
Compositional Formal Verification

of Zero-Knowledge Circuits

Alessandro Coglioa,b, Eric McCarthya,b, Eric Smithb,
Collin China, Pranav Gaddamadugua, and Michel Delleperea

aAleo Systems, Inc.
bKestrel Institute

Abstract

We provide a preliminary report of our ongoing work in formally defining and verifying, in a compositional
way, the R1CS gadgets generated by Aleo’s snarkVM. The approach is applicable to other systems that
generate gadgets in a similar manner, and that may use non-R1CS representations.

1 Introduction

In zkSNARKs (Section A.3), computations are represented as zero-knowledge circuits in forms such as
Rank-1 Constraint Systems (R1CS)1 (Section A.2). These constraints are fairly low-level, often distant
from the higher-level computations they represent. This raises the issue of ensuring the correctness of the
representations: if a computation is represented incorrectly, a zero-knowledge proof may not quite prove
what was intended [0xP]. To developers, the computation might be overspecified in the constraint system,
forcing them to pay more constraints than necessary. To users, the computation may be underconstrained,
allowing an attacker to print an infinite amount of assets [SWB19, Sem19, Tor19, Bas20].

As in other applications, formal verification can provide strong guarantees that the computation is rep-
resented correctly. Given formal models of the computation and of the circuit representation, correctness
can be established by proving a theorem asserting the desired relation between the two models.2

This paper is a preliminary report on our ongoing work to formally verify the R1CSes generated by
Aleo’s snarkVM (Section A.2). We use the ACL2 theorem prover [KM] to formalize snarkVM’s R1CS
constructions and to prove that the constructions match the specifications of the computations they are
intended to represent. Our formal verification approach is compositional: we reify the notion of R1CS
gadget, informally used in the literature to refer to R1CS components, and verify each gadget using the
theorems about its sub-gadgets.

This work is part of our overarching plan to apply formal verification to every aspect of the Aleo pro-
gramming stack [Aleb], with initial emphasis on the correct compilation of Leo [CWC+21] to R1CS via Aleo
instructions (Section A.4), which are the assembly-like language used to represent program code in the Aleo
blockchain. The generation of R1CS is the last step of this compilation process: the work described in this
paper aims at verifying the R1CS constructions performed in this last step, providing the basis for verifying
the correct compilation of Aleo instructions to R1CS, which is future work. The correct compilation of Leo
to Aleo instructions is also mainly future work, but we have already started some effort in this direction
[CWC+21].

1In this paper, we use ‘R1CS’ either to mean a specific set of constraints or to denote the general form of the constraints.
We also use ‘R1CSes’ to mean a set of Rank-1 Constraint Systems.

2Note the difference between zero-knowledge proofs, which provide statistically overwhelming evidence of certain facts
without revealing any details about those facts, and the proofs of theorems in formal verification, which provide logically
absolute evidence of certain facts without hiding any information. Any use of the unqualified terms ‘proof’, ‘prove’, etc. in this
paper should be easily disambiguated by context.

1

We believe that the R1CS gadget verification work described in this paper is more general than snarkVM
and more general than R1CS. The way snarkVM generates R1CS is analogous to other systems [GN20,
OBW20], whether driven by direct user programming [Bow] or part of a compilation process [GN20]; our
compositional verification approach applies to this way of generating R1CS. Furthermore, as discussed in
the later part of this paper (Section 5) we are moving towards the use of a richer circuit representation than
R1CS, called PFCS, which can represent without overhead not only R1CS but also other forms such as CCS
[STW23], Plonkish [GWC19][CBBZ22], and AIR [GPR21]; thus, our approach should be applicable to those
other forms as well.

Section 2 presents the formal framework of our formal verification work. Section 3 overviews its mecha-
nization in ACL2, whose results are summarized in Section 4. Section 5 discusses our approach to scale the
verification. Related and future work are described in Section 6 and Section 7, while Section 8 concludes.
Background material is in Section A in the appendix, along with the evaluation details in Section B.

2 Formal Framework

2.1 Computations

For our purposes, a (deterministic) computation is a function

f : I1 × · · · × In → (O1 × · · · ×Om) ∪ {E}

from n ≥ 0 inputs to m ≥ 0 outputs or to an error E that is distinct from (tuples of) inputs and output.
The error E can model the occurrence of events such as division by zero (if that is regarded as erroneous in
the modeled computation), or in general the application of the computation on disallowed inputs.

The case n = 0 of no inputs is not very interesting, but causes no additional difficulties to the framework.
The case m = 0 of no outputs can model assertion-like computations that return either nothing (more
precisely, the empty tuple ⟨ ⟩ of outputs) or the error if they fail. We regard a 1-tuple ⟨a⟩ equivalent to its
only element a, and thus speak of tuples of inputs or outputs also when f has a single input or output.

This model only considers the functional input/output behavior of computations, not their performance
and other non-functional characteristics. This is adequate for representing computations as R1CSes.

2.2 Data Encodings

The input and output sets Ii and Oj may correspond to high-level data types. To represent the computation
f in R1CS form, the input and output data must be represented as elements in a prime field F. That is,
there must be injective encoding functions

eIi : Ii → Fni eOj : Oj → Fmj

that represent each input ι ∈ Ii as ni ≥ 1 field elements and each output ω ∈ Oj as mj ≥ 1 field elements.
This leads to considering a version of the computation on encoded data

f̂ : FN → FM ∪ {E},

where N =
∑

i ni and M =
∑

j mj , such that

∀ι1, . . . , ιn, ω1, . . . , ωm. [f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩ =⇒ f̂(eI1(ι1), . . . , e
I
n(ιn)) = ⟨eO1 (ω1), . . . , e

O
m(ωm)⟩]

∀ι1, . . . , ιn. [f(ι1, . . . , ιn) = E =⇒ f̂(eI1(ι1), . . . , e
I
n(ιn)) = E]

i.e. if f returns non-error outputs on some inputs then f̂ returns those encoded outputs on those encoded
inputs, and if f returns an error on some inputs then f̂ returns the error on those encoded inputs;3 f̂ returns
E when applied outside the range of the input encoding functions.

In the rest of this paper, for simplicity, we consider computations already operating on field elements,
leaving the input and output encodings as a separate issue. Thus, we regard a computation as a function

f : Fn → Fm ∪ {E}

from n ≥ 0 input field elements to m ≥ 0 output field elements or to an error E .
3For notational brevity, in this paper we liberally flatten nested tuples.

2

2.3 R1CS Gadgets

As explained in Section A.2, an R1CS is a finite sequence of constraints. Given an ordering v1, . . . , vr of all
the variables used in the constraints, the R1CS determines an r-ary relation over the field

R ⊆ Fr

that holds exactly when all the constraints hold, assigning the field elements to the variables in order.
When an R1CS represents a computation f of the kind characterized at the end of Section 2.2, the r

variables can be divided into three disjoint sets:
• n input variables, corresponding to the n inputs of f .
• m output variables, corresponding to the m outputs of f .
• l = r − n−m auxiliary variables, for internal use.

It is convenient for the variable ordering v1, . . . , vr to have the form vI1, . . . , v
I
n, v

O
1 , . . . , v

O
m, vA1 , . . . , v

A
l , where

vI1, . . . , v
I
n are the input variables, vO1 , . . . , v

O
m are the output variables, and vA1 , . . . , v

A
l are the auxiliary

variables. Then the relation determined by the R1CS can be viewed as a ternary one

R ⊆ Fn × Fm × Fl

over the tuples of input, output, and auxiliary field elements. This also determines an input/output binary
relation

R̃ ⊆ Fn × Fm

R̃(ι1, . . . , ιn, ω1, . . . , ωm) = ∃α1, . . . , αl.[R(ι1, . . . , ιn, ω1, . . . , ωm, α1, . . . , αl)]

obtained from R by existentially quantifying the auxiliaries.
We define an R1CS gadget as an R1CS (i.e. sequence of constraints) accompanied by an ordering and

an input/output/auxiliary designation of the variables as above, determining a relation over (tuples of) field
elements as above. This definition is biased towards the idea that an R1CS gadget represents a computation,
in the sense made precise in Section 2.4.

Larger gadgets can be constructed from smaller gadgets, hierarchically. The interaction between the
sub-gadgets of a gadget is realized via shared variables: for instance, the same variable can be an output of
a sub-gadget and an input of another sub-gadgets.

2.4 Correctness

An R1CS gadget as characterized above is correct with respect to a computation f exactly when

∀ι1, . . . , ιn, ω1, . . . , ωm. [R̃(ι1, . . . , ιn, ω1, . . . , ωm) ⇐⇒ f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩].

The left-to-right (‘only if’) implication

∀ι1, . . . , ιn, ω1, . . . , ωm. [R̃(ι1, . . . , ιn, ω1, . . . , ωm) =⇒ f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩]

is soundness. Expanding the definition of R̃ and turning the existential quantification on the premise into a
universal quantification on the implication yields

∀ι1, . . . , ιn, ω1, . . . , ωm, α1, . . . , αl. [R(ι1, . . . , ιn, ω1, . . . , ωm, α1, . . . , αl) =⇒ f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩],

i.e. every solution of the constraints corresponds to the instance of the computation that returns the outputs
from the inputs. In other words, the gadget represents only correct computation instances.

The right-to-left (‘if’) implication

∀ι1, . . . , ιn, ω1, . . . , ωm. [f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩ =⇒ R̃(ι1, . . . , ιn, ω1, . . . , ωm)]

is completeness. Expanding the definition of R̃ yields

∀ι1, . . . , ιn, ω1, . . . , ωm. [f(ι1, . . . , ιn) = ⟨ω1, . . . , ωm⟩ =⇒ ∃α1, . . . , αl.[R(ι1, . . . , ιn, ω1, . . . , ωm, α1, . . . , αl)]],

i.e. for every instance of the computation there exist auxiliaries that together with the inputs and outputs
form a solution to the constraints. In other words, the gadget represents all correct computation instances.

Soundness alone is not sufficient, because a gadget that has no satisfying assignment is trivially sound.
Completeness ensures that the gadget has a satisfying assignment for each input that does not yield an
error.

3

3 Formalization and Verification in ACL2

We provide an overview of our mechanization in ACL2 of the formal framework presented in Section 2. Some
of the ACL2 code is slightly simplified in order to focus the exposition on the essential ideas.

3.1 Specifications, the Units of Verification

To verify that a given R1CS correctly implements a computation f of the kind characterized at the end of
Section 2.2, we need a specification of that computation, which we write in ACL2.

We want to verify the R1CS that is input to the zero-knowledge proving system, which is often very
large. If that R1CS can be split into component computations, we verify those, and compose them into a
verification of the whole.

In an Aleo instructions program, each instruction is a computation. Often an instruction is composed of
sub-gadgets that are computations. We verify these bottom-up.

To understand the composite structure, we examine the snarkVM code used to build an R1CS from an
Aleo instruction and from its sub-gadgets. We write an ACL2 gadget definition, an alternate implementation
in ACL2 of the snarkVM code that builds the R1CS. We test this definition by showing that the R1CS it
creates, for selected parameters, is equivalent to R1CS samples extracted from snarkVM.4

We verify an R1CS gadget by proving a theorem saying that the R1CS generated by the ACL2 gadget
definition is correct with respect to the ACL2 specification. We verify a composite gadget by proving a
theorem that the composed ACL2 gadget definition is correct with respect to an ACL2 specification of the
composed computation.

3.2 Formal Specification

When writing ACL2 specifications for Aleo instructions, we abstract some of the details that affect how the
instruction is compiled to R1CS. For example, for an operation on fields, the field order is included as a
parameter to the functional specification. Also, the specification does not distinguish between a constant
argument and a register argument. However, we do write different specifications for different operand types.

For example, the Aleo instruction

div r0 r1 into r2; // divide register 0 by register 1 and store result in register 2

where r0 and r1 contain field elements, can be modeled (specified) by the function

(defun field-div (x y p)

(if (equal y 0)

(error)

(pfield::div x y p)))

which returns an error (i.e. E in Section 2.1) if the divisor is 0, otherwise returns the result of the field
division operation pfield::div, which is from the ACL2 prime fields library.5

To explicate the domain and range of the specification, we prove type theorems about them (not shown).
This is important because limitations on arguments are relevant for completeness and must be heeded by
callers when composing verifications. For field-div, these follow straightforwardly from the definition.

3.3 R1CS Formalization

To give formal status to R1CS gadgets, we formalize the R1CS syntax and semantics.
Our R1CS (abstract) syntax is approximately described by the following ABNF grammar:

4These are just tests to validate our constructions at this time. Section 7 discusses how we will ensure that we verify the
exact same gadgets generated by snarkVM.

5acl2.org/manual topic: prime-fields

4

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=PFIELD____PRIME-FIELDS

constant = <an integer among ..., -2, -1, 0, 1, 2, ...>

variable = <a symbol, distinct from the integers>

monomial = constant / constant variable ; constant, or variable with coefficient

polynomial = *monomial ; sum of zero or more monomials, i.e. a linear combination

constraint = polynomial polynomial polynomial ; 1st * 2nd = 3rd

r1cs = *constraint ; zero or more constraints

The actual definition in ACL26 is expressed differently, but it is essentially equivalent to this grammar.
For instance, a constraint is defined as an aggregate data structure with three components a, b, c that are
sparse vectors (another name for a polynomial as defined in the grammar above):

(defaggregate r1cs-constraint

((a sparse-vectorp)

(b sparse-vectorp)

(c sparse-vectorp)))

Our R1CS semantics starts with the concept of assignment, which is a finite map from the symbols used
for variables to the integers, i.e. an integer is assigned to each variable.

Given an assignment for all the variables in a polynomial (i.e. sparse vector), we define the evaluation of
the polynomial by multiplying and adding:

(defun dot-product (vector assignment prime) ...) ; details omitted

This is called dot-product based on the view of a dot product between the vector of the coefficients of the
polynomial and the vector of (the values assigned to) the variables of the polynomial (the constant monomial
is regarded as multiplying a pseudo-variable ‘1’). The argument prime is the prime p that defines the prime
field, needed to perform addition and multiplication in the field.

Based on that, given an assignment and a prime as above, we define the satisfaction of a constraint as
equality between the product of the a and b polynomials and the c polynomial:

(defun r1cs-constraint-holdsp (constraint assignment prime)

(equal (mul (dot-product (r1cs-constraint->a constraint) assignment prime)

(dot-product (r1cs-constraint->b constraint) assignment prime)

prime)

(dot-product (r1cs-constraint->c constraint) assignment prime)))

The mul function is the multiplication in the prime field, which depends on the prime.
The satisfaction of a sequence of constraints is defined as the satisfaction of all the constraints:

(defun r1cs-constraints-holdp (constraints assignment prime)

(or (endp constraints)

(and (r1cs-constraint-holdsp (first constraints) assignment prime)

(r1cs-constraints-holdp (rest constraints) assignment prime))))

3.4 R1CS Gadget Formalization

Given the R1CS formalization just described, we formalize R1CS gadgets by constructing their abstract
syntax, mimicking the corresponding snarkVM code.

For example, the field division gadget

(y) (w) = (1)
(x) (w) = (z)

6acl2.org/manual topic: r1cs

5

https://www.cs.utexas.edu/users/moore/acl2/v8-5/combined-manual/?topic=R1CS____R1CS

where x and y are input variables (dividend and divisor), z is an output variable (quotient), and w is an
auxiliary variable (inverse of y, if not zero),7 can be formalized as

(defun field-div-gadget (x y z w)

(list ; list of constraints

(make-r1cs-constraint ; constructs an r1cs-constraint aggregate

:a (list (list 1 y)) ; polynomial (y)

:b (list (list 1 w)) ; polynomial (w)

:c (list (list 1 1))) ; polynomial (1)

(make-r1cs-constraint ; constructs an r1cs-constraint aggregate

:a (list (list 1 x)) ; polynomial (x)

:b (list (list 1 w)) ; polynomial (w)

:c (list (list 1 z))))) ; polynomial (z)

This is actually a family of gadgets, parameterized over the specific choice of variable symbols, which are
passed as arguments to field-div-gadget (x, y, z, and w are meta-variables). Since the exact variables
of each field division gadget generated by snarkVM vary (as snarkVM generates variables with globally
increasing numeric indices), this parameterized gadget formulation captures all the possible gadgets.

The field division gadget is actually formalized by composing a field inversion gadget with a field multi-
plication gadget:

(defun field-div-gadget (x y z w)

(append (field-inverse-gadget y w)

(field-mul-gadget x w z)))

where field-inverse-gadget and field-mul-gadget are defined as consisting of the first and second
constraint shown above. This is a simple example of hierarchical gadget construction; the interaction between
the two sub-gadgets is via the shared variable w, which is an output variable for the field inversion gadget
and an input variable for the field multiplication gadget.

While the three (parameterized) gadgets presented above have fixed numbers of variables and constraints,
other gadget constructions have a varying number of variables and constraints. An example is the field-to-bits
gadget

(y0) (1− y0) = (0)
. . .

(yn−1) (1− yn−1) = (0)
(x) (1) = (y0 + 2y1 + 4y2 + · · ·+ 2n−1yn−1)

. . .

where x is an input variable, y0, . . . , yn−1 are output variables, the first n constraints say that each yi is a
bit (i.e. 0 or 1), the other constraint says that x is the weighted sum of the yi bits according to powers of 2,
and the final ellipsis omits (for brevity) additional constraints to ensure that the weighted sum is below the
prime; the varying number n is the number of bits of the prime p. This is formalized as a family of gadgets

(defun field-to-bits-gadget (x ys ... prime)

(append (boolean-check-gadget-list ys)

(pow2sum-gadget x ys)

...)) ; sub-gadgets to check that the weighted sum of ys is below prime

where ys is a list of variable symbols of appropriate length, prime is the prime that defines the field, and
the ellipses stand for additional variables and constraints used to check that the weighted sum of the ys

bits is below the prime. Here boolean-check-gadget-list constructs a list of boolean check gadgets,
and pow2sum-gadget constructs a gadget that equates x to the weighted sum of ys. Functions to con-
struct gadgets with varying number of variables or constraints are defined recursively in ACL2, or call

7The auxiliary variable w serves to ensure soundness. The deceitfully equivalent single constraint (y) (z) = (x) is satisfied
for every value of z when x = y = 0.

6

functions defined recursively; in this case, boolean-check-gadget-list is defined recursively in terms of
boolean-check-gadget, and pow2sum-gadget is defined recursively based on ys.

3.5 Correctness Theorems

Given gadget definitions and the corresponding computation specifications, we prove correctness via ACL2
theorems that correspond to soundness and completeness in Section 2.4.

For instance, the soundness of the field division gadget in Section 3.4 is expressed as

(defthm field-div-soundness

(implies ...; hypotheses omitted

(let ((xval (lookup x asg)) (yval (lookup y asg)) (zval (lookup z asg)))

(implies (r1cs-constraints-holdp (field-div-gadget x y z w) asg prime)

(equal zval (field-div xval yval prime))))))

which says that if the constraints of the gadget hold for an assignment asg then the value zval assigned to
the variable z is the result of the division of the values xval and yval assigned to the variables x and y.
The omitted hypotheses of the theorem say that asg assigns values to all the variables including w, as well
as other structural facts that are not important here. Since zval is a field element and not an error, this
theorem also implicitly says that the divisor yval is not 0. The (r1-constraints-holdp ...) assertion
corresponds to R(. . .) in Section 2.4.

The completeness of the field division gadget is a little more awkward to formulate, because of the auxil-
iary variable w, which is existentially quantified. One approach is to introduce a defun-sk (see Section A.5)
that existentially quantifies over the value wval assigned to w, closely following the formulation in Section 2.4,
but that involves an extra function definition. Another approach, when the values of the auxiliary variables
are determined by the input variables as is often the case, is to eschew the explicit existential quantification
in favor of assertions that functionally determine the values of the auxiliary variables (cf. Skolemization in
logic). For instance, the completeness of the field division gadget can be expressed as

(defthm field-div-completeness

(implies ... ; hypotheses and let bindings omitted)

(implies (and (equal zval (field-div xval yval prime))

(equal wval (field-inv yval prime)))

(r1cs-constraints-holdp (field-div-gadget x y z w) asg prime)))

but that involves an extra assertion on wval, which is tangential to the essence of the field division gadget.
See Section 5 for an approach to overcome this awkwardness.

The correctness theorems above prove the soundness and completeness not just of a single gadget, but
of the whole family constructed by field-div-gadget, and not just for a specific prime field, but for every
prime field. The same generality applies to theorems for gadgets with varying numbers of variables and
constraints, such as the field-to-bits gadget in Section 3.4: the proved correctness holds for any number of
variables and constraints.

When a gadget construction is defined recursively, its correctness is proved by induction in ACL2. When a
gadget includes sub-gadgets, the correctness theorems for the sub-gadgets are used to prove the correctness
of the gadget (e.g. the correctness theorems of field inversion and multiplication are used to prove the
correctness of field division): the verification is compositional, according to the gadget structure. When
constraints are directly involved (i.e. not just sub-gadgets), the definition of r1cs-constraints-holdp and
other ACL2 functions for the formal semantics of R1CS are expanded, reducing the proof task to showing
that the prime field calculations achieve the specification, i.e. the core correctness argument of the gadget.
The difficulty of these proofs range from easy and automatic in ACL2 to needing some fairly elaborate
lemmas and intermediate definitions from us to guide ACL2.

7

4 Evaluation

We applied the mechanization of the formal framework, described in Section 3, to the gadgets used in
snarkVM (Section A.4). The goal of this evaluation was to maintain parity with the gadget implementations
so that they can be verified as they evolve. To that end, we constructed an end-to-end pipeline which extracts
R1CS samples from the snarkVM gadget implementations, and then verifies the extracted R1CSes against
the formal specifications. This infrastructure exists in snarkVM and has been used to verify the original
gadgets as well as bug fixes and optimizations that we discovered during the course of this work.

At the time of this writing, we have formalized and verified all the gadgets for boolean operations, all the
gadgets for field operations, and most of the the gadgets for integer operations. In the process, we identified
two bugs and three classes of optimizations, whose details are given in Section B. While these bugs and
optimizations could have been discovered without formal verification by carefully examining the gadgets, it
is our general experience that the close scrutiny demanded by formal verification naturally encourages and
facilitates this kind of discoveries: we discovered one of the bugs directly because we could not prove the
correctness of the buggy gadget; we discovered one of the optimizations directly because our correctness
proof did not use the constraints that was then optimized away.

5 Towards a More Structured Representation

5.1 Challenges in the Current Approach

In the parameterized gadget constructions described in Section 3.4, the hierarchical structure of the gadgets
is captured not in the gadgets themselves, which are flat sequences of constraints, but in the definitions of the
ACL2 constructor functions for the gadgets. This supports well the compositional verification of soundness,
but as explained in Section 3.5 completeness is more awkward, due to the presence of the auxiliary variables,
which must be existentially quantified.

Another issue is the increasing number of parameters for the auxiliary variables. For example, the
function field-div-gadget has parameters not only for its inputs (x and y) and output (z), but also for its
auxiliary (w), which is passed to both field-inv-gadget and field-mul-gadget. As another example, the
function field-to-bits-gadget has parameters (indicated by an ellipsis) for auxiliary variables to pass to
the sub-gadgets for checking that the weighted sum is below the prime. In general, a gadget construction
function must have parameters for all the variables used in its constraints and sub-gadgets, which does not
scale well as the gadgets grow in size and complexity.

5.2 Overcoming the Challenges

We have developed Prime Field Constraint Systems (PFCS), which extend (and subsume) R1CS by allow-
ing (1) equality constraints between arbitrary expressions and (2) explicitly hierarchical structuring of the
constraints.8 We have formalized the PFCS syntax and semantics in ACL2.9

Our PFCS (abstract) syntax is approximately described by the following ABNF grammar:

constant = <an integer among ..., -2, -1, 0, 1, 2, ...>

variable = <a symbol, distinct from the integers>

name = <a symbol>

expression = constant

/ variable

/ expression "+" expression

/ expression "*" expression

constraint = expression "=" expression

/ name "(" expression* ")"

relation = name "(" *variable ")" "{" *constraint "}"

8For our current purpose of verifying R1CSes, we only need the second extension. However, PFCS is more general, and
could be applied to other forms than R1CS, taking advantage of the first extension.

9acl2.org/manual topic: prime-field-constraint-systems

8

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/?topic=PFCS____PRIME-FIELD-CONSTRAINT-SYSTEMS

Expressions are built out of constants, variables, additions, and multiplications. Equality constraints are
between two expressions. Finite sequences of constraints can be grouped into named relations with variable
parameters, which may be used as constraints by replacing the parameters with expressions (i.e. they may
be “called” on expression arguments).

Our PFCS semantics is similar to, but more complex than, our R1CS semantics. It defines the evaluation
of expressions given an assignment and a prime, and the satisfaction of equality constraints, as expected,
similarly to the R1CS semantics. The satisfaction of a relation constraints rel(exp1,exp2,...) by an
assignment asg is defined as follows: evaluate the expressions to values (field elements) val1, val2, etc.
using asg; form an assignment asg1 of the values to the parameters of rel; the constraint is satisfied if
there exists an assignment asg2 of field elements to the non-parameter variables of rel such that all the
constraints that define rel are satisfied by the combination of asg1 and asg2.

A PFCS gadget is a defined relation according to the above grammar, accompanied by a partitioning
of the relation’s parameters into input and output variables. The non-parameter variables are auxiliary
variables, which the aforementioned semantics existentially quantifies over. A PFCS gadget semantically
corresponds directly to R̃ in Section 2.3; the defining constraints of the relation semantically correspond to
R in Section 2.3.

We believe that the PFCS formalism is general enough to describe more complex arithmetizations such as
Customizable Constraint Systems [STW23]. If we limit the PFCS equality constraints to have the R1CS form
(i.e. equality between a product of two linear combinations and a linear combination), the PFCS relations
provide an explicit hierarchical structuring of the R1CS constraints, which can be thus regarded as structured
R1CS.

Given the formalization in ACL2 of the PFCS formalism just sketched, PFCS gadgets in ACL2 can be
defined similarly to Section 3.4, by constructing their abstract syntax. For example, the field division gadget
and sub-gadgets can be defined as

(defun field-mul-gadget ()

(pfdef ’field-mul ; name

(list ’x ’y ’z) ; parameters

(pf= (pf* (pfvar ’x) (pfvar ’y)) (pfvar ’z)))) ; constraint

(defun field-inv-gadget ()

(pfdef ’field-inv ; name

(list ’x ’y) ; parameters

(pf= (pf* (pfvar ’x) (pfvar ’y)) (pfconst 1)))) ; constraint

(defun field-div-gadget ()

(pfdef ’field-div ; name

(list ’x ’y ’z) ; parameters

(pfcall ’field-inv (pfvar ’y) (pfvar ’w)) ; constraint

(pfcall ’field-mul (pfvar ’x) (pfvar ’w) (pfvar ’z)))) ; constraint

where the quotes ’ denote ACL2 symbols for relation and variable names, and where the pf... notations
construct PFCS expressions and definitions. There are some crucial differences with Section 3.4:

• The hierarchical structure is not in the ACL2 function definitions, which do not call each other, but
in the PFCS abstract syntax.

• Since PFCS supports the instantiation of parameters with arguments (e.g. the call to ’field-inv in
’field-div instantiates the parameters ’x and ’y with the arguments ’y and ’w), the gadgets use
fixed variable symbols, obviating the need to parameterize the gadgets on the variable names, avoiding
the scalability issues pointed out earlier.

• In ’field-div the variable ’w is auxiliary, because it is not part of the parameters.
While the above examples are unparameterized gadgets, gadgets with varying numbers of variables and

constraints need to be parameterized, but only over one or more non-negative numbers that specify num-
bers of variables and constraints as appropriate. Gadgets with fixed or varying numbers of variables and
constraints may need to be parameterized over the prime. However, this is a much smaller and scalable
parameterization than for the corresponding R1CS constructions, because variable names do not need to be
parameters. For example, a PFCS definition of the field-to-bits gadget in Section 3.4 is parameterized over

9

the prime, whose number of bits can be obtained in the ACL2 definition and used to construct a suitable
number of variables (corresponding to ys) with a common prefix and a numeric suffix (’y0, ’y1, ’y2, etc.).

Since the PFCS semantics existentially quantifies the auxiliary variables, correctness theorems, including
both soundness and completeness, can be stated more naturally than in the R1CS form, overcoming the
other challenge pointed out earlier. For instance, the correctness theorem for the field division gadget is

(defthm field-div-correctness

(implies ... ; details omitted

(equal (definition-satp ’field-div defs (list x y z) prime)

(equal z (field-div x y p)))))

which says that ’field-div is satisfied by the field elements x, y, and z if and only if z is the (non-error)
result of field-div on x and y; note that there is no mention of any w value for the auxiliary variable.10 A
theorem of this form can be used as an ACL2 rewrite rule in theorems about gadgets that use field division
as a sub-gadget; in fact, the proof of field-div-correctness makes use of the similarly phrased correctness
theorems for the field inversion and multiplication sub-gadgets.

6 Related Work

The formal verification of R1CS and similar constraint systems is a relatively new area of research, and
therefore there is not a large amount of literature yet [MT].

In previous work, we used the Axe toolkit11 to verify the functional correctness of the large and complex
R1CS of the BLAKE2s hash [CWC+21]. This verification was performed on the R1CS as a whole, extracted
from an earlier version of snarkVM, while in our current approach we are building and verifying gadgets
compositionally.

In earlier work at Kestrel, we used ACL2 and Axe to verify R1CS components of Ethereum’s Semaphore12

and of Zcash.13 This provided inspiration for many of the ideas presented in this paper.
Our work focuses on the formal verification of R1CS functional correctness using theorem provers. Com-

plementary approaches, described below, include using more automated techniques to detect issues in circuits,
or to prove higher-level properties (such as circuit equivalence and compliance with specifications) as far as
scalability allows. Used in conjunction, these approaches together with our approach can form a compre-
hensive toolkit for formally verifying properties about zero-knowledge circuits. Where the more automated
techniques fall short, the techniques outlined in this paper offer a more scalable and efficient approach, at
the cost of requiring more human guidance.

The QED2 tool [PCW+23] is a specialized verifier that combines a dedicated algorithm with an SMT
solver to automatically establish whether the outputs of a zero-knowledge circuit are uniquely determined by
the inputs, or are instead under-constrained; it may also fail to find an answer. Their approach is automated,
but our work addresses a stronger property (correctness); the unique determination of outputs from inputs is
implied by soundness in our approach, since the specification of a gadget is that of a functional computation.
Their approach works on individual circuits, not on parameterized circuit families like ours.

The SMT solver for finite fields described in [OKTB23], namely cvc5 with a theory of finite fields, has
been used to verify automatically whether circuits produced by certain compilers are sound (with respect to
the compilation source) and deterministic (i.e. the outputs are uniquely determined by the inputs). Since
our circuit specifications prescribe computations, in a way that may be similar to the source code input to
a circuit compiler, their soundness proofs are analogous to ours (with determinism implied by soundness, as
noted above); but their work does not cover completeness proofs. Their approach works on individual circuits,
not on parameterized circuit families like ours. For example, in our work, an unsigned n-bit integer addition
circuit family is verified once, quickly, for every possible n, and can be used to verify correct compilation
via a syntactic check; in contrast, in their work, instances of that family for different values of n are verified

10The proof of the theorem must suitably handle the existential quantification of course: PFCS does not sweep it under the
rug, but provides a structure in which the existential quantification can be handled more easily.

11acl2.org/manual topic: r1cs-verification-with-axe
12acl2.org/manual topic: semaphore
13acl2.org/manual topic: zcash

10

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=R1CS____R1CS-VERIFICATION-WITH-AXE
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/?topic=ZKSEMAPHORE____SEMAPHORE
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/?topic=ZCASH____ZCASH

separately, taking increasing resources as n grows. Another advantage of verifying parameterized circuit
families is that the definitions of these families are essentially formal models of the circuit construction
libraries and therefore help validate the libraries’ design and implementation. In summary, the tradeoff
between their approach and our approach is automation versus generality.

The Ecne tool [Wan] uses a dedicated algorithm to perform weak verification (their term to mean that
the outputs are uniquely determined by the inputs) and witness verification (their term to mean that the
outputs and the auxiliary variables are uniquely determined by the inputs); their paper also discusses strong
verification (i.e. correctness in our work), but only as future work. As already noted, the determinism
of output variables is a consequence of soundness in our work. The determinism of auxiliary variables is
unnecessary for correctness, but it could be addressed with our techniques.

Similarly to our compilation of Leo to R1CS (which forms the context for the work described in this
paper), there exist other domain-specific languages for zero-knowledge applications that are compiled to
circuits expressed as constraint systems, some of which involve the formal verification of at least some
phases of the compilation process: examples of the latter are PinocchioQ [FKL16], Coda [LKL+23], and
CirC [OWBB23]. Thus, there are opportunities for cross-fertilization, even though many of the details
depend on the specifics of the languages, compilers, and verification tools. The purpose is a little different
though: the approach described in this paper is for verifying circuits constructed by libraries like snarkVM,
which may be used as compilation targets, or for more general purposes such as programmatic construction
of circuits; as noted above, our approach also helps validate the gadget construction libraries.

Work such as [BM23] serves to ensure that the zero-knowledge proof systems work as intended. It is
orthogonal to our work, which serves to ensure that gadgets work as intended.

As an additional remark, the notion of existentially quantified circuits (EQCs) [OBW22] is related to the
existential quantification of auxiliary variables in PFCS.

7 Future Work

We plan to formalize and verify all the remaining snarkVM gadgets, using the more scalable PFCS form
discussed in Section 5, into which we are also migrating the already formalized and verified gadgets. We
also plan to formalize and verify PFCS transformations that capture certain optimizations performed by
snarkVM, which blend conceptually separate gadgets into gadgets with fewer variables and constraints. To
compare the ACL2 PFCS constructions with the snarkVM R1CS constructions, we plan to formalize and
verify a PFCS-to-R1CS flattener.

We will use the resulting definitions and theorems to formally verify the correctness of snarkVM’s com-
pilation of Aleo instructions to R1CS. Like we mimicked snarkVM’s R1CS gadget constructions in ACL2
(Section 3.4), we will mimic snarkVM’s translation of Aleo instructions to R1CS in ACL2; this translation
will also generate ACL2 correctness theorems between the input Aleo instructions to the output R1CS, which
will be proved using the gadget correctness theorems, combined with a formal semantics of Aleo instructions
and of encodings of Aleo instruction data types as in Section 2.2. This is a verifying compiler approach, as
opposed to a verified compiler approach: we do not verify the compilation process, but instead we have it
generate a theorem each time is run. In order to relate the ACL2-generated and snarkVM-generated gadgets,
we will compare them for equivalence each time the compiler is run, similarly to how we are currently testing
gadget samples (Section 3), but in a more rigorous and comprehensive way that leaves no gaps in the formal
correctness argument.

After that, our next goal is to verify the correctness of the compilation from Leo to Aleo instructions.
This work has already started [CWC+21], but needs to be developed much further. We will also use a
verifying compiler approach. Once this capability is in place, we will compose it with the one discussed
above to obtain an end-to-end formal correctness argument for the whole compilation from Leo to R1CS.

We also plan to apply formal verification to other parts of the Aleo blockchain, including the zero-
knowledge proof system, the consensus protocol, and application-level correctness.

11

8 Conclusion

We have described our ongoing and future work in formalizing and verifying the R1CS gadgets generated by
snarkVM, and how that fits in the broader picture of formal verification applied to the Aleo blockchain. Our
technical contributions are more general, applicable to other systems that generate R1CS gadgets, and also
to systems that use different gadget representations. The notion of PFCS may be of independent interest.

References

[0xP] 0xParc Foundation. Zk bug tracker. https://github.com/0xPARC/zk-bug-tracker.

[Alea] Aleo Team. Aleo instructions documentation. https://developer.aleo.org/aleo.

[Aleb] Aleo Team. Aleo, where applications become private. https://aleo.org.

[AZ16] Jeremy Avigad and Richard Zach. The epsilon calculus. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2016 edi-
tion, 2016. https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/.

[Bas20] Baseline. Potential security bug with the zk-snark verifier. https://github.com/

ethereum-oasis/baseline/issues/34, 2020.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis,
Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Com-
putational integrity with a public random string from quasi-linear PCPs. In Proceedings of the
36th Annual International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT ’17, pages 551–579, 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 326–349,
2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd
Annual International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages 459–474, 2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In Proceedings of the 36th
IEEE Symposium on Security and Privacy, S&P ’15, pages 287–304, 2015.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In Proceedings of the 2020 IEEE Symposium
on Security and Privacy, SP ’20, 2020. https://eprint.iacr.org/2018/962.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Proceedings of the 10th Theory of
Cryptography Conference, TCC ’13, pages 315–333, 2013.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Proceed-
ings of the 14th Theory of Cryptography Conference, TCC ’16-B, pages 31–60, 2016.

12

https://github.com/0xPARC/zk-bug-tracker
https://developer.aleo.org/aleo
https://aleo.org
https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
https://github.com/ethereum-oasis/baseline/issues/34
https://github.com/ethereum-oasis/baseline/issues/34
https://eprint.iacr.org/2018/962

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In Proceedings of the 23rd USENIX Security
Symposium, Security ’14, pages 781–796, 2014. Extended version at http://eprint.iacr.org/
2013/879.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and
Michael Walfish. Verifying computations with state. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 341–357, 2013.

[BGG16] Sean Bowe, Ariel Gabizon, and Matthew D. Green. ZCash parameter generation. https:

//z.cash/technology/paramgen.html, 2016. Accessed: 2017-09-28.

[BGG18] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK, 2018.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark pa-
rameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017.

[BM79] Robert S. Boyer and J Strother Moore. The Boyer-Moore Theorem Prover. Academic Press,
1979. https://www.cs.utexas.edu/users/boyer/ftp/nqthm/.

[BM23] Bolton Bailey and Andrew Miller. Formalizing soundness proofs of SNARKs. Cryptology ePrint
Archive, Paper 2023/656, 2023.

[Bow] Sean Bowe. bellman - a crate for building zk-snark circuits. https://github.com/zkcrypto/

bellman.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Paper 2022/1355, 2022.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy, S&P ’15, pages 250–273, 2015.

[CHM+19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. Marlin: Preprocessing zksnarks with universal and updatable srs. Cryptology ePrint
Archive, Report 2019/1047, 2019. https://eprint.iacr.org/2019/1047.

[CWC+21] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, and Eric Smith.
Leo: A programming language for formally verified, zero-knowledge applications. Cryptology
ePrint Archive, Report 2021/651, 2021. https://eprint.iacr.org/2021/651.pdf.

[DFKP13] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio Coin: building
Zerocoin from a succinct pairing-based proof system. In Proceedings of the 2013 Workshop on
Language Support for Privacy Enhancing Technologies, PETShop ’13, 2013.

[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Cinderella:
Turning shabby X.509 certificates into elegant anonymous credentials with the magic of verifiable
computation. In Proceedings of the 37th IEEE Symposium on Security and Privacy, S&P ’16,
pages 235–254, 2016.

[FKL16] Cédric Fournet, Chantal Keller, and Vincent Laporte. A certified compiler for verifiable com-
puting. In Proc. 29th IEEE Computer Security Foundations Symposium (CSF), 2016.

[FL14] Matthew Fredrikson and Benjamin Livshits. Zø: An optimizing distributing zero-knowledge
compiler. In Proceedings of the 23rd USENIX Security Symposium, Security ’14, pages 909–924,
2014.

13

http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2013/879
https://z.cash/technology/paramgen.html
https://z.cash/technology/paramgen.html
https://www.cs.utexas.edu/users/boyer/ftp/nqthm/
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2021/651.pdf

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645,
2013.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In Proceedings of the 37th Conference on the Theory and Ap-
plications of Cryptographic Techniques, CRYPTO ’17, pages 581–612, 2017.

[GN20] Hermenegildo Garćıa Navarro. Design and implementation of the Circom 1.0 compiler, 2020.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo - a Turing-complete STARK-friendly
CPU architecture. Cryptology ePrint Archive, Paper 2021/1063, 2021.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of
the 16th International Conference on the Theory and Application of Cryptology and Information
Security, ASIACRYPT ’10, pages 321–340, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings of the 35th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’16, pages 305–326, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing,
STOC ’11, pages 99–108, 2011.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Re-
port 2019/953, 2019. https://eprint.iacr.org/2019/953.

[HBHW18] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification,
2018.

[JKS16] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investigating the future of
criminal smart contracts. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 283–295, 2016.

[KM] Matt Kaufmann and J Strother Moore. The ACL2 theorem prover: Web site. http://acl2.org.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In Proceedings
of the 2016 IEEE Symposium on Security and Privacy, SP ’16, pages 839–858, 2016.

[KPP+14] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F. Sayed,
Elaine Shi, and Nikos Triandopoulos. TRUESET: Faster verifiable set computations. In Pro-
ceedings of the 23rd USENIX Security Symposium, Security ’14, pages 765–780, 2014.

[LF19] Daniel Lubarov and Brendan Farmer. R1cs programming: Zk0x04 workshop notes, October
2019.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptog-
raphy, TCC ’12, pages 169–189, 2012.

[LKL+23] Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan Wang, Yi Sun, Luke Pearson, Anders
Miltner, Işıl Dillig, and Yu Feng. Certifying zero-knowledge circuits with refinement types.
Cryptology ePrint Archive, Paper 2023/547, 2023.

14

https://eprint.iacr.org/2019/953
http://acl2.org

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updateable structured reference strings. Cryptology ePrint
Archive, Report 2019/099, 2019. https://eprint.iacr.org/2019/099.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. Preliminary version appeared in FOCS ’94.

[MT] Thomas Morgan and Ventali Tan. Formal verification of zk constraint systems. Medium Post.

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authentication for any set
of permissible transformations. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy, SP ’16, pages 255–271, 2016.

[OBW20] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. Unifying compilers for snarks, smt, and more.
Cryptology ePrint Archive, Report 2020/1586, 2020. https://eprint.iacr.org/2020/1586.

[OBW22] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler infrastructure for proof
systems, software verification, and more. In Proc. 43rd IEEE Symposium on Security and
Privacy (SP), pages 2248–2266, May 2022.

[OKTB23] Alex Ozdemir, Gereon Kremer, Cesare Tinelli, and Clark Barrett. Satisfiability modulo finite
fields. Cryptology ePrint Archive, Paper 2023/091, 2023.

[OWBB23] Alex Ozdemir, Riad S. Wahby, Fraser Brown, and Clark Barrett. Bounded verification for finite-
field-blasting. In Proc. 35th International Conference on Computer Aided Verification (CAV),
Part III, volume 13966 of Lecture Notes in Computer Science, pages 154–175, July 2023.

[PCW+23] Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodŕıguez, Jacob Van Gaffen, Jason Mor-
ton, Michael Chu, Brian Gu, Yu Feng, and Isil Dillig. Automated detection of underconstrained
circuits for zero-knowledge proofs. Cryptology ePrint Archive, Paper 2023/512, 2023.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy,
Oakland ’13, pages 238–252, 2013.

[Sem19] Semaphore. Vulnerability allowing double spend. https://github.com/appliedzkp/

semaphore/issues/16, 2019.

[Ste84] Guy L. Steele. Common Lisp the Language. Digital Press, 1984.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for succinct
arguments. Cryptology ePrint Archive, Report 2021/651, 2023. https://eprint.iacr.org/

2023/552.pdf.

[SWB19] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash counterfeit-
ing vulnerability successfully remediated. https://electriccoin.co/blog/

zcash-counterfeiting-vulnerability-successfully-remediated/, 2019.

[Tor19] Tornado19. Tornado.cash got hacked. by us. https://tornado-cash.medium.com/

tornado-cash-got-hacked-by-us-b1e012a3c9a8, 2019.

[Wan] Franklyn Wang. Ecne: Automated verification of ZK circuits.

[WSR+15] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. Ef-
ficient RAM and control flow in verifiable outsourced computation. In Proceedings of the 22nd
Network and Distributed System Security Symposium, NDSS ’15, 2015.

[ZPK14] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Alitheia: Towards practical
verifiable graph processing. In Proceedings of the 21st ACM Conference on Computer and
Communications Security, CCS ’14, pages 856–867, 2014.

15

https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2020/1586
https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16
https://eprint.iacr.org/2023/552.pdf
https://eprint.iacr.org/2023/552.pdf
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

A Background

A.1 Prime Fields

If p is a prime number,14 the set Fp = {0, . . . , p−1} of the non-negative integers below p forms a prime field,
whose arithmetic operations are

addition: x⊕p y = (x+ y) mod p
multiplication: x⊗p y = (x× y) mod p

which are modular versions of the ones on the integers.15 The prime field contains additive and multiplicative
inverses (the latter only for non-zero elements), and thus in effect it also has the arithmetic operations

subtraction: x⊖p y = (x− y) mod p
division: x⊘p y = z, where x = y ⊗p z, if y ̸= 0

where subtraction is a modular version of the one on the integers, while the division of x by y is the unique
z that yields x when multiplied by y, provided that y is not 0.16 The prime field operations satisfy many of
the same properties as the corresponding integer operations, e.g. addition is commutative and associative.

In this paper, as common in the literature, for brevity we denote the prime field arithmetic operations with
the same symbols as the integer arithmetic operations, i.e. +, −, ×, /; context should always disambiguate the
notation. Also following common practice in arithmetic, we may omit the multiplication symbol altogether,
e.g. (x+1)(y−1) stands for (x+1)× (y−1), which in turns may stand for (x⊕p 1)⊗p (y⊖p 1); the omission
should be always clear from context. We may also just write F, leaving p implicit.

A.2 R1CS

A Rank-1 Constraint System (R1CS) is a finite sequence of constraints, each of the form

(a0 + a1x1 + · · ·+ anxn) (b0 + b1y1 + · · ·+ bmym) = (c0 + c1z1 + · · ·+ clzl)

where n,m, l ≥ 0, each ai, bj , ck is an integer, and each xi, yj , zk is a variable. That is, an R1CS constraint is
an equality between the product of two polynomials and a polynomial, where each polynomial is multivariate
of degree 1, also called a linear combination. The three linear combinations may have variables in common
(e.g. some of the xi variables may be the same as some of the yj variables).

17 Some of the integer coefficients
may be 0, in which case they are normally omitted (along with the variable that they multiply, if any).

The variables in an R1CS range over a prime field F; the addition and multiplication operations are
interpreted as ⊕p and ⊗p. An assignment of values (i.e. elements of the prime field) to variables may or
may not satisfy a constraint (we always assume that assignments cover all the variables in the constraints of
interest), i.e. the equation may or may not hold when the variables are replaced by the assigned values and
all the additions and multiplications are carried out to reduce each side of the equality to a field element.
Given a system (i.e. sequence) of constraints, an assignment may or may not satisfy all the constraints of
the system (the relative order of constraints in the sequence does not matter for this). In other words, an
R1CS may or may not have solutions, i.e. assignments that satisfy all the constraints.

Good examples of how R1CS can represent basic computations are in [LF19] and [HBHW18].

A.3 zkSNARKs

Cryptographic proofs offering strong privacy and efficiency guarantees, known as zero-knowledge Succinct
Non-interactive ARguments of Knowledge (zkSNARKs), have received significant interest from academia

14A prime number is a positive integer that has exactly two distinct divisors, namely 1 and itself. Thus, the prime numbers
are 2, 3, 5, 7, 11, etc.

15If a and b are integers with b ̸= 0, there exist unique integers q and r such that a = b× q + r and 0 ≤ r < b. The modulus
of a and b is a mod b = r.

16In a prime field, this z always exists and is unique, when y ̸= 0, because y has a multiplicative inverse in the field.
17In fact, other presentations of R1CS in the literature use the same variables in all three polynomials, with the understanding

that some (often many, in fact) of the integer coefficients are 0.

16

and industry [Gro10, Lip12, BCI+13, GGPR13, PGHR13, BCG+13, BFR+13, DFKP13, BCTV14, KPP+14,
ZPK14, BCG+14, CFH+15, WSR+15, CFH+15, Gro16, JKS16, KMS+16, NT16, DFKP16, BCS16, GM17,
BBC+17, MBKM19, CHM+19, GWC19].

A zkSNARK allows a prover to convince a verifier of a statement of the form “given a function F and
input x, I know a secret w such that F (x,w) = true”. The notion of a zkSNARK, formulated in [Mic00,
GW11, BCCT12], has several definitions, and we consider one known as a publicly-verifiable preprocessing
zkSNARK (see [BCI+13, GGPR13]). This definition of a zkSNARK consists of three algorithms—a setup,
a prover, and a verifier :

• Setup(F) → (pkF , vkF) – The setup takes as input a predicate F and outputs a proving key pkF and a
verification key vkF . The setup is often considered trusted as its intermediate computation steps involve
values that must remain secret; however ongoing work, such as [BCG+15, BGG16, BGM17, BGG18],
offers mitigations for this requirement. The setup outputs keys (pkF , vkF) which are used as public
parameters. The setup only needs to be run once.

• Prover(pkF , x, w) → π – The prover takes as input the proving key pkF , a public input x for F , and
a private input w for F , and outputs a proof π. The proof π attests to the statement “given F and
x, I know a secret w such that F (x,w) = true”, while revealing no information about w beyond what
is implied by the statement. The prover can be run by anyone who wishes to prove their claim to the
statement.

• Verifier(vkF , x, π) → true/false – The verifier takes as input the verification key vkF , the public input
x for F , and the proof π, and outputs true if the proof is valid and correct, otherwise outputs false.
The verifier can be run by anyone who wishes to verify a claim to the statement.

In a zkSNARK, the predicate F is represented as a zero-knowledge circuit, i.e. a system of constraints
that are equalities over arithmetic expressions interpreted in a prime field (see Section A.1). Depending on
the zkSNARK’s proof system, the constraints have specific forms, such as the R1CS form (see Section A.2).

zkSNARKs output “short” proofs, in the sense that the size of the proof is logarithmic in the size of
the circuit C, i.e. |π| = Oλ(log |C|), where λ is a security parameter related to the size of the involved
cryptographic keys. zkSNARKs verify proofs “succinctly”, in the sense that the time to verify a proof is
linear in the size of the public input x and logarithmic in the size of the circuit C, i.e. t = Oλ(|x|, log |C|),
where λ is the same security parameter mentioned just above.

zkSNARKs allow applications to provide strong privacy guarantees to users. One example is Zcash
[BGG16, BCG+14], a popular cryptocurrency that relies on zkSNARKs as its fundamental technology.
Zcash is specifically designed to protect the privacy of users’ payments. In this cryptocurrency example, w
is the private payment details, x is the encryption of the payment details, and F is a predicate that checks
whether x is a valid encryption of w and that w is a legitimate payment.

In recent years, there have been several efforts to develop preprocessing zkSNARKs with a universal and
updatable structured reference string (SRS) [MBKM19, CHM+19, GWC19]. Various real-world applications
require the SRS to be generated through cryptographic “ceremonies” [BGG16] to ensure that no single party
has exclusive control over the SRS sampling process.

Recent work [CHM+19] has demonstrated that generating proofs for an R1CS instance ϕ using a universal
SRS achieves practical performance capabilities for both the zkSNARK prover and verifier. It is worth noting
that the difference in efficiency between universal SRS and state-of-the-art circuit-specific SRS [Gro16] is
competitive. For the purpose of this paper, it suffices to state that there exists performant (and universal)
proof systems for the circuit-specific SRS to be used in.

A.4 snarkVM

At a high level, snarkVM is a virtual machine for zero-knowledge execution which allows users to produce
publicly verifiable transactions that attest to the offline computation of programs through the use of succinct,
zero-knowledge proofs. Validators can run constant-time verification algorithms to verify these proofs rather
than relying on expensive re-executions. Aleo is based on the notion of decentralized private computation
(DPC), a cryptographic primitive introduced in ZEXE [BCG+20].

Leo [CWC+21] is the programming language of Aleo, a high-level, functional, feature-rich language
that allows developers to write general purpose ZK applications. Leo program compilation generates Aleo
instructions [Alea], a lower level intermediate representation (IR) language. One of snarkVM’s primary

17

functions is to compile Aleo instructions programs into R1CS. Interpreting programs in Aleo instructions,
rather than Leo code, carries several benefits:

• Simplification: Aleo instructions simplify the high-level Leo code into a form that is easier to translate
into R1CS gadgets. They remove complex control structures, function calls, etc., and boil down the
code to simpler operations.

• Abstraction: Aleo instructions provide a layer of abstraction between the high-level Leo language and
the low-level R1CS gadgets. This makes it possible to optimize the generation of R1CS gadgets without
having to touch the high-level Leo code.

• Optimization: By having an IR, it is possible to apply optimizations at this level before generating the
R1CS gadgets. This can make the resulting zero-knowledge proofs more efficient.

• Analysis: The IR can also be used to analyze the code, for instance to check for certain properties or
to optimize the code.

The actual process of generating R1CS happens in the Rust code of snarkVM. First, the virtual machine
parses a program into opcodes which are pushed onto a stack data structure. Next, a series of cryptographic
checks verifies that the caller is authorized to execute all program functions and value is conserved. Each
opcode in Aleo instructions corresponds to an R1CS gadget that can be called to accumulate constraints
from the stack. The resulting R1CS is essentially a set of linear equations with a specific form. Although
the code may have a hierarchical structure for creating these constraints, the resulting constraint system is
flat, with variables assigned with increasing indices. This linear form is important for subsequent steps in
the zero-knowledge proof generation process.

It is important to note that this approach to generating constraints-—-compiling from a higher-level
language or generating them programmatically [GN20, OBW20, FL14]-—-is not unique to snarkVM or Aleo.
This is a common strategy in the area of zero-knowledge proofs and cryptographic distributed systems, which
means that the formal verification techniques for snarkVM described in this paper may be broadly extended
to other systems.

A.5 ACL2

ACL2 [KM] is a general-purpose interactive theorem prover based on an untyped first-order logic of total
functions that is an extension of a purely functional subset of Common Lisp [Ste84]. Predicates are functions
and formulas are terms; they are false when their value is nil, and true when their value is t or anything
non-nil.

The ACL2 syntax is consistent with Lisp. A function application is a parenthesized list consisting of
the function’s name followed by the arguments, e.g. x+ 2× f(y) is written (+ x (* 2 (f y))). Names of
constants start and end with *, e.g. *limit*. Comments extend from semicolons to line endings.

The user interacts with ACL2 by submitting a sequence of theorems, function definitions, etc. ACL2
attempts to prove theorems automatically, via algorithms similar to NQTHM [BM79], most notably sim-
plification and induction. The user guides these proof attempts mainly by (i) proving lemmas for use by
specific proof algorithms (e.g. rewrite rules for the simplifier) and (ii) supplying theorem-specific ‘hints’ (e.g.
to case-split on certain conditions).

The factorial function can be defined as

(defun fact (n)

(if (zp n)

1

(* n (fact (- n 1)))))

where zp tests if n is 0 or not a natural number. Thus fact treats arguments that are not natural numbers
as 0. ACL2 functions often handle arguments of the wrong type by explicitly or implicitly coercing them to
the right type—since the logic is untyped, in ACL2 a ‘type’ is just any subset of the universe of values. The
function fact is defined in the formal logic of ACL2 and thus can be reasoned about (see below); it is also
a Lisp function that can be executed.

To preserve logical consistency, recursive function definitions must be proved to terminate via a measure
of the arguments that decreases in each recursive call according to a well-founded relation. For fact, ACL2

18

automatically finds a measure and proves that it decreases according to a standard well-founded relation,
but sometimes the user has to supply a measure.

A theorem saying that fact is above its argument can be introduced as

(defthm above

(implies (natp n)

(>= (fact n) n)))

where natp tests if n is a natural number. ACL2 proves this theorem automatically (if a standard arithmetic
library is loaded), finding and using an appropriate induction rule—the one derived from the recursive
definition of fact, in this case.

ACL2 provides logical-consistency-preserving mechanisms to axiomatize new functions, such as indefinite
description functions. A function constrained to be strictly below fact can be introduced as

(defchoose below (b) (n)

(and (natp b)

(< b (fact n))))

where b is the variable bound by the indefinite description. This introduces the logically conservative axiom
that, for every n, (below n) is a natural number less than (fact n), if any exists—otherwise, (below n)

is unconstrained. This function has a logical definition, but does not have an executable Lisp counterpart.
ACL2’s Lisp-like macro mechanism provides the ability to extend the language with new constructs

defined in terms of existing constructs. For instance, despite the lack of built-in quantification in the logic,
functions with top-level quantifiers can be introduced. The existence of a value strictly between fact and
below can be expressed by a predicate as

(defun-sk between (n)

(exists (m)

(and (natp m)

(< (below n) m)

(< m (fact n)))))

where defun-sk is a macro defined in terms of defchoose and defun, following a known construction
[AZ16].

B Evaluation Details

B.1 Discovering Bugs

By verifying samples of R1CS extracted from snarkVM, we discovered two vulnerabilities in the gadget
implementations. We also identified fixes for each of these bugs, and verified that each fix resolved the
vulnerability. We describe each of these bugs and their fixes below.

B.1.1 Underconstrained Bitwise Decomposition

We discovered a bug in the bitwise decomposition gadgets: Field::to bits le and Scalar::to bits le.
Both of these gadgets decompose a field element, either in the base field or in the scalar field, into a sequence
of bits. In the original implementation, the bits of the decomposition are provided as witnesses to the gadget.
Note that the witness variables are outputs, per the formalism in Section 2. The gadget then verifies that the
reconstructed decomposition is equal to the original field element. A general form of this gadget, expressed
as constraints, is given in Section 3.4.

In checking samples of these gadgets against the formal specification, we found that these gadgets were
unsound and underconstrained. That is, there may exist two distinct assignments to the witness variables that

19

satisfy the constraints defined by the original gadget. Consider the case where we invoke Field::to bits le

on the zero field element. Two valid assignments to the witness variables are

ω0 = 0, ω1 = 0, ω2 = 0, . . . , ω252 = 0

ω0 = m0, ω1 = m1, ω2 = m2, . . . , ω252 = m252

where mi is the ith bit of the prime of the field (the prime that defines our field consists of 253 bits). The
first assignment is the bitwise decomposition of the zero field element, and the second assignment is the
bitwise decomposition of the prime. Both assignments satisfy the bit constraints, that is, each variable is
either zero or one. The first assignment clearly sums to zero, and the second assignment sums to the prime,
which wraps around to zero in the prime field.

To resolve this issue, we add constraints requiring that the value of the resulting bits of Field::to bits le

or Scalar::to bits le, not reduced modulo the prime, is less than the prime. This less-than check is im-
plemented by a bitwise comparison.

B.1.2 Underconstrained Square Root

We discovered a bug in the Field::sqrt gadget. This gadget computes the square root of a field element.
The gadget witnesses the square root of the field element and verifies that the square of the witness is equal
to the original field element. The gadget, defined as constraints, is given below.

(ω0) (ω0) = (ι0)

where ω0 is the witness variable and ι0 is the field element to take the square root of.
In checking samples of this gadget against the formal specification, we found that this gadget was also

underconstrained. The square root in a field, if it exists, is usually not unique. For example, 1 and p − 1,
where p is the prime number that defines the field, are both square roots of 1. This may not be a problem if
it is used as part of a larger computation, but because there is a sqrt Aleo instructions opcode, the gadget
that the opcode compiles into must be a deterministic function.

There are a number of possible fixes for this issue. One fix is to require that the witness variable be less
than or equal to (p− 1)/2. This requires a bitwise comparison, adding significant cost to the gadget.

B.2 Optimizing Existing Gadgets

In defining formal specifications and verifying the snarkVM gadgets, we discovered a number of optimiza-
tions. A number of these optimizations have been implemented in snarkVM and verified against the formal
specifications. We describe a few of these optimizations below.

B.2.1 Optimizing Unsigned Division

The Integer::div wrapped gadget implements unsigned wrapping division by witnessing the quotient and
remainder of the division and enforcing that the quotient and remainder satisfy the constraints of the division:

(ι1) ̸= (0)
(ω0 ∗ ι1 + ω1) = (ι0)

(ω1) < (ι1)

where ι0 is the dividend, ι1 is the divisor, ω0 is the quotient, and ω1 is the remainder. Note that these
constraints are not in the R1CS form, but in an abstracted short-hand. ι0 and ι1 are unsigned integers, each
of which is a sequence of variables (in an R1CS) constrained to be either zero or one. ω0 and ω1 are also
unsigned integers, as sequences of bit variables.

The first constraint checks that the divisor is not zero. This is a gadget in itself. The second constraint
checks that the quotient and remainder form a valid decomposition of the dividend. The third constraint
checks that the remainder is less than the divisor.

Observe that the first constraint is redundant. If the divisor is zero, then the third constraint will fail since
the remainder is unsigned integer and must be less than the divisor. We have removed the first constraint
from the gadget, which reduces the number of constraints by one.

20

Originally, for the second constraint, each of ι0, ι1, ω0, and ω1 was cast into a field element via the
Field::from bits gadget, and the check was performed in the field. Due to the size of the field prime,
u128 integers could not use this method as the multiplication in field may wrap around the prime. Instead,
the gadget originally performed binary long division directly on the bits of the dividend and divisor. This
was a costly operation, and was replaced with a check of the second constraint in the integer domain using
the Integer::mul checked and Integer::add checked gadgets. This optimization reduced the cost of the
gadget for u128 integers by an order of magnitude.

B.2.2 Implicitly Implementing Overflow Checks

The Integer::add checked and Integer::mul checked gadgets implement addition and multiplication of
unsigned integers, checking for overflow. In both cases, the gadget computes the result in the field and
extracts the resulting bits (including the carry bits) from the field elements via Field::to bits le. The
carry bits are checked to be zero and the result bits are constructed into an integer. In the case of checked
addition, there is one carry bit and N result bits, where N is the number of bits in the integer. In the case
of checked multiplication, there are N carry bits and N result bits, where N is the number of bits in the
integer.

To illustrate this optimization, consider the constraints for the Integer::add checked gadget, for u8.

(ι0) (1− ι0) = (0)
. . .

(ι7) (1− ι7) = (0)
(ι8) (1− ι8) = (0)

. . .
(ι15) (1− ι15) = (0)
(ω0) (1− ω0) = (0)

. . .
(ω8) (1− ω8) = (0)

(ι0 + 2ι1 + · · ·+ 128ι7 + ι8 + 2ι9 + · · ·+ 128ι15) (1) = (ω0 + 2ω1 + · · ·+ 256ω8)

The first set of constraints check that the input bits of the first operand, ι0, . . . , ι7, are either zero or one.
The second set of constraints check that the input bits of the second operand, ι8, . . . , ι15, are either zero or
one. The third set of constraints check that the output bits, ω0, . . . , ω7, and the carry bit, ω8, are either
zero or one. The final constraint checks that the result of the addition in the field is correct. Note that the
final constraint is sound as long as the linear combination and the product in the field do not overflow the
prime of the field. Therefore, this optimization does not hold for checked unsigned multiplication for u128
integers.

Instead of explicitly computing the carry bits to check for overflow, we can implicitly check for overflow
by checking that the result of the addition in the field domain is equal to the witnessed result in the field
domain.

The constraints for the optimized Integer::add checked gadget, for u8, are given below.

(ι0) (1− ι0) = (0)
. . .

(ι7) (1− ι7) = (0)
(ι8) (1− ι8) = (0)

. . .
(ι15) (1− ι15) = (0)
(ω0) (1− ω0) = (0)

. . .
(ω7) (1− ω7) = (0)

(ι0 + 2ι1 + · · ·+ 128ι7 + ι8 + 2ι9 + · · ·+ 128ι15) (1) = (ω0 + 2ω1 + · · ·+ 128ω7)

The final constraint implicitly checks that the carry bit is zero. This optimization saves one constraint in
the case of checked unsigned addition. Similar optimizations can be made for checked multiplication, saving
cN constraints, for some constant factor c.

21

Table 1: Constraint counts after fixes and optimizations

Gadget Name original # of constraints updated # of constraints
Field::to bits le 254 507
Scalar::to bits le 252 503
u16::add checked 18 16
u32::add checked 35 33
u64::mul checked 194 65
u128::mul checked 1235 328
u128::div wrapped 16641 845
i128::div wrapped 17544 1620
u32::pow checked 7229 5245
u64::pow checked 14175 10333
u8::shl checked 1886 1096
u16::shl checked 3646 2622

B.2.3 Concisely Checking that Bits Are Zero

A number of the integer gadgets check that a sequence of bits are zero. Originally, this check was implemented
by applying logical ORs in chain over the bits in question, asserting that the final expression was equal to
zero. This implementation requires O(N) constraints, where N is the number of bits checked.

Instead, we can convert each bit into a field element and check that the sum of the field elements is zero.
This implementation requires a single constraint but does introduce a number of additional variables. While
this reduces overall proving cost, there are some nontrivial costs associated with the additional variables as
they increase the density of the R1CS matrices.

B.3 Metrics

Preliminary metrics on changes in the number of constraints after fixes and optimizations are in Table 1.

22

	Introduction
	Formal Framework
	Computations
	Data Encodings
	R1CS Gadgets
	Correctness

	Formalization and Verification in ACL2
	Specifications, the Units of Verification
	Formal Specification
	R1CS Formalization
	R1CS Gadget Formalization
	Correctness Theorems

	Evaluation
	Towards a More Structured Representation
	Challenges in the Current Approach
	Overcoming the Challenges

	Related Work
	Future Work
	Conclusion
	Background
	Prime Fields
	R1CS
	zkSNARKs
	snarkVM
	ACL2

	Evaluation Details
	Discovering Bugs
	Underconstrained Bitwise Decomposition
	Underconstrained Square Root

	Optimizing Existing Gadgets
	Optimizing Unsigned Division
	Implicitly Implementing Overflow Checks
	Concisely Checking that Bits Are Zero

	Metrics

