
Witness Authenticating NIZKs and Applications⋆

Hanwen Feng and Qiang Tang

School of Computer Science
The University of Sydney

{hanwen.feng, qiang.tang}@sydney.edu.au

Abstract. We initiate the study of witness authenticating NIZK proof systems (waNIZKs), in which
one can use a witness w of a statement x to identify whether a valid proof for x is indeed generated
using w. Such a new identification functionality enables more diverse applications, and it also puts new
requirements on soundness that: (1) no adversary can generate a valid proof that will not be identified
by any witness; (2) or forge a proof using some valid witness to frame others. To work around the
obvious obstacle towards conventional zero-knowledgeness, we define entropic zero-knowledgeness that
requires the proof to leak no partial information, if the witness has sufficient computational entropy.

We give a formal treatment of this new primitive. The modeling turns out to be quite involved and
multiple subtle points arise and particular cares are required. We present general constructions from
standard assumptions. We also demonstrate three applications in non-malleable (perfectly one-way)
hash, group signatures with verifier-local revocations and plaintext-checkable public-key encryption.
Our waNIZK provides a new tool to advance the state of the art in all these applications.

1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [8,27] allow one to prove a statement by send-
ing a single message to a verifier without revealing anything beyond the validity of the statement.
NIZKs have been a ubiquitous tool in modern cryptography and play an essential role in construct-
ing many important primitives such as chosen-ciphertext secure encryptions [38,41], anonymous
authentication tools such as group and ring signatures [21,20], and many more.

While privacy is essential, some interesting functionalities become unattainable when consider-
ing the strong privacy definition where all partial information is protected. For example, doing a
binary search for a plaintext in ciphertext is elusive when using a semantically secure encryption.
How to construct secure schemes enabling certain functionalities, while maintaining the best possi-
ble privacy, is one of the central questions in modern cryptography and has been studied in a large
amount of works in different contexts, e.g., [5,17,35,11,14].

In this paper, we turn our attention to NIZK proofs and consider to add an “identification”
functionality: a witness w of a statement x (which potentially has many valid witnesses) in an NP
language L can be used check whether a valid proof π showing x ∈ L was generated by the witness

w, i.e., Identify(x,w, π)
?
= 1. It means that each witness w is “committed” to the proof π generated

using w. Other than that, the proof will remain “zero-knowledge”. Such an exclusive checking
capability immediately enables many interesting applications. For instance, one could easily realize
a private/covert communication channel between administrators of an anonymous token system
[34] as follows: administrators may consider using shared two witnesses w1, w2 to indicate whether
a valid “anonymous certificate” falls into a certain blacklist (or whitelist) by using w1; in this way,

⋆ A preliminary version of this paper appeared in Advances in Cryptology- - CRYPTO 2021, Part IV, pp. 3–33. This
full version includes proofs for all theorems and lemmas.

only the administrators obtain this extra information which remains hidden to everyone else in the
system. As pointed out in the recent work of [34], such a tool is important to enable CDN providers
to distinguish potentially malicious requests without breaching anonymity.

Adding this simple identification functionality also naturally posts new requirements on sound-
ness: (1) if an attacker who knows a set of witnesses of a statement x generates a proof π for x,
this proof must be identified by one of these witnesses; and (2) if a witness w is not known to
an attacker (who may have other witnesses), none of the proofs generated by the attacker will be
identified by w, i.e., Identify(x,w, π) = 0.

We put forth a new notion called witness-authenticating NIZKs to capture all those require-
ments. Essentially, we add a way of distinguishing between different witnesses in NIZKs. As we will
demonstrate soon in the applications, our new notion provides a new tool to advance the state of
the art in multiple different domains: non-malleable (perfectly one-way) hash, group signature with
verifier-local revocation, and plaintext-checkable public-key encryption.

1.1 Our contributions

We overview our contributions in more detail below.

Definitional contributions. Adding a single identification functionality and defining the witness-
authenticating NIZK proof system turn out to be highly involved; we have to revisit essentially every
single property of the conventional NIZK proof system, and multiple subtleties exist.

Syntax and identifier witness. The basic idea is to augment a non-interactive proof system with an
Identify(·) algorithm to check whether a witness he is possessing was used to generate the proof.
However, often in practice, only a part of the witness (such as a secret key) is bound to a user; while
other parts, such as random coins, may not be always available. To avoid unnecessary restrictions
on the applications, we introduce a generalization that we only require the Identify algorithm to
take into a part of the witness. A bit more formally, we split each witness w into wI and wNI ,
we call the former wI identifier witness, and the remaining part wNI non-identifier witness. Using
an identifier witness wI of x, one can check whether a proof for x was generated using a witness
in the form of (wI , ⋆). If Identify(x, π, wI) = 1, we say π is authenticated by wI . When privacy is
not considered in the context, we call such a proof system a witness-authenticating non-interactive
proof system (waNIPS for short).

Entropic zero-knowledgeness. As a witness-authenticating proof has to convey at least one bit
about the identifier witness to make the identification functionality possible, the conventional zero-
knowledgeness that hides all partial information of witness becomes out of reach. Therefore, we
study the best possible privacy definition that we call the entropic zero-knowledgeness (entropic
ZK), and call a waNIPS with this property a waNIZK.

– Defining unpredictable sampler. Similar to that semantic security is impossible for deterministic
encryption, if an identifier witness can be guessed easily by the adversary, the Identify algorithm
enables the adversary to trivially distinguish a real proof from a simulated proof. It follows
that the privacy definition should be defined for languages with “unpredictable” (identifier)
witnesses. To model that, we introduce an unpredictable sampler G (provided by the adversary)
which ensures that for a random sample (x,wI , wNI)← G(1λ), given x, finding the associated
identifier witness wI is hard.
Several subtle issues appear. (1) In applications, if the whole statement is generated by the
sampler, it may cause a trivial impossibility; for example, if a waNIZK is deployed in a larger

2

system, which requires an honestly generated public parameter pp, the witness might be leaked
completely if pp is malicious. We handle it by introducing a parameter generation algorithm
that is not under the control of the adversary or sampler G. (2) In an adaptive setting, the
sampler G could be generated by the attacker after seeing the CRS. But now, the sampled
statement could simply contain one proof for which the corresponding witness is never output.
This will enable a malicious prover to generate a proof without using any witness, which clearly
violates the knowledge soundness. We get around this by requiring the unpredictability of the
identifier witness to hold for every CRS value (instead of a randomly chosen one). Please see
Sect. 3.1 for details.

– Defining entropic ZK. We define the entropic ZK, somewhat analogous to entropic security
in encryptions [5], by capturing that adversaries still cannot learn anything more about wI

from π if wI is sampled from the unpredictable sampler G (specified by the adversary). In
conventional ZK, the whole witness is provided by the adversary; now adversary provides only
a sampler. Directly integrating the unpredictable sampler to the conventional adaptive zero-
knowledge definition would restrict adversary from learning side information about the witness
via other or directly related proofs. We let the adversary to obtain proofs on related statements
by querying a proof oracle. Please see Sect.3.2 for details.

Soundness definitions. As very briefly mentioned above, soundness definitions also require a ma-
jor upgrade because of the new identification functionality. Besides the conventional (knowledge)
soundness, we require two new properties to show that the identifier witness to be “committed”
to the proof: (1) a proof must be identifiable by one of the identifier witnesses used in the proof
generation; (2) a malicious prover cannot “forge” a proof that will be identified by some identifier
witness she does not know. Concretely,

– To formulate the former property, we augment the knowledge soundness (named authenticating
knowledge soundness), saying that a witness extracted by a knowledge extractor from a valid
proof not only validates the statement being proven, but also authenticates the proof.

– The latter property, which we call unforgeability, also relies on the unpredictable sampler; it
is analogous to “unforgeability” in MAC. Namely, for a target witness generated from the
unpredictable sampler, the adversary who can obtain multiple proofs generated from it still
cannot produce a new proof that will be authenticated by this identifier witness.

Note that unforgeability prevents a malicious prover from “framing” a witness. In some ap-
plications, a malicious prover may generate a proof that links to a string which is not even a
witness. We thus also introduce a notion called identifier uniqueness, which ensures that it is
infeasible to generate a valid proof that could be authenticated by two different strings.

We remark that unforgeability and identifier uniqueness are incomparable: an attacker that
cannot forge a proof being authenticated by an unknown witness may be able to produce one
being authenticated by two witnesses he possesses; on the other hand, for technical reasons in the
definitions, the identifier uniqueness is not strictly stronger either. But each could be useful in
various applications when working together with other properties from the context.

There are several versions of weakening, e.g., in the CRS-independent setting; and strengthening.
We refer detailed discussions in Sec.3.3.1

1 We note that in the group signature of [2], a related notion called testable weak zero-knowledge (TwZK) was
introduced as an attempt to add identification functionality. However, TwZK was only against uniform adversaries.

3

Constructions of witness-authenticating NIZK proofs. With the definitions and models
settled, we are now ready to discuss the constructions.

Basic challenges. A natural idea of our waNIZK construction is to attach an authentication tag
to the NIZK proof, and augment it with a proof of the validity of the tag. Verification could be
easy, while security posts several challenges. Since we want to remain “zero-knowledge” when the
witness is unpredictable, the tag should not leak any other partial information. I.e., it should be
“simulatable”, even if the same witness is used to generate multiple proofs; further dealing with
“unforgeability” incur extra difficulties in following different cases.

Warm-up constructions. Let us start with a special case where the identifier witness is uniform (or
pseudorandom) even conditioned on all public parameters. For example, in group/ring signatures,
the identifier witness is each user’s secret key. We notice that simulatability can be realized by
pseudorandomness, and we could simply use the witness as the key to generate the tag using a
PRF. Namely,

TagPRF(w
I) = (t,PRF(wI , t)), for a random t.

The “simulatability” and unforgeability of this tag are simply implied by the pseudorandomness,
which further preserve the entropic zero-knowledgeness and unforgeability (the underlying NIZK
should also satisfy certain ”non-malleability” to prevent from modifying a valid proof). If the
identifier uniqueness is in need, we can further require the collision-resistance of the PRF [19]. We
remark that this solution that enables very efficient instantiations, could be readily useful.

A more general solution needs to deal with a general unpredictable sampler. We may apply a
strong randomness extractor [32] to the identifier witness to pump out a uniform key, then apply
PRF to generate the tag. Some subtle issues arise immediately: (1) the same witness as a random
source may be used to generate multiple proofs (choosing different seeds). Thus, the extractor has
to be re-usable thus requiring much more entropy (or the outer layer PRF needs to be related-key
secure, which is only known for special relations); (2) a malicious prover might choose a “bad”
seed to break the unforgeability, as the security of randomness extractor requires a uniform and
independent seed. We resolve it by simply leveraging the common reference string, namely, using
a part of CRS as the fixed seed. Thus the PRF is evaluated multiple times under the same key.
However, as a consequence, this technique can only be applied to the setting that the statements
are from a CRS-independent sampler.

Full-fledged solution for CRS-dependent samplers. In many applications (e.g., in all three applica-
tions we will show), the unpredictable sampler may be generated after the adversary sees the CRS;
thus, it depends on the CRS. The construction now cannot simply obtain a string (e.g., the seed)
from the CRS. Instead, we need to somehow “force” the honest behavior.

Let us examine the two soundness issues above: first, if we do not want to get into the difficulty
of reusable extractor or related-key secure PRF, it is not clear how to force the same fixed seed
(as in the CRS) to be used for every prover; moreover, proving a seed is generated uniformly
already seems elusive. These obstacles motivate us to deviate from the Extract-then-PRF path. We
first note that there are alternatives for “simulatability”. Also, to ensure the honest generation of
randomness (such as seed) used in generating the tag, we may explore a parameter with structure

Thus it can only be applied to more restricted languages (where the restrictions were informally described) and
was impossible for non-uniform adversaries. Besides, soundness definition and provable constructions were not
discussed.

4

or certain functionality that we can prove to bind the witness to the tag. Since we still need the
identification function, those observations together lead us to the choice of deterministic public-key
encryption (DPKE).

More precisely, let DEnc be the encryption algorithm of a DPKE scheme. We first generate a
fresh public key pk, encrypt wI to c under pk, and set (pk, c) as the tag. One can easily check

whether w′ is the encrypted message (identify here) w.r.t c by checking DEnc(pk,w′)
?
= c.

Now for entropic ZK, we note that the DPKE can provide simulation security if the message
is unpredictable. More importantly, this needs to hold even facing multiple proofs on potentially
related statements. Viewing the statements as auxiliary input on the identifier witness, we can
obtain those from DPKE with multi-user security with auxiliary inputs, which can be based on
d-linear assumption [13]. Next, for soundness, and particularly unforgeability, we first need to
ensure the well-formedness of pk. We can leverage the correctness of encryption and just prove
a well-formedness of the ciphertext. Furthermore, “unforgeability” can be obtained by using a
simulation-extractable NIZK proof.

We remark that our construction offers a framework that can have a hierarchy of instantiations.
If we want the resulting waNIZK systems to have stronger (or weaker) property, we can instantiate
the underlying NIZK correspondingly. For details, we refer to Sect.4.2.

Applications. Our abstraction of waNIZK can provide a new tool for many interesting applica-
tions. Here we will showcase three non-trivial applications in hash functions, (revocable) anonymous
authentication, and encryption in more detail. Each of them advances the state of the art in the
corresponding topic. We believe there are many more applications which we leave for future explo-
ration.

Non-malleable (perfectly one-way) hash from standard assumptions. Many works have been around
trying to realize partial properties of random oracles, ideally, via standard assumptions. Perfectly
one-way hash and non-malleable hash are two important primitives for this purpose, in settings
that include Bellare-Rogaway encryption scheme [6], HMAC[29], and OAEP [10].

Perfectly one-way hash requires its (randomized) evaluation algorithm to hide all partial infor-
mation of the pre-image, even with some auxiliary inputs, while providing a verification algorithm
to check the correctness of evaluation. Non-malleable hash requires that one cannot “maul” a hash
value into a related one even with some auxiliary information about the pre-image 2. Both of them
also require collision resistance. Currently, perfectly one-way hash w.r.t general auxiliary inputs
is only known to exist under a not-efficiently-falsifiable assumption [18], which was shown to con-
tradict the existence of iO [16]; while non-malleable hash are either from perfectly one-way hash
[9] or in the random oracle model [3]. Given the recent progress [33] on iO, the mere existence of
non-malleable hash or perfectly one-way hash (with general auxiliary inputs) is still open.

We confirm the feasibility by presenting a new framework for non-malleable (perfectly one-way)
hash functions from waNIZKs that can be based on the standard assumptions like the d-linear
assumption. The starting point is to view the hash as a commitment that allows others to verify
the committed value: it computationally determines an input and hides all partial information.
This view inspires us to obtain a non-malleable (and perfectly one-way) hash by adding a proof of
well-formedness of the commitment via waNIZKs where the input is set as the identifier witness.
Perfect one-wayness comes from entropic ZK, collision resistance from identifier uniqueness, while
non-malleability comes from (related-witness) unforgeability. For details, we refer to Sect. 5.

2 The simulation based non-malleability was shown to imply perfect one-wayness [9].

5

Auxiliary-input group signatures with verifier-local revocation. Group signatures [21] allow a user
to sign a message on behalf of a group while hiding the signer’s identity. A major issue is the
revocation of users whose membership should be cancelled without influencing others. In group
signatures with verifier-local revocation (VLR) [12], the signing procedure and the group public key
will be independent of the revocation list, making this primitive appealing for systems providing
attestation capabilities. Indeed, some instantiations of VLR group signatures such as the direct
anonymous attestation scheme [14] have been already widely deployed in trusted platform modules
(TPM) including Intel’s SGX.

Many works have shown these TPMs are vulnerable to “side channel” attacks by which attackers
could learn partial information about the secret key. Indeed, existing VLR group signature schemes
[35,12,14,15,11] do not provide any security guarantee when auxiliary information about secret
key is leaked. We therefore study the problem of leakage-resilient VLR group signature scheme,
particularly, in the auxiliary-input model, the strongest model capturing one-time memory leakage.

Interestingly, a VLR group signature scheme necessarily relies on a secret-key-based tag gener-
ation which is identifiable (for revocation), unforgeable, and does not leak any partial information
about the identity of the signer (for anonymity). Existing constructions leverage either algebraic
approaches [35,12,14,15] or generic approaches such as PRFs [11] to realize the tag via “pseudo-
randomness”, which will not hold anymore facing auxiliary-input leakage.

We solve this dilemma by using waNIZKs. Our idea is to simply replace the simulation sound
NIZK in the folklore construction of group signatures (for proving knowledge of a group membership
certificate) with our waNIZK.

Plaintext-checkable encryption in the standard model. Plaintext-checkable encryption (PCE) is a
public-key encryption [17], allowing one to search encrypted data with plaintext. Compared with
DPKE [5], a PCE could still be randomized and provides a stronger security ensuring two ci-
phertexts encrypting the same message are unlinkable. Besides being a more fine-grained security
notion, PCE has also been shown useful for constructing other primitives such as group signatures
with verifier-local verification.

Existing constructions [17,37] are mostly secure in the random oracle model. However, in several
scenarios, including the application to VLR group signatures [17] and achieving CCA-security via
Naor-Yung [38], we need to prove properties about the plaintext of a PCE ciphertext via NIZKs.
Random oracles clearly become unfavorable. Attempts exist [17,37,36] for standard-model PCE,
but unfortunately they only work for uniform message distributions. In most scenarios plaintext
messages are unlikely uniformly distributed. It follows that designing a standard-model plaintext-
checkable encryption scheme for general (biased) message distributions is a natural open question.

We also answer this question and present a general framework for plaintext-checkable encryp-
tion, from any standard-model IND-CPA secure PKE and waNIZKs. Our idea is simple: we first
encrypt m with the PKE and then prove the ciphertext is well-formed by using waNIZKs and
setting m as the identifier witness. This framework naturally gives standard-model instantiations.
Moreover, the identifier witness in our full-fledged construction is only required to be unpredictable,
which allows to remove the restriction of uniform messages.

Discussion: the benefit of abstracting out waNIZK. We were faced with the decision of how
to approach these applications: either individually addressing them or treating the tag as a broader
technique. However, we opted to introduce this additional attribute into NIZK proofs and initiated
a comprehensive investigation for several compelling reasons. Firstly, by enhancing a NIZK proof

6

system with specific functionalities, we not only pave the way for innovative constructions geared
towards privacy and accountability-driven applications, but we also unearth potential applications
in domains that may not seem directly related at first glance. Secondly, although we currently
provide modular constructions, it’s plausible that direct constructions could emerge without the
need for explicit tags. This implies that the overall construction for specific applications through our
proposed framework, known as waNIZK, might exhibit enhanced compactness. Thirdly, while the
identifying functionality we explore is a basic one, it’s crucial to recognize that a more encompassing
Functional NIZK approach could introduce an intriguing ”information-carrying proof” paradigm
that stands independently from the captivating proof-carrying data paradigm. Such an avenue of
exploration has the potential to stimulate fresh conceptual breakthroughs in the field.

2 Preliminary

Notations. Throughout the paper, we use λ for security parameter. For an NP language L, we let
RL denote its membership verification relation; (x,w) ∈ RL or w ∈ RL(x) denote that RL(x,w) = 1,
RL(x) denote the set of all witnesses of x, and Ln denote Ln = L

⋂
{0, 1}n.

We use [i, n] to denote the set {i, i + 1, · · · , n} where i, n are two integers and i < n. We may
abbreviate [1, n] as [n]. We say a function f(n) is negligible in n, denoted by f(n) ≤ negl(n), if
we have ∀ integer c > 0, ∃n0,∀n > n0, f(n) < n−c. A non-negligible function f(n) is denoted by
f(n) > negl(n).

By a “non-uniform PPT adversary”, we mean a polynomial-time probabilistic Turing machine
M along with an infinite set of advice strings {φn}n∈N, where M can read φn when taking an
n-bit input, and the length of φn is polynomial in n. All adversaries considered in this work are
non-uniform PPT. When there is no ambiguity, we may simply call such an adversary an efficient
adversary.

For a set X, x←$ X denotes sampling x from the uniform distribution over X. For a distribution
X, x ← X denotes sampling x from X. If A is a probabilistic algorithm, A(x1, x2, · · · ; r) is the
result of running A on the input x1, x2, · · · and the random coins r. We use y ← A(x1, x2, · · ·) to
denote the experiment that choosing r at random and getting y = A(x1, x2, · · · ; r).

2.1 Definitions of Non-interactive Proof Systems

A non-interactive proof system Π, for an NP language L, enables the prover, who holds a witness
of an instance x ∈ L, to convince the verifier that x ∈ L via a single proof. Typically, it can be
described by the following a triple of probabilistic polynomial-time (PPT) algorithms:

– σ ← Setup(1λ). The setup algorithm outputs a CRS σ.

– π ← Prove(σ, x, w). The prover algorithm takes as inputs the CRS σ, an instance x ∈ L with
its witness w ∈ RL(x), and outputs a string π called a proof.

– b ← Verify(σ, x, π). The verifier algorithm takes as inputs σ, an instance x and a proof π, and
outputs either 1 accepting it or 0 rejecting it.

We present NIZK definitions by following [41].

Definition 1 (Non-interactive proof system). Let L be an NP language. A non-interactive
proof system Π = (Setup,Prove,Verify) for L should satisfy:

7

1. Perfect Completeness: For all security parameters λ ∈ N and for all x ∈ Lλ and w ∈ RL(x),

Pr[σ ← Setup(1λ);π ← Prove(σ, x, w) : Verify(σ, x, π) = 1] = 1.

2. Adaptive Soundness: For any non-uniform PPT P ∗, we have,

Pr[σ ← Setup(1λ); (x, π)← P ∗(σ) : Verify(σ, x, π) = 1 ∧ x /∈ Lλ] ≤ negl(λ).

In the above definition, the malicious prover P ∗ is restricted to be computational bounded. In
some literature, this soundness is known as adaptive computational soundness, and a protocol
(Setup,Prove,Verify) with completeness and computational soundness is called a non-interactive
argument system. In this paper, we do not distinguish a proof system and an argument system.

The knowledge soundness (a.k.a., proof of knowledge) is a stronger variant of soundness, which
captures one can prove a statement only when he knows the witness.

Definition 2 (Knowledge soundness). Let Π be a non-interactive proof system for an NP
language L. We say Π satisfies the knowledge soundness, if there is an efficient knowledge extractor
(Ext0,Ext1), s.t., for any non-uniform PPT adversary A, the output of Ext0 and that of Setup are
indistinguishable,i.e.

|Pr[(σ, ξ)← Ext0(1
λ) : 1← A(σ)]− Pr[σ ← Setup(1λ) : 1← A(σ)]| ≤ negl(λ),

and Ext1 can extract a witness from any valid proof:

Pr

[
(σ, ξ)← Ext0(1

λ), (x, π)← A(σ), (w)← Ext1(σ, ξ, x, π) :

Verify(σ, x, π) = 1 ∧ w /∈ RL(x)

]
≤ negl(λ).

The adaptive unbounded NIZK ensures that polynomial many proofs under the same CRS will
not leak anything beyond the validity of statements, even if these proofs are generated on adver-
sarially chosen statements. In this work, the zero-knowledge property refers to adaptive unbounded
NIZK unless otherwise specified.

Definition 3 (Adaptive unbounded NIZK). Let Π = (Setup,Prove,Verify) be a NIPS. It
satisfies the zero-knowledge property, if there is a PPT simulator
(SimSetup, SimProve), s.t. for every nonuniform polynomial-time adversary A, we have

Pr[σ ← Setup(1λ) : 1← AO1(σ,·,·)(σ)]−
Pr[(σ, τ ← SimSetup(1λ) : 1← AO2(σ,τ,·,·)(σ)] ≤ negl(λ).

Both the oracles O1 and O2 take as input a pair (x,w) ∈ RL(x). While O1 returns π ← Prove(σ, x, w),
O2 returns π ← SimProve(σ, τ, x). The probability is taken over the randomness of algorithms Setup,
Prove, SimSetup, SimProve and A.

We call a non-interactive proof system satisfying zero-knowledge property a NIZK.
The zero-knowledge property does not exclude that a verifier, after seeing a proof, can obtain the

ability of proving what he cannot prove before. To address this issue, there are enhanced soundness
definitions including simulation soundness, and simulation-extractability. Simulation soundness says
one cannot prove a false statement even after seeing simulated proofs.

8

Definition 4 (Simulation soundness). Let Π be a NIZK for an NP language L, and (SimSetup, SimProve)
be its simulator. We say Π satisfies the simulation soundness, if for any non-uniform PPT adver-
sary A, it holds that

Pr

[
(σ, τ)← SimSetup(1λ); (x∗, π∗)←AO2(σ,τ,·)(σ) :

Verify(σ, x∗, π∗) = 1 ∧ x∗ /∈ L

]
≤ negl(λ).

The simulation extractability ensures that after seeing polynomial many simulated proofs a
verifier cannot prove anything it cannot prove before except duplicating the simulated proofs.

Definition 5 (Simulation extractability). Let Π = (Setup,Prove,Verify) be an adaptive un-
bounded NIZK proof system, and let (SimSetup,SimProve) be its simulator. We say the NIZK
proof system is simulation-extractable, if there exist two PPT algorithms SE and Ext, s.t. for every
polynomial-time non-uniform adversary (A1,A2), we have

Pr[(σ, τ)← SimSetup(1λ) : 1← A1(σ, τ)]−
Pr[(σ, τ, ξ)← SE(1λ) : 1← A1(σ, τ)] ≤ negl(λ);

and

Pr[(σ, τ, ξ)← SE(1λ); (x, π)← AO(σ,τ,·)2 (σ);w ← Ext(σ, ξ, x, π) :

((x, π) /∈ Hist) ∧ ((x,w) /∈ RL) ∧ (Verify(σ, x, π) = 1)] ≤ negl(λ),

where the oracle O takes as input a string x and returns π ← SimProve(σ, τ, x), and Hist denotes
the query history of O. The probability is taken over the randomness of algorithms SimSetup, SE,
A1, A2, Ext.

Assumptions. We note that a general adaptive unbounded NIZK proof system with simulation
soundness exists assuming the existence one-way functions and a general adaptive NIZK proof
system [41], while the latter can be based on the trapdoor permutations or the LWE assumption.
In addition, a simulation-extractable NIZK makes an extra assumption on the existence of public-
key encryption schemes.

2.2 Definitions of (Computational) Entropy and Randomness Extraction

Conditional entropy measures the randomness of a random variable conditioned on some correlated
event.

Definition 6 (Conditional min-entropy [32]). For a joint random variable (X,Z), we say X
has at least k min-entropy conditioned on Z, denoted by H∞(X|Z) ≥ k, if

− log(E(z←Z)[max
x∈Sup(X)

Pr[X = x|Z = z]]) ≥ k,

where Sup(X) is the support of X and E[·] denotes an expect of a random variable.

9

Computational entropy is to quantify the appearance of entropy of a random variable X, for
computationally bounded observers, which is usually more than what X really has. Hill entropy
and unpredictability entropy are widely used computational entropy notions. Particularly, X has
k Hill entropy only when it is computationally indistinguishable with a random variable Y with
k-min-entropy.

Unpredictability entropy [32] is a kind of computational entropy, describing the maximum pre-
dicting probability of a random variable for computational bounded predictors.

Definition 7 (Unpredictability entropy [32]). For a joint random variable (X,Z), we say X
has unpredictability entropy at least k conditioned on Z, denoted by Hunp(X|Z) ≥ k, if there exists
a collection of distributions {Y |z} (giving rise to a joint distribution (Y,Z)), such that (Y,Z) and
(X,Z) are computationally indistinguishable, and for any non-uniform PPT algorithm A, we have

Pr[(y, z)← (Y,Z) : A(z) = y] ≤ 2−k.

Remark 1. In the original definition [32], the unpredictability entropy of (X,Z), denoted byHunp
ϵ,s , is

additionally parameterized by s and ϵ. s is the circuit size of an adversary A, and ϵ is the advantage
of A to distinguish (X,Z) with (Y,Z).

The definition above could be regarded as an enhancement of the original definition. Concretely,
we let 2−k be the upper bound on the advantage of all polynomial-size circuits. Therefore, all results
on the original definition also hold on this one. We do such modifications to fit the definition of the
expression of asymptotic complexity.

It is easy to see conditional min-entropy implies unpredictability entropy. However, for a joint
random variable (X,Z) with HUnp(X|Z) ≥ k, it is possible that X is information-theoretically
determined by Z, and thus X does not have any min-entropy conditioned on Z. For example,
consider a Discrete-log group G with order q. Let X a random variable uniformly sampled from Zq,
and let Z be (gX) where g is a generator of G. Obviously, X is information-theoretically determined
by Z. However, predicting X given Z is believed to be exponentially hard.

2.3 Definitions of Deterministic Public-key Encryption

A deterministic public-key encryption (DPKE) scheme Σ is defined by a triple of algorithms
{KeyGen,Enc,Dec} where Enc and Dec are deterministic. Below, we first formalize the hard-to-invert
auxiliary inputs, and then introduce the PRIV-IND-MU-security with respect to ϵ-hard-to-invert
auxiliary inputs, by following definitions presented in [13].

Definition 8. A (randomized) function F = {fλ}λ∈N is ϵ(λ)-hard-to-invert with respect to an
efficient samplable distribution D = {Dλ}λ∈N, if for every non-uniform PPT adversary A it holds
that

Pr[x← Dλ;A(1λ, fλ(x)) = x] ≤ ϵ(λ),

for all sufficient large λ, where the probability is taken over the randomness of A and fλ.

Definition 9. Perfect correctness A DPKE scheme Σ is perfectly correct, if there is an NP relation
Rpk, such that

Pr[(pk, sk)← KeyGen(1λ) : (pk, sk) ∈ Rpk] = 1,

and for every (pk, sk) ∈ Rpk and every message m, it holds that

Pr[Dec(sk,Enc(pk,m)) = m] = 1.

10

Definition 10. A DPKE scheme Σ is PRIV-IND-MU-secure with respect to ϵ-hard-to-invert aux-
iliary inputs, if for any non-uniform PPT adversary A, for any efficiently samplable distributions
M = {Mλ}λ∈N, and for any function F = {fλ}λ∈N that is ϵ-hard-to-invert w.r.t.M, such that

|Pr[Exppriv,0Σ,A,M,F (λ) = 1]− Pr[Exppriv,1Σ,A,M,F (λ) = 1]| ≤ negl(λ).

The experiments are defined as follows, where L is a polynomial-bounded integer function.

Exppriv,0Σ,A,M,F (λ)

m0 ←Mλ

for i ∈ [L(λ)]

(pki, ski)← KeyGen(1λ)

ci ← Enc(pki,m0)

b← A({(pki, ci)}i∈[ℓ(λ)], fλ(m0))

Exppriv,1Σ,A,M,F (λ)

m0 ←Mλ

for i ∈ [L(λ)]

mi ← {0, 1}|m0|

(pki, ski)← KeyGen(1λ)

ci ← Enc(pki,mi)

b← A({(pki, ci)}i∈[ℓ(λ)], fλ(m0))

We remark our definition is slightly weaker than [13, Definition 4.5], as the message being en-
crypted under different public keys, are identical, while the original definition allows messages to
be related w.r.t. affine transformations. We present the weaker form since it is what we need for
our construction and can be satisfied by the d-linear-based construction presented in [13].

3 Syntax and Security Models of waNIZKs

As explained in the introduction, we consider a non-interactive proof system working for an NP
language L, where a statement may have multiple witnesses. There is an extra mechanism Identify,
such that anyone having a witness w ∈ RL(x) can efficiently check whether a proof π for x ∈ L was
generated using w. On the other hand, we require such mechanism to be robust, i.e., anyone who
does not know w cannot produce a valid proof for x ∈ L that will be identified as generated from
w. We call such a proof system a witness-authenticating non-interactive proof system (waNIPS),
since now every proof essentially is authenticated by the corresponding witness. Though intuitive,
formulating the new properties while adapting existing properties turns out to be involved.

Identifier witness. We first notice that the straightforward formulation of waNIPS, in which the
extra identification algorithm Identify takes the whole witness, sometimes, limits the applications –
some part of witness, such as the randomness (or other information) used for generating the proof,
may not be functionally important or even be available, but are still required for the identification.

Consider a class of applications (including the non-malleable hash and plaintext-checkable PKE
applications that we will present soon), in which we may just use the proof to carry a bit covertly
that can be extracted by Identify. Now other users who may know the actual secret witness cannot
figure out the randomness freshly sampled by prover during the proof generation; thus, they will
not be able to run Identify. It is easy to see that the actual secret is necessary and sufficient for the
identification purpose.

We thus consider the notion of identifier witness. Formally, for a statement x ∈ L, its witness
w = (wI , wNI) consists of an identifier part wI and a non-identifier part wNI , where wI will be
explicitly specified by a relation RI

L (called an identifier relation of L), RI
L((x,w

NI), wI) = 1, or

11

wI ∈ RI
L(x) for short. Now we only need the identifier witness for the identification algorithm. 3

Formally, we provide definitions below.

Definition 11 (waNIPS). Let L be an NP language, and RI
L be an identifier relation of L. A

waNIPS on (L,RI
L) is defined by four efficient algorithms:

– σ ← Setup(1λ). The setup algorithm outputs a CRS σ.

– π ← Prove(σ, x, w). The prover algorithm takes as inputs σ, an instance x ∈ L with its witness
w ∈ RL(x), and outputs a string π called a proof.

– b ← Verify(σ, x, π). The verifier algorithm takes as inputs σ, an instance x and a proof π, and
outputs either 1 accepting it or 0 rejecting it.

– d ← Identify(σ, x, π, wI). This algorithm takes as input a valid proof π for some x ∈ L and a
string wI . It returns either 1 indicating π was generated by a witness in the form of (wI , ⋆), or
0 otherwise.

The first three describe a non-interactive proof system for L. We say π is authenticated by wI if
Identify(σ, x, π, wI) = 1.

Completeness of waNIPS could be easily defined by describing the identification functionality
and the proving functionality over honestly generated proofs, which covers the standard complete-
ness of non-interactive proof systems.

Definition 12 (Completeness of waNIPS). We say a waNIPS for (L,RI
L) is complete, if for

every x ∈ Lλ, (w
I , wNI) ∈ RL(x), for σ ← Setup(1λ), π ← Prove(σ, x, (wI , wNI)), the following

holds:
Pr[Verify(σ, x, π) = 1 ∧ Identify(σ, x, π, wI) = 1] = 1.

3.1 Defining unpredictable sampler

Incompatibility between identification and zero-knowledgeness. Before introducing the
formal security definitions, we first clarify a basic question: when is a waNIZK meaningful (or even
feasible)? The question arises given that the identification functionality is clearly incompatible with
the standard zero-knowledge property.

As a concrete example, consider the range proof system where we use a NIZK to prove a
committed integer m w.r.t. a commitment com belongs to a range, say (1, 20). Seeing such a proof,
the adversary learns nothing about m except its range. However, if we use a waNIZK to support
identification, then everyone can simply check for all values in (1, 20) and completely recover the
value of m! This simple example hints a trivial impossibility for conventional zero-knowledgeness of
waNIZK, for the languages whose identifier witness can be easily guessed. Similar situation appears
in other settings, e.g., encryption schemes equipped with a plaintext-search functionality [5].

It follows that we should focus on “hard” statements that one cannot guess the identifier wit-
nesses easily. The notion that a statement is “hard” clearly cannot stand in the worst case if we are
considering a non-uniform adversary, since its advice string may encode the witness already. We
thus consider a distribution over a language such that for any efficient adversary, a random sample
from this distribution is “hard” to predict, and a waNIZK proof system is expected to work for
languages admitting such “hard” distributions.

3 We stress that the notion of identifier witness does not put any restriction on the languages that can be proved,
as the non-identifier part can be empty. In this case, the identifier part is simply the whole witness.

12

A natural way to describe a distribution is to specify an (adversarial) sampler G which is a
non-uniform PPT algorithm, which on input a security parameter outputs an element x ∈ Lλ and
its witness (wI , wNI) ∈ RL(x)

4. The unpredictability of this sampler can then be quantified by
unpredictability entropy [32] of the identifier witness wI . More precisely, G is k-unpredictable when
Hunp(W I |X) ≥ k(λ), where (X,W I ,WNI) is a joint random variable output by G(1λ). While such
a formulation is simple, we find it unnecessarily restrictive in certain situations. We present a more
general formulation below.

Modeling a more general unpredictable sampler. When applying our waNIZKs in a larger
cryptosystem, the statement may involve system parameters that are not under the control of
the adversary. This seemingly minor point is actually essential. A subtle issue is that letting the
adversarial sampler to generate the whole statement sometimes makes it hard to enforce the unpre-
dictability of witness. For example, consider a public-key encryption scheme and a simple language
LEnc := {(pk, c); (m, r) : c = Enc(pk,m; r)} where m is the identifier witness. Let Gpk be the
following sampler:

pk = pk∗,m←Mλ, r ←$ {0, 1}λ, c = Enc(pk∗,m; r) :

return (x = (pk∗, c), wI = m,wNI = r),

where Mλ is a high-entropy message distribution. Is Gpk an unpredictable distribution? In general,
the answer is no since the adversary might have the secret key sk of pk∗. However, simply excluding
such a sampler is not the right choice. In typical applications (for example, in our application of
plaintext checkable encryption, cf. Sec.7), the public key is generated honestly and not under the
control of the adversary. And the message distribution is specified by the adversary after seeing the
public key.

This oddity arises due to that the larger system where a waNIZK is employed already requires
some honestly generated parameter. To capture this intuition, we define a separate parameter
generation as a PPT algorithm PG. We let the sampler algorithm to take as input the parameter
pp generated by PG, asking the distribution conditioned on PG = pp to be unpredictable. Note that
PG is not a part of our waNIZK syntax, usually specified by the applications. We remark that this
is optional (which could be empty if there is no PG in the application).

Modeling CRS-dependent unpredictability. As a waNIZK assumes a CRS, which is publicly
available and usually generated once for all, in some scenarios, adversaries might be able to specify
an unpredictable sampler after seeing the CRS. In this most general case, we allow the adversary
and the sampler algorithm G to take CRS as an input.

One tricky issue exists when measuring the unpredictability of the output (particularly the
identifier witness) of a CRS-dependent sampler. At the first glance, the minimal requirement should
be as follows: the adversary, who specified the sampler after seeing an honestly generated CRS,
cannot find the identifier for a statement outputted by this sampler (on input this CRS). However,
we got stuck with the case that the statement itself could be containing CRS-dependent auxiliary
input of the identifier witness. Consider the following extreme example. L∗ is an NP language such
that a statement x∗ = (x, ⋆) ∈ L∗ iff x belongs to another NP language L, and G∗ is a sampler that
uses an unpredictable sampler G for L to produce (x,wI , wNI) and outputs (x∗ = (x, π), wI , wNI)
where π is a valid proof demonstrating x ∈ L (thus x∗ ∈ L∗). On the one hand, G∗ should

4 Note that in general, it is unclear how to generate a witness from a statement, so we let the sampler to output
x,wNI together with wI , but we put no restrictions on them. In principle, x,wNI could even be fixed by the
attacker and hardcoded into G as long as an unpredictable wI can be generated.

13

be unpredictable since a “zero-knowledge” proof won’t give the adversary extra advantage. On the
other hand, it destroys knowledge soundness. If a malicious prover simply outputs such a hardcoded
proof, she generates a proof without knowing any witness! More serious issues will occur at a new
“unforgeability” property we will introduce. We will give a more detailed discussion when we present
the soundness definitions (see Remark 4).

To rule out those trivial “attacks”, we have to exclude such samplers. We observe that “zero
knowledgeness” holds only when the CRS is honestly genereated such that the adversary does not
have auxilairy information about it; certain trapdoor information could enable the adversary to
recover the witness from the proof. We leverage this observation and define unpredictability more
“aggressively”: a sampler (which is an algorithm taking input as a CRS) is unpredictable if for
any adversary and on input any CRS (about which the adversary may have arbitrary auxiliary
information), the adversary cannot find the sampled identifier witness given the statement.

Taking all above discussions into consideration, we present the formal definition of unpredictable
samplers.

Definition 13 (Unpredictable sampler). Let G be a sampler for (L,RI
L) and PG be a trusted

parameter generation procedure. Let the random variable PP be the output of PG(1λ), and define
a class of random variables {(Xσ,W

I
σ ,W

NI
σ }σ∈Supp(Setup(1λ)) where (Xσ,W

I
σ ,W

NI
σ) = G(PP, σ).

Then, we say G is k-unpredictable w.r.t. PG, if for any CRS σ, it always holds that

Hunp(W I
σ |Xσ, PP) ≥ k(λ).

Clearly, the basic requirement is k = ω(log λ). 5

If we are considering CRS-independent samplers, G simply does not take as input the CRS σ.

3.2 Entropic zero-knowledgeness

We present a new definition of entropic zero-knowledgeness, ensuring that nothing else is leaked
except the identification bit to attackers who know the exact identifier witness (to attackers who
do not know the exact witness, actually the zero-knowledgeness remains). Or, to put it another
way, to rule out the “trivial attacks” caused by the added identification functionality, we consider
a zero-knowledge property w.r.t unpredictable samplers. Since now the attacker does not know the
witness (while in conventional ZK, Definition. 3, witness is chosen by the attacker), we need to
give the attacker the capability to learn extra side information from other related proofs using the
same witness, and this again should exclude the trivial impossibilities. Formally defining this new
property requires care. We illustrate the intuition and the definition below.

Integrating the unpredictable sampler. Let us first recall the conventional zero-knowledge
property: for any statement x along with its witness w, the procedure that generates a CRS σ, and
the procedure generating a valid proof π using (x,w, σ), can be emulated by a simulator without
using the witness. The adaptive counterpart further allows the attacker to specify a statement after
seeing the CRS.

Now the identifier witness wI (along with (x,wNI)) is produced by an unpredictable sampler
G, which is specified by the attacker. The prover (denoted as a prover oracle OP1) takes the tuple

5 We can also measure the unpredictability by HILL entropy [32]. On the one hand, it brings more restrictions on the
languages to be proven; On the other hand, for samplers with sufficient HILL entropy we can give more efficient
constructions which we explain in details in Appendix A.

14

(x,wI , wNI) from G and the CRS as input and generates a proof. We want that this proof can be
simulated via a simulator (denoted as OS1)) without using the witness (wI , wNI).

Allowing attackers to learn side information from related proofs. In the conventional
zero-knowledge definition, since the attacker (distinguisher) is given the witness, just asking the
simulator to emulate the proof is sufficient. While in our new definition, since the distinguisher does
not have the exact witness, directly plugging in the unpredictable sampler to the zero-knowledge
definition is too weak, in the sense that the prover only proves once. But in practical applications,
this is not the case. For example, in group signatures, adversaries are allowed to obtain multiple
signatures, possibly for different messages, from one user. To lift this restriction, we will allow the
distinguisher to adaptively obtain multiple proofs, which could be generated from independently
sampled statements. Also, seeing a statement x (whose identifier witness is wI), the adversary can
ask the prover to prove another related statement x̄, which has the same identifier witness wI .

Formally, we let the prover oracle OP1 (or OS1) be stateful, and augment a pair of new oracles
OP2 and OS2, which, with access to the states of OP1 and OS1, take as inputs an index (that
specifies a previously sampled tuple) and an extended sampler EG. Seeing x, EG generates an
extended statement x̄ (and corresponding non-identifier witness), which is associated with the
same wI . However, an arbitrarily extended statement may leak the entire wI even if the original
statement hides it. To rule out the trivial impossibility, we put a restriction on the extended
statement w.r.t a wI that it will not leak more information than the original statement, and thus
wI is still unpredictable. We model this restriction by asking a “dual-mode” extended sampler.6 In
its real mode, it honestly extends the original tuple; in the sim mode, without using the original
withess it generates a statement that is computationally indistinguishable with that in the real

mode. The sim mode will be only used in the security proof.

Definition 14. We say EG = {EGreal,EGsim} is a dual-mode extended sampler w.r.t. PG, if for
any σ and any non-uniform PPT A := (A0,A1), the following holds: pp← PG, (x,wI , wNI , st)←
A0(pp), (x̄, w̄

NI)← EGreal(pp, σ, x, w
I , wNI), x̃← EGsim(pp, x),

Pr[(wI , w̄NI) ∈ RL(x̄)] = 1 ∧ |Pr[A1(σ, pp, x̄, st) = 1]− Pr[A1(σ, pp, x̃, st) = 1]| ≤ negl(λ).

Remark 2. We require that the indistinguishability holds for (x,wI , wNI) specified by the adver-
sary, instead of a randomly sampled tuple. This requirement may unnecessarily exclude extended
samplers that won’t leak more information about a randomly sampled identifier witness (yet it still
captures many natural cases including all our applications). However, if we just ask indistinguisha-
bility for a random tuple, it is hard to ensure the indistinguishability still holds when plugging
the extended sampler into entropic ZK definition where the adversary could adaptively invoke ex-
tended samplers on a tuple for multiple times and see other auxiliary information. Instead, the
indistinguishability at the current form will be trivially preserved since the adversary can have any
auxiliary information about the input. We leave it as a feature work to figure out the best possible
definition.

We are now ready to present the formal definition of entropic ZK.

6 In the conference version [28], this restriction is modeled by the existence of another“simulated” extender. Here
we pack both them into a “dual-mode” one, to emphasize that the simulated one is easy to be found and thus
facilitate the security proof. We also let the indistinguishability hold w.r.t. any instance specified by the adversary
due to the reason in Remark 2.

15

Definition 15 (Entropic ZK). A waNIPS Π for (L,RI
L) satisfies the (multi-theorem) entropic

zero-knowledgeness w.r.t. a parameter generation procedure PG and a class of unpredictable sam-
plers G, if there is a PPT simulator {SimSetup, SimProve}, such that for every non-uniform PPT
adversary A, it holds that∣∣∣∣∣∣∣Pr

σ ← Setup(1λ)

pp← PG(1λ);G← A(pp, σ) :
1← AOP1,OP2(σ, pp)

− Pr

(σ, τ)← SimSetup(1λ)

pp← PG(1λ);G← A(pp, σ) :
1← AOS1,OS2(σ, pp)

∣∣∣∣∣∣∣ ≤ negl(λ),

where the real prover oracles OP1,OP2 and the simulator oracles OS1,OS2 are defined in Fig.1. The
sampler G should belong to G. EG shall be a dual-mode extended sampler w.r.t. PG(cf. Def.14).

OP1(σ, pp)

i++;

(xi, (w
I
i , w

NI
i), zi)← G(σ, pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i));

πi ← Prove(σ, xi, w
I
i , w

NI
i)

return (xi, πi)

OP2(σ, pp, xi,EG, st)

Find(i, xi, (w
I
i , w

NI
i), zi) ∈ st

(x̄, w̄NI)← EGreal(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← Prove(σ, x̄, wI
i , w̄

NI)

return (x̄, π̄)

OS1(σ, τ, pp)

i++;

(xi, (w
I
i , w

NI
i), zi)← G(σ, pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i));

πi ← SimProve(σ, τ, xi)

return (xi, πi)

OS2(σ, τ, pp, xi,EG; st)

Find(i, xi, (w
I
i , w

NI
i), zi) ∈ st

(x̄, w̄NI)← EGreal(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← SimProve(σ, τ, x̄)

return (x̄, π̄)

Fig. 1. The oracles. OP1 (resp. OS1)and OP2 (resp. OS2) share the state st which is initialized to be ∅. The counter i
is initialized to be 0. The boxed items are only availiable for auxiliary-input definitions (see Sect.3.4)

Remark 3. Entropic ZK for CRS-independent samplers can be easily obtained by removing the
CRS from the input of G and the first stage of A; it also suffices in interesting applications and
admits more efficient constructions.

3.3 Soundness definitions

The conventional (knowledge) soundness of non-interactive proof systems ensures that a prover
that can generate a valid proof must possess a witness. In our setting with an extra identification
functionality, we essentially require the identifier witness to be “committed” to the proof. Naturally,
the soundness property also needs to be upgraded. In particular, we would need to ensure that a
used witness must be identifiable; and a malicious prover could not “forge” a proof that points
to a witness that is not known to her. (1) The former property can be realized augmenting the
conventional knowledge soundness such that: from a valid proof, a witness not only can be extracted
but also is bound to the proof. (2) The latter models that an attacker has access to multiple witnesses

16

for a statement but still cannot frame any others that hold another witness unknown to the attacker.
We call it unforgeability. Formulating those notions turns out to be highly involved, especially when
considering slightly more advanced notions.

Authenticating knowledge soundness. As briefly discussed above, we now require a witness
extractable from the proof to authenticate the proof. Formally, we have the following definition:

Definition 16 (Authenticating knowledge soundness). We say a waNIPS Π for (L,RI
L)

satisfies the authenticating knowledge soundness, if there exists a PPT extactor (Ext0,Ext1), s.t.,
for any non-uniform PPT adversary A, (1) the output of Ext0 is computationally indistinguishable
with the real CRS:

|Pr[(σ, ξ)← Ext0(1
λ) : 1← A(σ)]− Pr[σ ← Setup(1λ) : 1← A(σ)]| ≤ negl(λ),

and (2) any valid proof must be authenticated by the extracted witness:

Pr

(σ, ξ)← Ext0(1
λ), (x, π)← A(σ), (wI , wNI)← Ext1(σ, ξ, x, π) :

Verify(σ, x, π) = 1 ∧
[
(wI , wNI) /∈ RL(x) ∨ Identify(σ, x, π, wI) ̸= 1

] ≤ negl(λ).

We also consider a weaker definition called authenticating soundness that only requires the
existence of such (wI , wNI) instead of that A must know the witness. This notion will be useful
when the knowledge extraction procedure can be done by external primitives such as PKE.

Definition 17 (Authenticating soundness). We say a waNIPS Π for (L,RI
L) satisfies the

authenticating soundness, if for any non-uniform PPT adversary A, we have

Pr[σ ← Setup(1λ); (x, π)← A(σ) : if Verify(σ, x, π) = 1, then

x ∈ L and ∃wI ∈ RI
L(x), s.t. Identify(σ, π, wI)] ≥ 1− negl(λ).

Unforgeability. This property captures the “authenticity” that an adversary cannot forge a proof
that will be authenticated by an identifier witness that the adversary does not know. Like our
entropic ZK definition, we will leverage the unpredictable sampler for (L,RI

L) to capture an un-
predictable target witness. More importantly, we would like this to hold even if the adversary can
adaptively obtain many proofs from witnesses unknown to her (the “forgery” thus should be a
new proof) as she wishes. Note that this property indeed ensures that an adversary cannot sim-
ply “maul” a proof, and thus it (along with authenticating knowledge soundness) will suffice for
many applications (such as non-malleable hash and VLR group signatures) which originally need
a simulation-extractable NIZK for realizing non-malleability. 7

Definition 18 (Unforgeability). Let Π be a waNIPS for (L,RI
L). We say Π satisfies unforge-

ability w.r.t. PG and a collection of unpredictable samplers G (cf. Def.13), if for any non-uniform
PPT adversary A, it holds that

Pr

pp← PG(1λ);σ ← Setup(1λ);G← A(pp, σ);

(x∗, π∗)← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, wI) = 1

 ≤ negl(λ),

7 Different from the conventional simulation soundness, where the adversary is given simulated proofs, here we
provide real proofs, which will be needed in applications.

17

where G ∈ G, and OP1, OP2 are prover oracles specified in Fig.1. Hist denotes the query-response
history of OP1 and OP2, and “st” denotes the set of identifier witnesses generated by all calls (made
by A) to OP1.

Remark 4. Recall that in the CRS-dependent sampler definition, we insist that the unpredictability
holds for every CRS. One reason is that the unforgeability may not be achievable when unpre-
dictability only holds for a randomly sampled CRS. Now we can give a concrete example. Assume
L is an NP language and admits an unpredictable sampler GL. We define an extended language
L′ that x′ = (x, y) ∈ L′ iff x ∈ L, and a sampler GL′ which on input a CRS σ, directly outputs
(x, π), where (x,wI , wNI) ← GL(1

λ) and π ← Prove(σ, x, wI , wNI). Given the entropic ZK of π,
the identifier witness output by GL′ is unpredictable. However, A can directly output π to break
the unforgeability.

In some applications like non-malleable hash functions [9,3], it is required that an adversary
cannot frame not only a target identifier witness, but also any identifier witness related to the
target one. We formalize the security goal by the related-witness unforgeability below. Following the
terminology developed in other non-malleable/related-key primitives, we capture that an identifier
witness wI is related to another wI

0 by a transformation ϕ, namely wI = ϕ(wI
0). To make the

definition more general, the admissible transformation set should be as large as possible.

Definition 19 (Related-witness unforgeability). Let Π be a waNIPS for (L,RI
L). We say

Π satisfies the related-witness unforgeability w.r.t. PG, G and a transformation set Φ, if for any
non-uniform PPT adversary A, it hold that

Pr

pp← PG(1λ);σ ← Setup(1λ);G← A(pp, σ);

(x∗, π∗, ϕ)← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, ϕ(wI)) = 1

 ≤ negl(λ),

where G belongs to G, ϕ ∈ Φ, and OP1, OP2 are prover oracles specified in Fig.1. Hist denotes the
query-response history of OP1, and st denotes the set of identifier witnesses generated by all calls
(made by A) to OP1.

Remark 5. Bounded root space and samplable root space. The related-witness unforgeability
is defined w.r.t. a transformation set Φ rather than any transformation ϕ since there exists some re-
lation such as constant transformations, for which this definition is hopeless. In other non-malleable
primitives, many works [3,22] have been devoted to defining an admissible transformation Φ set
while keeping it as general as possible. In this work, we consider the most general transformation
class that has been considered in the literature, that is, the so-called bounded root space (BRS)
and samplable root space (SRS) developed by Chen et al. [22] and denoted by Φsrs

brs. More precisely,
a transformation ϕ has the p(λ)-BRS if |ϕ−1(0)| ≤ p(λ); ϕ has the SRS if we can efficiently sample
an element from ϕ−1(0) uniformly at random. A transformation Φ has the p(λ)-BRS (resp. SRS) if
for every ϕ ∈ Φ and every constant c, ϕ− x and ϕ− c is p(λ)-BRS (resp. SRS).

Identifier uniqueness. Next, we discuss a special property of identifier uniqueness, (like unique
signatures), which is useful when handling a case that the attacker may output a proof that will be
identified by a string that is not even a witness. In certain applications (e.g., in our application of
plaintext-checkable encryption), the attacker may try to fool the identify algorithm used by others.

18

Note that unforgeability does not address such an attack. The identifier uniqueness of a waNIPS
says it is infeasible to produce a valid proof and two different identifier witnesses such that the
proof is authenticated by both of them.

Definition 20 (Identifier uniqueness). We say a waNIPS Π for (L,RI
L) satisfies the identifier

uniqueness, if any non-uniform PPT A, it holds that

Pr

[
σ ← Setup(1λ); (x, π, wI

1, w
I
2)← A(σ) : Verify(σ, x, π) = 1∧

Identify(σ, x, π, wI
1) = 1 ∧ Identify(σ, x, (π,wI

2)) = 1

]
≤ negl(λ).

3.4 Definitions with auxiliary inputs

All definitions built upon samplers can be further strengthened by allowing adversaries to obtain
other auxiliary information (beyond the statements) about the identifier witness. This strengthening
will be useful when applying waNIZKs to applications with auxiliary inputs (e.g., in our applications
of non-malleable hash and group signatures with verifier-local revocation). We formalize those by
considering an enhanced sampler G, which outputs an auxiliary information z about wI as well.
Specifically, a k-unpredictable sampler G (w.r.t. PG and for (L,RI

L)) on inputs a CRS σ and PP
outputs (X,W I ,WNI , Z) that satisfies

Hunp(W I
σ |Xσ, Z, PP) ≥ k(λ).

Next, the auxiliary-input secure forms of the entropic ZK and the unforgeability (including
the related-witness unforgeability) are almost identical to their original forms, except the oracle
accesses to OP1, OP2, OS1 and OS2 are instantiated as in Fig.1 with boxed items. In the strengthened
definitions, the prover oracle OP1 and the simulation oracle OS1 will also return the auxiliary input
z for the sampled wI .

On the one hand, the auxiliary-input entropic ZK and unforgeability clearly subsume the orig-
inal definitions. On the other hand, considering auxiliary inputs does not seem to introduce any
additional difficulty in constructing waNIZKs, since the statement itself is already an auxiliary in-
formation about the identifier witness. Thereafter, when we refer to entropic ZK and unforgeability,
we mean the stronger auxiliary-input counterparts.

4 Constructing Witness-Authenticating NIZKs

In this section, we present our general constructions for waNIZKs.

Basic challenges. A folklore approach for adding a new property to NIZKs is to add some “tag”
and extend the statement being proved 8. For example, when transforming a NIZK to a knowledge-
sound NIZK [41], one attaches the encryption of the witness to the proof, which enables the “ex-
tractability” by decrypting the ciphertext. Like this folklore, the main idea behind our constructions
is also to attach an “identifiable” tag (and proof of validity) to a NIZK proof, s.t. it can be iden-
tified with the corresponding identifier witness. The challenge is that the tag has to satisfy several
seemingly conflicting constraints.

8 This is a natural idea of constructing waNIZK, however, there may be more direct construction without the tag,
and the resulting construction could be more compact. We leave this as an interesting question for future study.

19

• For “zero-knowledgeness”. The tag should not leak any information about the identifier witness
except the bit to a verifier knowing the corresponding wI . Particularly, a tag generated from
an unpredictable wI should be “simulatable” (without using wI), even conditioned on the
potential auxiliary information about wI . Moreover, as the identifier witness may be used to
prove multiple times, the “simulatability” shall be ensured across multiple tags from wI .

• For soundness. First, we note that the tag generation should have a form of unforgeability.
Namely, without the identifier witness wI , a malicious prover cannot produce a tag that can be
identified by wI (even when it knows the statement). If we further want identifier uniqueness, it
should be infeasible to find two identifier witnesses identifying one tag, which essentially requires
a form of collision resistance. While for authenticating (knowledge) soundness, we will have to
make sure the extracted witness is exactly the one used to generate the proof (comparing to the
standard knowledge soundness, which only requires extracting one witness).

4.1 Warm-up constructions

First, as a warm-up, we show how to easily build waNIZKs for distributions where the identifier
witness is pseudorandom (conditioned on statements). This construction can be already useful in,
e.g., group-oriented (accountable) authentications where users’secret keys can be pseudorandom.
We present a very simple construction from a NIZK and a PRF. We then show how to easily lift
this construction to be secure for unpredictable distributions that are independent of the CRS by
using randomness extractors.

PRF-based tag: a construction for pseudorandom identifier witnesses. In many appli-
cations such as group-oriented anonymous authentication (e.g., group signatures, ring signatures),
the identifier witness is usually a secret key. In this case, wI the identifier witness could be pseu-
dorandom even conditioned on all public information (e.g., a public key can be a commitment
to the identifier). As a natural idea to generate a simulatable tag is to create a tag that is also
pseudorandom, we use the witness as a key to generate the tag using a PRF, i.e.,

TagPRF(w
I)→ (t,PRF(wI , t)), for a random t.

It is easy to verify that, when wI is pseudorandom (with sufficient length and conditioned on
all side information available to adversaries), PRF(wI , t) is pseudorandom for any t. Thus the
tag (t,PRF(wI , t)) is “simulatable” (for a random t) and unforgeable (for every t). Using such
a tag generation mechanism, we can construct a simple waNIZK for a language L that admits
a pseudorandom witness distribution. To identify whether the proof was generated by (wI

∗, ⋆),

one just checks PRF(wI
∗, t)

?
= PRF(wI , t). Moreover, by further requiring the PRF function to be

collision-resistant, we can also achieve identifier uniqueness.
Formal construction and analysis are presented in Appendix A.

Lifting via randomness extraction: a construction for general CRS-independent dis-
tributions. The above approach cannot be applied to general unpredictable witness distributions.
A natural idea is to transform an identifier witness into a uniform string. Randomness extractors
[4] [32] are such a tool for generating a nearly uniform string from a random variable with enough
entropy (called source), with the help of a short uniformly random string called seed. A computa-
tional extractor [32] would also be applicable even if the witness distribution is only computationally
unpredictable. Several tricky issues remain:

20

(1) For “zero-knowledgeness”, the attacker may obtain multiple proofs generated using wI . Since
the seed is randomly chosen, the attacker essentially forces the same witness to be re-used with
multiple different seeds and then the resulting outputs are used as the PRF keys; Thus we will
require a reusable extractor [25,23] (or related-key secure PRF [1]). Unfortunately, there are only
a few reusable (computational) extractor constructions, which either have entropy requirements on
the source [23], or rely on non-standard assumptions [25]. In our setting, the witness distribution
sometimes is only computationally unpredictable. The status of related-key secure PRF is neither
promising as existing constructions only allow simple correlations.

(2) For soundness, a malicious prover may not generate the seed honestly. In this case, we won’t
have the properties of extractors, which could be devastating for unforgeability. To see this, let
us view the inner product as the special Goldreich-Levin extractor, but the malicious prover will
simply use all-0 string as the seed. Now every witness can be used to identify such proof!

Luckily, since we are working in the CRS model, a first idea is that we could simply let the
CRS include one uniform seed, and consider static notions (that the CRS is generated after the
adversarial sampler, thus independent with the witness). The tag can be generated as follows:

TagExt−PRF(w
I) = (r, t,PRF(Ext(wI , r), t)), for r in CRS and a random t.

Leveraging this tag generation mechanism, we can have a construction for a language L that is
secure w.r.t. k-unpredictable distributions.

Formal construction and analysis are also presented in Appendix A.
Unfortunately, once we do not have the luxury that the sampler is independent of the CRS,

(e.g., when we consider the adaptive model), we will need new ideas to tackle those challenges.

4.2 The full-fledged construction for CRS-dependent distributions

It is known that in general, a randomness extractor is secure only when the source is independent
of the seed (otherwise, seeing the seed, there will always exist a source distribution that makes
the first bit of the extractor output to be 1). Thus, the unpredictable statement distribution must
be independent of the CRS in the above approach. However, in many applications, the statement
(and the corresponding witness distribution) might be correlated with the CRS, e.g., all three
applications we will present soon. It follows that we need a more general solution that can handle
a CRS-dependent witness distribution.

A more flexible tag generation. It is not hard to see that for any tag generation function
f(params, w) = τ , if params is from CRS, the adversary can always find a witness distribution that
depends on params such that the output τ can be recognizable. However, in the above approach
using extract-then-PRF, moving the seed out of CRS and letting prover generate it will put us back
facing the challenges of malicious seed and reusability, as described above.

To circumvent such a dilemma, we first note that realizing simulatability and unforgeability
does not have to be via pseudorandomness. For simulatability, another alternative is encryption
primitives. For the ease of checking, we consider using deterministic public-key encryptions (DPKE)
to generate a tag. 9 Regarding the unforgeability, we note it can be realized by adding a simulation-

9 Another potential tool could be perfectly one-way hash with auxiliary inputs [18]. Those are probabilistic functions
that satisfy collision-resistance and hide all partial information about its input even under with auxiliary input.
Unfortunately, such a strong primitive is only known to exist under a not-efficiently-falsifiable assumption [25];
thus, its existence is elusive. In fact, it even contradicts with a form of obfuscation [16]. We would like to have a
construction that relies on standard assumptions.

21

extractable NIZK proof to the tag. As the NIZK is already a component of our waNIZK construc-
tion, we can make the tag unforgeable by enforcing the “collision resistance”. Let DEnc be the
encryption algorithm of a DPKE scheme, and we illustrate the tag generation mechanism below.

TagDPKE(w
I)→ (pk,DEnc(pk, wI)), for a random public key pk. (1)

Next, we examine the previous challenges more closely.

– For “zero-knowledge”, simulatability via pseudorandomness requires each output to be “inde-
pendently” pseudorandom, thus requiring “reusability” in strong extractors. The latter is highly
non-trivial as there is only a fixed amount of entropy available in the witness. While for cipher-
text as output, however, we do not have to insist on a pseudorandom ciphertext distribution.
Actually, “reusability” is trivial in standard public-key encryption schemes as each ciphertext is
like an independent sample. Of course, in the setting of DPKE (when considering the multi-user
security), things get more complicated as no private randomness is used for encryption; we also
need to consider the auxiliary input of the witness. Fortunately, Brakerski and Segev’s DLIN
based construction [13] can satisfy auxiliary-input, and multi-user security simultaneously.

– For soundness, it was difficult to deal with malicious (prover-generated) seeds in the extractor
setting, as there is no way to prove a seed is sampled uniformly. Nevertheless, if the param-
eters have some algebraic structure or functional properties, we may be able to enforce those
features (for unforgeability) instead of proving distributional properties. For example, the de-
cryptability condition (correctness) is such a property, when using encryption. In more detail,
a malicious prover may still want to choose a malformed pk, but now we can ask the prover to
attach a proof of well-formedness of pk, simply attesting there exists a secret key. The perfect
correctness of encryption requires that for every valid key pair pk, sk, and every message m,
Dec(sk,DEnc(pk,m)) = m. This automatically implies that the encryption function DEnc for
each valid pk defines an injective function, i.e., for any w1 ̸= w2,DEnc(pk,w1) ̸= DEnc(pk, w2).
Moreover, it is indeed the case for the DPKE instantiation we chose in [13]. In this way, a
malicious prover cannot evade the checking or frame other witness holders!

The construction. Let us firstly specify the building blocks we will use.

– A deterministic public-key encryption (DPKE) schemeΣde = {Kde,Ede,Dde}. We assume w.l.o.g.
that the plaintext space contains all identifier witnesses of L. Particularly, we require the DPKE
to be perfectly correct and PRIV-IND-MU-secure with respect to 2−k-hard-to-invert auxiliary
inputs which captures the security when one message is encrypted under multiple keys and the
auxiliary input about the message are available to adversaries. We assume w.l.o.g. that there is
a relation RLde

s.t. a key pair (pk, sk) is valid iff RLde
(pk, sk) = 1.

– A NIZK proof system Πzk = {Szk,Pzk,Vzk} for an NP language

LCD := {(x, pk, c); (wI , wNI , sk) :

(wI , wNI) ∈ RL(x) ∧ wI ∈ RI
L(x) ∧ c = Ede(pk,w

I) ∧RLde
(pk, sk) = 1};

(2)

The full-fledged construction ΠCD = {Setup,Prove,Verify, Identify} for an NP language L with
identifier relation RI

L is presented in Fig.2.

Security analysis. The completeness directly follows the completeness of the underlying NIZK
proof system Πzk and of the DKPE scheme Σde. Particularly, under an honest pk, c = Ede(pk,w

I)
uniquely determines wI and thus the proof will not be mis-identified by another identifier witness.

22

Setup(1λ)

σzk ← Szk(1
λ) // generate a CRS of the underlying NIZK

return σ = σzk

Prove(σ, x, (wI , wNI))

(pk, sk)← Kde(1
λ) // generate the public key and the secret key

c← Ede(pk, w
I) // encrypt the identifier witness under pk

πzk ← Pzk(σzk, (x, pk, c), (w
I , wNI , sk))

// prove x ∈ L ∧ (pk, c) are well-formed

return π = (pk, c, πzk)

Verify(σ, x, π)

b← Vzk(σzk, (x, pk, c), πzk) // check the validity of the proof πzk

return b

Identify(σ, x, π, wI)

c′ ← Ede(pk, w
I) // encrypt the identifier witness under the public key

if (c = c′) then return 1 else return 0

Fig. 2. The full-fledged construction.

We claim the security of ΠCD in the following theorem and present here only a security sketch:
the statement being proved by Πzk is formed by (x, pk, c). (1) the knowledge soundness of Πzk

ensures one can extract a wI and c = Ede(pk, w
I). By the description of Identify, these together

imply the authenticating knowledge soundness. (2) When Πzk is sound, the public key pk contained
in a valid proof should be a valid public key, and thus (pk, c) determines a unique plaintext (as the
identifier), which ensures the identifier uniqueness. (3) Moreover, as the DPKE is PRIV-IND-MU-
secure with respect to 2−k-hard-to-invert auxiliary inputs, entropic ZKcan be achieved.

Regarding the unforgeability, at a high level, we show a contradication that a successful adver-
sary A against this property will give rise to a successful adversary B that could recover messages
from DPKE ciphertexts. Specifically, since Πzk is a simulation-extractable NIZK, B can answer all
prover oracle queries via a “hybrid” prover algorithm which returns a “proof” formed by (pk, c, πzk)
where (pk, c) is an honest encryption of the identifier witness while πzk is a simulated proof. Note
that A cannot distinguish the real prover oracle and the hybrid prover oracle. Next, A will issue
a challenge proof (pk∗, c∗, π∗zk), for a challenge statement x∗, satisfying c∗ = Ede(pk

∗, wI), and B
can further leverage the knowledge extractor of Πzk to extract wI , which is the plaintext of these
deterministic encryptions, from πzk.

Actually, our construction can satisfy the stronger related-witness unforgeability. Specifically,
in the definition, a successful adversary will output (x∗, π∗, ϕ∗) such that π∗ = (pk∗, c∗, π∗zk) is
authenticated by ϕ∗(wI), where ϕ∗ is a transformation that all preimages can be efficiently found
(as formalized by Chen et al.[22] and recalled in Remark 5). Note that the adversary B can still
leverage the attacker to recover messaages from DPKE encryptions: all queries to the prover oracle

23

can be simulated as before; after extrcacting ϕ(wI) from the challenge proof π∗, B just outputs one
preimage of ϕ∗(wI) which will be equal to wI with a non-negligible probability.

Theorem 1. Let ΠCD be the construction in Fig.2, and the following results hold:

– ΠCD satisfies the authenticating (knowledge) soundness, if Πzk satisfies the (knowledge) sound-
ness;

– ΠCD satisfies the identifier uniqueness, if Πzk is sound, and the DPKE satisfies perfect correct-
ness;

– ΠCD satisfies the entropic ZK w.r.t. all k-unpredictable samplers and the transformation set
Φsrs
brs, if Πzk is zero-knowledge, and Σde is PRIV- IND-MU-secure with respect to 2−k-hard-to-

invert auxiliary inputs. 10

– ΠCD satisfies the related-witness unforgeability w.r.t. all k-unpredictable samplers and , if Πzk

is a simulation-extractable NIZK, and Σde is PRIV- IND-MU-secure with respect to 2−k-hard-
to-invert auxiliary inputs.

The formal proof is defered to Sect.4.3. We first discuss how to instantiate the full-fledged con-
struction.
Sketch of instantiation. Since the underlying DPKE scheme Σde shall satisfy the perfect cor-
rectness and the PRIV-IND-MU-security with respect to hard-to-invert auxiliary inputs, the only
candidate so far is Brakerski and Segev’s d-linear based construction [13]. Particularly, this construc-

tion allows 2−k-hard-to-invert auxiliary inputs where 2−k ≤ ν(λ)
q2d

. Here, ν is a negligible function in
λ, d can be 1 when considering the DDH assumption, and q is the order of the DDH group which is
usually 2Θ(λ). Accordingly, if we set ν(λ) = 2−ω(log λ), the admissible samplers of our waNIZK con-
struction ΠCD should be k-unpredictable for some k ≥ 2 log q+ω(log λ).11 Regarding the underlying
simulation-extractable NIZK Πzk for LCD, we note it could be realized via simulation-extractable
NIZKs for general NP languages. Particularly, adaptive NIZKs for general NP languages are known
to exist under the RSA assumption [27] or the LWE assumption [40], and we can add simulation
extractability to them using standard tools including one-way functions and public-key encryptions
as noted in [41]. In addition, since the tag generation procedure is algebraic (and Groth-Sahai-
friendly), we can leverage the (simulation-extractable) Groth-Sahai proof system [31] to instantiate
Πzk, if the statement x ∈ L that we wish to prove is also Groth-Sahai-friendly.

4.3 Proof of Theorem 1

Preparation. To facilitate our security proof, we show a DPKE scheme, which is PRIV-IND-MU-
secure with respect to ϵ-hard-to-invert auxiliary inputs, also applies to messages from a source with
k-unpredictability entropy where k(λ) = − log ϵ(λ). More precisely,

Corollary 1. Let Σ be PRIV-IND-MU-secure with respect to ϵ-hard-to-invert auxiliary inputs, and
let (Mλ, AUXλ) be a source satisfying Hunp(Mλ|AUXλ) ≥ − log ϵ(λ). For any non-uniform PPT
adversary A, it holds that

|Pr[Exppriv,0Σ,A,(M,AUX)(λ) = 1]− Pr[Exppriv,1Σ,A,(M,AUX)(λ) = 1]| ≤ negl(λ)

The experiments are defined as follows, where L is a polynomial-bounded integer function.
10 A basic requirement is k = ω(log λ) s.t. it is possible to have such a DPKE scheme.
11 In certain applications, we may be insterested in the relation between n = |wI | and k of admissible samplers. Note

that for any constant 0 < µ ≤ 1, there exists a sufficient large polynomial n such that nµ ≥ 2 log q + ω(log λ).
Namely, k can be sublinear in n, and in this case given (X,Z, PP) finding W I is sub-exponentially hard.

24

Exppriv,0Σ,A,(M,AUX)(λ)

(m0, aux)← (Mλ, AUXλ)

for i ∈ [L(λ)]

(pki, ski)← KeyGen(1λ)

ci ← Enc(pki,m0)

b← A({(pki, ci)}i∈[ℓ(λ)], aux)

Exppriv,1Σ,A,(M,AUX)(λ)

(m0, aux)← (Mλ, AUXλ)

for i ∈ [L(λ)]

mi ← {0, 1}|m0|

(pki, ski)← KeyGen(1λ)

ci ← Enc(pki,mi)

b← A({(pki, ci)}i∈[ℓ(λ)], aux)

Proof. By the definition of the unpredictability entropy, for (Mλ, AUXλ) satisfyingH
unp(Mλ|AUXλ) ≥

− log ϵ(λ), there is a collection of distributions Y |aux such that (Mλ, AUXλ) and (Yλ, AUXλ) are
computational indistinguishable, and given aux finding y is ϵ-hard. Let the function f be sampling
procedure for AUX conditioned on y. Notice the DPKE scheme essentially does not require an
efficiently computable function. Therefore, (Yλ, f) is an admissible message distribution along with
an auxiliary input function.

From the indistinguishability, (
−→
pk,
−−→
Enc−→

pk
(m0), aux) and (

−→
pk,
−−→
Enc−→

pk
(y), aux) are computationally

indistinguishable,where
−→
pk = (pk1, . . . , pkL(λ)) and

−−→
Enc−→

pk
(m)

= (Encpk1(m), . . . ,EncpkL(λ)
(m)). Then, since finding y is ϵ-hard, by the definition of DPKE,

(
−→
pk,
−−→
Enc−→

pk
(y), aux) and (

−→
pk, (Encpk1(m1), . . . ,EncpkL(λ)

(mL(λ))), aux) are computationally indistin-

guishable, where m1, · · · ,mL(λ) ←$ {0, 1}|m0|. Thus we have the result. ⊓⊔

Finally, for our sepcial purpose, we show the above result can be extended to the following form.

Corollary 2. Let L and M be two polynomial-bounded integer functions in λ, and Σ be PRIV-
IND-MU-secure with respect to 2−k-hard-to-invert auxiliary inputs. Let PG be a trusted parameter
generation procedure (cf.Def,13). Then, for any non-uniform PPT adversary A = (A1,A2), it
follows that

|Pr[Exppriv,0Σ,A,PG(λ) = 1]− Pr[Exppriv,1Σ,A,PG(λ) = 1]| ≤ negl(λ).

The experiments are defined in the following, where A1 is only allowed to output a sampler G which
is k-unpredictable w.r.t. PG.

Exppriv,0Σ,A,PG(λ)

pp← PG(λ)

(G, st)← A1(pp)

for i ∈ [M(λ)]

(xi, w
I
i , w

NI
i , zi)← G(pp)

ηi = (xi, zi, pp)

for j ∈ [L(λ)]

(pki,j , ski,j)← KeyGen(1λ)

ci,j ← Enc(pki,j , w
I
i)

b← A2({(pki,j , ci,j), ηi}i∈[L],j∈[M], st)

Exppriv,1Σ,A,G,PG(λ)

pp← PG(λ)

(G, st)← A1(pp)

for i ∈ [M(λ)]

(xi, w
I
i , w

NI
i , zi)← G(pp)

ηi = (xi, zi, pp)

for j ∈ [L(λ)]

mi,j ←$ {0, 1}|w
I
i |

(pki,j , ski,j)← KeyGen(1λ)

ci,j ← Enc(pki,j ,mi,j)

b← A2({(pki,j , ci,j), ηi}i∈[L],j∈[M], st)

25

Proof. Let us consider a sequence of (M +1) hybrid experiments {Exphybrid−iΣ,A,PG }i∈[M+1]. The first one

is identical to Exppriv,0Σ,A,PG and the (M + 1)-th one is identical to Exppriv,1Σ,A,G,PG. In the T -th one, for
every i < T and j ∈ [L], ci,j is an encryption of a randomly sampled mi,j ; for evevry i ≥ T and
j ∈ [L], ci,j is an encryption of the i-th identifier witness wI

i . Then, by standard argument, if there

exists an efficient adversary A making |Pr[Exppriv,0Σ,A,G,PG(λ) = 1]−Pr[Exppriv,1Σ,A,G,PG(λ) = 1]| > negl(λ),

there must exist an index T ∗ ∈ [M], such that there is an efficient adversary AT ∗
making

|Pr[Exphybrid−T
∗

Σ,AT∗ ,G,PG
(λ) = 1]− Pr[Exp

hybrid−(T ∗+1)

Σ,AT∗ ,G,PG
(λ) = 1]| > negl(λ).

Then, it is easy to construct an efficient adversary B to break the deterministic encryption Σ. Let
us specify a message distribution (M∗, AUX∗), where each sample (m, aux) is generated as follows:
pp ← PG(λ), (G, st) ← AT ∗

1 (pp), (x,wI , wNI , z) ← G(pp), m = wI , aux = (x, z, pp, st,G). By
definition, (M∗, AUX∗) is an admissible message distribution.

Next, B can issue the distribution (M∗λ, AUX∗λ) and obtain ({pk∗j , c∗j}j∈[L], x∗,
z∗, pp, st,G). Then, B sets (pk∗(T ∗+1),j , c(T ∗+1),j) = (pk∗j , c

∗
j) for all j ∈ [L] and ηT ∗+1 = (x∗, z∗, pp).

For all i ̸= (T ∗ + 1), B executes as follows.

– If i < T ∗, for all j ∈ [L], run (pki,j , ski,j)← KeyGen(1λ),mi,j ←$ {0, 1}|wI |, ci,j ← Enc(pki,j ,mi,j).
– If i ≥ T ∗+1, run (xi, w

I
i , w

NI
i , zi)← G(pp), and for all j ∈ [L], run (pki,j , ski,j)← KeyGen(1λ),

ci,j ← Enc(pki,j , w
I
i).

Finally, B returns all these public keys, ciphertexts and auxiliary inputs to AT ∗
2 . It is easy to see

when in the received tuple ({pk∗j , c∗j}j∈[L], x∗, z∗, pp), each c∗j is an encryption of wI , the environment

around AT ∗
is identical to that in the T ∗-th experiment; otherwise, the enviroment is identical to

that in the T ∗ + 1-th experiment. Therefore, B can leverage AT ∗
to break the PRIV-IND-MU-

security with respect to 2−k-hard-to-invert auxiliary inputs of Σ. ⊓⊔

Then we proceed the proof of Theorem 1. We first prove the entropic ZK of our construction
ΠCD, and then prove the soundness definitions.

Proof of entropic ZK.We first present the simulator (SimSetup, SimProve) ofΠCD. Let (SSzk,SPzk)
be the simulator of the underlying NIZK proof systemΠzk, and then we construct (SimSetup,SimProve)
for ΠCD as follows.

1. SimSetup(1λ). Firstly invoke the simulator of Πzk: (σzk, τzk) ← SSzk(1
λ). Return the CRS

σ = σzk and the trapdoor τ = τzk.
2. SimProve(σ, τ, x). Firstly generate a pair of keys (pk, sk) ← Kde(1

λ), and sample m ←
{0, 1}|wI |; Compute c = Ede(pk,m); Then invoke the simulator of Πzk to prove (x, pk, c) ∈ LCD:
πzk ← SPzk(σzk, τzk, (x, pk, c)); Return the simulated proof π = (pk, c, πzk).

We denote the event

[pp← PG(1λ);σ ← Setup(1λ);G← A(pp, σ) : 1← AOP1,OP2(σ)]

by Eventrealzk,A, and denote the event

[pp← PG(1λ); (σ, τ)← SimSetup(1λ);G← A(pp, σ) : 1← AOS1,OS2(σ)]

26

by Eventsimzk,A. Our goal is to show the difference between Pr[Eventrealzk,A] and Pr[Eventsimzk,A] is neg-

ligible in λ, for any non-uniform PPT adversary A. To do this, we define hybrid events Event1zk,A
and Event2zk,A.

The hybrid event Event1zk,A.

[pp ← PG(1λ); (σ, τ) ← SimSetup(1λ);G ← A(pp, σ) : 1 ← AOP11,OP12(σ)], where the oracle
OP11,OP12 are defined by modifying OP1,OP2. Precisely,

OP11(σ, τ, pp)

i++;

(xi, (w
I
i , w

NI
i), zi)← G(pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i), zi);

πi ← Prove(1)(σ, τ, xi, w
I
i)

return (xi, πi, zi)

OP12(σ, τ, pp, xi,EG, st)

Find(i, xi, (w
I
i , w

NI
i), zi) ∈ st

(x̄, w̄NI)← EGreal(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← Prove(1)(σ, τ, x̄, wI
i)

return (x̄, π̄, zi)

The boxed items are different from the prover oracle OP. Here, the hybrid prover algorithm
Prove(1)(σ, τ, x, (wI , wNI)) is executed as follows, where the boxed items are different from the
prover algorithm Prove.

Prove(1)(σ, τ, x, wI).
1. Parse σ = σzk, and τ = τzk ;

2. Generate (pk, sk)← Kde(1
λ), and encrypt wI : c← Ede(pk, w

I);

3. Prove (x, pk, c) ∈ LCD by using the Πzk: πzk ← SPzk(σzk, τzk, (x, pk, c)).

5. Output the final proof π = (pk, c, πzk).

The hybrid event Event2zk,A. This event is almost identical to Event1zk,A, except that the oracle

OP12 is replaced with OP22.

OP22(σ, τ, pp, xi,EG, st)

Find(i, xi, (w
I
i , w

NI
i), zi) ∈ st

(x̄, w̄NI)← EGsim(pp, σ, xi)

π̄ ← Prove(1)(σ, τ, x̄, wI
i)

return (x̄, π̄, zi)

We have the following lemmas.

Lemma 1. Assume that any non-uniform PPT adversary cannot break the adaptively unbounded
zero-knowledge property of Πzk with an advantage greater than AdvzkΠzk

(λ). It follows that

|Pr[Eventrealzk,A]− Pr[Event1zk,A]| ≤ AdvzkΠzk
(λ),

for any non-uniform PPT adversary A.

27

Proof (sketch). Assume there is an adversary A making

|Pr[Eventrealzk,A]− Pr[Event1zk,A]| = ϵ.

Then, we can construct an efficient adversary B breaking the adaptively unbounded zero-knowledge
of Πzk with an advantage ϵ, by leveraging A. B is given a CRS σzk and a prover oracle Ozk, which
are either an honestly generated CRS and a real prover oracle, or a simulated CRS and a simulation
prover oracle. Then, B mimics all steps in Event1zk for A: B provides σzk to A, and answers queries
to OP11,OP12 by querying Ozk whenever it needs to execute the algorithm SPzk. It is easy to see
that, when σzk is a simulated CRS and Ozk is a simulation oracle, at the point of A’s view, all
steps are identical to that in Event1zk; when σzk and Ozk are real, these steps are identical to that
in Eventrealzk . Therefore, it must follow that ϵ ≤ AdvzkΠzk

. ⊓⊔

Lemma 2. Under the requirement that every EG is a dual-mode extended sampler, it holds that
for any non-uniform adversary A,

|Pr[Event1zk,A]− Pr[Event2zk,A]| ≤ negl(λ).

Proof. Consider a sequence of experiments {Event1,izk,A}i∈[K] for some polynomial K that bounds

the number of extended samplers the adversary A issues. In Event
1,i
zk,A the oracle answering the

query of extended samplers is denoted by OPi2, and it answers j-the query either using OP22 if
j < i or using OP12 if j ≥ i. So, it holds that Event1,1zk,A = Event1zk,A and Event

1,K
zk,A = Event2zk,A.

By standard arguments, if there is a non-uniform PPT adversary A s.t. |Pr[Event1zk,A] −
Pr[Event2zk,A]| > negl(λ), there will be i∗ ∈ [1,K−1] s.t. |Pr[Event1,i

∗

zk,A]−Pr[Event
1,i∗+1
zk,A]| > negl(λ)

for this adversary.

We show that this result implies that the i∗-th sampler EGi∗ is not a dual-mode sampler w.r.t.
PG, which contradicts our requirement. Specifically, we consider an adversary B against EGi∗ w.r.t.
PG, who is given pp ← PG(1λ), an an oracle access to OEG that either returns the statement
outputted by EGi∗

real or that outputted by EGi∗
sim.

B(pp)
(σ, τ)← SimSetup(1λ);G← A(pp, σ); b← A(·)(σ, pp); return b

Answering A
All queries are answered as in Event

1
zk,A, except(EGi∗ , xi)

Query OEG with (pp, xi, w
I
i , w

NI) and obtain x̄

Run π̄ ← Prove(1)(σ, τ, x̄, wI
i) and Return (x̄, π̄, zi)

When OEG returns the statement outputted by the real mode, at A’s view the environment is iden-
tical to that in Event

1,i∗

zk,A; otherwise, the environment is identical to that in Event
1,i∗+1
zk,A . Therefore,

if there exists an adversary making |Pr[Event1,i
∗

zk,A]−Pr[Event
1,i∗+1
zk,A]| > negl(λ), B has non-negligible

advantage in distinguishing the statements outputed by EGi∗
real and EGi∗

sim.

28

Lemma 3. Assume that any non-unifrom PPT adversary A cannot break the PRIV-IND-MU-
securirty (w.r.t. 2−k-hard-to-invert auxiliary inputs) of the DPKE scheme Σde with an advantage
greater than AdvprivΣde

(λ). Or more precisely (cf. Corollary.2),

|Pr[Exppriv,0Σde,A,PG(λ) = 1]− Pr[Exppriv,1Σde,A,PG(λ) = 1]| ≤ AdvprivΣde
(λ).

It follows that
|Pr[Eventsimzk]− Pr[Event2zk]| ≤ AdvprivΣde

,

for any non-uniform PPT adversary A.

Proof. Assuming there is an adversary A s.t. |Pr[Eventsimzk] − Pr[Event2zk]| = ϵ, we can construct

an adversary B making |Pr[Exppriv,0Σde,B,PG(λ) = 1] − Pr[Exppriv,1Σde,B,PG(λ) = 1]| = ϵ. More precisely, we
write the code of B = (B1,B2) in the following.

B1(pp)
(σ, τ)← SimSetup(1λ);G← A(pp, σ); return (G, st = (σ, τ))

B2({(pki,j , ci,j), xi, zi}i∈[M],j∈[L], pp, st)

Run b← A(·)(pp, σ); return b

Queries of A are answered as follows:

-For the i-th query to OP11 : pick the tuple (xi, zi, (pki,1, ci,1));

πzk ← SPzk(σzk, τzk, (xi, pki,1, ci,1)); return (xi, (pki,1, ci,1, πzk), zi) to A
-For the j-th query (EG, xi)that specifies xi to OP12 : x̄← EGsim(pp, xi)

πzk ← SPzk(σzk, τzk, (x̄, pki,j , ci,j)); return (x̄, (pki,j , ci,j , πzk)) to A.

Here we assume w.l.o.g. that A queries with G at most M times, and uses an extended sampler to
extend one statement xi at most L times. It is easy to see that when B is in Exppriv,1Σ,B,PG, i.e., each
(pki,j , ci,j) is generated by encrypting a uniformly chosen message mi,j with a freshly generated

pki,j , the above steps simulated by B are identical to that in Eventsimzk,A; when B is in Exppriv,0Σ,B,PG,

these steps are identical to that in Event2zk,A. We have |Pr[Eventsimzk,A]−Pr[Event2zk,A]| ≤ AdvprivΣde
(λ)

for any non-uniform PPT adversary A. ⊓⊔

Combining above lemmas, we have that for any non-uniform PPT adversary

|Pr[Eventsimzk]− Pr[Eventrealzk]| ≤ AdvprivΣde
(λ) + AdvzkΠzk

(λ) + negl(λ).

Since we assume the zero-knowledgeness of Πzk and the PRIV-MU-security of Σde, it holds that
|Pr[Eventsimzk]− Pr[Eventrealzk]| ≤ negl(λ).

Proof of authenticating soundness. Now we prove the authenticating soundnessof ΠCD. As-
sume there is a non-uniform PPT adversary A which breaks the authenticating soundness, i.e., A
outputs a valid proof π for a statement x such that either x is a false statement or no identifier
witness of x can authenticate π. We first parse π = (pk, c, πzk). From the definition of CD.Verify,
πzk is a valid proof for (x, pk, c) w.r.t. the proof system Πzk. Then, from the soundness of Πzk,
the statement (x, pk, c) ∈ LCD must be true, i.e., there must be a witness (wI , wNI) ∈ RL(x) and
c = Ede(pk, w

I). According the description of CD.Identify, this identifier witness wI authenticates
π. The above arguments contradicts our assumption that A breaks the authenticating soundness.
Therefore, we complete our proof.

29

Proof of authenticating knowledge soundness. We firstly establish the knowledge extractor
for our construction. Let (Extzk,0,Extzk,1) be knowledge extractor of Πzk. The knowledge extractor
(Ext0,Ext1) of ΠCI can be constructed as follows.

1. Ext0(1
λ). Firstly invoke the knowledge extractor of Πzk: (σzk, ξzk)← Extzk,0(1

λ); Return the
CRS σ = σzk and the trapdoor ξ = ξzk.
2. Ext1(σ, ξ, π). Firstly parse the proof π = (pk, c, πzk); Then, use the knowledge extractor of
Πzk: (w

I , wNI)← Extzk,1(σzk, ξzk, πzk, (x, pk, c)).

Then we show the extracted witness (wI , wNI) ∈ RL(x) and wI authenticates π. By the defi-
nition of knowledge soundness, since πzk is a valid proof for (x, pk, c), we have (wI , wNI) ∈ RL(x)
and c = Ede(pk,w

I). By the definition of the algorithm CD.Identify, wI authenticates π. Thus, we
complete the proof for the authenticating knowledge soundness.

Proof of identifier uniqueness. We prove the identifier uniqueness, by constructing a non-
uniform PPT adversary C to break the soundness of Πzk under the assumption that Σde is perfectly
correct, by leveraging an adversary A that can break the identifier uniquenessof ΠCD. Specifically,
C is given a CRS σzk, and gives σ = (σzk) to A. C can honestly answer all queries made by A
using σzk. Therefore, A will output (x, π = (pk, c, πzk), w

I
1, w

I
2) s.t. π is authenticated by wI

1 and
wI
2. According to the definition of CD.Identify, Ede(pk, w

I
1) = Ede(pk, w

I
2). However, according to the

perfect correctness, if pk is valid, Ede is an injection. Therefore, pk is not valid, and the statement
(x, pk, c) is not true. Thus ((x, pk, c), πzk) contradicts the soundness of Πzk.

Proof of related-witness unforgeability. Recall the definition of related-witness unforgeability
in Def.19, and denote the event that the adversary A succeeds by

Eventrunf,A :=

pp← PG(1λ);σ ← Setup(1λ);G← A(pp, σ);
(x∗, π∗, ϕ)← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, ϕ(wI)) = 1

 ,

where ϕ is a transformation satisfying the bounded root space and sampleable root space (cf.
Remark.5 after Def.19). We prove Pr[Eventrunf,A] ≤ negl(λ) by considering the following hybrid
event. Here, we denote the simulation extractor of Πzk by SEzk,SPzk,SExtzk.

The hybrid event Event1runf,A. This event is almost identical to Eventrunf,A, except that Setup is

replaced by the following ˜SimSetup:

– ˜SimSetup(1λ) : Run the simulation extraction setup SEzk of Πzk: (σzk, τzk, ξzk) ← SEzk(1
λ). Set

σ = (σzk), τ = τzk.

And the oraclesOP1,OP2 are replaced with the oracles (OP1,OP2), which are similar to (OP11,OP12)
that we introduced in Event1zk (given in the proof for entropic ZK), except that the used (σzk, τzk)
is generated by SEzk instead of SSzk.

Following the similar arguments in Lemma.1, we have: for any non-uniform PPT adversary A,

|Pr[Event1runf,A]− Pr[Eventrunf,A]| ≤ negl(λ).

30

Next, we show that Event1runf happens with negligible probability.

Lemma 4. If the DPKE scheme Σde is PRIV-IND-MU-secure w.r.t. 2−k-hard-to-invert auxiliary
inputs, and Πzk is a simulation-extractable NIZK, it follows that for any non-uniform PPT adver-
sary A, Pr[Event1runf,A] ≤ negl(λ).

Proof. To facilitate our proof, we present a special form of security definition of Σde, which captures
the message recovery security.

ExprecΣ,B,PG(λ)

pp← PG(λ)

(G, st)← B1(pp)
for i ∈ [M(λ)]

(xi, w
I
i , w

NI
i , zi)← G(pp); ηi = (xi, zi, pp)

for j ∈ [L(λ)]

(pki,j , ski,j)← KeyGen(1λ); ci,j ← Enc(pki,j , w
I
i)

wI
∗ ← B2({(pki,j , ci,j), ηi}i∈[L],j∈[M], st)

return 1 if ∃i ∈ [M] s.t.wI
i = wI

∗

Following Corollary.2, it holds that for any non-uniform PPT adversary B, Pr[ExprecΣ,B,PG(λ)] ≤
negl(λ). Otherwise, one can use the wI

∗ to decide wether ci,j is an encryption for wI
i . Assuming

there is an efficient adversary A s.t. Pr[Event1runf,A] = ϵ, we can construct an adversary B making

Pr[ExprecΣ,B,PG(λ) = 1] = ϵ+negl(λ)
q , where q = Maxϕ∈Φ,∀y(|ϕ−1(y)|). We write the code of B = (B1,B2)

in the following.

B1(pp)
(σzk, τzk, ξzk)← SEzk(1

λ); G← A(pp, σzk); return (G, st = (σzk, τzk, ξzk))

B2({(pki,j , ci,j), xi, zi}i∈[M],j∈[L], pp, st)

Run (x∗, π∗, ϕ)← A(·)(pp, σ); Parse π∗ = (pk∗, c∗, π∗
zk)

(ŵI
∗, ŵ

NI
∗)← SExtzk(σzk, ξzk, (x

∗, pk∗, c∗), π∗
zk); return wI

∗ ←$ ϕ−1(ŵI
∗)

Queries of A are answered as follows:

-For the i-th query to OP11 : pick the tuple (xi, zi, (pki,1, ci,1))

πzk ← SPzk(σzk, τzk, (xi, pki,1, ci,1)); return (xi, (pki,1, ci,1, πzk), zi) to A
-For the j-th query (EG, xi) that specifies xi to OP12 : x̄← EGsim(pp, xi)

πzk ← SPzk(σzk, τzk, (x̄, pki,j , ci,j)); return (x̄, (pki,j , ci,j , πzk)) to A.

Note that the ouputs of EGreal and EGsim are computationally indistinguishable. At the point
of A’s view, the experiment simulated by B is computationally indistinguishable with that in
Event1runf,A. By assumption, A will output (x∗, π∗ = (pk∗, c∗, π∗zk), ϕ) that will be authenticated

by some (ϕ(wI
i)) with an advantage ϵ, i.e., Ede(pk

∗, ϕ(wI
i)) = c∗. Since pk is a valid public key

and Σde has the perfect correctness, we have w∗ = ϕ(wI
i). According to the bounded root space

and samplable root space requirement on ϕ, the root space of ϕ is bounded by a polynomial
q. It follows that Pr[ExprecΣ,B,PG(λ) = 1] = ϵ+negl(λ)

q . Then, from the security of DPKE, we have

Pr[Event1runf] ≤ negl(λ). ⊓⊔

31

5 Non-malleable (Perfectly One-way) Hash Functions from Standard
Assumptions

We will present three different applications in (non-malleable) hash (in this section), (group) sig-
nature (in Sect.6), and (plaintext-checkable) public key encryption (in Sect.7) respectively, and we
will show how to advance the state of the art in each domain.

Many efforts have been made formalizing meaningful cryptographic properties to realize random
oracles. Perfectly one-way hash [18] and non-malleable hash functions [9] are notable examples.
They are used to instantiate random oracles in e.g., Bellare-Rogaway encryption [6], HMAC [29],
and OAEP [10] respectively. In particular, a perfectly one-way hash is a probabilistic function that
requires the output to hide all partial information about the input (even with auxiliary information
about the input), while still enabling the check of the validity of an evaluation. And non-malleable
hash requires that one cannot malleate a hash value into a related one even with some auxiliary
information about the pre-image. Moreover, collision resistance is also required in both as it is
necessary for many of their interesting applications, such as instantiating random oracles in Bellare-
Rogaway encryption [6,9].

Perfect One- wayness
(with Auxiliary Input)

Collision Resistance

Non- malleability
(with Auxiliary Input)Boldyreva et al.[9]

Non- eff iciently
- falsif iable
Assumption

Standard
Assumptions

Bellare et al. [7]

Canet t i [18]
Random Oracle

Baecher et al. [3]

SE- NIZK

Fig. 3. Known results about non-malleable hash

Unfortunately, both perfectly one-way hash and non-malleable hash (with general auxiliary in-
puts) have no construction from any efficiently falsifiable assumption [18,25,9,3]. For clarity, we
illustrate known results about non-malleable hash in Fig.3. Canetti’s construction [18] is the only
known one satisfying perfect one-wayness with general auxiliary inputs and collision resistance, and
it is based on a non-efficiently-falsifiable form of DDH assumption. The initial work of Boldyreva et
al. [9] presented constructions of non-malleable hash from perfectly one-way hash functions [18] and
simulation-extractable NIZKs [41], thus directly inherits the non-efficiently falsifiable assumption
from [18]. Note that collision resistance of the underlying perfectly one-way hash is essential for
proving non-malleability in [9]. Thus, those standard-assumptions-based perfectly one-way func-
tions without collision resistance [7] cannot imply a non-malleable function (even without collision
resistance) along the way of [9]. Furthermore, Baecher et al. [3] showed another construction for a
non-malleable hash, but it requires a random oracle. Recall that the primary motivation of non-
malleable hash was to instantiate random oracles.

Note that the drawbacks the non-standard assumptions made by [18] have become much more
serious: the assumption is known to contradict the existence of iO [16], while recent progress [33]
demonstrated the feasibility of iO from some well-studied assumptions. The mere existence of such
a non-malleable hash or perfectly one-way hash becomes unclear, and a basic question remains:

32

Does there exist a non-malleable (or perfectly one-way) hash function w.r.t. general auxiliary
information from standard assumptions?

We solve both problems by using waNIZKs. Our framework could give concrete constructions
for non-malleable and perfectly one-way hash functionss with any sub-exponentially hard-to-invert
auxiliary inputs, assuming only the standard assumptions like d-linear assumption. We directly
construct a hash function that satisfies perfect one-wayness, non-malleability and collision resistance
simultaneously. We simply name it non-malleable (perfectly one-way) hash.

5.1 Definition

A hash function H is defined by a triple of PPT algorithms:

– HK(1λ). Generate a key hk of the hash function.
– H(hk, s). On inputs a key hk and an input s output a hash value y.
– HVf(hk, s, y). On inputs hk, s and y return a decision bit.

The correctness requires for any hk, s, it holds that HVf(hk, s,H(hk, s)) = 1. For security, the
hash function H is required to first satisfy:

– Perfect one-wayness w.r.t. ϵ-hard-to-invert auxiliary inputs. I.e., for any distribution S =
{Sλ}λ∈N and any hint function hint such that hint is ϵ-hard-to-invert w.r.t. S, and for any
non-uniform PPT adversary A, it holds that

Pr

[
hk ←HK(1λ), s0 ← Sλ, s1 ← {0, 1}|s0|, b←$ {0, 1},

y ← H(hk, sb), b
′ ← A(hk, y, hint(hk, s0)) : b = b′

]
≤ negl(λ).

– Collision resistance. I.e., for any non-uniform PPT adversary A,

Pr

[
hk ← HK(1λ),(s, s′, y)← A(hk) :

s ̸= s′ ∧ HVf(hk, s, y) = HVf(hk, s′, y) = 1

]
≤ negl(λ).

For definition of non-malleability, we adopt it from [3] as this game-based definition is easier
to use (than the simulation definition from [9]), and sufficient for all major applications including
Bellare-Rogaway encryption [6], HMAC [29], and OAEP [10]. Informally, non-malleability requires
that an adversary, seeing a hash value y = H(hk, s) and an auxiliary input hint(hk, s), cannot find
another y∗ whose pre-image is meaningfully related to s. We note the “relation” between the pre-
images is described a transformation set Φ, namely, s′ is Φ-related to s if s′ = ϕ(s) for some ϕ ∈ Φ.
The non-malleability is defined w.r.t. a transformation set Φ rather than any transformation ϕ, since
there exists some relation such as constant transformations, for which this definition is hopeless.
In this work, we will adopt on transformations that have the so-called bounded root space (BRS)
and samplable root space (SRS) (denoted by Φsrs

brs) developed in [22], which are the currently most
general yet achievable class.

Definition 21 (Non-malleability of hash [3]). A hash function H is non-malleable w.r.t. a
transformation set Φ and ϵ-hard-to-invert inputs, if for any non-uniform PPT adversary A =
(Ad,Ay),

Pr[ExpnmΦ,H,A(λ) = 1] ≤ negl(λ),

where the experiment is defined as follows.

33

ExpnmΦ,H,A(λ)

hk ← HK(1λ); (Sλ, st)← Ad(hk); s← Sλ, hs ← hint(hk, s); y ← H(hk, s)

(y∗, ϕ)← Ay(y, hs, std)

return 1 if ϕ(s) ̸= s ∧ HVf(hk, ϕ(s), y∗) = 1 ∧ ϕ ∈ Φ

The distribution Sλ outputted by Ad should be ϵ-hard-to-invert w.r.t. hint. That is for every hk, for
any non-uniform PPT adversary B, it holds that Pr[s← Sλ : s = B(hk, hint(hk, s), st)] ≤ ϵ(λ).

5.2 Construction

Observe that non-malleable (perfectly one-way) hash has three security requirements and a verify
algorithm. If we start just with perfect one-wayness (without the verifier algorithm) which hides
all partial information, there are plenty of candidates; for example, a commitment scheme. For the
remaining challenges of collision resistance and validity checking (while maintaining best possible
privacy), our waNIZK becomes an immediate choice. For non-malleability, it can come from related-
witness unforgeability. We define the evaluation as first committing to its input and then attaching
a proof of the well-formedness of the commitment using our waNIZK proof!

More precisely, let COM = {Kcom,Ccom} be a commitment scheme, and letΠwa = {Swa,Pwa,Vwa, Iwa}
be a WA-NIZK for an NP language Lnm := {(c, kcom); (s, r) : c = Ccom(kcom, s; r)}, in which s is the
identifier witness. Here we require Πwa to satisfy the identifier uniqueness, the entropic ZK and the
related-witness unforgeability w.r.t. all (− log ϵ)-unpredictable samplers and the transformation set
Φsrs
brs. We present the detailed description in Fig.4.

HK(1λ)

σwa ← Swa(1
λ) and kcom ← Kcom(1

λ); return hk = (σwa, kcom)

H(hk, s)

ccom ← Ccom(kcom, s; r);πwa ← Πwa(σwa, (ccom, kcom), (s, r)); return y = (ccom, πwa)

HVf(hk, s, y)

return 1 if Vwa(σwa, (ccom, kcom), πwa) = 1 ∧ Iwa(σwa, (ccom, kcom), πwa, s) = 1

Fig. 4. Non-malleable Hash from commitment+ waNIZKs

5.3 Security Analysis

The correctness follows the correctness of underlying primitives. Regarding collision resistance, if
two distinct inputs (s1, s2) (which are identifier witnesses) authenticate the sample proof, it imme-
diately breaks identifier uniqueness. Notice that the hash value y consists of a hiding commitment
and a WA-NIZK proof, both of which won’t leak partial information about an unpredictable input.
Thus, the perfect one-wayness follows easily. Regarding the non-malleability, notice that a mauled
hash value must contain a mauled waNIZK proof, which is prevented by the related-witness un-
forgeability of the waNIZK.

34

Theorem 2. H satisfies the perfect one-wayness w.r.t. ϵ-hard-to-invert auxiliary inputs, collision
resistance, and non-malleability w.r.t. the transformation set Φsrs

brs and ϵ-hard-to-invert auxiliary in-
puts, if the commitment scheme COM satisfies computationally hiding, and Πwa satisfies the iden-
tifier uniqueness, the entropic ZK and the related-witness unforgeability w.r.t. the transformation
set Φsrs

brs and all (− log ϵ)-unpredictable samplers.

Proof for non-malleability. We prove the non-malleability w.r.t transformations with bounded
and sampable root space, under the assumption thatΠwa satisfies the related-witness unforgeability.
Precisely, assuming there exists an efficient adversary breaking the non-malleability, we can con-
struct an adversary B that breaks the related-witness unforgeability. Recall the related-witness un-
forgeability definition, where B is given a CRS σwa, a trusted parameter pp = kcom ← Kcom(1

λ), and
oracle accesss to OP1 and OP2 . For Ad, we define a sampler GA as follows, where hk = (σwa, kcom):

(Sλ, st)← Ad(hk); s← Sλ; r ←$ Rcom; ccom ← Ccom(kcom, s; r);hs ← hint(hk, s);

return x = (kcom, ccom), w
I = s;wNI = r, z = (hs, st),

where Rcom is the randomness space of COM. It is easy to verify that such a sampler is k-
unpredictable w.r.t. Kcom

We describe the strategy of B as follows.

BOP1
,OP2 (σwa, kcom)

Set hk = (σwa, kcom);Query OP1 with GA and obtain (ccom, πwa, hs, st)

Set y = (ccom, πwa); (y
∗, ϕ)← Ay(y, hs, std)

return (x = (hk, ccom), πwa, ϕ)

Notice at the point of A’s view, the experiments simulated by B is identical to the real non-
malleability experiment. Therefore, A will output (y∗, ϕ) such that HVf(hk, y∗, ϕ(s)) = 1. Parse
y∗ = (c∗com, π

∗
wa), and it follows that π∗wa will be authenticated by s. Notice y∗ ̸= y, and then

(kcom, c
∗
com, π

∗
wa) gives a successful attack on the related-witness unforgeability. ⊓⊔

Proof for perfect one-wayness. We prove the perfect one-wayness under assumptions that
COM is hiding and Πwa satisfies the entropic ZK w.r.t. all k-unpredictable samplers. Specifically,
for a distribution {Sλ}λ∈N and a hint function hint, we define a sampler GS as follows, where
hk = (σwa, kcom):

s← Sλ; r ←$ Rcom; ccom ← Ccom(kcom, s; r);hs ← hint(hk, s);

return x = (kcom, ccom), w
I = s;wNI = r, z = (hs, st)

It is easy to verify that such a sampler is k-unpredictable w.r.t. Kcom, if COM is hiding.
Assume the simulator of Πwa is (SSwa,SPwa). We consider the an experiment Exppow in which

the hash key hk = (kcom, σwa) is generated as k ← Kcom(1
λ) and (σwa, τwa) ← SSwa(1

λ), the hash
function H(hk, sb) returns ccom ← Ccom(kcom, sb; r) and πwa ← SPwa(σwa, τwa, ccom, kcom). First,
from the entropic ZK of Πwa, the two experiments are indistinguishable, at the point of A’s view.
Therefore, the probability that A correctly guess the value b in this experiment is computationally
indistinguishable with that in the original experiment. Next, notice that πwa is generated indepen-
dently of sb, and the advantage of A thus is equal to the advantage of breaking the hiding property
of COM. Therefore, our construction enjoys the perfect one-wayness.

35

Proof for collision resistance. We show our construction is collision-resistant assuming the
identifier uniqueness of Πwa. More precisely, if for an honestly generated hk = (σwa, kcom), there
are two inputs x and x′ satisfying HVf(hk, x, y) = HVf(hk, x′, y) = 1 for some y = (ccom, πwa). It
means both x and x′ can authenticate πwa, which contradicts the identifier uniqueness of Πwa.

6 Group signatures with verifier-local revocation with auxiliary input

In group signatures with verifier local revocation (VLR) [12], we insist that the verifier can check by
himself whether a signature is generated by a revoked group member, so that the group public key
and the signing complexity are independent of revocation list which could be potentially long. In
this section, we show how waNIZKs give rise to a simple VLR group signature scheme. Particularly,
our construction enjoys auxiliary-input security, which is against a “side-channel” attacker who is
allowed to see some computationally hard-to-invert function of the user’s secret key. To the best of
our knowledge, known VLR group signatures cannot guarantee auxiliary-input security.

Why we consider the auxiliary-input security. Besides that “side-channel attacks” are a
threat for every cryptographic primitive, and that the auxiliary-input model is currently the
strongest model capturing memory leakage (more details about the model are referred to [26]),
we find the auxiliary-input security for VLR group signatures is interesting both practice-wise and
technical-wise.

Practice-wise, some instantiation of VLR group signatures, such as the direct anonymous at-
testation (DAA) [14] (along with its improved version, the EPID signature [15]), is adopted by
the Trusted Computing Group as the standard for remote authentication, and implemented in
several trusted platform modules (TPM) including Intel’s SGX. These TPMs are essential for com-
puter security but are shown, by numerous works, vulnerable to side-channel attacks [39]. The
study of auxiliary-input secure VLR group signature could enhance the security of TPMs against
side-channel attacks.

Technique-wise, constructing auxiliary-input secure VLR group signatures turns out to be a
non-trivial task. First, it is unclear how to easily “lift” existing constructions. Most of existing
VLR group signature schemes (such as [35,12,14,15]) leverage certain “pseudorandom functions”
on a secret to preserve the anonymity while enable verifier-local checking. Such “pseudorandom-
ness” either comes from underlying algebraic assumptions or directly from a PRF (e.g., a recent
construction from Boneh et al. [11]). Unfortunately, with the auxiliary input on the secret, “pseu-
dorandomness” collapses. Essentially, in a VLR group signature, it will need an auxiliary-input
secure secret-key-based tag generation mechanism that is identifiable (for realizing the revocation
functionality), unforgeable, and does not leak any partial information about the signer identity (for
anonymity). Our waNIZK provides a perfect tool.

6.1 The Definitions

A VLR group signature scheme Σgs is defined by a tuple of three PPT algorithms.
– GS.KeyGen(1λ, n). It outputs a group public key gpk, and for each user i ∈ [n], outputs the

secret key gsk[i] along with the revocation token grk[i].
– GS.Sign(gpk,gsk[i],m). It outputs a valid signature ϑ for m under gpk.
– GS.Verify(gpk,RL, ϑ,m). It returns either 1 indicating that ϑ is a valid signature for m and

was not signed by a revoked user whose token is in RL, or 0 otherwise. Here RL is a set of
revocation tokens.

36

A VLR group signature scheme Σgs is correct, if for (gpk,gsk,grk) ← GS.KeyGen(1λ), every
RL ⊂ grk, every message m ∈ {0, 1}∗,

GS.Verify(gpk,RL,GS.Sign(gpk,gsk[i],m),m) = 1⇔ grk[i] /∈ RL.

Note that this verification algorithm allows the group manager, who knows all revocation tokens,
to trace signer’s identifier for every valid signatures. Specifically, if GS.Verify(gpk, ∅, ϑ,m) = 1 and
GS.Verify(gpk,grk[i∗], ϑ,m) = 0, the signer of ϑ will be traced to user i∗.

A VLR group signature scheme should satisfy the anonymity and the traceability. Anonymity
ensures that the identity of an uncorrupted signer is indistinguishable from all possible signers, even
when the adversary is allowed to see many signatures from all users and to corrupt some gsk[i] and
grk[i]. Traceability captures that any non-uniform PPT adversary A can neither produce a valid
signature-message pair (ϑ,m) that won’t be traced to any user, i.e., GS.Verify(gpk,grk, ϑ,m) = 1,
nor frame an uncorrupted user i∗, i.e., GS.Verify(gpk,grk[i∗], ϑ,m) = 0, even when the adversary
are allowed to obtain signatures from all users and to corrupt some gsk[i] and grk[i].

In this paper, we present the auxiliary-input counterparts of them. Particularly, we consider
the auxiliary inputs as a hard-to-invert function on users’ secret keys along with the group public
key, since user’s devices are much more vulnerable than the group manager’s device that is usually
supposed to be well-protected. We use the following oracles to model the adversary’s capability.

– Corrgsk,grk(i). The corruption oracle takes as input an index i, and outputs (gsk[i],grk[i]).
– OSigngsk(i,m). The signing oracle takes as inputs an index i and a message m. It returns

ϑ← GS.Sign(gpk,gsk[i],m).

Definition 22 (Anonymity). A VLR group signature scheme Σgs satisfies the (auxiliary-input)
anonymity (w.r.t. a family of leakage functions F), if for any non-uniform PPT adversary A (and
any f ∈ F), it follows that

|Pr[Expanon,0Σgs,A (λ, n) = 1]− Pr[Expanon,1Σgs,A (λ, n) = 1]| ≤ negl(λ).

The experiments Expanon,βΣgs,A for β = 0, 1 are defined in the following, where
−→
f (gpk,gsk) denotes

(f(gpk,gsk[i]))i∈[n], and the challenge users (i∗0, i
∗
1) are not corrupted.

ExpAnon,βΣgs,A (λ, n)

(gpk,gsk,grk)← GS.KeyGen(1λ, n)

(i∗0, i
∗
1,m

∗, st)← ACorr,OSigngsk

1 (gpk,
−→
f (gpk,gsk))

ϑ∗ ← Sign(gpk,gsk[i∗β],m
∗);

b← ACorr,OSigngsk

2 (st, ϑ∗)

return b

Definition 23 (Traceability). A VLR group signature scheme Σgs satisfies the (auxiliary-input)
traceability (w.r.t. a family of leakage functions F), if for any non-uniform PPT adversary A (and
any f ∈ F), it follows that

Pr[ExptraceΣgs,A(λ, n) = 1] ≤ negl(λ).

The experiment ExptraceΣgs,A is defined in the following, where U denotes the set of all corrupted users.

37

ExptraceΣgs,A(λ, n)

(gpk,gsk,grk)← GS.KeyGen(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk))

return 1 if GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧
((GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0, i∗ /∈ U)

∨ (GS.Verify(gpk,grk, ϑ∗,m∗) = 1))

Remark 6. We note in the original definition the adversary does not specify a user i∗ to be “framed”,
and the success condition GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0 is only required to hold for an arbitrary
i∗ /∈ U . Nonetheless, it is easy to verify the two definitions are equivalent since n is polynomial-
bounded.

6.2 Construction

Our construction is based on the following observation. On rough terms, if a group signature scheme
allows one to efficiently check whether a group signature was generated by using (a part of) gsk[i],
then a VLR group signature can be built upon this as follows. 1) Set grk[i] to be (the specific part
of) gsk[i], and 2) the verification algorithm performs as follows.

– Verify the group signature as the underlying verification algorithm does.
– If valid, for each gsk[i] ∈ RL, identify whether ϑ was created by gsk[i]. If ϑ is not identified by

any gsk[i], accept it; otherwise, reject it.

The remaining part is to design a group signature with this identifiability. Note that the folklore
of designing group signatures is to employ a simulation extractable NIZK to prove the knowledge of
a group membership certificate [20] where the proof is taken as the signature. Then, our waNIZK
will be an immediate choice to add the identifiability, by replacing the NIZK in this folklore.
Moreover, the authenticating knowledge soundness and unforgeability of waNIZK would be enough
to replace simulation extractability. Actually, with the two properties, we can bind a message m to
a waNIZK proof (for preventing adversaries from forging signatures), by taking m as a “dummy”
part of the statement being proved; this approach is rather standard when constructing signatures
from simulation-extractable NIZKs.

Specifically, we consider a pair (ID, Sig), where ID is a bit string with sufficient length, and Sig
is a digital signature for ID under a verification key vksig of the group manager. To sign a message
m on behalf of the group, one just uses a waNIZK to prove the knowledge of such a pair w.r.t.
(vksig,m) where ID is set to be the identifier. The auxiliary-input security follows the fact that
all security guarantee of waNIZKs are preserved when auxiliary-information about witnesses 12 is
leaked to adversaries.

More formally, let Σsig = {Ksig,Ssig,Vsig} be a standard-model digital signature scheme that
satisfies the standard existentially unforgeability against chosen message attacks (EU-CMA). Let
Πwa = {Swa,Pwa,Vwa, Iwa} be a WA-NIZK for the following language:

LVLR : {(vksig,m); (ID, Sig) : Vsig(vksig,Sig, ID) = 1},
12 Since in the auxiliary-input model, this leakage could depend on the public parameter, which requires the underlying

waNIZK to work for CRS-dependent samplers.

38

where ID is the identifier witness. The VLR group signature Σgs is presented in Fig.5, where id(λ)
is a integer function polynomial in λ.

GS.KeyGen(1λ, n)

(vksig, sksig)← Ksig(1
λ);σwa ← Swa(1

λ)

For i ∈ [n], IDi ←$ {0, 1}id(λ),Sigi ← Ssig(vksig, sksig, IDi)

return gpk = (σwa, vksig), and for i ∈ [n],gsk[i] = (IDi, Sigi),grk[i] = IDi

GS.Sign(gpk,gsk[i],m)

Parse gpk = (σwa, vksig),gsk[i] = (IDi, Sigi)

return ϑ = πwa ← Pwa(σwa, (vksig,m), (IDi, Sigi))

GS.Verify(gpk,RL, ϑ,m)

Parse gpk = (σwa, vksig), RL = {IDt}t∈T⊂[n], ϑ = πwa

if Vwa(σwa, (vksig,m), πwa) = 1 ∧ (∀t ∈ T, Iwa(σwa, (vksig,m), πwa, IDt) = 0)

then return 1; else return 0

Fig. 5. VLR group signature with auxiliary inputs

6.3 Security Analysis

The correctness is easy to follow. Regarding the security, we first specify the admissible leakage func-
tion family F . Assume the underlying waNIZK Πwa satisfies the entropic ZK and the unforgeability
w.r.t. all k-unpredictable samplers.

Definition 24. We say F is admissible w.r.t. Σgs, if for every σwa in the range of Swa(1
λ), and

every (vksig, sksig) in the range of Ksig(1
λ), it holds that

Hunp(ID|gpk = (σwa, vksig), f(gpk, Ssig(vksig, sksig, ID), ID)) ≥ k(λ),

where ID is a uniformly distributed random variable over {0, 1}id(λ) and id is an integer function
polynomial in λ.

Note that the group public parameter gpk is independent of ID, and thus the admissible leak-
age function family F is surely non-empty. Moreover, notice that the class of admissible leakage
functions gets larger, if k is smaller.

Theorem 3. Let Σsig be a standard-model digital signature scheme satisfying EU-CMA security,
Πwa be a waNIZK for the language LVLR that satisfies the authenticating knowledge soundness,
the entropic ZK and unforgeability w.r.t all k-unpredictable samplers for LVLR. Σgs is a secure
VLR group signature scheme in terms of the auxiliary-input anonymity and the auxiliary-input
traceability w.r.t. all admissible functions.

Before presenting the formal proof, we give the intuition. Recall that in the anonymity experi-
ment, the goal of an adversary A is to decide the signer’s identity for a signature that was generated

39

by an uncorrupted user. The main idea of our proof is to show such a signature can be obtained by
querying the prover oracles of Πwa with an unpredictable sampler or an admissible extended sam-
pler. By the definition of entropic ZK, a signature by an uncorrupted secret key (which is a proof
πwa) will not leak any useful information to adversaries beyond that its validity. The anonymity
follows.

Regarding the auxiliary-input traceability, we note the adversary A wins either (1) when
(GS.Verify(gpk,grk[i∗],
ϑ∗,m∗) = 0 for the target user i∗, or (2) when (GS.Verify(gpk,grk, ϑ∗,m∗) = 1. If A wins via
the first condition, we can show it contradicts the unforgeability of Πwa by following similar argu-
ments in the anonymity proof. For the second condition, the authenticating knowledge soundness
of Πwa ensures that for each valid proof πwa, one can extract (ID, Sig) such that ID authenticates
πwa. Given the EU-CMA security of the digital signature scheme, the extracted ID must be one
generated by GS.KeyGen and thus be contained in grk, which contradicts the second condition.

Proof of anonymity.

Lemma 5. If the underlying WA-NIZK Πwa satisfies the entropic ZK w.r.t. all k-unpredictable
samplers, the proposed VLR group signature scheme Σgs satisfies the auxiliary-input anonymity
w.r.t. the admissible leakge function family F (cf. Def.24).

The hybrid event Event0anon,A. This event is identical to that ExpAnon,0Σgs,A (λ, n) = 1, i.e.,(without

boxed items)

Event0anon,A =

j0, j1 ←$ [n]

(gpk,gsk,grk)← GS.KeyGen(1λ)

(i∗0, i
∗
1,m

∗, st)← ACorr,OSigngsk
1 (gpk,

−→
f (gpk,gsk))

ϑ∗ ← Sign(gpk,gsk[i∗0],m
∗) :

1← ACorr,OSigngsk
2 (st, ϑ∗) ∧(i∗0, i∗1) = (j0, j1)

.

The bybrid event Event1anon,A. This event is almost identical to Event0anon,A, except the boxed
items will be added. I.e., before executing key generation algorithm GS.KeyGen, it randomly samples
two indexes j0, j1 ←$ [n], and this event occurs under an extra condition that (i∗0, i

∗
1) selected by

A1 is equal to (j0, j1).

The hybrid event Event2anon,A. This event is almost identical to Event1anon,A, except that the key

generation algorithm GS.KeyGen is replaced by GS.KeyGenev2, the oracle OSigngsk is replaced by

OSignev2gsk, and the challenge signature ϑ∗ is generated in another way.

– GS.KeyGenev2(1λ). It is almost identical to GS.KeyGen(1λ), except that the CRS σwa (which is
a part of gpk) is generated by the simulator of Πwa: (σwa, τwa)← SSwa(1

λ).

– OSignev2gsk. It is almost identical to OSigngsk, except that for each query (j0,m) or (j1,m) where
the signer identity is specified to be one of the pre-selected identities, the signature ϑ is generated
by running the simulator of Πwa: ϑ = πwa ← SPwa(σwa, τwa, (vksig,m)).

– The challenge signature ϑ∗ = π∗wa ← SPwa(σwa, τwa, (vksig,m
∗)).

40

The bybrid event Event3anon,A. This is almost identical to Event1anon,A, except the challenge
signature is generated by using gsk[i∗1].

The bybrid event Event4anon,A. This is identical to ExpAnon,1Σgs,A (λ, n) = 1.

We have the following claims.

Claim. For any non-uniform PPT adversaryA, if holds that Pr[Event0anon,A] = n(n−1)Pr[Event1anon,A].

Proof. Note that the selection of {j0, j1} is uniform and independent of A’s view. Therefore,

1

n(n− 1)
Pr[Event0anon,A] = Pr[Event1anon,A].

⊓⊔

Claim. Assume that any adversary cannot break the entropic ZK of Πwa with an advantage greater
than AdvzkΠwa

. It follows that for any non-uniform PPT adversary A,

|Pr[Event1anon,A]− Pr[Event2anon,A]| ≤ AdvzkΠwa
.

Proof. Assume there is an efficient adversary A making |Pr[Event1anon,A]−
Pr[Event2anon,A]| = ϵ, and we proceed this proof by constructing a non-uniform PPT adversary B
that breaks the entropic ZK of Πwa with the advantage ϵ. Recall the definition of entropic ZK (cf.
Def.15) where B is given σwa and oracle accesses to either (OP1,OP2) or (OS1,OS2), and its goal is
to distinguish them.

Before presenting the code of B, we specify the oracle queries it will make.

– To generate an uncorrupted user’s secret key along with its leakage w.r.t. f , one can query the
prover oracle OP1 with the following sampler G(σwa, ·) (parameterized by (vksig, sksig)) :

ID ←$ {0, 1}id(λ); Sig← Ssig(vksig, sksig, ID);m← 0; return

(x = (vksig,m), wI = ID,wNI = Sig, z = f(σwa, vksig, ID,Sig)))
(3)

– To obtain a signature on m′ from an uncorrputed secret key (ID, Sig), one can query the prover
oracle OP2 with a dual-mode extended sampler EGm′

= {EGm′
real,EG

m′
sim}, where EGm′

real on input
(σwa, x = (vksig,m), wI = ID,wNI = Sig), and

return (x̄ = (vksig,m
′), w̄NI = wNI), (4)

while EGm′
sim on input σwa, x = (vksig,m) outputs x̄ == (vksig,m

′).

It is easy to verify that the above sampler is k-unpredictable (by the definition of admissible leakage
function), and that the extended sampler is dual-mode (since ID is never used).

In the code of B, we use (O1,O2) to denote either (OP1,OP2)or (OS1,OS2), depending on which
pair of oracles B has accesses to.

41

BOP1,OP2(σwa) and BOS1,OS2(σwa)

j0, j1 ←$ [n]; (vksig, sksig)← Ksig(1
λ); Set gpk = (σwa, vksig)

For i ∈ [n]\{j0, j1}, IDi ←$ {0, 1}id(λ), Sigi ← Ssig(vksig, sksig, IDi)

Query O1 with the sampler G(σwa, ·) twice;
Obtain((vksig,m), f(gpk, IDj0 , Sigj0)) and

((vksig,m), f(gpk, IDj1 , Sigj1))

(i∗0, i
∗
1,m

∗, st)← A(·)
1 (gpk,

−→
f (gpk,gsk))

if (j0, j1) ̸= (i∗0, i
∗
1), Abort

Generate ϑ∗ by querying O2 with EGm∗
(σwa, (vksig,m), IDj0 , Sigj0))

b← A(·)
2 (st, ϑ∗)

Output b, Halt.

Oracle queries of (A1,A2) are answered as below:

− For a query (i,m′) to OSignev2 do

if (i ̸= j0, j1), return ϑ← GS.Sign(gpk,gsk[i],m′) to A
if (i = jt, t = 0, 1)

Query OP2 with EGm′
(σwa, (vksig,m), IDjt , Sigjt)); Obtainπwa;

return ϑ = πwa to A
− For a query (i) to Corr : if (i ̸= j0, j1), return (gsk[i],grk[i]); otherwise, abort

Notice that conditioned on (j0, j1) = (i∗0, i
∗
1), and when B is given accesses to (OP1,OP2), the

environment of A provided by B is identical to that in Event1anon,A; when when B is given accesses

to (OS1,OS2), the environment of A provided by B is identical to that in Event2anon,A. Therefore, it
follows that

|Pr[σwa ← Swa(1
λ), : 1← BOP1,OP2(σwa)]−

Pr[(σwa, τwa)← SSwa(1
λ) : 1← BOS1,OS2(σwa)]|

=|Pr[Event1anon,A]− Pr[Event2anon,A]| = ϵ.

Therefore, it holds that for any non-uniform PPT adversary A,

|Pr[Event1anon,A]− Pr[Event2anon,A]| ≤ AdvzkΠwa
.

Similarly, we have the following results.

Claim. Assume that any adversary cannot break the entropic ZK of Πwa with an advantage greater
than AdvzkΠwa

. It follows that for any non-uniform PPT adversary A,

|Pr[Event2anon,A]− Pr[Event3anon,A]| ≤ AdvzkΠwa
.

Claim. For any non-uniform PPT adversaryA, if holds that Pr[Event3anon,A] =
1

n(n−1) Pr[Event
4
anon,A].

Combining all these results, we have that for any non-uniform adversary A,

|Pr[ExtAnon,0Σgs,A (λ, n) = 1]− Pr[ExtAnon,1Σgs,A (λ, n) = 1]|

=|Pr[Event0anon,A]− Pr[Event4anon,A]|
=n(n− 1)|Pr[Event1anon,A]− Pr[Event3anon,A]|
≤2n(n− 1)AdvzkΠwa

,

42

which is negligible in λ since we assume the entropic ZK of Πwa. ⊓⊔

Proof of traceability.

Lemma 6. Assume that the underlying WA-NIZK Πwa satisfies the authenticating knowledge sound-
ness and the unforgeability w.r.t. all k-unpredictable samplers, and the digital signature scheme
Σsig satisfies the standard EU-CMA. The proposed VLR group signature scheme Σgs satisfies the
auxiliary-input traceability w.r.t. the admissible leakage function family F (cf. Def.24).

Proof. For clarity, we define the following events (without boxed items).

Event0trace1,A =

j ←$ [n]

(gpk,gsk,grk)← GS.KeyGen(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk)) :

GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧

GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0, i∗ /∈ U ∧i∗ = j

.

Event0trace2,A =

(gpk,gsk,grk)← GS.KeyGen(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk)) :

GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧
GS.Verify(gpk,grk, ϑ∗,m∗) = 1

 .

It is easy to see ExttraceΣgs,A(λ, n) = 1 iff either Event0trace1,A or Event0trace2,A happens. Thus, it is suffient

to prove Pr[Event0trace1,A] + Pr[Event0trace2,A] ≤ negl(λ). In the following, we bound the probability
of each event separately.

PART I. Pr[Event0trace1,A] ≤ negl(λ).
We show this via the following hybrid event.

The hybrid event Event1trace1,A. This event is almost identical to Event0trace1,A except that the
boxed items are included.

Then, we have the following claims.

Claim. For any non-uniform PPT adversary A, if holds that Pr[Event0trace1,A] = nPr[Event1trace1,A].

Proof. Since the selection of j is uniformly random and independent of A’s view, Pr[Event0trace1,A] =
nPr[Event1trace1,A].

Claim. Assume that any adversary cannot break the unforgeability of Πwa with an advantage
greater than AdvunfΠwa

(λ). It follows that for any non-uniform PPT adversary A, Pr[Event1trace1,A] ≤
AdvunfΠwa

(λ).

Proof. Assuming there is an adversary A making Pr[Event1trace1,A] = ϵ, we proceed this proof by
constructing an efficient adversary B against the unforgeability of Πwa with an advantage ϵ. Recall
the definition of unforgeability (cf. Def.18), where the adverary B is given a CRS σwa, and oracle
accesses to the prover oracles OP1 and OP2. And the goal of B is to produce a new statement

43

x∗ ∈ LVLR (with a form of (vksig,m)) along with a valid proof πwa that will be authenticated by an
honest generated wI (which in our case is ID).

We state the code of B in the following, by using the adversary A in Event1trace1,A, where B
queries the prover oracles with the k-unpredictable sampler G and the dual-mode extended sampler
EG which are defined in Eq.3 and 4.

BOP1,OP2(σwa)

j ←$ [n]; (vksig, sksig)← Ksig(1
λ); Set gpk = (σwa, vksig)

For i ∈ [n]\{j}, IDi ←$ {0, 1}id(λ), Sigi ← Ssig(vksig, sksig, IDi)

Query O1 with the sampler G(σwa, ·),
Obtain((vksig,m), f(gpk, IDj , Sigj))

(RL∗, ϑ∗,m∗, i∗)← A(·)
1 (gpk,

−→
f (gpk,gsk))

if j ̸= i∗, Abort

Output x∗ = (vksig,m
∗), π∗

wa = ϑ∗, Halt

Oracle queries of A are answered as below:

− For a query (i,m′) to OSignev2 do

if (i ̸= j), return ϑ← GS.Sign(gpk,gsk[i],m′) to A
if (i = j)

Query OP2 with EGm′
(σwa, (vksig,m), IDj , Sigj); Obtainπwa;

return ϑ = πwa to A
− For a query (i) to Corr : if (i ̸= j), return (gsk[i],grk[i]); otherwise, abort

Note that conditioned on j = i∗, the environment around A provided by B is identical to that in
Event1trace1,A. Therefore, with the probability ϵ, A will output a tuple (RL∗, ϑ∗,m∗, i∗) such that
GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1 and GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0. By the description of our
construction, it follows that π∗wa = ϑ∗ is a valid proof for x∗ = (vksig,m

∗) and Iwa(σwa, x
∗, π∗wa, IDi∗) =

1. In this case, B breaks the unforgeability ofΠwa. Therefore, we have Pr[Event
1
trace1,A] ≤ AdvunfΠwa

(λ).
⊓⊔

Combining the two claims, we know that for any non-uniform PPT adversary A, it follows that

Pr[Event0trace1,A] ≤ nAdvunfΠwa
(λ).

Since we assume the unforgeability of Πwa, it holds that Pr[Pr[Event
0
trace1,A]] ≤ negl(λ). ⊓⊔

Part II. Pr[Event0trace2,A] ≤ negl(λ).
We show this via the following hybrid events.

The hybrid event Event1trace2,A. This is almost identical to Event0trace2,A, except that the key

generation algorithm GS.KeyGen is replaced by GS.KeyGenev1:

– GS.KeyGenev1(1λ). It is almost identical to GS.KeyGen, except that the CRS σwa is generated
by the extractor of Πwa: (σwa, ξwa)← Ext0wa(1

λ).

The hybrid event Event2trace2,A. This is almost identical to Event1trace2,A, except that this event
occurs under an additional condition that a valid witness (ID∗, Sig∗) can be extracted from ϑ∗.

44

Formally, we define it in the following (excluding the boxed items).

Event2trace2,A =

(gpk,gsk,grk; ξwa)← GS.KeyGenev1(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk))

(ID∗, Sig∗)← Ext1wa(σwa, ξwa, (vksig,m
∗), πwa∗=ϑ∗) :

GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧
GS.Verify(gpk,grk, ϑ∗,m∗) = 1∧
RVLR((vksig,m

∗), (ID∗, Sig∗)) = 1∧
Iwa(σwa, (vksig,m

∗), π∗wa, ID
∗) = 1∧

∃i ∈ [n], IDi = ID∗

.

The hybrid event Event3trace2,A. This is almost identical to Event2trace2,A, except that the boxed
items are included.

We have the following claims.

Claim. Assume that for any non-uniform adversary PPT B,

|Pr[σwa ← Swa(1
λ) : 1← B(σwa)]−

Pr[(σwa, ξwa)← Ext0wa(1
λ) : 1← B(σwa)]| ≤ Advaks1Πwa

(λ).

It follows that for any non-uniform adversary A,

|Pr[Event0trace2,A]− Pr[Event1trace2,A]| ≤ Advaks1Πwa
(λ).

Proof. This directly comes from the definitions of events.

Claim. Assume that any non-uniform PPT adversary B cannot break the authenticating knowledge
soundness of Πwa with an advantage greater than Advaks2Πwa

(λ), or more precisely,

Pr

(σwa, ξwa)← Ext0wa(1

λ), (x∗, π∗wa)← B(σwa)
(wI = ID∗, wNI = Sig∗)← Ext1wa(σwa, ξwa, x

∗, π∗wa) :

Vwa(σwa, x
∗, π∗wa) = 1∧[

(wI , wNI) /∈ RVLR(x
∗) ∨ Iwa(σwa, x

∗, π∗wa, w
I) ̸= 1

]

 ≤ Advaks2Πwa
(λ).

It follows that any non-uniform PPT adversary A,

|Pr[Event1trace2,A]− Pr[Event2trace2,A]| ≤ Advaks2Πwa
(λ).

Proof. For clarity, we define the following event.

BadEtrace2,A =

(gpk,gsk,grk; ξwa)← GS.KeyGenev1(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk))

(ID∗,Sig∗)← Ext1wa(σwa, ξwa, (vksig,m
∗), πwa∗=ϑ∗) :

GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧
GS.Verify(gpk,grk, ϑ∗,m∗) = 1∧
(RVLR((vksig,m

∗), (ID∗, Sig∗)) ̸= 1∨
Iwa(σwa, (vksig,m

∗), π∗wa, ID
∗) ̸= 1)

.

45

By standard arguments, it follows

Pr[Event1trace2,A] = Pr[Event2trace2,A] + Pr[BadEtrace2,A].

Next, we show Pr[BadEtrace2,A] ≤ Advaks2Πwa
(λ). It is easy to construct an efficient adversary B which

on input σwa perfectly simulates the environment which is around A in BadEtrace2,A. It is easy to
see B can obtain a valid proof π∗wa for (vksig,m

∗) such that the extracted

(ID∗, Sig∗) /∈ RVLR(vksig,m
∗) ∨ Iwa(σwa, (vksig,m

∗), π∗wa, ID
∗) ̸= 1.

Therefore,

|Pr[Event1trace2,A]− Pr[Event2trace2,A]| = Pr[BadEtrace2,A] ≤ Advaks2Πwa
(λ).

⊓⊔

Claim. Assume that any non-uniform PPT adversary B cannot break the EU-CMA of Σsig with
an advantage greater than Adveucma

Σsig
(λ). It follows that for any non-uniform PPT adversary A,

|Pr[Event2trace2,A]− Pr[Event3trace2,A]| ≤ Adveucma
Σsig

(λ).

Proof. For clarity, we define a “bad” event in the following.

BadE2trace2,A =

(gpk,gsk,grk; ξwa)← GS.KeyGenev1(1λ, n)

(RL∗, ϑ∗,m∗, i∗)← ACorr,OSigngsk(gpk,
−→
f (gpk,gsk))

(ID∗,Sig∗)← Ext1wa(σwa, ξwa, (vksig,m
∗), πwa∗=ϑ∗) :

GS.Verify(gpk,RL∗, ϑ∗,m∗) = 1∧
GS.Verify(gpk,grk, ϑ∗,m∗) = 1∧
RVLR((vksig,m

∗), (ID∗,Sig∗)) ̸= 1∧
Iwa(σwa, (vksig,m

∗), π∗wa, ID
∗) ̸= 1∧

∀i ∈ [n], IDi ̸= ID∗

.

By the definition, we have Pr[Event2trace2,A] = [Event3trace2,A] + Pr[BadE2trace2,A]. Next, we show

Pr[BadE2trace2,A] ≤ Adveucma
Σsig

(λ). Assume there exists an efficient adversaryAmaking Pr[BadE2trace2,A] =
ϵ, and it is easy to construct an efficient adversary B that breaks the EU-CMA of Σwa with the
advantage ϵ. More specifically, B embeds the given verification key vksig into gpk, generates all
{IDi}i∈[n] by himself, and obtains {Sigi}i∈[n] by quering the signing oracle w.r.t. vksig, which allows
B provides the simulation for A. If ID∗ ̸= IDi for all i ∈ [n], B obtains a valid signature Sig∗ on a
new message ID∗, thus breaking the EU-CMA of Σsig.

Claim. It follows that Pr[Event3trace2,A] = 0.

Proof. Note that the if ID∗ = IDi for some i ∈ [n], the proof π∗wa = ϑ∗ must be authenticated by
IDi. By the description of the verifier algorithm GS.Verify, it contradicts GS.Verify(gpk,grk, ϑ∗,m∗) =
1. Therefore, the event Event3trace2,A will not happen. ⊓⊔

46

Combing all these claims, it follows that for any non-uniform PPT adversary A,

Pr[Event0trace2,A] ≤ Advaks1Πwa
(λ) + Advaks2Πwa

(λ) + Adveucma
Σsig

(λ).

Since we assume the authenticating knowledge soundness of Πwa and the EU-CMA of Σsig, it holds
that

Pr[Event0trace2,A] ≤ negl(λ).

⊓⊔

7 Plaintext-checkable encryption in the standard model

Plaintext-checkable encryption (PCE) [17] is a public-key encryption primitive that allows us to
search encrypted data with plaintext messages but still enables randomized encryption. Compared
with deterministic public-key encryption (DPKE) [5], PCE aims to find a more fine-grained defini-
tion between the search functionality while preserving best possible security, particularly, it ensures
two ciphertexts encrypting the same message are unlinkable (all partial information is still hidden
when the plaintext is not known to the attacker). Moreover, it was also shown to be useful for
group signatures with verifier-local revocation and backward unlinkability [12].

Existing constructions [17,37,36] are either relying on random oracles or only working for uni-
form message distributions. 13 In most scenarios, messages are from biased distributions. It is thus
a natural question to consider PCE in the standard-model for non-uniform message distributions.
14 In this section, we answer this question and present a generic transformation from a PKE scheme
to a PCE scheme, via a simple application of our waNIZK.

7.1 Definition

A PCE scheme enables everyone having a public key pk, a ciphertext c and a message m, to check
whether m is the plaintext of c under pk. Formally, it consists of four algorithms: KeyGen, Enc,
Dec, PCheck. While the first three algorithms describe a standard PKE scheme, the last algorithm
is as follows:

– PCheck(pk, c,m). Outputs 1 indicating c is an encryption of m under pk, and 0 otherwise.

Correctness requires that for every λ andm, (pk, sk)← KeyGen(1λ), c← Enc(pk,m), Pr[Dec(sk, c) =
1 ∧ PCheck(pk, c,m) = 1] = 1, where the probability is taken over coin tosses of KeyGen and Enc.
We follow the definitions from [17]: Checking completeness: No efficient adversary can output a
ciphertext which decrypts to a message that is refused by PCheck. Formally, for any non-uniform
PPT adversary A, it holds that

Pr[(pk, sk)← KeyGen(1λ); c← A(pk) : PCheck(pk, c,Dec(c, sk)) ̸= 1] ≤ negl(λ). (5)

13 We note that the recent scheme [36] claimed security in the standard model for any high-entropy message distri-
bution. However, their proofs still implicitly assume that the message distribution is uniform. We defer details to
Appendix B.

14 The plain-text equality tester, presented in [42], seems close to a PCE. However, it can only check whether a
ciphertext encrypts a pre-chosen target value m∗, while a PCE allows us to test for any plaintext publicly.

47

Checking soundness: No efficient adversary can generate a ciphertext c and a plaintext m such
that c cannot be decrypted to m but PCheck(pk, c,m) = 1. Formally, for any non-uniform PPT
adversary A, it holds that

Pr[(pk, sk)← KeyGen(1λ); (c,m′)← A(pk) :
PCheck(pk, c,m) = 1 ∧ Dec(sk, c) ̸= m′] ≤ negl(λ).

(6)

Unlinkability: This new property captures the infeasibility of deciding whether two ciphertexts
encrypt the same message, when the message is absent. Formally, we say a PCE schemeΣ satisfies k-
unlinkability, if for any non-uniform PPT adversary A = (Af ,Ag), it holds that |Pr[Expunlink,0Σ,A (A) =
1] − Pr[Expunlink,1Σ,A (A) = 1]| ≤ negl(λ), where the experiment is defined below and the min-entropy
of the output of Af should be greater than k.

Expunlink,bΣ,A (A)
(pk, sk)← KeyGen(1λ);m0 ← Af (pk),m1 ← Af (pk)

c0 ← Enc(pk,mb); c1 ← Enc(pk,m1); b
′ ← Ag(pk, c0, c1)

return b′

7.2 Construction

As a PCE scheme is a special PKE scheme that supports the plaintext-checking functionality
while preserving the best-possible privacy, the idea behind our transformation is to attach a
waNIZK proof that demonstrates the underlying PKE ciphertext is well-formed. More precisely,
let Σpke = {Kpke,Epke,Dpke} be a PKE scheme, and let Πwa = {Swa,Pwa,Vwa, Iwa} be a waNIZK
for the following language: LPCE := {(c, pk); (m, r) : c = Epke(pk,m; r)} where the message m is
the identifier witness. To encrypt a message m, our PCE scheme first encrypts it using Σpke, and
uses Πwa to prove the ciphertext is well-formed, where the CRS for Πwa is a part of the pub-
lic key. Everyone can check whether a ciphertext (cpke, πwa) encrypts a particular message m by
running the identification algorithm Iwa on πwa and m. The formal construction is presented in
Σ = {KeyGen,Enc,Dec,PCheck} in Fig. 6

KeyGen(1λ)

σ ← Swa(1
λ)

(pkpke, skpke)← Kpke(1
λ)

return pk = (σ, pkpke), sk = (pkpke, skpke)

Enc(pk,m)

cpke ← Epke(pkpke,m; r)

πwa ← Pwa(σ, (cpke, pkpke), (m, r))

return c = (cpke, πwa)

Dec(sk, c)

if Vwa(σ, (cpke, pkpke), π) then

return m← Dpke(cpke, skpke)

else return ⊥

PCheck(pk, c,m)

b← Iwa(σ, (cpke, pkpke), πwa,m)

return b

Fig. 6. PCE from PKE+WA-NIZK

48

7.3 Security Analysis

The correctness follows the correctness of the underlying primitives. Regarding the security, we
establish the following result.

Theorem 4. The PCE scheme Σ satisfies checking completeness, checking soundness, and k-
unlinkability, if Σpke is an IND-CPA PKE scheme with perfect correctness, and the waNIZK Πwa

satisfies the entropic ZK w.r.t. all k-unpredictable samplers, the authenticating soundness, and the
identifier uniqueness.

Before presenting the formal proof, we provide the intuition below. The checking completeness
follows the authentiation soundness of Πwa, and the checking soundness is implied by the identifier
uniqueness of Πwa. Regarding the k-unlinkability, we argue the distribution G = {(x = (c, pk), wI =
m,⊥) : m ← Mλ; c ← Enc(pk,m)} for LPCE is k-unpredictable w.r.t. an honest key generation
(pk, sk)← KeyGen(1λ), if the min-entropy of Mλ is greater than k. We note given (c, pk) finding wI

is not necessarily 2−k-hard. Indeed, we can define the following distribution Ḡ = {(x = (c, pk), y,⊥
) : m, y ← Mλ; c ← Enc(pk,m)}. Ensured by the IND-CPA security of the PKE scheme, Ḡ is
indistinguishable with G. As no side information about y is given, the probability of guessing y
should be not greater than 2−k. According to our definition k-unpredictable distributions, G is such
a distribution, enabling us to deploy a waNIZK that satisfies the entropic ZK w.r.t. k-unpredictable
samplers. The above argument helps us to avoid requiring the sub-exponential hardness of the
underlying PKE scheme.

Proof of checking completeness. We prove this property by contradiction. Assuming there is a
successful adversary A breaking the checking completeness, we can construct an efficient adversary
B breaking the authenticating soundness of Πwaby invoking A as follows. Recall that B takes as
input a CRS σwa and tries to output (x, π) such that π will not be authenticated by any wI ∈ RLx

Algorithm B(σwa)
(pkpke, skpke)← Kpke(1

λ); Set pk = (σ, pkpke); c← A(pk); Parse c = (cpke, πwa)

return (x = (pkpke, cpke), πwa)

Notice that ensured by the perfect correctness, for a valid pkpke the messagem = Dec(skpke, cpke)
is the only identifier witness of (pkpke, cpke). Therefore, if Iwa(σwa, x, πwa,m) = 0, B breaks the
authenticating soundness.

Proof of checking soundness. Assuming there is a successful adversary A breaking the checking
soundness, we can construct an efficient adversary B breaking the identifier uniqueness of Πwa by
invoking A as follows. Recall that B takes as input a CRS σwa and tries to output (x, π, wI

1, w
I
2)

such that π will be authenticated by both wI
1 and wI

2.

B(σwa)
(pkpke, skpke)← Kpke(1

λ); Set pk = (σ, pkpke); (c,m
′)← A(pk)

Parse c = (cpke, πwa),m = Dpke(skpke, c);

return (x = (pkpke, cpke), πwa, w
I
1 = m,wI

2 = m′)

Ensured by the checking completeness m authenticates the proof πwa; since A is successful, m′

can also authenticate the proof πwa. Therefore, B breaks the identifier uniqueness.

49

Proof of ϵ-unlinkability. We establish a sequence fo experiments {Exp1,Exp2,
Exp3,Exp4} in Fig.7 where the first one is Expunlink,0Σ,A and the last one is Expunlink,1Σ,A . We prove this
property by showing |Pr[Expi(λ) = 1] − Pr[Exp(i + 1)(λ) = 1]| ≤ negl(λ). Here we denote the
simulator of Πwa by (SSwa,SPwa).

Exp1(λ)

(pkpke, skpke)← Kpke(1
λ)

σwa ← Swa(1
λ)

m0 ← Af (pkpke, σwa)

m1 ← Af (pkpke, σwa)

cpke,0 ← Epke(pkpke,m0; r0)

cpke,1 ← Epke(pkpke,m1; r1)

πwa,0 ← Pwa(σwa, (pkpke, cpke,0), (m0, r0))

πwa,1 ← Pwa(σwa, (pkpke, cpke,1), (m1, r1))

b′ ← Ag((pkpke, σwa), (cpke,0, πwa,0),

(cpke,1, πwa,1))

return b′

Exp2(λ)

(pkpke, skpke)← Kpke(1
λ)

(σwa, τwa)← SSwa(1
λ)

m0 ← Af (pkpke, σwa)

m1 ← Af (pkpke, σwa)

cpke,0 ← Epke(pkpke,m0; r0)

cpke,1 ← Epke(pkpke,m1; r1)

πwa,0 ← SPwa(σwa, τwa, (pkpke, cpke,0))

πwa,1 ← SPwa(σwa, τwa, (pkpke, cpke,1))

b′ ← Ag((pkpke, σwa), (cpke,0, πwa,0),

(cpke,1, πwa,1))

return b′

Exp3(λ)

(pkpke, skpke)← Kpke(1
λ)

(σwa, τwa)← SSwa(1
λ)

m0 ← Af (pkpke, σwa)

m1 ← Af (pkpke, σwa)

cpke,0 ← Epke(pkpke,m1; r0)

cpke,1 ← Epke(pkpke,m1; r1)

πwa,0 ← SPwa(σwa, τwa, (pkpke, cpke,0))

πwa,1 ← SPwa(σwa, τwa, (pkpke, cpke,1))

b′ ← Ag((pkpke, σwa), (cpke,0, πwa,0),

(cpke,1, πwa,1))

return b′

Exp4(λ)

(pkpke, skpke)← Kpke(1
λ)

σwa ← Swa(1
λ)

m0 ← Af (pkpke, σwa)

m1 ← Af (pkpke, σwa)

cpke,0 ← Epke(pkpke,m1; r0)

cpke,1 ← Epke(pkpke,m1; r1)

πwa,0 ← Pwa(σwa, (pkpke, cpke,0), (m1, r0))

πwa,1 ← Pwa(σwa, (pkpke, cpke,1), (m1, r1))

b′ ← Ag((pkpke, σwa), (cpke,0, πwa,0),

(cpke,1, πwa,1))

return b′

Fig. 7. Experiments of unlinkability

We first show

|Pr[Exp1(λ) = 1]− Pr[Exp2(λ) = 1]| ≤ negl(λ), (7)

assuming the entropic ZK of Πwa and the semantic security of Σpke. Particularly, let Kpke be the
trusted parameter generation procedure PG, and let GAf

(pkpke, σwa) be a sampler that works as
follows:

m← Af (pkpke, σwa), rpke ←$ Rpke,cpke = Epke(pkpke,m; rpke);

return (x = (pkpke, cpke), w
I = m,wNI = rpke)

50

Since Σpke is semantic secure and the min-entropy of Af ’output is larger than − log(ϵ) , the sampler
GAf

is ϵ-unpredictable w.r.t. Kpke. Then, we construct an adversary B1 that breaks the entropic
ZK property of Πwa as follows. Recall that B1 is a given a CRS σwa, a honestly generated public
key pkpke, and a pair of oracles (O1,O2), and the goal of B1 is to distinguish between the case that
σwa is a simulated CRS and (O1,O2) are simulation oracles, and the case that σwa is an honest
CRS and (O1,O2) are real prover oracles.

BO1,O21 (σwa, pkpke)

Query O1 with GA(σwa, pkpke) twice

Obtain ((pkpke, cpke,0), πwa,0) and ((pkpke, cpke,1), πwa,1)

b′ ← Ag(pkpke, (cpke,0, πwa,0), (cpke,1, πwa,1)); return b′

Notice that when σwa is an honest CRS and (O1,O2) are real prover oracles, at Ag’s view, the
experiment established by B is identical to Exp1; when σwa is a simulated CRS and (O1,O2) are
simulation oracles, at Ag’s view, the experiment established by B is identical to Exp2. Therefore, if
(Af ,Ag) can distinguish the two experiments, B1 can thus distinguish between the case that σwa
is a simulated CRS and (O1,O2) are simulation oracles, and the case that σwa is an honest CRS
and (O1,O2) are real prover oracles.

Next, we show
|Pr[Exp2(λ) = 1]− Pr[Exp3(λ) = 1]| ≤ negl(λ), (8)

if Σpke satisfies the semantic security. We can construction an adversary B2 that breaks the semantic
security of Σpke. Specifically, B2 is given pkpe and a left-or-right oracle OEncb, and her goal is to
distinguish between OEnc0 and OEnc1. The strategy of B2 is as follows: generate the simulated CRS
σwa along with its trapdoor τwa; invoke Af by providing (pkpke, σwa) twice to obtain m0 as well as
m1; encrypt m1 under pkpke and obtain the ciphertexts cpke,1; submit (m0,m1) to OEncb and obtain
cpke, 0; attach simulated proofs πwa,0 and πwa,1 for cpke,0 and cpke,1 respectively; finally invoke Ag

by providing (πwa,0, cpke,0) and (πwa,1, cpke,1) to output the bit b′. When b = 0, at Ag’s view, the
experiment is identical to Exp2; when b = 1, the experiment is identical to Exp3. Therefore, B2 can
distinguish distinguish between OEnc0 and OEnc1.

Lastly, we need to show

|Pr[Exp3(λ) = 1]− Pr[Exp4(λ) = 1]| ≤ negl(λ). (9)

To prove this result, we only need to shift from simulated proofs to real proofs. We can construct
an adversary B3 that breaks the entropic ZK of Πwa. Similar to B1, B3 is also given a given a CRS
σwa, a honestly generated public key pkpke, and a pair of oracles (O1,O2). Particularly, to obtain
proofs for the ciphertexts with the same ciphertext, we define a reusing query RE which on inputs
(pkpke, σwa, cpke,0,m0, r0) outputs (cpke,1 = Ppke(pkpke,m0; r1),m0, r1) where r1 is uniformly chosen
at random. Ensured by the semantic security of Σpke, RE is an admissible query.

BO1,O21 (σwa, pkpke)

Query O1 with GA(σwa, pkpke) once

Obtain ((pkpke, cpke,0), πwa,0)

Query O2 with RE

Obtain ((pkpke, cpke,1), πwa,1)

b′ ← Ag(pkpke, (cpke,0, πwa,0), (cpke,1, πwa,1)); return b′

51

otice that when σwa is an honest CRS and (O1,O2) are real prover oracles, at Ag’s view, the
experiment established by B is identical to Exp4; when σwa is a simulated CRS and (O1,O2) are
simulation oracles, at Ag’s view, the experiment established by B is identical to Exp3. Therefore, if
(Af ,Ag) can distinguish the two experiments, B1 can thus distinguish between the case that σwa
is a simulated CRS and (O1,O2) are simulation oracles, and the case that σwa is an honest CRS
and (O1,O2) are real prover oracles.

From Eq.7 8, 9, it holds that

|Pr[Exp1(λ) = 1]− Pr[Exp4(λ) = 1]| ≤ negl(λ).

⊓⊔

8 Conclusions and Open Problems

We abstracted a new notion called witness-authenticating NIZK proof system to add an identi-
fication functionality to conventional NIZK while preserving the best possible privacy, as well as
upgrading soundness properties correspondingly. We gave careful modelings and generic construc-
tions paired with rigorous security analysis. From several examples, we show how our WA-NIZK
proof system can be useful in different applications.

We believe there could be many more applications to explore, such as revocation, tracing,
repudiation in group (anonymous) authentications, (non) membership proofs, and even realizing
random oracles. On the other hand, we may also make the identification functionality more complex
to enable a more fine-grained search without leaking extra partial information. We leave them as
interesting open questions.

Acknowledgement. This work has been supported in part by research awards from Stellar De-
velopment Foundation, Ethereum Foundation, Protocol Labs, as well as SOAR Prize and Digital
Science Initiative Pilot Project of The University of Sydney.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions
beyond the linear barrier. J. Cryptol. 31(4), 917–964 (2018)

2. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature scheme. Des. Codes Cryptogr.
82(1-2), 469–493 (2017)

3. Baecher, P., Fischlin, M., Schröder, D.: Expedient non-malleability notions for hash functions. In: CT-RSA.
LNCS, vol. 6558, pp. 268–283. Springer (2011)

4. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F., Yu, Y.: Leftover hash lemma,
revisited. In: CRYPTO. LNCS, vol. 6841, pp. 1–20. Springer (2011)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: CRYPTO. LNCS,
vol. 4622, pp. 535–552. Springer (2007)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS.
pp. 62–73. ACM (1993)

7. Bellare, M., Stepanovs, I.: Point-function obfuscation: A framework and generic constructions. In: TCC (A2).
LNCS, vol. 9563, pp. 565–594. Springer (2016)

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In:
STOC. pp. 103–112. ACM (1988)

9. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable hash and one-way functions.
In: ASIACRYPT. LNCS, vol. 5912, pp. 524–541. Springer (2009)

52

10. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: ASIACRYPT. LNCS, vol. 4284, pp. 210–225. Springer
(2006)

11. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from symmetric primitives. In: CT-RSA.
LNCS, vol. 11405, pp. 251–271. Springer (2019)

12. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS. pp. 168–177. ACM (2004)

13. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption: The auxiliary-input setting. In:
CRYPTO. LNCS, vol. 6841, pp. 543–560. Springer (2011)

14. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS. pp. 132–145. ACM (2004)

15. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. Int.
J. Inf. Priv. Secur. Integr. 1(1), 3–33 (2011)

16. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point obfuscation with auxiliary
input. In: ASIACRYPT (2). LNCS, vol. 8874, pp. 142–161. Springer (2014)

17. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable encryption. In: CT-RSA. LNCS,
vol. 7178, pp. 332–348. Springer (2012)

18. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: CRYPTO.
LNCS, vol. 1294, pp. 455–469. Springer (1997)

19. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (preliminary version).
In: STOC. pp. 131–140. ACM (1998)

20. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: CRYPTO. LNCS, vol. 4117, pp. 78–96. Springer
(2006)

21. Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer
(1991)

22. Chen, Y., Qin, B., Zhang, J., Deng, Y., Chow, S.S.M.: Non-malleable functions and their applications. In: PKC
(2). LNCS, vol. 9615, pp. 386–416. Springer (2016)

23. Dachman-Soled, D., Gennaro, R., Krawczyk, H., Malkin, T.: Computational extractors and pseudorandomness.
In: TCC. LNCS, vol. 7194, pp. 383–403. Springer (2012)

24. Dodis, Y.: On extractors, error-correction and hiding all partial information. In: ICITS. pp. 74–79. IEEE (2005)

25. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC. pp. 621–630. ACM (2009)

26. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert
leakage. In: ASIACRYPT. LNCS, vol. 7658, pp. 98–115. Springer (2012)

27. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random
string (extended abstract). In: FOCS. pp. 308–317. IEEE Computer Society (1990)

28. Feng, H., Tang, Q.: Witness authenticating nizks and applications. In: CRYPTO (4). Lecture Notes in Computer
Science, vol. 12828, pp. 3–33. Springer (2021)

29. Fischlin, M.: Security of NMAC and HMAC based on non-malleability. In: CT-RSA. LNCS, vol. 4964, pp. 138–
154. Springer (2008)

30. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC. pp. 25–32. ACM (1989)

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: EUROCRYPT. LNCS, vol.
4965, pp. 415–432. Springer (2008)

32. Hsiao, C., Lu, C., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from
compressibility. In: EUROCRYPT. LNCS, vol. 4515, pp. 169–186. Springer (2007)

33. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. IACR Cryptol.
ePrint Arch. 2020, 1003 (2020)

34. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private metadata bit. In: CRYPTO
(1). LNCS, vol. 12170, pp. 308–336. Springer (2020)

35. Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and backward unlinkability in the
standard model. In: CANS. LNCS, vol. 5888, pp. 498–517. Springer (2009)

36. Ma, S., Huang, Q.: Plaintext-checkable encryption with unlink-cca security in the standard model. In: ISPEC.
LNCS, vol. 11879, pp. 3–19. Springer (2019)

37. Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database encryption. Inf. Sci. 429, 88–101
(2018)

38. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC. pp.
427–437. ACM (1990)

39. Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., Fetzer, C.: Varys: Protecting SGX enclaves from practical
side-channel attacks. In: USENIX Annual Technical Conference. pp. 227–240. USENIX Association (2018)

53

40. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: CRYPTO
(1). LNCS, vol. 11692, pp. 89–114. Springer (2019)

41. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In:
CRYPTO. LNCS, vol. 2139, pp. 566–598. Springer (2001)

42. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: FOCS. pp. 600–611. IEEE
Computer Society (2017)

A Analysis of Warm-up Constructions

We present a simple WA-NIZK construction Πsimple for a language L that admits a pseudorandom
witness distribution (or equivalently, a |wI |-unpredictable sampler where |wI | denotes the length
of wI), and a more general WA-NIZK construction ΠCI for a language L that admits a CRS-
independent k-unpredictable sampler. Then, we analyze the security of ΠCI, while all results about
Πsimple can be obtained by considering it as a special case of ΠCI where the randomness extractor
is simply an identical function.

A.1 Ingredients

We introduce ingredients used in our constructions.

Computational Strong Randomness Extractor Computational strong randomness extractors
are used to extract pseudorandomness from sources with computational entropy.

Definition 25 (Strong Randomness Extractor). Let E = {Eλ}λ∈N be an ensemble with the
form of Eλ : {0, 1}η(λ) × {0, 1}ℓ(λ) → {0, 1}ζ(λ) where η(), ℓ(), ζ() are polynomials. We say E is
a (k(λ), ϵ(λ)) strong extractor (where ϵ ≤ negl(λ)) for sources with unpredictability entropy (resp.
Hill entropy), if for (X,Z) satisfying Hunp(X|Z) ≥ k(λ) (resp. Hhill(X|Z) ≥ k(λ)), and for any
non-uniform PPT adversary A, it holds that

|Pr[(x, z)← (X,Z), r ←$ {0, 1}ℓ(λ), rk ← Eλ(x, r) : 1← A(z, r, rk)]−
Pr[(x, z)← (X,Z), r ←$ {0, 1}ℓ(λ), rk ←$ {0, 1}ζ(λ) : 1← A(z, r, rk)]| ≤ ϵ(λ).

Parameters in our Construction. Samplers with different unpredictability have different require-
ments on the randomness extractors.

– For a sampler G with k-Hill entropy, the computational strong randomness extractor can be
instantiated with any strong randomness extractor, such as universal hash families [4] and
weak pseudorandom function families [23], possibly along with a pseudorandomness generator
(PRG). For the conditional entropy k of W I , we only require it to be large enough for extracting
a pseudorandom string of λ bits, since such a string can always be extended to a psedudorandom
string of ζ(λ) bits by a PRG. More precisely, subjected to the optimal bound on entropy loss of
randomness extractors , k should be larger than λ+2 log(1\ϵ(λ)), where ϵ(λ) is negligible in λ.

– For a sampler G with k-unpredictability entropy, we need a particular type of extractor called a
reconstructive extractor [32]. The well-known Goldreich-Levin functionGL [30], namelyGL(M,x) =
Mx, where Mx is the matrix-vector product of randomly-sampled matrix M and x over GF(2),
is such a reconstructive extractor (where M is the seed and x is the source). For using this ex-
tractor to yield a statistically-close-to-uniform string over {0, 1}λ, the entropy k needs to be
larger than λ+O(1\ϵ) where ϵ ≤ negl(λ).

54

In order to ensure the identifier uniqueness, the randomness extractor should be collision-
resistant. A collision-resistant randomness extractor has an extra key kExt, such that for kExt ←$

KExt, it infeasible to find (w1, w2, r1, r2) such that EkExt
λ (w1, r1) = EkExt

λ (w2, r2). Collision-resistant
extractors [24] can be constructed from pairwise independent permutations, and work for source
with k-Hill entropy such that k ≥ λ+ 2 log(1\ϵ(λ)).

(Collision Resistant) Pseudorandom Function Family Let F = {Fλ}λ∈N be an function en-
semble with the form of Fλ : {0, 1}ζ(λ)×{0, 1}κ → {0, 1}γ(λ). We say F is a pseudorandom function
familiy (PRF), if for rk ←$ {0, 1}ζ(λ), the function Fλ(rk, ·) is computationally indistinguishable
with a random function f from {0, 1}κ(λ) to {0, 1}γ(λ).

In order to ensure the identifier uniqueness, the PRF should be collision-resistant that it in-

feasible to find (rk1, rk2, t1, t2) such that F
kprf
λ (rk1, t1) = F

kprf
λ (rk2, t2). Collision-resistant PRF [19]

can be constructed from any one-way permutation.
In our construction, for simplicity we take the output space of the randomness extractor Eλ as

the key space of Fλ, and we require γ(λ) ≥ 2ζ(λ) s.t. for a random (t, α) the probability that there
is a key rk such that Fλ(rk, t) = α is negligible.

NIZK For different security goals of our construction, the NIZK proof system Πzk should satisfy
various properties, including adaptively unbounded zero-knowledge, simulation soundness, simula-
tion extractability, and we will detail it in the security analysis.

A.2 The constructions

Construction for pseudorandom distribution: Πsimple Let F = {Fλ}λ∈N be a PRF (w.l.o.g.,
with the key length same as |wI |, and output length 2|wI |15), and let Πzk = {Szk,Pzk,Vzk} be a
NIZK for an NP language

Lsimple := {(x, t, α); (wI , wNI) : (wI , wNI) ∈ RL(x) ∧ wI ∈ RI
L(x) ∧ α = Fλ(w

I , t)}. (10)

We construct a WA-NIZK Πsimple = {Setup,Prove,Verify, Identify}, and illustrate the detail in Fig.8
(excluding the boxed items). Correctness is straightforward, while security follows the intuition we
sketched above, and we establish the result below.

Theorem 5. Let Πsimple be as specified in Fig.8, the following results hold:

– Πsimple satisfies the authenticating (knowledge) soundness, if Πzk satisfies the (knowledge) sound-
ness;

– Πsimple satisfies the unforgeability w.r.t. all |wI |-unpredictable samplers, if F is a secure PRF,
and Πzk satisfies the simulation soundness;

– Πsimple satisfies the entropic ZK w.r.t. all |wI |-unpredictable samplers, if F is a secure PRF and
Πzk satisfies the zero knowledgeness.

Observe that, by further requiring the PRF to be collision-resistant, Πsimple can also achieve the
stronger identifier uniqueness. A collision-resistance PRF is known to exist if one-way permutations
exist [19]. Since collision resistance against non-uniform adversaries necessarily requires an extra
honestly generated public parameter/key, we could slightly modify the construction Πsimple such
that the CRS contains a kPRF , and F (wI , r) then becomes FkPRF

(wI , r).

15 With such an output length, the proability that for a random pair (t, α) there exists a key k such that Fλ(k, t) = α
is negligible, which faciliates the proof for unforgeability.

55

Setup(1λ)

σzk ← Szk(1
λ) Generate a CRS of the underlying NIZK Πzk

r ←$ {0, 1}ℓ(λ) Uniformly pick a seed of randomness extractor Eλ)

return σ = (σzk , r)

Prove(σ, x, (wI , wNI))

rk ← wI Set wI as the PRF key rk ← Eλ(w
I , r) Extract a PRF key from wI

t←$ {0, 1}κ(λ) and α← Fλ(rk, t) Evaluate the PRF on a random input

πzk ← Pzk(σzk, (x, α, t , r), (wI , wNI)) Prove x ∈ L and (α, t) is honestly generated

return π = (α, t, πzk)

Verify(σ, x, π)

b← Vzk(σzk, (x, α, t , r), πzk) Check the validity of the proof πzk

return b

Identify(σ, x, π, wI)

rk′ ← wI Set wI as the PRF key

rk′ ← Eλ(w
I , r) Derive the PRF key from the identifier witness wI

if (α=Fλ(rk
′, t)) then return 1 else return 0

Fig. 8. CRS-independent Constructions. For the construction Πsimple (w.r.t pseudorandom distributions), all boxed
items shall be removed.

Construction for CRS-independent distributions: ΠCI Let E = {Eλ} be a (computational)
strong randomness extractor: Eλ : {0, 1}η(λ) × {0, 1}ℓ(λ) → {0, 1}ζ(λ) (where η(), ℓ(), ζ() are poly-
nomials), let F = {Fλ}λ∈N be a PRF with the key space {0, 1}ζ , and let Πzk = {Szk,Pzk,Vzk} be a
NIZK for an NP language

LCI := {(x, t,α, r); (wI , wNI) :

(wI , wNI) ∈ RL(x) ∧ wI ∈ RI
L(x) ∧ α = Fλ(Eλ(w

I , r), t)}.
(11)

We illustrate the construction ΠCI in Fig.8 (with boxed items included).
The completeness of this construction is easy to verify, which directly comes from the complete-

ness of the underlying NIZK proof system. We now argue security.
The entropic ZK and the unforgeability are defined w.r.t. an unpredictable sampler. As discussed

before, this construction only works for CRS-Independent samplers. Regarding the samplers that
our construction can work for, it depends on the computational strong randomness extractor used
in our construction. Particularly, for a joint random variable (X, (W I ,WNI)) outputted by G, the
randomness extractor should “transform” W I to a random variable K over the key space of the
PRF s.t. K is pseudorandom even conditioned on X. The detailed parameters have been sketched
above.

We claim the security of our construction ΠCI in the following theorem.

56

Theorem 6. Let (X, (W I ,WNI)) be the output of an arbitrary k-unpredictable sampler G(1λ) for
an NP language L and an identifier relation RI

L. Let E = {Eλ}λ∈N be a randomness extractor which
extracts a pseudorandom variable over {0, 1}ζ(λ) from W I conditioned on X.

– ΠCI satisfies the authenticating (knowledge) soundness, if Πzk satisfies the (knowledge) sound-
ness;

– ΠCI satisfies the unforgeability w.r.t. all k-unpredictable samplers, if F is a secure PRF, and
Πzk satisfies the simulation soundness.

– ΠCI satisfies the entropic ZK w.r.t. all k-unpredictable samplers, if F is a secure PRF and Πzk

satisfies the zero knowledgeness.

We remark this theorem subsumes Theorem.5 by setting Eλ as an identical function.
Achieving the identifier uniqueness. By requiring both the randomness extractor and the PRF
to be collision-resistant, ΠCI can also achieve identifier uniqueness. Since the definition of collision
resistance (of both PRFs and randomness extractors) against non-uniform adversaries necessarily
requires an extra key is generated when the security game starts, we need to modify our construction
slightly. Specifically, the two extra keys kPRF and kExt should be generated in the Setup algorithm
and be included in the CRS, and whenever the randomness extractor Eλ and the PRF Fλ are used
in other algorithms, they are specified by the keys kExt and kPRF respectively. We conclude the
result in the following lemma.

Lemma 7. Let E be a collision-resistant randomness extractor that satisfies properties required in
Theorem.6. Let F be a collision-resistant PRF. Then, ΠCI (with slight modifications introduced
above) has the identifier uniqueness.

The proof for this lemma is given in Appendix.A.4. We note the collision-resistant randomness
extractors are only known to exist for sources with enough Hill-entropy. Thus, current instantiations
of ΠCI with identifier uniqueness can only be waNIZKs for samplers with enough Hill-entropy.

A.3 Proof of Theorem.6

We first prove the entropic ZK of our construction ΠCI and then prove the soundness definitions.

Proof of entropic ZK We start with presenting the simulator (SimSetup, SimProve) of ΠCI . Let
(SSzk,SPzk) be the simulator of the underlying NIZK proof system Πzk, and then we construct
(SimSetup, SimProve) as follows.

1. SimSetup(1λ). Firstly invoke the simulator of Πzk: (σzk, τzk) ← SSzk(1
λ); Then, uniformly

choose a seed r ←$ {0, 1}ℓ(λ); Return the CRS σ = (σzk, r) and the trapdoor τ = τzk.
2. SimProve(σ, τ, x). Firstly sample t ←$ {0, 1}κ(λ) and α ←$ {0, 1}γ(λ); Then invoke the simu-
lator of Πzk to prove (x, α, t, r) ∈ LCI : πzk ← SPzk(σzk, τzk, (x, α, t, r)); Return the simulated
proof π = (α, t, πzk).

We denote the event [pp← PG(1λ);G← A(pp);σ ← Setup(1λ) : 1← AOP1,OP2(σ)] by Eventrealzk,A,

and denote the event [pp ← PG(1λ);G ← A(pp); (σ, τ) ← SimSetup(1λ) : 1 ← AOS1,OS2(σ)] by
Eventsimzk,A. Our goal is to show the difference between Pr[Eventrealzk,A] and Pr[Eventsimzk,A] is negli-
gible in λ, for any non-uniform PPT adversary A. To do this, we define a sequence of events

57

(Eventizk,A)i∈[0,4], where the Event0zk,A is Eventrealzk,A and the Event4zk,A is Eventsimzk,A, and show the
differences between probabilities of adjacent events are negligible (see Lemma.8, 9, 10).

The hybrid event Event1zk,A. This event is defined as follows: [pp← PG(1λ);G← A(pp); (σ, τ)←
SimSetup(1λ) : 1← AOP11,OP12(σ)], where the oracle OP11,OP12 are defined by modifyingOP1,OP2.
Precisely,

OP11(σ, τ, pp)

i++;

(xi, (w
I
i , w

NI
i))← G(pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i));

πi ← Prove(1)(σ, τ, xi, w
I
i , w

NI
i)

return (xi, πi)

OP12(σ, τ, pp, xi,EG, st)

Find(i, xi, (w
I
i , w

NI
i)) ∈ st

(x̄, w̄NI)← EGreal(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← Prove(1)(σ, τ, x̄, wI
i , w̄

NI)

return (x̄, π̄)

The boxed items are different from the prover oracles OP1,OP2. Here, the hybrid prover algo-
rithm Prove(1) is executed as follows, where the boxed items are different from the prover algorithm
Prove.

Prove(1)(σ, τ, x, (wI , wNI)).
1. Parse σ = (σzk, r), and τ = τzk ;

2. Extract a PRF key from wI using the CRS r: rk ← Eλ(w
I , r);

3. Evaluate the PRF on a random input: t←$ {0, 1}κ(λ) and α← Fλ(rk, t);
4. Prove x ∈ L and (α, t) is honestly generated by using the

simulation prover algorithm of Πzk: πzk ← SPzk(σzk, τzk, (x, α, t, r)).

5. Output the final proof π = (α, t, πzk).

The hybrid event Event2zk,A. Then, we build the next hybrid event Event2zk,A. This event is

almost identical to Event1zk,A, with the following exceptions: it replaces the oracles OP11,OP12
with oracles OP21,OP22.

OP21(σ, τ, pp)

i++; (xi, (w
I
i , w

NI
i))← G(pp);

rki ←$ {0, 1}ζ(λ)

st← st ∪ (i, ki , xi, (w
I
i , w

NI
i));

πi ← Prove(2)(σ, τ, xi, rki)

return (xi, πi)

OP22(σ, τ, pp, xi,EG, st)

Find(i, rki , xi, (w
I
i , w

NI
i)) ∈ st

(x̄, w̄NI)← EGreal(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← Prove(2)(σ, τ, x̄, rki)

return (x̄, π̄)

Here the hybrid prover algorithm Prove(2) only differs from Prove(1) at step 2: it just set the
key of PRF as the input rk.

58

The hybrid event Event3zk,A. Next, we present another hybrid event Event3zk,A. This is event is

almost identical to Event2zk,A, with the following exceptions: it replaces the oracles OP21,OP22
with OP31,OP32. The only difference between the them is that OP31,OP32 execute the algorithm
Prove(3) rather than Prove(2).

Prove(3)(σ, τ, x, rk). It only differs from Prove(2) at the step 3.
3. Randomly sample t←$ {0, 1}κ(λ) and α←$ {0, 1}γ(λ).

We prove the differences between Event0zk,A, Event
1
zk,A, Event

2
zk,A, Event

3
zk,A are negligible in

the following three lemmas. And We note in Event3zk,A, the output of the hybrid algorithm Prove(3)

is identical to the simulation prover algorithm SimProve. Although in context Prove(3) differs from
SimProve at the step 2, the key rk generated in step 2 is not used in the latter steps. Therefore,

|Pr[Event3zk,A]− Pr[Eventsimzk,A]| ≤ negl(λ). (12)

Combined the following lemmas together, we have proved the entropic ZK of ΠCI . ⊓⊔

Lemma 8. if Πzk is adaptively unbounded zero-knowledge, then for any non-uniform PPT adver-
sary A,

|Pr[Eventrealzk,A]− Pr[Event1zk,A]| ≤ negl(λ).

Proof. We can consider an adversary C1 for Πzk. C1 is given a CRS σzk and a prover oracle Ozk,
which are either an honest CRS and a real prover oracle or a simulated CRS and a simulation
prover oracle. Then, C1 mimics all steps in Event1zk,A for A: C1 provides σzk to A, and answers
queries to OP11,OP12 by querying Ozk whenever it needs to execute the algorithm SPzk. It is easy
to see that, when σzk is a simulated CRS and Ozk is a simulation oracle, at the point of A’s view, all
steps are identical to that in Event1zk,A; when σzk and Ozk are simulated, these steps are identical

to that in Eventrealzk,A. Therefore, if the |Pr[Eventrealzk,A]− Pr[Event1zk,A]| > negl(λ), C1 can break the
zero-knowledge property of Πzk.

Lemma 9. if the computational randomness extractor E is secure, then

|Pr[Event1zk,A]− Pr[Event2zk,A]| ≤ negl(λ).

Proof. To facilitate our proof, we design a special form of security game for computational ran-
domness extractors as follows.

1. Generate pp← PG(1λ). C2 on input pp specifies a sampler G(pp) = (X,W I ,WNI) where W I

(conditioned on X,PP) satisfies the entropy requirement of E .
2. Sample M instances: (xi, (w

I
i , w

NI
i)) for i ∈ [M].

3. Sample a seed r ←$ {0, 1}ℓ(λ), and a bit b←$ {0, 1}.
4. For i ∈ [M], if b = 0, sample rki ←$ {0, 1}ζ(λ); if b = 1, generate rki ← Eλ(w

I
i , r).

5. Return C2 a table consisting of tuples < xi, rki >.
6. C2 outputs b′.

59

Since the tuples (xi, (w
I
i , w

NI
i))i∈[M] are independent samples, by standard arguments it is easy

to see for every non-uniform PPT adversary C2, Pr[b′ = b] ≤ negl(λ), when E is a computational
randomness extractor working for (G,PG) sources. However, assume there is an adversary A s.t.
|Pr[Event1zk,A] − Pr[Event2zk,A]| > negl(λ). Then, we can construct an adversary C2 which breaks
the computational randomness extractor by leveraging A.

We now state the strategy of C2. C2 mimics all steps in Event2zk,A with A.

1. After A specifies the unpredictable sampler G, C2 sets G in Step 1.
2. Then, C2 is given a seed r and a table of tuples < (xi, rki >, and generates a simulated CRS
σzk and its trapdoor τzk.
3. When A queries OP11 with the sampler G, C2 picks a tuple < (xi, rki > which was not used
previously, runs the PRF α← Fλ(rki, t) on a uniformly chosen input t, generates the simulated
proof πzk for (xi, α, t, r), and returns (xi, (α, t, πzk)) to A.
4. When A queries OP12 with a dual-mode extended sampler EG = {EGreal,EGsim} and a state-
ment xi, C2 firstly checks whether xi was previously return to A, and aborts if not; otherwise,
C2 runs EGsim (see Def.14), to generate the statement x̄. Then, C2 runs the PRF α← Fλ(rki, t)
on a uniformly chosen input t where rki corresponds to (xi), generates the simulated proof πzk
for (x̄, α, t, r), and returns (x̄, (α, t, πzk)) to A.

We assume that A makes at most M queries to OP11. It is easy to see that when b = 0, i.e.,
each rki is uniformly chosen, the above steps simulated by C2 are computationally indistinguishable
with that in Event2zk,A; when b = 1, these steps are computationally indistinguishable with that in

Event1zk,A. Therefore, if there is an A s.t. |Pr[Event2zk,A] − Pr[Event2zk,A]| > negl(λ), C2 can guess
the value of b with non-negligible probability.

Lemma 10. If F is a PRF, then

|Pr[Event2zk,A]− Pr[Event3zk,A]| ≤ negl(λ).

Proof. Note in Event2zk,A, α← Fλ(rk, t) where rk is uniformly chosen at random. From the psedudo-

randomness of F , (t, α) is computationally indistinguishable with (t←$ {0, 1}κ(λ), α←$ {0, 1}γ(λ)).
Therefore the difference between the probabilities of the two events is negligible.

Proof of authenticating soundness. Now we prove the authenticating soundnessof ΠCI . As-
sume there is a non-uniform PPT adversary A which breaks the authenticating soundness, i.e., A
outputs a valid proof π for a statement x such that either x is a false statement or no identifier
witness of x can authenticate π. We first parse π = (α, t, πzk). From the definition of CI.Verify,
πzk is a valid proof for (x, α, t, r) w.r.t. the proof system Πzk. Then, from the soundness of Πzk,
the statement (x, α, t, r) ∈ LCI must be true, i.e., there must be a witness (wI , wNI) ∈ RL(x)
and Fλ(Eλ(w

I , r), t) = α. According the description of CI.Identify, this identifier witness wI au-
thenticates π. The above arguments contradicts our assumption that A breaks the authenticating
soundness. Therefore, we complete our proof.

Proof of authenticating knowledge soundness. We firstly establish the knowledge extractor
for our construction. Let (Extzk,0,Extzk,1) be knowledge extractor of Πzk. The knowledge extractor
(Ext0,Ext1) of ΠCI can be constructed as follows.

60

1. Ext0(1
λ). Firstly invoke the knowledge extractor of Πzk: (σzk, ξzk) ← Extzk,0(1

λ); Then, uni-
formly choose a seed r ←$ {0, 1}ℓ(λ); Return the CRS σ = (σzk, r) and the trapdoor ξ = ξzk.
2. Ext1(σ, ξ, π). Firstly parse the proof π = (α, t, πzk); Then, use the knowledge extractor of
Πzk: (w

I , wNI)← Extzk,1(σzk, ξzk, πzk, (x, α, t, r)).

We show the extracted witness (wI , wNI) ∈ RL(x) and wI authenticates π. By the definition
of knowledge soundness, since πzk is a valid proof for (x, α, t, r), we have (wI , wNI) ∈ RL(x) and
α = Fλ(Eλ(w

I , r), t). By the definition of the algorithm Identify, wI authenticates π. Thus, we
complete the proof for the authenticating knowledge soundness.

Proof of unforgeability Recall the definition of unforgeability in Def.18, and denote the event
that the adversary A succeeds by

Eventex,A :=

pp← PG(1λ);σ ← Setup(1λ);G← A(pp);
(x∗, π∗)← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, wI) = 1

We prove Pr[Eventex,A] ≤ negl(λ) by considering the following hybrid event.

The hybrid event Event0ex,A.This event is almost identical to Eventex,A, except that Setup is

replaced by SimSetup, and the oracles OP1,OP2 are replaced with the oracles OP11,OP12 that
we introduced in Event2zk,A. It is easy to see if Πzk is zero-knowledge, then |Pr[Eventex,A] −
Pr[Event0ex,A]| ≤ negl(λ).

The hybrid event Event1ex,A. This event is almost identical to Event0ex,A, except that the oracles

are replaced with the oracles OP21,OP22 that we introduced in Event2zk,A. And the last success
condition is changed to ”∃rk ∈ st, Fλ(rk, t) = α, where π = (α, t, πzk)”.

Lemma 11. If E is computational randomness extractor, then |Pr[Eventex,A] − Pr[Event1ex,A]| ≤
negl(λ), for any non-uniform PPT adversary A.

Proof (sketch). This proof is very similar to the proof for Lemma.9. Informally, we consider an
adversary C, which is given a table of tuples < xi, rki >. Here, rki is either uniformly sampled at
random, or is extracted from wI

i by using a public seed r. C can mimic all steps in Event1ex,A, using
the information contained in the table. The strategy of C is the same as that of C2 given in the
Lemma.9. When ki is uniformly sampled, these steps are computationally indistinguishable with
that in Event1ex,A; otherwise, the steps are computationally indistinguishable with that in Eventex,A.
Therefore, if there is such an adversary A, C can decide whether rki is uniformly sampled.

Then, we prove the event Event1ex,A happens with negligible probability.

Lemma 12. If the function F is a secure PRF whose output length γ(λ) ≥ 2η(λ) and Πzk has
simulation soundness, we have Pr[Event1ex,A] ≤ negl(λ), for any non-uniform PPT adversary A.

61

Proof (sketch). We consider an adversary C′, which has access to polynomial many oraclesOF i(·) :=
Fλ(rki, ·) indexed by i where each rki is independently sampled form the uniform distribution. C’s
goal is to produce a fresh pair (α, t) s.t. Fλ(rki, t) = α. It is easy to see if F has unpredictability,
the advantage of C′ is negligible. However, we can construct an adversary C′ with non-negligible
advantage, by leveraging an adversary A s.t. Pr[Event1ex,A] > negl(λ). This contradiction implies

for any non-uniform PPT adversary A, Pr[Event1ex,A] ≤ negl(λ).

We now describe the strategy of C′. It just mimics all steps in Event1ex,A with the following
exceptions:

1. Whenever it needs to sample a new key rki, it adds an index i of an oracle OF i(·) which was
not added before;

2. For answering queries to the oracles OP21,OP22, it maintains a table Tabi for each index i.
When it needs to evaluate the function Fλ(rki, ·) on an input t, it first looks up the table Tabi
and returns α if (α, t) ∈ Tabi; Otherwise, it samples α←$ {0, 1}γ(λ), returns (α, t) and stores it
in Tabi;

3. For the statement-proof pair (x∗, (α∗, t∗, π∗zk)) submitted by A, the last success condition is
changed to ”∃(i),OF i(t

∗) = α∗ or (α∗, t∗) ∈ Tabi”.

It is easy to see from the pseudorandomness of F the steps above are computationally indistin-
guishable with that in Event1ex,A. Therefore, if Pr[Event

1
ex,A] > negl(λ), after the steps above A

will also succeed with non-negligible probability. Let us denote the event that A succeeds by Succ,
then we have

Pr[Succ|∀i, (α∗, t∗) /∈ Tabi] + Pr[Succ|∃i, (α∗, t∗) ∈ Tabi] > negl(λ).

According to the successful conditions, if ∀i, (α∗, t∗) /∈ Tabi, we have ∃i,OF i(t
∗) = α∗. Then, the

adversary C′ can directly takes (α∗, t∗) to break the unpredictability of F .
Now to complete this proof, we show Pr[Succ|∃(i, j), (α∗, t∗) ∈ Tabi] ≤ negl(λ), and thus

Pr[Succ|∀i, (α∗, t∗) /∈ Tabi] > negl(λ). This result comes from the simulation soundness of the
underlying proof system Πzk. Specifically, since every pair (α, t) in Tabi are uniformly sampled and
γ(λ) ≥ 2η(λ), the probability that there exists a rk such that α = Fλ(rk, t) is negligible. Therefore,
the statement (x∗, α∗, t∗, r) is a false statement. Since we also require that the pair (x∗, (α∗, t∗, π∗zk))
is not returned by the oracles OP21,OP22 before, π∗zk is not produced by C′. Therefore, the adver-
sary A can produce a valid proof for (x∗, α∗, t∗, r) with probability which is negligible in λ. Thus,
Pr[Succ|∃i, (α∗, t∗) ∈ Tabi] ≤ negl(λ).

A.4 Proof of Lemma.7

Assume there is a non-uniform PPT adversary A which breaks the identifier uniqueness, i.e., A
outputs a tuple (x, π = (α, t, πzk), w

I
1, w

I
2) s.t. π is authenticated by the two identifier witnesses.

Then, it contradicts either the collision resistance of the randomness extractor E , or the collision
resistance of the PRF F .

We note when instantiating with collision-resistant PRFs and randomness extactors, besides
the extractor seed r and the CRS σzk of Πzk,the CRS should contains two extra keys kPRF and
kExt. By the definition of the identification algorithm, we have Fλ,kPRF

(Eλ,kExt
(wI

1, r), t) = α and
Fλ,kPRF

(Eλ,kExt
(wI

2, r), t) = α. If Eλ,kExt
(wI

1, r) = Eλ,kExt
(wI

2, r), it breaks the collision resistance
of E ; If Eλ,kExt

(wI
1, r) ̸= Eλ,kExt

(wI
2, r), it breaks the collision resistance of F .’

62

B Analysis of PCE scheme in [36]

The recent work [36] presented a framework for plaintext-checkable encryption schemes and gave
an instantiation based on the symmetric external Diffie-Hellman assumption (SDXH) assumption.

We that show the SDXH-based construction actually cannot be proven secure under the SDXH
assumption, which suggests the framework is also not secure for non-uniform message distributions.

For bilinear pairing groups (q,G1, G2, GT , g1, g2, e), the SDXH assumption says the DDH prob-
lem is intractable in both G1 and G2. Namely, for Gβ where β = 1, 2, a, b, c←$ Zq, (g

a
β, g

b
β, g

ab
β) and

(gaβ, g
b
β, g

c
β) are computationally indistinguishable.

In the SXDH-based PCE scheme, the public parameter consists of (q,G1, G2,
GT , g1,1, g1,2, g2,1, g2,2, e), where (gβ,1, gβ,2) are random generators of Gβ for β = 1, 2. The public
key pk is formed by (gs11,1g

s2
1,2, g

t1
1,1g

t2
1,2, g

a1
2,1g

a2
2,2), while the secret key is (s1, s2, t1, t2, a1, a2) that are

uniformly chosen from Zq at random. To encrypt a messageM , it randomly chosen r ←$ Zq, compute
W = (gr2,1, g

r
2,2), X = (ga12,1g

a2
2,2)

rM , and Y = e((gs11,1g
s2
1,2)

r(gt11,1g
t2
1,2)

θ, ga12,1g
a2
2,2) where θ = H(W,X)

for a hash function H. The ciphertext C = (W,X, Y).
Let C0 be an encryption for M0 under a randomness r0, and C1 be an encryption for Mb under

a randomness r1 where b = 0 or b = 1. For each Cβ = (Wβ, Xβ, Yβ), we can compute a value
in GT : e((g

s1
1,1g

s2
1,2(g

t1
1,1g

t2
1,2)

θβ ,Mβ) = e((gs11,1g
s2
1,2(g

t1
1,1g

t2
1,2)

θβ , Xβ)/Yβ, where θβ = H(Wβ, Xβ). We

assume w.l.o.g. that Mβ = g
mβ

2,1 for some mβ, and (gs11,1g
s2
1,2(g

t1
1,1g

t2
1,2)

θβ = g
fβ
1,1, for some fβ. Then, the

unlinkability of the PCE scheme implies that the distribution (e(g1,1, g2,1)
f0 ,

e(g1,1, g2,1)
f0m0 , e(g1,1, g2,1)

f1 , e(g1,1, g2,1)
f1m0) and (e(g1,1, g2,1)

f0 , e(g1,1, g2,1)
f0m0

, e(g1,1, g2,1)
f1 , e(g1,1, g2,1)

f1m1) are indistinguishable. However, since m0 and m1 are not uniformly
distributed, we cannot have the result from the SXDH assumption.

63

	Witness Authenticating NIZKs and Applications

