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Abstract. Attribute-based encryption (ABE) is a popular type of public-
key encryption that enforces access control cryptographically, and has
spurred the proposal of many use cases. To satisfy the requirements of
the setting, tailor-made schemes are often introduced. However, design-
ing secure schemes—as well as verifying that they are secure—is noto-
riously hard. Several of these schemes have turned out to be broken,
making them dangerous to deploy in practice.
To overcome these shortcomings, we introduce ACABELLA. ACABELLA
simplifies generating and verifying security proofs for pairing-based ABE
schemes. It consists of a framework for security proofs that are easy to
verify manually and an automated tool that efficiently generates these
security proofs. Creating such security proofs generally takes no more
than a few seconds. The output is easy to understand, and the proofs
can be verified manually. In particular, the verification of a security proof
generated by ACABELLA boils down to performing simple linear alge-
bra.
The ACABELLA tool is open source and also available via a web inter-
face. With its help, experts can simplify their proof process by verifying
or refuting the security claims of their schemes and practitioners can get
an assurance that the ABE scheme of their choice is secure.

Keywords: attribute-based encryption · automated analysis · automated
proofs

1 Introduction

Attribute-based encryption (ABE) [23] is a popular cryptographic primitive that
associates the keys and ciphertexts with attributes. ABE is attractive for prac-
tice, as it cryptographically implements a fine-grained access control on data
[13,12,30,17]. Many use cases have been proposed for ABE, e.g., in cloud set-
tings [16,24,31] or the Internet of Things [12,28]. However, due to the difficulty
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of designing provably secure schemes, several practical schemes have turned out
to be broken [15,27], making them dangerous to deploy in practice.

To simplify the design of provably secure pairing-based schemes, several
works have been proposed [5,34,6,1,2,4,3]. These works abstract ABE schemes
to pair encoding schemes (PESs), which essentially consider the exponent space
of the keys and ciphertexts. In this work, we particularly focus on three frame-
works that consider purely algebraic notions of security for the pair encodings
to prove security of their ABE instantiations in the pairing-based setting:

– the Agrawal-Chase (AC17) [2] framework: which simplifies the verification of
security proofs for a subclass of PESs that we will refer to as “PES-AC17”;

– the Ambrona-Barthe-Gay-Wee (ABGW17) [3] framework: which automates
the verification of certain algebraic properties used to prove security;

– the Riepel-Wee (RW22) [20] framework: which strengthens the security of
the ABGW17 framework by considering a new algebraic property for PES-
AC17.

Although these frameworks are strong contributions, they provide various
trade-offs in human-verifiability, and simple generation and verification of se-
curity proofs. For instance, AC17 provides a method to prove security that is
efficient to verify by reducing this effort to simple linear algebra. The algebraic
structure of these proofs also allows us to generically transform secure schemes
into richer schemes that are also provably secure [2,7]. However, generating these
proofs may be difficult, and no automated tools exist that can do this. On the
other hand, ABGW17 automates the effort of verifying security, but only in the
single-key setting5 and does not provide a manually verifiable security proof.
Lastly, while RW22 improves on ABGW17 by formulating an algebraic property
that does imply security in the multiple-key setting, they do not provide an au-
tomated tool to prove the algebraic property, and verifying the property cannot
be done with simple linear algebra, like AC17.

Another framework of interest is the Venema-Alpár (VA21) [27] framework
for manually finding attacks, which uses similar algebraic properties as ABGW17
to attack schemes, rather than prove them secure. Interestingly, they devise
methods to utilize known variables in the exponent in their attacks. In contrast,
the proof (and attack) techniques in ABGW17 and RW22 do not explicitly
consider the possibility that some of the exponents are known. VA21 uses the
knowledge of exponents to also cover multi-authority ABE [11], which employs
multiple authorities to generate the secret keys instead of employing a single
authority.

In this work, we propose ACABELLA, which unifies these four frameworks.
From a theoretical standpoint, we propose new algebraic properties that are
relatively simple to verify manually and that imply the algebraic properties
required to prove security in the other works. Furthermore, we create a tool that
automatically generates proofs that these algebraic properties hold. In addition,
if it cannot find a security proof, it is likely to find an attack that is even simpler
to verify (like in the VA21 framework).

5 Security in the single-key setting does not provide security against collusion of users.
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Fig. 1. Overview of the security results proven in this paper and AC17 [2], ABGW17
[3] and RW22 [20]. The double-edged arrows indicate the new results proven in this
paper, and the normal-edged arrows indicate the results proven in previous work.

1.1 Our contributions

In this work, we introduce ACABELLA, which consists of a theoretical frame-
work and an automated tool. As part of the theoretical framework, we provide
the following contributions:

– We propose three new algebraic properties—associated with existing alge-
braic security properties—that can be used to generate proofs that are simple
to verify manually, i.e., through simple linear algebra;

– We prove that the first algebraic property implies trivial security, meaning
that the message cannot be recovered in the single-key setting;

– We prove that the second algebraic property implies collusion security, mean-
ing that the message cannot be recovered in the multiple-key setting;

– We prove that the second algebraic property implies a security proof in the
AC17 framework. This was already proven in AC17, but in contrast to this
proof, our proof is constructive and can be used to generate a security proof;

– We prove that the third algebraic property implies the security property of
RW22, which we refer to as “the FABEO property”;
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– We prove that the FABEO property implies our second algebraic property;
– We show that trivial security does not imply collusion security by breaking

one of the schemes proposed in the ABGW17 framework. This attack di-
rectly contradicts Theorem 4.1 in ABGW17, and reduces the scope of their
automated tool: it can be used only to prove trivial security.

Figure 1 summarizes these results and shows how they relate to the existing
frameworks. As a result of our contributions, the three algebraic properties can
be used to readily prove security in the AC17, ABGW17 and RW22 frameworks.
At the same time, these proofs can be verified manually with linear algebra.

Using these theoretical results, we have created an automated tool to generate
(and verify) security proofs in these frameworks. Conversely, if no security proofs
can be found, the tool attempts to find an attack on the scheme, by automating
the techniques in the VA21 framework. Like the VA21 framework, our methods
explicitly consider the knowledge of exponents in the proofs and attacks, which
is currently not supported in ABGW17 and RW22. By extension, our attacking
functionality also supports multi-authority ABE (MA-ABE) [11]. Our tool is
open source and also available as a web interface. Importantly, our web tool can
be used to analyze schemes without needing to install any software, and contains
plenty of examples that can be used to learn how the tool works. Furthermore,
our tool is efficient: analyzing a scheme often takes at most seconds. In sum,
our tool can really help the process of creating new schemes and provide better
assurances that existing schemes are truly secure.

1.2 Comparison with AC17, ABGW17 and RW22

As we already mentioned, the AC17, ABGW17 and RW22 frameworks provide
various trade-offs. Table 1 summarizes these trade-offs and how they compare
with our framework. As the table shows, ours is the first framework that cov-
ers the general class of PESs—as also considered by ABGW17—that also pro-
vides automated proofs of security that can be verified manually through lin-
ear algebra. Furthermore, compared to ABGW17—the only other tool for ABE
that can be used to automatically analyze ABE—our automated tool covers
both the multiple-key setting (i.e., collusion security) and the multiple-challenge-
ciphertext setting (via the FABEO property).

1.3 Organization

This paper is structured as follows. We first introduce some notations and the
previous frameworks in Section 2. Then, we present our framework for security
proofs and attacks, which applies to the general class of PESs, in Section 3. We
show in Section 4 that these results imply security for the class of PES-AC17, in
the AC17 and RW22 frameworks. These results are constructive, and are used
in the implementation of our tool. We present the ACABELLA tool in Section
5, and give some examples of the proofs generated by the ACABELLA tool in
Section 6. Finally, we conclude the paper in Section 7.
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Table 1. Comparison of the various frameworks using algebraic properties to prove
and verify security. We consider the class of PESs covered by the framework, whether
the framework provides an automated tool to prove security and whether the proofs
can be verified with linear algebra (SVLA).

Framework Class Automated SVLA

AC17 PES-AC17 ✗ ✓
ABGW17 general ✓ ✗

RW22 PES-AC17 ✗ ✗

ACABELLA general ✓ ✓

2 Preliminaries

Notations. If an element is chosen uniformly at random from some finite set
S, we write x ∈R S. If an element x is generated by running algorithm Alg, we
write x← Alg. We use boldfaced variables A and v for matrices and vectors, re-
spectively, where (A)i,j denotes the entry of A in the i-th row and j-th column,
and (v)i denotes the i-th entry of v. Furthermore, x(y1, y2, ...) denotes a vector,
where the entries are polynomials over variables y1, y2, ..., with coefficients in
some specified field. For conciseness, we often write only x. We refer to a poly-
nomial with only one term, or alternatively one term of the polynomial, as a
monomial. We denote a : A to substitute variable a by a matrix A. We define
1d1×d2
i,j ∈ Zd1×d2

p as the matrix with 1 in the i-th row and j-th column, and 0 ev-

erywhere else, and similarly 1d1
i and 1

d2

i as the row and column vectors with 1 in
the i-th entry and 0 everywhere else. We use Ker(A) = {v ∈ Zd2

p | A ·v⊺ = 0d1}
to denote the kernel of A.

2.1 Pairings

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of order p, such that e : G × H → GT , with generators g ∈ G, h ∈ H
such that for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and
for ga ̸= 1G, h

b ̸= 1H, it holds that e(g
a, hb) ̸= 1GT

, where 1G′ denotes the unique
identity element of the associated group G′ (non-degeneracy).

2.2 Attribute-based encryption

Definition 1 (Attribute-based encryption (ABE) [2]). An attribute-based
encryption scheme for a predicate P : X × Y → {0, 1} over a message space
M = {Mλ}λ∈N consists of four algorithms:

– Setup(λ) → (MPK,MSK): On input the security parameter λ, this prob-
abilistic algorithm generates the domain parameters, the master public key
MPK and the master secret key MSK.

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Y, this probabilistic algorithm generates a secret key SKy.
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– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, some
x ∈ X and message M , this probabilistic algorithm generates a ciphertext
CTx.

– Decrypt(MPK,SKy,CTx)→ M : On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if P (x, y) = 1, then it returns M .
Otherwise, it returns an error message ⊥.

Correctness. For all M ∈Mλ, x ∈ X , and y ∈ Y such that P (x, y) = 1,

Pr[(MPK,MSK)← Setup(λ); SK← KeyGen(MSK, y));

Decrypt(MPK,SK,Encrypt(MPK, x,M)) ̸= M ] ≤ negl(λ).

Security. We rely on the model for full security against chosen-plaintext attacks
(see Appendix A.1 for a definition).

Decryption with the master key. In many ABE schemes, it is possible to
use part of the master secret key, e.g., α to decrypt every ciphertext. We call this
part of the MSK the master key MK. We also introduce a master-key decryption
algorithm that takes as input any ciphertext and the master key and outputs
the message:

– MKDecrypt(MK,CT) → M : This deterministic algorithm takes as input a
ciphertext CT and the master key MK, and outputs message M .

2.3 Multi-authority ABE

ACABELLA also allows for the cryptanalysis of multi-authority schemes [11],
which employs multiple authorities instead of a single one. In multi-authority
ABE, the setup is split in two setup phases: the first phase is a global setup in
which the global parameters are generated, typically run by a central authority
CA, and the second phase is an authority setup, run by an “attribute authority”
AAi. Furthermore, the key generation algorithm can also be split in multiple
algorithms, each run by a different attribute authority AAi. Depending on the
security model that is used to prove security, the scheme may allow for corrup-
tion. In this work, any such security model allowing for corruption can be used,
e.g., [11,18,22].

2.4 Instances of predicates

Identity-based encryption. In identity-based encryption (IBE), the key and
ciphertext predicates x ∈ X and y ∈ Y are identities, where X and Y both are
sets of identities. It holds that P (x, y) = 1 if and only if x = y.
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Access policies. We represent access policies A by linear secret sharing scheme
(LSSS) matrices.

Definition 2 (Access policies represented by LSSS [14]). An access policy
can be represented as a pair A = (A, ρ) such that A ∈ Zn1×n2

p is an LSSS
matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows to attributes
in the universe. Then, for some vector with randomly generated entries v =
(s, v2, ..., vn2

) ∈ Zn2
p , the i-th share of secret s generated by this matrix is λi =

Aiv
⊺, where Ai denotes the i-th row of A. In particular, if S satisfies A, then

there exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for
all i ∈ Υ such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and by extension

∑
i∈Υ εiλi = s,

holds. If S does not satisfy A, there exists w = (1, w2, ..., wn2) ∈ Zn2
p such that

Aiw
⊺ = 0 for all i ∈ Υ [8].

Key-policy ABE In key-policy ABE (KP-ABE), the ciphertext predicate x is
a set of attributes S over some universe of attributes U , and the key predicate
y is an access policy A = (A, ρ), in this work represented as LSSS matrices
(Definition 2). It holds that P (x, y) = 1 if and only if the set satisfies the policy.

Ciphertext-policy ABE In ciphertext-policy ABE (CP-ABE), the key pred-
icate y is a set of attributes S over some universe of attributes U , and the
ciphertext predicate x is an access policy A = (A, ρ). It holds that P (x, y) = 1
if and only if the set satisfies the policy.

2.5 The Venema-Alpár framework

We briefly review some parts of the Venema-Alpár (VA21) framework.

More concise notation via standard form. Many schemes have a similar
structure, captured in frameworks that analyze the exponent space through pair
encodings [34,5]. Pair encodings facilitate a shorter notation, and ultimately, a
simpler security analysis.

Definition 3 (Standard form of attribute-based encryption [30]). The
standard form of ABE is defined as follows:

– Setup(λ): Taking as input the security parameter λ, the KGA generates three
groups G,H,GT of order p with generators g ∈ G, h ∈ H, and chooses a
pairing e : G × H → GT . The KGA also defines the universe of attributes
U , and generates random α, b1, ..., bn ∈R Zp, where n ∈ N is some integer.
It outputs MSK = (α,b = (b1, ..., bn)) as its master secret key and publishes
the master public key as

MPK = (g, h, e(g, h)α, gmpk(b), hmpk(b)).
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We refer to b as the common variables, because they occur in both the secret
keys and ciphertexts, and we refer to mpk as the master-public key encoding
defined over the variables b. We refer to α as the master-key, as it can be
used to decrypt any ciphertext.

– KeyGen(MSK, y): The KGA generates a secret key for y by generating user-
specific random integers r = (r1, r2, ...) ∈R Zp and computing the secret key
as

SKy = (y, hk(α,r,b,y)),

where k denotes a vector defined over the user-specific random variables,
master secret keys and associated set of attributes.

– Encrypt(MPK, x,M): An encrypting user encrypts the message M ∈ GT

for x by generating ciphertext-specific randoms s = (s, s1, s2, ...) ∈R Zp and
computing the ciphertext as

CTx = (x,M · e(g, h)αs, gc(s,b,x)),

where c denotes two vectors defined over the ciphertext-specific random vari-
ables, master public keys and associated access structure.

– Decrypt(SK,CT): Let SK = (y,K = hk) be a secret key and CT = (x,C =
M · e(g, h)αs,C = gc) a ciphertext such that P (x, y) = 1. Define E(x, y) as
the matrix such that we have cEk⊺ = αs. Then, we retrieve plaintext M by
computing

C/

∏
i,j

e(Ci,Kj)
Ei,j

 ,

where C = (C1, C2, ...) and K = (K1,K2, ...).

We will refer to (mpk,k, c) as the pair encoding scheme (PES) associated with
the ABE scheme.

Each encoding enc(var) denotes a vector of polynomials over variables var.

Modeling knowledge of exponents. Wemodel the “knowledge of exponents”
by extending the space from which the entries of E and Eatt,S,A are chosen: Zp.
In fact, the entries of these matrices may be any fraction of polynomials over
Zp and the known exponents. Let K be the set of known exponents, then the
extended field of rational fractions Zp(K) is defined as the quotient field of Zp[K],
where Zp[K] denotes the polynomial ring in variables K. We write the elements
in Zp(K) as ab

−1 (mod p), where a, b ∈ Zp[K] and b ̸= 0.

The attacks in the concise notations. We formulate the master-key and
decryption attacks (Appendix A.2) below.

Definition 4 (Master-key attacks). A scheme is vulnerable to a master-key
attack if there exist y1, y2, ... ∈ Y and the associated key encodings kyi

, and there
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exist ei ∈ Zp(K)
ℓi , where ℓi = |kyi

| denotes the length of the i-th key encoding,
such that

∑
i kie

⊺
i = mk, where mk contains the variable α. Then, it holds that

for all ciphertext encodings c there exists e′ ∈ Zℓ′

p (with |c| = ℓ′) such that
mk · e′c⊺ = αs.

Definition 5 (Decryption attacks). A scheme is vulnerable to a decryption
attack if there exist y1, y2, ... ∈ Y and x ∈ X such that P (x, yi) = 0 for all i,
associated ciphertext encoding cx and key encodings kyi

, for which there exist

Ei ∈ Zp(K)
ℓi×ℓ′ , where ℓi = |kyi

| and ℓ′ = |cx|, such that
∑

i kyi
·Ei · c⊺x = αs.

2.6 Trivial and collusion security

We also distinguish between security against single-key and multiple-key attacks.
Our notion of trivial security is derived from the notion of trivially broken by
Agrawal and Chase [2].

Definition 6 (Trivial and collusion security). We call a scheme trivially
secure if it is secure against decryption attacks (Definition 5) for a single key
and ciphertext. If the scheme is secure against decryption attacks for any number
of keys and one ciphertext, we call it collusion secure.

2.7 The ABGW17 framework

In the ABGW17 framework [3], it is proven that any scheme that is collusion
secure is fully secure in the generic group model [25]. Furthermore, it is proven
in Theorem 4.1 that it is sufficient to show that the scheme is trivially secure.
Previously, Riepel andWee [20] found a flaw in the proof of Theorem 4.1, and fur-
ther refined the security definition of ABGW17 to fix the mistake. In this work,
we give a counterexample that explicitly contradicts Theorem 4.1 in ABGW17,
by breaking one of their newly proposed schemes. In particular, this scheme is
trivially secure but not collusion secure. Not only does this show that Theorem
4.1 does not hold, this also impacts the scope of their automated tool: it can
only be used to prove trivial security and not collusion security.

2.8 The AC17 framework

In the AC17 framework [2], the PESs have a more restricted form than in Defi-
nition 3. In particular, none of the encodings contain any fractions, and the key
and ciphertext encodings consist of either polynomials or singleton variables. We
also distinguish between two types of key and ciphertext variables: lone and non-
lone variables. The lone variables occur only in the polynomials (as monomials).
The non-lone variables occur as singletons, and in combination with common
variables in the polynomials.

Definition 7 (PES in the AC17 form (PES-AC17) [2]). A pair encoding
scheme for a predicate P : X ×Y → {0, 1} and prime number p, with optionally
some additional parameters par, is given by four deterministic polynomial-time
algorithms as described below.
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– Param(par)→ (n,b): On input par, the algorithm outputs n ∈ N that spec-
ifies the number of common variables, which are denoted as b = (b1, ..., bn).

– EncK(y, p, α,b) → (m1,m2,k(α, r, r̂,b, y)): On input p ∈ N and y ∈ Y,
this algorithm outputs a vector of polynomials k = (k1, ..., km3), with m3 ∈
N, defined over non-lone variables r = (r1, ..., rm1

) and lone variables r̂ =
(r̂1, ..., r̂m2

). Specifically, the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncC(x, p,b) → (w1, w2, c(s, ŝ,b, x)): On input p ∈ N and x ∈ X , this

algorithm outputs a vector of polynomials c = (c1, ..., cw3
), with w3 ∈ N,

defined over non-lone variables s = (s0 = s, s1, ..., sw1
) and lone variables

ŝ = (ŝ1, ..., ŝw2). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
– Pair(x, y, p) → (E,E): On input p ∈ N, x ∈ X , and y ∈ Y, this algorithm

outputs two matrices E ∈ Z(w1+1)×m3
p and E ∈ Zw3×m1

p .

A PES is correct, if for every x ∈ X and y ∈ Y such that P (x, y) = 1, it
holds that sEk⊺ + cEr⊺ = αs.

A security notion for PES-AC17 is the symbolic property. This property holds
if proper vector and matrix substitutions can be found for the common, key and
ciphertext variables. In particular, it should hold that substituting the variables
with the vectors and matrices ensures that the key and ciphertext polynomials
all evaluate to 0.

Definition 8 (Symbolic security property (Sym-Prop) [2]). A pair encod-
ing scheme Γ = (Param, EncK, EncC, Pair) for a predicate P : X ×Y → {0, 1}
satisfies the (d1, d2)-selective symbolic property for positive integers d1 and d2
if there exist deterministic polynomial-time algorithms EncB, EncS, and EncR
such that for all p,par, x ∈ X and y ∈ Y with P (x, y) = 0, we have that

– EncB(x)→ B1, ...,Bn ∈ Zd1×d2
p ;

– EncR(x, y)→ r1, ..., rm1 ∈ Zd2
p ,a, r̂1, ..., r̂m2 ∈ Zd1

p ;

– EncS(x)→ s0, ..., sw1
∈ Zd1

p , ŝ1, ..., ŝw2
∈ Zd2

p ;

such that s0 · a⊺ ̸= 0, and if we substitute

ŝi′ : ŝi′ sibj : siBj α : a⊺ r̂k′ : r̂⊺k′ rkbj : Bjr
⊺
k,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncK and EncC, respectively), they evaluate to 0.
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Similarly, a PES satisfies the (d1, d2)-co-selective symbolic security property
if there exist EncB,EncR,EncS that satisfy the above properties but where EncB
and EncR only take y as input, and EncS takes x and y as input. A scheme satis-
fies the (d1, d2)-symbolic property if it satisfies the (d′1, d

′
2)-selective and (d′′1 , d

′′
2)-

co-selective properties for some d′1, d
′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

In [7], Attrapadung defines a slightly stronger version of the symbolic prop-
erty, called Sym-Prop+, which additionally requires that a = 1d1

1 . We similarly
define the notions of selective and co-selective Sym-Prop+ to refer to this addi-
tional property in the selective and co-selective proofs.

Agrawal and Chase [2] prove that any PES satisfying the symbolic prop-
erty can be transformed in a fully secure ABE scheme. The resulting scheme is
fully secure in the standard model under a q-type assumption (that is shown to
hold in the generic group model). Furthermore, they prove that any PES that
is not vulnerable to any decryption attacks (in the single-key setting) can be
transformed into a PES that satisfies the symbolic property.

2.9 The RW22 framework

Recently, Riepel and Wee [20] showed that PES-AC17 schemes (Definition 7)
instantiated with Definition 3 that satisfy the following property—which we will
refer to as the “FABEO property” but they refer to as the “(1, 1) symbolic secu-
rity property”—are fully secure in the generic group model, in the multiple-key
and multiple-challenge-ciphertext setting. In particular, they prove security by
first proving that, if the PES-AC17 satisfies the FABEO property, it is collusion
secure.

Definition 9 (The FABEO property [20]). A PES-AC17 satisfies the FABEO
property if, for all x ∈ X and y ∈ Y with P (x, y) = 0, it holds that

α · s · e⊺ ̸= sEk⊺ + cEr⊺

for all E ∈ Z(w1+1)×m3
p ,E ∈ Zw3×m1

p and e ∈ Zw1+1
p .

3 Our framework for security proofs and attacks

In this section, we introduce our framework to both finding attacks and proving
security. At the core, our framework centers around considering the attacks in a
matrix notation, writing the linear-algebraic problems in Definitions 4 and 5 as
matrix problems. In this way, we can use important results from linear algebra
to prove that no attacks can be found. For trivial security (Definition 6), this
follows almost trivially from these results. For collusion security, we require some
additional properties to hold. To illustrate these results, we show how they can
be applied to an example. The running example that we use is a slightly adapted
variant of the Boneh-Boyen IBE1 scheme [10], also given in [7], and is defined as

– mpk = (b, b0, b1)
– k(α, r,mpk, y) = (α+ rb, r(b0 + yb1), r)
– c(s,mpk, x) = (sb+ s′(b0 + xb1), s, s

′)
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3.1 Matrix notation

To automate the security proofs and attacks, we introduce a matrix notation for
the encodings. Intuitively, the matrix notation considers the matrix decomposi-
tion6 penc

⊺ = M · v⊺ of a vector of encodings penc such that:

– each entry of v consists of a monomial of unknown variables, e.g., b, r and
s (as in Definition 3);

– and each entry of M consists of elements in Zp and variables that are known,
e.g., x or y, or other elements that are known (e.g., because of corruption).

For the definition of the matrix decomposition, it is important to distinguish
between known and unknown variables. For example, the input attribute x to
the encryption is often known, while the ciphertext-specific variables s and the
common variables b are not known to the attacker. To this end, we annotate all
variables that are not explicitly written as elements in Zp as known or unknown.

Definition 10 (Annotation of variables). Let V denote the set of all vari-
ables that occur in some encoding penc. Then, we annotate each variable that
is explicitly known by an attacker as known and each unknown otherwise. This
annotation is denoted by a function annot : V→ {known, unknown}.

More formally, we define the matrix decomposition as follows.

Definition 11 (Matrix decomposition of encodings). Let penc be a vector
of encodings and let annot be its associated annotation of variables, i.e., each
entry of penc is a polynomial over variables var := annot−1(unknown) and co-
efficients coef := annot−1(known). We define the matrix decomposition of penc

as

penc
⊺ = M · v⊺,

such that each entry of M is in the extended field of rational fractions in the
variables coef, i.e., Zp(coef), each entry of v is a monomial over variables var,
and the entries of v are linearly independent.

Example. For the example scheme, the unknown variables are b, b0, b1, α, r, s
and s′, whereas the known variables are x and y. We can write the key encodings
in matrix notation as follows:

(α+ rb, r(b0 + yb1), r)︸ ︷︷ ︸
penc

=

1 1 0 0 0
0 0 1 y 0
0 0 0 0 1


︸ ︷︷ ︸

M

·


α
rb
rb0
rb1
r


︸ ︷︷ ︸

v

.

6 Note that vectors are special cases of matrices.
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3.2 Finding attacks with the matrix notation

We first explain how the master-key and decryption attacks (Definitions 4 and
5) can be performed in the matrix notation. To this end, we first translate the
following equation in the decryption attack to a polynomial notation:

∑
i kyi

·
Ei · c⊺x = αs. Intuitively, this is equivalent to showing that there exists a linear
combination of all products of the entries of kyi

and the entries of cx. This
follows directly from noting that

kyi ·Ei · c⊺x =
∑
j,k

(Ei)j,k · (kyi)j · (cx)k.

Therefore, we define the vector of encodings associated with a PES as follows.

Definition 12 (The vector of encodings associated with a PES). Let
(mpk,k, c) be a PES for predicate P : X × Y → {0, 1}. Then, we define the
associated vector of encodings pencx,y for a decryption attack with x ∈ X and
y ∈ Y as

pencx,y = ({mpki · k(α, r,b, y)j}i,j , {mpki · c(s,b, x)j}i,j ,
{k(α, r,b, y)i · c(s,b, x)j}i,j)

For a master-key attack for y ∈ Y, we define the vector of encodings pency as

pency = ({mpki}i, {k(α, r,b, y)i}i).

In the case that keys for multiple y1, y2, ... ∈ Y are considered, we define

pencx,{y1,y2,...} = (pencx,y1
,pencx,y2

, ...),

penc{y1,y2,...} = (pency1
,pency2

, ...).

Now, the associated matrix decomposition can be used to define an attack.

Proposition 1. Suppose that penc is a vector of encodings, and that the attack
dictates that some value tv needs to be recovered. Let penc

⊺ = M·v⊺ be the matrix
decomposition, and let tv · v⊺ = tv be the target vector. Then, the following two
statements are equivalent.

(i) There exists e ∈ Z|penc|
p such that e ·M = tv.

(ii) There exists e ∈ Z|penc|
p such that e · penc

⊺ = tv.

The proof can be found in Appendix B.1.

Example. Suppose that we want to find a master-key attack on the example
scheme, i.e., recover α from the key encodings. Then, this is equivalent to showing
that there exists a linear combination of the rows of the matrix in the matrix
notation of the scheme that yields the target vector tv = (1, 0, 0, 0, 0), which is
the decomposition of α with respect to the vector v.
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3.3 Determining whether attacks exist (or not)

Using the matrix decomposition, it becomes easier to argue about the presence
or absence of attacks. Specifically, this matrix decomposition also opens up the
opportunity to prove that no attacks exist. To this end, we use an important
result of linear algebra that is often used in the field of ABE. The most notable
example of this is the following property for access structures represented by
LSSS matrices (see Definition 2) that many security proofs utilize. If (1, 0, ..., 0)
is not in the span of the rows of some matrix A ∈ Zn1×n2

p , then there exists
a vector w = (1, w2, ..., wn2

) ∈ Zn2
p such that A · w⊺ = 0⊺. This example is

a concrete instantiation of a more general result that was formulated in this
context by Goyal et al. [14, §A] (and proven in many works before it):

Proposition 2. A vector tv is not in the span of the rows of M if and only if
there exists a vector w such that M ·w⊺ = 0⊺ and tv ·w⊺ ̸= 0.

From this result, it follows that we can either find an attack, by giving a
linear combination of rows, or prove that no trivial attack can be found, by
showing that such a vector w exists. Note that the latter is considerably easier
to verify manually than verifying whether some vector tv is not in the span of
some matrix M, as is done in e.g., ABGW17 [3] and RW22 [20].

Example. We can show that the example scheme is secure against master-key
attacks by showing that a vector exists that is orthogonal to each row of M and
which is non-zero in the first entry. For example, the vector w = (1,−1, 0, 0, 0)
satisfies this property, as it is non-zero in the first entry (and therefore tv ·w⊺ ̸=
0), and it is easy to see that M ·w⊺ = 0⊺.

3.4 Proving trivial security

We use the result in Proposition 2 to prove that a scheme is trivially secure
(Definition 6). In particular, the vector w in Proposition 2 can function as a
witness that proves that no attacks exist in the single-key setting, and thus, that
the scheme is trivially secure. Effectively, the vector w constitutes a proof of
trivial security. To verify the proof, one only needs to verify that M ·w⊺ = 0⊺

and tv · w⊺. This is much simpler to do manually than verifying directly that
tv is not in the span of M. Furthermore, this also opens up the opportunity
to automatically generate a manually verifiable proof of trivial security with a
computer system. In contrast, using a computer system to verify directly whether
tv is in the span of M requires full trust in the system.

Theorem 1 (Proofs of trivial security). Let (mpk,k, c) be a PES for pred-
icate P : X × Y → {0, 1}, and consider for all x ∈ X , y ∈ Y, the vector of
encodings pencx,y, its matrix decomposition pencx,y = Mx,y ·v⊺

x,y and target vec-
tor tvx,y such that tvx,y · v⊺

x,y = αs. If for all x ∈ X , y ∈ Y with P (x, y) = 0,

there exists some w⊺
x,y ∈ Zp(coef)

ℓ2,x,y (where ℓ2,x,y is the number of columns of
Mx,y) such that Mx,y ·w⊺

x,y = 0⊺ and tvx,y ·w⊺
x,y ̸= 0, then the PES is trivially

secure. We refer to the vectors wx,y as the proof of trivial security.
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The proof can be found in Appendix B.2.

Definition 13 (ACABELLA property for trivial security). Let (mpk,k,
c) be a PES for predicate P : X×Y → {0, 1}. If vectors wx,y exist such as required
in Theorem 1, then we say that the PES satisfies the ACABELLA property for
trivial security.

Oftentimes, pencx,y consist of many products and even more unique mono-
mials. To reduce the size of the “proof”, we can first attempt to reduce the set
pencx,y by eliminating all elements that are irrelevant to the security analysis.
To do this, we can use the following lemma.

Lemma 1. Let penc
′
x,y ⊆ pencx,y be the subset of pencx,y such that penc

′
x,y

and penc
′′
x,y = pencx,y \ penc

′
x,y have no monomials in common and the target

monomial αs occurs in at least one of the elements in penc
′
x,y. Then, we have

pencx,y = Mx,y · v⊺
x,y =

(
M′

x,y 0
0 M′′

x,y

)
·
(
(v′

x,y)
⊺

(v′′
x,y)

⊺

)
,

where penc
′
x,y = M′

x,y · (v′
x,y)

⊺ and penc
′
x,y = M′

x,y · (v′
x,y)

⊺. We also have
tvx,y = (tv′

x,y,0), where |tv′
x,y| = |v′

x,y|. Furthermore, for any w′
x,y for which

we have M′
x,y ·(w′

x,y)
⊺ = 0 and tv′

x,y ·(w′
x,y)

⊺ ̸= 0, it holds that wx,y = (w′
x,y,0)

is such that Mx,y ·w⊺
x,y = 0 and tvx,y ·w⊺

x,y ̸= 0.

The proof can be found in Appendix B.3.

Example. We show that our example scheme is trivially secure. Because pencx,y

contains 27 products (consisting of even more unique monomials), we first reduce
the set pencx,y to penc

′
x,y = (αs+ rsb, rs(b0+yb1), αs

′+ rs′b, rs′(b0+yb1), rsb+
rs′(b0 + xb1)). This set has no monomials in common with all other products
in pencx,y, because each combination has either one lone variable and one non-
lone variable or two non-lone variables and one common variable, and the other
products do not have any monomials of this form. We now consider the vector
decomposition

penc
′
x,y =


1 1 0 0 0 0 0 0
0 0 1 y 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 y
0 1 0 0 0 0 1 x

 ·



αs
rsb
rsb0
rsb1
αs′

rs′b
rs′b0
rs′b1


,

and find that w′
x,y = (1,−1, 0, 0, 0, 0, y

y−x ,
−1
y−x ) satisfies the requirements to

prove trivial security.
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3.5 Proving collusion security

We use a similar approach for proving collusion security by showing that some
vector w exists, for which some additional properties hold that are simple to
verify. In general, collusion security is more complicated to prove than trivial
security, because it allows any polynomially bounded number of attributes yi ∈ Y
to be used. In particular, the attack in Section 6.3 shows that trivial security
does not imply collusion security. Riepel and Wee [20] prove collusion security
via the FABEO property (Definition 9). However, it is unclear how this property
can be generalized to the more general class of pair encodings as considered in
this paper and ABGW17 [3]. Hence, we devise a technique that does translate to
the more general setting. Furthermore, as we show in Section 4.3, our property
is implied by the FABEO property for PES-AC17, and generally appears to be
weaker.

To prove collusion security, we need to prove that, for all x and y1, y2, ...
with P (x, yi) = 0, it holds that

∑
i kyi

· Ei · c⊺x ̸= αs for all matrices Ei. With
the methods in Section 3.2, we can translate this problem easily to the matrix
notation. If we can show that for all such x and y1, y2, ..., it holds that a vector
exists that yields the all-zero vector when multiplied with the matrix and is
non-zero when multiplied with the target vector, then we know that the scheme
is collusion secure.

Now, rather than finding such a vector for all possible x and y1, y2, ..., we
will show how a suitable vector can be constructed from a vector with special
properties for a single x and yi. To this end, we first note that pencx,{y1,y2,...}
can be constructed from pencx,yi

for all i. Their associated matrix decomposi-
tions relate to one another similarly, with an important difference: there may be
overlap in the entries of their associated vectors vx,yi . Hence, to create a matrix
decomposition for pencx,{y1,y2,...} from the matrix decompositions of pencx,yi

,
we must identify the entries of vectors vx,yi

that may occur in more than one
vector, and those that are unique to one key. For those that may be shared by
more than one vector, we also distinguish between those that occur in the target
value and those that do not. To this end, we define the following function.

Definition 14 (Shared-entry function). Let (mpk,k, c) be a PES for predi-
cate P : X ×Y → {0, 1}, and consider the matrix decompositions of pencx,yi

for
x ∈ X and y1, y2, ... ∈ Y, and their associated target vectors tvx,yi

. Then, we
define the shared-entries function f : N×N→ {0, 1, 2}, such that f takes as input
a pair (i, j), where i corresponds to the identifier of yi and j to the j-th entry of
vx,yi , and outputs

– 2 if (vx,yi
)j is divisible by a user-specific random variable (i.e., an entry of

r), and otherwise
– 0 if (tvx,yi

)j ̸= 0 and
– 1 if (tvx,yi)j = 0.

We use this function to construct a matrix decomposition for pencx,{y1,y2,...}
from some matrix decompositions of pencx,yi

as follows.
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Proposition 3. Let (mpk,k, c) be a PES for predicate P : X ×Y → {0, 1}, and
consider the matrix decompositions of pencx,yi

for x ∈ X and y1, y2, ... ∈ Y, and
their associated target vectors tvx,yi . Let f be the shared-entry function for these
encodings. Without loss of generality, we assume that the matrix decompositions
penc

⊺
x,yi

= Mx,yi
· v⊺

x,yi
are such that vx,yi

is ordered: the first entries evaluate
to 0 with f, the entries after that to 1 and the last entries to 2, i.e.,

vx,yi
= (vx,yi,0,vx,yi,1,vx,yi,2).

Similarly, we split Mx,yi into three submatrices Mx,yi,j for j ∈ {0, 1, 2} such
that Mx,yi,j denote the columns of Mx,yi

that correspond to vx,yi,j. If it holds
that (vx,yi,0,vx,yi,1) = (vx,yj ,0,vx,yj ,1) for all i, j, then we can create a matrix
decomposition for pencx,{y1,y2,...} as follows:

Mx,{y1,...,yn} =


Mx,y1,0 Mx,yi,1 Mx,yi,2 0 0
Mx,y2,0 Mx,y2,1 0 Mx,yi,2 0

...
...

...
...

...
Mx,yn,0 Mx,yn,1 0 0 Mx,yn,2

 ,

vx,{y1,...,yn} = (vx,y1,0,vx,y1,1,vx,y1,2,vx,y2,2, . . . ,vx,yn,2).

The associated target vector is tvx,{y1,...,yn} = (tvx,y1,0,0), where tvx,y1,0 denotes
the first entries of tvx,y1

that corresponds to the entries vx,y1,0.

The proof can be found in Appendix B.4. We use a similar approach to
construct a vector that proves collusion security from vectors that prove trivial
security. To do this, we need additional properties for the vectors wx,y that are
used in the trivial-security proof (Theorem 1). In particular, we require the first
entries of the vectors wx,y (corresponding to the entries of vx,y that are shared
among all matrix decompositions) to be equal. Then, we can similarly construct
a vector wx,{y1,y2,...} as in Proposition 3 that proves the absence of the target
vector in the span.

Theorem 2 (Proofs of collusion security). Let (mpk,k, c) be a PES for
predicate P : X ×Y → {0, 1}, and consider the matrix decompositions of pencx,yi

for x ∈ X and y1, y2, ..., yn ∈ Y, and their associated target vectors tvx,yi
. Like in

Proposition 3, we assume that the matrix decompositions penc
⊺
x,yi

= Mx,yi
·v⊺

x,yi

are such that vx,yi is ordered. If for all x ∈ X , y1, y2, ..., yn ∈ Y with P (x, yi) = 0,
(vx,yi,0,vx,yi,1) = (vx,yj ,0,vx,yj ,1) for all i, j, and there exist vectors wx,yi (as
in Theorem 1) such that the requirements below hold, then the PES is collusion
secure. First, we similarly split each vector wx,yi

(which has the same length as
vx,yi

) in three parts, i.e., wx,yi
= (wx,yi,0,wx,yi,1,wx,yi,2), such that |wx,yi,j | =

|vx,yi,j | for j ∈ {0, 1, 2}. Then, the requirements are

– Mx,yi ·w⊺
x,yi

= 0⊺ and tvx,yi ·w⊺
x,yi
̸= 0 (i.e., the PES is trivially secure);

– wx,yi,0 = wx,yj ,0 for all i, j, and
– wx,yi,1 = 0.
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The proof can be found in Appendix B.5.

Definition 15 (ACABELLA property for collusion security). Let (mpk,k,
c) be a PES for predicate P : X × Y → {0, 1}. If vectors wx,yi

exist such as re-
quired in Theorem 2, then we say that the PES satisfies the ACABELLA property
for collusion security.

For schemes with rational fractions, the effort of proving collusion security
is a little more tricky. To this end, we provide several additional results to find
suitable vectors that prove security of the schemes in Appendix C.

Example. We show that our example scheme is also collusion secure. In partic-
ular, the vector wx,y = (w′

x,y,0) satisfies the properties we require for collusion
security, because the entry associated with αs is always 1, for any x and y, and
the only other shared entry in the vector v′

x,y is αs′ and the entry associated
with it in w′

x,y is 0. Furthermore, all other entries of wx,y are 0 and therefore,
all entries in wx,y that are associated with the other shared entries in the vector
vx,y are 0 by definition.

The flaw in the ABGW17 proof of Theorem 4.1. As mentioned in Section
2.7, the proof of Theorem 4.1 in ABGW17 contains a flaw. Specifically, it is
assumed in the proof that the number of non-lone ciphertext variables is 1, but
it is never shown that the proof also works for more than one non-lone ciphertext
variable. Our work underlines this statement for PES-AC17. If a ciphertext has
only one non-lone ciphertext variable, then the ACABELLA properties for trivial
and collusion security are equivalent. This is more or less because |wx,yi,0| = 1
and |wx,yi,1| = 0. If there is more than one non-lone ciphertext variable, then the
two properties are not equivalent. Lastly, if the scheme is fractional, it seem less
clear what constitutes a non-lone variable, and therefore, it is unclear whether
these equivalences hold.

3.6 Notation for the proofs

The vectors in the matrix decomposition and the vectors that constitute the
proof of trivial or collusion security are closely related, and imply a simple nota-
tion for the proofs. This simple notation allows us to verify the proofs without
having to consider the matrix Mx,y, but rather allows us to verify the proofs
directly in the encodings. In particular, the vectors that constitute the proofs of
trivial or collusion security can be seen as substitution vectors for the unknown
variables in the encodings, similarly as in the symbolic property (Definition 8).
Suppose that v is the vector of a matrix decomposition, and w is the associated
proof of security, then we can write the substitutions as a list: (v)i : (w)i.
Furthermore, we will also list the terms associated with the first part of the
vector v, i.e., vx,y,0 as “terms associated with the blinding value”. Similarly,
we call the second part the “special terms that are shared among keys and are
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not associated with the blinding value” and the third part the remainder of the
terms. We will refer to this list of substitutions as a transcript of the proof.

To verify the proof, one can compute all products of key and ciphertext
encodings (and potentially, products of the key and ciphertext encodings with
the master public key encodings), substitute the resulting monomials that occur
in the polynomial as indicated in the transcript, and verify that the products
of encodings evaluate to 0. Because there are potentially many such products,
one may want to filter out non-critical products. For some products of key and
ciphertext encodings, it is clear that they cannot contribute to an attack. For
example, their product may contain a monomial that cannot be created with any
other product of key and ciphertext encodings (and does not occur in the blinding
value). Intuitively, this monomial cannot be canceled in any linear combination.
More formally, the entries in w associated with this monomial is independent
of the entries associated with the other monomials, and can thus be set to any
value to ensure that it is orthogonal to all rows of M. We refer to Appendix B.6
for the lemmas and their proofs.

Example. The proof of our example scheme can be written as

αs
rsb
rsb0
rsb1
αs′

rs′b
rs′b0
rs′b1


:



1
−1
0
0
0
0
y

y−x
−1
y−x


or

αs : 1
rsb : − 1
rsb0 : 0
rsb1 : 0
αs′ : 0
rs′b : 0

rs′b0 : y
y−x

rs′b1 : −1
y−x

.

3.7 Proofs for unbounded-size predicates

Although our tool can currently only handle input predicates of bounded sizes,
the security proofs output by the tool can be used to argue that a scheme is
secure for predicates of any size. This is in contrast to the ABGW17 tool, which
can only handle and prove security for bounded-size predicates. Intuitively, the
approach to show that a security proof generalizes to predicates of any size is
similar to the approach to prove collusion security.

Recall that, to prove security for multiple key attributes yi ∈ Y, we require
some properties to hold for the proof vector wx,yi

for one such attribute yi. If
these properties hold, we can then argue that a vector can be created for any
number of attributes yi. Roughly, the requirements for the proof vector is that,
for all entries that are associated with monomials that occur in each vector vx,yi

(which we call the “shared entries”), the vector wx,yi
should be the same for

all yi. In this way, we can construct a vector wx,y1,y2,... by simply appending
the part of wx,y2

that corresponds to the non-shared (or: unique) entries to the
vector wx,y1

.
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We can do something similar to show that a proof can be generalized to
a proof for any predicate, and not just those of some bounded size. To do this
properly, care needs to be taken in the choice of predicates x and y. For example,
for CP-ABE with policies represented by LSSS matrices, it is important that the
set contains attributes that do and do not occur in the policy, and vice versa.
For example, the set could contain y = {att1, att2} and the policy x could be
for attributes att1 and att3. Once we have a proof, we can inspect the vector
wx,y. If it holds that, for each entry that depends somehow partially on the
input predicates x and y, the associated entry in vx,y consists of a lone or non-
lone variable that is unique for these partial predicates. For example, if an entry
depends on attributes att1 and att3 in our example, the associated entry in vx,y

should be a product of a user-specific variable unique to att1 and a ciphertext-
specific variable unique to att3. Conversely, this ensures that the entries of wx,y

that are not associated with the attribute-specific non-lone and lone variables
are equal. (These entries can be considered the “shared entries” for a single pair
(x, y).) If these are independent of the predicates x, y, then the proof generalizes.

4 Security proofs for PES-AC17

For schemes associated with a pair encoding scheme that fits the definition of
PES-AC17 (Definition 7), we prove three results. First, we prove that our ACA-
BELLA property for trivial security and the symbolic property are equivalent.
We prove this constructively, by devising an algorithm that, given a PES-AC17,
generates a symbolic property proof. This algorithm can provably find a proof
if the input PES-AC17 is trivially secure. We also prove that our ACABELLA
property for collusion security is equivalent to selective Sym-Prop+. Lastly, we
show that the FABEO property (Definition 9) implies the collusion-security prop-
erty. To prove this, we also show how the FABEO property can be proven in a
similar fashion as the trivial-security property.

4.1 Proving the symbolic property

We first show constructively how the symbolic property can be proven if a scheme
is trivially secure. Agrawal and Chase [2] have already shown this, but their proof
is not sufficient to use it to build matrices and vectors as required by the symbolic
property. The most notable reason is that their proof technique requires both the
x ∈ X and y ∈ Y to be known ahead of the generation of the matrices. Although
this is sufficient to prove that the symbolic property is implied by trivial security,
it is not sufficient to construct the required matrices and vectors. To this end,
we improve on their proof by creating a construction-based proof.

We explain how our proof works for the selective symbolic property. Our
proof for the co-selective symbolic property is similar. Recall that, in a selective
proof, the challenge x∗ ∈ X is given ahead of the instantiation of the scheme.
We therefore obtain it as input to the generation of the master public key MPK
and the generation of the secret keys. Thus, we can use it in the construction of
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matrices for common variables b and vectors for key encodings k (the latter of
these also obtaining y ∈ Y as input). In particular, we first compute the matrix
decomposition of c(s, ŝ,b, x∗)⊺ = Mc · v⊺

c , and consider a vector basis Vc of the
kernel Ker(Mc). For each vector in the kernel, we obtain a substitution vector
for the monomials of c, i.e., ŝj and sjbk. By the definition of the kernel, this
vector yields 0 if the variables ŝj and sjbk are substituted with these entries.
For the variables ŝj , we can directly use the basis Vc to construct the vectors
from the associated entries in each basis vector. For the products sjbk, we need
to apply an additional step. Specifically, we set the substitution vector to be
the standard basis vector sj = 1w1+1

j+1 . Intuitively, we do this to ensure that
multiplying sj with the substitution matrix Bk of bk selects the (j + 1)-th row
of the substitution matrix. Then, for each common variable bk, we consider the
entries of the vectors in Vc corresponding to each sjbk, and construct the (j+1)-
th row of Bk using these entries. Now, we have obtained matrices Bk such that
evaluating sj · Bk in the polynomials of c corresponds to computing the basis
vectors Vc. This ensures that the substitutions evaluates to 0.

To construct the substitution vectors for the key encodings k, we use that the
scheme is trivially secure. In the context of PES-AC17, this means that for every
x ∈ X and y ∈ Y such that P (x, y) = 0, it holds that sEk⊺ + cEr⊺ ̸= αs. We
similarly apply Proposition 2 as in our proofs for security (Theorem 1). Consider
the vector of encodings

penc
′
x,y = ({sjkj′ | j ∈ [w1], j

′ ∈ [m3]},
{rjcj′ | j ∈ [m1], j

′ ∈ [w3]}),

and the associated matrix compositionMx,y·v⊺
x,y, where we assume that (vx,y)1 =

αs. With Proposition 2, it follows that a vector wx,y exists with Mx,y ·w⊺
x,y = 0

and tvx,y ·w⊺
x,y ̸= 0. Because tvx,y = (1, 0, ..., 0), we therefore know that the first

entry of wx,y is non-zero, and specifically, we may assume that it is 1. (If not, we
can simply “normalize” the vector.) This vector wx∗,y implies substitutions for
r̂j and α, by considering the entries associated with r̂jsj′ and αsj′ in a similar
fashion as for ŝj . In particular, we construct the (j +1)-th entry of the vector a
as the entry in wx,y corresponding to αsj′ , and similarly create the vectors r̂j .
For the substitution vectors rj of rj , we need to apply some extra steps. We first
consider, for each rj , the entries of wx,y associated with the entries rjsj′bk for
all j′, k. We use these entries to construct a vector w′

x∗ , which we show to be
in the kernel of the matrix Mc of the matrix decomposition of c. In particular,
this is the case, because the rows of Mx∗,y associated with the products rjcj′

correspond to the row of Mc associated with cj′ . It follows from this fact that
w′

x∗ is in the kernel of Mc. This means that there exists a linear combination
of the basis vectors Vc that is equal to w′

x∗ . This linear combination implies the
substitution vectors rj of rj .

Theorem 3 (Proofs for the symbolic property.). Let (Param,EncK,EncC,
Pair) be a PES-AC17 for predicate P : X × Y → {0, 1}. Then, it holds that the
PES-AC17 is trivially secure if and only if the symbolic property holds.

The proof can be found in Appendix B.7.
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4.2 Proving Sym-Prop+

From Theorem 3, it follows rather quickly that our ACABELLA property for
collusion security and selective Sym-Prop+ are equivalent. From this, it also
follows that (selective) Sym-Prop+ implies collusion security.

Corollary 1. Let (Param,EncK,EncC,Pair) be a PES-AC17 for the predicate
P : X × Y → {0, 1}. Then, it holds that the PES-AC17 is collusion secure if
the selective symbolic property Sym-Prop+ holds. Furthermore, if our property
that we use to prove collusion security holds (Theorem 2), then the PES-AC17
satisfies selective Sym-Prop+.

The proof can be found in Appendix B.8.

4.3 Proving the FABEO property

We give a similar way to proving the FABEO property as we prove the trivial
and collusion security properties. To prove the FABEO property, we need to
show that, for all x ∈ X and y ∈ Y with P (x, y) = 0, it holds that

α · s · e⊺ ̸= sEk⊺ + cEr⊺.

This is equivalent to proving that, for the matrix decomposition Mx,y · v⊺
x,y as

in Equation 4.1, it holds that the intersection of the span of rows of the matrix

and the span of rows V = {1|v|
1 , ...,1

|v|
w1+1} is empty, where we assume, without

loss of generality, that the first w1 + 1 entries of vx,y are associated with αsj .
To prove this, we show that vectors w̄x,y,1, ..., w̄x,y,w1+1 exist with (w̄x,y,i)i =

1, such that Mx,y · w̄⊺
x,y,i = 0⊺ for all i ∈ [w1+1]. Then, it follows that no linear

combination of vectors in V exists that is in the span of Mx,y, and thus, the
FABEO property holds.

Proposition 4 (Proofs for the FABEO property). Let (Param,EncK,EncC,
Pair) be a PES-AC17 for predicate P : X × Y → {0, 1}. Let Mx,y · v⊺

x,y be the
matrix decomposition as in Equation 4.1, for which we assume that the first en-
tries of vx,y are αs0, αs1, ..., αsw1

. Then, it holds that the PES-AC17 satisfies
the FABEO property if, for all x ∈ X and y ∈ Y with P (x, y) = 0, there exist
vectors w̄x,y,1, ..., w̄x,y,w1+1 with (w̄x,y,i)i = 1 and (w̄x,y,i)i′ = 0 for i′ ∈ [w1+1]
with i′ ̸= i, such that Mx,y · w̄⊺

x,y,i = 0⊺ for all i ∈ [w1 + 1].

The proof can be found in Appendix B.9. From Proposition 4, it follows
trivially that the collusion security property holds, because w̄x,y,1 also satisfies
the properties required for Theorem 2.

Corollary 2. Let (Param,EncK,EncC,Pair) be a PES-AC17 for predicate P : X×
Y → {0, 1} that satisfies the FABEO property. Then, it is also collusion secure.

Definition 16 (ACABELLA property for FABEO). Let (mpk,k, c) be a
PES-AC17 for predicate P : X × Y → {0, 1}. If vectors w̄x,yi,j exist such as
required in Proposition 4, then we say that the PES-AC17 satisfies the ACA-
BELLA property for FABEO.
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5 Description of the ACABELLA tool

The ACABELLA tool7 analyzes the security of ABE schemes by using the results
of our theoretical framework. In this section, we describe the different compo-
nents of the tool: how it proves the security of an ABE scheme and how it looks
for master-key and decryption attacks in case security cannot be proven. The
ACABELLA tool is written in Python 3.10 and relies on the linear-algebra
methods provided by Sympy 1.11.1 [19] and described in Appendix D. For a
direct experience with the ACABELLA tool, we refer to https://www.acabel.la,
which provides the ACABELLA tool as a web application. This application also
contains many examples in which the security of various ABE schemes is ana-
lyzed.

5.1 Analysis functionality

Given the PES of an ABE scheme, the ACABELLA tool automates the analysis
of the scheme. Depending on the configuration, it automates the generation and
verification of different security properties, and looks for the existence of attacks
in case security cannot be proven. More specifically, it performs the following
steps.

Security analysis: First, the tool checks whether the PES satisfies the AC17
form (Definition 7). If the PES is a PES-AC17, then it performs the following
steps.

– The tool checks if the scheme is trivially and collusion secure, by using the
results in Theorem 3 and Corollary 1.

– If the scheme is collusion secure, then it also generates a proof for the sym-
bolic property. It verifies the proofs before giving them as output.

– Lastly, the tool checks whether the PES-AC17 satisfies the FABEO property,
by using the results in Proposition 4.

If the PES is not a PES-AC17, then the tool performs the following steps.

– The tool checks if the scheme is trivially and collusion secure, by using the
results in Theorems 1 and 2.

– If the scheme is collusion secure, then it also generates a transcript that
functions as a proof of trivial and collusion security (Section 3.6).

Finally, using the analysis report, the practitioner can look further into the
possibility of attacking the scheme via master-key attacks and decryption at-
tacks.

7 The ACABELLA tool is published under the GNU General Public License, Version
3 and it is available at https://github.com/abecryptools/ACABELLA

https://www.acabel.la
https://github.com/abecryptools/ACABELLA
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Finding master-key and decryption attacks: To find master-key and de-
cryption attacks, our tool automates some of the techniques given in the VA21
framework (Section 2.5). In particular, it automates the search for master-key
and decryption attacks, given the input encodings, using the matrix decompo-
sition (Definition 11). In addition, much like in the VA21 framework, we allow
the attacker to corrupt authorities in the multi-authority setting. Note that this
works only for multi-authority schemes that fit roughly our definition of pair
encodings (Definition 3). Recall that, depending on the scheme, various author-
ities, e.g., CAs and AAi, might be deployed to run certain parts of the schemes,
notably, the setup and key generation. In the tool, one can specify the knowledge
of the various authorities by listing, for each authority, the variables that they
learn.

Furthermore, it depends on the security model whether the scheme is sup-
posed to prove security against corruption of these authorities or not. With
ACABELLA, it is possible to consider attacks under corruption. This can be
done by describing which variables are obtained via corruption when performing
the analysis with respect to master-key and decryption attacks.

Our tool additionally supports several ready-to-use corruption models based
on the attacks in the VA21 framework [27]. Using these models, the tool explains
which authorities need to be corrupted in order to perform the attack. For the
master-key attacks, we support the following corruption models:

– AA: the scheme employs multiple attribute authorities AAi, and one at-
tribute authority AAi is corrupted.

– Mixed CA corruption: the scheme employs a central authority and mul-
tiple attribute authorities, and the CA is corrupted.

– Mixed AA corruption: the scheme employs a central authority and mul-
tiple attribute authorities, and one attribute authority AAi is corrupted.

Furthermore, for the decryption attacks, we support the following corruption
models:

– AA: the scheme employs multiple attribute authorities AAi, and one at-
tribute authority AAi is corrupted.

– AA extended: the scheme employs multiple attribute authorities AAi, and
one attribute authority AAi is corrupted. The ciphertext on which the attack
is performed uses master public keys of authorities AAi and AAj , and the
attack is performed on the honest attribute authority AAj .

Complete analysis: First, the tool performs the security analysis. If it finds
that the scheme is possibly insecure, then it also performs the master-key and
decryption attacks.

5.2 Availability of the ACABELLA tool

The ACABELLA tool is available to be used in three ways: directly in Python,
or using one of the two tools that rely on the implementation of ACABELLA in
Python.
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1. In Python:
– via the Attack class, which independently provides methods for finding

master-key and decryption attacks and analyze the security of an ABE
scheme.

– via the Analysis class, which prepares batches of attacks and run them
based on the description of an ABE scheme. It is also possible to use
the ACABELLA JSON format, which describes the properties of an
ABE scheme and particular corruption environments where security is
analyzed.

2. With acabella cmd: a command line tool for analyzing the security of ABE
schemes based on the ACABELLA JSON format, which we explain in more
detail below. It provides an easy way to access the different checks and
analysis that are implemented in the ACABELLA tool.

3. With acabella web: a web interface built with Flask8 that provides a
similar functionality as acabella cmd. It provides several examples to help
the user to understand the different inputs required for analyzing an ABE
scheme.

5.3 ACABELLA JSON format

The ACABELLA tool takes as input a JSON description of an ABE scheme. In a
JSON file, the user describes the ABE scheme according to the type of analysis.
For instance, when analyzing the security of a scheme, we need the following
parameters:

– Lists of the global parameter, key and ciphertext encodings (Definition 3).
– A list of the unknown variables by the user/attacker (Definition 10).
– The definition of the target, e.g., α · s.
– Optionally, a list of variables obtained via corruption.

For master-key and decryption attacks, we also require a description of the
corruption model and the list of variables obtained via corruption and their
origin, e.g., if they have been obtained from a CA or from a particular attribute
authority AAi.

An example of a JSON input for the unbounded CP-ABE scheme in [3] is
described in Appendix E. In the example, we ask the tool to run the security
analysis and the master-key and decryption attacks. In the example, we use the

following policy matrix for the decryption attack:A =

(
1 1
0 −1

)
which is a matrix

representation of an AND gate over two attributes, e.g., x1 ∧ x2.

5.4 Using the ACABELLA tool

In general, when an ABE practitioner wants to analyze an ABE scheme using
the ACABELLA tool, she would follow the following steps:

8 https://flask.palletsprojects.com/en/2.2.x/. We used Version 2.2.2.

https://flask.palletsprojects.com/en/2.2.x/
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1. Identify the pair encoding scheme associated with the ABE scheme (Defini-
tion 3).

2. Describe which variables are unknown to the user (Definition 10).
3. Decide which corruption model to use and which variables could be obtained

by corruption.
4. Choose the type of analysis, i.e., security analysis, master-key or decryption

attacks, or complete analysis.

Finally, the tool also supports a functionality to translate the ACABELLA
JSON format to the ABGW17 format. This can be used to analyze the security of
the scheme with the ABGW17 tool [3], which might provide additional insights
about the security of the scheme.

6 Examples: security proofs and attacks

To illustrate ACABELLA, we give various interesting examples of proofs and an
attack. We first show that the Boneh-Boyen [10] IBE and Rouselakis-Waters [21]
CP-ABE schemes can be proven secure in the ACABELLA framework by proving
them secure using our properties for trivial and collusion security (Theorems 1
and 2), and the FABEO property (Proposition 4). We then give an attack on
the unbounded CP-ABE scheme in the ABGW17 framework. This attack also
illustrates that schemes exist that are trivially secure but not collusion secure.
Lastly, we give a new CP-ABE scheme that improves on the unbounded CP-
ABE in the ABGW17 framework in terms of both the efficiency and security,
and show with ACABELLA that it is secure.

6.1 The BB-IBE1 scheme

The pair encoding scheme associated with the IBE scheme by Boneh and Boyen
(BB-IBE1) [10] is defined as

– mpk = (b0, b1)
– k(α, r,mpk, y) = (α+ r(b0 + yb1), r)
– c(s,mpk, x) = (s(b0 + xb1), s)

Because this scheme is a PES-AC17, we can prove trivial and collusion security
via the symbolic property. In particular, the tool finds the following substitutions
for the selective property:

b0 : − x, b1 : 1, s : 1, r :
1

x− y
, α : 1,

for which it indeed holds that the polynomials α+ r(b0 + yb1) = 1 + 1
x−y (−x+

y · 1) = 1− 1 = 0 and s(b0 + xb1) = 1 · (−x+ x · 1) = 0 evaluate to 0. Similarly,
for the co-selective property, the tool finds the following substitutions:

b0 :

(
1
0

)
b1 :

(
0
1

)
, s :

(
1 − 1

x

)
, r : − 1, α :

(
1
y

)
,
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which also ensure that the polynomials evaluate to 0 and (0, 0). Furthermore,
because the matrix decomposition has only one entry that is shared among
all keys, i.e., αs, it automatically follows that the symbolic property implies a
proof of the FABEO property (Proposition 4). Hence, for BB-IBE1, we have the
following security guarantees:

– selective security via its original description [10];
– full security via the AC17 framework;
– full security in GGM via the ABGW17 framework;
– full security in GGM via the RW22 framework.

6.2 The RW13 scheme

The pair encoding scheme associated with the CP-ABE scheme by Rouselakis
and Waters (RW13) [21] is defined as

– mpk = (b, b′, b0, b1)
– k(α, r,mpk,S) = (α+ rb, r, {rb′ + ratt(b0 + yattb1), ratt}att∈S)
– c(s = (s, {sj}j∈[n1]),mpk, (A, ρ)) = ({λj + sjb

′, sj(b0 + ρ(j)b1)}j∈[n1]), with
λj = Aj · (s, v2, ..., vn2

)⊺, where Aj denotes the j-th row of A

Because this scheme is a PES-AC17, we can prove trivial and collusion security
via the symbolic property. In particular, the tool finds substitutions for the
selective and co-selective property that are similar to such proofs in existing
work, e.g., [2,29]. The tool also finds a proof that the FABEO property holds
(see Appendix F.2 for a transcript), with S = {y, z} and ρ(1) = x, ρ(2) = z, and
the vector

v = (rv2, brs, b
′rs′, b0rs

′, b1rs
′, b′rs′2, b0rs

′
2, b1rs

′
2, r

′v2, br
′s,

b′r′s′, b0r
′s′, b1r

′s′, b′r′s′2, b0r
′s′2, b1r

′s′2, r
′
2v2, br

′
2s, b

′r′2s
′,

b0r
′
2s

′, b1r
′
2s

′, b′r′2s
′
2, b0r

′
2s

′
2, b1r

′
2s

′
2, αs, b0r

′s, b′rs,

b1r
′s, b0r

′
2s, b1r

′
2s, αs

′, brs′, αs′2, brs
′
2).

We have run the code on this set and access policy, to ensure that we have
covered all three cases (see Section 3.7): we have one attribute that occurs in
the key and not in the ciphertext, one attribute that occurs in the ciphertext
and not the key, and one that occurs in both.

Now, the vector with αs being substituted by 1 and αs′, αs′2 by 0:

(0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−x/(x− y), 1/(x− y), 0, 0, 0, 0, 0, 0,

− x/(x− z), 1/(x− z), 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Note that this vector is also associated with the selective symbolic proof. The
vector with αs′ being substituted by 1 and αs, αs′2 by 0:

(030, 1,−1, 0, 0).



28 A. de la Piedra, M. Venema, and G. Alpár

The vector with αs′2 being substituted by 1 and αs, αs′ by 0:

(032, 1,−1).

To verify the proof of the FABEO property, one can compute the product of key
and ciphertext encodings, and substitute the monomials with the values in the
vectors. For the first vector, we already know that it verifies correctly, because
the proof for the selective symbolic property verifies correctly. For the other two
vectors, we note that almost all combinations are substituted by 0. The only
combinations that are not substituted by 0 is s′(α + rb) for the second vector
and s′2(α+ rb) for the third. Because

αs′ : 1, rs′b : − 1, and αs′2 : 1, rs′2b : − 1,

we have that αs′ + rs′b : 1 − 1 = 0 and αs′2 + rs′2b : 1 − 1 = 0. Also note
that these proofs generalize to predicates of any sizes, because the only entries
in the vectors that depend on the attributes are associated with entries in v that
contain variables that are unique to those attributes. Hence, for RW13, we have
the same security guarantees as for BB-IBE1.

6.3 The unbounded ABGW17-CP scheme

The pair encoding scheme associated with the unbounded CP-ABE scheme by
Ambrona et al. (ABGW17-CP) [3] is defined as

– mpk = (b, b0, b1, b
′)

– k(α, r,mpk,S) = (α+ rb, r, { rb′

b0+yb1
}y∈S)

– c(s = (s, {sj}j∈[n1]),mpk, (A, ρ)) = ({λj , λjb + sjb
′, sj(b0 + xjb1)}j∈[n1]),

where λj = Aj · (s, v2, ..., vn2
)⊺

The tool outputs that this scheme is trivially secure. However, it is not collusion
secure. In particular, we find the following attack. Let S1 = {y1} and S2 = {y2},
and suppose (A, ρ) is an LSSS matrix for the policy “y1 AND y2”, i.e.,

A =

(
1 1
0 −1

)
, ρ(1) = y1, ρ(2) = y2.

Then, we sample keys and ciphertext as follows:

k1 = (k1,1, k1,2, k1,3) = (α+ rb, r,
rb′

b0 + y1b1
)

k2 = (k2,1, k2,2, k2,3) = (α+ r′b, r′,
r′b′

b0 + y2b1
)

c1 = (c1, c2, c3, c4, c5, c6) = (s+ v2, (s+ v2)b+ s1b
′, s1(b0 + y1b1),

− v2,−v2b+ s2b
′, s2(b0 + y2b1)).
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The attack is

k1,1c1 − k1,2c2 + k1,3c3 + k2,1c4 − k2,2c5 + k2,3c6

= (α+ rb)(s+ v2)− r((s+ v2)b+ s1b
′) +

rb′

b0 + y1b1
(s1(b0 + y1b1))

+(α+ r′b)(−v2)− r′(−v2b+ s2b
′) +

r′b′

b0 + y2b1
(s2(b0 + y2b1))

= αs+ αv2 + rsb+ rv2b− rsb− rv2b− rs1b
′ + rs1b

′

−αv2 − r′v2b+ r′v2b− r′s1b
′ + r′s2b

′ = αs.

6.4 A new unbounded CP-ABE scheme

We propose a new unbounded CP-ABE scheme that is both more efficient than
ABGW17-CP, and that is provably collusion secure. It is defined as follows.

– mpk = (b, b0, b1)
– k(α, r,mpk,S) = ((α+ r)/b, { r

b0+yb1
}y∈S)

– c(s,mpk, (A, ρ)) = (sb, {λj(b0 + xjb1)}j∈[n1]), where s = (s, {sj}j∈[n1]) and
λj = Aj · (s, v2, ..., vn2

)⊺.

A transcript output by the ACABELLA tool that proves trivial and collusion
security of this scheme can be found in Appendix F.3, for S = {x1, y} and

A = (A, ρ) with A =

(
A11 A12

A21 A22

)
, ρ(1) = x1, ρ(2) = x2. We show that the

scheme is collusion secure with Proposition 6. We first have to verify the proof
for trivial security, and then that the other three requirements hold.

Trivial security is already verified automatically but can be verified manually
as argued in Section 3.6, i.e., by computing the products of key and ciphertext
encodings and substituting the monomials with the associated values in wS,A.
Most combinations of key and ciphertext encodings yield non-critical combina-
tions (that can be argued will trivially evaluate to 0, see Section 3.6). Hence,
we only have to consider the products of (α + r)/b and sb, and r

b0+y′b1
and

λj(b0 + xjb1) for four combinations of y′ and xj . Because the proof is “nor-
malized” by a factor λ = b(b0 + x1b1)(b0 + yb1), we also need to normalize the
computations to find the appropriate substitutions. We show how the verification
works for one product and leave the rest up to the reader:

λ · (α+ r)/b · sb = αbb20s︸ ︷︷ ︸
: (1+x1)

−A12x2+A12y
A11

+αbb0b1s︸ ︷︷ ︸
: 0

(x1 + y)

+αbb21s︸ ︷︷ ︸
: 0

x1y + bb0b1rs︸ ︷︷ ︸
:

−(1+x2)A11A22x1+(1+x1)A12A21x2
A11A21(x1−x2)

(x1 + y)

+ bb20rs︸ ︷︷ ︸
:

(1+x2)A11A22x2
1−(1+x1)A12A21x2

2
A11A21(x1−x2)

+ bb21rs︸ ︷︷ ︸
:

(1+x2)A11A22−(1+x1)A21A12
A11A21(x1−x2)

x1y,
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which is substituted by

−(1 + x1)(x1 − x2)A12A21x2 + (1 + x1)(x1 − x2)A12A21y

A11A21(x1 − x2)

+
−(x1 + y)(1 + x2)A11A22x1 + (x1 + y)(1 + x1)A12A21x2

A11A21(x1 − x2)

+
(1 + x2)A11A22x

2
1 − (1 + x1)A12A21x

2
2

A11A21(x1 − x2)

+
x1y(1 + x2)A11A22 − x1y(1 + x1)A21A12

A11A21(x1 − x2)

= (−x1(x1 + y) + x2
1 + x1y)︸ ︷︷ ︸

=0

A11A22(1 + x2)

A11A21(x1 − x2)

+
(
x2
2 − x1x2 + yx1 − yx2 + x1x2 + x2y − x2

2 − x1y
)︸ ︷︷ ︸

=0

A12(1 + x1)

A11(x1 − x2)

We now show that the other three requirements hold. The last one can easily
be seen from the transcript, as all the shared entries that are not associated with
the target vector are substituted by 0. For the second and third requirements,
we first translate the substitution vector to the “regular” setting in which the
encodings are not normalized. We do this by dividing each entry of the vector v
by λ = b(b0 +x1b1)(b0 + yb1). Now, to argue that the second requirement holds,
we simply use that the part of the matrix and vector that is associated αs is
translated from λαs and then back to αs, so it is always equal to αs regardless
of the used predicates. Something similar follows for the part that is associated
with shared entries that are not associated with the target αs.

The third requirement holds by showing that we can “normalize” the sub-
stitution vector in the only entry associated with the shared entries. This entry
corresponds to αbb20s, and can be rewritten as

A12(y − x2)(1 + x1)

A11
=

A12(y − x2)(1 + x1)

−w2A12
=

(x2 − y)(1 + x1)

w2
,

because x1 occurs in both the key and ciphertext, and therefore, there exists a
vector (1, w2) such that A11+w2A12 = 0, i.e., A11 = −w2A12 (Definition 2). By
dividing the vector by (x2 − y) 1+x1

w2
, we obtain a vector that is 1 in the entry

associated with αbb20s, and 0 in the rest of the shared entries.
Lastly, to argue that this proof also works for predicates of different sizes and

structures, we note that the same randomness r is used for all key entries, and
the same randomness s is used for all ciphertext entries. We can therefore not
argue, similarly as for the RW13 scheme, that this proof generalizes, because all
the entries of the substitution vector that depend on the predicates use the same
randomness. However, the fact that the scheme is secure for multiple attributes
while still using the same randomness illustrates that it will be secure for any
number of attributes. That is, for the polynomial structure that we use to embed
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the attribute, i.e., b0 + xb1, one randomized instance of it usually provides only
enough randomness for one attribute (see [29]). Because we have used it for
multiple attributes, it should be secure for any number of attributes. Hence, the
scheme is trivially and collusion secure.

6.5 More examples

The web tool contains many more examples, e.g., some attacks on the schemes
in [27] and several popular IBE and ABE schemes. These examples can be used
to learn how the tool works, or to achieve better security guarantees for existing
schemes. Notably, we prove security in the ABGW17 framework for the first
CP-ABE scheme [9] and the IBE and KP-ABE schemes in [3], and we prove
that the FABEO property holds for the PESs associated with [33] and [21].

7 Conclusions

In this work, we have introduced ACABELLA, which simplifies generating and
verifying security proofs for pairing-based ABE schemes. It consists of a frame-
work for security proofs that are easy to verify manually, and an automated tool
that efficiently generates these security proofs. Using ACABELLA, it is now pos-
sible to automatically generate security proofs that imply security results in the
AC17, ABGW17 and FABEO frameworks (see Figure 1 for an overview). Im-
portantly, these security proofs are manually verifiable, meaning that we do not
have to fully trust the tool to have verified the scheme correctly. In contrast, the
ABGW17 tool needs to be fully trusted to have performed the security analysis
correctly, and can only prove security in the single-key setting. An additional
advantage of our framework is that the security proofs are also much shorter
than we are typically used to see in literature, e.g., security proofs using the
dual-system encryption paradigm [32]. Lastly, to improve the accessibility and
usability of automated verification, we have provided the ACABELLA tool as
a web interface. With its help, experts can simplify their proving process by
verifying or refuting the security of their schemes and practitioners can get an
assurance that the ABE scheme of their choice is secure.

In future work, ACABELLA can be extended with several interesting func-
tionalities. First, although our tool already provides some functionality for multi-
authority schemes, it is valuable to extend the functionality for all pairing-based
multi-authority schemes, and to flexibly cover all types of corruption models. For
example, the recently published compiler by Venema [26] may be used for this.
Furthermore, ACABELLA does not currently support the generation of proofs
in the multi-authority setting, because none of the frameworks that it builds on
does this. Another aspect of the tool that can be improved is the expression of
the predicates, e.g., access policies and sets of attributes. By using only linear-
algebra methods to generate the proofs and attacks, we cannot manipulate the
values of the access policies and sets of attributes. Possibly, this can be done
by combining our linear algebra approach with a symbolic solver like ABGW17.
Then, it will also become easier to find complex attacks.
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35. Wee, H.: Déjà Q: encore! un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC.
LNCS, vol. 9563, pp. 237–258. Springer (2016)

A Further definitions

A.1 Security against chosen-plaintext attacks

Definition 17 (Full security against chosen-plaintext attacks (CPA)
[2]). We define the security game IND-CPA(λ,par) between challenger and at-
tacker as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y
in the first key query phase, we have Pκ(x

∗, y) = 0, and generates two mes-
sages M0 and M1 of equal length inMλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x

∗, y) = 0.
– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ

before the Setup phase. In the co-selective security model, the attacker commits
to all y ∈ Yκ before the Setup phase. In the static security model, the attacker
commits to x∗ ∈ Xκ and all y ∈ Yκ before the Setup phase.

A.2 The attack models

Venema and Alpár define the following attack models [27].

Definition 18 (Master-key attacks (MKA) [27]). We define the game be-
tween challenger and attacker as follows. First, the initialization, setup and first
key query phases are run as in Definition 17. Then:

– Decision phase: The attacker outputs MK′.

The attacker wins the game if for all messages M , decryption of ciphertext CT←
Encrypt(M, ...) yields M ′ ← MKDecrypt(MK′,CT) such that M = M ′.
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Definition 19 (Decryption attacks (DA) [27]). We define the game be-
tween challenger and attacker as follows. First, the initialization, setup, first
key query and challenge phases are run as in Definition 17. Then:

– Decision phase: The attacker outputs plaintext M ′.

The attacker wins the game if M ′ = M .

B Remainder of lemmas and proofs

B.1 Proof of Proposition 1

Proof. First, it follows trivially that finding an attack in the matrix notation
also yields an attack in the polynomial notation, because any coefficients found
in the matrix notation are also valid coefficients for the polynomial notation:
e ·penc

⊺ = e ·(M ·v⊺) = (e ·M) ·v⊺ = tv ·v⊺ = tv. However, the converse follows
less trivially: if there exists a linear combination for the polynomial notation,
then there exists a linear combination for the matrix notation. This follows from
the fact that all entries of v are linearly independent. Suppose penc = M · v⊺

is a matrix decomposition as in Definition 11, and let tv · v⊺ = αs be the
target vector. If e ∈ Zp(coef)

|penc| exists such that e · penc
⊺ = αs, then we have

e(M·v⊺) = tv·v⊺. Now, assume that e·M ̸= tv, and considerw = e·M−tv ̸= 0.
Then, we have

w · v⊺ = (e ·M− tv) · v⊺

= (e ·M) · v⊺ − tv · v⊺ = 0.

From this, it follows that the entries of v are not linearly independent, which
contradicts the definition of the matrix decomposition. Thus, it must hold that
e ·M = tv.

B.2 Proof of Theorem 1

Proof. To prove that the scheme is trivially secure, we must prove that for all
x ∈ X , y ∈ Y with P (x, y) = 0, it holds that ky · Ei · c⊺x ̸= αs for all Ei.
This is equivalent to proving that tvx,y is not in the span of the rows of Mx,y

(Proposition 1). Because, for all x ∈ X , y ∈ Y, there exists some w⊺
x,y such that

Mx,y ·w⊺
x,y = 0⊺ and tvx,y ·w⊺

x,y ̸= 0, we know by Proposition 2 that tvx,y is
not in the span of Mx,y.

B.3 Proof of Lemma 1

Proof. It follows trivially from the assumption that penc
′
x,y and penc

′′
x,y have no

monomials in common thatMx,y is of the form

(
M′

x,y 0
0 M′′

x,y

)
. Similarly, because

α does not occur in v′′
x,y, the target vector is of the form tvx,y = (tv′

x,y,0). Then,
from the form of Mx,y, it follows that Mx,y · w⊺

x,y = M′
x,y · (w′

x,y)
⊺ + M′′

x,y ·
(w′′

x,y)
⊺ = 0 + 0 = 0, and tvx,y · w⊺

x,y = tv′
x,y · (w′

x,y)
⊺ + tv′′

x,y · (w′′
x,y)

⊺ =
tv′

x,y · (w′
x,y)

⊺ + 0 ̸= 0.
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B.4 Proof of Proposition 3

Proof. To prove that Mx,{y1,y2,...,yn} · v
⊺
x,{y1,y2,...,yn} is a matrix decomposition,

we first need to show that Mx,{y1,y2,...,yn} · v
⊺
x,{y1,y2,...,yn} = pencx,{y1,y2,...,yn}.

This follows from the fact that

Mx,{y1,y2,...,yn} · v
⊺
x,{y1,y2,...,yn} =


∑

j∈{0,1,2} Mx,y1,j · v
⊺
x,y1,j∑

j∈{0,1,2} Mx,y2,j · v
⊺
x,y2,j

...∑
j∈{0,1,2} Mx,yn,j · v

⊺
x,yn,j


=
(
pencx,y1

pencx,y2
· · · pencx,yn

)⊺
= penc

⊺
x,{y1,...,yn}.

Furthermore, it follows trivially that the associated target vector constructed as
tvx,{y1,...,yn} = (tvx,y1,0,0) is correct by verifying that

tvx,{y1,...,yn} · v
⊺
x,{y1,...,yn}

= (tvx,y1,0,0) · (vx,y1,0,vx,y1,1,vx,y1,2,vx,y2,2, . . . ,vx,yn,2)
⊺

= tvx,y1,0 · v
⊺
x,y1,0

= αs.

Then, we need to show that the entries of vx,{y1,y2,...,yn} are linearly independent
monomials. First, note that all entries are monomials, because the entries of
all vx,yi are monomials. Second, they are linearly independent. We prove this
by contradiction. Suppose that one of the entries can be written as a linear
combination of the others. Then, we can also find a linear combination of the
monomials in the entries that is equal to 0. For the terms associated with vx,yi,2,
we know that any non-trivial linear combination yields at least one term that
is a multiple of some user-specific random variable ri,k. For all j ̸= i and k′, it
holds that all other user-specific random variables rj,k′ are such that ri,k ̸= rj,k′ .
Because each non-trivial linear combination of the monomials in vx,yj ,2 also
have at least one term that is a multiple of a user-specific random variable rj,k′ ,
the terms associated with vx,yj ,2 cannot cancel out the terms associated with
vx,yi,2. Thus, each of these terms need to be canceled by a linear combination of
(vx,y1,0,vx,y1,1), which contradicts the assumption that vx,y consists of linearly
independent monomials.

B.5 Proof of Theorem 2

Proof. To prove that the PES is collusion secure, we need to show that
∑

i kyi
·

Ei · c⊺x ̸= αs. By Proposition 1, this is equivalent to proving that tvx,{y1,...,yn}
is not in the span of Mx,{y1,...,yn}, where tvx,{y1,...,yn} and Mx,{y1,...,yn} are
constructed as in Proposition 3. In turn, this is equivalent to proving that
some vector wx,{y1,...,yn} exists such that Mx,{y1,...,yn} · w

⊺
x,{y1,...,yn} = 0⊺ and

tvx,{y1,...,yn} ·w
⊺
x,{y1,...,yn} ̸= 0. We claim that this is the case for

wx,{y1,...,yn} = (wx,y1,0,wx,y1,1,wx,y1,2,wx,y2,2, ...,wx,yn,2).
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This follows from verifying that

Mx,{y1,...,yn} ·w
⊺
x,{y1,...,yn} =


∑

j∈{0,1,2} Mx,y1,j ·w
⊺
x,y1,j∑

j∈{0,1,2} Mx,y2,j ·w
⊺
x,y2,j

...∑
j∈{0,1,2} Mx,yn,j ·w

⊺
x,yn,j



=


Mx,y1

·w⊺
x,y1

Mx,y2
·w⊺

x,y2

...
Mx,yn

·w⊺
x,yn

 = 0,

and that

tvx,{y1,...,yn} ·w
⊺
x,{y1,...,yn} = tvx,y1

·w⊺
x,y1
̸= 0,

which follows from the fact that tvx,{y1,...,yn} is only non-zero in the entries
corresponding to the first entries of w⊺

x,{y1,...,yn}, i.e., wx,y1,0.

B.6 Lemmas for the notation of the proofs

Lemma 2. Let penc be a vector of encodings with matrix decomposition penc =
M · v⊺, and let w be a vector of the same length as v. Then, computing M ·w⊺

is equal to considering each entry of penc, and evaluate the polynomial for which
the monomial in each term is substituted as (v)i : (w)i.

Proof. Let pi be the i-th entry of penc. Then, the decomposition of pi is the i-th
row of M. Note that pi is a polynomial, and can in particular be written as a
linear combination of entries in v, i.e., pi =

∑
j Mi,j(v)j , where Mi,j is the j-th

entry in the i-th row. Now, substituting each (v)j with (w)j yields
∑

j Mi,j(w)j .
This is equal to computing (M ·w⊺)i =

∑
j Mi,j(w)j .

Lemma 3. Let penc be a vector of encodings with matrix decomposition penc =
M·v⊺. Let penc

′ = ((penc)1, ..., (penc)i−1, (penc)i+1, ...) be the vector of encodings
penc without (penc)i, and let M′ be the matrix M with the i-th row removed.
Suppose that (penc)i is such that some j exists with (M)i,j ̸= 0 and (M)i′,j = 0
for all i′ ̸= i. Then, if w′ is a vector such that M′ · (w′)⊺ = 0⊺, then the
vector w = ((w′)1, ..., (w

′)i−1,− 1
(M)i,j

∑
j′ ̸=j(M)i,j′(w

′)j′ , (w
′)i, (w

′)i+1, ...) is

such that M ·w⊺ = 0⊺.

Proof. For all i′ ̸= i, we have that

(M · (w′)⊺)i′ = (M′ ·w⊺)i′ −
(M)i′,j
(M)i,j

∑
j′ ̸=j

(M)i,j′(w
′)j′ = 0,

because (M′ ·w⊺)i′ = 0 and Mi′,j = 0. For i, we have that

(M · (w′)⊺)i = (M′ ·w⊺)i −
(M)i,j
(M)i,j

∑
j′ ̸=j

(M)i,j′(w
′)j′ = 0,

because (M′ ·w⊺)i =
∑

j′ ̸=j(M)i,j′(w
′)j′ .
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B.7 Proof of Theorem 3

Proof. We first prove the implication that PES-AC17 is trivially secure if the
symbolic property holds. This actually already follows from the fact that the
selective symbolic property holds. We prove this again by showing that a vector
wx,y exists such that Mx,y ·w⊺

x,y = 0⊺ and tvx,y ·w⊺
x,y ̸= 0, where Mx,y · v⊺

x,y

denotes a matrix decomposition for penc
′
x,y and tvx,y is the associated target

vector. First, we obtain vectors a, ri, r̂i′ , sj , ŝj′ and matrices Bk as in Definition
8 by running EncB(x), EncR(x, y) and EncS(x). Without loss of generality, we
assume that a1 ̸= 0. (Note that, by definition, at least one of the entries should
be non-zero.) Then, we set the entries of wx,y to vx,y, but each variable is
substituted as in Definition 8. Because tvx,y is only 1 in the entry corresponding
to the entry in vx,y with αs, and the corresponding entry in wx,y is determined
as s0 · a⊺, for which, by the symbolic property, s0 · a⊺ ̸= 0 holds, we have that
tvx,y ·w⊺

x,y ̸= 0. Furthermore, computing Mx,y ·w⊺
x,y is equivalent to substituting

all encodings in penc
′
x,y with the vectors and matrices. Here, all entries are of

the form sjkj′ and rjcj′ , which evaluate to 0 because kj′ and cj′ evaluate to 0.
Thus, Mx,y ·w⊺

x,y = 0⊺.
The implication in the other direction is in line with our explanation above.

We first compute the matrix decomposition of c(s, ŝ,b, x∗)⊺ = Mc · v⊺
c , and

consider a vector basis Vc = {v1, ..., vd2
} of the kernel Ker(Mc), where d2 is the

number of vectors in Vc. We set

ŝj = ((v1)l, ..., (vd2
)l) where vl = ŝj

sj = 1d1
j+1

(Bk)l,m = (vm)n where vn = sl−1bk

where d1 = w1 + 1. Note that, by the definition of a kernel, substituting the
polynomials in c with these matrices and vectors yields 0.

Furthermore, we consider the vector of encodings penc
′
x,y as in Equation

4.1, and its associated matrix decomposition Mx,y ·v⊺
x,y and target vector tvx,y,

where we assume, without loss of generality, that (vx,y)1 = αs. From Proposition
2 and the trivial security of the PES-AC17, it follows that there exists a vector
wx,y such that Mx,y · w⊺

x,y = 0⊺ and tvx,y · w⊺
x,y ̸= 0, and in particular, that

(wx,y)1 = 1. Then, we set

al = (wx,y)m where (vx,y)m = αsl+1

r̂l = (wx,y)m where (vx,y)m = r̂sl+1.

To determine rj , we first consider the sub-vector w′
x,y,j , where (w′

x,y,j)l =
(wx,y)m, such that rj(vc)l = (vx,y)m. Then, matrix Mx,y can be similarly re-
duced to the smaller sub-matrix M′

x,y,j corresponding to the rows associated
with rjcj′ and the entries of vx,y in which rj occurs, e.g., rjsj′bk. We assume that
this sub-matrix is ordered in such a way that M′

x,y,j ·v⊺
c = Mc ·v⊺

c . For this sub-
matrix, it holds that M′

x,y,j · (w′
x,y,j)

⊺ = 0⊺, and because M′
x,y,j ·v⊺

c = Mc ·v⊺
c ,

we therefore have Mc · (w′
x,y,j)

⊺ = 0⊺. Because w′
x,y,j is in Ker(Mc), it follows
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that it can be written as a linear combination of the vectors in Vc. In particular,
we set rj to be the vector for which holds that w′

x,y,j =
∑

i∈[d2]
(rj)i · vi. Note

that, therefore, substituting rjbk with Bk · r⊺j yields the entries of w′
x,y,j associ-

ated with rjsj′bk. Hence, making the proper substitutions in k yields evaluations

to 0. Lastly, it holds that a · s⊺0 ̸= 0, which follows from the fact that s0 = 1d1
1

and a1 = (wx,y)1 = 1, because the first entry of vx,y is assumed to be αs.
For the co-selective property, the strategy is similar. However, instead of

starting with c, we start with k and first compute the substitutions of rj , r̂j′

and bk.

B.8 Proof of Corollary 1

Proof. That the enhanced selective symbolic property Sym-Prop+ implies collu-
sion security follows from the proofs of Theorems 2 and 3. In particular, from
the selective symbolic property, it follows that, for all x ∈ X and y1, y2, ... ∈ Y,
some vector wx,yi

can be constructed as in the proof of Theorem 3, for which
we have already shown that Mx,yi

·w⊺
x,yi

= 0⊺ and tvx,yi
·w⊺

x,yi
̸= 0. Then, we

want to show that

– wx,yi,0 = wx,yj ,0 for all i, j, and
– wx,yi,1 = 0,

where wx,yi,0 corresponds to the entry αs of vx,yi,0, and wx,yi,1 corresponds
to the entries αsj with j ∈ [w1] of vx,yi,0. If those equations hold, it follows
from Theorem 2 that the PES-AC17 is collusion secure. Now, note that, by
Sym-Prop+, it holds that a = 1d1

1 . Thus, wx,yi,0 = s0 · a⊺ = 1, and wx,yi,1 =

(s1 · a⊺, ..., sw1
· a⊺) = 0, because si = 1d1

i+1.

That our property used to prove collusion security implies selective Sym-Prop+

follows similarly. We again follow the proof of Theorem 3, but this time, to ob-
tain the matrices Bk and vectors a, ri, r̂i′ , sj and ŝj′ . Note that, for these vectors,

the selective symbolic property holds. Thus, we only need to show that a = 1d1
1

holds. Because the PES-AC17 is collusion secure, we can assume, for the vector
wx,yi that is used to construct the matrices and vectors, that wx,yi,0 = wx,yj ,0

holds for all i, j and wx,yi,1 = 0. Without loss of generality, we can assume that
wx,yj ,0 = 1, because tvx,yj

·w⊺
x,yj

= wx,yj ,0 ̸= 0, and we can simply normalize
wx,yj

if it is not equal to 1. Since a is constructed such that

al = (wx,y)m where (vx,y)m = αsl+1,

we know that a is indeed 0 in the entries 2, ..., d1. Hence, a = 1d1
1 .

B.9 Proof of Proposition 4

Proof. Suppose that such vectors w̄x,y,1, ..., w̄x,y,w1+1 exist, and assume that the
intersection of the spans of V and the row space of Mx,y is not empty, i.e., there
exists vector v with (v)i ̸= 0 for at least one i ∈ [w1 + 1], where (v)i′ = 0 for all
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i′ > w1. For vector w̄x,y,i, we then know that (v)i·w̄x,y,i = (v)i ̸= 0. We will show
that this contradicts the assumption that v is in the span of the rows ofMx,y, i.e.,
there exists a vector e such that v = e ·Mx,y. Then, because Mx,y · w̄⊺

x,y,i = 0⊺,
we know that v · w̄⊺

x,y,i = (e ·M⊺
x,y) · w̄

⊺
x,y,i = e · (M⊺

x,y · w̄
⊺
x,y,i) = 0.

C Security proofs for schemes with rational fractions

To use the matrix decompositions more conveniently in pair encoding schemes
with rational fractions, we first eliminate the rational fractions. Intuitively, we do
this by multiplying the encodings vector penc by the product of all denominators.
In particular, eliminating the fractions simplifies the construction of the matrix
decompositions. To show this, we consider an example, i.e., the variant of the
IBE scheme by Wee [35] given by ABGW17, which has the following encodings:

– mpk = b
– k(α, r, b, y) = α

b+y

– c(s, b, x) = s(b+ x)

To find an attack, i.e., recover αs, we first consider the products of all key and
ciphertext encodings: penc = α

b+y ·s(b+x) = αsb
b+y+

αsx
b+y , with V = {α, b, r, s, x, y}.

The annotation function annot maps {α, b, r, s} to unknown and {x, y} to known.
Then, the matrix decomposition of penc can be

(
1 x
)
·

(
αsb
b+y
αs
b+y

)
,

but it can also be(x
y (1− x

y )
)
·
(
αs
αsb
b+y

)
=

x

y
αs+

(
1− x

y

)
αsb

b+ y

=

x
yαs(b+ y)

b+ y
+

αsb

b+ y
=

αsb

b+ y
+

αsx

b+ y
.

For the above decompositions, the target vectors for the attack are given by

αs =
(
1 y
)
·

(
αsb
b+y
αs
b+y

)
=
(
1 0
)
·
(
αs
αsb
b+y

)
.

The reason that this encoding has multiple different decompositions is that it
contains a denominator that is a polynomial, i.e., b + y. Although it is not
necessarily problematic that encodings may have multiple different compositions,
it complicates the construction of an algorithm to decompose the encodings. As
the example illustrates, αs is not linearly independent of the entries in the vector

v =

(
αsb
b+y
αs
b+y

)
. Hence, to decompose the encodings, it must be checked for each

monomial whether it is a linear combination of all other monomials.
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To simplify this effort, we eliminate the denominators by multiplying all
encodings and the target, e.g., αs, with a product of all denominators, and
consider resulting encoding polynomials in the canonical form. In particular,
each polynomial consists of monomials of the form c·

∏
i v

ji
i , where c ∈ Zp(coef) is

a coefficient, V = {v1, v2, ...} and ji ∈ N. In this case, it is easy to verify whether
a newly considered monomial is independent of an existing set of monomials,
and the attack found with the transformed encodings also works for original
encodings.

Proposition 5. Let penc be a vector of encodings, and let λ ∈ Zp(known,
unknown) be an element in the extended field of rational fractions. Consider
the matrix decompositions of penc = M1 ·v⊺

1 and λ ·penc = M2 ·v⊺
2 , and let tv1

and tv2 be such that tv1 · v⊺
1 = αs and tv2 · v⊺

2 = λαs. Let e ∈ Z|penc|
p . Then,

e ·M1 = tv1 if and only if e ·M2 = tv2.

Proof. We prove that e ·M2 = tv2 implies that e ·M1 = tv1. The implication in
the other way is similar. Suppose that e ·M2 = tv2, and thus, that e ·(λ ·penc) =
λαs. From this, it follows that λ · (e · penc) = λαs and canceling out λ on both
sides yields e · penc = αs. Therefore, e constitutes a linear combination of the
entries in penc that yields αs. Then, it follows from the equivalence of the matrix
and the polynomial notation (as proven in Proposition 1) that e is also a linear
combination of the rows of M1 that yields tv1, and thus, e ·M1 = tv1.

From this, it also follows that finding a vector w as in Proposition 2 for the
matrix decomposition of the version of the encodings penc in which the fractions
are eliminated also proves that the target vector is not in the span of the matrix
in the matrix decomposition of the regular version of the encodings.

Corollary 3. Let penc be a vector of encodings, and let λ ∈ Zp(known, unknown)
be an element in the extended field of rational fractions. Consider the matrix
decompositions of penc = M1 ·v⊺

1 and λ ·penc = M2 ·v⊺
2 , and let tv1 and tv2 be

such that tv1 · v⊺
1 = αs and tv2 · v⊺

2 = λαs. If there exists a vector w such that
M2 ·w⊺ = 0⊺ and tv2 ·w⊺ ̸= 0, then tv1 is not in the span of rows of M1.

Proof. If such a vector w exists, then tv2 is not in the span of rows of M2

(Proposition 2). Because there exists no e such that e ·M2 = tv2, it follows from
Proposition 5 that there exists no e such that e ·M2 = tv2. Thus, tv1 is not in
the span of rows of M1.

To prove collusion security, we also need to be able to translate the vector
w that is found for the “normalized” encodings to the original encodings. We
can do this by dividing each entry of vector v2 by λ, i.e., set v3 = λ−1 · v2.
Because of the independence of the original entries, the resulting entries are
also independent. Note that the substitutions that we find for the v2 also work
for v3, as long as λ does not evaluate to 0. Furthermore, we need to ensure
that the vectors vx,y match in the entries vx,y,0 and vx,y,1, as well as wx,y,0 and
wx,y,1. To ensure this, we check whether evaluatingMx,y restricted to the entries
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associated with vx,y,0 and vx,y,1 yields the same polynomial for each y. We do
the same for wx,y,0 and wx,y,1. Then, we can create new matrix decompositions
and vectors wx,y,0 and wx,y,1 that are equal for each y, and thus, the collusion
security property is satisfied.

Proposition 6 (Proofs of collusion security for schemes with rational
fractions). Let (mpk,k, c) be a PES for predicate P : X ×Y → {0, 1}, and con-
sider the matrix decompositions of pencx,yi

for x ∈ X and y1, y2, ..., yn ∈ Y, and
their associated target vectors tvx,yi

. Like in Proposition 3, we assume that the
matrix decompositions penc

⊺
x,yi

= Mx,yi
·v⊺

x,yi
are such that vx,yi

is ordered. If for
all x ∈ X , y1, y2, ..., yn ∈ Y with P (x, yi) = 0, (vx,yi,0,vx,yi,1) = (vx,yj ,0,vx,yj ,1)
for all i, j, and there exist vectors w⊺

x,yi
(as in Theorem 1) such that the require-

ments below hold, then the PES is collusion secure. First, we similarly split each
matrix Mx,yi

in three parts, i.e., Mx,yi
= (Mx,yi,0,Mx,yi,1,Mx,yi,2), such that

the number of columns of Mx,yi,j is equal to |wx,yi,j | = |vx,yi,j | for j ∈ {0, 1, 2}.
Then, the requirements are

– Mx,yi
·w⊺

x,yi
= 0⊺ and tvx,yi

·w⊺
x,yi
̸= 0 (i.e., the PES is trivially secure);

– Mx,yi,l · v
⊺
x,yi,l

= Mx,yj ,l · v
⊺
x,yj ,l

for all i, j and l ∈ {0, 1};
– Mx,yi,0 ·w

⊺
x,yi,0

= Mx,yj ,0 ·w
⊺
x,yj ,0

for all i, j, and
– wx,yi,1 = 0.

Proof. Note that only the second and third requirement differ from the require-
ments for collusion security in Theorem 2. In fact, we will show that the second
and third requirement imply the properties for collusion security. Suppose that
Mx,yi,l · v

⊺
x,yi,l

= Mx,yj ,l · v
⊺
x,yj ,l

holds for l ∈ {0, 1}. Then, we can create new
decompositions

M′
x,yi

= (Mx,y1,0,Mx,y1,1,Mx,yi,2)

v′
x,yi

= (vx,y1,0,vx,y1,1,vx,yi,2)

that are equivalent to the original decompositions, i.e., M′
x,yi
· (v′

x,yi
)⊺ = Mx,yi

·
v⊺
x,yi

. Furthermore, we can create vectors

w′
x,yi

= (wx,y1,0,wx,y1,1,wx,yi,2),

for which it similarly follows that they satisfy the requirements for collusion
security in Theorem 2.

Using these results, we can now more efficiently prove security of the pre-
viously considered IBE scheme. First, we eliminate the fractions from penc by
multiplying all encodings by (b+ y). This yields penc

′ = αsb+ αsx, and target
vector tv′ = αsb+ αsy. We then obtain the matrix decomposition

penc
′ = M · v⊺ =

(
x 1
)
·
(
αs
αsb

)
, with tv′ =

(
y 1
)
.
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To show that tv′ is not in the span of
(
x 1
)
, we devise the vector w =

(
−1 x

)
, for

which holds that M ·w⊺ =
(
x 1
)
·
(
−1
x

)
= 0 and tv′ ·w⊺ =

(
y 1
)
·
(
−1
x

)
= y−x,

which is not equal to 0, because P (x, y) = 0 holds if and only if x ̸= y. Now, note
that this vector also satisfies the properties required to prove collusion security
via Proposition 6.

D Linear algebra tools

For our tool, we use several linear algebra results to analyze the schemes.

D.1 Computing matrix decompositions

We compute the matrix decompositions, given a vector of encodings penc, as
follows. Let Zp(coef) denote the space used for the coefficients (associated with
the known variables), and let K = {v1, v2, ...} be the set of unknown variables.
First, we write each entry of penc in the canonical form, such that each entry
is written as a sum of monomials of the form c ·

∏
i v

ji
i /f , where c ∈ Zp(coef)

is a coefficient, ji ∈ N and f is a polynomial with coefficients in Zp(coef) and
variables in K. We then construct the vector v of the decomposition from the
unique monomials

∏
i v

ji
i /f , such that they are all linearly independent. For

schemes in which all monomials are with f ∈ Zp(coef) (and effectively, f = 1,
because coefficient c ∈ Zp(coef)), this effort is trivial. We show in Section C how
this can be done more effectively for schemes with f ̸∈ Zp(coef). Once we have
the vector v and the encodings, it is simple to construct the matrix.

D.2 Finding linear combinations

In our framework, the effort of finding attacks is equivalent to finding a linear
combination of rows of a matrix that yields the target vector. In linear algebra,
there exist various methods to find such a linear combination, e.g., Gaussian
elimination. In our tool, we use another trick, using the kernel of the matrix.

Lemma 4. Let M be a matrix, and tv be a target vector. Consider the kernel

Ker(M′) of M′ =

(
M
tv

)⊺

. Then, if there exists a vector e′ ∈ Ker(M′) in which

the last entry is −1, then e′ = (e,−1) is such that e is a linear combination with
e ·M = tv. Furthermore, such e′ exists, if tv is in the span of the rows of M.

Proof. By definition, Ker(M′) = {w |M′ ·w⊺ = 0⊺}. Hence, for e′, it holds that
M′ · (e′)⊺ = 0⊺. Because M′ · (e′)⊺ = M⊺ · e + tv⊺ · (−1) = 0⊺, we have that
M⊺ · e = tv⊺, and thus, e ·M = tv. Conversely, if tv is in the span of M, then
there exists e such that e ·M = tv, and thus, M⊺ ·e = tv⊺. From this, it follows
that M⊺ · e+ tv⊺ · (−1) = 0⊺ = M′ · (e′)⊺ = 0⊺. Hence e′ is in the kernel of M′.
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D.3 Finding all vectors with certain properties in the kernel

To prove the properties required to prove trivial and collusion security, we need
to find a vector w such that it is in the kernel of M and satisfies the property
that tv ·w⊺ ̸= 0. For collusion security, we also require that certain entries of w
need to be 0. We do this via the following lemmas.

Lemma 5. Let M be a matrix and tv be a target vector that is not in the span
of the rows of M. Let V = {v1, ..., vn} be a basis for the kernel of M. Then,
W ⊆ V with W = {v ∈ V | tv ·w⊺ ̸= 0} is not empty.

Proof. Suppose thatW = ∅. Then, for all i, it holds that tv·v⊺i = 0. Furthermore,
for all w ∈ Ker(M), because we have that w =

∑
i civi, it holds that tv ·w⊺ =

tv · (
∑

i civi)
⊺ =

∑
i ci(tv · vi) = 0. However, because tv is not in the span of

M, it should be that some vector w ∈ Ker(M) exists such that tv · w⊺ ̸= 0
(Proposition 2), this is a contradiction. Thus, W ̸= ∅.
Lemma 6. Let M be a matrix and tv be a target vector that is not in the
span of the rows of M. Let I be a set of indices such that (tv)i = 0 for all
i ∈ I. (Here, I does not need to contain all indices for which tv is 0.) Let W
be a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}. Let W ′ ⊆ W be such that
W ′ = {v ∈ W | tv · v⊺ ̸= 0}. Then, if some vector w̄ ∈ Ker(M) exists with
tv · w̄⊺ ̸= 0 and (w̄)i = 0 for all i ∈ I, then W ′ ̸= ∅.
Proof. Suppose W = {w1, ...,wn} for some n ∈ N. We use that some vector
w̄ ∈ Ker(M) exists with tv · w̄⊺ ̸= 0 and (w̄)i = 0 for all i ∈ I. In particular,
this means that w̄ =

∑
i ciwi for some coefficients ci. Then, similarly as in the

proof of Lemma 5, because tv · w̄⊺ ̸= 0, it follows that there must be at least
one i for which tv · w⊺

i ̸= 0. Hence, W ′ ̸= ∅.
Lemma 7. Let M be a matrix and tv be a target vector that is not in the span
of the rows of M. Let V = {v1, ..., vn} be a basis for the kernel of M, and let I be
a set of indices such that (tv)i = 0 for all i ∈ I. Let V ′ = {v′1, ..., v′n} be the set of
vectors in V truncated to only consider the indices in I, i.e., v′j = ({(vj)i}i∈I).
Let V = (v⊺1 , ..., v

⊺
n) and V′ = ((v′1)

⊺, ..., (v′n)
⊺) be the matrices associated with V

and V ′. Consider then a vector basis W of Ker(V′) = {w | V′ ·w⊺ = 0⊺}. Then,
W ′ = {V · w⊺ | w ∈ W} is a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}.
Proof. Let w ∈ {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}. Then, w =

∑
j cjvj for

some coefficients cj . For these coefficients, it holds that c = (c1, ..., cn) is a
vector such that V′ · c⊺ = 0⊺. Thus, c =

∑
k dkw̄k, where W = {w̄1, ..., w̄n′}.

Note that W ′ = {V · w̄⊺
1 , ...,V · w̄

⊺
n′}, where V · w̄⊺

k =
∑

j(w̄k)jvj . Substituting
cj =

∑
k dk(w̄k)j then yields

w =
∑
j

cjvj =
∑
j

(∑
k

dk(w̄k)j

)
vj

=
∑
j,k

dk(w̄k)jvj =
∑
k

dkV · (w̄⊺
k) .

Hence, W ′ is a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}.
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E Example of a JSON input

Listing 1.1. Description of the unbounded ABGW17-CP-ABE scheme in ACABELLA
format

{
"scheme_id": "abgw17 -cp -abe -complete",

"security":{
"analysis": "security",

"k": ["alpha + b*r", "r", "b'*r/(b0 + b1*y)",

↪→ "b'*r/(b0 + b1*x1)"],

"c": ["A11*s + A12*sp", "b*(A11*s + A12*sp) +

↪→ b'*s1", "s1*(b0 + b1*x1)"],

"mpk": ["b", "b0", "b1", "b'", "1"],

"key" : "alpha * s",

"unknown_vars" : ["alpha", "b", "b'", "b0", "b1",

↪→ "r", "rp", "r0", "r1", "s", "sp", "s1", "s2"],

"corruptable_vars": []

},
"master_key":{

"analysis": "master_key",

"k": ["alpha + b*r", "r", "b'*r/(b0 + b1*y)",

↪→ "b'*r/(b0 + b1*x1)"],

"master_key": "alpha",

"unknown_vars" : ["alpha", "b", "b'", "b0", "b1",

↪→ "r", "rp", "r0", "r1", "s", "sp", "s1", "s2"],

"corruption_model" : "NoCorruption",

"corruptable_vars": [],

"MPK_CA": ["alpha"],

"MPK_AA": [],

"MPK_vars": ["b", "b0", "b1", "b'"],
"GP_vars": []

},
"decryption":{

"analysis": "decryption",

"k": ["alpha + b*r", "r", "b'*r/(b0 + b1*y)",

↪→ "b'*r/(b0 + b1*x1)", "alpha + b*rp", "rp",

↪→ "b'*rp/(b0 + b1*y)", "b'*rp/(b0 + b1*x2)"],

"c": ["s + sp", "b*(s + sp) + b'*s1", "s1*(b0 +

↪→ b1*x1)", "-sp", "-b*sp + b'*s2", "s2*(b0 +

↪→ b1*x2)"],

"mpk": ["b", "b0", "b1", "b'", "1"],

"gp": [],

"key" : "alpha * s",

"unknown_vars" : ["alpha", "b", "b'", "b0", "b1",

↪→ "r", "rp", "r0", "r1", "s", "sp", "s1", "s2"],

"corruption_model": "NoCorruption",

"corruptable_vars": [],

"MPK_AAi": [],

"MPK_AAj": [],
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"misc_vars": []

}
}

F ACABELLA outputs

F.1 The BB-IBE1 scheme

Listing 1.2. Transcript of the FABEO property for the BB-IBE1 scheme

MPK encodings: [b0, b1]

Key encodings: [alpha + b0*r +

↪→ b1*r*y, r]

Ciphertext encodings: [b0*s + b1*s*x, s]

Generating transcript that proves that the FABEO

↪→ property holds ..

For the transcript , we use the following

↪→ reference vector of monomials:

[b0*r*s, b1*r*s, alpha*s]

The vector with 1 in the entry

↪→ corresponding to alpha*s and 0 in

↪→ the entry corresponding to is:

[x/(-x + y), -1/(-x + y), 1]

F.2 The RW13 scheme

Listing 1.3. Transcript of the FABEO property for the RW13 scheme

MPK encodings: [b0, b1, b,

↪→ bp]

Key encodings: [alpha +

↪→ b*r, b0*rp + b1*rp*y + bp*r, r, rp ,

↪→ b0*rp2 + b1*rp2*z + bp*r, rp2]

Ciphertext encodings: [b*s + bp*sp - v2,

↪→ b0*sp + b1*sp*x, s, sp , bp*sp2 + v2,

↪→ b0*sp2 + b1*sp2*z, sp2]

Generating transcript that proves that the FABEO

↪→ property holds ..

For the transcript , we use the following

↪→ reference vector of monomials:

[r*v2, b*r*s, bp*r*sp , b0*r*sp ,

↪→ b1*r*sp , bp*r*sp2, b0*r*sp2,

↪→ b1*r*sp2, rp*v2, b*rp*s,

↪→ bp*rp*sp, b0*rp*sp, b1*rp*sp,
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↪→ bp*rp*sp2, b0*rp*sp2,

↪→ b1*rp*sp2, rp2*v2, b*rp2*s,

↪→ bp*rp2*sp, b0*rp2*sp,

↪→ b1*rp2*sp , bp*rp2*sp2,

↪→ b0*rp2*sp2, b1*rp2*sp2,

↪→ alpha*s, b0*rp*s, bp*r*s,

↪→ b1*rp*s, b0*rp2*s, b1*rp2*s,

↪→ alpha*sp , b*r*sp , alpha*sp2,

↪→ b*r*sp2]

The vector with 1 in the entry

↪→ corresponding to alpha*s and 0 in

↪→ the entries corresponding to

↪→ alpha*sp,alpha*sp2 is:

[0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ -x/(x - y), 1/(x - y), 0, 0, 0

↪→ , 0, 0, 0, -x/(x - z), 1/(x -

↪→ z), 0, 0, 0, 1, 0, 0, 0, 0, 0

↪→ , 0, 0, 0, 0]

The vector with 1 in the entry

↪→ corresponding to alpha*sp and 0 in

↪→ the entries corresponding to

↪→ alpha*s,alpha*sp2 is:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ 0, 0, 0, 0, 0, 0, 0, 0, 1,

↪→ -1, 0, 0]

The vector with 1 in the entry

↪→ corresponding to alpha*sp2 and 0 in

↪→ the entries corresponding to

↪→ alpha*s,alpha*sp is:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

↪→ 1, -1]

F.3 A new unbounded CP-ABE scheme

Listing 1.4. Transcript for the new unbounded CP-ABE scheme

MPK encodings: [b, b0, b1, 1]

Key encodings: [(alpha + r)/b, r,

↪→ r/(b0 + b1*x1), r/(b0 + b1*y)]

Ciphertext encodings: [b*s, (b0 + b1*x1)*(A11*s +

↪→ A12*sp), (b0 + b1*x2)*(A21*s + A22*sp)]
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Substitutions for the terms associated with the blinding

↪→ value:

- alpha*b*b0**2*s : (-A12*x2 + A12*y)/A11 +

↪→ (-A12*x1*x2 + A12*x1*y)/A11

- alpha*b*b0*b1*s : 0

- alpha*b*b1**2*s : 0

Substitutions for the special terms that are shared among

↪→ keys and are not associated with the blinding value:

- alpha*b0**3*s : 0

- alpha*b0**3*sp : 0

- alpha*b0*b1**2*s : 0

- alpha*b0**2*b1*s : 0

- alpha*b1**3*s : 0

- alpha*b0*b1**2*sp : 0

- alpha*b0**2*b1*sp : 0

- alpha*b1**3*sp : 0

- alpha*b*b0**2 : 0

- alpha*b*b0*b1 : 0

- alpha*b*b1**2 : 0

- alpha*b0**3 : 0

- alpha*b0**2*b1 : 0

- alpha*b0*b1**2 : 0

- alpha*b1**3 : 0

- alpha*b0**2 : 0

- alpha*b0*b1 : 0

- alpha*b1**2 : 0

- b**3*b0**2*s : 0

- b**3*b0*b1*s : 0

- b**3*b1**2*s : 0

- b**2*b0**3*s : 0

- b**2*b0**2*b1*s : 0

- b**2*b0*b1**2*s : 0

- b**2*b1**3*s : 0

- b**2*b0**2*s : 0

- b**2*b0*b1*s : 0

- b**2*b1**2*s : 0

- b**2*b0**3*sp : 0

- b**2*b0*b1**2*sp : 0

- b**2*b0**2*b1*sp : 0

- b**2*b1**3*sp : 0

- b*b0**4*s : 0

- b*b0**4*sp : 0

- b*b0**3*b1*s : 0

- b*b0**2*b1**2*s : 0

- b*b0**3*b1*sp : 0

- b*b0**2*b1**2*sp : 0

- b*b0*b1**3*s : 0

- b*b0*b1**3*sp : 0

- b*b1**4*s : 0



ACABELLA 49

- b*b1**4*sp : 0

- b*b0**3*s : 0

- b*b0**3*sp : 0

- b*b0*b1**2*s : 0

- b*b0**2*b1*s : 0

- b*b1**3*s : 0

- b*b0*b1**2*sp : 0

- b*b0**2*b1*sp : 0

- b*b1**3*sp : 0

Substitutions for the rest of the terms:

- b*b0**2*r*s : (A11*A22*x1**2 -

↪→ A12*A21*x2**2)/(A11*A21*x1 - A11*A21*x2) +

↪→ (A11*A22*x1**2*x2 -

↪→ A12*A21*x1*x2**2)/(A11*A21*x1 - A11*A21*x2)

- b*b0*b1*r*s : (-A11*A22*x1 +

↪→ A12*A21*x2)/(A11*A21*x1 - A11*A21*x2) +

↪→ (-A11*A22*x1*x2 + A12*A21*x1*x2)/(A11*A21*x1

↪→ - A11*A21*x2)

- b*b1**2*r*s : (A11*A22 - A12*A21)/(A11*A21*x1 -

↪→ A11*A21*x2) + (A11*A22*x2 -

↪→ A12*A21*x1)/(A11*A21*x1 - A11*A21*x2)

- b0**3*r*s : 0

- b0**3*r*sp : 0

- b0*b1**2*r*s : 0

- b0**2*b1*r*s : 0

- b1**3*r*s : 0

- b0*b1**2*r*sp : 0

- b0**2*b1*r*sp : 0

- b1**3*r*sp : 0

- b**2*b0**2*r*s : 0

- b**2*b0*b1*r*s : 0

- b**2*b1**2*r*s : 0

- b*b0**3*r*s : 0

- b*b0**3*r*sp : 0

- b*b0*b1**2*r*s : 0

- b*b0**2*b1*r*s : 0

- b*b1**3*r*s : 0

- b*b0*b1**2*r*sp : 0

- b*b0**2*b1*r*sp : 0

- b*b1**3*r*sp : 0

- b**2*b0*r*s : 0

- b**2*b1*r*s : 0

- b*b0**2*r*sp : -x1*x2 - x1 - x2

- b*b0*b1*r*sp : 1

- b*b1**2*r*sp : 1

- b*b0**2*r : 0

- b*b0*b1*r : 0

- b*b1**2*r : 0

- b0**3*r : 0
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- b0**2*b1*r : 0

- b0*b1**2*r : 0

- b1**3*r : 0

- b0**2*r : 0

- b0*b1*r : 0

- b1**2*r : 0

- b**2*b0**2*r : 0

- b**2*b0*b1*r : 0

- b**2*b1**2*r : 0

- b*b0**3*r : 0

- b*b0**2*b1*r : 0

- b*b0*b1**2*r : 0

- b*b1**3*r : 0

- b**2*b0*r : 0

- b**2*b1*r : 0

- b*b0*r : 0

- b*b1*r : 0


	ACABELLA: Automated (Crypt)analysis of Attribute-Based Encryption Leveraging Linear Algebra
	Introduction
	Our contributions
	Comparison with AC17, ABGW17 and RW22
	Organization

	Preliminaries
	Pairings
	Attribute-based encryption
	Multi-authority ABE
	Instances of predicates
	The Venema-Alpár framework
	Trivial and collusion security
	The ABGW17 framework
	The AC17 framework
	The RW22 framework

	Our framework for security proofs and attacks
	Matrix notation
	Finding attacks with the matrix notation
	Determining whether attacks exist (or not)
	Proving trivial security
	Proving collusion security
	Notation for the proofs
	Proofs for unbounded-size predicates

	Security proofs for PES-AC17
	Proving the symbolic property
	Proving Sym-Prop+
	Proving the FABEO property

	Description of the ACABELLA tool
	Analysis functionality
	Availability of the ACABELLA tool
	ACABELLA JSON format
	Using the ACABELLA tool

	Examples: security proofs and attacks
	The BB-IBE1 scheme
	The RW13 scheme
	The unbounded ABGW17-CP scheme
	A new unbounded CP-ABE scheme
	More examples

	Conclusions
	Further definitions
	Security against chosen-plaintext attacks
	The attack models

	Remainder of lemmas and proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Proposition 3
	Proof of Theorem 2
	Lemmas for the notation of the proofs
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Proposition 4

	Security proofs for schemes with rational fractions
	Linear algebra tools
	Computing matrix decompositions
	Finding linear combinations
	Finding all vectors with certain properties in the kernel

	Example of a JSON input
	ACABELLA outputs
	The BB-IBE1 scheme
	The RW13 scheme
	A new unbounded CP-ABE scheme



