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Abstract

A wiretap coding scheme for a pair of noisy channels (ChB,ChE) enables Alice to reliably
communicate a message to Bob by sending its encoding over ChB, while hiding the message from
an adversary Eve who obtains the same encoding over ChE.

A necessary condition for the feasibility of wiretap coding is that ChB is not a degradation of
ChE, namely Eve cannot simulate Bob’s view. While insufficient in the information-theoretic
setting, a recent work of Ishai, Korb, Lou, and Sahai (Crypto 2022) showed that the non-
degradation condition is sufficient in the computational setting, assuming idealized flavors
of obfuscation. The question of basing a similar feasibility result on standard cryptographic
assumptions was left open, even in simple special cases.

In this work, we settle the question for all discrete memoryless channels where the (common)
input alphabet of ChB and ChE is binary, and with arbitrary finite output alphabet, under
standard (sub-exponential) hardness assumptions: namely those assumptions that imply indis-
tinguishability obfuscation (Jain-Lin-Sahai 2021, 2022), and injective PRGs. In particular, this
establishes the feasibility of computational wiretap coding when ChB is a binary symmetric
channel with crossover probability p and ChE is a binary erasure channel with erasure probability
e, where e > 2p.

On the information-theoretic side, our result builds on a new polytope characterization of
channel degradation for pairs of binary-input channels, which may be of independent interest.
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1 Introduction
A primary focus of algorithmic coding theory is the construction of codes enabling efficient decoding
of noisily perturbed codewords. Along the way, however, we often run into the hardness of recovering
from different kinds of noise. For example, a random binary linear code of constant rate allows
for efficient decoding of a codeword where each bit of the codeword is erased and replaced with a
special ⊥ symbol with some constant probability. In contrast, despite decades of study, we have no
efficient algorithms for decoding random binary linear codes when each bit of the codeword can be
flipped with any constant probability. Indeed, the conjectured hardness of this task is formalized
as the Learning Parity with Noise (LPN) assumption [5]. On the flip side, the contrast between
efficient decoding from one kind of noise and hardness of decoding from another serves as a useful
basis for a variety of cryptographic primitives, including public-key encryption [2] and much more.

In this work we ask: How general is this phenomenon?

For example, can we turn things around and construct a specially-designed code (not a random
binary linear code) that allows for efficient decoding from a constant probability p of bit flipping, but
where any constant probability e > 2p of erasures makes decoding computationally intractable? Note
that if e ≤ 2p, then the task becomes impossible, since a probability e erasure can be transformed
into a probability p bit-flip by simply replacing ⊥ symbols with random bits. At the same time,
to make the question meaningful, we need to choose the parameters so that the erasure decoding
problem is still information-theoretically possible. Note that linear codes do not suffice in this case,
since their decoding can always be done in polynomial time by solving a system of linear equations.

As far as we know, even this very natural and simple question did not have any affirmative
answers until very recently – and before this paper, this question had no affirmative answer where
the hardness we seek can be reduced to well-studied hardness conjectures.

Wiretap Coding. An information-theoretic study of the above question, where computational
hardness is replaced by information loss, was pioneered in the seminal work of Wyner [20] on wiretap
channels. Wiretap coding enables secure message transmission using only unidirectional communica-
tion over noisy channels. This should be contrasted with the use of public-key cryptography for
exchanging secret keys, which inherently requires bidirectional communication. In a sense, wiretap
coding trades reduced interaction for physical assumptions. Wyner’s work has spawned a large
body of work in the borderline of information theory and cryptography, and serves as the basis of a
research area known as physical layer security. See, e.g., [16] for a survey.

More concretely, given a pair of noisy channels (ChB,ChE) (here we only consider discrete
memoryless channels), a wiretap coding scheme enables Alice to reliably send a message m to an
honest Bob by sending a (randomized) encoding of m over ChB. Given the noisy encoding, Bob
should be able to decode m with negligible failure probability. On the other hand, an adversary Eve
who obtains the same encoding through the channel ChE, should learn essentially nothing about m.

For which pairs of channels (ChB,ChE) is wiretap coding at all possible? A simple necessary
condition is captured by the following notion of (stochastic) degradation: We say that ChB is a
degradation of ChE if there is a probabilistic function S such that, for every input x, the output
of ChB(x) is identically distributed to S(ChE(x)). In such a case, it is possible for Eve to use S to
perfectly simulate Bob’s view, and wiretap coding is clearly impossible.

Is wiretap coding possible whenever ChB is not a degradation of ChE? Somewhat unexpectedly,
the answer is no. This is implied by a general characterization due to Csiszár and Korner [8]. In the
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special case where ChB is a binary symmetric channel BSCp (flipping each bit with probability p)
and ChE is a binary erasure channel BECe (erasing each bit with probability e), wiretap coding is
possible if and only if e > 4p(1− p) [15], whereas ChB is not a degradation of ChE whenever e > 2p.

Computational Wiretap. The above gap begs the following natural question: Is the non-
degradation condition sufficient for computational wiretap coding, where all parties are computa-
tionally bounded? In particular, here security should only hold against a polynomial-time Eve.
This question was studied in the recent work of Ishai, Korb, Lou, and Sahai [12], who showed that
the non-degradation condition is sufficient in this setting, assuming idealized flavors of obfuscation.
Concretely, rather than rely on the standard indistinguishability obfuscation (iO) primitive, which
can now be based on well-studied cryptographic assumptions [13, 14], the construction required
Alice to send an obfuscated program over a channel, but its analysis treated the program as an
oracle, relying on an idealized notion of “virtual black-box” obfuscation [4]. The question of basing
a similar feasibility result on standard cryptographic assumptions was left open in [12], even in
simple special cases such as the (BSCp,BECe) case.

While we now have a sophisticated toolbox of techniques to replace ideal obfuscation by
iO [9, 17], these techniques apply in the context of obfuscating a cryptographic primitive, such as
a pseudorandom function, building on the security properties of the primitive. In contrast, the
constructions of [12] obfuscate non-cryptographic “evasive” functions [3], which poses a challenge to
current techniques of leveraging iO.

1.1 Our Contribution

Our main result settles the computational wiretap coding question, under the standard assumptions
that iO and injective pseudorandom generators (PRGs) exist, for the case where the (common)
input alphabet of ChB and ChE is binary. Here the output alphabets can be of any (finite) size.

Theorem 1. Assuming the existence of iO and injective PRGs, there exists a computational wiretap
coding scheme for any pair of binary-input channels (ChB,ChE) such that ChB is not a degradation
of ChE.

As a special case, under the same standard assumptions, there is a computational wiretap coding
for (BSCp,BECe) if (and only if) e > 2p. In fact, this settles the broad coding question posed in
the beginning of the introduction, with respect to probabilistic encodings, for the case of binary
error-correcting codes with arbitrary channel noise.

On the information-theoretic side, a technical tool we develop for proving Theorem 1 is a complete
polytope characterization of stochastic channel degradation for pairs of binary-input channels. To
state this characterization, we will need the following definition.

Definition 1 (Channel Polytope). Let A be a real-valued matrix of non-negative entries. We
associate to A the following polytope, denoted P(A), which can be defined in either of the following
equivalent ways:

• P(A) is the convex hull of all subset-sums of columns of A.

• P(A) = {A · s : 0 ≤ s ≤ 1}
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Theorem 2. Let B,E be non-negative matrices with two rows that satisfy B ·1 = E ·1, representing
binary-input channels ChB and ChE respectively. Then P(B) ⊆ P(E) if and only if ChB is a
degradation of ChE.

We also show that this characterization does not extend to general input alphabets of size greater
than two. That is, we show an explicit counterexample for the case of B,E with three rows (ternary
input alphabets) where P(B) ⊆ P(B) yet ChB is not a degradation of ChE.

Perspective: Average-Case Complexity with Side-Information. One can also view our
main result from the lens of average-case complexity in the presence of side-information. One way to
design a computational wiretap coding scheme is by constructing hard average-case planted problems
(e.g., a planted random CSP or a planted graph problem) with sharp algorithmic thresholds with
respect to side information about the planted assignment. We can model such a problem as an
inversion problem where we denote y = Pe,p(x), where a planted assignment x← {0, 1}n is chosen
at random and the parameters e, p denote erasure and bit-flip probabilities, respectively. The
properties we want are:

• If one is additionally given x′ that is formed by erasing an e-fraction of the bits of x at random,
recovering x from y should be hard.

• On the other hand, given x′ that is formed by flipping a p-fraction of the bits of x at random,
recovering x from y becomes easy.

We desire these properties to hold even when e is barely greater than 2 · p, thereby requiring a very
sharp threshold. As an example, consider the case e = 0.22 and p = 0.1, in which case the x′

flip
formed by flipping agrees with x on roughly 90% fraction of the bits whereas x′

erasure erases out a
22% fraction of the bits. By randomly guessing the erased bits we can come up with a string rerasure
that agrees with x on 89% of the bits of x, barely less than the agreement of x′

flip with x.
To our surprise, this seemingly very natural class of problems has not been very well studied.

One notable example of such study is in the context of Goldreich’s one-way functions, that have
been shown to have a self-correction property. In particular, Goldreich’s one-way functions satisfy
the above property when e = 1 and p = 1

2 − ϵ for any constant ϵ > 0 [6]. In this work, we show
that relying on well-studied hardness assumptions we can construct a problem with these exact
properties for any choice of parameters satisfying e > 2p.

Open Questions. Our work gives rise to several natural open questions.

• Can Theorem 1 be extended to an arbitrary pair of channels satisfying the non-degradation
condition, removing the binary-input requirement? The failure of Theorem 2 to extend to this
general case is the most immediate roadblock.

• Are strong cryptographic assumptions such as iO, or even “public-key” assumptions, necessary?
For instance, does computational wiretap coding for (BSC0.1,BEC0.3) imply secret key exchange
in the plain model?

• Theorem 1 implies randomized encoding schemes which support efficient decoding of 0.1-
fraction of random errors but cannot be efficiently decoded from a 0.3-fraction of random
erasures (though inefficient decoding is possible). Can such codes be constructed more directly?
Can the encoding function be made deterministic? See Section 4.1 for discussion.
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• Can our technique for replacing ideal obfuscation of a “non-cryptographic” program by iO be
extended to apply to other applications, such as secure computation over unidirectional noisy
channels [1]?

2 Technical Overview
We will represent a channel ChB by a row-stochastic matrix B ∈ [0, 1]2×nB and ChE is by a row-
stochastic matrix E ∈ [0, 1]2×nE where the (i, j)-th entry of the matrix gives the probability that
the ith input alphabet symbols maps to the jth output alphabet symbol when passed through
the channel. We are given that ChB is not a degradation of ChE: This means that there does not
exist ChS (represented by a row stochastic matrix S ∈ [0, 1]nE×nB ) such that ChB = ChS ◦ ChE
(equivalently B = E · S). Throughout this technical overview, we will refer to channels and their
row-stochastic matrix representations interchangeably.

2.1 A Construction for BSCp and BECe channels

We begin with a useful special case: the setting in which Bob’s channel B is a BSCp channel (a
sent bit b is received as 1 − b with probability p and received as b with probability 1 − p) and
Eve’s channel E is a BECe channel (a sent bit b is erased with probability e and received as b with
probability 1− e) for some channel parameters p and e. As we will see below, handling this case
will be fundamental to handling the general case.

The Degradation Condition. In this setting, it is easy to see that ChB is not a degradation of
ChE if and only if e > 2p. That is, Eve’s best guessing strategy for each of her erasures to randomly
guess a bit, so if e > 2p, then Eve cannot hope in expectation to produce a received string with
a p error rate. And if e ≤ 2p, Eve perfectly simulates receiving an output form ChB by randomly
assigning a random bit for each of her received erasures (and depending on p, possibly introducing
more intentional errors in her received non-erasures).

We now introduce some useful notation. Consider a randomly chosen string x ∈ {0, 1}λ for
a large (security) parameter λ passed through ChB and ChE. Let zB denote the string that is
received by Bob and zE the string that is received by Eve. Denote by ∆H(⋆, ⋆) the Hamming
distance function between two strings and by ∆c(⋆, ⋆) the function that outputs the number of
indices on which the input strings agree. Since Bob’s channel is BSCp, we have that with high
probability ∆c(zB, x) ≈ (1 − p)λ where ≈ subsumes o(λ0.51) additive error given by a standard
Chernoff bound. On the other hand, when x is passed through Eve’s channel BECe we will receive
a string zE ∈ {0, 1,⊥}λ where ⊥ denote erasures. Let S⊥ denote the indices where the erasures
occur and S⊥ denote the remaining indices. For every index in S⊥, zE will completely agree with x.
On the other hand, we have no information about xS⊥ given zE . Therefore the best we can do is
produce a random string v which agrees with xS⊥ at roughly |S⊥|

2 locations. This lets us come up
with a string rE for which ∆c(x, rE) ≈ |S⊥|

2 + |S⊥|. With high probability, this number is roughly
(1− e

2) · λ.
When Bob’s channel is not a degradation of Eve’s channel we have e

2 > p. As a consequence, Bob’s
received string zB for which ∆c(x, zB) ≈ (1−p)·λ agrees with x at approximately (1−p)·λ−(1− e

2)·λ =
( e

2−p)·λ more locations than the best string rE that Eve can construct for which ∆c(x, rE) ≈ (1− e
2)·λ.

We want to make use of this fact to build our wiretap coding scheme.
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C(z):
Input: z ∈ {0, 1}λ
Hardwired: x ∈ {0, 1}λ

1. Check ∆c(x, z) > (1− p) · λ− λ0.9.

2. If the check passes, output m otherwise output ⊥.

Figure 1: Circuit C

Prior Work: Using Ideal Obfuscation. How do we use this observation to construct a
computational wiretap coding scheme for this case? Prior work [12] leverages an ideal obfuscation
scheme and exactly exploits the above idea. Recall that in the ideal obfuscation model, one can
obfuscate any circuit C to produce a functionally equivalent obfuscated circuit C̃ = O(C), and any
efficient adversary that obtains C̃ can be computationally simulated by a polynomial time algorithm
Sim that gets oracle access to C but doesn’t get C̃ itself. To encode a bit m ∈ {0, 1}, the prior
work suggested that we obfuscate using an ideal obfuscation scheme the circuit C given below. In
the program, x is chosen at random from {0, 1}λ. The encoding algorithm sends out C̃ encoded
using an appropriate error-correcting coding scheme for ChB, so that Bob can receive C̃ completely.
Further, x is sent out through the channel ChB as is. At the end Bob receives C̃ and ChB(x) = zB.
On the other hand, Eve will receive ChE(x) = zE , and for the security analysis, we assume that Eve
is also able to recover C̃. Based on the previous insight, we now make the following observations:

• (Correctness for Bob): As described previously, with overwhelming probability ∆c(x, zB) >
(1− p) · λ− o(λ0.51). Therefore, the first check in the description of C will pass if we evaluate
it on zB. Thus, Bob can recover m by computing C̃(zB).

• (Security against Eve): We start with the observation that the best string that Eve can
construct agrees at about constant fraction ( e

2 − p) fewer number of indices than the required
threshold (1− p) · λ− λ0.9. Furthermore, recall that Eve can be simulated by an efficient Sim
that only has oracle access to C. Putting these two observations together, we observe that
having oracle access to C is worthless: all queries to query C will produce an output of ⊥.
Thus, the message m is hidden from Eve.

In [12], the authors show that the same template described above can be extended to construct
wiretap computational encoding scheme for arbitrary (multi-input/multi-output) channel pairs
(ChB,ChE) satisfying the non-degradation condition.

Leveraging Indistinguishability Obfuscation. The above solution relies on ideal obfuscation,
and uses it in a very interesting way. Our goal, however, is to try to solve the wiretap coding problem
based on well-studied hardness conjectures, and unfortunately this type of ideal obfuscation is not
known to exist under well-studied hardness conjectures. On the other hand, indistinguishability
obfuscation iO has recently been achieved from well-studied hardness conjectures [13]. However, iO
provides a fundamentally different kind of security guarantee compared to ideal obfuscation. iO
guarantees that any two circuits C0, C1 of same size and identical input-output behavior must yield
computationally indistinguishable obfuscations. What makes it hard to use iO is that in this case
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circuit C in Figure 1 is not functionally equivalent to the always-⊥ circuit. In fact, these circuits
differ at any points for which ∆c(x, z) > (1− p) · λ− λ0.9, which could be an exponential number of
points.

Using iO instead of ideal obfuscation will require some new tools. We now elaborate:

Gadget: PRG with Self-Correction. Consider the following variant of an injective pseudoran-
dom generator denoted by SC-PRG. SC-PRGϵ is indexed with a parameter ϵ ∈ (0, 1

2 ] which is some
constant. This PRG satisfies the following properties:

• (Polynomial Stretch and Pseudorandomness) Just like a regular PRG, SC-PRGϵ : {0, 1}λ →
{0, 1}pϵ(λ) maps λ bits to pϵ(λ) bits for some polynomial pϵ(λ)≫ 2 · λ (that could depend on
ϵ). Further, for a randomly chosen seed Seed ∈ {0, 1}λ, y = SC-PRGϵ(Seed) is computationally
indistinguishable to a truly random string y′.

• (Self-Correction) There exists an efficient algorithm SC-PRGϵ.Self-Correct(y,Seed′) with the
property that for overwhelming choices of Seed ∈ {0, 1}λ it holds that given y = SC-PRGϵ(Seed)
along with an arbitrary side-information string Seed′ ∈ {0, 1}λ that agrees with Seed on at
least (1

2 + ϵ) fraction of bits — that is, such that ∆c(Seed, Seed′) > (1
2 + ϵ)λ — the algorithm

will be able to successfully recover Seed itself.

In fact, the work of [6] showed that Goldreich PRGs (even with linear stretch Ωϵ(λ)) satisfy the
self-correction property we are looking for. In our work (see below for more intuition), we show how
to construct a PRG with self-correction from any injective PRG.

Using PRG with Self-Correction with iO. We now describe how this new gadget can help
us leverage the power of iO in our security proof. To encode m ∈ {0, 1}, we give out C̃ = iO(C)
as an obfuscation of the circuit C, described in Figure 1, which is encoded using an appropriate
coding scheme for Bob’s channel ChB so that Bob can reconstruct it. Further x is transported to
Bob without any encoding via ChB. In this case, Eve’s view consist of C̃ and ChE(x) = zE . We
now describe how we can switch computationally un-detectably an obfuscation of C̃ (even given zE)
from an obfuscation of the circuit in Figure 1 to an obfuscation of the always-⊥ circuit, from Eve’s
point of view.

Step 1: Hardwiring part of Eve’s view into the ciruit. As a crucial first step, we observe
that in the proof, we can have intermediate hyrbids where the circuit to be obfuscated actually
depends on Eve’s received string zE , where zE is a string in {0, 1,⊥}λ and ⊥ denotes an erasure.
If S⊥ is the set of erased locations and S⊥ is the set of non erased locations, then, we have that
zE

S⊥
= ⊥|S⊥| and zE

S⊥
= xS⊥

. In the first step, we replace C̃ to now be an iO obfuscation of the
circuit C(1) described in Figure 2. Notice that circuits C(1) and C are functionally equivalent.
This equivalence is because ∆c(x, z) = ∆c(xS⊥ , zS⊥) + ∆c(xS⊥

, zS⊥
) since the set S⊥ and S⊥ form

a partition of [λ]. Therefore, due to iO security the change is computationally indistinguishable
assuming we pad the circuits appropriately before computing the iO obfuscation.

Step 2: Using the SC-PRGϵ scheme. So far, it may seem that we have not done anything
interesting. The change was merely syntactical. But now, we observe that Eve has absolutely
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C(1)(z):
Input: z ∈ {0, 1}λ
Hardwired: x ∈ {0, 1}λ, set S⊥ and S⊥

1. Check ∆c(xS⊥ , zS⊥) + ∆c(xS⊥
, zS⊥

) > (1− p) · λ− λ0.9.

2. If the check passes, output m otherwise output ⊥.

Figure 2: Circuit C(1)

zero information about xS⊥ , while Bob does! This fact enables us to leverage the self-correcting
properties of the SC-PRG scheme. We compute SC-PRGϵ(xS⊥) = y where we describe how we set
the constant ϵ > 0 shortly. In the new circuit C(2) (Figure 3), we no longer hardwire x completely.
This time, we will only hardwire the non-erased portion xS⊥

and instead of hardwiring xS⊥ , we
hardwire SC-PRGϵ(xS⊥) = y. To maintain functional equivalence, the circuit C(2) will derive xS⊥

from y.

C(2)(z):
Input: z ∈ {0, 1}λ
Hardwired: xS⊥

∈ {0, 1}S⊥ , set S⊥ and S⊥, ϵ = (1
2 −

p
e ) · 1

2 ∈ (0, 1
4 ] and y = SC-PRGϵ(xS⊥),

1. Run SC-PRGϵ.Self-Correct(y, zS⊥) = s and check if s = xS⊥ by checking if SC-PRGϵ(s) = y.
If the check fails output ⊥. Else set xS⊥ = s and continue,

2. Check ∆c(xS⊥ , zS⊥) + ∆c(xS⊥
, zS⊥

) > (1− p) · λ− λ0.9.

3. If the check passes, output m otherwise output ⊥.

Figure 3: Circuit C(2)

The idea is that if the following check passes on any given input z:

∆c(xS⊥ , zS⊥) + ∆c(xS⊥
, zS⊥

) > (1− p)λ− λ0.9, (1)

that means that:

∆c(xS⊥ , zS⊥) > (1− p) · λ− λ0.9 −∆c(xS⊥
, zS⊥

).

The maximum value of ∆c(xS⊥
, zS⊥

) = |S⊥|. With overwhelming probability, |S⊥| ∈ [e · λ −
λ0.9, e · λ+ λ0.9] and therefore |S⊥| ∈ [(1− e) · λ− λ0.9, (1− e) · λ+ λ0.9]. Therefore, we have that
with overwhelming probability over the size of S⊥, for any z satisfying the check in Equation 1, we
have:

∆c(xS⊥ , zS⊥) > (e− p) · λ− 2 · λ0.9.

8



Since with overwhelming probability over erasures, |S⊥| ∈ [e · λ− λ0.9, e · λ+ λ0.9], the above
equation can be rephrased as:

∆c(xS⊥ , zS⊥) > (1− p

e
)︸ ︷︷ ︸

1
2 +ϵ′ (ϵ′= 1

2 − p
e

)

·|S⊥| −O(λ0.9).

Therefore, with overwhelming probability over the number of erasures, for any z satisfying
Equation 1 it must hold that zS⊥ agrees with xS⊥ at roughly 1 − p

e = 1
2 + ϵ′ fraction of indices

(ignoring the O(λ−0.9) term), where ϵ′ = 1
2 −

p
e . Since e > 2p because of the non-degradation

condition, we have ϵ′ > 0. To be on the conservative side, we choose the self-correction threshold
ϵ = ϵ′

2 > 0.
Putting this all together, in the circuit C(2), we have y = SC-PRGϵ(xS⊥) hardwired. The circuit

will takes input z, and uses it to “derive” xS⊥ by running SC-PRGϵ.Self-Correct(y, zS⊥). Then it
will perform all the checks as before. Due to self-correction property of SC-PRG, with overwhelming
probability over the locations S⊥, S⊥ and the choice of xS⊥ the circuits C(2) and C(1) are functionally
equivalent. For any input z that satisfies the check in C(1) given by Equation 1, we will also have
that zS⊥ will agree with xS⊥ on at least 1

2 + ϵ fraction of indices as argued before. With high
probability over xS⊥ , it holds that SC-PRGϵ.Self-Correct(y, r) = xS⊥ for every r that agrees with
xS⊥ on at least 1

2 + ϵ fraction of indices. Therefore with overwhelming probability on the choice of
S⊥ and xS⊥ , on input any such z that passes check in Equation 1, we can recover xS⊥ uniquely.
Therefore, the two circuits are functionally identical; if the check in Equation 1 does not pass, both
circuits output ⊥ anyway. Because of this, we can appeal to iO security and argue computational
indistinguishability for the change.

The final step: Exploiting Eve’s ignorance. Recall that given zE and conditioned on erased
indices S⊥, the distribution xS⊥ is identically uniform. Therefore, we can switch the iO obfuscation
of the circuit C(2) with an obfuscation of C(3) described in Figure 4 where the only change is that now
y is sampled as a uniformly random string in {0, 1}pϵ(|S⊥|) as opposed to being y = SC-PRGϵ(xS⊥).
With overwhelming probability |S⊥| = Ω(λ) and therefore, this change is indistinguishable due to
the security of SC-PRG.

C(3)(z):
Input: z ∈ {0, 1}λ
Hardwired: xS⊥

∈ {0, 1}S⊥ , set S⊥ and S⊥, ϵ = (1
2 −

p
e ) · 1

2 ∈ (0, 1
4 ] and y ← {0, 1}pϵ(|S⊥|),

1. Run SC-PRGϵ.Self-Correct(y, zS⊥) = s and check if s = xS⊥ by checking if SC-PRGϵ(s) = y.
If the check fails abort. Else set xS⊥ = s and continue,

2. Check ∆c(xS⊥ , zS⊥) + ∆c(xS⊥
, zS⊥

) > (1− p) · λ− λ0.9.

3. If the check passes, output m otherwise output ⊥.

Figure 4: Circuit C(3)

Finally observe that if SC-PRG is sufficiently expanding, with overwhelming probability for any
y that is chosen at random, there will not exist any xS⊥ such that y = SC-PRGϵ(xS⊥). Therefore,
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with overwhelming probability over y, the circuit C(3) is functionally equivalent to the always-⊥
circuit. Thus using iO security, we can switch C̃ to be an obfuscation of the always-⊥ circuit. This
finishes the overview of the proof of security of the wiretap scheme.

Constructing Self-Correcting PRGs from any Injective PRGs. One issue that we should
address is that as far as we know the only currently known instantiations of such self-correcting
PRGs are Goldreich PRGs [6]. We in fact show that any injective PRG suffices for constructing a
self-correcting PRG.

Suppose we have an injective PRG G : {0, 1}λ → {0, 1}κ mapping λ bits to κ bits for some
polynomial κ(λ) that we will work out below. Additionally, we use a powerful tool from coding
theory: a polynomial rate list-decodable code Cϵ′ = (Enc,Dec). The code is parameterized with any
constant ϵ′ ∈ (0, 1

2) and satisfies the following properties:
• (Polynomial rate) The encoding algorithm Enc is a polynomial deterministic algorithm mapping

Enc : {0, 1}λ → {0, 1}n for some polynomial n(λ) > λ.

• (List Decoding) The Dec algorithm is a polynomial time algorithm with the property that
for any c such that ∆H(c,Enc(α)) < (1

2 − ϵ′) · n, the algorithm outputs a list of size at most
poly(λ, 1

ϵ′ ) of elements in {0, 1}λ that contains α.
Such a coding scheme exists by [19] and many appropriate schemes have been well-explored [18,

11, 10]. Once we have both these ingredients, the function SC-PRGϵ can be described as follows. On
input a string x = (x1 ∈ {0, 1}n, x2 ∈ {0, 1}λ), to compute SC-PRGϵ(x) = y we evaluate y2 = G(x2)
and r = Enc(x2). We then set y1 = r ⊕ x1 and output y = (y1, y2). If n and ϵ′ satisfy some mild
parameteric requirements that we arrive at below, we claim that this construction satisfies the
properties we need.

Observe that SC-PRGϵ is injective. Given SC-PRGϵ(x1, x2) = (y1, y2), y2 binds x2 uniquely
as y2 = G(x2) and G is injective. As a consequence y1 = x1 ⊕ Enc(x2) binds x1 once x2 is
determined. Similarly, SC-PRGϵ(x1, x2) = (y1, y2) also satisfies pseudorandomness. This is because
y1 = x1 ⊕ Enc(x2) and y2 = G(x2). Since x1 is random and independent of x2, we have that y1
hides x2. As a consequence given y1, it is the case that y2 = G(x2) is pseudorandom due to the
security of G. Therefore (y1, y2) is pseudorandom.

Most importantly, if the parameters are set appropriately, SC-PRGϵ also satisfies the self-
correction property. Imagine we have (y1, y2) = SC-PRGϵ(x1, x2) and z such that ∆H(z, (x1, x2)) <
(1

2 − ϵ)|x| = (1
2 − ϵ)(λ+ n). We want to show that such a z lets us recover x.

Note that ∆H(z, (x1, x2)) < (1
2 − ϵ)(λ + n) means that ∆H(z1, x1) < (1

2 − ϵ)n + λ where
z1 ∈ {0, 1}n is the first n length sub-string of z. If n≫ λ, we have ∆H(z1, x1) < (1

2 − ϵ′)n for some
constant ϵ′ barely less than ϵ. If the list-decodable coding scheme can correct from (1

2 − ϵ′) fractions
of errors and G is injective, given such a z we can derive x using the following steps:

• We first compute c = y1 ⊕ z1 and then compute a list L = Dec(c) of polynomial size.

• Find α ∈ L such that G(α) = y2 (such an α must be equal to x2).

• Finally, output x1 computing y1 ⊕ Enc(x2).
The reason why this algorithm succeeds is that y1 = Enc(x2)⊕x1 and if z1 is such that ∆H(z1, x1) <
(1

2 − ϵ′)n, we have that y1 ⊕ z1 satisfies ∆H(y1 ⊕ z1,Enc(x2)) < (1
2 − ϵ′)n. Therefore, due to the list

decoding property of the code and the injectivity of G the second condition will produce α = x2.
Since y1 = x1 ⊕ Enc(x2), we can derive x1 correctly in the third step.
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2.2 Tackling general channels with binary input alphabets: An Overview

Above we saw our construction for a simple pair of binary input channels based on iO and an
injective PRG. We now need to build a computational wiretap coding scheme for pairs of general
binary input channels. Before we give detailed technical ideas, we first provide a guide to the
remainder of this technical overview.

Step 1: Coding scheme for BAC-BAEC pair. In the first step, we will construct a coding
scheme for a case that is just a little more general than the case considered above. In this case,
Bob’s channel matrix B is an arbitrary binary channel in [0, 1]2×2 (such channels are called binary
asymmetric channels BAC, see Definition 6). Such BAC’s are a generalization of a binary symmetric
channel. While there is a single parameter p that determines a binary symmetric channel BSCp (the
probability of flipping a bit b to 1− b is p independently of the bit b), there are two parameters p0, p1
for the binary asymmetric channel BACp0,p1 that respectively define the probability of a 0 flipping
and the probability of a 1 flipping, and these probabilities p0 and p1 may differ. Eve’s channel is a
generalization of the binary erasure channel, called a binary asymmetric erasure channel (BAEC,
see Definition 7) whose row-stochastic matrix representation is in [0, 1]2×3. While a binary erasure
channel BECe is parameterised by a single parameter e, where the probability of erasing any given
bit b ∈ {0, 1} is e independently of b, there are two parameters e0, e1 for the asymmetric channel
BAECe0,e1 where the probability of erasure for any given bit b is eb and these two parameters may
differ. We will show how to build a computational wiretap encoding scheme that works as long as
Bob’s channel BACp0,p1 is not a degradation of Eve’s channel BAECe0,e1 .

Step 2: Bootstrapping Step 1 to the general binary input case. Why should a computa-
tional wiretap coding scheme for the case when Bob’s channel is of the form BACp0,p1 and Eve’s
channel is of the form BAECe0,e1 suffice for the general binary input case? In general, B and E can
be completely arbitrary channels with arbitrary constant-sized input and output alphabets.

We show that as long as B ∈ [0, 1]2×nB and E ∈ [0, 1]2×nE are binary input channels (with
potentially larger constant sized output alphabets), the above solution is fully general! To obtain
this result, we show a series of implications:

• (Polytope characterization of non-degradation) For any channel C ∈ R2×nC , we define P(C)
as the bounded convex set:

P(C) =
{

C · u | u ∈ [0, 1]nc×1
}
.

In simple words, this is a bounded convex-set in the two-dimensional plane R2 that is generated
by the taking combinations of columns of C where the coefficients of each column in the
combination are in [0, 1]. Our main characterization theorem states that for any pair of
binary-input channels (with potentially a different number of outputs) B ∈ R2×nB and
E ∈ R2×nE :

B is a degradation of E ⇐⇒ P(B) ⊆ P(E).

It turns out that this characterization does not extend to non-binary input alphabets. We
give an explicit counter-example to the claim if the input alphabet is ternary.

11



• Using the simple characterization described above, for any binary input channel pair (B,E)
where B is not a degradation of E, we (efficiently) find two channels B′ ∈ R2×2 and E′ ∈ R2×3

such that the following properties hold:

– B′ is of the form BACp0,p1 for some p0, p1 and E′ is of the form BAECe0,e1 for some e0, e1.
– P(B′) ⊆ P(B). In other words, using the characterization above, B′ can be simulated by

B.
– P(E) ⊆ P(E′). In other words, using the characterization above, E can be simulated by

E′.
– Further, P(B′) ̸⊆ P(E′). In other words, using the characterization above, B′ is not a

degradation of E′.

• Using the observations above, we can use the computational wiretap coding scheme for the
BAC-BAEC case to construct a computational wiretap coding scheme for the general binary
input case where we use the base encoding scheme for the BAC-BAEC case effectively treating
Bob’s channel as B′ and Eve’s channel as E′. In slightly more detail, while the physical
channel to Bob is given by B, Bob can simulate B′ via a post-processing procedure allowing
Bob to recover the message bit using the base encoding scheme. On the other hand, while the
physical channel to Eve is given by E, we show that an even more leaky BAEC channel E′

which is enough to simulate E would not suffice to recover the message bit.

We describe the intuition behind both these steps next. In Section 2.3, we describe how we extend
the above construction ideas to a computational wiretap coding scheme for the BAC-BAEC case.
Finally, in Section 2.4, we discuss the polytope characterization for non-degradation of binary input
channels and how use this polytope characterization to find channels B′ and E′ as described above
to bootstrap our computational wiretap coding scheme for the BAC-BAEC case to a construction
for any pair of non-degraded binary input channels.

2.3 Generalization to Asymmetric Erasures/Flips

To describe the ideas behind our base computational wiretap encoding scheme for the case when
B is of the form BACp0,p1 and E is of the form BAECe0,e1 , let us understand for what parameter
settings of p0, p1 and e0, e1, we have that BACp0,p1 is not a degradation of BAECe0,e1 . Without
loss of generality, we can assume that p0 is less than or equal to 1

2 . If this is not the case, we can
post-process ChB with the channel given by the permutation matrix:

P =
[
0 1
1 0

]
yielding Bob’s channel to be BACp′

0=1−p0,p′
1=1−p1 which satisfies our requirement p′

0 ≤ 1
2 . This

transformation also does not change the polytope for Bob as this transformation just swaps the
columns of Bob’s matrix.

2.3.1 Relation between Erasure/Flip probabilities for Non-Degradation

If B is a matrix corresponding to a BACp0,p1 then, it can be expressed as:

B =
[
1− p0 p0
p1 1− p1

]
.

12



(0, 0)
x1

x2

(1 − p0, p1)

(1, 1)

(p0, 1 − p1)

(1 − e0, 0)

(1, e1)

(0, 1 − e1)

(e0, 1)

Figure 5: An example of polytope non-containment for binary asymmetric channels and binary
asymmetric erasure channels. Here, x1 and x2 are indeterminates. The blue polytope is P(BACp0,p1)
for parameters p0 = 1/5, p1 = 1/4. The red polytope is P(BAECe0,e1) for parameters e0 = 2/5,
e1 = 3/4.

Similarly, if E is a matrix corresponding to a BAECe0,e1 then, it can be expressed as:

E =
[
1− e0 0 e0

0 1− e1 e1

]
.

Recall that as described above B is not a degradation of E if and only if P(B) ̸⊆ P(E).
One can draw these polytopes in R2, and a representative picture looks like the one we describe

in Figure 5. The red polytope depicts the polytope P(E) and the blue polytope represents P(B).
In order to show non-degradation, by the polytope criterion, we only need to show that the point
(p0, 1− p1) is not inside P(E). This translates to having the point (p0, 1− p1) to be on the opposite
side of the line joining (e0, 1) with (0, 1− e1) as the origin. When we compute this condition, we
get the criterion:

e0 · e1 > p1 · e0 + p0 · e1. (2)

A formal proof can be found in Lemma 10.

2.3.2 Extending the Construction to the Asymmetric Setting

We now describe how to extend our construction ideas to handle the general (asymmetric) case
when Bob’s channel is BACp0,p1 and Eve’s channel is BAECe0,e1 where the parameters p0, p1, e0, e1
are potentially differing values (conditioned on ChB not being a degradation of ChE). Below, we
recall the mathematical formulation of the non-degradation condition described in Equation 2.

e0 · e1 > p1 · e0 + p0 · e1.

Our construction in this case is largely similar to the construction for the BSCp-BECe case with
some important modifications.
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C(z):
Input: z ∈ {0, 1}λ
Hardwired: x ∈ {0, 1}λ

1. Check ∆c(x, z) > (1− (p0e1+p1e0)
e0+e1

)λ− λ0.9.

2. If the check passes, output m otherwise output ⊥.

Figure 6: Circuit C

As before, to encode a message m ∈ {0, 1}, as a first step we sample a string x ∈ {0, 1}λ.
However, instead of sampling each bit of x uniformly at random from {0, 1}, we sample each bit
of x independently to be zero with probability η = e1

e0+e1
and one with probability 1− η = e0

e0+e1

(therefore the distribution Berλ
1−η). The second modification is the threshold condition in the circuit

we will obfuscate. Once we have such an x, we compute C̃ which is now an obfuscation of the circuit
C in Figure 6.

Notice that in the circuit C described in Figure 6, the threshold for the number of agreeing bits
has changed to a constant fraction (1− (p0e1+p1e0)

e0+e1
).

We now describe why these two changes yield a computational wiretap encoding scheme for this
case. The rationale behind this is that x is chosen so that each bit of x is zero with probability
η = e1

e0+e1
. Further, Bob’s channel ChB is BACp0,p1 and flips a bit b with probability pb. As a

consequence, Bob’s received string zB will agree with x on an expected (1− p0)η+ (1− p1)(1− η) =(
1− (p0e1+p1e0)

e0+e1

)
fraction of bits, which is more than the threshold we set.

What can Eve do? Eve will receive a string zE ∈ {0, 1}λ that contains erasures and is in
{0, 1,⊥}λ. As before, by let zE

S⊥
denote the erased part and zE

S⊥
denote the rest of the string

which is also equal to xS⊥
. For this distribution, the size |S⊥| in expectation can be computed to

be ((1− e0)η + (1− e1)(1− η))λ =
(
1− 2e0e1

e0+e1

)
· λ. What is also crucial for us and sheds a light

on how η is chosen is that one can show using a simple probability analysis that conditioned on
zE (equivalently xS⊥

), the conditional distribution of the erased part xS⊥ is actually a uniform
distribution. Therefore, to come up with a maximum number of agreeing bits, what Eve can
essentially do is to use up every bit of zE corresponding to the non-erased set S⊥ and make a
random guess v corresponding to the set S⊥. This lets Eve come up with a string r such that
rS⊥

= xS⊥
and rS⊥ = v, which satisfies:

∆c(r, x) ≈ |S⊥|
2 + |S⊥|

In expectation, this value is a fraction (1− 2e0e1
e0+e1

) + e0e1
e0+e1

= 1− e0e1
e0+e1

.
This implies that Bob’s string agrees with x at ϵ′ =

(
1− (p0e1+p1e0)

e0+e1

)
−
(
1− e0e1

e0+e1

)
= e0e1−(p0e1+p1e0)

e0+e1
more locations than Eve’s best string r. The non-degradation condition that we work out in Equation
2 posits that e0e1 > p1e0 + p0e1 and this implies that ϵ′ > 0. For a successful Eve this means that it
must come up with a string r such that rS⊥ agrees with xS⊥ on at least (1

2 + γ′)|S⊥| indices for
some constant γ′ > 0.
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This rough intuition can be massaged into a proof. As before, we will make the following
indistinguishable changes:

• As before, for the first change, we will program the string zE , S⊥ and S⊥ into the obfuscated
circuit. We will replace the check ∆c(x, z) > (1 − (p0e1+p1e0)

e0+e1
)λ − λ0.9 with a functionally

equivalent check ∆c(xS⊥ , zS⊥) + ∆c(xS⊥
, zS⊥

) >
(
1− (p0e1+p1e0)

e0+e1

)
λ− λ0.9.

• Then, just like in the symmetric case, instead of hardwiring xS⊥ in the circuit we will
hardwire the value y = SC-PRGγ(xS⊥) where we set γ to be a constant barely less than
γ′. Then, instead of using xS⊥ which we no longer have, the program will first derive xS⊥

using self-correction feature of SC-PRGγ relying on y and a z that successfully pass our
check. This circuit is indistinguishable because with high probability, for any input z that
satisfies ∆c(xS⊥ , zS⊥) + ∆c(xS⊥

, zS⊥
) >

(
1− (p0e1+p1e0)

e0+e1

)
λ − λ0.9, it must also hold that

∆c(xS⊥ , zS⊥) >
(

1
2 + γ

)
|S⊥| as argued above.

• Next, we will replace y with a truly random string. This change is indistinguishable due to
the security of SC-PRGγ . Observe that because the conditional distribution xS⊥ given zE is
uniform and |S⊥| = Ω(λ), y = SC-PRGγ(xS⊥) is pseudorandom.

• Once y is a random string, with high probability it will no longer have preimages with respect
to SC-PRG. Therefore, with high probability, the circuit under consideration is functionally
equivalent to an all reject circuit. We can now use iO security to replace this circuit with an
all reject circuit.

2.4 Reducing the General Binary Input Case to the Asymmetric Setting

We now describe how we construct a computational wiretap coding scheme for pairs of general
non-degraded binary-input channels. To this extent, a reader might wonder why the polytope
characterization below is both natural and useful for this purpose.

Theorem 3. (Informal) Let B ∈ R2×nB and E ∈ R2×nE be arbitrary row-stochastic matrices. Then,
B ̸= E · S for every row stochastic matrix S if and only if P(B) ̸⊆ P(E).

The usefulness of this theorem is found by considering the following natural approach to construct
a computational wiretap encoding scheme for a general binary input channel pair (B ∈ R2×nB ,E ∈
R2×nE ) such that B is not a degradation of E:

• Output Reduction for Bob: Find a stochastic matrix SB ∈ RnB×2 such that B′ = B · SB

is not a degradation of E. In particular, at the end of this step, this yields us with a BAC
channel B′ such that there does not exist a stochastic matrix S such that B · SB = B′ = E · S.

• Simulating Eve’s channel by a BAEC: In the next step, we want to find an erasure
channel BAECe0,e1 , E′ ∈ R2×3 such that E = E′ · SE for some stochastic matrix SE (in other
words Eve’s channel is a degradation of E′). Importantly, it must hold that B′ must not
be a degradation of E′. That is, there should not exist any stochastic matrix S such that
B′ = E′ · S.
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• Using a solution for BACp0,p1-BAECe0,e1 : Once we have B′ and E′ satisfying the criteria
described above, we can leverage a computational wiretap scheme for the BACp0,p1-BAECe0,e1

case. We will treat Bob’s channel to be B′ (which can be simulated by Bob) and Eve’s channel
to be E′ (which can simulate Eve).

The question is: can such matrices B′ and E′ be found? We show that for the above approach to
materialize, for the binary input channels the polytope condition in Theorem 3 is both necessary
and sufficient.

The necessity can be seen just from the first condition. We want that there must exist a
stochastic SB ∈ RnB×2 such that there does not exist any stochastic matrix S ∈ RnE×2 for which it
holds that:

B · SB = E · S
Notice that B′ = B · SB is of a very special form. It is of the form B′ = [v|v′] where due to
the properties of stochastic matrices, the first column is some vector v ∈ P(B), whereas the
second column is simply v′ = 1 − v where 1 is the all ones column matrix. When we have that
[v|v′] ̸= E ·S, then this must mean that v /∈ P(E). If it was not the case, then v = Ew for a column
vector w ∈ [0, 1]nE . Then, we can set S = [w|1−w] which will satisfy [v|v′] = E · S giving us a
contradiction.

2.4.1 Constructing B′ and E′

Assuming that Theorem 3 holds, how do we find such a B′ and E′ in finite time (we assume that
channel description is “constant-sized").

Finding B′. To find such a matrix B′ one can find a vector v ∈ P(B) \ P(E). For such a vector,
v = B · a for some a ∈ [0, 1]nB×1. We can set B′ = [v | 1− v] = B · SB for the stochastic matrix
SB where SB = [a | 1− a] . Observe that v ∈ P(B′) \ P(E), therefore B′ is not a degradation of E
as per Theorem 3.

How do we find v? Note that both P(B) and P(E) are convex bodies with finitely many extreme
points. Since P(B) is not contained inside P(E), there must be an extreme point of P(B) not
contained inside P(E). Furthermore, the set of extreme points of P(B) are contained inside the set
{B · b | b ∈ {0, 1}nB}. For each of these points, the non-containment can also be checked efficiently
using a linear program.

Finding E′. Perhaps what might seem really surprising is that we can actually find a channel
matrix E′ that is highly structured (of the form BAECe0,e1) so that it is powerful enough to simulate
E, but not enough to simulate B, for any pair of channel matrices B ∈ R2×2 and E ∈ R2×nE

satisfying the non-degradation condition.
The equivalent polytope condition actually gives rise to a very intuitive geometric approach

to show this. The idea is that P(E) is a bounded convex body in [0, 1]2, and there is a point
v ∈ P(B′) \ P(E) so there exists a separating hyperplane that strictly separates v from P(E). This
separating hyperplane, a line in two-dimensions, will form a facet of a new channel polytope that
defines a binary asymmetric erasure channel. Since (0, 0) and (1, 1) are in both P(B′) and P(E) the
line should stay “above" the line joining (0, 0) and (1, 1). This line will intersect the line x1 = 0 at a
point (0, 1− e1) for some e1 > 0 and the line x2 = 1 at (e0, 1) some e0 > 0. By two-fold rotational
symmetry, we can find another parallel line intersecting x2 = 0 at (1− e0, 0) and x1 = 1 at (1, e1)
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(0, 0)
x1

x2

⋆

⋆

Figure 7: The blue polytope (for ChB) is not contained in the red polytope (for ChE), so ChB is not
a degradation of ChE. Using separating hyperplanes (olive-colored lines) we can strictly separate the
blue extreme points from the red polytope. The olive polytope corresponds to a binary asymmetric
erasure channel ChE′ that contains the red polytope but does not contain the blue polytope, i.e.
ChE is a degradation of ChE′ and ChB is not a degradation of ChE′.

that separates the point 1− v from P(E). The area formed that is between the two parallel lines
inside [0, 1]2 can be represented by the channel matrix as required:

E′ =
[
1− e0 0 e0

0 1− e1 e1

]
.

See Figure 7 for a visual depiction.

2.4.2 Proving the Polytope Characterization.

To show the polytope characterization theorem (Theorem 3), we first observe that one direction is
straightforward. To show that if ChB is a degradation of ChE, then P(B) ⊆ P(E), we simply open
up all the definitions. By definition of the polytope formulation, for any point x ∈ P(B) there exists
a vector s such that x = B · s where 0 ≤ s ≤ 1. From the definition of stochastic degradation, there
is a row-stochastic matrix S such that B = E · S. Then x = E · (S · s) = E · s′ where 0 ≤ s′ ≤ 1
since S is stochastic.

Showing the converse that P(B) ⊆ P(E) implies the existence of a row-stochastic matrix S such
that B = E · S is more involved. A natural approach is by induction on the number of columns of
B. For this induction approach, we will relax the row-stochastic condition on B and S, which states
that non-negative matrices B and E satisfy B · 1 = 1 = E · 1, and instead assume the more general
condition B · 1 = E · 1 for non-negative matrices B and E.

1. In the base case, if B consists of one column, then B ·1 = B so we can take the row-stochastic
S = 1 and observe that E · 1 = B · 1 = B.

2. In the induction step, we consider a matrix B′ which is constructed from B by removing a
column of B so that B =

[
v B′

]
. Observe that B′ · 1 = B · 1− v.
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The induction hypothesis is that if P(B′) ⊆ P(E′) for some matrix B′ of fewer columns than
B, and some E′ such that B′ · 1 = E′ · 1, then there exists a row-stochastic matrix S′ such
that B′ = E′ · S′.
To see how we might apply the induction hypothesis, observe that P(B′) = P(B)∩ (P(B)−v)
where we define the set P(B) − v := {u − v : u ∈ P(B)}. This immediately implies the
following polytope containment relation

P(B′) = P(B) ∩ (P(B)− v) ⊆ P(E) ∩ (P(E)− v)

To apply the induction hypothesis, we need to find a matrix E′ such that P(E′) = P(E) ∩
(P(E)− v) such that E′ · 1 = B′ · 1. To find this matrix E′, we turn to the (two-dimensional)
geometric view of the polytopes: P(E) ∩ (P(E)− v) is the intersection of a polytope and its
translated polytope. This intersection, visually, is a polytope obtained by starting with the
polytope P(E) and shrinking the length of its facets (lines) by some multiplicative factor in the
interval [0, 1]. This geometric intuition is exactly captured by the existence of some diagonal
matrix D, whose entries are in the closed interval [0, 1], such that P(E)∩(P(E)−v) = P(E·D).
Thus, we set E′ = E ·D.
It remains to show that E ·D ·1 = B′ ·1. To see why this is true, observe that by non-negativity
E · 1 is the maximal element (in the ℓ1-norm) of P(E) so E · 1− v is the maximal element of
P(E)−v. Then, E ·1−v ∈ P(E) by definition of the polytope formulation (v = E ·u′ for some
0 ≤ u′ ≤ 1). Therefore, E · 1− v is the maximal element of P(E) ∩ (P(E)− v) = P(E ·D).
This fact implies that E ·D · 1 = E · 1− v = B · 1− v = B′ · 1.
Applying the induction hypothesis, we now have a row-stochastic matrix S′ such that B′ =
E ·D · S′. To conclude the induction step, we set S =

[
1−D · 1 D · S′

]
and observe that

E · S = B and S · 1 = 1.

Counterexample for the many input-case. At first glance, it may seem to be without loss
of generality to consider binary input channels, since Alice is honest and can anyway choose to
use only binary inputs. However, there can exist channels with non-binary inputs where Bob’s
channel is not a degradation of Eve’s channel, and yet every projection of those channels to only
two inputs always yields channels where Bob’s channel is a degradation of Eve’s channel. Such
pairs of channels, however, are not common. Nevertheless, if future work is to tackle the case of
non-binary input channels, this issue will present a challenge.

One might wonder if our polytope characterization holds for channels with larger number of
inputs k > 2. Such a claim would indeed be useful to extend our approach to handle to an arbitrary
case when B ∈ Rk×nB and E ∈ Rk×nE . Unfortunately it turns out that such a claim is untrue
whenever k ≥ 3. Intriguingly, we can come up with an explicit choice for stochastic matrices
B ∈ R3×3 and E ∈ R3×4 such that P(B) ⊆ P(E) and yet there does not exist any stochastic matrix
such that B = E · S. We point the reader to Section 5.2 for our counterexample.

3 Preliminaries
Throughout this paper, we will use the notation [n] = {1, 2, 3, . . . , n}. Let 1 denote the all-ones
column vector whose length can be clearly inferred in the various contexts. We will use the usual

18



convention that rows are probability vectors. A row-stochastic matrix M is a matrix whose rows
add up to 1; equivalently, M satisfies M · 1 = 1.

Definition 2. Two probability ensembles {D0,λ}λ∈N and {D1,λ}λ∈N are computationally indis-
tinguishable if there exists a negligible function µ : N → [0, 1] such that for all λ ∈ N, for all
polynomial-time non-uniform algorithms A,∣∣∣∣∣ Pr

x∼D0,λ

[
A(1λ, x) = 1

]
− Pr

x∼D1,λ

[
A(1λ, x) = 1

]∣∣∣∣∣ ≤ µ(λ).

We will use the shorthand notation to denote the existence of such a negligible function µ:

{D0,λ}λ∈N ≈c {D1,λ}λ∈N

or we will use the following shorthand notation to denote computationally indistinguishability with
an explict negligible function µ:

{D0,λ}λ∈N ≈µ {D1,λ}λ∈N .

3.1 Chernoff Bounds

We will use the following Chernoff bounds.

Lemma 1. Let X1, . . . , Xn be independent Bernoulli random variables taking values in {0, 1}, and
let X = ∑n

i=1Xi and E[X] = µ. Then for 0 < δ < 1,

Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ

3

)

and
Pr [X ≤ (1− δ)µ] ≤ exp

(
−δ2µ

2

)
.

Lemma 2. Let X1, . . . , Xn be independent Bernoulli 0/1 random variables . Let X = ∑n
i=1Xi and

let p = E[X]
n . Then for all ε ≥ 0:

Pr
[ 1
n
X ≥ p+ ε

]
≤ e−2ε2n

and for all 0 ≤ ε < p,
Pr
[ 1
n
X ≤ p− ε

]
≤ e−2ε2n.

3.2 Channels and Wiretap Coding

Definition 3 (Discrete Memoryless Channel). A discrete memoryless channel (DMC) ChW : X → Y
is a randomized function from input alphabet X to output alphabet Y. Let pW (y | x) denote the
probability that we observe y ∈ Y after sending x ∈ X through ChW. For x ∈ X , we use ChW(x) to
denote a random variable over Y such that for y ∈ Y,

Pr[ChW(x) = y] = pW (y | x).
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We associate ChW with its row-stochastic matrix

W = [pW (y | x)]x∈X ,y∈Y

so that W · 1 = 1. For n ∈ N and r = (r1, . . . , rn) ∈ X n, we define

ChW(r) = ChW(r1) . . .ChW(rn).

For two channels ChW : X → Y and ChV : Y → Z, we use ChV ◦ChW to denote their concatenation
ChV(ChW(·)). Whenever we discuss channels in the context of efficient algorithms, we assume all
channels have finite description size with constant alphabet size and rational probabilities.

Definition 4 (Binary Symmetric Channel (BSC)). A binary symmetric channel with crossover
probability p, denoted as BSCp is a DMC with binary input and binary output such that on input
bit b, it outputs 1− b with probability p and b otherwise.

Definition 5 (Binary Erasure Channel (BEC)). A binary erasure channel with erasure probability
e, denoted as BECe, is a DMC with binary input and output {0, 1,⊥} such that on input bit b, it
outputs ⊥ (i.e. erases the bit) with probability e and b otherwise.

Definition 6 (Binary Asymmetric Channel (BAC)). A binary asymmetric channel with crossover
probabilities (p0, p1), denoted as BACp0,p1 , is a DMC with binary input and binary output such that
on input bit b, the channel outputs 1 − b with probability pb and b with probability 1 − pb. The
associated row-stochastic matrix is given by[

1− p0 p0
p1 1− p1

]
.

Definition 7 (Binary Asymmetric Erasure Channel (BAEC)). A binary asymmetric channel with
erasure probabilities (e0, e1), denoted as BAECe0,e1 , is a DMC with binary input and ternary output
in {0, 1,⊥} such that on input bit b, the channel outputs ⊥ with probability eb and b with probability
1− eb. The associated row-stochastic matrix is given by[

1− e0 0 e0
0 1− e1 e1

]
.

Remark 1. In the symmetric case, we can assume that a channel BSCp has p ≤ 1/2 without
loss of generality because the receiver can always flip its interpretation of the received bit. In the
asymmetric setting, by the same reasoning we can assume without loss of generality that p0 ≤ 1/2
(but not both p0 and p1).

If one channel can be used to simulate another channel, we say that the latter is a degradation of
the former. More formally, we recall the well-established notion of stochastic channel degradation.

Definition 8 (Stochastic Degradation). We say that channel ChB is a degradation of channel ChE
if there exists a channel ChS such that ChB = ChS ◦ChE. Equivalently, ChB is a degradation of ChE
if there exists a row-stochastic matrix S such that

B = E · S,

where B is the row-stochastic matrix of ChB and E is the row-stochastic matrix of ChE.
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Definition 9 (Wiretap Channel). A wiretap channel is a pair of DMCs (ChB,ChE) where ChB :
X → Y and ChE : X → Z share the same input alphabet X .

We now recall the definition of wiretap coding schemes in the setting of a computationally
bounded adversary.

Definition 10 (Computational wiretap coding [12]). A pair of PPT algorithms Π = (Enc,Dec) is
a computational secure wiretap coding scheme for wiretap channel (ChB,ChE) and message space
M = {0, 1}, if there exists a negligible function ϵ(λ) such that

• Correctness: For every message m ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1− ϵ(λ)

• Security: For all polynomial-time non-uniform adversaries A,

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1
2 + ϵ(λ)

where b is uniformly distributed over {0, 1}.

3.3 Indistinguishability Obfuscation

Definition 11 (Indistinguishability Obfuscation (iO) for Circuits, Imported from [13]). A PPT
algorithm iO is an indistinguishability obfuscator for (polynomial-sized) circuits if the following
holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n
we have that

Pr
[
C ′(x) = C(x) : C ′ ←− iO(1λ, C)

]
= 1

• Indistinguishability: For every two ensembles {C0,λ}, {C1,λ} of polynomial-sized circuits
that have the same size, input length, and output length, and are functionally equivalent (in
the sense that for all λ ∈ N, C0,λ(x) = C1,λ(x) for every input x), the following distributions
are computationally indistinguishable:

{iO(1λ, C0,λ)} ≈c {iO(1λ, C1,λ)}

That is, for all polynomial-time non-uniform algorithms A, there exists a negligible function
µ : N→ [0, 1] such that for all λ,∣∣∣Pr

[
A(1λ, iO(1λ, C0,λ)) = 1

]
− Pr

[
A(1λ, iO(1λ, C1,λ)) = 1

]∣∣∣ ≤ µ(λ).

3.4 Error-Correcting Codes

For any two binary strings x and y of the same length n, let ∆H(x, y) denote their Hamming
distance and let δH(x, y) = ∆H(x,y)

n denote their relative Hamming distance.

Definition 12. A q-ary code of block length n and dimension k is given by a function C :M→⊆ [q]n
where |M| = qk and M is the message space and [q] is the alphabet of C. Such a code is also
referred as a (n, k)q code.
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Definition 13. An ensemble of codes {Cλ :Mλ → [qλ]nλ} is (p(·), L(·))-list decodable, where
p : N→ (0, 1) and let L : N→ N are functions in some parameter λ, if there is a polynomial-time
algorithm ListDec such that for all λ ∈ N, for all y ∈ [qλ]nλ , ListDec(λ, y) outputs a list S of size at
most L(λ) messages such that S contains all m ∈Mλ such that δH(Cλ(m), y) ≤ p(λ).

Lemma 3 (Implicit in [19], also Theorem 9 in [18]). For every ε, k, if n ≥ poly
(
k, 1

ε

)
, there exists

an (n, k)2 code with a polynomial time list-decoding algorithm for up to (1
2 − ε) · n errors.

3.5 Separating Hyperplane Theorem

For x ∈ Rn and S ⊆ Rn, we define ⟨S, x⟩ = {⟨v, x⟩ : v ∈ S}.
Theorem 4 (Strict Separating Hyperplane Theorem [7]). Let C,K ⊆ Rn be nonempty convex sets
with C ∩K = ∅. If C is closed and K compact, then there exists ψ ∈ Rn with inf⟨C,ψ⟩ > sup⟨K,ψ⟩.

4 The BSC-BEC Case
We first consider the simpler setting when Bob’s channel is BSCp and Eve’s channel is BECe where
Bob’s channel is not a degradation of Eve’s (which happens exactly when e > 2p). In this setting,
we present a simple construction of a computational wiretap coding scheme based on the existence
of iO and an injective one-way function. Our “code-offset” based construction for this setting also
motivates our construction for the general binary input wiretap channels that will be presented
next.

Theorem 5 (Computational wiretap for the BSC-BEC case). Assuming the existence of iO and an
injective one-way function, there exists a computational wiretap coding scheme for a wiretap channel
of the form (BSCp,BECe) if and only if e > 2p.

The “only if” direction follows from the fact that when e ≤ 2p, Bob’s channel BSCp is a
degradation of Eve’s channel BECe. In fact, this direction holds unconditionally. We thus focus
on constructing a computational wiretap coding scheme when e > 2p using iO and an injective
one-way function. The construction is described in the following figure.

Coding Scheme 1. (Computational Wiretap Coding Scheme for (BSCp,BECe))

For the construction, we will use an iO scheme and any error-correcting coding scheme
CB = (CB.Enc, CB.Dec) for the channel BSCp (p < 1/2) such that for all x ∈ {0, 1}∗,

Pr[CB.Dec(1λ,BSCp(CB.Enc(1λ, x))) = x] ≥ 1− ε(λ)

for some negligible function ε. For example, even a simple repetition code of block length λ
suffices.
Enc(1λ, b):

1. Let δth = λ−0.1.

2. Sample r ←− {0, 1}λ uniform randomly.
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3. Construct a circuit (whose size is determined by λ) for the function f : {0, 1}λ → {0, 1,⊥}
defined as follows:

fλ(x):
Input: x ∈ {0, 1}λ.
Hardwired constants: r, b.

1. If the Hamming distance ∆H(x, r) < (p+ δth) · λ, then output b. Else, output ⊥.

4. Output (CB.Enc(1λ, iO(fλ)), r) where fλ is padded to be the maximum circuit size of
itself and {f (i)

λ }i∈[4] which are described below.

Dec(1λ, f̂, z):

1. Let f ←− CB.Dec(1λ, f̂).

2. Output f(z).

Having explained the intuition for the above coding scheme in the technical overview (Section 2),
we proceed to the formal proofs.

Lemma 4 (Correctness of the Computational Wiretap Encoding Scheme). There exists a negligible
function ε : N→ [0, 1] such that for every message bit b ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ, b))) = b] ≥ 1− ε(λ).

Proof. We will use (f, r) to denote random variables representing the output of Enc(1λ, b) and we
will use (f̃, r̃) to denote random variables representing the output of the channel ChB(f, r). Using
the notation ∆H(·, ·) to denote Hamming distance (non-relative), we note that the expected value of
the Hamming distance of r̃ from r is given as EChB,Enc [∆H(r̃, r)] = p · λ. Then the probability over
the channel randomness and the coins used by the encoding algorithm Enc(·, ·) that the received
string r̃ fails the statistical check is given by an additive Chernoff (Lemma 2) bound:

Pr
ChB,Enc

[∆H(r̃, r) ≥ (p+ δth) · λ] ≤ exp
(
−2 · δ2

th · λ
)

= exp
(
−2 · λ0.8

)
which is negligible in λ.

Lemma 5. Let ChB be a BSCp channel and let ChE be a BECe channel such that e > 2p. For all
polynomial-time non-uniform algorithms A, there exists a negligible function µ : N → [0, 1] such
that

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1
2 + µ(λ)

where b is uniformly distributed over {0, 1}.

Proof. We will proceed through the following series of hybrids (experiments) that model Eve’s view.
We will show that what Eve receives from this encoding process is computationally indistinguishable
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from Eve receiving a null circuit, thereby rendering Eve unable to recover the message bit b except
with negligible advantage. In each of the following hybrids, each function (viewed as a circuit) is
padded to be the maximum circuit size of the circuits in {fλ} ∪

{
f

(i)
λ

}
i∈[4]

where fλ is defined in

the construction and f
(i)
λ are defined in each of the below hybrids.

1. H0(1λ): In the real world, Alice sends Enc(1λ, b) = (C.Enc(iO(f)), r) through ChE and Eve
receives the output of the channel, ChE((C.Enc(iO(f))), r). We assume that Eve successfully
recovers iO(f), since such an assumption only gives Eve more information. The output of the
experiment is (iO(f),ChE(r)).

2. H1(1λ): In this hybrid, we consider a slight variation of the above experiment. Let r ←− {0, 1}λ
be chosen as in Enc(1λ, b) where each bit ri is independently identically sampled uniform
randomly. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ. Let S⊥ ⊆ [λ] be the set of indices for which
r̂i = ⊥ and let S⊥ := [λ] \ S⊥. Let κ := |S⊥|. Define the finite subsequence (a string)
rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from the indices from S⊥ and
analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ of the bits from the

indices from S⊥.
We now give an alternate encoding method where instead of constructing the function f as in
Coding Scheme 1, Alice instead uses the following function f

(1)
λ :

f
(1)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥ , rS⊥

, b, e0, e1, p0, p1, S⊥.

1. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥
, rS⊥

) ≤ (p+ δth) · λ, then
output b. Else, output ⊥.

The output of the experiment is (iO(f (1)
λ ), r̂).

3. H2(1λ): Let r ←− {0, 1}λ be chosen as in Enc(1λ, b) where each bit ri is sampled uniform
randomly. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ. Let S⊥ ⊆ [λ] be the set of indices for which
r̂i = ⊥ and let S⊥ := [λ] \ S⊥. Let κ := |S⊥|. Define the finite subsequence (a string)
rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from the indices from S⊥ and
analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ of the bits from the

indices from S⊥.
We now give an alternate encoding method where instead of constructing the function f (1) as
in H1(1λ), Alice will do the following in order to construct a different function f (2) which we
will define shortly:

(a) Let ε = 1
4 −

p
2e . Let CLD,κ : {0, 1}κd → {0, 1}κ be a code from a (1/2− ε, q(κ, 1/ε))-list

decodable ensemble of binary codes for some constant 0 < d < 1 and some polynomial
q(κ, 1/ε). We will use CLD,κ.ListDec(·) to denote an efficient list-decoding function for
CLD,κ.

(b) Sample α ∈ {0, 1}κd uniform randomly and set c←− CLD,κ(α) so c ∈ {0, 1}κ.
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(c) Let z = c⊕ rS⊥ .
(d) Let G : {0, 1}κd → {0, 1}3·κd be a length-tripling injective PRG.

f
(2)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥

, , z, G(α), b, e0, e1, p0, p1, S⊥.

1. Let D ←− CLD,κ.ListDec(z ⊕ xS⊥). D is a list of at most q(κ, 1/ε) many elements in
{0, 1}κd .

2. If G(s) ̸= G(α) for all strings s ∈ D, output ⊥. Otherwise, set α′ to be the string s
such that G(s) = G(α).

3. Set rS⊥ ←− CLD,κ(α′)⊕ z.
4. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (p+ δth) · λ, then

output b. Else, output ⊥.

The output of the experiment is (iO(f (2)
λ ), r̂).

4. H3(1λ): Let r ←− {0, 1}λ be chosen as in Enc(1λ, b) where each bit ri is independently identically
sampled uniform randomly. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ. Let S⊥ ⊆ [λ] be the set of
indices for which r̂i = ⊥ and let S⊥ := [λ] \ S⊥. Let κ := |S⊥|. Define the finite subsequence
(a string) rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from the indices from S⊥
and analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ of the bits from the

indices from S⊥.
We now give an alternate encoding method where instead of constructing the function f (1) as
in H1(1λ), Alice will do the following in order to construct a different function f (2) which we
will define shortly:

(a) Let ε = 1
4 −

p
2e . Let CLD,κ : {0, 1}κd → {0, 1}κ be a code from a (1/2− ε, q(κ, 1/ε))-list

decodable ensemble of binary codes for some constant 0 < d < 1 and some polynomial
q(κ, 1/ε). We will use CLD,κ.ListDec(·) to denote an efficient list-decoding function for
CLD,κ.

(b) Sample α ∈ {0, 1}κd uniform randomly and set c←− CLD,κ(α) so c ∈ {0, 1}κ.
(c) Let z ←− c⊕ rS⊥ .
(d) Let G : {0, 1}κd → {0, 1}3·κd be a length-tripling injective PRG.
(e) Let R be a string sampled uniform randomly from {0, 1}3·κd .

f
(3)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥

, z, R, b, e0, e1, p0, p1, S⊥.

1. Let D ←− CLD,κ.ListDec(z ⊕ xS⊥). D is a list of at most q(κ, 1/ε) many elements in
{0, 1}κd .
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2. If G(s) ̸= R for all strings s ∈ D, output ⊥. Otherwise, set α′ to be the string s
such that G(s) = G(α).

3. Set rS⊥ ←− CLD,κ(α′)⊕ z.
4. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (p+ δth) · λ, then

output b. Else, output ⊥.

The output of the experiment is (iO(f (3)
λ ), r̂).

5. H4(1λ): We now consider when Eve simply gets the iO of a null circuit. Let r ←− {0, 1}λ be
chosen as in Enc(1λ, b) where each bit ri is independently uniform randomly sampled. Then
let r̂ := ChE(r) ∈ {0, 1,⊥}λ.

f
(4)
λ (x):

Input: x ∈ {0, 1}λ

1. Output ⊥.

The output of the experiment is (iO(f (4)
λ ), r̂).

We now make the following claims:

1. H0(1λ) ≈c H1(1λ): First, r̂ is sampled identically as ChE(r). Then, observe that for any
subset S⊥ ⊆ [λ], the function f

(1)
λ (·) is functionally equivalent to fλ because for any string

x ∈ {0, 1}λ,
∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) = ∆H(x, r).

Therefore, the claim follows by the indistinguishability of the iO scheme.

2. H1(1λ) ≈c H2(1λ): We claim that f (2)
λ is functionally equivalent to f (1)

λ with overwhelming
probability over the coins used in generation of r̂ ∈ {0, 1,⊥}λ.
For the functional equivalence to hold we require that on inputs x ∈ {0, 1}λ, that if
∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (p+ δth) · λ, then the list decoding algorithm is able to

recover α. The list decoding algorithm recovers α when ∆H(xS⊥ , rS⊥) ≤
(

1
2 − ε

)
· κ. Now

viewing κ as a random variable, a sufficient condition for this implication to occur is, therefore,
that (p+ δth) · λ ≤

(
1
2 − ε

)
· κ. A standard Chernoff argument shows that κ satisfies this

inequality with overwhelming probability for our choice of parameters.

In detail, let κi be a 0/1 indicator random variable for the event that r̂i = ⊥, and let
κ := ∑

i∈[λ] κi. Note that E[κ] = e · λ. By a standard additive Chernoff (Lemma 2), we have

Pr
[
κ <

(
e− λ−0.1

)
· λ
]
≤ exp

(
−2 · λ0.8

)
Recall that our objective is to show that

(
1
2 − ε

)
· κ ≥ (p + δth) · λ with high probability

so that on inputs of small Hamming distance less that (p + δth) · λ, our new function f
(2)
λ
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successfully recovers α via a list decoding procedure. For there to exist a setting of ε such
that the following probability is overwhelming:

Pr
[(1

2 − ε
)
· κ ≥ (p+ δth) · λ

]
it suffices to choose a constant ε such that(1

2 − ε
)−1
· (p+ δth) · λ ≤

(
e− λ−0.1

)
· λ.

To see why, observe that if this inequality holds, then the same Chernoff above implies that

Pr
[
κ <

(1
2 − ε

)−1
· (p+ δth) · λ

]
≤ exp(−2 · λ0.8)

Rearranging the above inequality, we obtain an equivalent inequality:

ε ≤ 1
2 −

p · λ0.1 + 1
e · λ0.1 − 1 .

Then observe that the degradation condition guarantees that p < e
2 , so by choosing any

constant ε ∈
[
0, 1

2 −
p
e

]
, the above inequality holds for sufficiently large λ ∈ N. Therefore, we

conclude that by choosing any constant ε ∈
[
0, 1

2 −
p
e

]
, for sufficiently large λ,

Pr
[(1

2 − ε
)
· κ > (p+ δth) · λ

]
≥ 1− exp(−2 · λ0.8)

Conditioning on the event that κ >
(

1
2 − ε

)−1
· (p + δth) · λ = Ω(λ), we can analyze the

behavior of f (2)
λ :

(a) If the input x satisfies that ∆H(xS⊥ , rS⊥) ≤ (p+ δth) · λ, then the Hamming weight of
xS⊥ ⊕ rS⊥ satisfies

wtH(xS⊥ ⊕ rS⊥) ≤ (p+ δth) · λ ≤
(1

2 − ε
)
· κ.

The (1/2− ε, q(κ, 1/ε))-list decodable property, implies that the preimage α of the
randomly chosen codeword c will be recovered in the list D. By the injectivity of the
PRG, there is a unique such preimage α and therefore, the function f

(2)
λ can correctly

compute CLD,κ(α) and recover rS⊥ . Finally, Step 3 is exactly computing f (1)
λ (r′).

(b) If the input x instead satisfies the complement relation ∆H(xS⊥ , rS⊥) > p + δth, then
observe that either f (2)

λ will output ⊥ either due to Step 2, or due to Step 3. This is
exactly the output behavior of f (1)

λ .

Therefore, conditioning on the event that κ >
(

1
2 − ε

)−1
· (p+ δth) · λ = Ω(λ), we have that

f
(2)
λ has the same input-output behavior as f (1)

λ on all inputs and we appeal to the indistin-
guishability of the iO scheme to show that (iO(f (1)), r̂) ≈c (iO(f (2)), r̂). This event occurs
with all but negligible probability, so the two hybrids are computationally indistinguishable:
H1(1λ) ≈c H2(1λ).
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3. H2(1λ) ≈c H3(1λ): We will use the computationally indistinguishability of the PRG G to
show this statement. Again, we condition on the event that the number of observed erasures,
κ, satisfies κ >

(
1
2 − ε

)−1
· (p + δth) · λ = Ω(λ). This event occurs with all but negligible

probability in λ where the probability is over the the coins used in the generation of r̂.
If there is a polynomial-time non-uniform algorithmA that can distinguish between (iO(f (2)), r̂)
and (iO(f (3)), r̂), then we can construct a polynomial-time non-uniform algorithm B that can
distinguish between the output of G on a random string of length κd and a uniform random
string of length 3 · κd. Namely, B on input RChallenge follows the construction template of
the experiment H2(1λ) and uses RChallenge in-place of G(α) to obtain some output (f̂, r̂).
Crucially, observe that z is independently sampled from G(α) because rS⊥ is uniform randomly
sampled and rS⊥ is not a hardcoded constant in the function. If RChallenge is sampled from
the distribution G(Up(λ)), where Up(λ) is the uniform distribution on p(λ) bits, then B has
exactly sampled (f̂, r̂) from the distribution of H3(1λ)’s output. Otherwise, RChallenge is
sampled from the distribution U3·p(λ), where U3·p(λ) is the uniform distribution on 3 · p(λ) bits,
then B has exactly sampled (f̂, r̂) from the distribution of H4(1λ)’s output. Then B passes
(f̂, r̂) as input, as well as the appropriate advice string, to A who distinguishes between the
two with non-negligible probability in λ. Therefore, B breaks the security of the PRG with
non-negligible probability in λ.

4. H3(1λ) ≈c H4(1λ): Again, we condition on the event that κ >
(

1
2 − ε

)−1
· (p+ δth) · λ = Ω(λ).

Observe that in H3(1λ), with all but negligible probability in λ, the uniform randomly chosen
string R is not in the image of G. Then with all but negligible probability in λ, f (3)

λ always
outputs ⊥ so f (3)

λ is identical to the null circuit f (4)
λ that always outputs ⊥. Then, by the

indistinguishability property of the iO scheme, we have that H3(1λ) ≈c H4(1λ).

This series of hybrids show that Eve’s view is computationally indistinguishable from receiving
a null circuit. Therefore, there cannot exist any polynomial-time non-uniform algorithm that is able
to recover b efficiently from the real output of the coding scheme with non-negligible advantage.

4.1 Application: Codes with Easy Error Correction and Hard Erasure Correction

In any error-correcting code, correcting t erasures is (by definition) no harder than correcting t
errors. But suppose we allow the error bound t to be smaller than the erasure bound v, while still
insisting that erasure-decoding is information-theoretically possible. Then we have a fundamental
coding-theoretic complexity question, unexplored before [12] and our work: Can we design an
(efficiently encodable, binary) error-correcting code for which t errors can be corrected in polynomial
time whereas correcting v erasures requires super-polynomial time?

What makes the problem challenging is the fact that most useful classes of error-correcting codes
that support efficient decoding are linear. For linear codes, if correcting v erasures is information-
theoretically possible, then it can also be done in polynomial time by solving a system of linear
equations. Thus, a solution to the above question must inherently rely on efficiently decodable
nonlinear codes, for which fewer natural examples exist.

A simple corollary of Theorem 5 gives a solution to this problem where the encoding function is
probabilistic and the noise pattern is random (for both errors and erasures). This is captured by the
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following theorem.

Corollary 1 (Easy-hard codes). Suppose iO and injective one-way functions exist. Then, for every
p, e ∈ (0, 1) such that 2p < e < 4p(1 − p), there exists a PPT encoding algorithm E : {0, 1}k →
{0, 1}n(k) such that the following holds:

• Easy p-error correction. There is a polynomial-time decoder D and a negligible ϵ such
that for all x ∈ {0, 1}k we have Pr[D(ỹp) ̸= x] ≤ ϵ(k), where ỹp is obtained by first computing
y ← E(x) and then flipping each bit of y with probability p.

• Hard e-erasure correction. For every non-uniform polynomial-time decoder D∗ there is a
negligible µ such that for a uniformly random x ∈ {0, 1}k, Pr[D∗(ỹe) = x] ≤ µ(k) where ỹe is
obtained by first computing y ← E(x) and then erasing each bit of y with probability e.

• Nontriviality. There exists a computationally unbounded decoder D∞ and a negligible ϵ such
that for a random x ∈ {0, 1}k we have Pr[D∞(ỹe) = x] ≥ 1 − ϵ(k), where ỹe is obtained by
first computing y ← E(x) and then erasing each bit of y with probability e.

Proof. Let (Enc,Dec) be as guaranteed by Theorem 5 for the given e and p (which exist since
e > 2p), and assume without loss of generality that the encoding length is λc for some positive
integer c. For x ∈ {0, 1}k, let E(x) = Enc(1k, x1) ◦ · · · ◦ Enc(1k, xk), and let D(ỹ1 ◦ · · · ◦ ỹk) =
Dec(1k, ỹ1) ◦ · · · ◦Dec(1k, ỹk) (where the length regularity assumption guarantees unique parsing).

The easiness requirement is immediate, and the hardness follows by a standard hybrid argument
(in fact, hardness holds not only for a random message x but also for distinguishing between any
two messages x of the same length).

Finally, nontriviality follows from the impossibility of information-theoretic wiretap coding when
e < 4p(1− p) [8, 15]. Indeed, if nontriviality does not hold, then an information-theoretic wiretap
coding can be obtained via the amplification techniques in [8] (see also [12])

A natural question is whether it is possible to prove a variant of Corollary 1 in which the encoding
function E is deterministic. Note that if we use a random oracle to determine the randomness for
E based on the message, then the above proof still applies. This gives rise to a heuristic solution
using a cryptographic hash function to replace the random oracle. We leave open the question of
eliminating the random oracle by relying on cryptographic or derandomization assumptions.

Finally, an intriguing question is whether instances of similar “easy-hard codes” can be obtained
(even heuristically) via a natural construction, without relying on the power of general-purpose
obfuscation.

5 Characterization of Degraded Binary Channels
We present a novel polytope (polygon in two dimensions) formulation for DMCs that exactly
characterizes when a binary input channel ChB is a degradation of a binary input channel ChE. In
the case of larger constant-sized input alphabets, this characterization breaks down; nevertheless,
we can show that polytope non-containment for any pair of channels (ChB,ChE) enables a reduction
to the binary input alphabet and output alphabet setting.

Definition 14 (Channel Polytope). Let A be a matrix of non-negative entries. We associate to A
the following polytope, denoted P(A), which can be defined in either of the following equivalent
ways:
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• P(A) is the convex hull of all subset-sums of columns of A.

• P(A) = {A · s : 0 ≤ s ≤ 1}

For a channel ChA, we denote by P(ChA) the polytope P(A), where A is the row-stochastic
matrix associated to ChA.

5.1 Characterization of Degraded Channels with Binary Input

We now characterize when a pair of channels (ChB,ChE), both with binary input alphabet, satisfies
the relation that ChB is a degradation of ChE.

Theorem 6. Let B,E be two non-negative matrices with two rows that satisfy B · 1 = E · 1. Then
P(B) ⊆ P(E) if and only if there exists a row-stochastic matrix S such that B = E · S.

In other words, for any finite constant-sized alphabets Y,Z, and any two binary input channels
ChB : {0, 1} → Y and ChE : {0, 1} → Z with associated matrices B and E respectively, the polygon
containment P(B) ⊆ P(E) exactly characterizes when ChB is a degradation of ChE.

Proof of Theorem 6. Proving one direction of Theorem 6 is straightforward: Suppose there is a
row-stochastic matrix S such that B = E · S. Now consider any point x ∈ P(B), meaning x = B · s
where 0 ≤ s ≤ 1. Then x = E · (S · s) = E · s′ where 0 ≤ s′ ≤ 1 since S is stochastic.

The converse direction, namely showing that if P(B) ⊆ P(E), then there exists a stochastic S
such that B = E · S, will proceed by induction on the number of columns of B. In the base case
that B has a single column v, we note that v = E · 1 since the column sums of B,E are assumed to
be the same. Therefore, we can let S = 1 and then B = v = E · S.

To prove the inductive step, let v be the first column of B and B′ be the result of deleting the first
column, so that B =

[
v B′

]
. Define the shifted polygon Pv(E) = P(E)− v = {u− v : u ∈ P(E)}.

We will utilize the following lemma:

Lemma 6. For any matrix E of non-negative entries, and any v ∈ P(E), there exists a diagonal
matrix D, 0 ≤ D ≤ 1, such that P(E) ∩ Pv(E) = P(E ·D).

Using Lemma 6, we can finish the inductive proof. Since v ∈ P(B) ⊆ P(E), v satisfies
the conditions in Lemma 6. Then let D be the non-negative diagonal matrix guaranteed by
Lemma 6. Now, note that P(B′) ⊆ P(B) ⊆ P(E). Likewise, P(B′) + v ⊆ P(B), and so
P(B′) ⊆ Pv(B) ⊆ Pv(E). Therefore, P(B′) ⊆ P(E)∩Pv(E) = P(E ·D). Moreover, recall that E ·1
is the maximal element on Pv(E). Note that (E ·1)−v ∈ P(E)∩Pv(E), and therefore (E ·1)−v is
the maximal element in P(E)∩Pv(E) = P(E ·D), meaning B′ ·1 = (B ·1)−v = (E ·1)−v = E ·D ·1.

Since B′ · 1 = (E · D) · 1 and B′ has one less column than B, we can apply the inductive
hypothesis: There exists a row-stochastic S′ such that B′ = (E ·D) · S′. Let w = 1−D · 1. Note
that since the diagonal entries of D are in the closed interval [0, 1], we have 0 ≤ w ≤ 1. Moreover,
E ·w = (E · 1)− (E ·D · 1) = (B · 1)− (B′ · 1) = v.

Let S =
[
w D · S′

]
. Then E ·S = B. Moreover, S is non-negative, and S ·1 = w + (D ·S′ ·1) =

w + D · 1 = 1. Therefore, S is row-stochastic, as desired. This completes the proof of Theorem 6,
assuming Lemma 6.
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Proof of Lemma 6 For the remainder of the subsection, we focus on proving Lemma 6. To prove
this lemma, we will use a geometric viewpoint to understand the intersection of a polygon and its
shifted copy. We will define an “enclosing path” which encloses a solid.
Definition 15 (Solid of an Enclosing Path). For a finite ordered set of points P = (p1, . . . , pm) ⊆
[0, 1]× [0, 1] such that pm = p1, the solid S(P ) ⊆ [0, 1]× [0, 1] is defined to be the closed polygon
whose facets are the directed line segments {pipi+1} for i ∈ {1, . . . ,m − 1} and whose interior is
given by the counterclockwise orientation with respect to each directed line segment.

For any non-negative matrix E ∈ R2×n
≥0 , we can now describe P(E) by an enclosing path. Let

mi is the ith column of E and assume without loss of generality that columns mi are sorted in
monotonically increasing order of their polar coordinate angles. That is, mi can be written as (ri, θi)
for ri ≥ 0 and θi ∈ [0, π/2], and we sort the columns such that θi+1 ≥ θi. If there are ties, θi = θi+1,
we decide on an arbitrary order for the colliding columns.
Lemma 7. For any matrix E ∈ R2×n

≥0 whose columns are sorted in monotonically increasing order
of their polar coordinate angles,

P(E) = S
(

(0,m1,m1 + m2, . . . ,
n−1∑
i=1

mi,
n∑

i=1
mi,

n∑
i=2

mi, . . . ,mn−1 + mn,mn,0)
)

Proof. We proceed by induction on the number of columns n. The proof is effectively a proof by
picture.

(0, 0)
x1

x2

m3

•
•

•

m1 + m2 + m3
m2 + m3

m1 + m2

m1

m2

Figure 8: We visually depict the induction step. The vectors m1,m2,m3 are sorted by their angle
in a monotonically increasing order. The induction hypothesis is given by the polygon outlined in
blue. The shaded red region represents the addition of α ·m3 for α ∈ [0, 1]. The induction step is
completed by following the path (0,m1,

∑2
i=1 mi, ,

∑3
i=1 mi,

∑3
i=2 mi,m3,0).

In the base case, n = 1 and E = e1 ∈ R2
≥0 is a column and the polygon is given by the points of

the form α ·m1, for scalar α ∈ [0, 1], so we have P(E) = S ((0,m1,0)).
Now consider a matrix E ∈ [0, 1]2×n+1 whose columns are sorted in monotonically increasing

order of their polar coordinate angles. Define the matrix E′ ∈ [0, 1]2×n so that

E′ :=
[
m1 · · · mn

]
E :=

[
E′ mn+1

]
.
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Then the inductive hypothesis gives the following characterization:

P(E′) = S
(

(0,m1,m1 + m2, . . . ,
n−1∑
i=1

mi,
n∑

i=1
mi,

n∑
i=2

mi, . . . ,mn−1 + mn,mn,0)
)
.

Moreover, we have
P(E) = P(E′) + {α ·mn+1 : α ∈ [0, 1]}.

Since mn+1 is of the largest angle θn+1 ∈ [0, π/2], θn+1 ≥ θi for i ∈ [n], we have

P(E′) + {α ·mn+1 : α ∈ [0, 1]}

= S
(

(0,m1,m1 + m2, . . . ,
n∑

i=1
mi,

n+1∑
i=1

mi,
n+1∑
i=2

mi, . . . ,mn + mn+1,mn+1,0)
)
.

For a visual depiction of this step, see Figure 8. This step concludes the proof as we have established
the desired characterization of P(E).

Having established a characterization of P(E) in terms of an enclosing path, we can now complete
the proof of Lemma 6. Using the above characterization, we define the “forward path” of P(E) to be(

0,m1,m1 + m2, . . . ,
n∑

i=1
mi

)

and the “returning path” of P(E) to be(
n∑

i=1
mi,

n∑
i=2

mi, . . . ,mn−1 + mn,mn,0
)
.

For any v ∈ P(E), the shifted polygon Pv(E) satisfies the translation

Pv(E) = S
(

(0− v,m1 − v,m1 + m2 − v, . . . ,
n−1∑
i=1

mi,

n∑
i=1

mi − v,
n∑

i=2
mi − v, . . . ,mn−1 + mn − v,mn − v,0− v)

)
.

To characterize the forward path of the intersection P(E)∩Pv(E), we make the following observation.
The forward path of the intersection P(E)∩Pv(E) starts by following the forward path of P(E) and
intersects the forward path of Pv(E) at some point or at an overlapping line segment. Exactly one
such intersection must occur because the maximal element of Pv(E), given by (∑n

i=1 mi)− v, lies
in P(E). The reason why this maximal element lies in P(E) is because our polytope formulation
satisfies the symmetry condition that v ∈ P(E) if and only if (∑n

i=1 mi) − v ∈ P(E) (express
v = E · u for some vector u ∈ [0, 1]n and express ∑n

i=1 mi = E · 1). Therefore, there exists some
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index i∗ ∈ [n] and index j∗ > i∗, such that the forward path of P(E) ∩ Pv(E) is given by

(
0,m1,m1 + m2, . . . ,

i∗−1∑
i=1

mi, (initial forward path of P(E))

αi∗ ·mi∗ +
i∗−1∑
i=1

mi, (the two forward paths meet)

αi∗ ·mi∗ + αj∗mj∗ +
i∗−1∑
i=1

mi (begin on the forward path of Pv(E))

αi∗ ·mi∗ + αj∗mj∗ +
i∗−1∑
i=1

mi + mj∗+1, . . . , (continue on the forward path of Pv(E))

αi∗ ·mi∗ + αj∗mj∗ +
i∗−1∑
i=1

mi +
n∑

i=j∗+1
mi

)

for some scalars αi∗ ∈ [0, 1] and αj∗ ∈ [0, 1]. Note that the returning path is given by symmetry.
Then the solid formed by the forward and returning path exactly describe the polygon P(E ·D)
where the matrix E ·D ∈ [0, 1]2×n has columns given by

E ·D =
[
m1 · · · mi∗−1 αi∗ ·mi∗ 0 · · · 0 αj∗ ·mj∗ mj∗+1 · · · mn

]
.

Therefore, we have a diagonal matrix

D = diag

 1, . . . , 1︸ ︷︷ ︸
i∗−1 times

, αi∗ , 0, . . . , 0︸ ︷︷ ︸
j∗−i∗−1 times

, αj∗ , 1, . . . , 1︸ ︷︷ ︸
n−j∗ times

 ∈ [0, 1]n×n

such that P(E) ∩ Pv(E) = P(E ·D). This completes the proof of Lemma 6.

5.2 Counterexample for Ternary Input Alphabets

We now show that polytope containment does not imply degradation when the input alphabet
X is ternary. We construct two row-stochastic matrices B∗ ∈ [0, 1]3×3 and E∗ ∈ [0, 1]3×4 such
that P(B∗) ⊆ P(E∗) yet there does not exist any row-stochastic matrix S ∈ [0, 1]4×3 such that
B∗ = E∗ · S.

Consider any set of four column vectors v1,v2,v3,v4 ∈ [0, 1]3×1 that satisfy the following three
conditions:

1. v1,v2,v3 are linearly independent.

2. ∑4
i=1 vi = 1.

3. v4 = v1/5 + v2/5 + v3/5.
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As a concrete example, consider v1 =

5/6
0
0

, v2 =

 0
5/6
0

, v3 =

 0
0

5/6

. Then define the column

vectors

u1 := 3
5 · v1 + 1

5 · v2

u2 := 3
5 · v1 + 1

5 · v3

u3 := v2 + v3

Define the matrix E∗ to be

E∗ :=
[
v1 v2 v3 v4

]
and define the matrix B∗ to be

B∗ :=
[
u1 u2 u3

]
Lemma 8. P(B∗) ⊆ P(E∗).

Proof. It suffices to show that all the extreme points of P(B∗), given by the 0/1-combinations of the
columns of B∗, are in P(E∗). Note that 0 ∈ P(E∗) by definition of the polytope formulation. Then
the columns themselves, ui, are in P(E∗) by the construction of ui. Then we have the following
equivalences for the remaining 0/1-combinations:

u1 + u2 = v1 + v4

u2 + u3 = 2
5 · v1 + 4

5 · v2 + v3 + v4

u1 + u3 = 2
5 · v1 + v2 + 4

5v3 + v4

u1 + u2 + u3 = v1 + v2 + v3 + v4 = 1.

Since all the extreme points are of P(B∗) are contained in P(E∗), the convexity of P(B∗) and P(E∗)
implies that P(B∗) ⊆ P(E∗).

Lemma 9. The does not exist a row-stochastic matrix S ∈ [0, 1]4×3 such that B∗ = E∗ · S.

Proof. Let S be any matrix with real entries such that B∗ = E∗ · S. Let S :=
[
s1 s2 s3

]
where si

denotes the ith column of S. Then we have u1 = E∗ · s1, u2 = E∗ · s2, u3 = E∗ · s3. By the linear
independence of the vectors {vi}i∈[3], the only matrix S that satisfies the above relations is one in

which s1 =


3/5
1/5
0
0

, s2 =


3/5
0

1/5
0

 and s3 =


0
1
1
0

. But observe that this matrix S is not row-stochastic.

Therefore, we have shown that polytope containment does not imply stochastic channel degra-
dation for channels of ternary alphabet.
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6 Computational Wiretap Coding for Asymmetric BSC/BEC
In this section, we generalize the results of Section 4 from the symmetric BSC/BEC case to the
asymmetric case.

Our characterization of when two binary input channels are degraded gives a clean formula for
when a binary asymmetric channel is not a degradation of a binary asymmetric erasure channel.
We will use the formula to obtain a computational wiretap coding scheme from indistinguishability
obfuscation for wiretap channels of the form (BACp0,p1 ,BAECe0,e1) for choices of p0, p1, e0, e1 that
satisfy the following formula.

Lemma 10. Channel BACp0,p1 is not a degradation of channel BAECe0,e1 if and only if e0e1 >
p1e0 + p0e1.

Proof. By Theorem 6, BACp0,p1 is not a degradation of BAECe0,e1 if and only if P(BACp0,p1) ̸⊆
P(BAECe0,e1). Therefore it suffices to characterize for what values of e0, e1, p0, p1 we have that
P(BACp0,p1) ̸⊆ P(BAECe0,e1). These two polygons sit inside the unit square [0, 1]2 and are easy to
visualize.

(0, 0)
x1

x2

(1 − p0, p1)

(1, 1)

(p0, 1 − p1)

(1 − e0, 0)

(1, e1)

(0, 1 − e1)

(e0, 1)

Figure 9: An example of polygon non-containment for binary asymmetric channels and binary
asymmetric erasure channels. Here, x1 and x2 are indeterminates. The blue polygon is P(BACp0,p1)
for parameters p0 = 1/5, p1 = 1/4. The red polygon is P(BAECe0,e1) for parameters e0 = 2/5,
e1 = 3/4.

By convexity, if P(BACp0,p1) ̸⊆ P(BAECe0,e1), then there exists an extreme point of P(BACp0,p1)
that does not belong to P(BAECe0,e1). There are only four extreme points of P(BACp0,p1):
(0, 0), (1, 1), (1− p0, p1), (p0, 1− p1). Moreover, both P(BACp0,p1) and P(BAECe0,e1) satisfy two-fold
symmetry, namely a point v is in the polygon if and only if 1− v is in the polygon. This symmetry
tells us that (1− p0, p1) /∈ P(BAECe0,e1) if and only if (p0, 1− p1) /∈ P(BAECe0,e1). We have shown,
then, it suffices to characterize when (p0, 1− p1) /∈ P(BAECe0,e1).

Assume without loss of generality that p0 ≤ 1
2 (see Remark 1). Then, by the slope-intercept

formula, we see that (p0, 1− p1) /∈ P(BAECe0,e1) if and only if p0 < e0 and e0e1 > p1e0 + p0e1. Since
p1 ∈ [0, 1], the condition e0e1 > p1e0 + p0e1 implies that p0 < e0. Then, removing this redundant
condition gives the statement that (p0, 1 − p1) /∈ P(BAECe0,e1) if and only if e0e1 > p1e0 + p0e1.
Then, we conclude that P(BACp0,p1) ̸⊆ P(BAECe0,e1) if and only if e0e1 > p1e0 + p0e1.
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Theorem 7. Assuming the existence of iO and injective PRGs, there exists a computational wiretap
coding scheme for any wiretap channel (BACp0,p1 ,BAECe0,e1) such that e0e1 > e0p1 + e1p0.

In addition to iO and injective PRGs for the main construction, we will use any efficient error
correcting code for BACp0,p1 , given by CB = (CB.Enc, CB.Dec) such that for all x ∈ {0, 1}∗,

Pr[CB.Dec(1λ,BACp0,p1(CB.Enc(1λ, x))) = x] ≥ 1− ε(λ)

for a negligible ε. As an example of a concrete instantiation, one can consider a simple repetition
code 1 where the encoding of a bit b is given by C.Enc(1λ, b) = bλ = bb . . . b︸ ︷︷ ︸

λ times
and the encoding of a

string is done bit-by-bit. The rate of this code is 1/λ.

Coding Scheme 2. (Computational Wiretap Coding Scheme for (BACp0,p1 ,BAECe0,e1))

We now describe our wiretap encoder-decoder pair (Enc,Dec) that depends on both BACp0,p1

and BAECe0,e1 . The encoder takes a bit b ∈ {0, 1} and we only note that the construction
readily extends to taking strings as input.

Enc(1λ, b):
Constants: p0, p1, e0, e1.

1. Let η = e1
e0+e1

, t = e0p1+e1p0
e0+e1

, δth = λ−0.1.

2. Sample r ←− {0, 1}λ according to the following Bernoulli distribution with parameter 1−η:
For each i ∈ [λ], sample

ri ←−
{

0 with probability η
1 with probability 1− η

3. Construct the function f : {0, 1}λ → {m,⊥} as follows

fλ(x):
Input: x ∈ {0, 1}λ.
Hardwired constants: r, b, e0, e1, p0, p1.

1. If the Hamming distance ∆H(x, r) < (t+ δth) · λ, then output b. Else, output ⊥.

1We briefly explain why a simple repetition code suffices. The repetition code allows recovery of the bit b as
long as the output distribution BACp0,p1 (0) “sufficiently” differs from the output distribution BACp0,p1 (1), that is,
p0 ̸= 1 − p1 (otherwise the channel completely randomizes the input). In this setting, to recover the original bit b,
the decoding algorithm counts the number of 0’s in the output string and for sufficiently large λ ∈ N, the number of
0’s in BACp0,p1 (0λ) and BACp0,p1 (1λ) and a standard Chernoff argument guarantees that these two distributions are
concentrated far from each other.
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4. Output (CB.Enc(iO(fλ)), r) where fλ (viewed as a circuit) is padded to be the maximum
circuit size of the circuits in {fλ} ∪

{
f

(i)
λ

}
i∈[4]

where the f (i)
λ are defined later in the

security proof.

Dec(1λ, f̂, z):

1. Let f ←− CB.Dec(f̂).

2. Output f(z).

Intuition for the Coding Scheme Since ChB is not a degradation of ChE, by Lemma 10 the
channel parameters satisfy the relation e0e1 > p0e1 + p1e0. Then, observe that the expected relative
Hamming distance of Bob’s received string with respect to the initially sent string is

ηp0 + (1− η)p1 = p0e1 + p1e0
e0 + e1

.

In the case of Eve’s received string, we observe that any erasure position is equally likely, from Eve’s
perspective, to have been either a 0 or 1. This is because the encoding algorithm samples every bit
ri from a Bernoulli distribution with parameter 1− η where η = e1

e0+e1
. Then Eve’s best guessing

strategy to guess the initial string r sampled by the encoding algorithm is to uniform randomly
guess each bit ri for which the ith position of Eve’s received string is an erasure. The expected
fraction (of the total string length λ) of erasures that Eve receives is

ηe0 + (1− η)e1 = 2e0e1
e0 + e1

.

Since Eve’s best guess of r is to randomly guess for each of these erasures, the expected relative
Hamming distance of Eve’s best guess with respect to r is half of the expected fraction of erasures:

e0e1
e0 + e1

.

Consider the constant ddiff where we define ddiff := e0e1−(p0e1+p1e0)
e0+e1

. Then observe that the channel
degradation condition exactly states that ddiff > 0 is some positive constant. The threshold
parameter δth is set to be λ−0.1. Under this parameter setting, a standard Chernoff argument
ensures that with overwhelming probability Bob’s received string r̂B ∈ {0, 1}λ will satisfy the
statistical check that ∆H(r̂B, r) ≤ (t+ δth) · λ. Intuitively, Eve’s best guess will fail the statistical
check, and we will formally show this by a series of computationally indistinguishable hybrids
(experiments) to prove that no polynomial-time non-uniform algorithm can guess a random message
bit b with non-negligible advantage using Eve’s channel outputs (her view). We give the formal
details below.

Lemma 11 (Correctness of the Computational Wiretap Encoding Scheme). There exists a negligible
function µ : N→ [0, 1] such that for every message bit b ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ, b))) = b] ≥ 1− ϵ(λ)
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Proof. We will use (f, r) to denote random variables representing the output of Enc(1λ, b) and we
will use (f̃, r̃) to denote random variables representing the output of the channel ChB(f, r). Using
the notation ∆H(·, ·) to denote Hamming distance (non-relative), we note that the expected value
of the Hamming distance of r̃ from r is given as EChB,Enc [∆H(r̃, r)] = e0p1+e1p0

e0+e1
· λ = t · λ where the

t stated here is exactly as was defined in Coding Scheme 2. Then the probability over the channel
randomness and the coins used by the encoding algorithm Enc(·, ·) that the received string r̃ fails
the statistical check is given by an additive Chernoff (Lemma 2) bound:

Pr
ChB,Enc

[∆H(r̃, r) ≥ (t+ δth) · λ] ≤ exp
(
−2 · δ2

th · λ
)

= exp
(
−2 · λ0.8

)
which is negligible in λ.

Lemma 12 (Security of the Computational Wiretap Encoding Scheme). Let ChB be a BACp0,p1

channel and let ChE be a BAECe0,e1 channel such that e0e1 > e0p1 + e1p0. For all polynomial-time
non-uniform algorithms A, there exists a negligible function µ : N→ [0, 1] such that

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1
2 + µ(λ)

where b is uniformly distributed over {0, 1}.
Proof. We will proceed through the following series of hybrids (experiments) that models Eve’s view.
We will show that what Eve receives from this encoding process is computationally indistinguishable
from Eve receiving a null circuit, thereby rendering Eve unable to recover the message bit b except
with negligible advantage. In each of the following hybrids, each function (viewed as a circuit) is
padded to be the maximum circuit size of the circuits in {fλ} ∪

{
f

(i)
λ

}
i∈[4]

where fλ is defined in

the construction and f
(i)
λ are defined in each of the below hybrids.

1. H0(1λ): In the real world, Alice sends Enc(1λ, b) = (C.Enc(iO(f)), r) through ChE and Eve
receives the output of the channel, ChE((C.Enc(iO(f))), r). We assume that Eve successfully
recovers iO(f), since such an assumption only gives Eve more information. The output of the
experiment is (iO(f),ChE(r)).

2. H1(1λ): In this hybrid, we consider a slight variation of the above experiment. Let r ←− {0, 1}λ
be chosen as in Enc(1λ, b) where each bit ri is independently identically sampled from a
Bernoulli distribution with parameter 1− η. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ. Let S⊥ ⊆ [λ]
be the set of indices for which r̂i = ⊥ and let S⊥ := [λ] \ S⊥. Let κ := |S⊥|. Define the finite
subsequence (a string) rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from the
indices from S⊥ and analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ of

the bits from the indices from S⊥.
We now give an alternate encoding method where instead of constructing the function f as in
Coding Scheme 2, Alice instead uses the following function f (1):

f
(1)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥ , rS⊥

, b, e0, e1, p0, p1, S⊥.
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1. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥
, rS⊥

) ≤ (t+ δth) · λ, then
output b. Else, output ⊥.

The output of the experiment is (iO(f (1)
λ ), r̂).

3. H2(1λ): Let r ←− {0, 1}λ be chosen as in Enc(1λ, b) where each bit ri is independently identically
sampled from a Bernoulli distribution with parameter 1−η. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ.
Let S⊥ ⊆ [λ] be the set of indices for which r̂i = ⊥ and let S⊥ := [λ]\S⊥. Let κ = |S⊥|. Define
the finite subsequence (a string) rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from
the indices from S⊥ and analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ

of the bits from the indices from S⊥.
We now give an alternate encoding method where instead of constructing the function f (1) as
in H1(1λ), Alice will do the following in order to construct a different function f (2) which we
will define shortly:

(a) Let ε = 1
4 −

t(e0+e1)
4e0e1

. Let CLD,κ : {0, 1}κd → {0, 1}κ be a code from a (1/2− ε, q(κ, 1/ε))
list-decodable ensemble of binary codes for some constant 0 < d < 1 and some polynomial
q(κ, 1/ε). We will use CLD,κ.ListDec(·) to denote an efficient list-decoding function for
CLD,κ.

(b) Sample α ∈ {0, 1}κd uniform randomly and set c←− CLD,κ(α) so c ∈ {0, 1}κ.
(c) Let z = c⊕ rS⊥ .
(d) Let G : {0, 1}κd → {0, 1}3·κd be a length-tripling injective PRG.

f
(2)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥

, z,G(α), b, e0, e1, p0, p1, S⊥.

1. Let D ←− CLD,κ.ListDec(z ⊕ xS⊥). D is a list of at most q(κ, 1/ε) many elements in
{0, 1}κd .

2. If G(s) ̸= G(α) for all strings s ∈ D, output ⊥. Otherwise, set α′ to be the string s
such that G(s) = G(α).

3. Set rS⊥ ←− CLD,κ(α′)⊕ z.
4. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (t+ δth) · λ, then

output b. Else, output ⊥.

The output of the experiment is (iO(f (2)
λ ), r̂).

4. H3(1λ): Let r ←− {0, 1}λ be chosen as in Enc(1λ, b) where each bit ri is independently identically
sampled from a Bernoulli distribution with parameter 1−η. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ.
Let S⊥ ⊆ [λ] be the set of indices for which r̂i = ⊥ and let S⊥ := [λ]\S⊥. Let κ := |S⊥|. Define
the finite subsequence (a string) rS⊥ := (rij )ij∈S⊥ s.t. ij<ij+1 ∈ {0, 1}κ consisting of the bits from
the indices from S⊥ and analogous finite subsequence rS⊥

:= (rij )ij∈S⊥ s.t. ij<ij+1
∈ {0, 1}λ−κ

of the bits from the indices from S⊥.
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We now give an alternate encoding method where instead of constructing the function f (1) as
in H1(1λ), Alice will do the following in order to construct a different function f (2) which we
will define shortly:

(a) Let ε = 1
4 −

t(e0+e1)
4e0e1

. Let CLD,κ : {0, 1}κd → {0, 1}κ be a code from a (1/2− ε, q(κ, 1/ε))
list-decodable ensemble of binary codes for some constant 0 < d < 1 and polynomial
q(κ, 1/ε). We will use CLD,κ.ListDec(·) to denote an efficient list-decoding function for
CLD,κ.

(b) Sample α ∈ {0, 1}κd uniform randomly and set c←− CLD,κ(α) so c ∈ {0, 1}κ.
(c) Let z ←− c⊕ rS⊥ .
(d) Let G : {0, 1}κd → {0, 1}3·κd be a length-tripling injective PRG.
(e) Let R be a string sampled uniform randomly from {0, 1}3·κd .

f
(3)
λ (x):

Input: x ∈ {0, 1}λ
Hardwired constants: rS⊥

, z, R,m, e0, e1, p0, p1, S⊥.

1. Let D ←− CLD,κ.ListDec(z ⊕ xS⊥). D is a list of at most q(κ, 1/ε) many elements in
{0, 1}κd .

2. If G(s) ̸= R for all strings s ∈ D, output ⊥. Otherwise, set α′ to be the string s
such that G(s) = G(α).

3. Set rS⊥ ←− CLD,κ(α′)⊕ z.
4. If the Hamming distances satisfy ∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (t+ δth) · λ, then

output m. Else, output ⊥.

The output of the experiment is (iO(f (3)
λ ), r̂).

5. H4(1λ): We now consider when Eve simply gets the iO of a null circuit. Let r ←− {0, 1}λ be
chosen as in Enc(1λ,m, p0, p1, e0, e1) where each bit ri is independently identically sampled
from a Bernoulli distribution with parameter 1− η. Then let r̂ := ChE(r) ∈ {0, 1,⊥}λ.

f
(4)
λ (x):

Input: x ∈ {0, 1}λ

1. Output ⊥.

The output of the experiment is (iO(f (4)
λ ), r̂).

We now make the following claims:
1. H0(1λ) ≈c H1(1λ): First, r̂ is sampled identically as ChE(r). Then, observe that for any

subset S⊥ ⊆ [λ], the function f
(1)
λ (·) is functionally equivalent to fλ because for any string

x ∈ {0, 1}λ,
∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) = ∆H(x, r).

Therefore, the claim follows by the indistinguishability of the iO scheme.
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2. H1(1λ) ≈c H2(1λ): We claim that f (2)
λ is functionally equivalent to f (1)

λ with overwhelming
probability over the coins used in generation of r̂ ∈ {0, 1,⊥}λ.
For the functional equivalence to hold we require that on inputs x ∈ {0, 1}λ, that if
∆H(xS⊥ , rS⊥) + ∆H(xS⊥

, rS⊥
) ≤ (t+ δth) · λ, then the list decoding algorithm is able to

recover α. The list decoding algorithm recovers α when ∆H(xS⊥ , rS⊥) ≤
(

1
2 − ε

)
· κ. A

sufficient condition for this implication to occur is, therefore, that (t+ δth) · λ ≤
(

1
2 − ε

)
· κ.

A standard Chernoff argument shows that κ satisfies this inequality with overwhelming proba-
bility for our choice of parameters.

In detail, let κi be a 0/1 indicator random variable for the event that r̂i = ⊥, and let
κ := ∑

i∈[λ] κi. Note that E[κ] =
(

2e0e1
e0+e1

)
· λ. By a standard additive Chernoff (Lemma 2), we

have
Pr
[
κ <

( 2e0e1
e0 + e1

− λ−0.1
)
· λ
]
≤ exp

(
−2 · λ0.8

)
Recall that our objective is to show that

(
1
2 − ε

)
· κ ≥ (t + δth) · λ with high probability

so that on inputs of small Hamming distance less that (t + δth) · λ, our new function f
(2)
λ

successfully recovers α via a list decoding procedure. For there to exist a setting of ε such
that the following probability is overwhelming:

Pr
[(1

2 − ε
)
· κ ≥ (t+ δth) · λ

]
it suffices to choose a constant ε such that(1

2 − ε
)−1
· (t+ δth) · λ ≤

( 2e0e1
e0 + e1

− λ−0.1
)
· λ. (⋆)

To see why, observe that if this inequality holds, then the same Chernoff above implies that

Pr
[
κ <

(1
2 − ε

)−1
· (t+ δth) · λ

]
≤ exp(−2 · λ0.8)

Rearranging the inequality (⋆), we obtain an equivalent inequality:

ε ≤ 1
2 −

t · λ0.1 + 1
γ · λ0.1 − 1

where γ = 2e0e1
e0+e1

= E[κ]
λ . Then observe that the degradation condition guarantees that t < γ

2 ,
so by choosing any constant ε ∈

[
0, 1

2 − t
γ

]
, the above inequality holds for sufficiently large

λ ∈ N. Therefore, we conclude that by choosing any constant ε ∈
[
0, 1

2 − t
γ

]
, for sufficiently

large λ,
Pr
[(1

2 − ε
)
· Y > (t+ δth) · λ

]
≥ 1− exp(−2 · λ0.8)

Conditioning on the event that κ >
(

1
2 − ε

)−1
·(t+δth) ·λ = Ω(λ), we can analyze the behavior

of f (2)
λ :
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(a) If the input x satisfies that ∆H(xS⊥ , rS⊥) ≤ (t+ δth) · λ, then the Hamming weight of
xS⊥ ⊕ rS⊥ satisfies

wtH(xS⊥ ⊕ rS⊥) ≤ (t+ δth) · λ ≤
(1

2 − ε
)
· κ.

The (1/2− ε, q(κ, 1/ε))-list decodable property, implies that the preimage α of the
randomly chosen codeword c will be recovered in the list D. By the injectivity of the
PRG, there is a unique such preimage α and therefore, the function f

(2)
λ can correctly

compute CLD,κ(α) and recover rS⊥ . Finally, Step 3 is exactly computing f (1)
λ (r′).

(b) If the input x instead satisfies the complement relation ∆H(xS⊥ , rS⊥) > t + δth, then
observe that either f (2)

λ will output ⊥ either due to Step 2, or due to Step 3. This is
exactly the output behavior of f (1)

λ .

Therefore, conditioning on the event that κ >
(

1
2 − ε

)−1
· (t+ δth) · λ = Ω(λ), we have that

f
(2)
λ has the same input-output behavior as f (1)

λ on all inputs and we appeal to the indistin-
guishability of the iO scheme to show that (iO(f (1)

λ ), r̂) ≈c (iO(f (2)
λ ), r̂). This event occurs

with all but negligible probability, so the two hybrids are computationally indistinguishable:
H1(1λ) ≈c H2(1λ).

3. H2(1λ) ≈c H3(1λ): We will use the computationally indistinguishability of the PRG G to
show this statement. Again, we condition on the event that the number of observed erasures,
κ, satisfies κ >

(
1
2 − ε

)−1
· (t + δth) · λ = Ω(λ). This event occurs with all but negligible

probability in λ where the probability is over the the coins used in the generation of r̂.
If there is a polynomial-time non-uniform adversaryA who can distinguish between (iO(f (2)

λ ), r̂)
and (iO(f (3)

λ ), r̂), then we can construct a polynomial-time non-uniform adversary B who can
distinguish between the output of G on a random string of length κd and a uniform random
string of length 3 · κd. Namely, B on input RChallenge follows the construction template of the
experiment H2(1λ) and uses RChallenge in-place of G(α) to obtain some output (f̂, r̂).
Crucially, observe that z is independently sampled from G(α). This is because rS⊥ , from the
viewpoint of the adversary, is uniform randomly sampled, since for all i ∈ S⊥,

Pr [ri = 0 | r̂i = ⊥] = 1
2 .

Therefore, z, from the viewpoint of the adversary is distributed uniform randomly over {0, 1}κ
because of the above observation and the fact that rS⊥ is not hardwired anywhere in the
function.
If RChallenge is sampled from the distribution G(Up(λ)), where Up(λ) is the uniform distribution
on p(λ) bits, then B has exactly sampled (f̂, r̂) from the distribution of H3(1λ)’s output.
Otherwise, RChallenge is sampled from the distribution U3·p(λ), where U3·p(λ) is the uniform
distribution on 3 ·p(λ) bits, then B has exactly sampled (f̂, r̂) from the distribution of H4(1λ)’s
output. Then B passes (f̂, r̂) as input, as well as the appropriate advice string, to A who
distinguishes between the two with non-negligible probability in λ. Therefore, B breaks the
security of the PRG with non-negligible probability in λ.
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4. H3(1λ) ≈c H4(1λ): Again, we condition on the event that κ >
(

1
2 − ε

)−1
· (t+ δth) · λ = Ω(λ).

Observe that in H3(1λ), with all but negligible probability in λ, the uniform randomly chosen
string R is not in the image of G. Then with all but negligible probability in λ, f (3)

λ always
outputs ⊥ so f (3)

λ is identical to the null circuit f (4)
λ that always outputs ⊥. Then, by the

indistinguishability property of the iO scheme, we have that H3(1λ) ≈c H4(1λ).

This series of hybrids show that Eve’s view is computationally indistinguishable from receiving
a null circuit. Therefore, there cannot exist any polynomial-time non-uniform adversary that is able
to recover b efficiently from the real output of the coding scheme with non-negligible advantage.

6.1 Reducing the General Binary Input Case to the BAC/BAEC Case

Lemma 13. Let ChB : {0, 1} → Y be a channel with a binary input alphabet. For any channel
ChE : {0, 1} → Z with a binary input alphabet, if ChB is not a degradation of ChE, then there exists
a channel ChPost : Y → {0, 1} such that ChPost ◦ ChB is not a degradation of ChE.

Proof. For any channel ChE : {0, 1} → Z for an arbitrary constant-sized output alphabet Z, if ChB
is not a degradation of ChE then P(B) ̸⊆ P(E) by Theorem 6. Therefore, there exists some vector
u ∈ [0, 1]|Y|×1 such that B · u ∈ P(B) \ P(E). Observe that we can in fact assume that u is a
0/1 vector in {0, 1}|Y|×1 by taking an extreme point of P(B) that is not contained in P(E) (such
a point exists by the convexity of P(B)). Then observe that B · (1 − u) ∈ P(B) \ P(E) by the
aforementioned symmetry of the polytope formulation. The row-stochastic matrix P :=

[
u 1− u

]
defines a channel ChPost, and P is such that

P(B ·P) ̸⊆ P(E)

which implies (by Theorem 6) that ChPost ◦ ChB is not a degradation of ChE.

Remark 2. Note that computing the row-stochastic matrix representation of ChPost, given ChB
and ChE described as row-stochastic matrices B ∈ [0, 1]2×|Y| and E ∈ [0, 1]2×|Z|, can be efficiently
done. The enclosing path formulation of P(B) tells us that the extreme points of P(B) are of
the form B · (1, 1, . . . , 1, 0, . . . , 0)⊤ or B · (0, . . . , 0, 1, . . . , 1)⊤ since the points in the enclosing path
formulation are of the form ∑t

i=1 bi and ∑|Y|
i=t bi for t ∈ [|Y|] and where bi denotes the ith column

of B. Then, computing a single extreme point of P(B) that is not in P(E) can be done by iterating
through all (a constant number at most 2 · |Y|) of extreme points of P(B) and using standard linear
programming to check if each point is in P(E). Upon finding a single extreme point B · v not in
P(E) for a vector v := (1, 1, . . . , 1, 0, . . . , 0)⊤, the vector v defines one column of the row-stochastic
matrix formulation of ChPost and the second column is obtained by taking 1− v (due to two-fold
symmetry).

Lemma 14. Let ChB : {0, 1} → {0, 1} be a channel with binary input and output alphabet. For any
channel ChE : {0, 1} → Z with a binary input alphabet, if ChB is not a degradation of ChE, then
there exists a channel ChE′ that is a binary asymmetric erasure channel with some parameters e0, e1
such that ChE is a degradation of ChE′ and ChB is not a degradation of ChE.
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Remark 3. Computing the row-stochastic matrix of ChE′ can be done efficiently. As in the case of
Remark 2, we can iterate through all extreme points of P(B), and upon finding an extreme point of
P(B), one can efficiently compute a strict separating hyperplane by linear programming. The other
facet is obtained by applying two-fold symmetry and the enclosing path for ChE′ consists of just 6
points readily obtained as described in the proof.

Proof of Lemma 14. The proof is essentially a proof by picture. If ChB is not a degradation
of ChE, then P(B) ̸⊆ P(E). Therefore, there exists an extreme point of P(B), of the form
B ·u ∈ P(B)\P(E) where u is a 0/1 vector in {0, 1}2×1 , that is not contained in P(E). By the strict
separating hyperplane theorem (Theorem 4), there exists ψ ∈ R2 such that ⟨u, ψ⟩ > sup⟨P(E), ψ⟩.
Geometrically, ψ is a line L that strictly separates P(E) and u into two different half-planes. This
line L forms a new facet of a polygon, which we will define to be P(E′), that contains P(E).

We will use a x-y plane terminology for R2 for indeterminates x and y. Assume without loss of
generality that B · u is below the line y = x (we can assume this because otherwise we can instead
consider B · (1− u) ∈ P(B) \ P(E)). The line L must intersect the line defined by x = 1 at some
point (1, b) for some scalar 0 < b < 1 by the strict separation property since 1 := (1, 1) ∈ P(E).
Similarly the line L must intersect the line defined by y = 0 at some point (1− a, 0) for some scalar
0 < a < 1 such that 1− a > 0 by the strict separation property since 0 := (0, 0) ∈ P(E). Therefore,
the line L is given by the equation

y = b

a
· x− b(1− a)

a
.

Then observe that the aforementioned two-fold symmetry gives us another separating hyperplane (a
line) L′ that separates another extreme point B · (1− u) ∈ P(B) \ P(E) from P(E). The equation
for this new separating line L′ is given by the two-fold symmetry, for which we simply replace
y and x with 1 − y and 1 − x respectively in the above equation for L to obtain the equation
y = b

ax + (1 − b) for line L′. These lines L and L′ now give us an enclosing path P for a convex
solid that contains P(E) where P = (0, (1− a, 0), (1, b),1, (a, 1), (0, 1− b),0) which is exactly the
polygon of the following row-stochastic matrix:

E′ :=
[
1− a 0 a

0 1− b b

]
.

This row-stochastic matrix E′ exactly describes a BAECa,b channel. Therefore, we have constructed
a channel ChE′ = BAECa,b for which P(E) ⊆ P(E′) and for which P(B) ̸⊆ P(E′) (since B ·u remains
separated by construction). By Theorem 6, we have that these two polygon conditions imply that
ChE is a degradation of ChE′, whose matrix representation is E′, and ChB is not a degradation of
ChE.

Theorem 8. Assuming the existence of iO and injective PRGs, there exists a computational wiretap
coding scheme for any pair of binary input channels (ChB,ChE) such that ChB is not a degradation
of ChE,

Using Lemma 13 and Lemma 14, from any pair of binary input channels (ChB,ChE) such that
ChB is not a degradation of ChE, we can efficiently compute a pair of channels (ChB′,ChE′) such
that ChB′ = BACp0,p1 and ChE′ = BAECe0,e1 for some constant parameters p0, p1, e0, e1 such that
the following hold:
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1. e0e1 > e0p1 + e1p0, (that is, ChB′ is not a degradation of ChE′).

2. ChB simulates ChB′. That is, P(B′) ⊆ P(B) where B and B′ are the matrix representations
of the channels ChE,ChE′ respectively. In other words, Bob, who has the physical channel
ChB, can apply a post-processing step (apply ChPost from Lemma 13) on his received word to
exactly simulate receiving an output from ChB′.

3. ChE′ simulates ChE. That is, P(E) ⊆ P(E′) where E and E′ are the matrix representations of
the channels ChE,ChE′ respectively. In other words, for security we consider a channel ChE′

which can simulate the received string Eve obtains through her physical channel ChE.
Therefore, to obtain a computational wiretap coding scheme C for (ChB,ChE), we can use a
computational wiretap coding scheme C′ for the wiretap channel (ChB′,ChE′) and require that Bob
post-processes his received string from his channel ChB before applying the decoding algorithm
C′.Dec(·, ·).

• The correctness of this computational wiretap coding scheme follows by observing that for any
input Alice sends through ChB, Bob can perfectly simulate having received an output from
ChB′ corresponding to that input, so the correctness of wiretap coding scheme C′ guarantees
that Bob is able to recover the message with all but negligible success.

• The security of this computational wiretap coding scheme follows by observing that the coding
scheme C′ gives security against the class of all polynomial-time non-uniform algorithms
with a channel ChE′ between themselves and Alice. This class of efficient adversaries, by
the degradation condition, include those who simulate having a channel ChE between Alice
and themselves. So all polynomial-time non-uniform algorithms with a channel ChE between
themselves and Alice fall into this class of efficient algorithms.

Following the above outline, we now construct our computational wiretap coding scheme for the
general binary input channel case.

Coding Scheme 3. (Computational Wiretap Coding Scheme for General Binary Input
Channels (ChB,ChE))

We now describe our wiretap encoder-decoder pair (Enc,Dec) that depends on both ChB
and ChE, for which B and E are their respective row-stochastic matrix representations. The
encoder takes a bit b ∈ {0, 1} and we only note that the construction readily extends to taking
strings as input.

To construct our encoder-decoder pair, we first compute B′ = B · P (for a matrix P ∈
[0, 1]|Y |×2 as obtained in Remark 2) and a matrix E′ (see Remark 3) such that ChB′ = BACp0,p1

and ChE′ = BAECe0,e1 such that

• e0e1 > e0p1 + e1p0.

• P(B′) ⊆ P(B).

• P(E) ⊆ P(E′).

Then, let C′ = (Enc′,Dec′) denote a computational wiretap coding scheme for the wiretap
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channel (ChB′,ChE′) (see Theorem 7).

Enc(1λ, b):

1. Output f, r ←− Enc′(1λ, b).

Dec(1λ, f̂, r̂):

1. Perfectly simulate running the inputs through the channel ChPost (defined by row-
stochastic matrix P) to obtain ˆ̂f, ˆ̂r ←− ChPost(f̂, r̂).

2. Output Dec′(1λ, ˆ̂f, ˆ̂r).

Proof. The correctness of the computational wiretap coding scheme (Enc,Dec) follows immediately
from that of (Enc′,Dec′). In particular, if f, r ←− Enc′(1λ, b), then Bob first observes the output
ChB(f, r) and then efficiently and perfectly simulates running ChPost (the matrix entries are
assumed to be rational probabilities and the matrix description is some finite constant size) to
obtain (ChPost ◦ ChB)(f, r) = ChB′(f, r). Then the correctness of (Enc′,Dec′) implies that there
exists a negligible function µ : N→ [0, 1] such that for every message bit b ∈ {0, 1},

Pr[Dec′(1λ,ChB′(Enc′(1λ, b))) = b] ≥ 1− ϵ(λ).

This concludes the proof of correctness for (Enc,Dec).
Security of (Enc,Dec) follows from the security of (Enc′,Dec′). If there is a polynomial-time

non-uniform algorithm A such that

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≥ 1
2 + µ(λ)

for some non-negligible function µ, where b is uniformly distributed over {0, 1}, then we can construct
a polynomial-time non-uniform algorithm B such that

Pr[B(1λ,ChE′(Enc′(1λ, b))) = b] ≥ 1
2 + µ(λ)

for some non-negligible function µ. B, given input ChE′(Enc′(1λ, b)) for a uniform random bit
b, can produce ChE(Enc(1λ, b)) since ChE is perfectly simulatable using ChE′ (this is efficiently
done since all channel descriptions are constant sized and this is feasible due to the degradation
condition that ChE is a degradation of ChE′). Then B runs A on ChE(Enc′(1λ, b)) and therefore has
non-negligible distinguishing advantage µ, resulting in a contradiction to the security of (Enc′,Dec′).
This concludes the proof of security for (Enc,Dec).
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