residual state ρ′p obtained after running the P -solver. The procedure Repair
does just that. It takes as input potentially disturbed state ρ′p and outputs another state ρ∗

such that the success probability on ρ∗ is close to the success probability on the original state
ρ.

The persistence theorem is proven as follows: each time before computing the P -solver, first run
ValEst procedure, and then after the execution of the P -solver run the Repair procedure. Roughly
speaking, by the guarantees of ValEst and Repair, we have that the underlying P -solver does not
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lose its ability to solve the assumption P even after executing it multiple times.

Non-local Persistence Theorem. Before we describe the non-local persistence theorem, we first set
up some terminology. We start with a non-local classical non-local reduction which reduces a P -
non-local solver to a Q-non-local solver. A P -solver consists of (BP , CP ) and is associated with the
challenge distribution DP . On the other hand, a Q-solver consists of (BQ, CQ) and is associated
with the challenge distribution DQ. We want to upgrade this classical non-local reduction to the
setting when both the P -solver and Q-solver can be quantum. For simplicity, we consider the case
when both DP and DQ are both product distributions.

We now consider a non-local version of the persistence theorem. Informally speaking, we require
that the P -non-local solver continues to be a good solver for P even after multiple executions. A
natural approach to prove this theorem would be to extend the BBK approach to the non-local
setting:

• Before computing the P -non-local solver on its state, first run ValEst procedure.

• After computing on the state, run the Repair procedure.

Unfortunately, we do not know how to execute the above steps. The reason is that the Q-solver itself
is non-local and hence, cannot perform any global operations on the state. However, what it can do
is to alternately apply value estimation and repair procedures locally. That is, BQ (resp., CQ) applies
the value estimation and repair procedures on BP (resp., CP ). While this sounds promising, this
leads to a new issue: we need the guarantee that the P -solver (BP , CP ) is simultaneously persistent.
Even if we locally apply the procedures above on (BP , CP ) such that both BP and CP are persistent,
this does not mean that they are simultaneously persistent! It could very well be the case when BP
succeeds, then CP does not (or vice versa), but still both of them are persistent.

To address this issue, let us first consider a simple case when the state shared by BP and CP are
unentangled. In this special case, there is a clear relationship between the local and global value
estimation and repair procedures. In particular, the following holds:

• Suppose applying (ValEst⊗ValEst) on the shared state of (BP , CP ) yields (pB, pC) then it holds
that E[pB · pC ] equals the output of the (global) ValEst on the initial state of (BP , CP ).

Using this, we can relate global persistence to local persistence.
To generalize this to the case when the initial states of (BP , CP ) could be entangled, we look

at the specific implementation details of the estimation procedure ValEst by [CMSZ21]. The value
estimation procedure ValEst is a sequence of alternating projections, denoted by Π1,Π2, followed
by a computational basis measurement determining the success probability p.

Suppose the initial state of (BP , CP ) is in the Hilbert space H = HB ⊗ HC . We decompose
both HB and HC into subspaces that are invariant under the projections Π1,Π2 using Jordan’s
lemma [Jor75]. Therefore, we can rewrite the initial state of (BP , CP ) to be in the span of {|ψBi ⟩ |ψCj ⟩},
where {|ψBi ⟩} (resp., {|ψCj ⟩}) is in the corresponding Jordan subspaces of HB (resp., HC).

Using an observation made by [CMSZ21], we can think of ValEst as first performing a Jordan
subspace measurement (that projects the state onto one of the Jordan subspaces) followed by
performing a sequence of alternating measurements Π1,Π2. In other words, we can think of applying
value estimation locally, i.e., (ValEst⊗ValEst), as first performing the Jordan subspace measurement
to obtain a joint state |ψBi ⟩ |ψCj ⟩, for some i, j, followed by alternating measurements. Notice that
once we apply the Jordan subspace measurement, the states become unentangled! Thus, we reduce
to the above simple case, and the rest of the analysis follows.
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Step III: Relating Challenge Distributions: From Independent to Identical. In Step II,
in order to be able to run the value estimation and the repair procedures locally, it was crucial
that the underlying P -solver was defined for an independent challenge distribution. It would be
interesting to generalize to the case when the underlying challenge distribution is arbitrary. For
this overview, we focus on the case when the challenge distribution is identical, although the proof
generalizes to arbitrary challenge distributions as well. Specifically, we demonstrate a reduction
from a cloning game G satisfying unclonable security with respect to independent challenges to
G satisfying unclonable security with respect to identical challenges. For the reduction to work,
we crucially use the fact that the trivial success probability in both the games is negligible. An
interesting point to note here is that the reduction does not change the description of the game.

We give an overview of our reduction. Let |σ⟩BC be the (entangled) quantum state shared by
Bob and Charlie (the two non-local quantum adversaries) after Alice’s (the splitting adversary)
stage. We additionally define projections ΠB

r and ΠC
r for every possible random coins r:

ΠB
r : Run Bob on its own register σ[B] with the challenge corresponding to random coins r, project

onto Bob’s output being accepted and uncompute;

ΠC
r : Run Charlie on its own register σ[C] with the challenge corresponding to random coins r,

project onto Charlie’s output being accepted and uncompute;

By definition, the success probability in the independent challenge case is:

δ = Tr

[(
1

|R|
∑
r

ΠB
r

)
⊗

(
1

|R|
∑
r

ΠC
r

)
|σ⟩ ⟨σ|

]
, (1)

where R is the random coin space.
Since ΠB := 1

|R|
∑

r Π
B
r is a POVM, let {|ϕp⟩}p∈R be the set of eigenvectors with eigenvalues

p ∈ [0, 1]12. Similarly, let {|ψq⟩}q∈R be the set of eigenvectors with eigenvalues q ∈ [0, 1] for
ΠC := 1

|R|
∑

r Π
C
r . Therefore, we can always write |σ⟩BC under the bases {|ϕp⟩} and {|ψq⟩}13:

|σ⟩ =
∑
p,q

αp,q |ϕp⟩ |ψq⟩ .

From the above decomposition of |σ⟩ and Equation (1), we have δ =
∑

p,q |αp,q|2pq.

Let η ∈ [0, 1] be a threshold we will pick later. The quantum state can be written as the
summation of three terms:

|σ⟩ =
∑
q<η

αp,q |ϕp⟩ |ψq⟩+
∑

p<η,q>η

αp,q |ϕp⟩ |ψq⟩+
∑

p>η,q>η

αp,q |ϕp⟩ |ψq⟩ .

We denote the first term by |σC⟩, indicating that Charlie’s success probability is bounded by η; the
second term by |σB⟩, indicating that Bob’s success probability is bounded by η; and the last term
by |ρ⟩, none of the probabilities is below η. Thus, |σ⟩ = |σC⟩+ |σB⟩+ |ρ⟩.

12There can be multiple eigenvectors with the same eigenvalues. In the overview, we assume that eigenvalues are
unique.

13There is a one-to-one mapping between {|ϕp⟩ , {|ψq⟩} and the vectors {|ψB
i ⟩ , {|ψC

j ⟩} defined in the Jordan’s lemma.
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First, we note that the success probability when executed on the state |σC⟩ + |σB⟩ is at most
η under both independent challenges and identical challenges. However, |ρ⟩

|||ρ⟩||2 could be such that
the success probability when executed on this state maybe large (even as large as 1). In the next
step, we show that although ρ may have a large probability under identical challenges, ∥ |ρ⟩ ∥2 is
relatively small. Because δ :=

∑
p,q |αp,q|2pq, we have:

∥ |ρ⟩ ∥2 =
∑

p>η,q>η

|αp,q|2 =⇒ ∥ |ρ⟩ ∥2 ≤ δ/η2.

Therefore, the success probability of |σ⟩ under identical challenges is:

δ =
1

|R|
∑
r

∥∥ΠB
r ⊗ΠC

r |σ⟩
∥∥2

≤ 3

|R|
∑
r

(∥∥ΠB
r ⊗ΠC

r |σC⟩
∥∥2 + ∥∥ΠB

r ⊗ΠC
r |σB⟩

∥∥2 + ∥ρ∥2)
≤ 3

(
η + δ/η2

)
.

By picking η = δ1/3, the resulting probability is 6 · δ1/3. Specifically, if δ is negligible then so is the
resulting quantity.

2.3 Part II: Generalizing Existing Results

2.3.1 Unclonable search to unclonable indistinguishability

Our first focus is a cloning game with unclonable search security (a concrete example is unclonable
encryption with standard unclonable security) whose distribution D is uniform over all possible
messages. We show a generic reduction that turns such a game into another cloning game with
unclonable indistinguishability security whose underlying distribution is Dm0,m1 for any m0,m1

in the message space, in the quantum random oracle model (QROM, introduced by [BDF+11]).
Since unclonable encryption with standard unclonable security exists [BL20], this gives a direct
corollary for unclonable encryption with unclonable indistinguishability security in the QROM,
from BB84/Wiesner states, improving the previous result by [AKL+22].

Unclonable Security for High-Entropy Message Distributions. As a first step in the reduc-
tion, we make the following observation. Suppose we start with a cloning game satisfying unclonable
security. If the message is sampled from a high min-entropy distribution instead of being sampled
from random, unclonable security still holds. In particular, we prove that when m is sampled from
a source with min-entropy h instead of from a uniform source, its unclonable search security will
be 2h · δ; where δ is the unclonable search security under the uniform message distribution. For
instance, if m is sampled uniformly at random from a set S then by appropriately choosing |S|
(for example, it is exponential sized), we can prove that 2hδ is still negligible and thus establish its
augmented unclonable security.

As a concrete example, we obtain the following corollary: the unclonable encryption with stan-
dard unclonable security in [BL20] also satisfies this augmented unclonable security. In other words,
even if Pm is provided as oracle, it will not help Bob and Charlie to simultaneously recover m.

18



Augmented Security. Next, we first define stronger unclonable search security, which we call
augmented unclonable security. The cloning game is defined in the same way, except now all attackers
have oracle access to a point function Pm(·), which outputs 1 if and only if the input equals to m,
where m is the message used to generate the token given to the adversary. We claim that the
definition of unclonable search security can be generically upgraded to obtain augmented security.

Our first observation is that, we can enlarge the set of all accepting inputs of Pm(·) (originally
only m) to a large random set S consisting of m, with its security staying roughly the same. More
concretely, S will be defined as an exponentially large (but negligibly small compared to the number
of all possible messages) set consisting of a single m, and the rest are random messages. As Pm and
PS only differ on exponentially many but sparse random inputs, query-bounded adversaries can not
distinguish which oracle is given.

Next, the augmented unclonable security is then argued under a random message m and oracle
access to PS . In this case, we can instead think of an alternate but equivalent process of sampling m:
first sample an exponentially large random set S then sample a message m is uniformly at random
from S. After changing the sampling order, we can argue that even if the adversary is given the
description of the set S, unclonable security still holds. This holds from our earlier observation that
unclonable security holds even if the message is sampled from a high min-entropy distribution.

From Augmented Security to Unclonable-Indistinguishability Security. Finally, we show
that starting from a cloning game satisfying augmented unclonability property G, we can obtain a
game G′ satisfying unclonable indistinguishability property. The token generation of G′ on input a
message m, first samples a long random message x, runs the token generation of G on x and then
outputs this token along with H(x)⊕m, where H is a hash function. In the proof of security, H is
treated as a random hash function that the adversary has oracle access to.

To prove unclonable indistinguishability, we look at the state |ψ⟩BC output by Alice, where Alice
has oracle access to H punctured at the input x. For the sake of the proof, we treat the hash function
both Bob and Charlie have access to, separately. We use HB to denote the hash function Bob has
access to and HC to denote the hash function Charlie has access to. Correspondingly, we can define
the POVM ΠB that runs B with oracle access to HB that is programmed on x to output 0 or 1 with
equal probability, projects onto the output being correct and then uncomputes. Similarly, we define
ΠC as well. In order to make sure we can implement ΠB and ΠC efficiently, we give the adversary
oracle access to Px(·).

Let {|ϕp⟩}p∈R be the set of eigenvectors with respect to ΠB with eigenvalues p ∈ [0, 1]. Similarly,
let {|ψq⟩}q∈R be the set of eigenvectors with eigenvalues q ∈ [0, 1] with respect to ΠC . We can then
rewrite |ψ⟩BC in terms of the eigenbases of ΠB and ΠC .

|ψ⟩ =
∑
q≈0.5

αp,q |ϕp⟩ |ψq⟩+
∑

p≈0.5,|q−0.5|≫0

αp,q |ϕp⟩ |ψq⟩+
∑

|p−0.5|≫0,|q−0.5|≫0

αp,q |ϕp⟩ |ψq⟩ .

Once we do this, we show the following:

•
∑

p,q |αp,q|2 is negligible. We show this by reducing to the unclonability property.

• Once we show bullet 1, we can then show that Bob and Charlie cannot simultaneously succeed
with probability significantly better than 0.5 in the case when it receives as input |ψ⟩. The
analysis of this was shown in [AKL+22].
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2.4 Generalized Cloning Games

Another way we can extend the notion of cloning games is by allowing asymmetric verification for
B and C by allowing different algorithms (GenCB,GenCC ,VerB,VerC) in the verification phase. We
call this more general class of games asymmetric cloning games.

2.4.1 Deletion Games

As a special case, we define deletion games, in which GenCB outputs no challenge, so that B is
effectively supposed to produce a classical certificate of deletion. In this context, we can define
search games based on the algorithms (GenCC ,VerC), with C understood to be the party tasked
to perform the intended functionality of the token. With these modifications, unclonable search
security and unclonable indistinguishable security are defined the same as before. We show how
to how to go from the former to the latter using the Quantum Goldreich-Levin Lemma14 [AC02].
In order to achieve unclonable search security, we show that the construction15 of [BI20] satisfies
unclonable search security using monogamy-of-entanglement games [TFKW13], which have been
commonly used in unclonable cryptography [BL20, CLLZ21, CV21]. Specifically, we show that the
success probability of any adversary (A,B, C) in the following game is exponentially small in λ:

• (A,B, C) prepares a bipartite state ρ shared between A and the referee Ref. A splits the state
between B and C.

• Ref makes a measurement in basis Hθ for a random θ ∈ {0, 1}λ

• B outputs xB. C receives θ and outputs xC .

• (A,B, C) wins if xC = x and xB,i = xi whenever θi = 1.

This suffices due to a well-known reduction from cloning games to monogamy-of-entanglement games
using EPR pairs. Thus, we provide a different method to achieve information theoretic encryption
with certified deletion. Although our method is incomparable to previous methods for achieving
the same result [BI20, BK22], we believe our approach may be more intuitive for some readers.

2.4.2 Relating Search and Decision Games

We give one more transformation, which starts with a cloning search game and ends up with a cloning
decision game. The first one uses augmented security above and applies it to the construction of
[AKL+22] for copy-protection in the QROM. We generalize the proof for a class of cloning games,
and as a special case, we achieve copy-protection for point functions using BB84 states in the
QROM. Since the ideas employed in this part are similar to Section 2.3, we omit the details.

14Unlike our result on single-decryptor encryption, which asks for the usual, stronger property of unclonability,
here we do not need the simultaneous version of the Goldreich-Levin Lemma because we are in the weaker, certified
deletion setting.

15A simplified version of it without additional properties. The authors show in [BI20] that the construction already
satisfies the stronger notion of unclonable indistinguishable security, yet the proof is more involved.
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2.5 Future Directions

Relationship Between Challenge Distributions for Decision Games. In this work, we
show that when a cloning game has negligible soundness (similar to a search game) with an inde-
pendent distribution, the cloning game with the corresponding identical distribution is also secure.
We leverage this theorem to many applications, including copy-protection and single-decryptor en-
cryption schemes. However, this theorem does not apply when the soundness is a constant. An
interesting open problem is to generalize the result to the case with constant security error (for ex-
ample, unclonable-indistinguishability). Generalizing this result would present a pathway towards
achieving unclonable encryption scheme with unclonable-indistinguishability in the plain model,
that is currently open.

Removing Random Oracles from BB84-based Constructions. Another approach to obtain
unclonable encryption with unclonable-indistinguishability in the plain model is to remove the need
for random oracle in the Corollary 1. Currently, the random oracle is essential, and we do not know
how to get rid of it. Still, we believe that removing QROM in the theorem statement is a promising
direction and will help us understand the relationship between various unclonable primitives and
the computational assumptions they need.

Domain Extension. Suppose we have a cloning game for messages of n bits. Is it possible to
generically transform this into another cloning game for 2n bits? Naive repetition does not work well
with cloning games and hence, it would be interesting to come up with interesting techniques for
domain extension. One application of this is domain extension for unclonable encryption. Suppose
we have an encryption scheme that can encrypt n bits and we would like to transform this into
a different scheme encrypting 2n bits. It would also be interesting to study domain extension for
the challenge space as well. This would have implications to domain extension for single-decryptor
encryption.

Generalizing the Non-Local Lifting Theorem Our non-local lifting theorem Theorem 22 is
restricted in that the classical reductions need to be black-box and non-adaptive. These restrictions
propagate from the work of [BBK22], and removing them will allow for more classical reductions to
be lifted to the quantum setting.

2.6 Organization

In Section 3, we define basic terminology and give relevant results from previous work that are
used in this work. In Section 4, we introduce the cloning games framework and provide formal
definitions. In Section 5, we describe how to lift classical reductions to quantum reductions in
the non-local setting, as well as applications to cloning games. In Sections 6 and 7, we show
how to use our framework to generalize existing results in unclonable cryptography via generic
transformations between cloning search/decision games. In Section 8, we show how to extend our
framework to capture asymmetric unclonable primitives, and give an alternative construction of
unclonable encryption with certified deletion.
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3 Preliminaries

We denote the security parameter by λ. We say a classical algorithm A is efficient if it is a
probabilistic polynomial-time (PPT) algorithm. We write A(x; r) to mean that A runs on input x
with random coins r ∈ {0, 1}poly(λ). We say a quantum algorithm A is efficient if it runs in quantum
polynomial time (QPT).

We write AO to denote an oracle algorithm A that makes queries to an oracle O. If A is a
quantum algorithm and O is a classical oracle, then it is understood that A can make superposition
queries. We call A query-bounded if it makes only polynomially many queries.

We denote by UX the uniform distribution over a set X. negl(·) denotes a negligible function and
poly(·) is a function upper-bounded by a polynomial. We say that an event occurs with overwhelming
probability if it happens with probability 1− negl(λ).

We denote by Px(·) the point function, defined as

Px(x
′) :=

{
1, x′ = x

0, x′ ̸= x
.

Trivial Guess with Auxiliary Information: We define

OPT(X | Y ) :=
∑
y

Pr [Y = y] ·max
x

Pr [X = x | Y = y] .

It is the optimal probability of guessing the value of variable X after observing the value of variable
Y . Clearly, OPT(X | Y ) ≥ OPT(X | 0) = 2−Hmin(X), where Hmin denotes the min-entropy, defined
as follows:

Hmin(X) := − log2

[
max
x

Pr [X = x]
]

3.1 Quantum Computing Basics & Query Bounds

Given Hilbert space H, D(H) denotes the set of density operators on H. We write HX to denote
the Hilbert space associated with a quantum register X. We write ρ[X] to denote the X register
of a quantum state ρ. Given two quantum states ρ, σ, we denote the (normalized) trace distance
between them by

TD (ρ, σ) :=
1

2
∥ρ− σ∥tr .

We say that two states ρ, σ are δ-close if TD (ρ, σ) ≤ δ.

A k-outcome (general) quantum measurement is a k-tuple of quantum operatorsM = (Mi)i∈[k]

satisfying
∑

i∈[k]M
†
iMi = I. The probability of obtaining outcome i after measuring a mixed state

ρ is given by Tr
(
MiρM

†
i

)
, and the post-measurement state is given by MiρM

†
i /Tr

(
MiρM

†
i

)
. If

Mi is a projector for each i ∈ [k], then we call M a projective measurement. A positive operator
valued measurement (POVM) is k-tuple of positive semi-definite operators (Ei)i∈[k]. It is used to
describe quantum measurement when the post-measurement state is irrelevant in the context. The
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probability of outcome i equals Tr (Eiρ). Every general quantum measurement defines a POVM by
setting Ei =M †iMi.

A common technique in quantum computation is uncomputing [BBBV97]. A quantum algorithm
A can be modeled as a unitary U acting on some hilbert space H, followed by a measurement on
output registers without loss of generality. We refer to applying U as running A coherently, and to
uncomputing A as applying U † on H.

Quantum Random Oracle Model In the quantum random oracle model (QROM), we assume
that there exists a random function H : {0, 1}m → {0, 1}n, where m = poly(λ), n = poly(λ), such
that all parties (honest and malicious) have oracle access to the unitary OH , defined as OH |x⟩ |y⟩ =
|x⟩ |y ⊕H(x)⟩. Such a random oracle H can be efficiently simulated on the fly for a query-bounded
adversary [Zha19], or if a query bound t was known beforehand, it can be simulated efficiently by
using a 2t-wise independent hash function in lieu of the random oracle [Zha12].

The following theorem, paraphrased from [BBBV97], will be used for reprogramming oracles
without adversarial detection on inputs that are not queried with large weight:

Theorem 4 ([BBBV97]). Let A be an oracle algorithm which makes at most T oracle queries to a
function H : {0, 1}m → {0, 1}n . Define |ϕi⟩ as the global state after A makes i queries, and Wy(|ϕi⟩)
as the sum of squared amplitudes in |ϕi⟩ of terms in which A queries H on input y. Let ϵ > 0 and
let F ⊆ {0, 1, . . . , T − 1} × {0, 1}m be a set of time-input pairs such that

∑
(i,y)∈F Wy(|ϕi⟩) ≤ ϵ2/T .

For i ∈ {0, 1, . . . , T − 1}, let H ′i be an oracle obtained by reprogramming H on inputs in
{y ∈ {0, 1}m : (i, y) ∈ F} to arbitrary outputs. Let |ϕ′T ⟩ be the global state after A is run with
oracle H ′i on the ith query (instead of H). Then, TD (|ϕT ⟩ , |ϕ′T ⟩) ≤ ϵ/2.

Note that the theorem can be straightforwardly generalized to mixed states by convexity.

We will typically use Theorem 4 by contrapositive, i.e., if a query-bounded adversary A outputs
states with non-negligible trace distance when given oracle access to H or H ′, then A must have
non-negligible query weight on inputs for which H and H ′ differ. Hence one can extract such input
by measuring a random query. We list a particular corollary of interest below.

Corollary 2 (Subset Hiding). Let S ⊂ {0, 1}λ. Let m > |S| such that m/(2λ−|S|) is negligible. Let
Tm
S be the set of all T ⊂ {0, 1}λ such that |T | = m+ |S| and S ⊂ T . Then, for any query-bounded

algorithm A, we have∣∣∣Pr [1← APS(·)(1λ)
]
− Pr

[
1← APT (·)(1λ) : T

$←− Tm
S

]∣∣∣ ≤ negl(λ). (2)

Proof. Suppose A violates eq. (2). By Theorem 4, APS(·) must have non-negligible query weight
on T \ S, which is a random subset of {0, 1}λ \ S of size m. By measuring a random query of A,
a query-bounded adversary A′PS(·) can output a value t ∈ T \ S with non-negligible probability.
However, T \ S is information-theoretically hidden from APS(·), this probability is upper-bounded
by m/(2λ − |S|), a contradiction.

3.2 Jordan’s Lemma

We state Jordan’s Lemma, paraphrased from [CMSZ21].
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Lemma 5 ([Jor75]). Let H be a Hilbert space and let ΠA,ΠB be two orthogonal projectors on
H. There exists an orthogonal decomposition H =

⊕
j Sj into one-dimensional or two-dimensional

subspaces, where each Sj is invariant under both ΠA and ΠB. Moreover:

• If dimSj = 1, then ΠA and ΠB act as rank-0 or rank-1 projectors on Sj.

• If dimSj = 2, then there exist distinct orthogonal bases
{
|vAj,1⟩ , |vAj,0⟩

}
and

{
|vBj,1⟩ , |vBj,0⟩

}
of

Sj, where ΠA =
∑

j |vAj,1⟩⟨vAj,1| and ΠB =
∑

j |vBj,1⟩⟨vBj,1|.

We will denote by ΠJor =
{
ΠJor

j

}
j

the projective measurement that measure the index j of Sj ,

i.e. ΠJor
j = |vAj,0⟩⟨vAj,0|+ |vAj,1⟩⟨vAj,1| = |vBj,0⟩⟨vBj,0|+ |vBj,1⟩⟨vBj,1|. An important fact is that ΠJor commutes

with both the projective measurements (ΠA, I −ΠA) and (ΠB, I −ΠB).
We cite the following lemma from [AKL+22], which is a corollary of Jordan’s Lemma.

Lemma 6. For any two projectors Π0,Π1 and w ∈ [0, 1], let |ϕ0⟩ and |ϕ1⟩ be two eigenvectors of
wΠ0 + (1− w)Π1 with eigenvalues λ0, λ1. If λ0 + λ1 ̸= 1 and λ0 ̸= λ1, then

⟨ϕ0|Π0|ϕ1⟩ = ⟨ϕ0|Π1|ϕ1⟩ = 0.

3.3 Applications of Jordan’s Lemma

In this section, we state two applications of Jordan’s lemma [Jor75] which use the techniques of
[Zha20], and date back to the QMA amplification techniques of [MW05]. While they use similar
techniques, the applications are different in their syntax and flavor. Threshold measurement (first
application) aims to project a state onto eigenstates with eigenvalues larger than some threshold,
whereas state repair (second application) involves estimating the average eigenvalue, and restoring
the state to another state with similar value after a collapsing measurement occurs.

Threshold Measurement We cite the following theorems regarding how to test the success
probability of a quantum token from [AKL+22], originally due to [Zha20].

Theorem 7 (Inefficient Threshold Measurement). Let P = (P,Q) be a binary outcome POVM. Let
P have eigenbasis {|ψi⟩} with eigenvalues {λi}. Then, for every γ ∈ (0, 1) there exists a projective
measurement Eγ = (E≤γ , E>γ) such that:

(1) E≤γ projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi satisfy
λi ≤ γ;

(2) E>γ projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi satisfy
λi > γ.

Similarly, for every γ ∈ (0, 1/2), there exists a projective measurement E ′γ = (Ẽ≤γ , Ẽ>γ) such
that:

(1) Ẽ≤γ projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi satisfy
|λi − 1

2 | ≤ γ;

(2) Ẽ>γ projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi satisfy
|λi − 1

2 | > γ.
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Theorem 8 (Efficient Threshold Measurement). Let Pb = (Pb, Qb) be a binary outcome POVM over
Hilbert space Hb that is a mixture of projective measurements for b ∈ {1, 2}. Let Pb have eigenbasis
{|ψb

i ⟩} with eigenvalues {λbi}. For every γ1, γ2 ∈ (0, 1), 0 < ϵ < min(γ1/2, γ2/2, 1 − γ1, 1 − γ2) and
δ > 0, there exist efficient binary-outcome quantum algorithms, interpreted as the POVM element
corresponding to outcome 1, ATIϵ,δPb,γ

such that for every quantum program ρ ∈ D(H1)⊗D(H2) the
following are true about the product algorithm ATIϵ,δP1,γ1

⊗ ATIϵ,δP2,γ2
:

(0) Let (Eb
≤γ , E

b
>γ) be the inefficient threshold measurement in Theorem 7 for Hb.

(1) The probability of measuring 1 on both registers satisfies

Tr
[(

ATIϵ,δP1,γ1
⊗ ATIϵ,δP2,γ2

)
ρ
]
≥ Tr

[(
E1

>γ1+ϵ ⊗ E2
>γ2+ϵ

)
· ρ
]
− 2δ.

(2) The post-measurement state ρ′ after getting outcome (1,1) is 4δ-close to a state in the support
of
{
|ψ1

i ⟩ |ψ2
j ⟩
}

such that λ1i > γ1 − 2ϵ and λ2j > γ2 − 2ϵ.

(3) The running time of the algorithm is polynomial in the running time of P1, P2, 1/ϵ and
log(1/δ).

Theorem 9 (Efficient Symmetric Threshold Measurement). Let Pb = (Pb, Qb) be a binary outcome
POVM over Hilbert space Hb that is a mixture of projective measurements for b ∈ {1, 2}. Let Pb have
eigenbasis {|ψb

i ⟩} with eigenvalues {λbi}. For every γ1, γ2 ∈ (0, 1/2), 0 < ϵ < min(γ1/2, γ2/2), and
δ > 0, there exist efficient binary-outcome quantum algorithms, interpreted as the POVM element
corresponding to outcome 1, SATIϵ,δPb,γ

such that for every quantum program ρ ∈ D(H1)⊗D(H2) the
following are true about the product algorithm SATIϵ,δP1,γ1

⊗ SATIϵ,δP2,γ2
:

(0) Let (Ẽb
≤γb , Ẽ

b
>γb

) be the inefficient threshold measurement in Theorem 7 for Hb.

(1) The probability of measuring 1 on both registers satisfies

Tr
[(

SATIϵ,δP1,γ1
⊗ SATIϵ,δP2,γ2

)
ρ
]
≥ Tr

[(
Ẽ1

>γ1+ϵ ⊗ Ẽ2
>γ2+ϵ

)
· ρ
]
− 2δ.

(2) The post-measurement state ρ′ after getting outcome (1,1) is 4δ-close to a state in the support
of
{
|ψ1

i ⟩ |ψ2
j ⟩
}

such that |λ1i − 1/2| > γ1 − 2ϵ and |λ2j − 1/2| > γ2 − 2ϵ.

(3) The running time of the algorithm is polynomial in the running time of P1, P2, 1/ϵ and
log(1/δ).

State Repair. We state the state-repairing results (Lemma 4.9 and Lemma 4.10) from [CMSZ21]
below to be used for achieving persistence. We adapt the formulation by [BBK22] with some
additional modifications: unlike [BBK22], we need some additional structural properties of value
estimation and state repair procedures of [CMSZ21] formalized in the third bullet below.

Lemma 10. There exist efficient quantum algorithms ValEst and Repair with the following syntax
and guarantees:
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• ValEstV,A(ρ, 1
1/ε) takes as input the description of a verifier algorithm V : {0, 1}d×{0, 1}n →

{0, 1}, a quantum algorithm A, a quantum state ρ, and an accuracy parameter ε. It outputs
a quantum state ρ∗ and a value p∗ ∈ [0, 1].

• RepairV,A,Π(σ, y, p, 1
1/ε, 1k) takes as input a verifier algorithm V , a quantum algorithm A, a

k-outcome quantum measurement Π with outcomes Y, an outcome y ∈ Y, a value p ∈ [0, 1],
and an accuracy parameter ε. It outputs a quantum state σ∗.

1. Value Estimation:

E
(ρ∗,p∗)←ValEstV,A(ρ,11/ε)

[p∗] = Pr

[
V (y; r) = 1 : r

$←−{0,1}d
y←A(ρ,r)

]
. (3)

2. Almost-Projective Estimation: For any ε ≥ ε′ > 0,

Pr

[
|p∗ − p∗∗| ≥ ε :

(ρ∗,p∗)←ValEstV,A(ρ,11/ε)

(ρ∗∗,p∗∗)←ValEstV,A(ρ∗,11/ε
′
)

]
≤ ε.

3. 2-Projection Implementation: For every (V,A, ε), there exist projective measurements
M0 = (ΠA, I −ΠA) and M1 = (ΠB, I −ΠB) and classical deterministic algorithms f, g such
that the execution of ValEstV,A(ρ, 11/ε) does the following:

(a) Initialize an empty database L = ∅.
(b) Initialize an auxiliary register as |ψ0⟩, so that the current mixed state is ρ⊗ |ψ0⟩⟨ψ0|.
(c) For 1 ≤ i ≤ poly(|V |, |A|, 1/ε):

• Compute b = f(i, L) ∈ {0, 1,⊥}
• If b ∈ {0, 1}, apply Mb and obtain outcome ℓi. Set L = L ⊔ {ℓi}, where ⊔ denotes

disjoint union.
• If b = ⊥, end the loop. Output the current residual state ρ∗ and the value p∗ = g(L).

Furthermore, the measurements satisfy the following:

• M0(ρ
′) can be described as:

– Pick r $←− {0, 1}d.
– Compute y ← A(ρ′, r) coherently.
– Measure if V (y; r) = 1.
– Uncompute.

• ΠB = I ⊗ |ψ0⟩⟨ψ0|.

4. State Repair: For any ε > 0,

Pr

|p∗ − p∗∗| ≥ ε :

(ρ∗,p∗)←ValEstV,A(ρ,11/ε)
(σ,y)←Π(ρ∗)

σ∗←RepairV,A,Π(σ,y,p,11/ε,1k)

(ρ∗∗,p∗∗)←ValEstV,A(σ∗,11/ε)

 ≤ ε. (4)
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3.4 Unlearnable Distributions

Definition 1 (Unlearnability). A distribution D = D(λ) is called unlearnable if for any query-
bounded adversary APy(·) with oracle access to Py(·), we have:

Pr
[
y′ = y :

y←D
y′←APy(·)(1λ)

]
≤ negl(λ).

4 Cloning Games - Definitions

We would like to capture all cryptographic games where the adversary needs to clone a particular
functionality of a given quantum token. The quantum token could be a copy-protected program,
signature token, unclonable ciphertext, unclonable decryption key, or any quantum state that serves
some functionality which could only be used by one party at a given time. We start off with basic
definitions and give generalizations in Section 4.4.

Definition 2 (Cloning Game). A cloning game consists of a tuple of efficient algorithms G = (Setup,
GenT,GenC,Ver):

• Key Generation: Setup(1λ) is a PPT algorithm which takes as input a security parameter
1λ in unary. It outputs a secret key sk ∈ {0, 1}∗. We will assume without loss of generality16

that sk always contains the security parameter 1λ.

• Token Generation: GenT(sk,m) is a QPT algorithm that takes as input a secret key sk and
a message m ∈ {0, 1}∗. It outputs a quantum token ρ.

• Challenge Generation: GenC(sk,m) takes as input a secret key sk and a message m. It
outputs a classical challenge ch ∈ {0, 1}∗.

• Verification: Ver(sk,m, ch, ans) takes as input a secret key sk, a message m, a challenge
ch, and an answer ans. It outputs either 0 (reject) or 1 (accept).

4.1 Correctness

Before we talk about cloning experiments, we should specify what property of a quantum token ρ
we would like to be unclonable. Intuitively, the property will be captured by the ability to honestly
pass verification using the token ρ. This brings us to the definition of correctness for a cloning game:

Definition 3 (Correctness). Let δ : Z+ → [0, 1]. We say that G has δ-correctness if there exists an
efficient quantum algorithm AG such that for all messages m ∈M:

Pr

[
Ver(sk,m,ch,ans)=1 :

sk←Setup(1λ)
ρ←GenT(sk,m)
ch←GenC(sk,m)
ans←AG(ρ,ch)

]
≥ δ(λ)

If δ = 1 (or δ(λ) = 1− negl(λ)), we say G has perfect (or statistical) correctness. In this work,
we will mainly focus on statistically correct cloning games.

16This is in order to simplify the notation for the rest of the algorithms. We will sometimes make this inclusion
explicit, and other times it is understood implicitly.
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Note: In the correctness definition above, AG should be considered an honest user of the primi-
tive.

4.2 Special Types of Cloning Games

Next, we define some special cases, with terminology borrowed from classical security notions.

Definition 4 (Cloning Search Game). Let G = (Setup,GenT,GenC,Ver) be a cloning game such
that Ver(sk,m, ch, ans) accepts if and only if ans = m. Then, G is called a cloning search game.

Definition 5 (Cloning Decision Game). Let G = (Setup,GenT,GenC,Ver) be a cloning game such
that the answer ans taken as input by Ver is one bit, i.e. ans ∈ {0, 1}. Then, G is called a cloning
decision game.

We additionally define the notion of a cloning encryption game when we discuss unclonable encryp-
tion in Section 4.5.2.

4.3 Security

Cloning Experiment. We will define notions of security for a cloning game in terms of a security
experiment. Given a token ρ, an adversary should not be able to generate two (possibly entangled)
quantum tokens which can simultaneously pass verification. We will formalize this intuition below.

Definition 6 (Cloning Experiment). A cloning experiment, denoted by CEG,D, is a security game
played between a referee Ref and a cloning adversary (A,B, C). It is parameterized by a cloning game
G = (Setup,GenT,GenC,Ver) and a distribution D over the message space M. The experiment is
described as follows:

• Setup Phase:

– All parties get a security parameter 1λ as input.
– Ref samples a message m← D.
– Ref computes sk← Setup(1λ) and ρ← GenT(sk,m).
– Ref sends ρ to A.

• Splitting Phase:

– A computes a bipartite state ρ′ over registers B,C.
– A sends ρ′[B] to B and ρ′[C] to C.

• Challenge Phase:

– Ref independently samples chB, chC ← GenC(sk,m).
– Ref sends chB to B and chC to C.
– B and C send back answers ansB and ansC, respectively.
– Ref computes bits bB ← Ver(sk,m, chB, ansB) and bC ← Ver(sk,m, chC , ansC).
– The outcome of the game is denoted by CEG,D(1

λ, (A,B, C)), which equals 1 if bB = bC =
1, indicating that the adversary has won, and 0 otherwise, indicating that the adversary
has lost.
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Trivial Success. As a baseline for unclonable security, we will consider trivial attacks that do
not require any cloning operation. The best we can hope is that such attacks are optimal, hence
the definitions below.

Definition 7 (Trivial Cloning Attack). We say that (A,B, C) is a trivial cloning attack against a
cloning experiment CEG,D if A upon receiving a token ρ, sends the product state |⊥⟩⟨⊥|⊗ρ to B and
C. In other words, only C gets the token ρ. We denote by TRIV(CEG,D) the set of trivial attacks
against CEG,D.

Remark 1. Note that due to the symmetry between B and C, the definition of trivial cloning attack
could be equivalently defined so that only B gets the token ρ.

Definition 8 (Trivial Success Probability for Cloning Games). We define the trivial success prob-
ability of a cloning experiment CEG,D as

ptriv(G,D) := sup
(A,B,C)∈TRIV(CEG,D)

Pr
[
1← CEG,D(1

λ, (A,B, C))
]
.

Unclonable Security. We present the security definition of cloning games below.

Definition 9 (Unclonable Security). Let G be a cloning game, D be a distribution over the message
space M, and ε : Z+ → [0, 1]. We say that G has (D, ϵ) unclonable security if for all QPT cloning
adversaries (A,B, C) we have:

Pr
[
1← CEG,D(1

λ, (A,B, C))
]
≤ ptriv(G,D) + ε(λ).

If |M| = 1, we will simply write ε unclonable security.

4.3.1 Security for Search Games

For the special case of search games, we consider two definitions below.

Definition 10 (Unclonable Search Security). If G is a cloning search game with (D, ε) unclonable
security, we additionally say that G has (D, ε) unclonable search security.

Remark 2. Note that even though the definitions above are valid for any distribution D, to get
meaningful security one needs to choose D appropriately for the context. For instance, if the cloning
game G represents copy-protection for point functions, it is appropriate to pick D in a balanced way
so that the trivial success probability ptriv(G,D) is bounded away from 1. As long as this is the case,
(D, ε) unclonable security (for small ε) is non-trivial17 in the sense that it is classically impossible
and it uses the power of no-cloning. On the other hand, when ptriv(G,D) ≈ 1 unclonable security
becomes trivial and achieved by uninteresting constructions including classical games.

Definition 11 (Unclonable Indistinguishable Security). Let Dm0,m1 denote the distribution that
outputs messages m0 and m1 with probability 1/2 each. We say that a search game G has ε un-
clonable indistinguishable security if it has (Dm0,m1 , ε) unclonable search security for any pair of
messages m0,m1 ∈M.

In Definitions 9 to 11, if (A,B, C) is not required to be efficient, then we say that G has infor-
mation theoretic unclonable (search/indistinguishable) security.

17We assume statistical correctness here.
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4.4 Extended Definitions

Stateful Games. Most cloning games can be captured by Definition 2. Yet, some cloning games
are stateful in the sense that verification takes as additional input the random coins used in the
challenge generation. With this in mind, we define a generalization of the cloning game below,
highlighting the differences in blue. Throughout this section, we will assume that GenC is a classical
algorithm.18

Definition 12 (Stateful Cloning Game). A stateful cloning game consists of a tuple of efficient
algorithms G = (Setup,GenT,GenC,Ver).

• Key Generation: Setup(1λ) takes as input a security parameter 1λ in unary. It outputs a
secret key sk.

• Token Generation: GenT(sk,m) takes as input a secret key sk and a message m. It outputs
a quantum token ρ.

• Challenge Generation: GenC(sk,m; rGenC) takes as input a secret key sk and a message
m.

It outputs a classical challenge ch.

• Verification: Ver(sk,m, ch, ans, rGenC) takes as input a secret key sk, a message m, a chal-
lenge ch, an answer ans, random coins rGenC used by GenC when generating ch. It outputs
either 0 (reject) or 1 (accept).

When we talk about cloning games, we will always implicitly mean stateful cloning games. In
fact, all of our results easily generalize to stateful cloning games. However, we will omit rGenC above
and use the syntax in Definition 2 when appropriate, for simplicity.

Security Against Correlated Distributions. When we defined security in Section 4.3, we
assumed that B and C in the security experiment receive independently generated challenges. We
will define security more broadly and refer to the aforementioned definition as independent-challenge
security. For simplicity, we will assume that challenge generation is classical, i.e., GenC is a PPT
algorithm, which is true for all the primitives considered in this work.

Definition 13 (Challenge Extension). Let GenC be a challenge generation algorithm that takes as
input randomness from R = {0, 1}poly(λ). We say that G̃enC is an extension of GenC if:

• On input a secret key sk and a message m, it outputs a pair of random strings (rB, rC) ∈ R2.

• For any (sk,m), if (rB, rC)← G̃enC(sk,m), then the marginal distributions of both rB and rC
are equal to UR.

We will also refer to G̃enC as an extension of a game G whenever GenC is the challenge generation
algorithm for G. We sometimes will omit and not specify the extension G̃enC, in which case it is
either clear from the context or assumed to be G̃enC = GenCind by default (see Definition 15).

18If GenC is quantum, one can similarly define statefulness by having GenC output some random coins that it
sampled during its execution. One would need this because unlike classical algorithms, the randomness of a quantum
algorithm can inherently result from collapsing measurements and hence cannot be modeled as an auxiliary random
input string.

30



Extended Cloning Experiment. Next, we give a more general definition of unclonable security,
highlighting the differences to the corresponding definitions in Section 4.3 in blue.

Definition 14 (Extended Cloning Experiment). An (extended) cloning experiment, denoted by
CEG̃enC
G,D , is a security game played between a referee Ref and a cloning adversary (A,B, C). It is

parameterized by a cloning game G = (Setup,GenT,GenC,Ver), a distribution D over the message
space M, and an extension G̃enC of GenC. The experiment is described as follows:

• Setup Phase:

– All parties get a security parameter 1λ as input.

– Ref samples a message m← D.

– Ref computes sk← Setup(1λ) and ρ← GenT(sk,m).

– Ref sends ρ to A.

• Splitting Phase:

– A computes a bipartite state ρ′ over registers B,C.

– A sends ρ′[B] to B and ρ′[C] to C.

• Challenge Phase:

– Ref samples (rB, rC) ← G̃enC(sk,m) and then computes chB = GenC(sk,m; rB), chC =
GenC(sk,m; rC).

– Ref sends chB to B and chC to C.
– B and C send back answers ansB and ansC, respectively.

– Ref computes bits bB ← Ver(sk,m, chB, ansB, rB) and bC ← Ver(sk,m, chC , ansC , rC).

– The outcome of the game is denoted by CEG̃enC
G,D (1λ, (A,B, C)), which equals 1 if bB = bC =

1, indicating that the adversary has won, and 0 otherwise, indicating that the adversary
has lost.

Next, we discuss two important special cases for the extension G̃enC. In the first case, B and
C get the same challenge, whereas in the second case, they get independently generated challenges.
Keep in mind that the second case is the default assumption when we do not mention extensions
in Section 4.3.

Definition 15 (Identical/Independent-Challenge Cloning Experiment). Let G = (Setup,GenT,GenC,Ver)
and define the following extensions of GenC, which takes randomness from the set R:

• GenCid(sk,m) samples r ← UR and outputs (r, r).

• GenCind(sk,m) computes rB, rC ← UR independently. It outputs (rB, rC).

Then, we call the cloning experiments CEGenCid
G,D and CEGenCind

G,D an identical-challenge cloning
experiment or an independent-challenge cloning experiment, respectively.
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Trivial Success Probability. We will slightly modify the definition of trivial attacks to account
for the potential asymmetry introduced by a challenge extension.

Definition 16 ((Extended) Trivial Cloning Attack). We say that (A,B, C) is a B-trivial cloning
attack against a cloning experiment CEG̃enC

G,D if A upon receiving a token ρ, sends the product state

|⊥⟩⟨⊥| ⊗ ρ to B and C. In other words, only C gets the token ρ. We denote by TRIVB(CE
G̃enC
G,D ) the

set of B-trivial cloning attacks against CEG̃enC
G,D . We similarly define TRIVC(CE

G̃enC
G,D ) as the set of

C-trivial attacks.
Finally, we define

TRIV(CEG̃enC
G,D ) := TRIVB(CE

G̃enC
G,D ) ∪ TRIVC(CE

G̃enC
G,D )

as the set of trivial cloning attacks against CEG̃enC
G,D .

Definition 17 ((Extended) Trivial Success Probability for Cloning Games). We define the B-trivial
success probability of a cloning experiment CEG̃enC

G,D as

ptrivB (G,D, G̃enC) := sup
(A,B,C)∈TRIVB(CE

G̃enC
G,D )

Pr
[
1← CEG̃enC

G,D ((A,B, C))
]
.

We similarly define ptrivC (G,D, G̃enC) as the C-trivial success probability of CEG̃enC
G,D . Accordingly, we

define the trivial success probability of CEG̃enC
G,D as

ptriv(G,D, G̃enC) =max
(
ptrivB (G,D, G̃enC), ptrivC (G,D, G̃enC)

)
.

Remark 3. One may consider mixtures of B-trivial and C-trivial cloning attacks as trivial, but such
attacks cannot do better than trivial cloning attacks by convexity.

Definition 18 ((Extended) Unclonable Security). Let G be a cloning game with extension G̃enC,
D be a distribution over the message space M, and ε : Z+ → [0, 1]. We say that G has (D, ϵ, G̃enC)
unclonable security if for all QPT cloning adversaries (A,B, C) we have

Pr
[
1← CEG̃enC

G,D (1λ, (A,B, C))
]
≤ ptriv(G,D, G̃enC) + ε(λ).

We define (D, ε, G̃enC) unclonable search security and (ε, G̃enC) unclonable indistinguishable
security similarly. If G̃enC = GenCind (resp., G̃enC = GenCid), then we say G has (D, ε) independent-
challenge (resp., identical-challenge) unclonable security. Likewise, information theoretic security is
defined by removing the efficiency requirement from (A,B, C) as before.

A good number of cloning games of interest will have the following additional property.

Definition 19 (Evasiveness). A cloning game G is called D-evasive if ptriv(G,D) is a negligible
function in λ.

Note that the definition above is independent of the extension G̃enC for statistically correct
games, i.e. ptriv(G,D, G̃enC) is negligible for any extension G̃enC. We keep the definition simple
given that we only use it for statistically correct games.
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Asymmetric Verification. Another way to generalize the cloning games is to allow asymmetric
verification for B and C, which we will define and discuss in Section 8.

4.5 Examples

In this section, we demonstrate the comprehensiveness of cloning games by casting popular unclon-
able primitives as cloning games. We restrict our attention to primitives with symmetric verification,
and those with asymmetric verification, such as secure software leasing or certified deletion, require
a slightly more general syntax, which will be defined in Section 8.

4.5.1 Copy-Protection

Let F be the class of functions of the form f : X → Y, parameterized implicitly by a security
parameter λ, and let D be a distribution over F . A copy-protection scheme for D is a pair of
efficient algorithms (CP,Eval):

• CP(1λ, df ) takes as input description df of a function f : X → Y and outputs a copy-protected
quantum program ρf .

• Eval(1λ, ρf , x) takes as input a quantum program ρf and an input x ∈ X . It outputs a value
y ∈ Y.

(CP,Eval) defines a cloning game GD′
CP = (Setup,GenT,GenC,Ver) for any family of distributions

D′ =
(
D′f
)
f∈F

over F as follows. Note that, D′ defines a distribution on challenge inputs, therefore,

it specifies GenC.

• The message spaceM is the set of function descriptions df for all f ∈ F .

• Setup(1λ) outputs sk = 1λ, i.e. there is no secret key.

• GenT(sk,m) parses the input as m = df , then it computes ρf ← CP(1λ, df ) and outputs ρf .

• GenC(sk,m) parses m = df and samples input x← D′f .19

• Ver(sk,m, ch, ans) parses m = df , ch = x. It accepts if and only if ans = f(x).

Correctness: We require that GCP has statistical correctness, to ensure that the copy-protected
program is reusable. More specifically, AGCP(ρ, ch) runs Eval(ρ, ch). 20

Security: We consider a game-based definition of copy-protection, first defined by [CMP20,
BJL+21]. We say that (CP,Eval) is secure for a class of distributions D′ if GD′

CP has (D, ε) un-
clonable security. For optimal security, we require ε to be negligible.

19Here we make the natural assumption that correctness and security are defined with respect to the same distri-
bution D′

f . Intuitively, the scheme should protect against cloning the functionality of the honest evaluator.
20Note that this captures the average-input correctness as opposed to per-input correctness.
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4.5.2 Unclonable Encryption

Below, we define unclonable encryption [BL20] as a cloning game. We focus our attention to one-
time secret-key setting, in which case unclonable encryption is synonymous with cloning encryption
games defined in Definition 20. It is known in the literature that construction in this simple setting
can be generically lifted to achieve unclonable encryption with additional properties, such as public-
key encryption [AK21]. We note, however, that unclonable encryption with such properties can still
be expressed as a cloning game by modifying the syntax of a cloning encryption game. We state
the correspondence below, which is easy to verify.

Definition 20 (Cloning Encryption Game). A cloning search game G = (Setup,GenT,GenC,Ver)
is called a cloning encryption game if GenC(sk,m) outputs sk with probability 1 for all (sk,m).

Fact 11 (Informal). An unclonable encryption scheme for a message space M exists with unclon-
able (unclonable indistinguishable) security if and only if a cloning encryption game G for M with
unclonable (unclonable indistinguishable) security exists.

There are two types of security we will consider for unclonable encryption: (1) (UM, ε) unclonable
security and (2) ε unclonable indistinguishable security. These security definitions together with δ-
correctness are on par with the original definitions of [BL20].21 Note that since GenC is deterministic,
it has a unique extension.

A particular case of interest is adapted22 from the conjugate encryption of [BL20] and uses
Wiesner (BB84) states:

Definition 21 (BB84 Cloning Game). GBB84 = (Setup,GenT,GenC,Ver) is a cloning encryption
game with message space M = {0, 1}λ, defined as follows:

• Setup(1λ) outputs θ $←− {0, 1}λ

• GenT(θ,m) takes as input θ,m ∈ {0, 1}λ and outputs ρ = |mθ⟩⟨mθ|, where |mθ⟩ = Hθ |m⟩

• GenC and Ver are defined as part of a cloning encrpytion game.

Lemma 12 (Security of BB84 Cloning Game [BL20]). The game GBB84 above has (UM, |M|−δ)
unclonable security for some constant δ > 0.

4.5.3 Single Decryptor Encryption

We define single-decryptor encryption as a tuple of efficient algorithms (Gen,GenT′,Enc,Dec),
adapted from the definition of (secret-key) single-decryptor encryption (with honestly generated
keys) in [GZ20]:

1. Gen(1λ) takes as input a security parameter and outputs a classical secret key sk.

2. GenT′(sk) takes as input a classical secret key and it outputs a quantum decryption key ρdk.

3. Enc(sk, x) takes as input a secret key and a classical message. It outputs a classical ciphertext
ct.

21Although (2) was defined in a slightly different way in [BL20], the difference is inconsequential, and our version
has been used in follow-up works such as [AKL+22]. We also mention that [BL20] considered perfect correctness.

22We omit a classical one-time-pad on the message m, which is irrelevant for the purposes of unclonability.
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4. Dec(ρ, ct) takes as input a quantum decryption key and a classical ciphertext. It outputs a
classical message x′.

(Gen,GenT′,Enc,Dec) defines a stateful cloning game GDX
SDE = (Setup,GenT,GenC,Ver), parameter-

ized by a distribution DX , where X is the set of classical messages encrypted by this scheme, as
follows:

• Setup(1λ) runs sk ← Gen(1λ) and outputs sk = sk.

• There is no message, i.e. m = ⊥.

• GenT(sk,m) computes ρdk ← GenT′(sk) and outputs ρdk.

• GenC(sk,m; rGenC) samples x $←− X using random coins rGenC. It outputs c← Enc(sk, x).

• Ver(sk,m, ch, ans, rGenC) computes x as above using rGenC. Then it accepts if and only if
ans = x.

Correctness. We say that (Gen,GenT′,Enc,Dec) has correctness if GDX
SDE has perfect correctness

for any distribution DX . More specifically, AGSDE
(ρdk, ch) runs Dec(ρdk, ch).

Security. We say that (Gen,GenT′,Enc,Dec) has ε unclonable security if GUXSDE has ε unclonable
security23.

In other words, the ability to decrypt a random classical message is the unclonable property of
the quantum decryption key. For optimal security, we require that ε is negligible.

4.5.4 Quantum Money

Next, we give examples of cloning games with quantum verification. We focus on quantum money,
first introduced by Wiesner [Wie83]. We consider a public-key variant of quantum money considered
by [AC12, Zha17]. We note that the description below can be suitably adapted to case private-key
quantum money as a cloning game. A public-key quantum money scheme is a tuple of efficient
algorithms (Gen,Mint,VerToken):

• Gen(1λ) takes as input a security parameter and outputs a public-secret key pair (pk, sk).

• Mint(sk) takes as input a secret key and outputs a classical serial number s and a quantum
banknote ρs.

• VerToken(pk, s, ρ) takes as input a public key, a serial number, and a quantum state. It outputs
0 (reject) or 1 (accept).

(Gen,Mint,VerToken) defines a cloning game GQM = (Setup,GenT,GenC,Ver) as follows:

• We set m = ⊥, i.e. there is no message.

• Setup(1λ) runs (pk, sk)← Gen(1λ) and outputs sk = (pk, sk)

23We omit the message distribution due to the lack of message.
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• GenT(sk,m) parses the input as sk = (pk, sk), runs (s, ρs)← Mint(sk), and outputs ρ⊗|s⟩⟨s|⊗
|pk⟩⟨pk|.

• GenC(sk,m) outputs ch = ⊥, i.e. no challenge.

• Ver(sk,m, ch, σans) parses the input as sk = (pk, sk) and outputs b← VerToken(pk, σans)

Correctness. We say that the quantum money scheme has correctness if GQM has statistical cor-
rectness. Note that AGQM

can simply output the quantum banknote it receives to satisfy Definition 3
(correctness). Furthermore, it can be assumed without loss of generality that the optimal AGQM

acts
as identity (i.e. outputs ρ as is) since there is no challenge. Therefore, this fully captures the usual
definition of correctness for quantum money schemes.

Security. We say that the quantum money scheme is secure if GQM has ε
unclonable security. For optimal security, we require that ε is negligible. Note that unclonable

security as we defined only gives 1-to-2 unclonability, but it can be generalized to k-to-k + 1 un-
clonability. Alternatively, one can define a quantum-money mini scheme in our framework, which
is necessary and sufficient for constructing public-key quantum money [AC12].

5 Constructive Post-Quantum Reductions: The Non-Local Setting

We present a new toolkit to understand the relationship between different cloning games. We first
define a notion of non-local classical reductions. Roughly speaking, a classical non-local reduction
transforms a non-local classical algorithm24, solving a problem P to a non-local classical algorithm
solving a problem Q. The reason we consider non-local classical reductions is that it turns out to
be simpler to come up with non-local reductions in the classical setting. We then show how to
generically upgrade some classes of classical non-local reductions to quantum non-local reductions,
the analogous notion for quantum non-local algorithms. The resulting quantum non-local reductions
are useful in analyzing the relationship between different cloning games.

5.1 Definitions

In this section, we borrow definitions from Section 3 of [BBK22] and adapt them to the non-local
setting25.

Extension. Similar to Definition 13, we define the notion of an extension over random coins in
this context.

Definition 22 (d-extension). We say that a distribution D̃ over {0, 1}d × {0, 1}d is a d-extension
if for (rB, rC)← D̃, the marginal distributions of both rB and rC are U{0,1}d .

24Refer to Section 3 for the definition of a non-local algorithm.
25For simplicity, we omit explicit purification of quantum solvers (see Definition 3.5), as we will make nearly

black-box use of the results of [BBK22].
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5.1.1 Classical Assumptions

The first two definitions below are commonly used in the cryptography literature. Note that we use
GenC,Ver to denote the algorithms in order to point out the connection between a non-interactive
assumption and the challenge phase of a cloning game (see Definitions 2 and 6).

Definition 23 (Non-Interactive Assumption). A non-interactive assumption A = (d, n,m,GenC,Ver, c)
is associated with polynomials d(λ), n(λ),m(λ) and a tuple P = (GenC,Ver, c) with the following
syntax. Here, GenC and Ver are classical algorithms, and c : N → R+ ∪ {0} is the assumption’s
threshold.

• Challenge generator, GenC(1λ; r): on input security parameter λ and random coins r ∈ {0, 1}d,
outputs a challenge x ∈ {0, 1}n.

• Verifier, Ver(1λ, r, y): on input security parameter λ, random coins r ∈ {0, 1}d, and answer
y ∈ {0, 1}m, outputs 1 (accept) or 0 (reject).

We will sometimes use P and A interchangeably, with the understanding that the polynomials
d, n,m are implicit. We say that P is evasive if c is a negligible function.

Another important property is called verifiably polynomial image, and informally it requires that
it is possible to verify if a solution lies in a polynomial-size superset of valid solutions without the
random coins r of GenC.

Definition 24 (Verifiably Polynomial Image). A non-interactive assumption A = (d, n,m,GenC,Ver, c)
has a verifiably polynomial image if there exists a polynomial k(λ) and an efficient verifier K such
that for every x ∈ {0, 1}n, the set Yx := |{y : K(1λ, x, y) = 1}| has size at most k and for any
valid challenge x = G(1λ; r) and answer Ver(1λ, r, y) = 1, it holds that y ∈ Yx.

Remark 4. At a high level, the above definition states that a non-interactive assumption with
verifiably polynomial range has a public verification algorithm K that accepts all the solutions also
accepted by Ver (and possibly, more) such that for any x, the set of strings accepted by K should be
of polynomial size.

5.1.2 Solvers

Local Solvers. A local solver for a non-interactive assumption P , which we call a P -solver, is a
pair A = (ãlice, state0), where Ã is an algorithm which takes as input a challenge x ∈ {0, 1}n and
outputs an answer y ∈ {0, 1}m, whereas state0 is an initial state. We define the value and advantage
of a local solver below:

Definition 25 (Value and Advantage of a Local Solver (Definition 3.3 in [BBK22])). Let A =
(d, n,m,GenC,Ver, c) be a non-interactive assumption, with P = (GenC,Ver, c), and let A = (Ã, state0)
be a P -solver. We define the (one-shot) value and advantage of A, parameterized by the security
parameter λ, as

valP [A] = Pr

[
Ver(1λ, r, y) = 1

∣∣∣∣∣ r
$←−{0,1}d

x=GenC(1λ;r)

y←Ã(1λ,x,state0)

]
, advP [A] = |valP [A]− c| .
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Non-Local Solvers. Below, we adapt Definition 25 to the non-local setting. A non-local adver-
sary consists of two (possibly inefficient) algorithms (B, C), where both B and C are given (possibly
correlated) instances from a non-interactive assumption. Each adversary is expected to solve the
instance they get. Note that both B and C are not allowed to communicate with each other. In the
end, the adversary wins if both B and C win. In general, for algorithms B and C acting on separate
registers, we call the algorithm B⊗C a non-local algorithm26. We consider the non-uniform setting,
where both B and C could share some auxiliary information (either a string or a quantum state,
depending on whether the adversary is classical or quantum) in the very beginning.
In order to define reductions, we need to define stateful solvers. Suppose in a reduction, we use the
solver for a problem P to design a solver for problem Q. Suppose the Q solver runs the P solver
multiple times. In the classical setting, the P solver could be stateless, whereas in the quantum
setting the P solver is inherently stateful and thus, we need to define stateful solvers appropriately
below. Formally, we adapt Definition 3.4 from [BBK22] to the non-local setting.

Definition 26 (Non-Local Stateful Solvers: Syntax). Let P be a non-interactive assumption with
d-bit random coins.

Let ℓ = ℓ(λ), ℓB = ℓB(λ), ℓC = ℓC(λ) be functions such that ℓB(λ) + ℓC(λ) = ℓ(λ) and let D̃ be a
d-extension. An (ℓ, ℓB, ℓC)-stateful non-local (P, D̃)-solver A = (B, C, state0 = {state0,λ}λ) is defined
as follows.

• state0 = {state0,λ}λ is a sequence of bipartite ℓ-qubit states (with the partitions being ℓB-qubit
register B and ℓC-qubit register C).

• A is a quantum algorithm that takes as input a security parameter 1λ, a step 1t, a pair of
challenges xB, xC ∈ {0, 1}n, and state = (stateB, stateC), which is an ℓ-qubit bipartite state.
It runs (B(1λ, xB, ·) ⊗ C(1λ, xC , ·))(state), with B getting as input register B and C getting as
input C, to obtain (yB, yC , state

′), where yB ∈ {0, 1}m is B’s output, yC ∈ {0, 1}m is C’s output
and state′ = (state′B, state

′
C) is a bipartite ℓ-qubit state on ℓB-qubit register B and ℓC-qubit

register C with B (resp., C) being the output of B (resp., C). A outputs (yB, yC , state
′).

If the states statei,λ are classical strings and (B, C) are classical algorithms, then A is called
a classical non-local stateful solver, otherwise it is called a quantum non-local stateful solver. If
D̃ = U{0,1}d×{0,1}d , then A is called an independent-challenge P -solver.

Remark 5. Even though the definition above of a non-local (P, D̃)-solver does not depend on D̃, it
will be used to define the value and advantage of the solver below.

Examples of Non-Local Solvers: For instance, if P is inverting a one-way function f , then
B and C respectively get xB = f(zB) and xC = f(zC) as challenges, where (zB, zC) is pair of uni-
form inputs arbitrarily correlated depending on D̃. In order to pass verification, B needs to output
yB = zB and C needs to output yC = zC . Another example is when P is distinguishing the output
of a PRG G from a random string. In this case, xB and xC are each either a uniform output of G
or a uniformly random string. In order to pass verification, B and C need to correctly guess which
one. The correct answer for B and C, may be arbitrarily correlated depending on D̃. Furthermore,

26A non-local algorithm can be implemented by two spatially separated and non-communicating parties, hence the
name.
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xB, xC could be correlated still conditioned on the answers.

We formalize the interaction between a non-local solver and a non-local algorithm below. Formally,
we adapt Definition 3.6 from [BBK22].

Definition 27 (Non-Local Solver Interaction). Let P = (GenC,Ver, c) be a non-interactive assump-
tion. For any stateful (P, D̃)-solver A = (BA, CA, state0), and S = (BS , CS), where BS and non-local
algorithm CS are a pair of algorithms, with input z = (zB, zC) ∈ {0, 1}∗, we consider the process
SAz (1λ) of the algorithm interacting with the solver. We define this process below.

• S is invoked on the input (1λ, zB, zC , state0), where BS receives as input zB and CS receives as
input zC. Moreover, state0 is defined on two registers B and C, with BS receiving the register
B and CS receiving the register C. Initialize τB to contain zB and τC to contain zC. At every
step i ≥ 1:

1. BS(1λ, τB) makes a query x(i)B and CS(1λ, τB) makes a query x(i)C ,

2. Run (y
(i)
B , y

(i)
C , statei)← (BA(1λ, 1i, x(i)B , ·)⊗CA(1λ, 1i, x

(i)
C , ·))(statei−1), where y(i)B is BA’s

output, y(i)C is CA’s output and statei is the joint output of BA and CA.

3. Add (x
(i)
B , y

(i)
B ) to τB and (x

(i)
C , y

(i)
C ) to τC.

• At the end of the interaction, S may produce the output (wB, wC), where wB is output by BS
and wC is output by CS .

We will sometimes refer to S as a solver-aided non-local algorithm.

Non-Local Solver Value, Advantage, and Persistence. For stateful solvers, we explicitly
define their value after interacting with the assumption many times.

Definition 28 (Non-local Stateful Value and Advantage). Let P = (GenC,Ver, c) be a non-interactive
assumption and let A = (BA, CA, state0) be a stateful (P, D̃)-non-local solver. Let S be a solver-aided
non-local algorithm with input z = (zB, zC). Let statei be defined as in Definition 27 for the inter-
action SAz (1λ). Then, we define the (many-shot) value of SAz as

valD̃P
[
i,SAz

]
:= Pr

Ver(1λ,yB;rB)=1
∧

Ver(1λ,yC ;rC)=1

∣∣∣∣∣
(rB,rC)←D̃

xB=GenC(1λ;rB)
xC=GenC(1λ;rC)

(yB,yC ,statei+1)←(BA(1λ,1i+1,xB,·)⊗CA(1λ,1i+1,xC ,·))(statei)

 ,
and for any threshold c∗ : N→ R+ ∪ {0}, we define the (many-shot) advantage of SAz as

adv
(D̃,c∗)
P [i,A] :=

∣∣∣valD̃P [i,SAz ]− c∗(λ)∣∣∣
We define the one-shot value of the solver interaction SAz as valD̃P [A] := valD̃P

[
0,SAz

]
and the

one-shot advantage of A with respect to threshold c∗ as adv
(D̃,c∗)
P [A] := adv

(D̃,c∗)
P

[
0,SAz

]
. Note that

neither value depends on (S, z).

Remark 6 (Non-Local vs. Local Threshold). Above, the non-local threshold c∗, which is a parameter

of the advantage adv
(D̃,c∗)
P of the adversary A, can depend on the local threshold c as well as the

d-extension D̃.
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Definition 29 (Non-Local Persistence). Let P be a non-interactive assumption. A distribution B
on (P, D̃)-non-local solvers {Aα = (BαA, CαA, stateα0 )}α is called (p, η)-persistent if for any solver-aided
non-local algorithm S = (BS , CS) with input z = (zB, zC), we have

Pr

[
sup
i

∣∣∣valD̃P [i,SAα

z

]
− p
∣∣∣ ≤ η] ≥ 1− η,

where the probability is taken over the randomness of α and the solver interaction SAα

z .

5.1.3 Reductions

A reduction is a transformation that converts a solver for one problem to a solver for another
(possibly different) problem. More precisely, suppose P and Q be two assumptions. A reduction
leverages the solver for P to design a solver for Q. We consider the setting when the solver for Q
uses the solver for P as a black-box. As in [BBK22], we consider reductions where the solver for
Q runs the solver for P multiple times. We define analogous notions of one-shot advantage and
persistent advantage below.

We first define the traditional notion of reduction before defining non-local reductions.

Definition 30 (Reduction; Definition 3.12 in [BBK22]). A classical (resp., quantum) reduction from
solving a non-interactive assumption Q to solving a non-interactive assumption P is an efficient
classical (resp., quantum) uniform algorithm R with the following guarantee.

For any classical (resp., quantum) P -solver AP = (AP , state0) with one-shot advantage ε and
runtime T , let state′0 = (state0, AP , 1

1/ε, 1T ). Then, AQ = (R, state′0) is a classical (resp., quantum)
Q-solver with one-shot advantage ε′ = poly(ε, T−1, λ−1) and runtime poly(T, ε−1, λ). An inefficient
reduction is defined the same way without the runtime requirement and the dependency on T .

Non-Local Reductions. We now generalize the above definition to the non-local setting.

Definition 31 (Non-Local Reduction). A non-local classical (resp., quantum) (D̃P , c
∗
P , D̃Q, c

∗
Q)-

reduction from solving a non-interactive assumption Q to solving a non-interactive assumption P is
an efficient classical (resp., quantum) uniform non-local algorithm R = (R1,R2) with the following
guarantee.

Given any non-local classical (resp., quantum) (P, D̃)-solver AP = (BP , CP , state0) with one-shot

advantage ε = adv
(D̃,c∗P )
P [AP ] and runtime T , let state′0 = (state0,BP , CP , 11/ε, 1T ). Then, AQ =

(R1,R2, state
′
0) is a (Q, D̃Q)-solver with one-shot advantage ε′ = adv

(D̃,c∗Q)

Q [AQ] = poly(ε, T−1, λ−1)

and runtime poly(T, ε−1, λ). Here, it is understood that description of BP (resp., CP ) is included
as part of R1’s (resp., R2’s) register. An inefficient non-local reduction is defined the same way
without the runtime requirement and the dependency of T .

Definition 32 (Non-Local Black-Box Reduction). A non-local black-box (D̃P , c
∗
P , D̃Q, c

∗
Q)-reduction

R = (R1,R2) from solving Q = (GenCQ,VerQ, cQ) to solving P = (GenCP ,VerP , cP ) is a non-local
(D̃P , c

∗
P , D̃Q, c

∗
Q)-reduction such that R1 (resp., R2) interacts with BP (resp., CP ) as defined in

Definition 27.
We further say that R is non-adaptive if R1 (resp., R2) produces its queries to BP (resp., CP )

independent of the answers to its previous queries (or equivalently all at once).
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5.2 Main Theorem

In our main theorem, we show how to relate the unclonable security of two cloning games G,G′
which satisfy a similarity condition in the setup phase as well as some additional properties. Before
we state the formal theorem, we first describe how the notions of non-interactive assumption and
unclonable security are connected by introducing relevant notation.

Assumption Induced by a Cloning Experiment. Let G = (Setup,GenT,GenC,Ver) be a
stateful27 cloning game with message space M. For every m ∈ M, message distribution DM,
and secret key sk in the support of Setup(1λ), we consider the induced non-interactive assumption
AG,DM
sk,m = (d, n, ℓ,GenCG,DM

sk,m ,VerG,DM
sk,m , c). Here d is the length of the random coins used by GenC, n

is the length of the challenges output by GenC, and ℓ is the length of the answers received by GenC.
In addition, GenCG,DM

sk,m (1λ; r) := GenC(sk,m; r) and VerG,DM
sk,m (1λ, r, ans) := Ver(sk,m, ch, ans, r).28

Finally, we will set c := ptriv(G,DM) for the message distribution M considered for unclonable
security. As before, we write P G,DM

sk,m = (GenCG,DM
sk,m ,VerG,DM

sk,m , c) to denote the assumption when the
parameters d, n, ℓ are implicit.

Theorem 13 (Main Theorem). Let G = (Setup,GenT,GenC,Ver) and G′ = (Setup′,GenT′,GenC′,Ver′)

be cloning games with the same message spaceM. Let DM be a message distribution, and G̃enC be
an extension of GenC. Suppose that the following conditions are satisfied:

(1) Setup = Setup′ and GenT = GenT′.

(2) G′ is DM-evasive.

(3) Either G is DM-evasive or G̃enC = G̃enCind.

For sk in the support of Setup and message m ∈ M, consider the induced non-interactive assump-
tions

P = P G,DM
sk,m = (GenCG,DM

sk,m ,VerG,DM
sk,m , ptriv(G,DM, G̃enC))

and

Q = QG
′,DM

sk,m = (GenCG
′,DM

sk,m ,VerG
′,DM

sk,m , ptriv(G′,DM)).

Suppose further that the following conditions are satisfied:

(a) For all (sk,m), P has a verifiably polynomial image.

(b) For all (sk,m), there exists a classical non-adaptive black-box reduction R from solving non-
interactive assumption Q to solving non-interactive assumption P . Furthermore, the descrip-
tion of R does not depend on (sk,m).

(c) G′ has (DM, negl) independent-challenge unclonable security.
27Recall that stateful cloning games (Definition 12) generalize cloning games, so that this definition applies the

same to cloning games that are not stateful.
28Note that this is well-defined since ch can be computed deterministically given sk,m, r.
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Then, G has (DM, negl, G̃enC) unclonable security.

The proof of the main theorem consists of 3 technical steps: (1) going from the classical reduction
given in item (b) to a classical non-local reduction, (2) going from non-local (Q, D̃Q)-solver to
independent-challenge Q-solver, and (3) lifting classical reduction to quantum. We will formally
discuss each step in Section 5.3. We include the final proof below to aid the reader in reading
Section 5.3.

Proof of Theorem 13. Define cP = ptriv(G,DM, G̃enC) and cQ = ptriv(G′,DM). By condition (2),
Q is evasive, i.e. cQ is negligible. By conditions (2),(b) and Lemma 16, there exists a classical
non-adaptive black-box non-local (D̃O, cP , D̃Q, cQ)-reduction from solving Q to solving P , where
D̃P , D̃Q denote uniform extensions.

By Theorem 22, there exists a quantum non-local (D̃O, cP , D̃Q, cQ)-reduction R′ from solving Q
to solving P . Combining this with Corollary 3 if G is DM-evasive, and trivially if G̃enC = G̃enCind,
R′ is also a quantum non-local (G̃enC, cP , D̃Q, cQ)-reduction from solving Q to solving P .

Now, let (A,B, C) be a QPT adversary which breaks (DM, ε) unclonable security of G for a
non-negligible function ε. Let εsk,m be the one-shot value of (A,B, C) in assumption P defined
above with respect to cP , so that |Esk,m [εsk,m − cP ]| > ε. Note that since the description of R does
not depend on (sk,m), neither does the description of R′.

Let (A′,B′, C′) be the induced QPT adversary obtained by giving the solver (B′, C′,A(ρsk,m))
as input to R, where ρsk,m ← GenT(sk,m) is the token received by A in G. That is, A′ is defined
in terms of A and how the state A(ρsk,m) is modified by the reduction R′, whereas (B′, C′) is the
non-local algorithm output by R′. Note that this is well-defined since the description of R′ does
not depend on (sk,m). Define ε′sk,m as the one-shot value of (A′,B′, C′) in G′.

By the guarantee of R′, we have
∣∣∣ε′sk,m − cQ∣∣∣ ≥ q(|εsk,m − cP |) for all (sk,m) and some polyno-

mial q. Without loss of generality, we can take q(x) = xβ for some constant β > 1, so that q is a
monotone, convex function. Taking the expectation and using Jensen’s Inequality, we obtain

q(ε) < q

(∣∣∣∣ Esk,m [εsk,m − cP ]
∣∣∣∣) ≤ q( E

sk,m
[|εsk,m − cP |]

)
≤ E

sk,m
[q (|εsk,m − cP |)] ≤ E

sk,m

[∣∣ε′sk,m − cQ∣∣]
≤ E

sk,m

[
ε′sk,m + cQ

]
≤ 2cQ +

∣∣∣∣ Esk,m [ε′sk,m − cQ]
∣∣∣∣ ,

hence (A′,B′, C′) breaks the (DM, q(ε)− 2cQ) unclonable security of G′, which suffices for the proof
since cQ is negligible and ε is non-negligible.

Alternate Versions of the Main Theorem. We give two more versions of the main theorem,
which could be useful for applications. The first one (Theorem 14) is for information theoretic
applications, including our single-decryptor encryption construction in Section 5.4.1. The second
one (Theorem 15) concerns the case when G,G′ do not have identical setup phases, yet they are
equivalent modulo a local quantum transformation applied by A, hence relaxing condition (1) of
Theorem 13.

Theorem 14 (Main Theorem - Inefficient Version). Let P,Q,G,G′,DM, G̃enC be defined as in
Theorem 13. Suppose that the conditions in items (1) to (3) and item (b) are satisfied. If G′ has
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information theoretic (DM, negl) independent-challenge unclonable security, then G has information
theoretic (DM, negl, G̃enC) unclonable security.

Proof. The proof follows the same as that of Theorem 13. The only difference is that since P has
no verifiably polynomial image, the non-local reduction is inefficient as per Theorem 22.

Theorem 15 (Main Theorem - General Version). Theorem 13 holds true if condition (1) is replaced
with the following: There exists a quantum channel Γ such that,

TD
(
ρsk,m,Γ

(
ρ′sk,m

))
≤ negl(λ)

for all key-message pairs (sk,m), where ρsk,m ← GenT(sk,m) and ρ′sk,m ← GenT′(sk,m).

Proof (sketch). Follows by modifying the proof of Theorem 13 so that the non-local reduction first
applies Γ.

We note that the same generalization can be applied to Theorem 14 in the information theoretic
setting.

5.3 Proof of the Main Theorem.

In this section, we give the technical details of the 3 steps of the proof of the main theorem.

Step 1: Lifting Classical Local Reduction to Non-Local Reduction. In Section 5.3.1, we
show that any classical reduction from solving Q to solving P implies a classical non-local reduction,
where the assumption Q is assigned the independent-challenge distribution.

Step 2: Converting Non-Local Solver to Independent-Challenge Solver. In Section 5.3.2,
we show that any non-local solver with negligible non-local threshold is an independent-challenge
solver. This step is needed because the third step below requires independent-challenge mode to lift
a classical non-local reduction to quantum.

Step 3: Lifting Classical Non-Local Reductions to Quantum Reductions. In Sections 5.3.3
to 5.3.5, we adapt the work of [BBK22], which shows how to lift local non-adaptive black-box reduc-
tions to quantum, to the non-local setting. The main technical contribution occurs in Section 5.3.3,
where we do non black-box analysis of the state-repair procedure of [CMSZ21] to show that it can
be used in the non-local setting.

5.3.1 Upgrading Classical Local Reductions to Classical Non-Local Reductions

Most classical reductions known are for local assumptions, and we will show below how to obtain a
non-local reduction from a local reduction. The non-local reduction simply runs the local reduction
in each register.

Lemma 16. Suppose there exists a classical reduction R from solving non-interactive evasive as-
sumption Q = (GenCQ,VerQ, cQ) to solving non-interactive assumption P = (GenCP ,VerP , cP ).
Let D̃Q = U{0,1}dQ×{0,1}dQ be the uniform extension. Then, there exists a classical non-local

(D̃P , cP , D̃Q, cQ)-reduction R′ = (R′1,R′2) from solving Q to solving P for any dP -extension D̃P .
Furthermore, R′ is non-adaptive (resp., black-box) if R is non-adaptive (resp., black-box).
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Proof. The non-local reduction locally runs the classical reduction, i.e. R′1 = R′2 = R. Let A =

(B, C) be a (P, D̃P )-solver with one-shot advantage ε = adv
(D̃P ,cP )
P [A]. Let A′ = (B′, C′) be the non-

local adversary output byR′. Assume that A,A′ are both stateless. Since ε+cP is the probability of
(B, C) simultaneously passing verification, it follows that B and C are both P -solvers with advantage
ε. Thus, by assumption B′ and C′ are both Q-solvers with advantage ε′ = poly(ε, T−1, λ), where T
is the runtime of A. Therefore, since A′ is an independent-challenge non-local Q-solver, it follows
that the advantage of A′ is at least (ε′ + cQ)

2 − cQ ≥ (ε′)2 − negl(λ) as desired.
The argument can be generalized to stateful non-local solvers by convexity.

5.3.2 From Non-Local Solvers to Independent-Challenge Solvers

For the second step of the proof of the main theorem, we will show that any non-local solver is an
independent-challenge solver, up to polynomial loss.

Theorem 17. Let P be a non-interactive assumption and let c : N → R+ ∪ {0} be a neg-
ligible non-local threshold. Then, any non-local quantum (P, D̃)-solver A = (B, C, state0) with

one-shot advantage ε = adv
(D̃,c)
P [A] is a quantum independent-challenge P -solver with advantage

ε′ = adv
(D̃ind,c)
P [A] = poly(ε)− negl(λ), where D̃ind is the uniform extension.

Proof. Since c is negligible, it suffices to show val
(D̃ind,c)
P [A] = poly

(
val

(D̃,c)
P [A]

)
. Since the success

of a non-local solver can be implemented as a product measurement, this follows from Lemma 18
below, with the polynomial above given by q(x) = x3/216.

Lemma 18. Let R be a finite set of random coins, D̃ be a distribution over R×R with marginals
(D,D), and ρ be a mixed bipartite state. Define the following quantities:

pcor = E
(r,r′)←D̃

Tr [(Br ⊗ Cr′) ρ] , pind = E
r,r′←D

Tr [(Br ⊗ Cr′) ρ] ,

where for each r ∈ R, we have 0 ≤ Br ≤ I and 0 ≤ Cr ≤ I. Then,

pid ≤ 6 3
√
pind

Proof. We can interpret Br and Cr as POVM elements. Thus, by Naimark Dilation theorem, with-
out loss of generality we can assume that Br and Cr are projections. We can also assume that
ρ = |ψ⟩⟨ψ| is a pure state, and the mixed state case follows by convexity, since f(x) = 6 3

√
x is a

concave function.

Define PSD operators

PB := E
r←D

Br, PC := E
r←D

Cr,

and let

|ψ⟩ =
∑
i,j

αi,j |ϕi⟩ |σj⟩
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be the spectral decomposition of |ψ⟩ with respect to PB ⊗ PC , where |ϕi⟩ is an eigenvector of PB

with eigenvalue λi and |σj⟩ is an eigenvector of PC with eigenvalue γj . Set η = 3
√
pind and define

subnormalized states

|ψB⟩ =
∑

i : λi≤η
j : γj>η

αi,j |ϕi⟩ |σj⟩ , |ψB⟩ =
∑
i

j : γj≤η

αi,j |ϕi⟩ |σj⟩ , |ψBC⟩ =
∑

i : λi>η
j : γj>η

αi,j |ϕi⟩ |σj⟩ ,

so that |ψ⟩ = |ψB⟩+ |ψC⟩+ |ψBC⟩.

We first show the following claim:

Claim 1. ∥ψBC∥2 ≤ pind

η2
, where ∥·∥ is the Euclidean Norm.

Proof.

pind = E
r,r′←D

⟨ψ| (Br ⊗ Cr′) |ψ⟩

= ⟨ψ|PB ⊗ PC |ψ⟩

=
∑
i,j

|αi,j |2 λiγj

≥
∑

i : λi>η
j : γj>η

|αi,j |2 λiγj

≥ η2
∑

i : λi>η
j : γj>η

|αi,j |2

= η2 ∥ψBC∥2

We have:

pcor = E
(r,r′)←D̃

∥(Br ⊗ Cr′) (|ψB⟩+ |ψC⟩+ |ψBC⟩)∥2

(Cauchy-Schwartz) ≤ E
(r,r′)←D̃

3
(
∥(Br ⊗ Cr′) |ψB⟩∥2 + ∥(Br ⊗ Cr′) |ψC⟩∥2 + ∥(Br ⊗ Cr′) |ψBC⟩∥2

)
≤ E

(r,r′)←D̃
3
(
∥(Br ⊗ I) |ψB⟩∥2 + ∥(I ⊗ Cr′) |ψC⟩∥2 + ∥|ψBC⟩∥2

)
= E

r,r′←D
3
(
∥(Br ⊗ I) |ψB⟩∥2 + ∥(I ⊗ Cr′) |ψC⟩∥2 + ∥|ψBC⟩∥2

)
= 3

(
⟨ψB| (PB ⊗ I)ψB⟩+ ⟨ψC | (I ⊗ PC)ψC⟩+ ∥ψBC∥2

)
(Claim 1) ≤ 3

(
η
(
∥ψB∥2 + ∥ψC∥2

)
+
pind
η2

)
≤ 3

(
η +

pind
η2

)
= 6 3
√
pind
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Classical Case. We list the special case when A in Theorem 17 is a classical algorithm explicitly
below because (1) we will need it in Section 5.4.2 for our second application of the main theorem,
and (2) we can show a quadratic (instead of cubic) loss for this special case.

Corollary 3. Let P be a non-interactive assumption and let c : N→ R+ ∪ {0} be a negligible non-
local threshold. Then, any non-local classical (P, D̃)-solver A = (B, C, state0) with one-shot advan-

tage ε = adv
(D̃,c)
P [A] is a classical independent-challenge P -solver with advantage ε′ = adv

(D̃,c)
P [A] =

ε2 − negl(λ).

Proof. Although it follows as a special (classical) case of Theorem 17, we will give a direct proof, as
the classical concrete bound trumps the quantum bound. We will show that if the one-shot value of
A with respect to D̃ is δ, then its one-shot value in the independent-challenge setting is at least δ2,
which suffices for the proof. The classical state state0 can be modeled as a shared random string.
We assume that A is stateless and the general case follows by convexity.

Let R be the space of random coins used by the challenge generation algorithm GenC of P .
Let pr and qr be the probability that B and C pass verification conditioned on the challenge being
generated using randomness r, respectively. Since A is stateless, we can write the one-shot value of
A in the independent-challenge setting as29

δ′ =
1

|R|2
∑
r,r′

prqr′

On the other hand, the one-shot value of A with respect to the extension D̃ can be written as

δ =
∑
r,r′

αr,r′prqr′ ,

where
{
αr,r′

}
r,r′

are non-negative coefficients satisfying

∑
r′

αr′,r =
∑
r′

αr,r′ =
1

|R|

for all r ∈ R. Thus, we have

δ2 =
∑

r,r′,s,s′

αr,r′αs,s′prqr′psqs′ ≤
∑

r,r′,s,s′

αr,r′αs,s′prqs′

=
∑
r,s′

prqs′
∑
r′,s

αr,r′αs,s′

=
1

|R|2
∑
r,s′

prqs′

= δ′

as desired.

29This equation can be thought of as a no-signalling condition.
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5.3.3 Main Lemma

We will extend Lemma 10 to the non-local setting.

Lemma 19 (Main Lemma). Let V be a classical algorithm and let A = B ⊗ C be a non-local
algorithm, where B (resp., C) acts on register B (resp., C). Define the following algorithms
(NLValEst,NLRepair) using the algorithms ValEst and Repair described in Lemma 10:

• (ρ∗BC, p
∗
B, p
∗
C)← NLValEstV,A(ρ, 1

1/ε): compute
(
ValEstV,B(·, 11/(ε/2))⊗ ValEstV,C(·, 11/(ε/2))

)
(ρBC)

to obtain (p∗B) (B’s output), p∗C (C’s output) and ρ∗BC is the joint output of B and C, where B
(resp., C) output the register B (resp., C).

• σ∗BC ← NLRepairV,A,ΠB,ΠC

(
σBC, yB, pB, yC , pC , 1

1/ε, 1k
)
: for k-outcome projections ΠB,ΠC on

register B,C, respectively, compute the following:(
RepairV,B,ΠB

(
·, yB, pB, 11/ε, 1k

)
⊗ RepairV,C,ΠC

(
·, yC , pC , 11/ε, 1k)

))
(σBC)

Denote the result by σ∗BC.

Note that (NLValEst,NLRepair) are efficient30 algorithms given that (ValEst,Repair) are efficient
algorithms by Lemma 10. In addition, we have the following guarantees:

1. Value Estimation: For any ε > 0,

E
(ρ∗BC,p∗B,p

∗
C)←NLValEstV,A(ρBC,11/ε)

[p∗Bp
∗
C ] = Pr

[
V (yB;rB)=1

∧
V (yC ;rC)=1

: rB,rC
$←−{0,1}d

(yB,yC)←B(·,rB)⊗C(·,rC)(ρBC)

]
. (5)

2. Almost-Projective Estimation: For any ε ≥ ε′ > 0,

Pr

[
|p∗B − p∗∗B | ≥ ε ∨ |p∗C − p∗∗C | ≥ ε :

(ρ∗BC,p∗B,p
∗
C)←NLValEstV,A(ρBC,11/ε)

(ρ∗∗BC,p∗∗B ,p∗∗C )←NLValEstV,A(ρ∗BC,11/ε
′
)

]
≤ ε.

3. Repairing: For any state ρBC and any ε > 0,

Pr

|p∗B − p∗∗B | ≥ ε ∨ |p∗C − p∗∗C | ≥ ε :

(ρ∗BC,p∗B,p
∗
C)←NLValEstV,A(ρBC,11/ε)

(σBC,yB,yC)←(ΠB⊗ΠC)(ρ
∗
BC)

σ∗
BC←NLRepairV,A,ΠB,ΠC(σBC,yB,p

∗
B,yC ,p

∗
C ,1

1/ε,1k)

(ρ∗BC,p∗B,p
∗
C)←NLValEstV,A(ρ∗BC,11/ε)

 ≤ ε. (6)

Proof. We start with value estimation. Let MB0 = (ΠA, I − ΠA) and MB1 = (ΠB, I − ΠB) be
the projective measurements applied by ValEstV,B(·, 1ε/2). Using Lemma 5, we decompose the
B register into Jordan subspaces as HB =

⊕
Sj . Let

{
|vAj,1⟩ , |vAj,0⟩

}
and

{
|vBj,1⟩ , |vBj,0⟩

}
be the

orthogonal eigenbases of Sj with respect to ΠA,ΠB.
Similarly for ValEstV,C(·, 1ε/2), we consider projective measurements MC0 = (ΓA, I − ΓA) and

MC1 = (ΓB, I−ΓB), with the Jordan decompositionHC =
⊕
Tj′ and the eigenbases

{
|wA

j′,1⟩ , |wA
j′,0⟩

}
and

{
|wB

j′,1⟩ , |wB
j′,0⟩

}
. For simplicity, we will assume dimSj = dimTj′ = 2 for all j, j′. The degen-

erate cases can be handled similarly31.
We will need the following claim:

30Here, by efficient we mean that the runtime of NLValEst is polynomial in the size of ρ, 1/ε, the runtime of V and
the runtime of A. Similarly for NLRepair.

31See [CMSZ21] Section 4.1 to see how to handle degenerate subspaces generically.
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Claim 2. Let ΠJor
B =

{
ΠJor

B,j

}
j

be the jordan subspace measurement, with ΠJor
B,j = |vAj,0⟩⟨vAj,0| +

|vAj,1⟩⟨vAj,1|. Similarly define ΠJor
C . Then, ΠJor

B commutes with ValEstV,B(·, 1ε/2). Similarly, ΠJor
C

commutes with ValEstV,C(·, 1ε/2).

Proof. We will show that ΠJor
B commutes with ValEstV,B(·, 1ε/2). Recall that ΠJor

B commutes with
both MB0 and MB1 . We write the register B as two registers, P and Q, where P stores the input
state and Q contains all auxiliary registers used in the computation. In particular, this means that
the measurements MB0 ,MB0 ,ΠJor

B are all restricted to the P register. By Lemma 10 bullet 3, every
step of ValEstV,B(·, 1ε/2) falls into one of the following categories:

1. Apply MBb on the P register conditioned on a qubit located in the Q register for some
b ∈ {0, 1}. This captures all steps adaptively applying a projective measurementMBb .

2. Apply a local operation on the Q register. This captures the steps computing the database
of outcomes and the functions f, g described in Lemma 10.

Because ΠJor
B is a projection applied to the P register alone, it commutes with operations from

both categories above.

Without loss of generality assume that ρ is a pure state, for the mixed state case follows by
convexity. By assumption, the bipartite state after steps (a) and (b) described in the 2-Projection
Implementation property in Lemma 10 are performed on both registers has the form∑

j,j′

αj,j′ |vBj,1⟩ |wB
j′,1⟩

Let ṼalEst denote the execution of ValEst after steps (a) and (b) mentioned above. By Claim 2, the
product Jordan subspace measurement ΠJor

B ⊗ ΠJor
C commutes with NLValEstV,A(·, 11/ε), hence the

values p∗B, p
∗
C are distributed as follows:

• Sample (j, j′) with probability |αj,j′ |2,

• Compute p∗B ← ṼalEstV,B(|vBj,1⟩ , 11/(ε/2)) and p∗C ← ṼalEstV,C(|vBj′,1⟩ , 11/(ε/2)),

• Output (p∗B, p
∗
C).

Let pjB be the value of state |vBj,1⟩ as defined on the RHS of eq. (3). By the same equation, we
know that E [p∗B|j] = pjB. Similarly define pj

′

C so that E [p∗C |j′] = pj
′

B . Let pj,j′ denote the value of
state |vBj,1⟩ |vCj′,1⟩ as defined on the RHS of eq. (5). Because this is pure product state, we have that

pj,j
′
= pjBp

j′

C , and also that the variables p∗B, p
∗
C are independent conditioned on j, j′. On the other

hand, since computing the value commutes with the Jordan measurements, the value p for the state
ρ is distributed as follows:

• Sample (j, j′) with probability |αj,j′ |2,

• Output pj,j′ .
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Therefore, putting everything together, we have

E [p∗Bp
∗
C ] =

∑
j,j′

∣∣αj,j′
∣∣2 E [p∗Bp∗C |j, j′] =∑

j,j′

∣∣αj,j′
∣∣2 E [p∗B|j] · E

[
p∗C |j′

]
=
∑
j,j′

∣∣αj,j′
∣∣2 pjBpj′C =

∑
j,j′

∣∣αj,j′
∣∣2 pj,j′ = p

as desired. Next, we show almost-projective estimation. Recall that NLValEstV,A(·, 11/ε) applies(
ValEstV,B(·, 11/(ε/2))⊗ ValEstV,C(·, 11/(ε/2))

)
,

and the operations on the B,C registers commute. Therefore, using condition (2) of Lemma 10
for the state TrC (ρBC), we have Pr [|p∗B − p∗∗B | ≥ ε] ≤ ε/2, and similarly Pr [|p∗C − p∗∗C | ≥ ε] ≤ ε/2.
Using a union bound, we achieve the desired property. The repairing property follows by a similar
argument, after observing that the procedure in eq. (6) involves two parallel executions of eq. (4)
on registers B and C.

5.3.4 Achieving Non-Local Persistence

In Theorem 4.1 of [BBK22], the output p∗ of the value estimation ValEst estimates the value of
the solver in expectation, and can be used to achieve a distribution over (p∗, η)-persistent solvers.
We observe that the estimation p∗ could be stored non-locally (p∗B, p

∗
C) such that p∗Bp

∗
C = p∗. These

local values are enough for non-local state repair by Lemma 19, and using this the proof of [BBK22]
can be straightforwardly applied to the non-local setting. We state the formal theorem statement
below.

Theorem 20 (Non-Local Persistence Theorem). Let P be a non-interactive falsifiable assumption
with a verifiably polynomial image. Let η = 1

poly . There exist efficient non-local quantum algorithms
S = S1 ⊗ S2, R = R1 ⊗R2 with the following syntax and guarantee:

• SA(state0) =
(
SB1 ⊗ SC2

)
(state0) takes as input a non-local algorithm A = (B, C) and a bipar-

tite state state0. It outputs a state state∗0 and values (p∗B, p
∗
C), where p∗B is output by SB1 and

p∗C is output by SC2 .

• RA(1λ, 1i, xB, xC , state
∗
i−1) =

(
RB1 (1

λ, 1i, xB, ·)⊗RC2(1λ, 1i, xC , ·)
)
(state∗i−1) takes as input a

non-local algorithm A, a security parameter λ, a step i, a pair of inputs (xB, xC), and a
bipartite state state∗i−1. It outputs a pair of solutions (yB, yC), where yB is output by RB2 and
yC is output by RC2 , and a bipartite state state∗i .

For any non-local independent-challenge P -solver A = (B, C, state0) with one-shot value p =

valD̃P [A], with D̃ = U{0,1}d×{0,1}d , considering the random variable (state∗0, p
∗
B, p
∗
C)← SA(state0), we

have:

1. E [p∗Bp
∗
C ] = p

2. R∗ = (RA, state∗0) sampled in this process is a distribution over efficient stateful non-local
solvers that is (p∗Bp

∗
C , η)-persistent.

Moreover, if P does not have a verifiably polynomial image, the same holds, but S is not efficient.
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Proof. The proof will closely follow the proof of Theorem 4.1 in [BBK22]. Let P = (GenC,Ver, c)
with polynomial-image verifier K and polynomial-image bound k. Let η = 1/poly(·). We will
denote by B,C the two registers for the non-local algorithms S,R,A. For x ∈ {0, 1}n, we define
the (k + 1)-outcome projective measurement ΠBx as follows:

• Coherently run B with input x.

• First, measure if the output of B is in the polynomial image specified by K.

– If not, output ⊥
– If yes, measure the output of B and output the answer y ∈ {0, 1}m.

• Uncompute.

We similarly define the projective measurement ΠCx. We also define the wrapper non-local solver
Ã = B̃ ⊗ C̃, where B̃ (resp., C̃) takes as input r ∈ {0, 1}d, computes x = GenC(1λ; r) and runs B
(resp., C) on input x, outputting the result y ∈ {0, 1}m. Next, we move on to describe SA and RA

next.

Description of SA: On input state0, compute (state∗0, p
∗
B, p
∗
C) ← NLValEstVer,Ã(state0, 1

10/η).
That is, SB1 runs ValEstVer,B̃(·, 1

20/η) and SC2 runs ValEstVer,C̃(·, 1
20/η). Output (state∗0, p

∗
B, p
∗
C).

Description of RA: On input (1λ, 1i, xB, xC , state∗i−1), whereR1 receives 1λ, 1i, xB and the register
B while R2 receives 1λ, 1i, xC and C, do the following:

• Define εi = η/32i2, so that (εi)i is monotonically decreasing and
∑∞

i=1 εi < η/16.

• Compute (σi−1, q
i−1
B , qi−1C )← NLValEstVer,Ã(state

∗
i−1, 1

1/εi).

• Compute (yiB, y
i
C , σ
∗
i ) ← (ΠBxB ⊗ ΠCxC)(σi−1), where yiB, y

i
C ∈ {0, 1}

m ∪ {⊥} and σ∗i is the
post-measurement state.

• Compute ρi ← NLRepairVer,Ã,ΠB
xB ,ΠC

xC
(σ∗i , y

i
B, q

i−1
B , yiC , q

i−1
C , 11/εi,1

k+1
).

• Compute (state∗i , p
i
B, p

i
C)← NLValEstVer,Ã(ρi, 1

1/εi).

• Output (yB, yC , state∗i ), where yB, register B is R1’s output while yC , register C is R2’s output.

Note that R1 and R2 are defined implicitly above given that every step is a non-local algorithm;
RB1 performs the operations on the B register, and RC2 on the C register.

Consider a solver-aided non-local algorithm SR∗ with input z, and the random variables sampled
by the process below:

• (p∗B, p
∗
C , state

∗
0)← SA(state0). Equivalently, (state∗0, p∗B, p

∗
C)← NLValEstVer,Ã(state0, 1

2/η).

• For i ≥ 1, (yiB, y
i
C , state

∗
i )← RA(1λ, 1i, xiB, x

i
C , state

∗
i−1), where (xiB, x

i
C) is the ith pair of inputs

chosen by SR∗
z . In more detail,
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– (σi−1, q
i−1
B , qi−1C )← NLValEstVer,Ã(state

∗
i−1, 1

1/εi).

– (yiB, y
i
C , σ
∗
i )← (ΠB

xi
B
⊗ΠC

xi
C
)(σi−1).

– ρi ← NLRepairVer,Ã,ΠB
xiB

,ΠC
xiC

(σ∗i , y
i
B, q

i−1
B , yiC , q

i−1
C , 11/εi,1

k+1
).

– (state∗i , p
i
B, p

i
C)← NLValEstVer,Ã(ρi, 1

1/εi).

Over the randomness of this process, we have the following identities:

E [p∗Bp
∗
C ] = p (7)

Pr
[∣∣p∗B − q0B∣∣ ≥ η/10 ∨ ∣∣p∗C − q0C∣∣ ≥ η/10] ≤ η/10 (8)

Pr
[∣∣piB − qiB∣∣ ≥ εi ∨ ∣∣piC − qiC∣∣ ≥ εi] ≤ εi, ∀i ≥ 1 (9)

Pr
[∣∣qi−1B − piB

∣∣ ≥ εi ∨ ∣∣qi−1C − piC
∣∣ ≥ εi] ≤ εi, ∀i ≥ 1 (10)

E
[
qi−1B qi−1C

]
= valD̃P

[
i− 1,SR∗

z

]
, ∀i ≥ 1 (11)

Pr
[∣∣∣pi−1B pi−1C − valD̃P

[
i− 1,SR∗

z

]∣∣∣ ≥ εi] ≤ εi, ∀i ≥ 1,S, z (12)

Equation (7) follows from the value estimation property in Lemma 19 and the fact that Ã is a
wrapper solver for A. This is the first bullet we need to show to prove the theorem.

Moving on to the second bullet (persistence), eqs. (8) and (9) follow from the almost-projective
estimation property in Lemma 19 since ε ≤ η/2 and εi+1 ≤ εi. Equation (10) follows from the
repairing property. Finally, eq. (12) follows from the value estimation property and from the fact
that32 valD̃P

[
i− 1,SR∗

z

]
= Pr

[
Ver(1λ, riB, y

i
B) = Ver(1λ, riC , y

i
C) = 1

]
. The latter is true because yiB

(resp., yiC) is distributed the same as the output of B (resp., C) conditioned on yiB ̸= ⊥, and other-
wise the verification fails as expected.

Therefore, by union bound we have with probability at least 1− η/10−
∑∞

i=1 4εi ≥ 1− η that

1.
∣∣p∗B − q0B∣∣ ≤ η/10 and

∣∣p∗C − q0C∣∣ ≤ η/10,
2.
∣∣piB − qiB∣∣ ≤ εi and

∣∣piC − qiC∣∣ ≤ εi,
3.
∣∣piB − qi−1B ∣∣ ≤ εi and

∣∣piC − qi−1C ∣∣ ≤ εi,
4. E

[
qi−1B qi−1C

]
= valD̃P

[
i− 1,SR∗

z

]
for all i ≥ 1. Conditioned on the inequalities 1-4 above being true, we will show that∣∣∣p∗Bp∗C − valD̃P

[
i,SR∗

z

]∣∣∣ ≤ η (13)

to finish the proof. Indeed, by triangle inequality we have that
∣∣p∗B − qiB∣∣ ≤ η/10+∑i

j=1 2εj ≤ η/3,
and similarly

∣∣p∗C − qiC∣∣ ≤ η/3. Since p∗B, p
∗
C ∈ [0, 1], this implies that

∣∣p∗Bp∗C − qiCqiC∣∣ ≤ 2(η/3) +
(η/3)2 ≤ η. Taking the expectation, we obtain eq. (13).

32Here we define Ver(1λ, r,⊥) = 0 for convenience.
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If P does not have a verifiably polynomial image, note that we can always take k = 2n, i.e. P
always has a verifiably exponential image. Thus, the proof remains the same, except the runtime of
R now depends exponentially on n.

Remark 7. We note that the transformation in Theorem 20 is not optimal in terms of concrete
efficiency. For instance, it is redundant to apply value estimation once in S and twice in R. The
reason we do this is to use previous work as closely to a black-box as possible, thus keeping the proof
simple.

5.3.5 Non-Local Classical-to-Quantum Lifting Theorem

The remaining steps to reach our non-local lifting theorem (Theorem 22) are essentially the same
as those in [BBK22]. For this reason, we do not repeat the detailed proofs here. Nonetheless, we
note that the proof has the following (informal) structure: given a P -solver,

1. Obtain a persistent P -solver.

2. Next, obtain a memoryless P -solver, i.e. one that only remembers the number of times it has
interacted with the assumption.

3. Next, obtain a stateless solver.

Step 1 corresponds to Theorem 20, whereas steps 2,3 can be summarized below:

Theorem 21. There exists an efficient non-local quantum algorithm Sim = Sim1 ⊗ Sim2 with
the following properties. Let A = (B, C, state0) be a (p, η)-persistent (ℓ, ℓB, ℓC)-stateful non-local
independent-challenge P -solver for a falsifiable non-interactive assumption P . Let x⃗B and x⃗C each
be (independently) sampled from an efficiently samplable distribution over k-tuples of P -instances
and define x⃗ := (x⃗B, x⃗C). Then, there exists a (p, η)-persistent distribution {Aα = (Bα, Cα)}α over
stateless solvers such that

SimA(1λ, 1ℓ, 11/δ, x⃗∗) = SimB1 (1
λ, 1ℓB , 11/δ, x⃗B

∗)⊗ SimC2(1
λ, 1ℓC , 11/δ, x⃗C

∗)

makes non-adaptive black-box queries to B and C and produces a distribution within δ statistical
distance from Aα(1λ, x⃗).

Proof (sketch). Follows from Corollary 6.2 in [BBK22] after making the observation that the simu-
lators in Theorem 5.1 and Theorem 6.1 both preserve non-locality, i.e. they are non-local simulators
if given as input non-local solvers.

The theorem below is a direct consequence of Theorems 20 and 21 as per Theorem 7.1 of
[BBK22]. We refer the reader to [BBK22] for the proof.

Theorem 22 (Non-Local Classical-to-Quantum Lifting). Let P = (GenCP ,VerP , cP ) and Q =
(GenCQ,VerQ, cQ) be non-interactive assumptions. Assume there exists a non-adaptive non-local
classical black-box (D̃P , cP , D̃Q, cQ)-reduction from solving Q to solving P , where D̃P = U{0,1}dP×{0,1}dP
is the uniform extension. Then, there exists an inefficient non-local quantum (D̃P , cP , D̃Q, cQ)-
reduction from solving Q to solving P . If P has verifiably polynomial image, then the reduction is
efficient.
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5.4 Applications

In this section, we present two applications of our main theorem (Theorems 13 and 14). The
first one is information theoretic single-decryptor encryption for one-bit messages, which relies on
simultaneous quantum Goldreich-Levin extraction. The second application involves the effect of
changing the challenge distribution in a cloning game to unclonable security. Informally, we show
that independent-challenge unclonable security implies unclonable security for correlated distribu-
tions for primitives which have negligible trivial success probability.

5.4.1 Single-Decryptor Encryption

In this section, we analyze a corollary of Theorem 14, which is Simultaneous Quantum Goldreich-
Levin Lemma. Then, we show a construction of information theoretic single-decryptor encryption
as a corollary.

Definition 33 (Simultaneous Extraction). We say that an adversary (A,B, C) can simultaneously
extract a classical function f(k, x, r) given a quantum token ρk,x using key k = (kB, kC) with
probability δ if (A,B, C) succeeds in the following experiment with probability δ:

• In phase 1, the challenger sends ρk,x to A, who applies a CPTP map to split the state into
two registers B and C.

• In phase 2, B and C can no longer communicate. The challenger samples independent random
coins (r, r′)

$←− R×R, then sends (r, kB) to B and (r′, kC) to C. Later, B outputs a string zB
and C outputs a string zC .

• The adversary wins if zB = f(k, x, r) and zC = f(k, x, r′).

It is understood that x above is a random variable.

Lemma 23 (Simultaneous Quantum Goldreich-Levin). Suppose that R = {0, 1}n and there exists
a (possibly inefficient) adversary (A,B, C) which can simultaneously extract ⟨r, x⟩ from a quantum
token ρk,x using key k, with probability 1/2 + ε for a non-negligible function ε. Then, there exists
an adversary (A′,B′, C′) which can simultaneously extract33 x given the same token ρk,x using key
k with non-negligible probability ε′.

Proof. We will interpret the key k = (kB, kC) =: (chB, chC) as the challenge and x =: m as the
message in a cloning game. We will assume here that kB, kC are independently distributed, which is
sufficient for the application to single-decryptor encryption. See Appendix A for a direct proof34 of
Lemma 23 which covers the general case. Let G′ = (Setup,GenT,GenC′,Ver′) be a (stateful) cloning
game, such that:

• ρk,x is the token received by A, x is the message, and k is the challenge received by B and C.

• Ver′(sk, x, ch, ans) accepts if and only if ans = x, i.e. G is a search game.
33We note that the values (r, r′) can be ignored when extracting x.
34The direct proof also shows that if the simultaneous extractor for ⟨r, x⟩ is efficient, then so is the simultaneous

extractor for x.
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Now define a new cloning game G = (Setup,GenT,GenC,Ver), where:

• GenC(sk, x) computes ch← GenC(sk, x) and samples r ← UR. It outputs (r, ch).

• Ver(sk, x, (r, ch), ans) accepts if and only if ans = ⟨r, x⟩.

Suppose that the distribution of x, denoted by DM, is non-trivial in the sense that ptriv(G,DM) ≤
1/2 + negl(λ) and G′ is DM-evasive, for otherwise the proof is trivial.

We will use the contrapositive of Theorem 14, with and G̃enC = GenCind. Now if (A,B, C) exists,
then G does not have information theoretic (DM, negl) independent-challenge unclonable security,
where M = {0, 1}n is the message space and DM denotes the distribution of x. Now we observe
that the conditions of Theorem 14, i.e. conditions in items (1) to (3) and item (b) of Theorem 13,
are all satisfied. Indeed, items (1) to (3) are satisfied by assumption. Item (b) follows from the
well-known classical local Goldreich-Levin extraction35 [GL89]. Therefore, it follows that G does
not have (DM, negl) information theoretic independent-challenge unclonable security, meaning there
exists (A′,B′, C′) which can simultaneously extract x with non-negligible probability as desired.

Search to Decision Transformation.

Corollary 4 (Search to Decision). Let G = (Setup,GenT,GenC,Ver) be a cloning search game with
extension G̃enC such that (1) GenC(sk,m) and G̃enC(sk,m) both do not depend on m, (2) G has
statistical correctness, and (3) G has (D, ε, G̃enC) unclonable security. Define a (stateful) cloning
decision game G′ = (Setup′,GenT′,GenC′,Ver′) as follows:

• There is no message, i.e. M′ = {⊥} is the message space.

• Setup′(1λ) computes sk← Setup(1λ). sk′ = sk.

• GenT′(sk′,m′) parses the input as sk′ = sk, samples m← D, and computes ρ← GenT(sk,m).
It outputs a token ρ and random coins rGenT′ = m

• GenC′(sk′,m′; rGenC′) parses the input as sk′ = sk. It interprets the random coins as rGenC′ =
(r, b, rGenC), where r ∈ M, b ∈ {0, 1}, and rGenC is randomness for GenC. Then it computes
ch← GenC(sk,m; rGenC), and outputs ch′ = (r, ⟨r,m⟩ ⊕ b, ch).

• Ver′(sk′,m′, ch′, ans′, rGenC′) parses the input as rGenC′ = (r, b, rGenC) and outputs b′ = [ans′ ==
b].

Then, G′ has statistical correctness and (D⊥,
√
ε/2, G̃enC

′
) independent-challenge unclonable secu-

rity, where the extension G̃enC
′
(sk,m′) is defined as follows:

1. Run (rB, rC)← GenC(sk,m)

2. Sample r′B, r
′
C

$←−M and bB, bC
$←− {0, 1}

3. Output ((r′B, bB, rB), (r
′
C , bC , rC)).

35Note that even though the success probability of the extractor may depend on x, its description does not.
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In particular, if G has (D, ε) independent-challenge unclonable security, then G′ has (D⊥,
√
ε/2)

independent-challenge unclonable security.

Proof. We construct the game G′ = (Setup′,GenT′,GenC′,Ver′) as follows:
We define several hybrids:

• Hybrid 0: This is the cloning experiment CEG̃enC
′

G′,D⊥
. Since G′ is a decision game, we have

ptriv(G′,D′, G̃enC
′
) ≥ 1/2. Assume for the sake of contradiction that the statement is false, then

there exists a cloning adversary (A0,B0, C0) that succeeds in this experiment with probability
p > 1

2 +
√
ε/2.

• Hybrid 1: In this hybrid, we modify the success condition for the adversary. Instead of
outputting the bits bB and bC , B and C are now required to output ⟨r,m⟩ and ⟨r′,m⟩, re-
spectively, where (r, r′) are the random coins generated for ch′B and ch′C , respectively. This
hybrid is clearly equivalent to Hybrid 0, since ⟨r,m⟩⊕ bB and ⟨r′,m⟩⊕ bC are known to B and
C, respectively. Thus, there exists (A1,B1, C1) which succeeds in this hybrid with probability
p. Specifically, B1 and C1 simply run B0 and C0; then they XOR the output with the value
mentioned above.

• Hybrid 2: In this hybrid, we truncate the challenges given to B′ and C′. Specifically, instead
of getting ch′B = (r, ⟨r,m⟩ ⊕ bB, chB), B will receive (r, chB); similarly C will receive (r′, chC).
This hybrid is equivalent to Hybrid 1, so there exists an adversary (A2,B2, C2) which succeeds
in this hybrid with probability p. The reason is that bB, bC are uniformly random bits that in-
formation theoretically hide the inner products ⟨r,m⟩ and ⟨r′,m⟩. In more detail, (A2,B2, C2)
can be constructed as follows:

– Upon receiving a token ρ, A2 runs ρBC ← A1 and samples random bits b′B, b
′
C

$←− {0, 1}.
Then it sends the bipartite state ρBC ⊗ |b′B⟩⟨b′B|B ⊗ |bC⟩⟨bC |C to B2 and C2.

– B2, upon receiving (r, chB) from the challenger and a state ρB ⊗ |b′B⟩⟨b′B|B from A2, runs
B1 with input (r, b′B, chB). C2 is defined similarly.

Since the view of (A1,B1, C1) exactly matches Hybrid 1, we conclude that (A2,B2, C2) succeeds
in Hybrid 2 with probability p > 1

2 +
√
ε/2.

By Lemma 23, this implies that there exists a cloning adversary (A′,B′, C′) which succeeds in
CEG̃enC
G,D with probability greater than 4(

√
ε/2)2 = ε, a contradiction.

By plugging in G = GBB84 from Definition 21, we get the following corollary:

Corollary 5. There exists a single-decryptor encryption scheme in the plain model with information-
theoretic independent-challenge security.

Proof. It could easily be checked that the resulting game G′ is the cloning game corresponding to
the following single-decryptor encryption scheme (Gen,GenT,Enc,Dec):

1. (Gen(1λ)): Sample m, θ $←− {0, 1}λ. Output sk = (m, θ)
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2. GenT(sk): Parse the input as sk = (m, θ) and output the decryption token |mθ⟩⟨mθ|.

3. Enc(sk, b): Sample r $←− {0, 1}λ. Output ct = (r, ⟨r,m⟩ ⊕ b, θ)

4. Dec(ρ, ct): Parse ct = (r, b′, θ). Measure ρ in basis Hθ to get m. Output ⟨r,m⟩ ⊕ b′.

Note that since GBB84 is a cloning encryption game, it is secure against any extension, including
the independent-challenge case. Therefore, the single-decryptor scheme above is optimally secure
against independent challenges by Corollary 4.

5.4.2 Relationship Between Challenge Distributions

As a second application, we show that when the trivial success probability of a cloning game
is negligible, unclonable security for independent challenges implies unclonable security for any
challenge distribution, up to a polynomial loss in the success probability.

Corollary 6. Let G = (Setup,GenT,GenC,Ver) be a D-evasive cloning game with (D, negl) independent-
challenge unclonable security. Suppose that for any key-message pair (sk,m), the non-interactive
assumption induced by (G,D, sk,m) has verifiably polynomial image. Then, G has (D, negl, G̃enC)
unclonable security for any extension G̃enC. In particular, G has (D, negl) identical-challenge un-
clonable security.

Proof. Follows directly from Theorem 13 by setting G = G′. The only non-trivial condition is (b),
which follows by Corollary 3. Note that the classical reduction is the identity reduction, hence it
does not depend on (sk,m).

Remark 8. The corollary above can be applied to any unclonable primitive with verifiably polynomial
image, where ptriv is negligible, including copy-protection for functions with output-length ω(log λ).

Direct Proof with Concrete Bounds. We can in fact show a stronger statement without using
the main theorem, namely that the identity reduction works in Corollary 6 with a cubic loss in
success probability.

Alternate proof of Corollary 6. Follows directly from Lemma 18 after setting D in the lemma state-
ment to be the output of GenC′, setting D̃ to be the output of the extension G̃enC, and setting
Br (Cr) to be a POVM element which tests whether B (C) passes the verification Ver on challenge
r.

6 Relating Unclonable-Search and Unclonable-Indistinguishability

In this section, we will give a relationship between games satisfying unclonable-indistinguishability
security Definition 11 and unclonable-search security Definition 10.

In Section 6.1, we show that games with unclonable-search property imply games satisfying
unclonable-indistinguishability property. In Section 6.2, we show that games with unclonable-
indistinguishability property imply games satisfying unclonable-search property.

We start with some simple observations before moving onto our results.
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Trivial Success. We show upper and lower bounds for trivial success probability of search games.

Lemma 24 (Trivial Success Probability of Search Games). Let G = (Setup,GenT,GenC,Ver) be a
cloning search game with correctness δ and let G̃enC be an extension. Then,

(1−
√
1− δ)

(
OPT(m | ch)−

√
1− δ

)
≤ ptriv(G,D, G̃enC) ≤ OPT(m | ch).

where the variables (m, ch) are sampled as in Definition 2.

Proof Sketch. Consider a B-trivial attack. For the upper-bound, simply bound the success proba-
bility of B. For the lower bound, note that for (1 −

√
1− σ) fraction of the time, C will succeed

with probability at least 1 −
√
1− σ by correctness. Observe that B can succeed with probability

OPT(m | chB, aux) without the token. Use union bound to complete the proof. Similar for the
C-trivial attack.

Corollary 7. If G is a search game with perfect correctness, then ptriv(G,D, G̃enC) = OPT(m | ch).

Message Hiding. Clearly, a search game must have the property that the token hides the message,
for otherwise cloning would be trivial. We formalize this in the lemma below.

Lemma 25 (Message Hiding). Let G = (Setup,GenT,GenC,Ver) be a cloning search game with
(D, ε) unclonable security, then for any QPT adversary A we have

Pr

[
m← A(1λ, ρ) :

sk←Setup(1λ)
m←D

ρ←GenT(sk,m)

]
≤ ptriv(D, ε) + ε(λ)

Proof. If the statement is false, then A can send m to B and C in the splitting phase, both of which
output m as their answer, hence (A,B, C) breaks the (D, ε) unclonable security of G.

6.1 Search-to-Indistinguishability

We transform games satisfying unclonable-search property to games satisfying unclonable-
indistinguishability property in the following steps.

1. In Section 6.1.1, we present a generic transformation that reduces the unclonable-search secu-
rity of cloning games, where the message distribution comes from a high entropy distribution,
to unclonable-search security, where the message distribution is uniform.

2. In Section 6.1.2, we consider a new notion of security called augmented unclonable security.
In this security notion, all the adversaries have oracle access to a point function Pm(·), where
m is such that the adversary receives a token generated using m. We show that we can gener-
ically transform any game satisfying unclonable-search security into one satisfying augmented
unclonable-search security.

3. In Section 6.1.3, we show how augmented unclonable security implies unclonable-indistinguishability
security.
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6.1.1 Relationship Between Message Distributions

The following lemma is adapted from Theorem 9 in [BL20].

Lemma 26. Let G = (Setup,GenT,GenC,Ver) be a cloning game. Let D be a distribution over the
message space M with min-entropy h, then for any cloning adversary (A,B, C) and any extension
G̃enC of GenC, we have

Pr
[
1← CEG̃enC

G,D (1λ, (A,B, C))
]
≤ 2log2 |M|−h · Pr

[
1← CEG̃enC

G,UM(1λ, (A,B, C))
]
.

Proof.

Pr
[
1← CEG̃enC

G,D (1λ, (A,B, C))
]
=
∑
m∈M

Pr [m← D] · Pr
[
1← CEG̃enC

G,D (1λ, (A,B, C)) | m
]

≤
∑
m∈M

2−h · Pr
[
1← CEG̃enC

G,D (1λ, (A,B, C)) | m
]

= 2log2 |M|−h
∑
m∈M

1

|M|
· Pr

[
1← CEG̃enC

G,UM(1λ, (A,B, C)) | m
]

= 2log2 |M|−h · Pr
[
1← CEG̃enC

G,UM(1λ, (A,B, C))
]

6.1.2 Generically Augmenting Security

Definition 34 (Augmented Unclonable Security). Let G be a cloning search game and D be a dis-
tribution over the message space M. Let ACEG̃enC

G,D be the following augmented cloning experiment,
with the modification highlighted in blue:

• Setup Phase:

– All parties get a security parameter 1λ as input.

– Ref samples a message m← D.

– Ref computes sk← Setup(1λ) and ρ← GenT(sk,m).

– R sends ρ to A.

– (A,B, C) all get oracle access to the point function Pm(·).

• Splitting Phase:

– A computes a bipartite state ρ′ over registers B,C.

– A sends ρ′[B] to B and ρ′[C] to C.

• Challenge Phase:

– Ref samples (rB, rC)← G̃enC(sk,m) and computes chB = G̃enC(sk,m; rB), chC = G̃enC(sk,m; rC)

– Ref sends chB to B and chC to C.
– Ref sends chB to B and chC to C.
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– B and C send back answers ansB and ansC, respectively.

– Ref computes bits bB ← Ver(sk,m, chB, ansB) and bC ← Ver(sk,m, chC , ansC).

– The outcome of the game is denoted by ACEG̃enC
G,D (1λ, (A,B, C)), which equals 1 if bB =

bC = 1, indicating that the adversary has won, and 0 otherwise, indicating that the
adversary has lost.

Note that ACEG̃enC
G,D defined the same as CEG̃enC

G,D , but (A,B, C) additionally get oracle access
to Pm(·). We say that G has (D, ε, G̃enC) augmented unclonable security if for all QPT cloning
adversaries (A,B, C) we have

Pr
[
1← ACEG̃enC

G,D (1λ, (A,B, C))
]
≤ ptriv(G,D, G̃enC) + ε(λ).

Lemma 27. Let G = (Setup,GenT,GenC,Ver) be a cloning search game with message spaceM such
that ptriv(G,UM) is negligible. If G has (UM, |M|−δ) unclonable search security for some δ > 0, then
G has (UM, negl) augmented unclonable security.

Proof. We will define a sequence of hybrids:

Hybrid 1: This is the original augmented cloning experiment ACEG̃enC
G,D . Suppose for the sake

of contradiction that there exists a QPT adversary (A,B, C) which succeeds with non-negligible
probability p.

Hybrid 2: In this hybrid, we replace the oracles Pm(·) with PS(·), where S ⊂ M is a random
subset containing m of size |M|1−δ/2. The fact that ptriv(G,UM) is negligible implies that 1

|M| is

negligible, hence |S|
|M| =

1
|M|δ/2 is also negligible. We claim that (A,B, C) succeeds in this hybrid

with probability at least p− negl(λ).

Suppose not, we will construct an adversary A′ which will violate Corollary 2:

• A′ picks m ← UM and receives oracle access to O, where either O = Pm or O = PS for a
random subset S ⊂M of size |M|1−δ/2 containing m.

• A′ then simulates ACEG̃enC
G,D for (A,B, C), using m as the message and using O as the oracle

given to (A,B, C). Since (A,B, C) are QPT algorithms, A′ only makes polynomially many
queries. A′ outputs the bit ACEG̃enC

G,D (1λ, (A,B, C)).

If O = Pm, then the view of (A,B, C) is exactly Hybrid 1, and otherwise it is exactly Hybrid 2.
Thus, A′ has a non-negligible advantage.

Hybrid 3: In this hybrid, we change the order of sampling. A random subset S ⊂ M of size
|M|1−δ/2 is sampled at the beginning of the experiment, and the message later is sampled as
m← US . This is perfectly indistinguishable from Hybrid 2, as the view of (A,B, C) is unchanged.
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Hybrid 4: In this hybrid, we fix a particular S such that (A′,B′, C′) succeeds with probability
p− negl(λ) in Hybrid 3, by an averaging argument.

Now we observe that Hybrid 4 is exactly the experiment CEG̃enC
G,US . Note that the distribution US

has min-entropy (1− δ/2) log2 |M|. Thus, by Lemma 26, we have

p− negl(λ) ≤ Pr
[
1← CEG,US (1

λ, (A,B, C))
]
≤ |M|δ/2 Pr

[
1← CEG,UM(1λ, (A,B, C))

]
≤ |M|−δ/2,

which contradicts the assumption that p is non-negligible.

6.1.3 From Augmented Security to Unclonable-Indistinguishability

Now, we state our result that shows how to go from a search game in the plain model to a search
game in QROM with unclonable indistinguishable security. We first invoke Lemma 27 to generically
obtain augmented unclonable-search security and we then leverage this notion of security to obtain
unclonable-indistinguishable security.

Theorem 28 (Search to Indistinguishability). Let G = (Setup,GenT,GenC,Ver) be a statisti-
cally correct cloning search game with message space M = {0, 1}ℓ, where ℓ = poly(λ), such that
ptriv(G,UM) is negligible and GenC(sk,m) does not depend36 on m. Suppose that G has (UM, |M|−δ)
unclonable search security for some δ > 0. Let n = poly(λ), and define a cloning search game
G′ = (Setup′,GenT′,GenC′,Ver′) in QROM as follows:

• G′ has message space M′ = {0, 1}n.

• Let H :M→M′ be a random oracle.

• Setup′(1λ) runs sk← Setup(1λ). It outputs sk′ = sk.

• GenT′(sk′,m′) parses the input as sk′ = (sk,m). It samples m ← UM and computes ρ ←
GenT(sk,m), then it outputs the token ρ′ = ρ ⊗ |m′ ⊕H(m)⟩⟨m′ ⊕H(m)| and random coins
rGenT′ = m

• GenC′(sk′,m′) parses the input as sk′ = sk. It computes ch ← GenC(sk,m) (recall that by
assumption this does not require knowledge of m) and outputs ch.

• G′ is a search game, which defines Ver′.

Then, G′ has statistical correctness and negl unclonable indistinguishable security.

Proof. Statistical correctness of G′ follows easily from statistical correctness of G, so it suffices to
show negl unclonable indistinguishable security. Keep in mind that by Lemma 27, G has negl
augmented unclonable security. Suppose there exists a QPT cloning adversary (A,B, C) which
breaks the unclonable distinguishing security of G′. Let (m′0,m′1) be the messages used by (A,B, C).

36This requirement can be lifted by extending the definition of stateful cloning games and having G̃enC know the
random coins of GenT′ (in this case m). We keep the syntax simple for there is no known application to the more
general case.
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Note that ptriv(G′,Dm′
0,m

′
1
) ≥ 1/2 − negl(λ) by the statistical correctness of G′ and Lemma 24, so

that we have

Pr
[
1← CEG′,Dm′

0,m
′
1
(1λ, (A,B, C))

]
≥ 1

2
+ µ(λ)

for some non-negligible function µ.
We first define a sequence of hybrids:

• Hybrid 0: The original cloning experiment CEG′,Dm′
0,m

′
1
. (A′,B′, C′) succeeds with probability

1/2 + µ(λ) in this experiment.

• Hybrid 1: In this hybrid, we will replace the oracle H for A′ only with the reprogrammed
oracle H1, where

H1(x) :=

{
u, x = m

H(x), x ̸= m
,

where u ∈ {0, 1}n is an independent random string. We claim that (A,B, C) succeeds in this
hybrid with probability at least 1

2 + µ(λ)− negl(λ).

Suppose not, we will construct an adversary A′ that breaks the message hiding property of G
(Lemma 25):

– A′ simulates Hybrid 1 for A, using the token ρ it receives and a fresh random oracle H ′

it simulates on-the-fly.

– Then A′ measures a random query made by A to H ′.

Note that if H ′ was replaced by H, the view of A would be exactly Hybrid 0. Thus, by
Theorem 4, A′ outputs the message m with non-negligible probability, which is larger than
ptriv(G,UM) + |M|−δ, a contradiction.

• Hybrid 2: In this hybrid, we change the order of sampling with regard to H(m) in the
experiment without changing the view of (A′,B′, C′), so that the probability of success remains
the same. More specifically, we sample r $←− {0, 1}n and send it to A instead of m′ ⊕H(m).
Then, we sample b $←− {0, 1} and give both B and C the reprogrammed oracle Hb

2, where

Hb
2(x) :=

{
m′b ⊕ r, x = m

H(x), x ̸= m

For fixed sk,m, chB, chC and fixed H−m, which is the partial random oracle defined on inputs
x ̸= m, consider the following projectors:

• Πb
B : Run B′ on challenge chB with oracle Hb

2. Check if the output of B′ is m′b. Undo the
computation.

• Similarly define Πb
C for b ∈ {0, 1}.
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Without loss of generality assume that the bipartite state output by A is a pure state |ϕBC⟩ in
Hybrid 2. Let ΠB = (Π0

B +Π1
B)/2 and ΠC = (Π0

C +Π1
C)/2. We spectrally decompose the state as

|ϕBC⟩ =
∑
i,j

αi,j |φi⟩B ⊗ |ψj⟩C .

where ΠB |φi⟩ = λi |φi⟩ and ΠC |ψj⟩ = γj |ψj⟩.

Claim 3. For any polynomial p(·), with overwhelming probability over sk,m, chB, chC , H−m, we have∑
i : |λi−1/2|≥1/p(λ)
j : |γj−1/2|≥1/p(λ)

|αi,j |2 ≤ negl(λ) (14)

Proof. Assume the quantity in eq. (14) is a non-negligible function w(λ). We will construct an
adversary (A′,B′, C′) which breaks the negl augmented security of G:

• (A′,B′, C′) get oracle access to Pm(·), where m← D.

• A′ gets a quantum token ρ. It samples a 2t-wise independent hash function H : {0, 1}ℓ →
{0, 1}n to simulate a random oracle and a random string r $←− {0, 1}n, where t = poly(λ) is an
upper-bound on the number of total random oracle queries made by (A,B, C). Then, it runs
A on ρ ⊗ |r⟩⟨r| to get a bipartite state |ϕBC⟩. It sends this state to B′ and C′. It also sends
the description of H to both of them.

• B′ receives a challenge chB from the challenger. It implements the operator ΠB defined
above. Note that B′ can reprogram the random oracle H2 on input m using and its oracle
access to Pm(·). Then, B′ applies the efficient symmetric approximate threshold measurement
SATIϵ,δ(P,Q),γ in Theorem 9 with P = (ΠB

0 +ΠB
1 )/2, Q = I−P , γ = 3/4p, ϵ = 1/4p and δ = 2−λ.

If the outcome is 0, B′ aborts. If the outcome is 1, B′ then runs B on the leftover state with
H0

2 or H1
2 picked uniformly at random. It measures and outputs a random query B makes to

the random oracle.

• C′ is defined the same way as B′, in the end outputting a random query made by C to the
random oracle.

By Theorem 9 bullet (1), both B′ and C′ will get outcome 1 with non-negligible probability
w − 2δ, in which case by bullet (2) the leftover state will be 4δ-close to the the following state:∑

i:|λi−1/2|>1/4p
j:|γj−1/2|>1/4p

αi,j |φi⟩B ⊗ |ψj⟩C .

Observe that when B does not query m, it will succeed with probability exactly 1/2. Therefore,
by Theorem 4, the query weight of B on m is non-negligible. Similarly, the query weight of C on m
is non-negligible. Therefore, (A′,B′, C′) succeed with non-negligible probability, a contradiction.
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Therefore, for any polynomial p, we have that |ϕBC⟩ is negligibly close to the state |ϕB⟩+ |ϕC⟩,
where

|ϕB⟩ =
∑

i:|λi−1/2|≤1/p

αi,j |φi⟩B ⊗ |ψj⟩C , |ϕC⟩ =
∑

i:|λi−1/2|>1/p
j:|γj−1/2|≤1/p

αi,j |φi⟩B ⊗ |ψj⟩C ,

in which case we could bound the success probability of (A,B, C) in Hybrid 2 as:

1

2
+ µ(λ)− negl(λ) ≤ (

∣∣(Π0
B ⊗Π0

C)(|ϕB⟩+ |ϕC⟩)
∣∣2 + ∣∣(Π1

B ⊗Π1
C)(|ϕB⟩+ |ϕC)⟩

∣∣2)/2
=
1

2
·
(
⟨ϕB|(Π0

B ⊗Π0
C)|ϕB⟩+ ⟨ϕB|(Π1

B ⊗Π1
C)|ϕB⟩+ ⟨ϕC |(Π0

B ⊗Π0
C)|ϕC⟩+ ⟨ϕC |(Π1

B ⊗Π1
C)|ϕC⟩

)
+Re

(
⟨ϕB|(Π0

B ⊗Π0
C)|ϕC⟩+ ⟨ϕB|(Π1

B ⊗Π1
C)|ϕC⟩

)
≤1

2
·
(
⟨ϕB|(Π0

B ⊗ I)|ϕB⟩+ ⟨ϕB|(Π1
B ⊗ I)|ϕB⟩+ ⟨ϕC |(I ⊗Π0

C)|ϕC⟩+ ⟨ϕC |(I ⊗Π1
C)|ϕC⟩

)
+Re

(
⟨ϕB|(Π0

B ⊗Π0
C)|ϕC⟩+ ⟨ϕB|(Π1

B ⊗Π1
C)|ϕC⟩

)
=⟨ϕB|(ΠB ⊗ I)|ϕB⟩+ ⟨ϕC |(I ⊗ΠC)|ϕC⟩+ Re

(
⟨ϕB|(Π0

B ⊗Π0
C)|ϕC⟩+ ⟨ϕB|(Π1

B ⊗Π1
C)|ϕC⟩

)
≤ 1

2
+

1

p
,

where in the last step we used Lemma 6. Since p is arbitrary, this is a contradiction.

As a corollary, we achieve unclonable encryption in QROM using BB84 states. This is an
improvement over the main result of [AKL+22], as it can be more easily implemented on near-term
quantum computers.

Corollary 8 (Existence of Unclonable Encryption in QROM Using Prepare-and-Measure States).
There exists a public-key unclonable encryption scheme with unclonable indistinguishable security
in QROM, which uses only prepare-and-measure quantum operations.

Proof. Set G = GBB84 from Definition 21, then it satisfies the condition of Theorem 28, so there
exists G′ as described in the theorem. Observe that since G is a cloning encryption game, so is
G′. Thus, G′ gives a construction of unclonable encryption in QROM, and the negl unclonable
distinguishing security implies unclonable security of this encryption scheme.
Finally, we invoke the generic compiler in [AK21] to achieve a public-key scheme37.

6.2 Indistinguishablity-to-Search

Theorem 29. If G = (Setup,GenT,GenC,Ver) is a cloning search game with statistical correctness
and ε unclonable indistinguishable security, then G has (D, 2ε + negl) unclonable security for any
distribution D over the message space M such that G is D-evasive.

Proof. We will give a generic proof that works for an arbitrary extension G̃enC, which we will omit
for simplicity. Suppose there exists a cloning adversary (A,B, C) which breaks (D, ε) unclonable

37Although [AK21] only showed that their transformation preserves weak unclonable security, it could easily be
checked that it also preserves strong unclonable security.
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security of G. We will construct an adversary (A′,B′, C′), which will break (Dm0,m, ε
′) unclonable

security of G, where ε′ = ε/2 − negl, m0 ∈ M is a fixed message, and m is a message sampled as
m← D. By convexity, this would imply that there exists a fixed value of m for which the security
is broken, hence finishing the proof. We describe (A′,B′, C′) below:

• A′ is the same as A.

• B′ runs B with the input it receives. If the output is m, B′ outputs m; otherwise B′ outputs
m0.

• C′ is defined similarly to B′.

Note that if the message in the experiment CEG,Dm0,m
above is m, then by assumption (A′,B′, C′)

wins with probability p > ε. On the other hand, if the message is m0, then the probability that B′
outputs m is at most OPT(m | chB) ≤ negl(λ) by Lemma 24. Hence, by union bound, (A′,B′, C′)
succeeds with overwhelming probability in this case, and we have

E
m←D

Pr
[
1← CEG,Dm0,m

(1λ,
(
A′,B′, C′

)
)
]
=

1

2
(p+ 1− negl) ≥ 1

2
+
ε(λ)

2
− negl(λ)

as desired.

7 From Search to Decision Games

We present a transformation from search games to decision games. We remark that the transforma-
tion is tailored to application of copy-protection and thus, the resulting decision game has a specific
form.

Theorem 30 (Search to Decision). Let G = (Setup,GenT,GenC,Ver) be a statistically correct
cloning encryption game with message space M = {0, 1}ℓ, where ℓ = poly(λ), such that

• Setup(1λ) outputs a uniformly random key sk
$←− K, where |K|−1 is negligible in λ.

• G is UM-evasive.

• G has (UM, |M|−δ) unclonable search security for some δ > 0

Define a cloning decision game G′ = (Setup′,GenT′,GenC′,Ver′) in QROM as follows:

• Let M′ be an arbitrary message space.

• Let H :M→ {0, 1}n and G :M′ → K be random oracles, where n = Ω(λ).

• Setup′(1λ) outputs sk′ = ⊥

• GenT′(sk′,m′) samples m ← UM. It computes ρ ← GenT(G(m′),m). It outputs ρ′ = ρ ⊗
|H(m)⟩⟨H(m)|.

• GenC′(sk′,m′) is an algorithm which does not depend on sk′, and outputs a value ch′ ∈M′.
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• Ver′(sk′,m′, ch′, ans′) accepts if ans′ = [ch′ == m′].

Then, G′ has statistical correctness and (D′, negl) independent-challenge unclonable security for
any unlearnable distribution D′ over M.

Proof. We begin with correctness. Following Definition 3, we define a QPT algorithm AG′(ρ′, ch′)
as follows:

• Parse the token as ρ′ = ρ⊗ |y⟩⟨y|, i.e. measure the last register to obtain y ∈ {0, 1}n.

• Compute ch← GenC(G(ch′),m), recall that this does not require the knowledge of m.

• Compute m← AG(ρ, ch).

• Output b = [H(m) == y].

To analyze correctness, we consider two cases: (1) ch′ = m′ and (2) ch′ ̸= m′.

• If ch′ = m′, then by statistical correctness of G, AG′ receives the correct message m = sk′ from
AG above and outputs 1 with overwhelming probability.

• If ch′ ̸= m′, then AG sees a challenge generated by a random key s̃k = G(ch′) that is inde-
pendent from G(m′), which is the key used to generate the token AG receives. We will show
that the probability that AG outputs the correct message m in this case is negligible. This
will then imply that A′G outputs 0 with overwhelming probability, since the output length of
H is Ω(λ).

Now suppose that AG outputs the correct message above with non-negligible probability p,
we will construct an adversary A′ that breaks the message hiding property of G using AG :

– A′ receives a token ρ← GenT(sk,m), where sk
$←− K and m← D.

– A′ then samples s̃k
$←− K and computes ch ← GenC(sk,m). Recall that this does not

require the knowledge of m.

– Next, A′ computes and outputs m̃← AG(ρ, ch).

By assumption, m̃ = m with non-negligible probability, since for ch′ ̸= m′ the value G(ch′)
is identically distributed as the value s̃k sampled by A′ above. Therefore, A′ breaks the
message-hiding property of G given in Lemma 25, a contradiction.

Next, we show (D, negl) unclonable security. Note that by Lemma 27, G has negl augmented
unclonable security. We will define a sequence of hybrids:

• Hybrid 0: This is the original cloning experiment CEind
G′,D′ . Suppose for the sake of con-

tradiction that there exists a cloning adversary (A,B, C) which succeeds in this hybrid with
probability p = ptriv(G′,D′) + µ(λ) for a non-negligible function µ.
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• Hybrid 1: In this hybrid, we will change the oracle G for A only to the punctured oracle
Gm, defined as

Gm′(x) :=

{
u, x = m′

G(x), x ̸= m′
,

where u ∈ K is an independent uniformly random value. We claim that (A,B, C) succeed in
this experiment with probability p− negl(λ). Suppose this is false. Let ρjBC be the bipartite
state outputs by A in Hybrid j, then TD

(
ρ1BC , ρ

2
BC

)
must be non-negligible, since the only

difference between Hybrids 0-1 is on the random oracle G for A. Using A, we will construct
an adversary that breaks the unlearnability of D′:

– A′ gets oracle access to Pm′(·) (which will not be used), where m′ ← D′. It samples
random oracles G′ :M′ → K and H ′ :M→ {0, 1}n, as well as a message m← D.

– Then, A′ samples sk
$←− K, computes ρ← GenT(sk,m), and runs A(ρ,H ′(m)).

– During the last step, it measures and outputs a random query made by A to the oracle
G′.

As the view of A in Hybrid 1 is perfectly simulated, by Theorem 4, the query weight of A on
m′ is non-negligible, hence A′ correctly outputs m′ with non-negligible probability, breaking
unlearnability.

• Hybrid 2: In this hybrid, we change the order of sampling. A random value k ← UK is
sampled at the beginning of the experiment and the quantum part of the token received by
A is calculated as ρ← GenT(k,m). In turn, the random oracle G for B and C is replaced by
the reprogrammed oracle G2

m′ which is defined as

G2
m′(x) :=

{
k, x = m′

G(x), x ̸= m′
,

This hybrid is perfectly indistinguishable from Hybrid 1, hence (A,B, C) succeeds in this
hybrid with probability at least p− negl(λ).

• Hybrid 3: In this hybrid, we replace the oracle H for A with the punctured oracle Hm

defined as

Hm(x) :=

{
w, x = m

G(x), x ̸= m
,

where w ∈ {0, 1}n is an independent uniformly random value. We claim that (A,B, C) succeeds
in this hybrid with probability at least p−negl(λ). Suppose not, then we have TD

(
ρ2BC , ρ

3
BC

)
is non-negligible. We will use (A,B, C) to construct an adversary A′ to break the message
hiding property of G:

– A′ receives ρ← GenT(sk,m) from the challenger, where sk
$←− K and m← D.
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– Then A′ samples w $←− {0, 1}n and simulates random oracles H ′ : M → {0, 1}n , G′ :
M′ → K and runs A on input ρ⊗ |w⟩⟨w| with oracles H ′, G′. It measures and outputs a
random query made by A to the oracle H ′.

As the view of A in Hybrid 3 is perfectly simulated, by Theorem 4, the query weight of A
on m is non-negligible, hence A′ outputs m with non-negligible probability, contradicting the
message-hiding property of G given in Lemma 25.

Therefore, we have established that (A,B, C) succeeds in Hybrid 3 with probability ptriv(G′,D′)+
η(λ) for some non-negligible function η. Without loss of generality, assume that the bipartite state
created by A is a pure state, i.e. ρ3BC = |ϕBC⟩⟨ϕBC |. Consider the following binary POVM elements:

• ΠB: Sample ch′ ← GenC′(sk′,m′). Run B with oracles H,G2
m′ and input ch′. Measure if the

output of B equals [ch′ == m′], in which case we will say that B passed ΠB.

• Similarly define ΠC for C.

We write the state received by B and C in spectral decomposition as

|ϕBC⟩⟨ϕBC | =
∑
i,j

αi,j |φi⟩B |ψj⟩C ,

where ΠB |φi⟩B = λi |φi⟩B and ΠC |ψj⟩C = γj |ψj⟩C . Let q be a polynomial. Let ptriv := ptriv(G′,D′).
We can bound the probability that (A,B, C) succeeds in Hybrid 3 as

p− negl(λ) ≤ ⟨ϕBC |(ΠB ⊗ΠC)|ϕBC⟩ =
∑
i,j

|αi,j |2 λiγj

≤
∑

i: λi>ptriv+1/q

j: γj>ptriv+1/q

|αi,j |2 λiγj

+

(
ptriv +

1

q

) ∑
i: λi≤ptriv+1/q

j: γj>ptriv+1/q

|αi,j |2 +
(
ptriv +

1

q

) ∑
i,j: µj≤ptriv+1/q

|αi,j |2

≤ ptriv + 1

q
+

∑
i: λi>ptriv+1/q

j: γj>ptriv+1/q

|αi,j |2 λiγj .

Thus, it suffices to show the following claim to reach a contradiction:

Claim 4. For any polynomial q, with overwhelming probability over sk′ = m,m′, H,G, u, k, w, we
have ∑

i: λi>ptriv+1/q

j: γj>ptriv+1/q

|αi,j |2 λiγj ≤ negl(λ).

Proof. Suppose that there exists (A,B, C) which violates Claim 4. Consider the following cloning
adversary (A1,B1, C1) against the (D, negl) augmented security of G:
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• (A1,B1, C1) get a quantum token ρ ← GenT(k,m) from the challenger, where k ← UK and
m← D. Also, (A1,B1, C1) get oracle access to Pm(·).

• A1 samples38 random oracles G′ :M′ → K and H ′ :M→ {0, 1}n, as well as random strings
m′ ← D′, w $←− {0, 1}n. It runs A on input ρ⊗ |w⟩⟨w| with oracles G′, H ′ to obtain a bipartite
state ρBC , which it sends to B1 and C1. In addition, A1 sends (G′, H ′,m′, w) to both B1 and
C1.

• In the challenge phase, B1 receives chB = k ← GenC(k,m) from the challenger and (G′, H ′,m′,
w, ρBC [B]) from A1. Observe that B1 can implement ΠB using these values. In particular, it
can reprogram H ′ so that it outputs w on input m using its oracle access to Pm(·), and it can
reprogram G′ to output k. With this in mind, B1 applies the efficient approximated threshold
measurement ATIϵ,δ(P,Q),γ1

in Theorem 8 with P = ΠB, Q = I −ΠB, γ1 = ptriv +3/4q, ϵ = 1/4q,
and δ = 2−λ, with outcome bB. If bB = 0, B1 aborts. If bB = 1, then B1 runs ΠB and
measures and outputs a random query made by B to the reprogrammed oracle H ′. C1 is
defined similarly to B1.

By Theorem 8 bullets (1) and (2), with non-negligible probability the bipartite state obtained
by (B1, C1) right before measuring the queries is negligibly close to a state of the form∑

i: λi>ptriv+1/4q

j: γj>ptriv+1/4q

βi,j |φi⟩B ⊗ |ψj⟩C . (15)

Before we analyze the success probability of (A1,B1, C1), we define two algorithms B2, C2, where
B2 is defined the same as B1 except it does not reprogram the oracle H ′ when implementing ΠB, and
similarly for C2. We will refer to this different implementation of ΠB (hence a different operator)
as Π′B. We emphasize that the only difference between (B1,ΠB) and (B2,Π′B) (similarly between
(C1,ΠC) and (C2,Π′C)) is the output of the oracle H ′ given to B (C) on input m.

In contrast to eq. (15), if we consider (A1,B2, C1) instead, the state shared by (B, C) at the same
stage will have negligible weight on eigenstates of Π′B with eigenvalue λ′ > ptriv+1/8q, for otherwise
one could violate the message hiding property (Lemma 25) using A and B by simulating the view
of B without the knowledge of m, which is information theoretically hidden from B. Similarly,
the state will have negligible weight on eigenstates of Π′C with eigenvalue G′ > ptriv + 1/8q if we
consider (A1,B1, C2) instead. Therefore, By Theorem 4, conditioned on eq. (15), i.e. conditioned
on bB = bC = 1, B1 and C1 will both output m with non-negligible probability, hence breaking
(D, negl) augmented security of G.

Corollary 9. There exists a copy-protection scheme for an arbitrary class of point functions secure
in QROM.

38Recall that this can be efficiently done via 2t-wise independent hash functions where t = poly(λ) is a query-bound
for (A,B, C).
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Proof. Follows easily from Theorem 30 after setting G = GBB84 and M′ to be the class of point
functions represented by the special input m′, that is, m′ is interpreted as the description of the
point function Pm′(·).

8 Asymmetric Cloning Games

Recall that we defined cloning games (e.g. see Definition 9) such that B and C are required to pass
the same verification phase, i.e. with respect to the same algorithms (GenC,Ver). This does not
capture all unclonable primitives, in particular cryptography with certified deletion. In this section,
we extend further the cloning game syntax to include such primitives and give a simpler proof of
an existing feasibility result as an application of our framework in the asymmetric setting.

8.1 Definitions

We start with the formal definition of asymmetric cloning games.

Definition 35 (Asymmetric Cloning Game). An asymmetric cloning game consists of a tuple of
efficient algorithms G = (Setup,GenT,GenCB,VerB,GenCC ,VerC):

• Key Generation: Setup(1λ) is a PPT algorithm which takes as input a security parameter
1λ in unary. It outputs a secret key sk ∈ {0, 1}∗. We will assume without loss of generality
that sk always contains the security parameter 1λ in order to simplify the notation below.

• Token Generation: GenT(sk,m) is a QPT algorithm takes as input a secret key sk and a
message m ∈ {0, 1}∗. It outputs a quantum token ρ.

• Challenge Generation: GenCB(sk,m) takes as input a secret key sk and a message m. It
outputs a classical challenge ch ∈ {0, 1}∗. GenCC has the same syntax.

• Verification: VerB(sk,m, ch, ans) takes as input a secret key sk, a message m, a challenge
ch, and an answer ans. It outputs either 0 (reject) or 1 (accept). VerC has the same syntax.

Correctness. For correctness, we require that the verifications for B and C are both individually
doable given the entire quantum token.

Definition 36 (Correctness of Asymmetric Cloning Games). Let δB, δC : Z+ → [0, 1] and δ =
(δB, δC). We say that G has δ-correctness if there exist efficient quantum algorithms BG , CG such that
for all messages m ∈M:

Pr

[
VerB(sk,m,ch,ans)=1 :

sk←Setup(1λ)
ρ←GenT(sk,m)

ch←GenCB(sk,m)
ans←BG(ρ,ch)

]
≥ δB(λ), Pr

[
VerC(sk,m,ch,ans)=1 :

sk←Setup(1λ)
ρ←GenT(sk,m)

ch←GenCC(sk,m)
ans←CG(ρ,ch)

]
≥ δC(λ).

If δ = (1, 1) (or δ(λ) = (1− negl(λ), 1− negl(λ))), we say G has perfect (or statistical) correct-
ness.
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Security. We define security formally so that B and C are asked to pass their corresponding
verifications. We highlight the part different from Definition 6 in blue.

Definition 37 (Asymmetric Cloning Experiment). An asymmetric cloning experiment, denoted
by CEG,D, is a security game played between a referee Ref and a cloning adversary (A,B, C). It is
parameterized by an asymmetric cloning game G = (Setup,GenT,GenCB,VerB,GenCC ,VerC) and a
distribution D over the message space M. The experiment is described as follows:

• Setup Phase:

– All parties get a security parameter 1λ as input.
– Ref samples a message m← D.
– Ref computes sk← Setup(1λ) and ρ← GenT(sk,m).
– Ref sends ρ to A.

• Splitting Phase:

– A computes a bipartite state ρ′ over registers B,C.
– A sends ρ′[B] to B and ρ′[C] to C.

• Challenge Phase:

– Ref samples chB ← GenCB(sk,m) and chC ← GenCC(sk,m).
– Ref sends chB to B and chC to C.
– B and C send back answers ansB and ansC, respectively.
– Ref computes bits bB ← VerB(sk,m, chB, ansB) and bC ← VerC(sk,m, chC , ansC).
– The outcome of the game is denoted by CEG,D(1

λ, (A,B, C)), which equals 1 if bB = bC =
1, indicating that the adversary has won, and 0 otherwise, indicating that the adversary
has lost.

Definition 38 (Asymmetric Trivial Cloning Attack). We say that (A,B, C) is a B-trivial cloning
attack against an asymmetric cloning experiment CEG,D if A upon receiving a token ρ, sends the
product state |⊥⟩⟨⊥| ⊗ ρ to B and C. In other words, only C gets the token ρ. We denote by
TRIVB(CEG,D) the set of B-trivial attacks against CEG,D. We similarly define TRIVC(CEG,D) as the
set of C-trivial attacks.

We denote by TRIV(CEG,D) the set of trivial attacks against CEG,D.
Finally, we define

TRIV(CEG,D) := TRIVB(CEG,D) ∪ TRIVC(CEG,D)

As pointed out in Remark 2, the definition above captures mixtures of B-trivial and C-trivial attacks
by convexity.

Definition 39 (Asymmetric Trivial Success Probability for Cloning Games). We define the B-trivial
success probability of an asymmetric cloning experiment CEG,D as

ptrivB (G,D) := sup
(A,B,C)∈TRIVB(CEG,D)

Pr [1← CEG,D((A,B, C))] .
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We similarly define ptrivC (G,D) as the C-trivial success probability of CEG,D. Accordingly, we define
the trivial success probability of CEG,D as

ptriv(G,D) := sup
(A,B,C)∈TRIV(CEG,D)

Pr [1← CEG,D((A,B, C))]

=max
(
ptrivB (G,D), ptrivC (G,D)

)
,

where the last equality follows from the fact that any (A,B, C) ∈ TRIV(CEG,D) is a convex combina-
tion of attacks from TRIVB(CEG,D) and TRIVC(CEG,D).

Definition 40 (Asymmetric Cloning Search Game). Let G = (Setup,GenT,GenC,Ver) be an asym-
metric cloning game such that VerC(sk,m, ch, ans) accepts if and only if ans = m. Then, G is called
an asymmetric cloning search game.

Remark 9. In the definition above, the "search" restriction only applies to C. As such, the definition
complements the asymmetry between B and C, while being consistent with Definition 4.

With the modified definitions of trivial success, cloning experiment and search game, the notions
of unclonable security for asymmetric games are defined similarly to Definitions 9 to 11.

Definition 41 ((Asymmetric) Unclonable Security). Let G be an asymmetric cloning game, D be
a distribution over the message space M, and ε : Z+ → [0, 1]. We say that G has (D, ϵ) unclonable
security if for all QPT cloning adversaries (A,B, C) we have:

Pr
[
1← CEG,D(1

λ, (A,B, C))
]
≤ ptriv(G,D) + ε(λ).

If |M| = 1, we will simply write ε unclonable security.

Definition 42 ((Asymmetric) Unclonable Search Security). If G is an asymmetric cloning search
game with (D, ε) unclonable security, we additionally say that G has (D, ε) unclonable search secu-
rity.

Definition 43 ((Asymmetric) Unclonable Indistinguishable Security). Let Dm0,m1 denote the dis-
tribution that outputs messages m0 and m1 with probability 1/2 each. We say that an asymmetric
cloning search game G has ε unclonable indistinguishable security if it has (Dm0,m1 , ε) unclonable
search security for any pair of messages m0,m1 ∈M.

Remark 10. Note that Definition 43 could have significantly different flavor compared to its sym-
metric counterpart (Definition 11), given that the distinguishing between m0 and m1 need not be
simultaneous.

Remark 11 (Extended Asymmetric Cloning Games). One could consider the extended definition
for asymmetric cloning games with correlated challenge distributions as in Section 4.4, but it is
unnecessary for the certified deletion setting which we will focus on next.

Applications. Asymmetric cloning games provide a framework to analyze unclonable primitives
in which the goal of the adversary is to perform two different tasks (as B and C), each of which
require a quantum token, using only one copy of the token. Examples include primitives with
certified deletion property, analyzed below in Section 8.2, where C is asked to perform the intended
use of the primitive and B is asked to generate a classical certificate of deletion for the quantum
token. Yet another example is secure software leasing [AL20], where B is asked to return a quantum
(software) token and C is asked to achieve the functionality of the software.
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Tokenized Signatures. Another class of unclonable primitives is one-time primitives, in which
an honest user consumes the quantum token after using it once. While it is possible to model a
one-time primitive as a (regular) cloning game, it is more natural to cast it as an asymmetric cloning
game. We will demonstrate this using the example of tokenized signatures for single-bit messages.
Informally, in a tokenized signature scheme, a quantum signing token ρ can be used to sign one
(and only one) bit b ∈ {0, 1}. Formally, a tokenized signature scheme [BS16, CLLZ21, Shm22] is a
tuple of efficient algorithms (Gen,GenT′,Sign,Ver′):

• Gen(1λ) takes as input a security parameter and outputs a pair of classical keys (vk, sk).

• GenT′(sk) takes as input a secret key and outputs a quantum signature token ρ.

• Sign(ρ, x) takes as input a token ρ and a classical message x ∈ {0, 1}. It outputs a classical
signature σx.

• Ver′(vk, x, σ) takes as input a verification key, a classical message, and a classical signature.
It outputs 0 (reject) or 1 (accept).

(Gen,GenT′, Sign,Ver′) defines an asymmetric cloning game GTS = (Setup,GenT,GenCB,VerB,GenCC ,
VerC), as follows:

• Similar to quantum money, there is no message, i.e. m = ⊥.

• Setup(1λ) runs (vk, sk)← Gen(1λ) and outputs sk = (vk, sk).

• GenT(sk,m) parses the input as sk = (vk, sk), computes ρ ← GenT′(sk) and outputs ρ ⊗
|vk⟩⟨vk|.

• There is no challenge for either B or C, i.e. GenCB and GenCC always output ⊥.

• VerB(sk,⊥,⊥, ans) parses the input as sk = (vk, sk). It computes b ← Ver′(vk, 0, ans) and
accepts if b = 1.

• VerC(sk,⊥,⊥, ans) parses the input as sk = (vk, sk). It computes b ← Ver′(vk, 1, ans) and
accepts if b = 1.

Informally, B is signing the bit 0 and C is signing the bit 1 using the signing token.

Correctness. We say that the tokenized signature scheme (Gen,GenT′, Sign,Ver′) satisfies cor-
rectness if GTS has perfect correctness.

Security. We say that the scheme has unclonable security if GTS has (D⊥, ε) unclonable security,
where ε = negl yields optimal security.

8.2 Deletion Games

Certified deletion can be defined as a special case of asymmetric cloning games, where B gets no
challenge.

Definition 44 (Deletion Game). A deletion game is an asymmetric cloning game G = (Setup,
GenT,GenCB,VerB,GenCC ,VerC) such that GenCB always outputs ⊥.

Note that in the definition above, B represents A generating a classical certificate for deleting
ρ. Since B gets no challenge, A and B can be effectively considered as one party.
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Unclonable Encryption with Certified Deletion. A notable primitive in this category is
unclonable encryption with certified deletion, which we can define as a deletion game GUE−CD =
(Setup,GenT,GenCB,VerB,GenCC ,VerC) with the following properties:

• GUE−CD is an asymmetric cloning search game.

• GUE−CD has statistical correctness.

• GenCC(sk,m) outputs sk with probability 1.

For this primitive, like regular unclonable encryption, we consider two types of security: (1)
(UM, ε) unclonable security and ε unclonable indistinguishable security, the latter of which is
stronger.

8.3 Construction of Unclonable Encryption with Certified Deletion

8.3.1 Preliminaries

We cite two lemmas from literature that we will need in our construction. The first lemma is
commonly used to bound the value of monogamy-of-entanglement games.

Lemma 31 (Lemma 2 in [TFKW13]). Let A1, . . . , AN be positive-semidefinite operators over a
Hilbert space H and let {πk}k∈[N ] be N mutually orthogonal permutations over [N ]. Then,∥∥∥∥∥∥

∑
i∈[N ]

Ai

∥∥∥∥∥∥
op

≤
∑
k∈[N ]

max
i∈[N ]

∥∥∥√Ai

√
Aπk(i)

∥∥∥
op
,

where ∥·∥op denotes the operator norm, also known as the Schatten-∞ norm.

The second lemma we will need is the local version of quantum Goldreich-Levin (Lemma 23, which
was known in previous work [AC02, CLLZ21].

Lemma 32 (Quantum Goldreich-Levin). Suppose a quantum algorithm A, given a quantum state
ρ, a key k, and a random string r ∈ {0, 1}n can output ⟨r, x⟩( (mod 2)) with probability 1/2 + ε.
Then, there exists a quantum algorithm (extractor) A′, which, given the same quantum state ρ and
the key k, can output x ∈ {0, 1}n with probability 4ε2.

8.3.2 Achieving Unclonable Search Security

We first describe a known construction39 based on BB84 states, denoted as GBB84−CD = (Setup,
GenT,GenCB,VerB,GenCC ,VerC):

• The message space isM = {0, 1}λ

• Setup(1λ) outputs sk = θ
$←− {0, 1}λ

• GenT(θ,m) takes as input θ,m ∈ {0, 1}λ and outputs ρ = |mθ⟩⟨mθ|, where |mθ⟩ = Hθ |m⟩
39This is a simplified version of the construction of [BI20].
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• GenCB(θ,m) outputs ⊥ as required by a deletion game.

• VerB(θ,m,⊥, ansB) accepts if and only if ansB ∈ {0, 1}λ satisfies ansB,i = mi for all i ∈ θ[1],
where θ[b] := {i ∈ [n] : θi = b} for b ∈ {0, 1}.

• GenCC(θ,m) outputs θ as required by unclonable encryption with certified deletion.

• VerC(θ,m, chC , ansC) checks if ansC = m as required by an unclonable search game.

Correctness. It is easy to see that GBB84−CD satisfies perfect correctness. In order to generate a
certificate, BGBB84−CD

(ρ,⊥) measures ρ in the Fourier basis and outputs the result, whereas in order
to decrypt, CGBB84−CD

(ρ, θ) computes HθρHθ, then measures in the computational basis and outputs
the result.

Security. While it is possible to show that GBB84−CD above satisfies negl unclonable indistin-
guishable security, the proofs involve either entropic arguments [BI20] or other advanced tech-
niques [BK22]. We will instead follow a different approach which we believe is simpler in many
aspects. First, we will show that GBB84−CD satisfies (UM, negl) unclonable security by reduction
to a monogamy-of-entanglement game following the techniques of [TFKW13], similar to the first
construction of unclonable encryption [BL20]. Then, we will modify the scheme and apply Quantum
Goldreich-Levin to achieve negl unclonable indistinguishable security. We give the formal details
below.

Theorem 33. GBB84−CD defined above has (UM, negl) information theoretic unclonable search se-
curity.

Proof. We first define a monogamy-of-entanglement game MOE = MOE(λ) for certified deletion
which is closely related to GBB84−CD. Let θ[b] be defined as above.

MOE is a game between a referee Ref and an adversary (A,B, C):

• (A,B, C) and Ref get a security parameter 1λ as input.

• (A,B, C) prepare a bipartite state ρXA and send ρ[X] (the X register) to ch, where X =
{0, 1}λ.

• A computes a bipartite state ρ′ over registers B,C, then sends ρ′[B] to B and ρ′[C] to C.

• Ref samples θ $←− {0, 1}λ and measures the X register in the basis
{
|xθ⟩

}
x∈{0,1}λ , obtaining

outcome x.

• B outputs xB ∈ {0, 1}λ

• C gets θ as input and outputs xC ∈ {0, 1}λ.

• The outcome of the game is denoted by MOE(1λ, (A,B, C)), which equals 1 if xC = x and
xB,i = xi for all i ∈ θ[1], indicating that the adversary has won, and 0 otherwise, indicating
that the adversary has lost.

We will begin with showing that the success probability of any adversary in this game is expo-
nentially small. The proof leverages the widely used techniques of [TFKW13].
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Claim 5. For any (unbounded) adversary (A,B, C), we have

Pr
[
1← MOE(1λ, (A,B, C))

]
≤
(
1

2
+

1

2 4
√
2

)λ

Proof. We can write the winning probability of (A,B, C) as follows:

pwin := Pr
[
1← MOE(1λ, (A,B, C))

]
= E

θ

∑
x,x′:

x′
i=xi,∀i∈θ[1]

Tr
[(
|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ

x

)
ρ
]

≤ 1

2λ

∥∥∥∥∥∥∥∥∥
∑
θ,x,x′:

x′
i=xi,∀i∈θ[1]

|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ
x

∥∥∥∥∥∥∥∥∥
op

,

where {Bx′}x′∈{0,1}λ , as well as
{
Cθ
x

}
x∈{0,1}λ for any θ ∈ {0, 1}λ, is a POVM. By a standard

purification argument, we can w.l.o.g. assume that the POVM’s are projective measurements.
Next, we can apply Lemma 31 to get

pwin ≤
1

2λ

∑
k∈{0,1}λ

max
θ∈{0,1}λ

∥∥∥ΠθΠπk(θ)
∥∥∥
op
, (16)

where

Πθ :=
∑
x,x′:

x′
i=xi, ∀i∈θ[1]

|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ
x,

and πk : {0, 1}λ → {0, 1}λ are 2λ mutually orthogonal permutations to be determined later. For
convenience, we define the index sets S[θ, θ′] := {i ∈ [λ] : θi = θ′i} (’same’ indices) and D[θ, θ′] :=
{i ∈ [λ] : θi ̸= θ′i} (’different’ indices). Also let θ′ = πj(θ) and s = |S[θ, θ′]| for short-hand notation.
Now, we have

Πθ′ ≤ Q̄ :=
∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

|xθ′⟩⟨xθ′ | ⊗Bx′ ⊗ I,
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hence ∥∥∥ΠθΠθ′
∥∥∥2
op
≤
∥∥∥ΠθQ̄

∥∥∥2
op

=
∥∥∥ΠθQ̄Πθ

∥∥∥
op

=

∥∥∥∥∥∥∥∥∥∥∥∥
∑

x,y,z,x′,y′,z′:
x′
i=xi,z

′
i=zi, ∀i∈θ[1]

y′i=yi, ∀i∈θ′[1]

|xθ⟩⟨xθ| · |yθ′⟩⟨yθ′ | · |zθ⟩⟨zθ| ⊗Bx′By′Bz′ ⊗ Cθ
xC

θ
z

∥∥∥∥∥∥∥∥∥∥∥∥
op

=

∥∥∥∥∥∥∥∥∥∥∥∥
∑

x,y,x′:
x′
i=xi, ∀i∈θ[1]

x′
i=yi, ∀i∈θ′[1]

|xθ⟩⟨xθ| · |yθ′⟩⟨yθ′ | · |xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ
x

∥∥∥∥∥∥∥∥∥∥∥∥
op

=

∥∥∥∥∥∥∥∥∥∥∥∥
∑

x,y,x′:
x′
i=xi, ∀i∈θ[1]

x′
i=yi, ∀i∈θ′[1]

∣∣∣⟨xθ|yθ′⟩∣∣∣2 |xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ
x

∥∥∥∥∥∥∥∥∥∥∥∥
op

(17)

= 2s−λ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

x,y,x′:
x′
i=xi, ∀i∈θ[1]

x′
i=yi, ∀i∈θ′[1]

xi=yi, ∀i∈S[θ,θ′]

|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ
x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
op

(18)

Above in eq. (17) we used the fact that the inner product
∣∣∣⟨xθ|yθ′⟩∣∣∣ vanishes unless xi = yi for

all i ∈ S[θ, θ′], in which case it is contributed a factor of 2−1/2 for every index i /∈ S[θ, θ′]. Now
in eq. (18), every term in the sum with distinct (x, x′) is orthogonal, so we only need to count
the number of y values for given (x, x′). Specifically, we need the number of y ∈ {0, 1}λ such that
yi = x′i for i ∈ θ′[1] and yi = xi for i ∈ S[θ, θ′]. Note that these two conditions never contradict
because x′i = xi for all i ∈ θ[1], and S[θ, θ′] ∩ θ′[1] ⊆ θ[1]. Hence, y has |S[θ, θ′] ∪ θ′[1]| coordinates
fixed. The number of free coordinates, then is given by λ − |S[θ, θ′] ∩ θ′[1]| = |θ[1] \ θ′[1]|, which
is the number of indices where θ′i = 0, θi = 1. Thus, eq. (18) equals 2−t, where t is the number of
indices i such that θi = 0, θ′i = 1, then we can bound eq. (16) as

pwin ≤
1

2λ

∑
k∈{0,1}λ

max
θ∈{0,1}λ

∥∥∥ΠθΠπk(θ)
∥∥∥
op
≤ 1

2λ

∑
k∈{0,1}λ

max
θ∈{0,1}λ

2−t/2

Furthermore, observe that by symmetry, we can achieve the same bound for t representing the
number of indices i with θi = 1, θ′i = 0 as well for any θ, θ′. Thus, without loss of generality we
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could assume t ≥ |D[θ, θ′]|/2 by choosing the optimal order in the analysis. Finally, we choose
πk(θ) = θ⊕k to be the cyclic permutations, which yields

(
λ
k

)
permutations with D[θ, θ′] = k. Thus,

pwin ≤
1

2λ

λ∑
k=0

(
λ

k

)
2−k/4 =

(
1

2
+

1

2 4
√
2

)λ

≈ 0.920λ

as desired.

Remark 12. [CV21] bounds an easier version of MOE by 0.85λ/2 ≈ 0.924λ, where B and C need to
guess indices in θ[0] and θ[1] after learning θ, respectively. Because θ is unknown, A cannot trivially
succeed by splitting the qubits between them.

We finish the proof of the theorem by giving a reduction from unclonable security of GBB84−CD
to hardness of MOE. Since 0.920λ is negligible in λ, this suffices.

Claim 6. Suppose there exists an adversary (A,B, C) breaking (UM, ε) unclonable search security
of GBB84−CD, then there exists (A′,B′, C′) such that

Pr
[
1← MOE(1λ, (A,B, C))

]
> ε.

Proof. Define (A′,B′, C′) as follows:

• (A′,B′, C′) creates λ EPR pairs, i.e. the bipartite state |ψ⟩ = 2−λ/2
∑

x∈{0,1}λ |x⟩ |x⟩ over
registers XA, and send the X register to the referee Ref.

• A′ applies the same splitting channel as A. Similarly, B′ and C′ apply the same measurements
as B and C.

We will show that (A′,B′, C′) defined above succeeds in MOE with probability equal to the success
probability of (A′,B′, C′). Recall that for any θ ∈ {0, 1}λ, we have |ψ⟩ = 2−λ/2

∑
x∈{0,1}λ |x

θ⟩ |xθ⟩.
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Hence,

Pr
[
1← MOE(1λ,

(
A′,B′, C′

)
)
]
= E

θ
Tr

 ∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

(
|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ

x

)
(IX ⊗A) (|ψ⟩⟨ψ|)



= 2−λ E
θ
Tr

 ∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

∑
y,z

(
|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ

x

)
(IX ⊗A)

(
|yθ⟩ ⟨zθ| ⊗ |yθ⟩ ⟨zθ|

)

= 2−λ E
θ
Tr

 ∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

∑
y,z

(
|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ

x

)(
|yθ⟩ ⟨zθ| ⊗ A

(
|yθ⟩ ⟨zθ|

))

= 2−λ E
θ
Tr

 ∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

(
|xθ⟩⟨xθ| ⊗Bx′ ⊗ Cθ

x

)(
|xθ⟩ ⟨xθ| ⊗ A

(
|xθ⟩ ⟨xθ|

))

= E
θ,x

Tr

 ∑
x,x′:

x′
i=xi, ∀i∈θ′[1]

(
Bx′ ⊗ Cθ

x

)(
A
(
|xθ⟩ ⟨xθ|

))
= Pr

[
1← CEGBB84−CD,UM(1λ, (A,B, C))

]
,

which completes the proof.

8.3.3 Achieving Unclonable-Indistinguishable Security

Now, we give the construction of unclonable-indistinguishable secure unclonable encryption with
certified deletion, denoted as GUIBB84−CD = ((Setup,GenT,GenCB,VerB,GenCC ,VerC)) below:

• We consider single-bit messages, i.e. M = {0, 1}

• Setup(1λ) samples θ $←− {0, 1}λ and r $←− {0, 1}λ \ {0λ} independently. It outputs sk = (θ, r).

• GenT(sk,m) parses the input as sk = (θ, r). It samples x $←−
{
x′ ∈ {0, 1}λ : ⟨r, x′⟩ = m

}
,

where we treat {0, 1}λ as Fλ
2 for the inner product ⟨·, ·⟩. It outputs ρ = |xθ⟩⟨xθ|.

Theorem 34. GUIBB84−CD above is an unclonable encryption scheme for single-bit messages with
certified deletion, which has negl information theoretic unclonable indistinguishable security.
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Proof. Correctness is easy to see. For security, we define a sequence of hybrids:

• Hybrid 0: The asymmetric cloning experiment CEGUIBB84−CD, U{0,1}
.

Suppose for the sake of contradiction that there exists an adversary (A,B, C) which succeeds
in this experiment with probability 1/2 + ε, where ε is non-negligible in λ.

• Hybrid 2: In this hybrid, we sample r $←− {0, 1}λ, i.e. we allow r = 0λ.

Since the probability of this is negligibly small, the success probability of (A,B, C) in this
Hybrid is ε− negl(λ).

• Hybrid 2: In this hybrid, instead of sampling m uniformly and sampling x conditioned on
⟨r, x⟩ = m, we sample x $←− {0, 1}λ uniformly and set m = ⟨r, x⟩. In other words, we remove
m from the experiment and ask C to output ⟨r, x⟩ in order to pass verification.

This hybrid is statistically indistinguishable from Hybrid 0, since |Pr [⟨r, x⟩ = 0]− 1/2| ≤
negl(λ) for r, x $←− {0, 1}λ. Thus, (A,B, C) succeeds in this Hybrid with probability ε−negl(λ).
Let pB be the probability that B passes verification, and let pC be the probability that C passes
verification conditioned on B passing verification. Then, pBpC ≥ ε − negl(λ), so that pB and
pC are both non-negligible in λ.

• Hybrid 3: This is the asymmetric cloning experiment CEGBB84−CD, U{0,1}λ .

Observe that the only difference between Hybrids 2 and 3 is the verification phase for C.
Accordingly, we define an adversary (A,B, C′) for this Hybrid, where C′ is the extractor guar-
anteed by Lemma 32, applied with respect to the mixed state received by C in Hybrid 1
conditioned on B passing verification. The guarantee of Lemma 32 states that if p′C is the
probability of C′ passing verifiction conditioned on B passing verification, then p′C ≥ 4p2C , which
is non-negligible. Therefore, (A,B, C′) succeeds in Hybrid 3 with non-negligible probability
pBp

′
C , contradicting Theorem 33.

Remark 13. For simplicity, we give a construction for single-bit messages, but a standard hybrid
argument can be used to show that bitwise encryption works for multi-bit messages in the certified
deletion setting.
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A Alternate Proof of Simultaneous Quantum Goldreich-Levin

Below we give an alternate40 proof of Lemma 23 which does not use the lifting theorem.

Direct proof of Lemma 23. We will adapt the proof41 of [CLLZ21], originally due to [AC02], to the
simultaneous case. We can assume that the token ρk,x = |ψk,x⟩⟨ψk,x| is a pure state, for the mixed
state case follows by convexity. Observe that we can defer any measurements made by (A,B, C)
until the very end. Accordingly, we can model A as a unitary map Φ which acts as:

Φ |ψk,x⟩ |0m⟩aux = |φk,x⟩BC ,

where |φk,x⟩BC is a bipartite state shared by B and C. In phase 2, the key k as well as the random
coins (r, r′) are revealed and unitary maps (Uk,r

B , Uk,r′

C ) are applied by B and C, respectively. The
resulting state then is given by(
UkB ,r
B ⊗ UkC ,r′

C

)
|φk,x⟩BC =

(
αk,x,r,r′ |⟨r, x⟩⟩B |⟨r

′, x⟩⟩C |ϕ
0
k,x,r,r′⟩BC

+ βk,x,r,r′ |⟨r, x⟩⟩B |⟨r′, x⟩⟩C |ϕ
1
k,x,r,r′⟩BC

+ θk,x,r,r′ |⟨r, x⟩⟩B |⟨r
′, x⟩⟩C |ϕ

2
k,x,r,r′⟩BC

+ γk,x,r,r′ |⟨r, x⟩⟩B |⟨r′, x⟩⟩C |ϕ
3
k,x,r,r′⟩BC

)
=: |Γk,x,r,r′⟩ ,

where |ϕjk,x,r,r′⟩ is a normalized state for j ∈ {0, 1, 2, 3} and αk,x,r,r′ is the coefficient corresponding
to the case of the adversary succeeding, so that we can express the assumption as

E
k,x,r,r′

∣∣αk,x,r,r′
∣∣2 ≥ 1

2
+ ε

and hence

E
k,x,r,r′

∣∣αk,x,r,r′
∣∣2 − ∣∣βk,x,r,r′∣∣2 − ∣∣θk,x,r,r′∣∣2 + ∣∣γk,x,r,r′∣∣2 ≥ E

k,x,r,r′

(
2
∣∣αk,x,r,r′

∣∣2 − 1
)
≥ 2ε (19)

We now describe the new adversary (A′,B′, C′):

• Given |ψk,x⟩ in phase 1, A′ acts the same as A, i.e. it applies Φ, obtaining the state |φk,x⟩BC .

• After receiving the key k from the challenger (ignoring the random coins received), B′ prepares
a uniform superposition over r ∈ R and applies the unitary UkB

B , where we define UkE
E as

UkE
E |r⟩ |φ⟩ = |r⟩U

kE ,r
E |φ⟩ for E ∈ {B,C}. Then, B′ applies a Z gate to the register storing

the inner product ⟨r, x⟩, and applies (UkB
B )† to its state. Finally, B′ measures the register

storing the random coins r in the Fourier basis and outputs the result.

• C′ is defined in a similar fashion.
40Kundu and Tan have independently generalized the Goldreich-Levin technique to the non-local (simultaneous)

setting [KT22]. The authors apply this technique to achieve a weaker form of unclonable encrpytion in the plain
model, whereas we apply it to achieve single-decryptor encryption with unclonable security against independently
generated ciphertexts.

41See Lemma B.12 in [CLLZ21].
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Next, we will analyze the evolution of the state shared by B′ and C′ step by step. Since the actions
of B′ and C′ commute, we can synchronously track their operations. After the first step, the state
is given by (

UkB
B ⊗ UkC

C

) 1

|R|
∑

r,r′∈R
|r⟩B |r

′⟩C |φk,x⟩BC =
1

|R|
∑

r,r′∈R
|r⟩B |r

′⟩C |Γk,x,r,r′⟩ .

Next, B′ and C′ each apply a Z gate to their register storing the inner product, which results in
the state

1

|R|
∑

r,r′∈R
|r⟩B |r

′⟩C (−1)⟨r,x⟩⊕⟨r′,x⟩
(
αk,x,r,r′ |⟨r, x⟩⟩B |⟨r

′, x⟩⟩C |ϕ
0
k,x,r,r′⟩BC

− βk,x,r,r′ |⟨r, x⟩⟩B |⟨r′, x⟩⟩C |ϕ
1
k,x,r,r′⟩BC

− θk,x,r,r′ |⟨r, x⟩⟩B |⟨r
′, x⟩⟩C |ϕ

2
k,x,r,r′⟩BC

+ γk,x,r,r′ |⟨r, x⟩⟩B |⟨r′, x⟩⟩C |ϕ
3
k,x,r,r′⟩BC

)
=:

1

|R|
∑

r,r′∈R
|r⟩B |r

′⟩C |Γ
′
k,x,r,r′⟩ ,

with

⟨Γk,x,r,r′ ,Γ
′
k,x,r,r′⟩ = (−1)⟨r,x⟩⊕⟨r′,x⟩

(
|αk,x,r|2 − |βk,x,r|2 − |θk,x,r|2 + |γk,x,r|2

)
.

Now B′ and C′ uncompute the unitary UkB
B ⊗ UkC

C , and the state becomes(
UkB
B ⊗ UkC

C

)† 1

|R|
∑
r∈R
|r⟩B |r

′⟩C |Γ
′
k,x,r,r′⟩ =

1

|R|
∑
r∈R
|r⟩B |r

′⟩C
(
UkB ,r
B ⊗ UkC ,r′

C

)†
|Γ′k,x,r,r′⟩

=
1

|R|
∑

r,r′∈R
|r⟩B |r

′⟩C
(
(−1)⟨r,x⟩⊕⟨r′,x⟩

(
|αk,x,r,r′ |2 − |βk,x,r,r′ |2 − |θk,x,r,r′ |2 + |γk,x,r,r′ |2

)
|φk,x⟩BC + |errk,x,r,r′⟩

)
,

where |errk,x,r,r′⟩ is a subnormalized state orthogonal to |φk,x⟩BC .

Next, B′ and C′ each apply a Quantum Fourier Transform (QFT) on their random coins, resulting
in the state

1

|R|2
∑

r,r′∈R

∑
y,z∈R

(−1)⟨r,y⟩⊕⟨r′,z⟩ |y⟩B |z⟩C
(
(−1)⟨r,x⟩⊕⟨r′,x⟩

(
|αk,x,r,r′ |2 − |βk,x,r,r′ |2

− |θk,x,r,r′ |2 + |γk,x,r,r′ |2
)
|φk,x⟩BC + |errk,x,r,r′⟩

)
.

Note that the coefficient of |x⟩B |x⟩C |φk,x⟩ equals

1

|R|2
∑

r,r′∈R
|αk,x,r,r′ |2 − |βk,x,r,r′ |2 − |θk,x,r,r′ |2 + |γk,x,r,r′ |2,
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so the probability that B′ and C′ both output x is lower bounded by

Pr [y = z = x] ≥ E
k,x

∣∣∣∣∣∣ 1

|R|2
∑

r,r′∈R
|αk,x,r,r′ |2 − |βk,x,r,r′ |2 − |θk,x,r,r′ |2 + |γk,x,r,r′ |2

∣∣∣∣∣∣
2

= E
k,x

∣∣∣∣ Er,r′ |αk,x,r,r′ |2 − |βk,x,r,r′ |2 − |θk,x,r,r′ |2 + |γk,x,r,r′ |2
∣∣∣∣2

≥
∣∣∣∣ E
k,x,r,r′

|αk,x,r,r′ |2 − |βk,x,r,r′ |2 − |θk,x,r,r′ |2 + |γk,x,r,r′ |2
∣∣∣∣2

≥ 4ε2,

where we used Cauchy-Schwartz Inequality and eq. (19).
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