
Post-Quantum Asynchronous Remote Key
Generation for FIDO2 Account Recovery

Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

Technical University of Darmstadt {first.last}@tu-darmstadt.de

Abstract. The Fast IDentity Online (FIDO) Alliance develops open
standards to replace password-based authentication by token-based so-
lutions. The latest protocol suite FIDO2 provides a promising alterna-
tive which many key players have already adopted or are planning to.
The central authentication mechanism WebAuthn uses cryptographic
keys stored on the device to authenticate clients to a relying party via a
challenge-response protocol. Yet, this approach leaves several open issues
about post-quantum secure instantiations and credential recovery.
Recently Frymann et al. (CCS 2020, ACNS 2023, EuroS&P 2023) made
significant progress to advance the security of FIDO2 systems. Following
a suggestion by device manufacturer Yubico, they considered aWebAuthn-
compliant mechanism to store recovery information at the relying party.
If required, the client can recover essential data with the help of a backup
authenticator device. They proposed and analyzed Diffie-Hellman based
schemes, showing basic authentication and privacy features. One of their
solutions also provides a post-quantum secure variant, but only for a
weaker version of authentication security.
In this work here we show a generic construction based on (anonymous)
KEMs and signature schemes. In particular, using post-quantum secure
instances like Kyber and Dilitihium, one immediately obtains a post-
quantum secure solution. In passing, we observe that the security defini-
tions brought forward by Frymann et al., especially the privacy notion,
do not appropriately capture the intuitive security goals of the FIDO2
protocol. We thus strengthen the notions and prove our general scheme
to satisfy the stronger definitions.

Keywords: FIDO2, post-quantum, account recovery, passwordless

1 Introduction

FIDO2 encompasses a set of pioneering industry standards for passwordless au-
thentication on the web [4, 15]. The approach replaces passwords by a sophisti-
cated combination of public-key cryptography and so-called authenticators (e.g.,
smart phones or dedicated security keys). The authenticator is the (hardware)
device holding the secret key material used for authentication. The client is the
device which a user is using to authenticate themselves towards a service, and the
relying party is the service which wants to confirm the user’s identity. For exam-
ple, if a user is logging into its Google Account using its computer with a Yubico

FIDO2 key, then the Yubico FIDO2 key is the authenticator, its computer is the
client, and Google is the relying party.

In a FIDO2 authentication ceremony, users authenticate themselves by prov-
ing that they control the key of a previously-registered public key credential.
This is done by having the authenticator produce a valid cryptographic signa-
ture on a challenge and associated data, issued by the relying party. The set of
cryptographic information required by a user for a succesfull authentication is
referred to as FIDO2 credential or as a passkey [22].

Migrating the FIDO2 set of standards to a post-quantum setting is an ongo-
ing effort. The latest protocol suite FIDO2 was recently analyzed cryptographi-
cally [1] and with formal methods in [12], with extensions of the results in terms
of capturing other protocol versions and modes, as well as advanced security
features, in [13, 3]. In particular, [13] discusses privacy features and a proto-
col modification via blockchains to achieve revocation. The work by Bindel et
al. [3] analyzes a full post-quantum instantiation of the latest iteration of the
FIDO2 standards CTAP 2.1 and WebAuthn 2. While requiring minor exten-
sions to the protocol, the instantiation provided is provably secure. This shows
that the functionality of the FIDO2 protocol family can be achieved securely
without any classical hardness assumptions. The post-quantum security of the
underlying protocol provides the foundation for our extension to include backup
mechanisms withstanding quantum adversaries, too.

1.1 Authentication Recovery

Involving authentication on a device such as a smart phone imperatively re-
quires to consider the possibility to transfer or recover login credentials. For the
secure recovery of symmetric secrets, mechanisms such as Signal’s Secure Value
Recovery or Apple’s Secure iCloud Keychain Recovery have been created. These
mechanisms rely on a low-entropy recovery PIN created by a user which encrypts
a high-entropy key stored on a distributed hardware security modul (HSM). This
high-entropy key is then used for the encryption of the user secrets. Recovery of
the high-entropy key is governed by the HSM, which only allows for a limited
amount of retries to prevent brute-force attacks.

On one hand, the approach above is unsatisfactory, as the entire security
relies on a low-entropy PIN chosen by a users and requires trust in cloud ven-
dors and their HSMs to behave as promised. Furthermore, dedicated hardware
authenticators, such as FIDO2 devices, usually generate their cryptographic se-
crets locally and do not allow for their extraction from the device. This renders
the aforementioned approaches unusable for recovery.

When considering backup methods for the FIDO2 setting, there are two
scenarios for the migration of hardware authenticators. One is the graceful tran-
sition from an old device to a new one, when the previous authentication data
is still accessible. The other, more challenging situation occurs in case of lost,
stolen, or broken authenticators when the original credentials are no longer avail-
able.

2

A hardware-based solution to the loss of devices is to use multi-device cre-
dentials, as suggested for instance by the FIDO2 Alliance [22]. Multi-device
credentials are not constrained to the physical authenticator they were gener-
ated on, but can be copied across a user’s devices to ensure a consistent login
experience. This straightforwardly solves the recovery problem, as a user can
have multiple, functionally identical authenticators. In case one of them is lost,
a new authenticator can be acquired and the multi-device credentials can be
synchronized to this new authenticator. While this is an easy-to-use approach,
it does come with numerous security drawbacks. First of all, revocation of a lost
authenticator is not possible, as all authenticators behave identically. Then, a
user can never be certain of being sole owner of their private key, as it might
have been copied to a different device without his knowledge or consent, since
hardware binding is impossible in this setting. Lastly, for some high-security use
cases, the relying party may insist on single-device passkeys.

As a manufacturer of hardware security devices, Yubico takes the stance that
allowing secret material to leave the security devices is an inherent weakness to
the system and should be avoided [14]. As a result, Yubico does not support
the creation of multi-device FIDO2 passkeys and strictly follows a one-device
one-credential policy. Hence, in order to deal with lost or broken devices, Yubico
suggests an alternative approach with so-called backup authenticators. Basically,
such a backup authenticator is a hardware device which is initialized once (creat-
ing a cryptographic key pair), but then goes offline and is disconnected from any
subsequent interactions, similar to a cold wallet. The (single-device) authentica-
tor uses the backup authenticator’s public key to store some protected recovery
information at the relying party when registering. Only if recovery should take
place, the secret key of the backup authenticator can be used to extract the
authentication data from the externally stored recovery information. Note that,
unlike Google’s Authenticator, the externally stored recovery information does
not grant the relying party access to the secrets; possession of the backup au-
thenticator is required to obtain the secrets.

Yubico proposed a Diffie-Hellman based protocol for instantiating these backup
authenticators. The proposal has been formalized and analyzed under the term
asynchronous remote key generation (ARKG) by Frymann et al. [8]. Frymann et
al. also gave alternative protocols based on pairings [10] and a proposal how one
could achieve a post-quantum secure version [7] based on split-KEMs [6]. Un-
fortunately, the instantiations of such split-KEMs from lattices currently only
achieve a weak security notion, called, nn-IND-CCA. This does not allow for
ARKG instantiations achieving resilience against adaptive attackers. A different
post-quantum secure instantiation using key blinding was proposed by Spencer
Wilson in [23].

1.2 Security Notions for Backup Authenticators

The idea of backup authenticators as proposed in combination with the ARKG
protocol is not part of the FIDO2 standard at this time and as such has no
established security definitions. Frymann et al. [8] define two security notions

3

for ARKG protocols. One is authentication security, called secret-key security or
simply key security, which says that the adversary cannot get hold of the secret
key used by honest users to recover their account. This notion comes in slightly
different flavors, depending on whether the adversary can communicate with
the backup authenticator or not (strong vs. weak), and whether the adversary
needs to attack a given public key or can attempt to fool the relying party
with a public key of its choice (honest vs. malicious). The other property is
public-key unlinkability which should prevent relying parties to link users across
different services via the backup authenticator’s public keys. This is captured by
an indistinguishability notion where one learns a backup authenticator’s long-
term public key and either receives derived keys under the long-term public key
or independently generated keys. The definitions in [8, 7, 10] all coincide.

Our first observation is that both security definitions are too restrictive from
our point of view to adequately capture threats. Key security, as defined in
[8], requires the adversary to find the user’s secret key for a successful attack.
However, authentication in FIDO2 would already be broken if the adversary is
able to forge a signature under the user’s public key. This is similar to security
of signature schemes where the notion of existential unforgeability is paramount,
while the strictly stronger requirement of key recovery is often not considered.

As in the case of key security, the privacy definition of [8] gives the adversary
not enough power. The definition only gives the adversary access to the public
keys derived by the backup authenticator. However, relying parties also store
the recovery information along with the derived public key, which could help in
succesfuly linking users. Deanonymization attacks using this strategy are cur-
rently not captured in the public-key unlinkability model in [8].1 Note that all
prior solutions [8, 7, 10, 23] target the original security notions, which we argue
to be inaccurate at capturing the adversarial capabilities and security goals.

1.3 Protocols for Backup Authenticators

Yubico’s orginal Diffie-Hellman based protocol [17] roughly lets the backup au-
thenticator and the primary authenticator each generate the public part of a DH
share. The primary authenticator stores its public DH part as recovery informa-
tion at the relying party. In case of a recovery request the backup authenticator
can compute the joint DH key with the help of its secret DH part and the primary
authenticator’s externally stored recovery information. Note that the recovery
key pair is seperate from the regular FIDO2 key pair, which is generated and
stored as usual. Figure 1 illustrates how the ARKG messages can be integrated
into a FIDO2 registration session.

The original Yubico proposal attached a message authentication code (MAC)
to the recovery information. This MAC allows to identify the relevant recovery
credentials in case of a backup recovery, so rather works as a checksum. In

1 For instance, in Google’s Authenticator case, where the backup authenticator’s secret
is available to Google, it is very easy to distinguish different public keys, while given
only the public key as in the suggested experiment, it remains hard.

4

particular, the MAC enters the security statement neither for key security nor
for privacy in Frymann’s analysis. Furthermore, it does not seem to provide
protection against malicious behavior, since the MAC key is derived from the
joint DH key, and can thus be easily derived by an adversary injecting its DH
share. The MAC is used in all protocol versions, the initial discrete-log based
solution [8], the pairing based solution [10], as well as in the post-quantum based
approach [7].

The post-quantum ARKG protocol in [7] is based on the split key encapsula-
tion mechanism (KEM) approach in [6], and specifically also on the LWE prob-
lem. Besides the aforementioned deficiency with respect to the security model,
the solution in the malicious key security case is currently not substantiated by
concrete schemes. While the honest key security case only requires an IND-CPA
secure split KEM —which we know how to build— the malicious case demands
an IND-CCA secure split KEM —for which we currently do not have promising
candidates, as pointed out in [6]. Hence, it remains unclear if one can actually
derive post-quantum ARKG protocols for the security model brought forward
by Frymann et al.

1.4 Our Contributions

We set off by giving stronger security notions for key security and public-key
unlinkability. For security we strengthen the notion and only demand that the
adversary cannot produce signature forgeries under backup keys. In practice this
means an attacker cannot register new keys on behalf of the user. For public-key
unlinkability we follow a left-or-right approach where the adversary cannot de-
cide to which of two backup keys generated public keys and recovery information
belong to. This extends the previous definition to now also include the recovery
data. In the course of this we slightly adapt the names of the security properties
to authentication security and unlinkability, since the first property does not
only protect the secret key, but also prevents forgeries, and the privacy property
now also takes other available data beyond the public key into account.

We then propose a protocol based on (ordinary) KEMs and signature schemes.
The idea is to let the primary authenticator generate the key pair of a signature
scheme, encapsulate the key-generating randomness under the backup authen-
ticator’s public key, and to store this ciphertext externally at the relying party.
During of recovery, the backup authenticator can retrieve the randomness and
re-generate the signing key.

To achieve authentication security, we need IND-CCA security of the KEM
and EUF-CMA security of the signature scheme as well as and pseudorandom-
ness of an intermediate key deriviation function. Note that these are standard
properties of schemes. In particular, we do not rely on split KEMs. Due to the
recent PQC standardization effort of NIST, appropriate candidates, namely Ky-
ber [21] for the KEM, and Dilithium [18], Falcon [20], or SPHINCS+ [16] for
the signature scheme, exist. They are all proven to satisfy the required security
properties under reasonable assumptions.

5

For our stronger notion of unlinkability we also draw on a property called
anonymity, or ANON-CCA of the KEM scheme, meaning that one cannot distin-
guish ciphertexts created under one public key from ones created under another
public key. This notion has first been proposed by Bellare et al. [2] and re-
cently been analyzed in more detail for the case of post-quantum schemes [24,
11]. Fortunately, the aforementioned Kyber KEM is ANON-CCA without any
modifications [19].

2 Preliminaries of Asynchronous Remote Key Generation

We start by introducing the notation, terminology and main definitions used in
this paper. In particular, we revisit the definition of Asynchronous Remote Key
Generation (ARKG) which was first proposed by Frymann et al. in [8]

2.1 Notation

We write y ← Alg(x) and y ←$ Alg(x) for the deterministic, resp. probabilistic
execution of an algorithm Alg on input x with output y. We write prefix(x) = y
to indicate that y is a prefix of x. We assume classical algorithms for imple-
menting schemes, with the common notion of efficiency if the algorithms run in
probabilistic or quantum polynomial time in the length of the security parameter
λ, denoted by PPT and QPT, respectively. Explicit randomness is indicated in
an algorithm’s input using a semicolon, e.g., Sign(sk,m; r) denotes the execution
of the signing algorithm with randomness r.

We assume QPT adversaries A. Since the honest parties use classical algo-
rithms, A may only interact classically with honest parties. We write AO to
denote that A has access to the oracle O. We use ·, to represent required input
to an algorithm, i.e., O(·, ·) denotes that the algorithm O takes two inputs.

We further use y ← x to denote the assignment of a value x to a variable
y. In security games we use JexpressionK to denote boolean evaluation of an
expression expression. The special symbol ⊥ shall denote rejection or an error,
usually output by an algorithm; in particular ⊥ /∈ {0, 1}∗.

2.2 Terminology

In FIDO2, services are referred to as relying parties (RP) to which users can
authenticate via so-called authenticators. In this work, we identify a user with its
authenticator(s) and abstract away the client that sits between the authenticator
and the relying party. Within ARKG, authenticators are split into two different
classes: backup authenticators (BA), which hold the long-term secrets denoted
by (pkBA, skBA) and are used for account recovery, and primary authenticators
(PA) which derive (public) keys pk′ and recovery information rec from the long-
term key pkBA and are used to authenticate the user to RPs.

6

2.3 ARKG Syntax

We now recall the notion of asynchronous remote key generation schemes as
introduced by Frymann et al. [8] but slightly change notation to make it more
aligned with the intended purpose. We assume that the BA generates a long-
term key pair (pkBA, skBA) via the algorithm KGen. Key pairs on the PA are
denoted as (pk, sk) and are generated together with recovery information rec via
the algorithm DerivePK in such a way that allows the backup authenticator BA
to recover the secret key with the help of skBA via the algorithm DeriveSK. Both
algorithms are linked through an algorithm Check to identify matching public
and secret keys. Instead of calling the recovery information a credential denoted
by cred as in [8] we call it recovery information, or rec, for short, resembling the
externally stored session resumption data in TLS.

Definition 1 (ARKG). A scheme for asynchronous remote key generation, or
ARKG for short, consists of four algorithms (Setup,KGen,DerivePK,DeriveSK,
Check) such that

Setup takes as input the security parameter λ in unary and outputs the public
parameters, i.e., pp← Setup(1λ).

KGen takes as input the public parameters pp and output a public/secret key
pair (pkBA, skBA)←$ KGen(pp) for the backup authenticator.

DerivePK takes as input the public parameters pp, a public key pkBA and aux-
iliary information aux 2 and outputs a derived public key pk′ and associated
credential information rec, i.e., (pk′, rec)←$ DerivePK(pp, pkBA, aux).

DeriveSK takes as input the public parameters pp, a secret key skBA and recovery
information rec. It outputs either a secret key sk′, i.e., sk′ ← DeriveSK(pp,
skBA, rec), or the dedicated symbol ⊥, in case no valid sk′ can be computed for
pk′ associated with rec.

Check takes as input a public-secret key pair (pk, sk) and returns 1 if (pk, sk)
forms a valid public/secret key pair, and 0 otherwise.

We say that an asynchronous remote key generation scheme ARKG = (Setup,
KGen,DerivePK,DeriveSK,Check) is ϵ-correct, if for all λ and pp← Setup(1λ)
and (pkBA, skBA)←$ KGen(pp), and auxiliary information aux we have that the
probability of Check outputting 0 is bounded by ϵ, i.e., Pr

[
Check(pk′, sk′) = 0

]
≤

ϵ, for (pk′, rec)←$ DerivePK(pp, pkBA, aux) and sk′ ← DeriveSK(pp, skBA, rec).
If the scheme is ϵ-correct for ϵ = 0 then we say that the scheme is (perfectly)

correct.

Remark 1. Frymann et al. include the algorithm Check(pk, sk) as part of their
ARKG syntax, which is necessary to define correctness in the ARKG setting.
In public-key cryptography, you can always leverage the randomness that went
into key generation to implement such a check. That is, we define the secret

2 We assume that in the context of FIDO2 account recovery as treated in this paper,
aux is a unique identifier rpid of the relying party for which the public key and
credential are derived.

7

key to be the randomness during key generation and, if required, reconstruct
the actual secret key by re-running key generation. Then one can easily check
that the public key matches given the randomness as secret key. Indeed, our
generic construction follows this approach, such that we do not give a concrete
instantiation of Check.

We defer the discussion of security properties of ARKG schemes to Section 3.

2.4 ARKG in the Context of FIDO2

As also mentioned in [8], the ARKG primitive may be applicable to use cases
outside of account recovery for FIDO2. Most notably, privacy-preserving proxy
signatures with unlinkable warrants can be generically constructed from ARKG
[9]. Here we focus on the original purpose for FIDO2 account recovery.

In Section 3 we will present our modified security notions for ARKG. To
motivate the changes to the security definitions given in [8], we recap the basics
of passwordless authentication via WebAuthn in FIDO2 [15] and how ARKG
fits into this flow. Roughly speaking, the role of the ARKG primitive within the
context of FIDO2 account recovery is two-fold:

On the PA: To create a signature key pair and recovery information from the
BA’s long-term public key to register with relying parties such that no inter-
action with the BA is necessary to do so.

On the BA: To use the long-term secret and the recovery information from
relying parties to derive a signing key to authenticate to the respective relying
party and recover account access.

In more detail, ARKG has three phases: pairing, registration, and recovery.
These phases are illustrated in Figure 1 and we briefly describe them next.

Pairing At the beginning, ARKG requires that the backup authenticator is
paired with a primary authenticator.3 During the pairing process, the long-
term public key pkBA of the BA is transferred to the PA which stores it.

Registration At some point, the primary authenticator PA then begins to reg-
ister credentials with relying parties. This registration happens over a secure
channels since the user has logged into the relying party via another authen-
tication method, typically with user name and password and has established
a TLS connection to the server of the RP .
In a “normal” WebAuthn registration, the relying party sends a challenge
value to the authenticator, which then derives a key pair (pkauth, skauth) and
sends pkauth to the relying party. Depending on the chosen attestation type,
the authenticator’s response may also include a signature on a message which
contains (among other information) the challenge ch and the new public

3 We note that it is possible to pair any primary authenticator with multiple backup
authenticators, and vice versa. However, for ease of presentation we focus on the
case where a single PA is paired with a single BA.

8

Pairing

BA PA

pp← Setup(1λ)
(pkBA, skBA)←$ KGen(pp) pkBA

Store(pkBA)

Registration

PA RP

Registration of WebAuthn credentials

ch←$ {0, 1}λ
ch

(pkauth, skauth)←$ WebAuthn.KGen(λ)

(pkrec, rec)←$ DerivePK(pp, pkBA, aux)

no signature on ch and pks since attestation type = none

pkauth, pkrec, rec

Store(pkauth, pkrec, rec)

Recovery

BA RP
Registration of WebAuthn credentials with Recovery extension

ch←$ {0, 1}λch, rec

skrec ← DeriveSK(pp, skBA, rec)

(pknew, sknew)←$ WebAuthn.KGen(λ)

σ ←$ Sign(skrec, ch∥pknew)
pknew, σ

Vf(pkrec, σ, ch∥pknew)
if verifies: revoke pkauth, pkrec

Fig. 1: Simplified illustration how ARKG integrates into WebAuthn
registration flows

key pkauth). The signature is created using the long-term secret key that is
embedded in the authenticator at production time. Since no attestation is
the proposed default, we chose to omit this signature from Figure 1.
When the recovery extension is present, the PA will also derive a recovery
public key pkrec and recovery information rec from pkBA via the ARKG algo-
rithm DerivePK; (pkrec, rec) are then also transmitted to the RP .

Recovery While the primary authenticator acts as the “standard” authentica-
tor of the user when signing in to services, the backup authenticator comes
into play should the user lose access to its PA. Until that point the BA can
be stored offline.
Note, that the recovery process is a regular WebAuthn registration ceremony
with the recovery extension. When the recovery is triggered by the BA, the
relying party sends out a challenge ch to the authenticator along with recov-
ery information rec for the user in question. The BA then uses its long-term
secret skBA to recover the derived secret key skrec associated with rec. It then

9

generates a new key pair (pknew, sknew) to replace the lost (pkauth, skauth) and
signs (among other information) the new public key pknew and the challenge
provided by rec. It sends the new public key and the signature to the relying
party which then checks the signature wrt. its stored information. If the sig-
nature verifies, RP stores pknew and should revoke the old stored credentials.

Remark 2. After registration, the user can use its primary authenticator with
the secret skauth to sign WebAuthn authentication challenges in a passwordless
manner. ARKG is not involved in this phase, thus we did not include it in the
Figure. As usual, this happens via a challenge-response protocol in which the
relying party sends a challenge value to the user, and the user then signs the
challenge with the secret key stored on the authenticator. The RP then verifies
the signature with respect to the public key it had received during registration.
If the signature verifies, the user is authenticated and is logged onto the service.

3 Security of ARKG Schemes

In this section we discuss the security properties of ARKG schemes. When first
introducing ARKG and in later works, Frymann et al. [8, 7, 10] described secu-
rity in terms of an adversary’s inability to recover a derived secret key in various
adversarial settings (honest/malicious, weak/strong) and the unlinkability of de-
rived public keys. The former aims to guarantee that an adversary is not able to
successfully complete the account recovery process without access to the secret
keys stored on the backup authenticator, whereas public-key unlinkability shall
ensure that users cannot be tracked across services via their registered public-key
credentials.

As mentioned before, we chose to assume different security properties, which,
we believe, capture the real-world setting for ARKG usage in FIDO2 account
recovery more adequately than the ones in the original work. The formal defini-
tions by Frymann et al. [8] and a more in-depth comparison with our security
notions can be found in Appendix A.

In particular, we deem their key security notions to be too restrictive. Their
notion demands that in order to break the scheme, an adversary must be able
to recover and entire secret key. However, in the context of FIDO2, recovery
is broken if an adversary can successfully convince a relying party that it is
authorized to register new credentials following a recovery. For this, the adversary
does not necessarily need knowledge of the full secret key. Thus, we switch to a
notion based on the adversary’s (in)ability to successfully authenticate.

With regards to public-key unlinkability, we note that the definition in [8],
which states that derived keys are indistinguishable from randomly sampled keys,
does not take the adversary’s actual view during the execution of the protocol
into account. This omission gives a false sense of security: One can have ARKG
schemes that provide public-key unlinkability wrt. Frymann et al.’s definition
that trivially link derived public keys when employed in the envisioned setting.
Before we formally define our security properties for ARKG schemes, we first
state our basic assumptions on the adversary’s power and capabilities.

10

3.1 Adversarial model

Recall that we assume a quantum polynomial-time (QPT) adversary since our
ARKG construction aims to provide post-quantum security, interacting classi-
cally with the honest parties, i.e., it may not query any oracles in superposition.

We note that it is generally assumed that authenticators are tamper-proof,
i.e., they do not leak information on the secret keys stored on them, even if
they are in possession of the adversary. This assumption was also made for the
FIDO2 analysis by Barbosa et al. [1] and is intuitively also reasonable in our
setting where we assume the primary authenticator has been lost, i.e., may be
in the hands of the adversary. If (primary) authenticators leaked secret keys, the
adversary could immediately log into services and reset credentials such that ac-
count recovery would not be possible anymore. Frymann et al. [8, 7, 10] implicitly
make this assumption in the weak form of their key-security property of ARKG,
where they do not provide the adversary with an oracle that outputs derived se-
cret keys for previously generated derived public keys. Nevertheless, we provide
the adversary with oracles that leak the derived secret keys to achieve stronger
notions of security by default, analogous to the strong version in Frymann et
al.’s works [8, 7, 10].

We assume that the initial pairing between the BA and the PA(s) is in a
trusted setting such that an adversary is not able to inject its own long-term
public key to the user’s primary authenticator. This is a reasonable assumption
since this pairing only happens once, is of short duration, and is executed locally
at the user with no information going over public network channels.

Backup authenticators are typically offline and should only come online dur-
ing account recovery. Since we cannot rule out that an adversary intercepts the
user’s account recovery attempts, we do nevertheless grant the adversary access
to a signing oracle where the BA’s long-term secrets are employed.

We assume that WebAuthn registrations (with extensions) are secure against
active adversaries (cf. [3]). In the context of ARKG this is especially important
during registration, where the derived public keys and recovery information are
transmitted from the PA to the relying party. If the adversary were able to inject
its own account recovery credentials here, all is lost. It is reasonable to assume
this interaction takes place over a secure channel.

Typically, upon registration of FIDO2 credentials, a user has previously
logged in to the service using other means of authentication, e.g., with user-
name and password and has established an authenticated connection [1]. Thus,
we assume that the adversary remains passive during the registration of cre-
dentials with a relying party. During the account recovery process, however, the
user is not authenticated to the relying party and no secure channel exists. Thus,
we allow the adversary to actively interfere, i.e., it may drop, modify, or inject
messages.

As usual for reliable authentication, we assume that public keys are globally
unique. This can be accomplished by including the relying party’s identity rpid
and a unique user identifier (or pseudonym) uid in the public key.

11

3.2 Authentication Security

Viewed merely from the cryptographic primitive level, the main functionality of
ARKG schemes is to derive public-secret key pairs (pk′, sk′) along with additional
recovery information rec from a long-term public key pkBA such that sk′ can only
be recovered with knowledge of the long-term secret skBA. Frymann et al. [8] thus
describe the main security property of ARKG schemes as one where an adversary
may not be able to derive valid public-secret key pairs (and recovery information)
without knowledge of the long-term secret key.

As elaborated in Section 2.4, ARKG schemes were originally introduced to
support account recovery in case of primary authenticator loss in FIDO2 authen-
tication procedures, i.e., in a challenge-response-based protocol using digital sig-
natures. Viewed in this context, the main security goal of ARKG schemes should
be the adversary’s inability to create a valid response, i.e., a valid signature on a
given challenge value (and new public key credential) during an account recovery
procedure. Since our main contribution is a generic post-quantum secure ARKG
construction for account recovery in FIDO2 authentications, we opt to define
security in the latter sense as follows.

We discuss the differences between this notion, and the one given by Frymann
et al. in more detail in Appendix A.

ExpauthARKG(A):

1 pp← Setup(1λ)

2 Lkeys,Lch,Lsk′ ,Lσ ← ∅;
3 (pkBA, skBA)←$ KGen(pp)

4 (pk⋆, rec⋆, aux⋆,m⋆, σ⋆)←$ADerivePK,Chall-auth,Sign,LeakSK(pp, pkBA)

5 return J(pk⋆, rec⋆, aux⋆) ∈ Lkeys ∧ ∃(ch, aux⋆) ∈ Lch : prefix(m⋆) = ch ∧
Vrfy(pk⋆, σ⋆,m⋆) ∧ (rec⋆,m⋆) /∈ Lσ ∧ rec⋆ /∈ Lsk′K

DerivePK(pp, pkBA, ·) on input aux :

6 (pk′, rec)←$ DerivePK(pp, pkBA, aux)

7 Lkeys ← Lkeys ∪ {(pk′, rec, aux)}
8 return (pk′, rec)

Chall-auth(·) on input aux :

9 ch←$ {0, 1}λ
10 Lch ← Lch ∪ {(ch, aux)}
11 return ch

Sign(·, ·) on input (rec,m):

12 sk′ ← DeriveSK(pp, skBA, rec)

13 if sk′ = ⊥: abort
14 σ ←$ Sign(sk′,m)

15 Lσ ← Lσ ∪ {(rec,m)}
16 return σ

LeakSK(·) on input rec:

17 sk′ ← DeriveSK(pp, skBA, rec)

18 Lsk′ ← Lsk′ ∪ {rec}
19 return sk′

Fig. 2: Our security definition for authentication security of ARKG schemes.

Game description The formal description of the authentication game ExpauthARKG(A)
can be found in Figure 2. The adversary A gets as input the public parameters

12

pp and the long-term public key pkBA from the backup authenticator BA. A then
has access to the oracles DerivePK, Chall-auth, Sign, and LeakSK.

The oracle DerivePK takes as input auxiliary data aux and derives a public
key pk′ and recovery information rec for the relying party specified in aux from
the long-term public key pkBA. This simulates the honest generation of derived
public keys and recovery information on the primary authenticator PA when
registering with relying parties specified in the auxiliary data aux .

As they are by default not authenticated, account recovery processes may be
triggered by the adversary. Thus, A gets access to the challenge oracle Chall-
auth, which takes as input auxiliary data aux and outputs a uniformly random
challenge value ch. This challenge value corresponds to the challenges sent out by
the relying parties that are specified via aux in the account recovery process. The
adversary eventually has to create a valid signature on a message containing one
of these challenges, more specifically on a message m that starts with a challenge
value and has not been queried to Sign with respect to the secret key.

When it receives recovery information rec, the backup authenticator BA has
no means to distinguish between credential information that had been honestly
generated by a primary authenticator and recovery information that the adver-
sary sends to it. The BA will simply use its long-term secret skBA to derive the
secret key sk′ and sign the response with it. Thus, we grant A access to an oracle
Sign which takes as input recovery information rec and a message m. The oracle
then tries to derive a secret key sk′, and if it fails will abort. If an sk′ was derived,
it will then use it to generate a signature on the provided message m and return
the signature σ.

The LeakSK oracle models the leakage of derived secret keys. The adversary
may provide recovery information rec and the oracle will return the output of
DeriveSK, which is either ⊥ if the derivation failed or the derived secret key sk′.

The adversary outputs (pk⋆, rec⋆, aux⋆,m⋆, σ⋆) and wins the game ExpauthARKG(A),
if it is able to produce a valid signature on a message containing the challenge
posed by a relying party. The valid signature must fulfill the following require-
ments:

– (pk⋆, rec⋆) was honestly generated for the relying party specified in aux⋆,

– There exists an honestly generated challenge ch for aux⋆ such that ch is a
prefix of m⋆,

– σ⋆ is a valid signature on m⋆ with respect to pk⋆,

– The adversary has not received a signature on m⋆ with respect to the secret
key associated with rec⋆, and

– The secret key associated with rec⋆ has not been given to the adversary.

Definition 2. Let ARKG = (Setup,KGen,DerivePK,DeriveSK) be an async.
remote key generation scheme. We say that ARKG is AUTH-secure, if for every
QPT adversary A the advantage in winning the game ExpauthARKG(A) described in

Figure 2, defined as AdvauthARKG,A(λ) :=
∣∣∣Pr [ExpauthARKG(A) = 1

]∣∣∣, is negligible in the

security parameter λ.

13

Remark 3. Note that a weaker notion of authentication security, where A does
not have access to the LeakSK oracle to learn other derived keys, could be
defined. However, at least in our instantiation from KEMs we gain nothing from
this modification as both notions require the same assumptions on the primitives.

3.3 Unlinkability

Unlinkability aims to fulfill a requirement in the WebAuthn standard [15] which
recommends authenticators to ensure that the credential IDs and credential pub-
lic keys of different public-key credentials cannot be correlated as belonging to
the same user. We note that this is a non-normative requirement, i.e., WebAu-
thn implementations that do not provide this unlinkability are still considered
as conforming to the standard. As mentioned, we deviate from Frymann et al.’s
definition for public-key unlinkability, which was based on the adversary’s inabil-
ity to distinguish derived from randomly sampled key pairs. In Appendix A.2,
we elaborate on the issue with their definition. In essence, their definition allows
to prove ARKG schemes as public-key unlinkable although they trivially link
public-key credentials when employed in account recovery.

In our definition, two long-term key pairs (pk0BA, sk
0
BA) and (pk1BA, sk

1
BA) are

generated and the public keys are given to the adversary. A bit b ←$ {0, 1} is
sampled uniformly at random. The adversary may once query auxiliary informa-
tion of its choice to the oracle 1-Chall-u. The oracle then derives a public key
pk′ and credential information rec either from pk0BA (if b = 0), or pk1BA (if b = 1).
It then derives the corresponding secret key sk′ and outputs (pk′, sk′, rec) as chal-
lenge to the adversary. Note that with a standard hybrid argument one may lift
this definition to a setting with multiple challenges. Additionally, the adversary
may learn derived secret keys sk′ for credential information of its choice, where
it can also specify via a bit β which of the long-term secrets skβBA shall be used
in the oracle’s internal DeriveSK call. Note that if secret key derivation fails,
DeriveSK outputs ⊥ and this is then returned to the adversary as sk′. Of course,
the adversary may not query its challenge ciphertext to the oracle LeakSK-u,
even if the auxiliary information in the recovery credential has been modified.
This does not impose any undue limitation, because during an honest execution
the auxiliary information is the unique identifier of the relying party and thus
remains unchanged. In the end, A will output a bit b′, guessing whether the
challenge was derived from pk0BA or pk1BA and wins if correct. More formally,

Definition 3. As before, let ARKG = (Setup,KGen,DerivePK,DeriveSK) be
an asynchronous remote key generation scheme. We say that ARKG provides
unlinkability, or is UNL-secure, for short, if for every QPT adversary A, the
advantage in winning the game ExpunlARKG(A) described in Figure 3, defined as

AdvunlARKG,A(λ) :=
∣∣∣Pr [ExpunlARKG(A) = 1

]
− 1

2

∣∣∣, is negligible in the security param-

eter λ.

Recall that [8] in their (public-key) unlinkability game ask to distinguish gen-
uinely generated public keys against independently sampled ones. This requires

14

to define a distribution on public keys. We have opted here for the common
left-or-right notion. In principle we could also cover such real-or-random sce-
narios. Looking ahead to a post-quantum instantiation, the post-quantum KEM
Kyber can also achieve this notion. The reason is that Kyber provides strong
pseudorandomness under CCA [24], as shown in [19].

ExpunlARKG(A):

1 pp← Setup(1λ)

2 b←$ {0, 1}
3 (pk0BA, sk

0
BA)←$ KGen(pp)

4 (pk1BA, sk
1
BA)←$ KGen(pp)

5 b′ ←$A1-Chall-u,LeakSK-u(pk0BA, pk
1
BA)

6 return Jb = b′K

1-Chall-u(·) on input aux :

7 (pk′, rec)← DerivePK(pp, pkbBA, aux)

8 with rec = (c∗, aux)

9 sk′ ←$ DeriveSK(pp, skbBA, rec)

10 return (pk′, sk′, rec)

LeakSK-u(·) on input (β, rec):

11 (c, aux) ← rec

12 if rec = (c∗, ·): abort
13 sk′ ← DeriveSK(pp, skβBA, rec)

14 return sk′

Fig. 3: Our security definition for unlinkability of ARKG schemes.

4 Post-Quantum Asynchronous Remote Key Generation

This section will introduce our instantiation for PQ-ARKG, built from generic
primitives and provide security proofs in the setting discussed in Section 3.
Choosing generic primitives for the instantiation allows us to provide a general
security proof independent of the actual instantiation of the primitives. The
result ensures ARKG is secure within the specified scenario, as long as the un-
derlying primitives achieve the respective security properties.

4.1 The PQ-ARKG scheme

In Figure 4 we provide the generic instantiation for all algorithms required for an
ARKG scheme. The key building blocks of the proposed ARKG instantiation are
key encapsulation mechanisms, digital signatures and key derivation functions,
all of which allow for multiple concrete instantiations believed to be resistant to
a QPT attacker with high confidence [21, 18, 20, 16].

Conceptually, the interactions that make up a full ARKG protocol execution
work as follows: During pairing, the BA generates a KEM key pair, denoted as
(pkBA, skBA), and transfers pkBA to the PA.

During registration, which is exclusively done by the PA, an encapsulation
operation is performed under pkBA to obtain a random key, which is then input

15

Pairing

BA PA

Setup (1λ)

return pp = (KEM,KDF, Sig)

KGen (pp)

(pkBA, skBA)←$ KEM.KGen(pp)
pkBA

Registration

PA RP

DerivePK(pp, pkBA, aux) :

(c,K)←$ KEM.Encaps(pkBA)

r ← KDF(K, aux)

(pk′, sk′)← Sig.KGen(pp; r)
rec← (c, aux) pk′, rec

Recovery

BA RP

WebAuthn registration with ”recover” extension

rec

DeriveSK(pp, skBA, rec) :

(c, aux)← rec

K ← KEM.Decaps(skBA, c)

r ← KDF(K, aux)

(pk′, sk′)← Sig.KGen(pp; r)

Setup (1λ):

1 return pp = (KEM,KDF, Sig)

DerivePK(pp, pkBA, aux):

1 (c,K)←$ KEM.Encaps(pkBA)

2 r ← KDF(K, aux)

3 (pk′, sk′)← Sig.KGen(pp; r)

4 rec← (c, aux)

KGen(pp):

1 (pkBA, skBA)←$ KEM.KGen(pp)

DeriveSK(pp, skBA, rec):

1 (c, aux)← rec

2 K ← KEM.Decaps(skBA, c)

3 r ← KDF(K, aux)

4 (pk′, sk′)← Sig.KGen(pp; r)

Fig. 4: Our PQ-ARKG instantiation from KEMs, Signatures and KDFs

16

to a KDF which outputs a random seed in the desired format. This seed is
then used to deterministically generate a new signature key pair (pk′, sk′). The
ciphertext resulting from the encapsulation operation is sent to the relying party
for safekeeping along with the newly derived public key pk′.

During recovery, the BA retrieves the ciphertext from the and performs a
decapsulation operation to obtain the key used as input to the KDF. By executing
the PRF it obtains the seed used for the key generation. This allows BA to
regenerate the original signature key pair, which critically includes the secret
key sk′. As a result, BA now has access to the same signing key pair as PA had
during the registration, without any direct communication from PA to BA.

In short, we use KEM ciphertexts stored at the relying parties to securely
relay seeds for the creation of recovery credentials between PA and BA.

A minor difference between the instantiation proposed in [8] and in this work
is the fact that the primary authenticator temporarily has access to the full re-
covery key pair (pk′, sk′). Nonetheless, the secret key material is immediately
discarded by the primary authenticator after the generation of pk′. This does
not pose a security risk, as the primary authenticator is also in possession of
the primary credentials used during regular FIDO2 sessions. Consequently, an
attacker with access to the primary authenticator’s internal secrets could authen-
ticate himself using a regular FIDO2 interaction while completely disregarding
the recovery extension. The fact that recovery credentials are generated by the
primary authenticator but only ever used by the backup authenticator therefore
also holds for our instantiation.

4.2 Security Analysis

We will now show that our instantiation achieves the two security properties
authentication security and unlinkability.

Authentication Security We first show authentication security.

Theorem 1 Let ARKG be the generic instantiation of ARKG as given in Fig-
ure 4, KEM be an IND-CCA secure and ϵ-correct KEM scheme, Sig be an
EUF-CMA secure signature scheme and KDF a secure key derivation function
modeled as a PRF. Then ARKG provides ϵ-correctness and authentication secu-
rity as defined in Definition 2. More precisely, for any QPT adversary A against
AUTH, there exist QPT algorithms B1,B2 and B3 with approximately the same
running time as A such that

AdvauthARKG,A(λ) ≤ q ·
(
ϵ+ Advind-ccaKEM,B1

(λ) + AdvprfKDF,B2
(λ) + Adveuf-cma

Sig,B3
(λ)

)
where q is the maximum number of calls to the DerivePK oracle.

Proof. Correctness with parameter ϵ for ARKG directly follows from ϵ-correctness
of KEM: If one is able to decapsulate the right key, then one can also derive the

17

same key pair. We will prove the authentication property of Theorem 1 using
game hopping. We denote by Adv

gamei
ARKG,A(λ) the advantage of the adversary in

the corresponding game.

Game1(λ): The original AUTH security game ExpauthARKG(A).
Game2(λ): In this game we assume that KEM decapsulation for honestly gener-

ated public keys and ciphertexts never fails. This is always the case, except
for a negligible failure probability ϵ for each of the at most q generated keys,
given by Definition 1. Thus, we get the bound

Adv
game1
ARKG,A(λ) ≤ q · ϵ+ Adv

game2
ARKG,A(λ) .

Game3(λ): In this game we guess for which call of DerivePK the adversary
will output the forgery (pk⋆, rec⋆, aux⋆,m⋆, σ⋆) for the key pk⋆ output by
DerivePK. Note that, by definition, the adversary must succeed for one of
the keys in Lkeys. We denote the number of oracle calls of A to DerivePK
with q. Consequently, the correct oracle call is guessed with a probability of
1
q and hence it follows that

Adv
game2
ARKG,A(λ) ≤ q · Advgame3

ARKG,A(λ) .

Game4(λ): In this game we modify the behavior of the DerivePK algorithm
for the execution guessed during the previous game: The input to the KDF,
which previously was a KEM ciphertext, is replaced with a random value. This
substitution takes place in line 2 of the DerivePK algorithm (cf. Figure 4).
We show that any efficient adversary A, which can distinguish between game3
and game4 implies the existence of an efficient adversary B1 against the
IND-CCA security of KEM. B1 receives the KEM challenge (pk∗, k∗, c∗) and
initializes ExpauthARKG(A) with pk∗ as pkBA.
During the execution of DerivePK that has been guessed in game3, algorithm
B1 modifies the behavior of the algorithm by plugging in its own challenge: In
line 1 of the DerivePK algorithm, pk∗ is used for encapsulation; in line 2 k∗ is
used as input to the KDF . The ciphertext, which is output as a component
of rec, is replaced with the ciphertext c∗.
To simulate the Sign Oracle, the reduction keeps a list of derived secret keys,
which are also generated as part of the DerivePK algorithm, but discarded
during normal operation. As we are only retrieving stored keys, we implicitly
eliminate all decryption failures, which is already captured by the transition
to game2. Queries to the Sign oracle for inputs that have not been generated
by the DerivePK algorithm can be answered using the Decaps oracle provided
by the IND-CCA challenger. Due to the guess in game3, the challenge key
and ciphertext is always embedded in an output of the DerivePK oracle,
and therefore such a query to the Decaps oracle does not coincide with the
challenge ciphertext, which subsequently means that the game’s own Decaps
oracle always answers.
To simulate LeakSK our reduction B1 needs to answer queries rec to LeakSK
without knowing the decryption key skBA of the KEM. But since the adver-
sary can only win if the forgery attempt rec⋆ does not lie in Lsk′ , reduction

18

B1 can use its own decryption oracle of the IND-CCA KEM to answer these
different requests.
Chall-auth can be trivially simulated, as it has no secret inputs.
Finally, A terminates and outputs a guess b, which the reduction B1 outputs
as its own answer to the KEM challenger. Clearly, B1 perfectly simulates
game3 when the KEM challenge is real and game4 when the KEM challenge
is random. Consequently, we obtain the following bound:

Adv
game3
ARKG,A(λ) ≤ Advind-ccaKEM,B1

(λ) + Adv
game4
ARKG,A(λ) .

Game5(λ): In this game the execution of the DerivePK algorithm is further
modified. The variable r, which was previously assigned the output of a KDF,
is now sampled uniformly at random.
Any efficient adversary A, able to distinguish game3 and game4 can be used
to construct an efficient adversary B2 against the security of the underlying
KDF, whose security we model as a PRF. The construction works similarly as
in the previous game hop. B2 initializes ExpauthARKG(A) for A as specified, but
modifies the behavior of the KDF used as part of the DerivePK algorithm in
line 2 (cf. Figure 4). Instead of directly invoking the key derivation function,
B2 forwards the input to the PRF oracle provided by the PRF challenger.
The simulation of the other oracles works identically as in the previous hop.
Finally, A terminates and outputs a bit b, to indicate whether it is playing
against game3 or game4. B2 forwards this as its own output to the PRF
challenger.
Clearly, B2 perfectly simulates game3 if the oracle is an actual KDF, and
game4 if the oracle is a random function. Thus, we get the following advan-
tage:

Adv
game4
ARKG,A(λ) ≤ AdvprfKDF,B2

(λ) + Adv
game5
ARKG,A(λ) .

Now we bound the last term on the right hand side. For this we can construct
a reduction B3, which uses an efficient adversary A against game4 as a subroutine
and can efficiently win against any EUF-CMA challenger with non-negligible
probability. This allows us to bound the advantage of any QPT adversary against
game4 by the EUF-CMA security of the underlying signature scheme.

The reduction B3 receives a challenge public key pk∗ and a signing oracle Sign
from the EUF-CMA challenger. It then initializes the game game4 as specified,
in particular it holds the backup authenticator’s key pair (pkBA, skBA). During
the query guessed in the first game hop, it replaces the public key output by
DerivePK with the challenge public key pk⋆ = pk∗. Note that this also means
that this choice also determines the recovery information rec⋆. Replacing the
public key by pk∗ is possible, as in game4 the output of DerivePK is completely
independent of both the key derivation function and the initial public key pkBA.

Queries by A to the Sign Oracle of the AUTH game for the value rec⋆ can be
forwarded to the outer Sign Oracle of the EUF-CMA game by the reduction B3.
Since DeriveSK is deterministic, the signature oracle in the attack would recover
exactly the secret key to pk∗, such that using the external signing oracle is valid.

19

Note that signature queries for any other rec value can be answered with the
help of skBA, first recovering the derived key and then signing the input message
m.

Ultimately, the inner adversary A terminates and outputs values (pk⋆, rec⋆,
aux⋆,m⋆, σ⋆), where σ⋆ is a valid signature under the challenge public key pk∗

and an arbitrary message m⋆. The reduction can then output the message-
signature pair (m⋆, σ⋆) as its forgery. Per construction, this constitutes a valid
forgery: The only queries forwarded to B3’s external signing oracle are the ones
for rec⋆. Since the adversary A can only win if (rec⋆,m⋆) is not in the list of
signed pairs Lσ, it follows that m⋆ must not have been signed before in B3’s
attack.

Consequently, the success probabilities of A and B3 are equal. Thus we can
conclude that

Adv
game5
ARKG,A(λ) ≤ Adveuf-cma

Sig,A (λ) .

To conclude the proof, we sum up the advantages:

AdvauthARKG,A(λ) ≤ ϵ+ q ·
(
Advind-ccaKEM,B1

(λ)

+ AdvprfKDF,B2
(λ) + Adveuf-cma

Sig,B3
(λ)

)
.

Note that in the proof we have not used the requirement that the forgery
needs to be for a random challenge and for the right format. The reason is that
we presume existential unforgeability of the signature scheme, such that even
forgeries for arbitrary messages should be infeasible. For practical purposes we
would only require the relaxed unforgeability notion but do not explore this here
further.

Unlinkability We next discuss unlinkability of our scheme. This follows from
the fact that the underlying KEM scheme is anonymous [2].

Theorem 2 Let ARKG be the instantiation of ARKG as shown in Figure 4 and
KEM be an ANON-CCA secure KEM scheme. Then ARKG provides unlinkability
security as described in Definition 3. More precisely, for any QPT adversary
A against UNL there exists a QPT algorithm B with approximately the same
running time as A, such that AdvunlARKG,A(λ) ≤ Advanon-ccaKEM,B (λ) .

Proof. We prove Theorem 2 using a direct reduction to the ANON-CCA security
of the underlying KEM. Let A be a QPT adversary against unlinkability. We use
A to construct an efficient reduction, B, that uses A as a subroutine to win
against ANON-CCA with non-negligible probability.

First, B receives the challenge set (pk0, pk1, c
∗, k∗) as per the ANON-CCA

security definition (cf. Figure 8). Then, B forwards (pk0, pk1) to the inner ad-
versary A as (pk0BA, pk

1
BA). Next, A outputs aux to query the 1-Chall-u oracle.

The reduction simulates the behavior of 1-Chall-u as follows: During the exe-
cution of the algorithm DerivePK (cf. Figure 4), the challenge key k∗ is used as

20

input to the KDF in combination with aux provided by the inner adversary A.
The KDF output is then used as input to the key generation algorithm Lastly,
it creates rec as rec ← (c∗, aux). Then it returns (pk′, sk′, rec) to the inner ad-
versary. Queries to the LeakSK-u oracle can be answered by B with the help of
its own decapsulation oracle provided by the ANON-CCA challenger; any query
including about the challenge value c∗ is immediately rejected.

Finally, A outputs a bit b, which the reduction forwards as its guess to the
ANON-CCA challenger. Depending on the bit b of the ANON-CCA game, this
perfectly simulates either the case where the challenge bit of UNL is sampled as
0 or 1.

We have constructed B in such a way, that it is efficient and perfectly simu-
lates the UNL game for A and its view depends only on the random bit b chosen
by the challenger. Consequently, the success probability of the reduction is equal
to that of the inner adversary, which yields the following result:

AdvunlARKG,A(λ) ≤ Advanon-ccaKEM,B (λ) .

4.3 Overhead and Instantiation

Implementing ARKG requires relatively low additional computations and stor-
age at both the relying party and the authenticator itself, with the overhead
dependent on the instantiation of the underlying primitives. Crucially, during
the most frequent operation, namely authentication, no additional computa-
tions are necessary. Per registration of an authenticator at a relying party only
a single additional KEM key generation and encapsulation are performed. Sim-
ilarly, the initial pairing (only done once) and account recovery require a KEM
key generation and one single other operation (KEM decapsulation and signing,
respectively). In terms of storage, the authenticator needs to store the backup
authenticator’s public key and the relying party needs to store the public key of
the recovery credential and the recovery information rec.

Our solution can be instantiated with any suitable primitive that satisfies the
security requirements stated in the theorems. For example, SPHINCS+ could be
a viable signature choice due to its small key sizes, which would be beneficial
for the storage overhead at the relying parties, however the recovery would take
longer than with other options. We leave the ideal tradeoff between storage and
computational costs as an open question for future work.

5 Conclusion

As elaborated before, asynchronous remote key generation is the preferable ap-
proach for account recovery in comparison to multi-device passkeys, especially
in security-sensitive settings.

Using hardware authenticators comes with many security upsides, which
are partially invalidated by opting for the simpler, but less secure multi-device

21

passkeys. In particular, an ARKG-based solution is compatible with hardware-
binding of secret key material, such that full control over the authentication
information is retained at all time.

The primitive of asynchronous remote key generation as introduced by Fry-
mann et al. [8] proves useful to provide a mechanism within FIDO2 to support
account recovery in case of authenticator less. While their original construction
was based on the discrete-logarithm assumption, further works [7, 10] have in-
troduced instantiations from lattices and pairings, respectively. In this work, we
have introduced a generic instantiation using key encapsulation mechanisms and
digital signatures, which is especially relevant for the post-quantum setting and
have proven it secure.

We have refined the security properties required of ARKG schemes when
employed in FIDO2 flows to capture real-world adversarial capabilities. In par-
ticular, we fixed a shortcoming in Frymann et al.’s definition of public-key un-
linkability that falsely categorizes schemes to be public-key unlinkable although
they trivially link keys. Furthermore, we no longer use a key security notion
which requires the adversary to output a full secret key to a notion of existential
unforgeability of signatures. It is quite uncommon to require the adversary to
be able to recover entire secret keys in order to win the games and, indeed, the
challenge-response based FIDO2-setting would already fail if an adversary were
able to existentially forge a signature.

Acknowledgements

We thank Varun Maram for pointing out flaws in the security proofs of a pre-
vious version of this work as well as the anonymous reviewers for their valuable
comments. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – SFB 1119-236615297 and the German Federal Ministry of
Education and Research (BMBF) under reference 16KISQ074.

22

References

1. Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security anal-
ysis of FIDO2. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III.
LNCS, vol. 12827, pp. 125–156. Springer, Heidelberg, Virtual Event (Aug 2021).
https://doi.org/10.1007/978-3-030-84252-9˙5

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1˙33

3. Bindel, N., Cremers, C., Zhao, M.: FIDO2, CTAP 2.1, and WebAuthn 2: Provable
Security and Post-Quantum Instantiation. In: IEEE Symposium on Security and
Privacy (SP). pp. 674–693 (2023)

4. Bradley, J., Hodges, J., Jones, M.B., Kumar, A., Lindemann, R., Verrept, J.,
Antoine, M., Bharadwaj, V., Birgisson, A., Brand, C., Czeskis, A., Duboucher,
T., Ehrensvärd, J., Ploch, M.J., Powers, A., Armstrong, C., Georgantas, K.,
Kaczmarczyck, F., Satragno, N., Sung, N.: Client to Authenticator Protocol
(CTAP) (Jun 2022), https://fidoalliance.org/specs/fido-v2.1-ps-2021061
5/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html

5. Brendel, J., Clermont, S., Fischlin, M.: Post-quantum asynchronous remote key
generation for fido2 account recovery. Cryptology ePrint Archive, Paper 2023/1275
(2023), https://eprint.iacr.org/2023/1275, https://eprint.iacr.org/2023
/1275

6. Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D.: Towards post-
quantum security for Signal’s X3DH handshake. In: Dunkelman, O., Jr., M.J.J.,
O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 404–430. Springer, Heidelberg
(Oct 2020). https://doi.org/10.1007/978-3-030-81652-0˙16

7. Frymann, N., Gardham, D., Manulis, M.: Asynchronous remote key generation for
post-quantum cryptosystems from lattices. In: 2023 IEEE 8th European Sympo-
sium on Security and Privacy (EuroSP). pp. 928–941. IEEE Computer Society, Los
Alamitos, CA, USA (jul 2023). https://doi.org/10.1109/EuroSP57164.2023.00059,
https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.00059

8. Frymann, N., Gardham, D., Kiefer, F., Lundberg, E., Manulis, M., Nilsson, D.:
Asynchronous remote key generation: An analysis of yubico’s proposal for W3C
WebAuthn. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp.
939–954. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3417292

9. Frymann, N., Gardham, D., Manulis, M.: Unlinkable delegation of WebAuthn
credentials. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ES-
ORICS 2022, Part III. LNCS, vol. 13556, pp. 125–144. Springer, Heidelberg (Sep
2022). https://doi.org/10.1007/978-3-031-17143-7˙7

10. Frymann, N., Gardham, D., Manulis, M., Nartz, H.: Generalised asynchronous re-
mote key generation for pairing-based cryptosystems. In: Applied Cryptography
and Network Security: 21st International Conference, ACNS 2023, Kyoto, Japan,
June 19–22, 2023, Proceedings, Part I. p. 394–421. Springer-Verlag, Berlin, Heidel-
berg (2023), https://doi.org/10.1007/978-3-031-33488-7_15

11. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part III. LNCS, vol. 13277, pp. 402–432. Springer, Heidelberg (May / Jun 2022).
https://doi.org/10.1007/978-3-031-07082-2˙15

12. Guan, J., Li, H., Ye, H., Zhao, Z.: A formal analysis of the FIDO2 pro-
tocols. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ES-

23

ORICS 2022, Part III. LNCS, vol. 13556, pp. 3–21. Springer, Heidelberg (Sep
2022). https://doi.org/10.1007/978-3-031-17143-7˙1

13. Hanzlik, L., Loss, J., Wagner, B.: Token meets wallet: Formalizing privacy and
revocation for FIDO2. Cryptology ePrint Archive, Report 2022/084 (2022), https:
//eprint.iacr.org/2022/084

14. Harell, C.: Yubikeys, passkeys and the future of modern authentication (03 2022),
https://www.yubico.com/blog/passkeys-and-the-future-of-modern-authent

ication/

15. Hodges, J., Jones, J., Jones, M.B., Kumar, A., Lundberg, E., Bradley, J., Brand,
C., Langley, A., Mandyam, G., Satragno, N., Steele, N., Tan, J., Weeden, S., West,
M., Yasskin, J.: Web Authentication: An API for accessing Public Key Credentials
- Level 3 (Apr 2021), https://www.w3.org/TR/webauthn-3

16. Hülsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Niederha-
gen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P., Westerbaan,
B., Beullens, W.: SPHINCS+. Tech. rep., National Institute of Standards and Tech-
nology (2022), available at https://csrc.nist.gov/Projects/post-quantum-c

ryptography/selected-algorithms-2022

17. Lundberg, E., Nielsson, D.: WebAuthn Recovery Extension (2019), https://gith
ub.com/Yubico/webauthn-recovery-extension

18. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Standards
and Technology (2022), available at https://csrc.nist.gov/Projects/post-q

uantum-cryptography/selected-algorithms-2022

19. Maram, V., Xagawa, K.: Post-quantum anonymity of Kyber. In: Boldyreva, A.,
Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 3–35. Springer,
Heidelberg (May 2023). https://doi.org/10.1007/978-3-031-31368-4˙1

20. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022

21. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc
.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

22. Shikiar, A.: Charting an Accelerated Path Forward for Passwordless Authentica-
tion Adoption (03 2022), https://fidoalliance.org/charting-an-accelerated
-path-forward-for-passwordless-authentication-adoption/

23. Wilson, Spencer MacLaren: Post-Quantum Account Recovery for Passwordless Au-
thentication. Master’s thesis (2023), http://hdl.handle.net/10012/19316

24. Xagawa, K.: Anonymity of NIST PQC round 3 KEMs. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 551–581.
Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-
2˙20

A Comparison to the Original Security Definitions

In the following, we review the security definitions of ARKG schemes as proposed
by Frymann et al. [8, 7, 10].

24

A.1 Key Security

Their notions for key security are based on the adversary’s inability to output
an entire valid secret key sk⋆ needed for account recovery. We have depicted the
strong and weak game description for SK-security of [8] in the honest setting in
Figure 5.

ExpksARKG,A(λ):

1 pp← Setup(1λ)

2 Lkeys,Lsk′ ← ∅
3 (pk0, sk0)←$ KGen(pp)

4 (pk⋆, sk⋆, rec⋆)←$A
Opk′ , Osk′

(pp, pk0)

5 sk′ ← DeriveSK(pp, sk0, rec
⋆)

6 return J(pk⋆, rec⋆) ∈ Lkeys ∧ Check(pk⋆, sk⋆) = 1 ∧ Check(pk⋆, sk′) = 1 ∧
rec⋆ /∈ Lsk′ K

Opk′(pp, pk0, ·) on input aux :

7 (pk′, rec)←$ DerivePK(pp, pk0, aux)

8 Lkeys ← Lkeys ∪ (pk′, rec)

9 return (pk′, rec)

Osk′(·) on input rec:

10 sk′ ← DeriveSK(pp, sk0, rec)

11 Lsk′ ← Lsk′ ∪ rec

12 if (·, rec) /∈ Lkeys : abort

13 return sk′

Fig. 5: SK-Security as defined in [8] (honest variants).4

Honest vs. malicious security For this security definition, the term honest refers
to the first requirement in Line 6 in Figure 5, which enforces that (pk⋆, rec⋆)
must be in Lkeys, i.e., that the tuple was honestly generated via DerivePK. This
same requirement is mirrored in our check that (pk′, aux) ∈ Lkeys in Line 5 in
Figure 2.

In the malicious setting, this requirement is dropped, thus giving the ad-
versary more leeway. However, Frymann et al. themselves note in [7], that this
may be “too strong for many applications”. In particular, it is inadequate in
the context of ARKG within FIDO2. An adversary that can output a derived
secret key to a public key and credential that are not actually registered with
any relying party cannot successfully complete account recovery.

Weak vs. strong security Frymann et al. have another dimension of security in
their definition, which they term weak and strong security, respectively. The
distinction is made along the presence of the highlighted oracle Osk′ in Line 4
and the highlighted condition rec⋆ /∈ Lsk′ in Line 6 in Figure 5. If it is present

4 We note that the pseudocode descriptions of Opk′ and Osk′ have not been given before
and thus corresponds merely to our interpretation of the prose description. [8].

25

(the strong setting), the adversary is required to output a valid secret key sk⋆

for a pair (pk′, rec⋆) for which it has not already learned a secret key via a query
to Osk′ . In the weak setting, the adversary may not learn derived secret keys.

Delineation We find that this notion of security does not capture the real-world
setting, where an adversary is already successful, if it can forge a signature
during the recovery process and thus gain access to the user’s account. Our
AUTH-security notion, which takes the place of key security, does not require
the adversary to output a valid secret key to win, it only requires that the
adversary can sign the challenge provided by the relying party during the recov-
ery mechanism. Analogously to the relevant security results by Frymann et al.,
our definition aligns with their honest setting, since an adversary can only be
considered successful in account recovery, if it can convince a relying party to
successfully verify the signature with respect to the honestly generated public
key it has stored as recovery credential for the user.

With regards to the strong vs. weak setting of Frymann et al. our AUTH-
security definition provides capabilities to an adversary roughly comparable to
the strong setting. The provided oracles correlate to the case, where there is
virtually unlimited access to the backup authenticator with all its capabilities,
except of course for trivial attacks. Such an attacker is very powerful and a
weaker notion could be defined, but as observed in Remark 3 relaxing the notion
would not ease any of the requirements for the underlying primitives.

A.2 Public-Key Unlinkability

Figure 6 gives a complete pseudocode description of the so-called public-key
unlinkability as proposed by Frymann et al. [8]. Essentially, the adversary is
given the long-term public key pkBA of a backup authenticator and may then
receive key pairs, which, depending on a hidden bit b, are either derived from this
long-term public key or sampled independently from the key-pair distribution
D.

ExppkuARKG(A):

1 pp← Setup(1λ)

2 (pk0, sk0)←$ KGen(pp)

3 b←$ {0, 1}
4 b′ ←$AOb

pk′ (pp, pk0)

5 return Jb = b′K

Ob
pk′(b, pkBA, skBA) with no input:

6 if b = 0

7 (pk′, rec)←$ DerivePK(pkBA, aux)

8 sk′ ← DeriveSK(skBA, rec)

9 else

10 (pk′, sk′)←$ D

11 return (pk′, sk′)

Fig. 6: Public-key unlinkability as defined in [8].5

5 We note that the pseudocode description of Ob
pk′ has not been given before and thus

corresponds merely to our interpretation of the prose description. [8]. In particular,

26

Issue with this definition On its own, the above definition makes sense to for-
malize that derived public keys do not leak from which long-term public key
they were derived. However, one can show that an ARKG scheme that satisfies
public-key unlinkability in accordance with Frymann et al.’s definition, can out-
put trivially linkable keys. This is due to the fact that the definition above does
not take into account the actual information an adversary has as its disposal.

During registration of derived public keys pk′, not only is pk′ sent over the
wire, but also the credential information rec, which the relying party also sends
back over an insecure channel when account recovery is triggered. This rec may
contain pkBA: there is nothing in the construction per se that forbids this. But
then public keys derived from this pkBA are all trivially linkable by the adversary.

We want to stress that the linkability is not always as easy to spot (or prevent)
as in this example. Especially in the (post-quantum) KEM setting it is not always
guaranteed that schemes that provide standard indistinguishably of ciphertexts
do not leak information on the public key for which the encapsulation took
place. As we show in our results, only KEMs that satisfy ANON-CCA security
do provide this guarantee and thus any KEM-based ARKG schemes must ensure
this property to provide unlinkability of derived public keys in the presence of
recovery information, which we term simply unlinkability.

Delineation We thus opted to define unlinkability as a game where the adversary
gets to see two long-term public keys pk0BA and pk1BA and can as a challenge
derive a public key and recovery information with auxiliary information of its
choice. Multiple queries would also be easily supported due to a hybrid argument.
Furthermore, the adversary may query recovery information of its choice (not
the challenge) and let the oracle derive the secret key either from sk0BA or sk1BA.

B Definitions

This appendix will introduce definitions for common building blocks used through-
out this work.

B.1 Key Encapsulation Mechanisms

A KEM scheme is a public key based scheme to generate and communicate a
shared secret over an unsecure channel. The primary use case for KEMs is key
establishment. KEMs are non-interactive, meaning only one party can contribute
randomness. The length of the key as well as the ciphertext are dependent on
the security parameter and can be expressed as Γ (λ) for the length of the key
and Θ(λ) for the length of the ciphertext. The receiving party cannot influence
on the key generation process and has to trust the generating party to use ade-
quate randomness. A key encapsulation scheme KEM consists of three algorithms
KEM = (KGen,Encaps,Decaps).

it is underspecified how aux in Line 7 is chosen. We would allow the adversary to
give aux as input to the oracle, but refrain from specifying this here.

27

KGen is a probabilistic algorithm that takes the security parameter λ as
input and probabilistically outputs a key pair (pk, sk). Encapsis a probabilistic
algorithm and takes as input a public key pk, where pk← KGen(1λ), and outputs
a key k as well as a ciphertext c. The ciphertext c encapsulates the key k. Decapsis
a deterministic algorithm and takes a secret key sk and a ciphertext c as input,
outputting either a key k or ⊥ to indicate failure.

Definition 1 (Correctness of KEM schemes) A key encapsulation scheme
KEM = (KGen,Encaps,Decaps) is δ-correct, if for all (sk, pk) ←$ KGen we
have Pr[Decaps(sk, c) = k : (c, k)←$ Encaps(pk)] ≥ 1 − δ If δ = 0 holds, the
scheme is called perfectly correct.

Security of a KEM scheme is defined over indistinguishability of derived keys
and random keys. A challenger is provided a triple (pk, c, kb), where c is output
by (c, k) ← Encaps(pk) and kb is either sampled uniformly as {0, 1}Γ (λ) or the
actual key, which was output by the encapsulation algorithm. A challenger is
successful if it can decide whether the given kb is randomly sampled or generated
by the encapsulation algorithm with non-negligible probability.

Definition 2 (IND-ATK security of KEM schemes) Given the security game
in Figure 7, a key encapsulation scheme KEM = (KGen,Encaps,Decaps) is
IND-ATK secure for ATK ∈ {CPA,CCA}, if the advantage Advind-atkKEM,A(λ) :=

Pr
[
Expind-atkKEM,A(λ) = 1

]
is negligible in the security parameter λ for any QPT ad-

versary A.

Expind-cpaKEM,A (λ):

1 (pk, sk)←$ KGen(1λ)

2 k0 ←$ K
3 (c∗, k1)←$ Encaps(pk)

4 b←$ {0, 1}
5 b′ ←$A(pk, c∗, kb)
6 return Jb′ = bK

Expind-ccaKEM,A (λ):

1 (pk, sk)←$ KGen(1λ)

2 k0 ←$ K
3 (c∗, k1)←$ Encaps(pk)

4 b←$ {0, 1}
5 b′ ←$AODec(·)(pk, c∗, kb)

6 return Jb′ = bK

ODec(·) on input c:

7 if c = c∗

8 return ⊥
9 return Decaps(sk, c)

Fig. 7: Game definition for IND-ATK security of key encapsulation mechanisms
with ATK ∈ {CPA,CCA}

An additional property some KEM schemes achieve is anonymity. Intuitively,
anonymity requires that the ciphertext obtained during encapsulation does not
leak any information on the public key used during the encapsulation operation.

Definition 3 (Anonymity of KEM Schemes) Given the security game in
Figure 8, a key encapsulation scheme KEM, is ANON-ATK secure with ATK ∈
{CPA,CCA}, if the advantage AdvANON-ATK

KEM,A (λ) :=
∣∣∣Pr[ExpANON-ATK

KEM,A (λ) = 1
]
− 1

2

∣∣∣
is negligible in the security parameter λ for any QPT adversary A.

28

Expanon-cpaKEM,A (λ):

1 b←$ {0, 1}
2 (pk0, sk0)←$ KGen(1λ)

3 (pk1, sk1)←$ KGen(1λ)

4 (c∗, k∗)←$ Encaps(pkb)

5 b′ ←$A(pk0, pk1, c∗, k∗)

6 return Jb = b′K

Expanon-ccaKEM,A (λ):

1 b←$ {0, 1}
2 (pk0, sk0)←$ KGen(1λ)

3 (pk1, sk1)←$ KGen(1λ)

4 (c∗, k∗)←$ Encaps(pkb)

5 b′ ←$AODec(pk0, pk1, c
∗, k∗)

6 return Jb = b′K

ODec(·, ·) on input id, c:

7 if c = c∗

8 return ⊥
9 k = Decaps(skid, c)

10 return k

Fig. 8: Game definition for ANON-ATK anonymity of key encapsulation
mechanisms with ATK ∈ {CPA,CCA}

B.2 Digital Signatures

A digital signature scheme is a public-key scheme that can be used to generate
publicly verifiable signatures. It is defined as a triple of PPT algorithms Sig =
(KGen,Sign,Vrfy).

KGen takes as input the security parameter λ and outputs a key pair (pk, sk).
Sign takes as input a secret key sk and a message m, and computes a signature
σ on the message m. Vrfy is used to verify signatures. It takes a input a public
key pk, a signature σ and a message m. The output is 1, if σ is a valid signature
for the message m under the public key pk, otherwise it returns 0.

Definition 4 A digital signature scheme Sig = (KGen,Sign,Vrfy) is correct,
if Pr

[
0← Vrfy(pk, σ,m) : (pk, sk)←$ KGen(1λ), σ ←$ Sign(sk,m)

]
is negligible in

the security parameter λ.

Security of signature schemes is defined over the notion of unforgeability.
For the basic notion of existential unforgeability under chosen message attack
(EUF-CMA) we require an adversary with access to a signing oracle to be unable
to forge a signature for a message not previously queried to the oracle. This
notion is formalized in the following definition

Definition 5 (EUF-CMA security of digital signature schemes) Given the
security game in Figure 9, a digital signature scheme Sig = (KGen,Sign,Vrfy) is

EUF-CMA secure, if Adveuf-cma
Sig,A (λ) := Pr

[
Expeuf-cma

Sig,A (λ) = 1
]
is negligible in the

security parameter λ for any QPT adversaries A.

B.3 PRF Security

Definition 6 (PRF Security) Let F : {0, 1}κ(λ)×{0, 1}ι(λ) → {0, 1}ω(λ) be an
efficient keyed function with key length κ(λ), input length ι(λ) and output length
ω(λ). Given the security experiment in Figure 10, a PRF is secure, if for all

QPT adversaries A the following holds AdvprfF,A(λ) :=
∣∣∣Pr[ExpprfF,A(λ) = 1

]
− 1

2

∣∣∣
29

Expeuf-cma
Sig,A (λ):

1 (pk, sk)←$ KGen(1λ)

2 Lm ← ∅
3 (m′, σ′)←$AOSign(sk,·)(pk)

4 return JVrfy(pk, σ′,m′) ∧m′ /∈ LmK

OSign(sk, ·) on input m:

5 σ ←$ Sign(sk,m)

6 Lm ← Lm ∪ {m}
7 return σ

Fig. 9: Game definition for EUF-CMA security of signature schemes

ExpprfF,A(λ):

1 b←$ {0, 1}
2 if b = 1

3 k ←$ K, f ← F (k, ·)
4 else

5 f ←$ { f : {0, 1}ι(λ) → {0, 1}ω(λ)}
6 endif

7 b′ ←$AO(f,·)

8 return Jb′ = bK

O(f, ·) on input x:

9 return f(x)

Fig. 10: Game definition for PRF security of a function F

30

