
Sender-binding Key Encapsulation

Laurin Benz1,2, Wasilij Beskorovajnov3, Sarai Eilebrecht3, Jörn
Müller-Quade1,2,3, Astrid Ottenhues1,2, and Rebecca Schwerdt1,2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 KASTEL Security Research Labs, Karlsruhe, Germany

{laurin.benz, mueller-quade, ottenhues, schwerdt}@kit.edu
3 FZI Research Center for Information Technology, Karlsruhe, Germany

{beskorovajnov, eilebrecht}@fzi.de

Abstract. Secure communication is gained by combining encryption
with authentication. In real-world applications encryption commonly
takes the form of KEM-DEM hybrid encryption, which is combined with
ideal authentication. The pivotal question is how weak the employed key
encapsulation mechanism (KEM) is allowed to be to still yield universally
composable (UC) secure communication when paired with symmetric en-
cryption and ideal authentication. This question has so far been addressed
for public-key encryption (PKE) only, showing that encryption does not
need to be stronger than sender-binding CPA, which binds the CPA
secure ciphertext non-malleably to the sender ID. For hybrid encryption,
prior research unanimously reaches for CCA2 secure encryption which is
unnecessarily strong. Answering this research question is vital to develop
more efficient and feasible protocols for real-world secure communication
and thus enable more communication to be conducted securely.
In this paper we use ideas from the PKE setting to develop new answers
for hybrid encryption. We develop a new and significantly weaker security
notion—sender-binding CPA for KEMs—which is still strong enough
for secure communication. By using game-based notions as building
blocks, we attain secure communication in the form of ideal functionalities
with proofs in the UC-framework. Secure communication is reached in
both the classic as well as session context by adding authentication
and one-time/replayable CCA secure symmetric encryption respectively.
We furthermore provide an efficient post-quantum secure LWE-based
construction in the standard model giving an indication of the real-world
benefit resulting from our new security notion. Overall we manage to make
significant progress on discovering the minimal security requirements for
hybrid encryption components to facilitate secure communication.

Keywords: IND-SB-CPA · Key Encapsulation · Secure Communication
· Authenticated Channels · UC.

1 Introduction

Secure communication has always been the first and foremost goal of cryptography.
The common way to reach this goal is to combine encryption with authentication.
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Development on the encryption side has come a long way from the roots of
symmetric encryption schemes via public-key encryption (PKE) [1] to modern
hybrid encryption [2], where keys are exchanged via a public-key key encapsulation
mechanism (KEM) and subsequently used to symmetrically encrypt messages.

For secure communication via PKE it has long been known that CCA2 secure
encryption is unnecessarily strong if authentication is already provided [3]. A
recent breakthrough in this setting [4] showed that sender-binding encryption
(SBE) and IND-SB-CPA security are the right concepts to realize secure message
transfer from authenticated channels in the universal composability (UC) model.
SBE is a PKE adaption which binds the ciphertext to the sender ID.The authors
of [4], however, only consider PKE while real world applications have moved on
to hybrid encryption.

In the field of hybrid encryption, on the other hand, the question of how strong
(or weak) encryption should be for secure communication has been completely
ignored. Constructing indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2) secure PKE is seen as the only significant goal, regardless of the fact
that in practice encryption schemes are then usually paired with authentication
via digital signatures to gain secure communication.

We bridge the gap between these two worlds by bringing sender-binding ideas
to real world efficient KEM-DEM hybrid encryption [2, 5]:

Our Contribution. Our contribution includes an adaptation of the concept of
SBE from the PKE to the KEM setting, yielding the notion of sender-binding key
encapsulation mechanism (SB-KEM) with corresponding IND-SB-CPA security.
We prove IND-SB-CPASB-KEM

4 security to be the weakest so far—other than
plain CPA security—by investigating its relation to previously proposed (tag-
)KEM security notions. Furthermore we show that IND-SB-CPASB-KEM security
is in fact the KEM equivalent of IND-SB-CPASBE. This directly leads us to
the proof that IND-SB-CPASB-KEM is still strong enough to facilitate secure
communication via the KEM-DEM principle over authenticated channels. We
present the security proofs both for the single-message setting as well as for session
communication, resulting in the ideal functionalities of secure message transfer
and secure channels respectively. Lastly we indicate the potential practical benefit
of our theoretic advancements by giving a concrete IND-SB-CPA secure SB-KEM
construction. Our construction is a simplified version of the recently proposed
and, as far as we know, currently most efficient KEM construction in the standard
model [6]. Overall we manage to provide a new and weaker–but still sufficiently
strong–security notion for the public-key encryption part of secure communication
which could lead to efficiency gains. The different parts of our contribution can
be viewed in Figure 1. They are distributed throughout this paper as follows:

• In Section 4 we adapt the concept of SBE and IND-SB-CPASBE to the
KEM setting, developing SB-KEM and IND-SB-CPASB-KEM. We furthemore

4 When not obvious, the type of scheme a security notion pertains to is given in
subscript.
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IND-SB-CPA
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IND-gtag-CCAtag-KEM
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πFAUTH
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Fig. 1. Overview of Our Contribution5

highlight some relations to other KEM security notions in Section 4 . In
Appendix A we furthermore provide a generic transformation from dual
receiver key encapsulation mechanism (DR-KEM) which is analogous to
the SBE construction from dual receiver encryption (DRE). This aids us in
separating IND-SB-CPASB-KEM from IND-gtag-CCAtag-KEM.

• In Section 5 we prove that IND-SB-CPA secure KEM can be combined
with a one-time (OT) secure data encapsulation mechanism (DEM) to gain
IND-SB-CPASBE. This in turn UC-realizes secure message transfer when
authenticated channels are added.

• For Section 6 we switch from the classic setting to the setting of ses-
sion communication and prove that IND-SB-CPASB-KEM in conjuction with
IND-CCA2DEM (or IND-RCCADEM) and authenticated channels UC-realize
secure channels. This is an improvement over the results of [7] which needed
CCA2 security from both the KEM and DEM component.

• In Section 7 we present an efficient post-quantum secure SB-KEM con-
struction based on the standard learning with errors (LWE) assumption
in the standard model and prove it to be IND-SB-CPASB-KEM secure. In
Appendix B we furthermore propose an efficient learning parity with noise
(LPN) based construction.

2 Preliminaries

We start by providing some basic knowledge needed to understand our research.
This includes an introduction to the KEM-DEM- as well as UC-framework and
definitions of various game-based and ideal functionality security notions. Readers
who are already familiar with these topics might want to skip this section and
only come back to it later if they want to look something up.

5 Duck or rabbit?
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2.1 The KEM-DEM Framework

First, we briefly recap the KEM-DEM framework which was introduced in [5]
and subsequently included in the encryption ISO standard in 2006 [2, 8]. The
KEM-DEM framework is a special form of hybrid encryption which combines
the advantages of both public-key and symmetric encryption: The symmetric
encryption of messages makes encryption more efficient while the KEM public key
infrastructure alleviates the need for a key exchange protocol. In particular, the
KEM-DEM framework consists of two modular components. The first component
is a public-key key encapsulation mechanism (KEM) which generates a symmetric
key and encrypts it, while the second component is a symmetric data encapsulation
mechanism (DEM) which uses this symmetric key to encrypt a message:

Definition (KEM): A key encapsulation mechanism (KEM) is given by a set
of three probabilistic polynomial time (PPT) algorithms (gen, enc, dec) with

gen : 1λ 7→ (sk , pk), enc : pk 7→ (K ,C ), dec : (sk ,C ) 7→ K

such that the correctness property holds, i.e. K = dec(sk ,C ) whenever (sk , pk)←
gen(1λ) and (K ,C )← enc(pk).

Definition (DEM): A data encapsulation mechanism (DEM) is given by a
set of two PPT algorithms (DEM.enc, DEM.dec) with DEM.enc : (K ,m) 7→ c and
DEM.dec : (K , c) 7→ m such that m = DEM.dec(K , c) whenever c← DEM.enc(K ,m)
(correctness).

The KEM-DEM framework comes in two flavors which slightly differ in the
combination of the KEM and DEM. One construction–which we call single-
message communication– generates a fresh symmetric key for each encryption
of a message. This is the original definition of the KEM-DEM framework and
intuitively yields a PKE scheme (Gen, Enc, Dec) where Gen ≡ gen and

Enc(pk ,m):
• (K ,C )← enc(pk).
• c← DEM.enc(K ,m).
↪→ Return (C , c).

Dec(sk , (C , c)):
• K ← dec(sk ,C ).
• m← DEM.dec(K , c).
↪→ Return m.

For Session communication on the other hand, one party (who does not need
a KEM key pair themselves) generates a persistent symmetric key via the KEM
and sends it to the communication partner once. This symmetric session key is
then used for many messages between the two involved parties.

Tag-KEMs. A slight variation of classical KEMs are tag-key encapsulation
mechanisms (tag-KEMs) [9] which additionally use tag to encapsulate and de-
capsulate the symmetric key. The encapsulation phase of the tag-KEM is split
in two separate phases: A first phase that generates the symmetric key and a
second phase that encapsulates the given symmetric key using the tag. The split
is made to allow for the tag to depend on the symmetric key itself.
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Definition (Tag-KEM): A tag-KEM is given by a set of four PPT algorithms
(gen, key, enc, dec) with

gen : 1λ 7→ (sk , pk) key : pk 7→ (K , aux )

enc : (τ, aux ) 7→ C dec : (sk , τ,C ) 7→ K

such that the correctness property holds, i.e. K = dec(sk , τ,C ) whenever
(sk , pk)← gen(1λ), (K , aux )← key(pk) and C ← enc(τ, aux ).

When introducing tag-KEMs, Abe et al. [9] use them in a slightly modified
tag-KEM-DEM framework where the symmetrically encrypted message is used
as the tag for encapsulation which allows for a weaker DEM to be used.

2.2 Game-based Security Notions

In this section we recap previously defined game-based security notions used in
this paper. First we give definitions for PKE schemes, then KEM and finally
DEM schemes. Whenever it is not immediately obvious for which type of scheme
a security notion is intended, we denote it in its index, e.g. IND-CCA2PKE.

IND-SB-CPASBE. The PKE security notion which inspired this whole paper
is called IND-SB-CPA and was recently introduced by Beskorovajnov et al. [4].
We use this notion as a basis for the new KEM security definition we introduce
in Section 4. IND-SB-CPASBE security pertains to the special PKE case of SBE
where both encryption and decryption take the ID S of the encrypting (or sending)
party as additional input, binding a ciphertext not only to the receiver (via their
public key) but to the sender as well. The intuition behind IND-SB-CPASBE
security is that an adversary may be able to modify the message content of
ciphertexts arbitrarily but is not able to change a ciphertext such that it is bound
to a party ID other than that of the sender or receiver. More formally:

Definition (IND-SB-CPASBE): An SBE scheme (gen, enc, dec) with set of
party IDs P satisfies indistinguishability under sender-binding chosen plaintext
attack (IND-SB-CPA) (cf. [4]), iff for any PPT adversary ASB-CPA the advantage
to win the IND-SB-CPA game in Figure 2 is negligible in security parameter λ.

IND-gtag-CCATBE Tag-based encryption (TBE) [10] is closely related to SBE.
Instead of party IDs the tags given to both encryption and decryption are taken
from a dedicated tag space T. For our paper we only need the weakest notion so far
proposed for TBE–IND-gtag-CCA–which we later on adapt to KEMs to develop
a better understanding of how strong (or rather weak) IND-SB-CPASB-KEM is
in comparison to other notions. The following definition is taken from [4].
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CSB-CPA ASB-CPA OSB-CPA

S, (skS , pkS)
$← P, gen(1λ)

R, (skR, pkR)
$← P, gen(1λ) (S, pkS , R, pkR)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(pkR′ , S

′, c)

if pkR′ ∈ {pkS , pkR} :
∧ S′ 6∈ {S,R}

m := dec(skR′ , S
′, c)

else :
m m := ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m0,m1 m0,m1 ←M

b
$← {0, 1}

c∗ := enc(pkR, S,mb) c∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Oracle Phase II (exactly the same as Oracle Phase I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b
?
= b∗ b∗

Fig. 2. The IND-SB-CPASBE Game for SBE from [4].

Definition (IND-gtag-CCATBE): A TBE scheme Σ = (gen, enc, dec) with
tag space T satisfies indistinguishability under given-tag weakly chosen ciphertext
attack (IND-gtag-CCA), iff for any PPT adversary A = (A1,A2) the advantage

Advgtag-CCA
A,Σ (λ) :=

∣∣∣P[b← AO∗2 (c∗, aux )
∣∣ τ∗ $← T; (sk , pk)← gen(1λ);

(aux ,m0,m1)← AO
∗

1 (pk , τ∗); b
$← {0, 1};

c∗ ← enc(pk , τ∗,mb)
]
− 1

2

∣∣∣
is negligible in λ, where O∗(τ, c) returns ⊥ for τ = τ∗ and dec(sk , τ, c) otherwise.

IND-CCA2tag-KEM The following definition was taken from [9]. Note that
in [9] there is a first oracle phase where the adversary only has pk as prior input.
Since the adversary has equal oracle access for the second phase and only gains
additional input inbetween (rather than making any output themselves), the first
oracle phase is redundant and we choose to present the notion without it.

Definition (IND-CCA2tag-KEM): A tag-KEM Σ = (gen, key, enc, dec) sat-
isfies IND-CCA2, iff for any PPT adversary A = (A1,A2) the advantage

AdvCCA2
A,Σ (λ) :=

∣∣∣P[b← AO∗2 (C ∗, auxA)
∣∣ (sk , pk)← gen(1λ);

(aux ,K0)← key(pk);K1
$← {0, 1}|K0|; b

$← {0, 1};

(τ∗, auxA)← AO1 (pk ,Kb);C ∗ ← enc(aux , τ∗)
]
− 1

2

∣∣∣
is negligible in λ, where O denotes dec(sk , ·, ·) and O∗(τ,C ) returns ⊥ for
(τ,C ) = (τ∗,C ∗) and dec(sk , τ,C ) otherwise.
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For symmetric private-key security notions we follow the more descriptive
notation of [11]. With the also commonly used PX-CY notation of [12], one-time
attack (OT) corresponds to P0-C0, while CCA2 corresponds to P2-C2.

IND-OTDEM. The OT notion for DEMs is an even weaker security notion
than classic CPA, as it does not even provide the adversary with an encryp-
tion oracle. We use this notion later on in Section 5 in combination with an
IND-SB-CPASB-KEM secure KEM to realize secure message transfer.

Definition (IND-OTDEM): A DEM Σ = (DEM.enc, DEM.dec) satisfies indis-
tinguishability under one-time attack (IND-OT), iff for any PPT adversary
A = (A1,A2) the following advantage is negligible in λ:

AdvOT
A,Σ(λ) :=

∣∣∣P[b← A2(c
∗, aux )

∣∣K $← {0, 1}n(λ); (m0,m1, aux )← A1(1
λ);

b
$← {0, 1}; c∗ ← enc(K ,mb)

]
− 1

2

∣∣∣.
IND-CCA2DEM and IND-RCCADEM. Session communication–where each
symmetric key may be used more than once–requires stronger DEMs. We therefore
recap the private key CCA2 security notion as well and formulate a replayable
chosen ciphertext attack (RCCA) DEM notion corresponding to the respective
PKE notion [3]. The intuition behind RCCA lies in replayability. This means an
adversary is allowed to be able to modify ciphertexts to other valid ciphertexts
as long as the message content is not changed, e.g. via rerandomization.

Definition (IND-CCA2DEM, IND-RCCADEM): A DEM Σ = (DEM.enc,
DEM.dec) satisfies IND-CCA2, iff for any PPT adversary A = (A1,A2) the
advantage

AdvCCA2
A,Σ (λ) :=

∣∣∣P[b← AOenc,O∗dec
2 (c∗, aux )

∣∣K $← {0, 1}n(λ);

(m0,m1, aux )← AOenc,Odec

1 (1λ);

b
$← {0, 1}; c∗ ← enc(K ,mb)

]
− 1

2

∣∣∣
is negligible in λ, where Oenc denotes the oracle DEM.enc(K , ·), Odec denotes
DEM.dec(K , ·) and O∗dec(c) returns ⊥ for c = c∗ and DEM.dec(K , c) otherwise.

The notion of IND-RCCA for DEMs differs only in the definition of O∗dec,
which returns ⊥ whenever Odec(c) ∈ {m0,m1}.

Now that we are familiar with all these game-based definitions let us jump to
the parallel world of simulation-based and in particular UC security.

2.3 Simulation-based Security and UC

As we have seen in Section 2.2, game-based security notions are attack-centered. A
scheme fulfills a game-based security notion if and only if one specific attack (e.g.,
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distinguishing which message is contained in a ciphertext) can never be successful
in specific circumstances (e.g., without oracle access). While this is a nice way to
model simple and isolated properties, it is not easy to comprehensively define
the security of real-world scenarios which usually require multiple interrelated
properties and are conducted concurrent with other protocols. For this purpose
simulation-based security and in particular universal composability (UC) were
developed. We briefly introduce both concepts in this section, more details can
be found in [13] and [14] respectively.

With simulation-based security, properties are not captured in individual
games but the whole scenario is modeled as an ideal process which inherently
captures all properties at once. This ideal process is called an ideal functionality
F and can be thought of as a trusted third party which is handed all inputs of
all parties via ideal secure channels, honestly conducts the actual protocol and
distributes outputs again in an ideally secure way. Any adversarial powers to
influence this process are specified within the ideal functionality and therefore
explicitly known. Functionalities for different purposes are distinguished by name,
while different instances of the same functionality are distinguished via session
IDs sid . Security with respect to an ideal functionality F means that a protocol
π solves the given problem at least as securely as the ideal functionality does.
More concretely: Any real adversary A attacking an execution of the protocol can
be simulated by some simulator S in an interaction with the ideal functionality
such that the two are computationally indistinguishable. In this case the protocol
π is said to securely realize the functionality F .

UC security is a form of simulation-based security which is even stricter.
Not only do transcripts of EXECπ,A and IDEALF,S of the protocol and ideal
experiment have to be computationally indistinguishable, but the distinguisher–
called environment Z–adaptively provides inputs to and receives outputs from
the protocol parties trying to make protocol and ideal functionality diverge.
The adaptivity of Z also means that standard techniques like rewinding are not
feasible in the UC setting. The bright sight of this additional work is that UC
secure protocols remain secure under arbitrary and concurrent composition (hence
the name) while the same is not true in the classic stand-alone simulation-based
security. The following definition stems from [14] with the exact formulation
taken from [4]. It captures UC security more formally:

Definition (UC Security): Let F be an ideal functionality and π a protocol.
We say that π UC-realizes the ideal functionality F , iff for any PPT adversary
A there is a PPT simulator S such that no PPT environment Z can distinguish
EXECπ,A,Z from IDEALF,S,Z with non-negligible probability. In this case we
write π ≥UC F .

Having two adversarial entities Z and A can be slightly hard to follow, but as
Canetti showed in [14] we can equivalently consider an adversarial environment
Z while reducing the adversary A to a mere dummy D.

With this general knowledge of UC security we can go on to recap some
specific ideal functionalities.
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2.4 Ideal Functionalities

In this section we formally define the authenticated and secure channel func-
tionalities FAUTH and FMSC we use in this paper. Although the secure message
transfer (SMT) functionality FMSMT is somewhat central to Section 5, it is
sufficient to know that it does capture SMT. The detailed inner workings (see [4])
are not necessary to understand this paper. Furthermore we briefly encounter
functionalities FKEM, FKEM-DEM, FSIG, FCA and FCERT in Section 3 but again
do not require further details. Interested readers can find them in [7] and [15].

For PKE schemes, SMT functionalities are commonly used to model secure
communication [14, 3, 4]. But for session communication we follow the lead of
[16, 7] and use a secure channel functionality instead. This yields the same level
of message security but is specifically designed for communication in sessions.
The classic definition of FSC can be found in [16]. For our proof in Section 6
we instead use an (equivalent) multi-session version FMSC, where some abort
possibilities of the adversary (implicitly present in FSC) are made explicit as well.

FMSC
Provides:
Multiple secure two-party communication sessions.

State:

• Active function fact : SID× {{A,B} | A,B ∈ P} → {true, false, init} initial-
ized to fact ≡ false.

• Function pMsg : SID×MID→M×P2 of pending messages.

Behaviour:

• Upon receiving (init, sid , B) from some party A, set fact(sid , {A,B}) := init

and send (inited, sid , A,B) to the adversary A.
• Upon receiving (establish, sid , A) from party B, check fact(sid , {A,B}) =

init, set fact(sid , {A,B}) := true and send (established, sid , A,B) to A.
• Upon receiving (send, sid , R,m) from some party S, check fact(sid , {S,R}) =

true, draw fresh mid , send (send, sid ,mid , S,R) to the adversary A and append
(sid ,mid) 7→ (m,S,R) to pMsg.
• Upon receiving (send ok, sid ,mid) from the adversary look up (m,S,R) :=
pMsg(sid ,mid). If it exists, and if fact(sid , {S,R}) = true, output
(sent, sid , S,m) to R.
• Upon receiving (expire, sid , B) from some party A, set fact(sid , {A,B}) :=

false.

Once the notational differences are ignored there is only one distinction be-
tween FSC and FMSC: FMSC allows for multiple communication sessions between
different pairs of communication partners within one instance (i.e. with the same
sid) while a new FSC instance (sid) is needed for each communication session.
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Everything else is identical. For normal settings, where arbitrarily many sessions
between arbitrary communication partners are allowed, multiple instances (or
their multi-session extensions) are needed of both FSC and FMSC and the sole
difference lies in whether or not a new sid is used for a new session.

FAUTH
Provides:
Single-receiver single-message single-sender authenticated message transfer with
constant message size.
Behaviour:

• Upon invocation with input (send, sid , R,m) from some party S, send backdoor
message (send, sid , S,R,m) to the adversary A.

• Upon receiving (send ok, sid) from adversary A: If output not yet generated,
then output (sent, sid , S,R,m) to R.

• Ignore all further inputs.

With these previously known definitions fresh in our minds we go on to give
some more context to our paper in the next section by discussing prior works.

3 Related Work

While there are lots of papers pertaining to the general topic of hybrid encryption
via the KEM-DEM framework, most of the works focus on more efficient con-
structions of KEMs, such as the hybrid encryption scheme by Cramer and Shoup
[5], the Kurosawa-Desmedt-KEM [17] or the newly standardized Kyber-KEM
[18]. For this section, however, we stay with the main contribution of our paper
and instead consider those papers which give proofs on what levels of secure
communication can be reached with various KEM and DEM security notions.

As mentioned in Section 2.1, there are two branches of KEM-DEM-based
hybrid encryption: Single-message and session communication. We start in the
more common single-message setting. With one symmetric key per message
IND-CCA2PKE has always been seen as the goal to construct secure communi-
cation. Hence the main security analysis is usually conducted by constructing
an IND-CCA2PKE secure PKE scheme from successively weaker (and more ef-
ficient) KEM and DEM notions. When originally introducing the KEM-DEM
framework, Shoup showed that combining a KEM and DEM which satisfy the
respective notions of IND-CCA2 security yields an IND-CCA2PKE secure PKE
as a result [2, 5]. Also in [5] it was shown that if one relaxes the security of the
DEM to one-time-IND-CCA2DEM security (sometimes called IND-OTCCA [11]),
the construction still suffices for an IND-CCA2 secure PKE as each symmetric
key will only be used once. In [11], Herranz, Hofheinz, and Kiltz give an overview
of all previously proposed game-based KEM and DEM security notions and
comprehensively identify which combinations lead to which security notions for
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the resulting PKE. One main finding was that CCA2 security could so far only be
reached via a CCA2 secure KEM in conjunction with (one-time-)CCA2 DEM. All
other combinations result in less secure PKE schemes. Kurosawa and Desmedt
managed to present a KEM-DEM construction for an IND-CCA2PKE scheme
in [17] where the employed KEM scheme is not IND-CCA2 secure [19]. However,
it was shown in [20] that the Kurosawa-Desmedt-KEM is not far off, as it becomes
IND-CCA2KEM secure with a slight twist. Abe et al. modify the KEM-DEM
framework to a new tag-KEM-DEM framework [9] (cf. Section 2.1). They show
that for this type of hybrid encryption an IND-CCA2 secure KEM together with
an only IND-OT secure DEM yields an IND-CCA2 PKE as well. They also show
that the aforementioned Kurosawa-Desmedt-KEM can be considered a tag-KEM
in which case it actually satisfies IND-CCA2tag-KEM security. A similar not quite
IND-CCA2 secure KEM construction was used in [6] as well.

In contrast to these works we employ the results of [3, 4] which state that
IND-CCA2PKE is unnecessarily strong to realize secure communication and hence
do not try to construct an IND-CCA2 secure PKE in this paper. Aiming for
the weaker but sufficient notion of IND-SB-CPASBE security [4], we develop the
corresponding KEM notion of IND-SB-CPASB-KEM. We show that in combination
with the weakest possible DEM–satisfying only IND-OT security–our new notion
still provides IND-SB-CPASBE security for the SBE scheme constructed via the
classic KEM-DEM framework. Using such a weak DEM scheme was previously
only possible via the more complex tag-KEM-DEM framework. Furthermore we
show that if our SB-KEM is viewed as a (simpler) version of a tag-KEM, the KEM
security notion IND-SB-CPA, which we introduce in this work, is strictly weaker
than the IND-CCA2tag-KEM notion employed in the tag-KEM-DEM framework.

Although Canetti and Krawczyk consider various UC and non-UC security
notions for key exchange and session key security in [21, 16], Nagao, Manabe,
and Okamoto were the first to take the KEM-DEM framework into the world
of UC security [7]. They also make the switch to session communication where
each symmetric key is used not only for multiple messages but bi-directional
communication as well. Nagao, Manabe, and Okamoto firstly introduce an ideal
functionality FKEM capturing the security intuitively expected from a KEM and
prove a generic protocol to UC-realize FKEM if and only if the KEM used in
the protocol is IND-CCA2KEM secure. In a second step a complete KEM-DEM
functionality FKEM-DEM is defined and similarly shown that it is realized by a
generic DEM-protocol in the FKEM-hybrid model if and only if the DEM satisfies
IND-CCA2DEM security. Lastly it is shown that using FKEM-DEM in conjunction
with the signature and certification functionalities FSIG and FCA suffices without
any other cryptographic building blocks to realize a single-session bi-directional
secure channel FSC. An overview of this process is shown in Figure 3.

The additional functionalities FSIG and FCA are used for authentication
during the key exchange and could equally be substituted by FAUTH, as it was
shown in [15] that such a use of signatures combined with certification already
UC-realizes FAUTH. The two equivalences between respective CCA2 security
notions and ideal KEM and KEM-DEM functionalities from [7] could be taken to
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IND-CCA2 KEM πKEM ≥UC FKEM

IND-CCA2 DEM πFKEM
DEM ≥UC FKEM-DEM

πFKEM-DEM
FSIG,FCA

≥UC FSC

Fig. 3. Overview of Secure Channel Realization from [7].

indicate that CCA2 is a necessary condition for achieving secure channels via the
session KEM-DEM framework. In this paper we show that this is not actually
true. The main factor to realize here is that authentication in the form of FSIG
and FCA is only used for the key exchange and added after the fact to the KEM-
DEM functionality to realize FSC. Directly using the KEM on an authenticated
channel and binding the key ciphertext to the sender lets us achieve the same
level of security with significantly less security requirements on the KEM. For
our proof in Section 6 we skip the detour via FKEM and FKEM-DEM and directly
show that an IND-SB-CPASB-KEM secure KEM combined with FAUTH and an
IND-CCA2DEM secure DEM UC-realize a secure channel.

4 Sender-binding Key Encapsulation

In this section we develop the security notion of IND-SB-CPAKEM and give some
transformations to show its relation to other KEM security notions. Before doing
so, we first introduce what it means for a KEM to be called sender-binding.

Definition (SB-KEM): A sender-binding key encapsulation mechanism (SB-
KEM) is given by a set of three PPT algorithms (gen, enc, dec) with

gen : 1λ 7→ (sk , pk), enc : (pk , S) 7→ (K ,C ), dec : (sk , S,C ) 7→ K

such that the correctness property holds, i.e. K = dec(sk , S,C ) whenever
(sk , pk)← gen(1λ) and (K ,C )← enc(pk , S).

Note that so far, this is only the traditional KEM interface enhanced by a
party ID as input for encapsulation and decryption. Although the denomination
suggests this, the “sender” and “binding” part only become meaningful with the
respective security notion. Any classic KEM instantly satisfies this definition
when its input is adjusted to incorporate a party ID, regardless of whether this ID
specifies some sender, receiver or just a random party, regardless of whether there
is any binding property or the ID can be easily exchanged, even regardless of
whether this ID is used at all in the protocol. The intended use, however, is that
the sending or encapsulating party inserts its own ID upon encapsulation, this ID
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is then non-malleably bound to an otherwise malleable ciphertext and decryption
is only successful if the same ID is used. These properties are expressed in the
following IND-SB-CPAKEM notion. The idea for this notion comes from the
corresponding SBE notion introduced in [4], which we adapt to fit the KEM
setting.

Definition (IND-SB-CPASB-KEM): An SB-KEM (gen, enc, dec) satisfies in-
distinguishability under sender-binding chosen plaintext attack (IND-SB-CPA)
security, iff for any PPT adversary ASB-CPA the probability to win the IND-SB-
CPA game shown in Figure 4 is negligible in λ.

CSB-CPA ASB-CPA OSB-CPA

S, (skS , pkS)← P, gen(1λ)

R, (skR, pkR)← P, gen(1λ)
(K0,C

∗)← enc(pkR, S)

K1
$← {0, 1}|K0|

b
$← {0, 1} (S, pkS , R, pkR, (Kb,C

∗))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(pkR′ , S

′,C )

if pkR′ ∈ {pkS , pkR}
∧ S′ 6∈ {S,R} :

K := dec(skR′ , S
′,C )

else :
K K := ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b
?
= b∗ b∗

Fig. 4. The IND-SB-CPASB-KEM Game for SB-CPASB-KEM

We would like to remark several things about this definition.
Firstly, IND-SB-CPAKEM looks very different from other KEM notions at first
glance because it has only one oracle phase instead of two. This is not due to less
oracle access but because this way is simpler but equivalent: For IND-SB-CPA,
the first and second oracle phase permit exactly the same oracle queries (in
constrast to CCA2 for instance). Furthermore in the KEM setting the adversary
does not generate any outputs between oracle phases I and II. Hence with
IND-SB-CPAKEM the adversary can save all oracle queries it would make in the
first oracle phase and ask them in the second oracle phase instead. We therefore
decided to simplify the definition by only including the second oracle phase.

Secondly, note that although the IND-SB-CPAKEM security notion contains
a key pair (skS , pkS) for party S, no such keys need to exist in any protocol.
Especially in the session communication setting—but also if communication is
one-directional in the single-message setting—only one party needs to have a key
pair for the SB-KEM to set up a symmetrically encrypted session. The reason be-
hind the existence of these keys in our security notion is that it makes the notion
strictly weaker than if (skS , pkS) were not picked by the challenger. Intuitively,



14 R. Schwerdt et al.

an IND-SB-CPAKEM secure KEM does not need to guarantee anything if S’s
keys may be adversarially chosen rather than honestly (and secretly) generated.
This can clearly be seen when considering the generic DRE construction of
an SB-KEM in Appendix A: For this construction each encapsulated key is
decryptable by both the receiver and sender. Hence the adversary choosing or
knowing skS would completely break the encapsulation.

Before we discuss in which ways IND-SB-CPASB-KEM fits into the landscape
of other security notions for KEMs, notice that IND-SB-CPASBE obviously
implies IND-SB-CPASB-KEM by the standard PKE to KEM construction of
randomly drawing and then encrypting a symmetric key. For KEM security
notions, classifying IND-SB-CPASB-KEM with respect to classic KEM security
is unfortunately rather infeasible. While a classic KEM takes no input and
requires secrecy and various forms of integrity about the internally determined key,
IND-SB-CPASB-KEM asserts only secrecy (no integrity) of the key but additionally
provides integrity (without secrecy) of some user input–the identity S. Since
those two settings are even more incompatible than comparing SBE to classic
PKE notions, we will only consider IND-SB-CPASB-KEM in relation to the similar
setting of tag-KEMs.

Relation to tag-KEM Security Notions. Let (gen, key, enc, dec) be a tag-
KEM. We construct an SB-KEM (Gen, Enc, Dec) in the natural way by using
sender IDs as tags, and combining key and enc into a single encryption algorithm.
I.e. Gen ≡ gen, Enc(pkR, S) = (K ,C ) where (aux ,K ) ← key(pkR) and C ←
enc(aux , S), and Dec ≡ dec.

Lemma 1: If (gen, key, enc, dec) is an IND-CCA2 secure tag-KEM then
(Gen, Enc, Dec) is an IND-SB-CPA secure SB-KEM.

Proof. Assume on the contrary that ASB is an adversary with non-negligible
success probability in winning the IND-SB-CPASB-KEM game. We use ASB to con-
struct an equally successful adversary Atag-KEM. This adversary mainly forwards
messages between ASB and the challenger and oracle. Additionally it creates
credentials for S and uses them to decrypt respective oracle queries. The detailed
reduction can be found in Figure 5. �

It is easy to see from the reduction that the CCA2 game grants a lot more
oracle access than we need which indicates that IND-SB-CPASB-KEM is a lot
weaker than IND-CCA2tag-KEM. To further substantiate this claim we take the
weakest security notion proposed for TBE, adapt it to the KEM setting and show
that it still implies IND-SB-CPASB-KEM via the above construction. Note that
as far as we know, no weaker security notions than IND-CCA2tag-KEM have been
proposed for tag-KEM so far, which is why we take the detour over a TBE notion.
The TBE notion in question is IND-gtag-CCATBE which was recapitulated in
Section 2.2. The difference to IND-CCA2tag-KEM lies in the oracle access as well
as when and by whom the challenge tag τ∗ is chosen: Both oracle phases grant
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Ctag-KEM Atag-KEM ASB Otag-KEM

(sk , pk)← gen(1λ)
(aux ,K0)← key(pk)

K1
$← {0, 1}|K0|

b
$← {0, 1} pk ,Kb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S S, (skS , pkS)
$← P, gen(1λ)

C ∗ ← enc(aux , S) C ∗ R
$← P (S, pkS , R, pk , (Kb,C

∗))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(pkR′ , S

′,C )

if pkR′ 6∈ {pkS , pk}
∨ S′ ∈ {S,R} :

K := ⊥
elseif pkR′ = pkS :

K := dec(skS , S
′,C )

else
(S′,C )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
K

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b

?
= b∗ b∗ b∗

Fig. 5. Reduction for IND-CCA2tag-KEM Construction

access to a decryption oracle punctuated at τ = τ∗, i.e. the complete challenge
tag is excluded from decryption rather than just the challenge tuple (τ∗,C ∗).
The challenge tag itself is not chosen adaptively and not even by the adversary
at all anymore, but randomly drawn by the challenger. The adaptive interface of
a tag-KEM—where encapsulation is divided into key and enc so that the tag
may depend on the output of key—does not seem quite fitting anymore when
in the security game the tag is drawn at random and hence independent of the
output of key. Nevertheless we cannot rule out that such a security notion may
still be meaningful for a tag-KEM with separate key and enc and therefore keep
the division.

Definition (IND-gtag-CCAtag-KEM): A tag-KEM Σ = (gen, key, enc, dec)
satisfies IND-gtag-CCA, iff for any PPT adversary A = (A1,A2) the advantage

Advgtag
A,Σ(λ) :=

∣∣∣P[b← AO∗2 (Kb,C
∗)
∣∣ τ∗ $← T; (sk , pk)← gen(1λ);

(auxA)← AO
∗

1 (pk , τ∗); (aux ,K0)← key(pk);

C ∗ ← enc(aux , τ∗);K1
$← {0, 1}|K0|; b

$← {0, 1}
]
− 1

2

∣∣∣
is negligible in λ, where O∗ returns ⊥ for τ = τ∗ and dec(sk , τ,C ) otherwise.

We go on to show that this weaker notion is still sufficient to imply
IND-SB-CPASB-KEM.

Lemma 2: If (gen, key, enc, dec) is an IND-gtag-CCA secure tag-KEM then
(Gen, Enc, Dec) is an IND-SB-CPA secure SB-KEM.
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Proof. The proof of Lemma 2 works almost exactly the same as the proof of
Lemma 1. The sole difference is that the identity S is randomly provided by the
challenger Ctag-KEM rather than randomly drawn by Atag-KEM. Note that the
provision S′ 6∈ {S,R} guarantees that oracle queries forwarded to Otag-KEM get
decrypted correctly. �

In Appendix A we furthermore show that the transformation from Lemma 2
is just an implication and no equivalence, proving IND-SB-CPASB-KEM to be
strictly weaker than IND-gtag-CCAtag-KEM.

5 Realizing Secure Message Transfer

In this section we show that IND-SB-CPASB-KEM is—in conjunction with IND-
OT secure DEM and authenticated channels—strong enough to facilitate the
realization of secure message transfer. Since Beskorovajnov et al. [4] already
showed the same for IND-SB-CPA secure SBE with authenticated channels, we
can build on their work and only fill in the gap: We show that IND-SB-CPASB-KEM
combined with IND-OTDEM via the KEM-DEM-framework yields an IND-SB-
CPA secure SBE scheme.

Hence let (gen, enc, dec) be an IND-SB-CPASB-KEM secure SB-KEM and
(DEM.enc, DEM.dec) be a compatible IND-OT secure DEM. We construct an SBE
scheme via the KEM-DEM principle by setting Gen ≡ gen and:

Enc(pkR, S,m):
• (K ,C )← enc(pkR, S).
• c← DEM.enc(K ,m).
↪→ Return (C , c).

Dec(skR, S, (C , c)):
• K := dec(skR, S,C ).
• m := DEM.dec(K , c).
↪→ Return m.

Theorem 1: The SBE scheme (Gen, Enc, Dec) is IND-SB-CPA secure.

Proof. Assume there is an adversary ASBE for the IND-SB-CPA game with
success probability P

[
ASBE successful

]
= 1

2 + ρ, where ρ is non-negligible in λ.
We use this to construct an adversaryASB-KEM for the IND-SB-CPASB-KEM game
as follows: ASB-KEM is started with input (S, pkS , R, pkR, (Kb,C ∗)) by the KEM
challenger CSB-KEM and hands (S, pkS , R, pkR) on to ASBE. For any valid oracle
query (pkR′ , S

′, (C , c)) from ASBE the DEM key is decrypted via the SB-KEM
oracle OSB-KEM and subsequently used for DEM decryption of c. When ASB-KEM
receives challenge messages m0,m1 the adversary ASB-KEM draws a random
challenge bit b′ $← {0, 1} and determines the challenge as c∗ ← DEM.enc(Kb,mb′).
The following second oracle phase is conducted exactly as the first one was.
Finally, in case ASBE correctly answers with b′, ASB-KEM chooses to answer the
challenger with b∗ = 0, else it answers with b∗ = 1. The detailed reduction is
shown in Figure 6.

Let us briefly analyse the success probability of ASB-KEM. If b = 0, ASB-KEM
has the same success probability that ASBE has. If b = 1 we claim that the
success probability can only negligibly differ from 1

2 . We show this again by
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CSB-KEM ASB-KEM ASBE OSB-KEM

S, (skS , pkS)← P, gen(1λ)

R, (skR, pkR)← P, gen(1λ)
(K0,C

∗)← enc(pkR, S)

K1
$← {0, 1}|K0|

b
$← {0, 1} (S, pkS , R, pkR, (Kb, C

∗)) (S, pkS , R, pkR)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Oracle Phase I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(pkR′ , S

′, (C , c))

if pkR′ 6∈ {pkS , pkR}
∨ S′ ∈ {S,R} :

m := ⊥

else
(pkR′ , S

′,C )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

K
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m := DEM.dec(K , c) m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m0,m1

b′
$← {0, 1}

c∗ ← DEM.enc(Kb,mb′)
c∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase II (exactly the same as Oracle Phase I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b′)∗

if (b′)
∗
= b′: b∗ := 0

b
?
= b∗ b∗ else : b∗ := 1

Fig. 6. Reduction from SBE to SB-KEM.

contradiction with a reduction to the IND-OT secure DEM scheme: Assume that
when the game is conducted with b = 1, ASBE has a success probability non-
negligibly different from guessing—w.l.o.g. better (rather than worse) than one
half. We use ASBE to construct an adversary ADEM against the DEM IND-OT
game: ADEM does not get any input from the challenger. It firstly draws S and R,
generates (skS , pkS), (skR, pkR), and hands (S, pkS , R, pkR) to ASBE. Every valid
oracle query (pkR′ , S

′, (C , c)) is answered by using the corresponding secret key
with m := Dec(skR′ , S

′, (C , c)). When ASBE chooses challenge messages m0,m1

they are handed through to the DEM challenger CDEM who responds with a
corresponding challenge c∗. This challenge is paired with an output C ∗ from
enc(pkR, S) and handed to ASBE. The second oracle phase, again, is handled
exactly as the first one was. Finally the answer b∗ from ASBE is passed on to the
challenger. The detailed reduction is shown in Figure 7.

This reduction to the underlying IND-OT secure DEM shows that for b = 1 in
the first reduction, the adversary ASBE cannot perform non-negligibly better or
worse than guessing. Hence, paired with the case b = 0, the adversary ASB-KEM
has success probability P

[
ASB-KEM successful

]
= 1

2 + 1
2ρ. �

Corollary 1: Combining the KEM-DEM framework from [2] with the encrypt-
then-authenticate protocol from [4], an IND-SB-CPASB-KEM secure KEM and
IND-OT secure DEM suffice to UC-realize secure message transfer functionality
FMSMT in the FAUTH-hybrid model.

The proof of this corollary follows directly from Theorem 1 and [4, Thm. 3].
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CDEM ADEM ASBE

K
$← {0, 1}|K | S, (skS , pkS)← P, gen(1λ)

R, (skR, pkR)← P, gen(1λ) (S, pkS , R, pkR)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(pk , S′, (C , c))

if pk 6∈ {pkS , pkR}
∨ S′ ∈ {S,R} :

m := ⊥
else :

m := Dec(sk , S′, (C , c)) m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m0,m1 m0,m1

b
$← {0, 1}

c∗ ← DEM.enc(K ,mb) c∗ C ∗ ← enc(pkR, S)
(C ∗, c∗)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase II (exactly the same as Oracle Phase I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b

?
= b∗ b∗ b∗

Fig. 7. Reduction from SBE to DEM.

6 Realizing Secure Channels

At this point we make the switch from single-message to session communication.
This means symmetric keys are exchanged via the KEM and subsequently used
by both parties to send messages encrypted with the corresponding DEM. The
benefits are that only one communication partner needs credentials for the
KEM and that secure communication can be achieved even if the authenticated
channel is only used for the key exchange and not the actual messages. The
employed DEM, on the other hand, needs to be stronger than for single-message
KEM-DEM.6 In this section we show how IND-SB-CPAKEM in conjuction with
IND-CCA2DEM or just IND-RCCADEM suffices to UC-realize secure channels
FMSC in the FAUTH-hybrid model. We do so by first providing a protocol πMSC
and corresponding simulator SMSC before giving the actual theorem and proof.

Protocol πMSC. Let (gen, enc, dec) be an SB-KEM and (DEM.enc, DEM.dec) a
compatible DEM. The idea behind πMSC is the following: To establish a session
between parties P and P ′, a new symmetric key is generated and encapsulated
via enc(pkP ′ , P ) by P . The resulting ciphertext C is sent to P ′ via authenticated
channel. When decryption dec(skP ′ , P,C ) is successful, both parties can encrypt
messages to the other party via DEM.enc and send them on a plain channel. All
details can be found in the formal definition:

6 Note that the security of the DEM can be significantly extenuated if we are willing
to use authenticated channels for all messages.
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πMSC
Realizes:
Multiple secure two-party communication sessions.

Parameters:
• Functionality FAUTH.
• KEM (gen, enc, dec).
• DEM (DEM.enc, DEM.dec).

State of party P :
• A personal KEM key function fKEM : sid 7→ (pk , sk).
• A partial KEM key function fPK : (sid , P ′) 7→ pkP ′ .
• A partial DEM session key function fSK : (sid , P ′) 7→ K .
• An (almost) boolean function fact : SID×P → {true, false, init} initialized

to fact ≡ false.

Behaviour of Party P :
\\ Initialization
• Upon input (sent, sidAUTH, P

′, P, (sid , pk)) from FAUTH, append (sid , P ′) 7→
pkP ′ to fPK if this entry does not yet exist.

• Upon input (init, sid , P ′) from the environment:
(1) If no entry fKEM(sid) exists set fKEM(sid) := (pk , sk)← gen(1λ).
(2) Check that fact(sid , P ′) = false and set fact(sid , P ′) := init.
(3) Draw fresh sidAUTH and call FAUTH with input

(send, sidAUTH, P
′, (sid , pk)).

• Upon input (establish, sid , P ′) from the environment:
(1) Look up pkP ′ := fPK(sid , P

′).
(2) (K ,C )← enc(pkP ′ , P ).
(3) Check that fact(sid , P ′) = false, set fact(sid , P ′) = true and append

(sid , P ′) 7→ K to fSK.
(4) Draw fresh sidAUTH and call FAUTH with input

(send, sidAUTH, P
′, (sid ,C )).

• Upon input (sent, sidAUTH, P
′, P, (sid ,C )) from FAUTH:

(1) Look up (pk , sk) := fKEM(sid).
(2) K := dec(sk , P ′,C ).
(3) Check that fact(sid , P ′) = init, set fact(sid , P ′) = true and append

(sid , P ′) 7→ K to fSK.

\\ Data Exchange
• Upon input (send, sid , P ′,m) with m ∈ {0, 1}l from environment Z:

(1) Check fact(sid , P
′) = true, look up K := fSK(sid , P

′) and set c ←
DEM.enc(K ,m).

(2) Send (sid , P, c) to P ′
• Upon receiving message (sid , P ′, c):

(1) Check fact(sid , P
′) = true, look up K := fSK(sid , P

′) and set m ←
DEM.dec(K , c).

(2) Output (sent, sid , P ′,m) to the environment.

\\ Session Expiration
• Upon input (expire, sid , P ′) from the environment:

(1) Check fact = true and send (expire, sid , P ) to P ′.
(2) Erase fSK(sid , P

′) and set fact(sid , P ′) := false.
• Upon receiving message (expire, sid , P ′) erase fSK(sid , P

′) and set
fact(sid , P

′) := false.
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Simulator SMSC. To show that protocol πMSC realizes FMSC we need to con-
struct a simulator which interacts with FMSC in such a way that no environment
Z can distinguish this ideal world from an interaction with the real protocol and
(dummy) adversary A. The idea behind our simulator SMSC is striving for near
perfect simulation: It plays all honest parties (conducting protocol πMSC) as well
as the functionality FAUTH in its head, using FMSC’s outputs to give them mock
inputs from Z and using their outputs in turn to determine inputs to FMSC. An
overview can be found in Figure 8. For proof simplicity purposes—that become

Fig. 8. Overview of Simulator SMSC adapted from [4].

apparent later on—the simulator swaps symmetric keys for random values if
the two involved parties are both honest. The only situations in which SMSC is
unable to provide perfect simulation due to lack of knowledge are actual messages
between two honest parties. In this case it sends encryptions of zeros instead.
The formal definition of SMSC looks as follows:

SMSC

Realizes:
Multiple secure two-party communication sessions.

Parameters:

• Security parameter λ.
• KEM (gen, enc, dec).
• DEM (DEM.enc, DEM.dec).

In-the-head Parties:

• Functionality FAUTH. This functionality communicates in-the-head with all
honest in-the-head parties as well as with the environment Z as adversary.

• Copies of honest parties running a modified version of the protocol πMSC,
which we will denote as Pπ. These parties communicate in-the-head with the
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in-the-head functionality FAUTH. Their interface to the environment is played
by the simulator (defined in “Behaviour” below). The modification from πMSC

looks as follows:
◦ Upon input (establish, sid , P ′) from the environment:

(3) Check that fact(sid , P ′) = false, set fact(sid , P ′) = true, ask S for
freshly drawn random key K1

$← {0, 1}|K | for parties {P, P ′} and
append (sid , P ′) 7→ K1 to fSK.

◦ Upon input (sent, sidAUTH, P
′, P, (sid ,C )) from FAUTH:

(3) Check that fact(sid , P ′) = init, set fact(sid , P ′) = true, ask S for key
K1 corresponding to parties {P, P ′} and append (sid , P ′) 7→ K1 to
fSK.

• Dummy corrupted parties. Whenever the simulator is asked by the environment
to call functionality FAUTH in the name of a corrupted party, this in-the-head
dummy calls the in-the-head functionality correspondingly and reports all
outputs back to the environment Z.

State:

• Everything the in-the-head parties and functionalities store in their states.
• Partial key function {{P, P ′} | P, P ′ honest} → {0, 1}n(λ), {P, P ′} 7→ K1.

Behaviour:
\\ Initialization by honest party

• Upon receiving (inited, sid , A,B) from FMSC for honest party A, start in-the-
head party Aπ with input (init, sid , B) from the environment Z.

• Upon receiving (established, sid , A,B) from FMSC for honest party B, start
in-the-head party Bπ with input (establish, sid , A) from the environment Z.

\\ Initialization by corrupted party

• Upon in-the-head party Bπ receiving output (sent, sidAUTH, A,B, (sid , pk))
from FAUTH for corrupted A, call FSC with input (init, sid , B) in the name
of A.

• Upon in-the-head party Aπ setting fact(sid , B) from init to true, call FMSC

with input (establish, sid , A) in the name of B.

\\ Message from honest to honest party

• Upon receiving (send, sid ,mid , S,R) from FMSC to A for honest parties S and
R:
(1) Start in-the-head party Sπ with input (send, sid , R, 0) from the environ-

ment Z.
(2) If in-the-head party Rπ at some point reports output (sent, sid , S, 0), call
FMSC with input (send ok, sid ,mid).7

\\ Message from honest to corrupted party

• Upon receiving (send, sid ,mid , S,R) from FMSC to A for honest party S and
corrupted party R:
(1) Call FMSC with input (send ok, sid ,mid).
(2) Receive output (sent, sid , S,m) from FMSC to R.
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(3) Start in-the-head party Sπ with input (send, sid , R,m) from the environ-
ment Z.

\\ Message from corrupted to honest party

• Upon in-the-head honest party Rπ reporting output (sent, sid , S,m):
(1) Call FMSC with input (send, sid , R,m) in the name of S.
(2) Receive output (send, sid ,mid , S,R) from FMSC to A.
(3) Call FMSC with input (send ok, sid ,mid).

Security Theorem and Proof. Now that we have constructed both protocol
and simulator it remains to show that together they make the real and ideal
world indistinguishable for any environment. We do so by first explicitly stating
the differences between the simulators efforts and perfect simulation. Then we go
on to define several hybrid experiments which help us conduct the proof of our
security theorem.

Remark 1: It is easy to see that the simulator SMSC provides nearly perfect
simulation. The two notable exceptions are:

(1) Symmetric keys of sessions between two honest parties: The modification
of protocol πMSC for the in-the-head honest parties Pπ changes the session
keys for each session between two honest parties. While a session key K is
generated and the corresponding ciphertext C is sent via FAUTH—just like in
the real protocol—all messages of the session are encrypted with a randomly
drawn and unrelated key K1

$← {0, 1}|K |.
(2) Message content between two honest parties: Let S, R and m be the honest

partys and message in question. In this case a message (sid , S, DEM.enc(K1, 0))
will be sent from S to R in the ideal experiment while the protocol execution
contains message (sid , S, DEM.enc(K ,m)) instead.

Hence any environment Z which distinguishes experiments EXECπMSC
D,Z and

IDEALFMSC
SMSC,Z can only do so by session keys or messages between honest parties.

Before we proceed to our security theorem and proof we need several hybrid
experiments and also prove an auxiliary lemma which lets us deal with infinite
chains of hybrids.

Definition (Hybrids H−,H`
k ,H

a
k,m):

• We use a “middle” hybrid H− where all honest parties swap encapsulated
session keys K for randomly drawn K1’s, while still using ciphertexts C
corresponding to K . I.e. parties conduct the same modified protocol as the

7 We assume the simulator to internally track the protocol executions to know which
mid to use.
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simulator’s in-the-head honest parties Pπ which means that session keys of
two honest parties are handled exactly as in the ideal experiment. Note that
in contrast to the ideal experiment for every message m between two honest
parties in H− there is a message (sid , S, DEM.enc(K1,m)) which contains an
encryption of m and not an encryption of 0.

• Let k ∈ N0 be a natural number or zero. We define H`k to be almost
identical to the real-world execution of πMSC with the sole difference that
for the first k sessions between two honest parties, the encapsulated key K
is swapped for a randomly drawn K1. Hence we have H`0 = EXECπMSC

D,Z and
limk→∞H`k = H−.

• Let k ∈ N, m ∈ N0 again be natural numbers with m possibly zero. We define
Hak,m to be almost identical to H− with the exception that for all messages
in the first k−1 sessions between two honest parties and the first m messages
sent in the k-th session between two honest parties, encryptions of zeros are
sent over the channel instead of encryptions containing the real messages.
Hence we have Ha1,0 = H−, individual limits limm→∞Hak,m = Hak+1,0 for all
k ∈ N and overall limit limk→∞Hak,m = IDEALFMSC

SMSC,Z .

These hybrid definitions give us the following double-chain of hybrids con-
necting the real-world execution of πMSC and the ideal experiment with FMSC:

EXECπMSC
D,Z = H`0 , H

`
1 , . . .→ H− = Ha1,0, H

a
2,0, . . .→ IDEALFMSC

SMSC,Z

where each Hak,0 is again connected to Hak+1,0 by a chain of hybrids {Hak,m}m.
The following lemma will help us deal with this infinite series of infinite hybrid
series:

Lemma 3: Let {Hk}k∈N0
be series of PPT experiments where executions of

Hk−1 and Hk do not differ before their k-th activation. Let furthermore limit
H∞ := limk→∞Hk exist and Z be a PPT environment which distinguishes
experiments H0 and H∞. Then there is a κ ∈ N such that a PPT environment
Zκ exists which distinguishes consecutive experiments Hκ−1 and Hκ.

Proof. Let pZ be a polynomial which bounds the runtime of the distinguishing
PPT environment Z. Since Z(λ) takes at most pZ(λ) steps for the execution of any
experiment, all experiments {Hk}k>pZ(λ)

are necessarily indistinguishable for Z,
since they do not differ before their pZ(λ)-th activation. Hence Z is a distinguisher
for H0 and HpZ . We now use the fact that computational indistinguishability is
an equivalence relation and in particular transitive. This yields the existence of a
κ < pZ and distinguisher Zκ for experiments Hκ−1 and Hκ. �

Now we are finally ready to formally state and prove that πMSC realizes secure
channels:

Theorem 2: Under static corruption the protocol πMSC with IND-SB-CPA se-
cure SB-KEM and IND-CCA2DEM secure DEM realizes FMSC in the FAUTH-
hybrid model. I.e.

πFAUTH
MSC ≥UC FMSC.
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Proof. We conduct the proof in two steps, we separately show that (1) EXECπMSC
D,Z

is indistinguishable fromH−, and (2)H− is indistinguishable from IDEALFMSC
SMSC,Z .

We reduce the first step to the IND-SB-CPA security of the underlying SB-KEM
scheme and the second step to the IND-CCA2DEM security of the DEM scheme.
For both parts we employ Lemma 3 to go from the corresponding infinite hybrid
chain to two consecutive hybrids.

(1) Assume that EXECπMSC
D,Z and H− are computationally distinguishable. Then

by Lemma 3 there is a κ1 ∈ N and environment Z1 which can distinguish con-
secutive hybridsH`κ1−1 andH

`
κ1
, i.e.H`κ1−1 6∼Z1

H`κ1
. We use this to construct

a non-negligibly successful adversary A1 = ASB-KEM in the following way:
The adversary A1 is started by CSB-KEM with input (S, pkS , R, pkR, (Kb,C ∗))
and in turn starts Z1 in its head, playing all other parties just like they would
conduct hybrid H`κ1−1 or H`κ1

. If Z1 corrupts either S or R, the adversary
aborts. Since S and R were randomly drawn by the challenger and since by
Remark 1 Z1 needs a message between honest parties to distinguish anything,
A1 has a polynomial chance to not abort at this point.
When Z1 asks honest party S or R to initialize for the first time, A1 inserts
pkS/pkR as S/R’s public key respectively for the KEM scheme. Every time
in-the-head party S or R send a cipher C encrypted under pkS/pkR by some
corrupted party P , A1 decrypts it via the IND-SB-CPASB-KEM oracle. This
is possible since S and R are honest and hence P 6∈ {S,R}. Since honest
parties only get interface inputs from Z1, A1 already knows the content of
all ciphertexts C sent from honest parties to S and R and does not need the
oracle to decrypt them.
If the κ1-th request of (establish, sid , P ) by Z to establish a session be-
tween two honest parties is not made to S with P = R, abort. This again
gives A1 a polynomial chance not to abort at this stage. Otherwise insert
the challenge cipher C ∗ into the message (send, sidAUTH, P

′, (sid ,C ∗)) from
S to R via FAUTH and have S and R use challenge key Kb as the DEM
key throughout this session. For all following sessions use the encapsulated
session keys K just as H`κ1−1 and H`κ1

both specify. When Z1 halts, A1

outputs b = 0 if Z1 outputs H`κ1−1, and b = 1 if Z1 outputs H`κ1
. This way

A1 wins the IND-SB-CPASB-KEM game whenever it did not abort and Z1

successfully distinguished H`κ1−1 and H`κ1
, i.e. with non-negligible proba-

bility. This contradicts the IND-SB-CPASB-KEM security of the underlying
KEM scheme and shows that EXECπMSC

D,Z must be indistinguishable from H−.

(2) Assume that H− and IDEALFMSC
SMSC,Z are computationally distinguishable.

Then by Lemma 3 there is a κ2 ∈ N such that consecutive hybrids Haκ2,0

and Haκ2+1,0 are computationally distinguishable as well. Again by Lemma 3
there is a µ ∈ N and environment Z2 which can distinguish consecutive
hybrids Haκ2,µ−1 and Haκ2,µ, i.e. H

a
κ2,µ−1 6∼Z2

Haκ2,µ. We use this to construct
a non-negligibly successful adversary A2 = ACCA2-DEM in the following way:
After the challenger CCCA2-DEM has randomly drawn the challenge key, the
adversary A is started without input and in turn starts Z2 in its head,
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playing all other parties just like they would conduct hybrid Haκ2,µ−1 or
Haκ2,µ. When Z2 asks for the κ-th session between two honest parties—call
them S and R—to be established, A does not draw a fresh random session
key K1 but rather inserts the (unknown) challenge key instead. This is no
problem as all necessary encryptions and decryptions can be obtained via
the IND-CCA2DEM oracle.8 For the µ-th message mµ of this session—which
by Remark 1 has to be send by an honest party and hence S or R—A hands
mµ and 0 to the challenger and in return obtains ciphertext c∗ which it
uses as the channel content reported to Z2. Now continue to use encryptions
of zeros for all further messages of this session, just as Haκ2,µ−1 and Haκ2,µ

require. Whenever the challenge ciphertext c∗ is sent to S or R within this
session again, act as if the decryption oracle had yielded message mµ. When
Z2 halts, A2 outputs b = 0 if Z2 outputs Haκ2,µ−1, and b = 1 if Z2 outputs
Haκ2,µ. This way A2 wins the IND-CCA2DEM game whenever Z2 successfully
distinguished Haκ2,µ−1 and Haκ2,µ, i.e. with non-negligible probability. This
contradicts the IND-CCA2DEM security of the underlying DEM scheme and
shows that H− must be indistinguishable from IDEALFMSC

SMSC,Z .

With these two steps transitivity of computational indistinguishability concludes
our proof. �

Just as with many other applications of CCA2 security, the building block can
be swapped for one satisfying the strictly weaker RCCA security if the message
space is super-polynomial in size.

Theorem 3: Under static corruption the protocol πMSC with IND-SB-CPA se-
cure SB-KEM and IND-RCCA secure DEM with super-polynomial message size
realizes FMSC in the FAUTH-hybrid model as well.

Proofsketch. Because the proof largely follows the proof of Theorem 2, we will
only sketch the differences. Instead of sending encryptions of 0 for messages
between honest parties, the simulator draws a uniformly random value r from
the message space M at the start of the execution and uses this value throughout
the protocol. This is vital for when in proof step (2)—after the insertion of c∗
as the ciphertext of the µ-th message—other ciphertexts are sent within the
same session which the IND-RCCADEM oracle refuses to decrypt. Whenever this
happens, let A2 act as if decryption yielded message mµ. By definition of the
oracle the ciphertext may also contain r instead of mµ which would lead to a
simulation error and hence we have no guarantees on the output of Z2 in this case.
But since r was randomly drawn from a super-polynomial message space, the
probability that Z2 tries to send a ciphertext containing it is negligible and the
8 Note that although A knows the content of any message that Z2 asks S or R to send,
this communication is not handled via FAUTH and hence every corrupted party may
send ciphertexts to S or R expecting them to decrypt as if they were from the other
party.
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error does not impede our construction of a non-negligibly successful adversary
A2. O

7 Efficient LWE-based Construction

After the very theoretic definitions and transformation from Sections 4 and 5
we now go on to show the real-world benefit of the new IND-SB-CPASB-KEM
notion. We do so by giving an LWE based SB-KEM construction in the standard
model which is even simpler than the, as far as we know, most efficient standard
model construction previously used to construct IND-CCA2PKE security [6] and
show that it still satisfies our IND-SB-CPASB-KEM notion. Our construction is a
tweaked version of the KEM part from [22, 6], where we use sender IDs instead
of a hash and remove the employed MAC entirely.

Building blocks needed for this construction are the trapdoor function and
gadget matrix G from [22] as well as the corresponding invert function, a
full-rank difference encoding function FRD from [23] translating sender IDs to
suitable matrices, a key derivation function (KDF) KDF and gaussian distributions
D. Using these building blocks we define an SB-KEM Σ := (gen, enc, dec) as
follows:

gen(1λ):
• A $← Zn×mq

• R ← Dm×o
ω(
√

log(n))

• A1 := A · R
↪→ Return (sk , pk) :=

(
R, (A,A1)

)
.

enc(pk , S) = enc
(
(A,A1), S

)
:

• e ← Dnα·q; e0 ← Dmα·q; e1 ← Doσ,
where σ2 =

(
‖e0‖2 +m(αq)2

)
· ω
(√

log(n)
)2.

• k $← {0, 1}n
• s = k · b q2c+ e
• c0 = s>A + e0
• c1 = s>(A1 + FRD(S)G ) + e1
↪→ Return (K ,C ) :=

(
KDF(k), (c0, c1)

)
.

dec(sk , S,C ) = dec
(
R, S, (c0, c1)

)
:

• (s, e0, e1)← invert
(
R, [A|A1 + FRD(S)G], [c>0 , c

>
1 ]
)

• Check ‖e0‖ ≤ αq
√
m and ‖e1‖ ≤ αq

√
2mo · ω

(√
log(n)

)
.a

• For i ∈ {0, . . . , n− 1}: k[i] :=

{
0, if s[i] closer to 0

1, if s[i] closer to q
2

.

• Check ‖s − k‖ ≤ αq
√
n.a

↪→ Return K = KDF(k).
a If any check fails, abort with output ⊥.



SB-KEM 27

The correctness of the scheme directly carries over from the similar scheme
in [6] which is why we concentrate on its security properties in this work. The
security of Σ is based on the hardness of the normal form LWE (NLWE) problem.
NLWE is an equivalent version of the standard LWE problem where the secret
vector is drawn from an error distribution as well [6]. From the straightline
reduction to LWE follows the post-quantum security of our construction.

Theorem 4: The SB-KEM Σ = (gen, enc, dec) is IND-SB-CPA secure, given
that the LWE assumption holds. In particular, let A be an IND-SB-CPASB-KEM
adversary against the SB-KEM. Then there are distinguishers ALWE for NLWE
and AKDF for KDF KDF, such that for all λ ∈ N

AdvSB-CPA
A,Σ (λ) ≤ AdvLWE

ALWE
(λ) + AdvKDF

AKDF
(λ) + ε,

where ε is negligible in λ.

Proof. We roughly follow the proof idea of [6], constructing a series of games
which slowly transform the original IND-SB-CPASB-KEM game into a one which
is obviously unwinnable. At each definition of a new game we show how the
adversary’s view changes from the last one.

Game 0: This is the IND-SB-CPASB-KEM game.
Game 1: At this point A1 = AR is swapped for

(
AR−FRD(S)G

)
in the generation

of pkR = (A,A1). Since the distributions of AR and
(
AR−FRD(S)G

)
are both

statistically close to uniform randomness over Zn×oq they are by transitivity
statistically close to each other. Since FRD is a full rank difference encoding
FRD(S′)−FRD(S) is invertible if and only if S′ 6= S. I.e. with the new definition
of pkR decryption of ciphertexts is still possible for any sender ID other than
S. As oracle queries with S′ = S are not permitted for IND-SB-CPASB-KEM
anyway, this does not change the oracle at all. Hence the adversary’s view in
Game 1 is statistically close to the view in Game 0.

Game 2: This game is identical to Game 1, other than the definition of the
challenge (c∗0 , c∗1 ). Instead of using r we draw a new vector c $← Zmq uniformly
at random and set c∗0 :=

(
c + (k∗ · b q2c)

>A
)
. For the construction of c∗1 a

new random error e ← Dωσ with σ2 = m(αq)2 ·ω
(√

log(n)
)2 is drawn and c∗1

set to c∗1 :=
(
(c∗0 )

>R+ e
)
. We reduce this change to the hardness of NLWE

by showing that from an adversary A1|2 distinguishing Game 1 and Game 2
with non-negligible success probability we can construct an adversary ALWE
with the same success probability in breaking the NLWE assumption: After
getting input (B, b) from the challenger CLWE, ALWE follows Game 1 apart
from two definitions. In R’s public key pkR = (A,A1) the first value is taken
to be A := B which also results in A1 = BR. The value c is not drawn
randomly but set to b. The rest–including oracle queries–is handled as in
Game 1 (which is the same as in Game 2). When A1|2 outputs bit b, which
indicates that A1|2 thinks it interacts with Game (b+ 1), ALWE outputs the
same b to CLWE.
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For the analysis of the reduction firstly note that the distribution of the
public key A has not changed at all. In case b is of the form b = x>B + y ,
we have

c∗0 =
(
b + (k∗ · bq

2
c)>A

)
= (k∗ · bq

2
c+ x)>A + y ∼ s>A + e0 (1)

c∗1 = (c∗0 )
>R+ e

(1)∼ (s>A + e0)>R+ e
(∗)∼ s>

(
A1 + FRD(S)G

)
+ e1,

where the second statistic closeness (∗) is gained by adapting Theorem 3.1 of
[24] and Corollary 3.10 of [25]. This means the view of A1|2 is statistically

close to Game 1 if b is an NLWE sample. If, on the other hand, b $← Zmq is
random, c and hence (c∗0 , c

∗
1 ) is obviously distributed the same as in Game 2.

Game 3: Instead of the construction via c from Game 2, c∗0 is drawn uniformly at
random from Zmq . This means the challenge ciphertext C ∗ is now completely
independent of the key K0. As the value c acted as a one-time-pad on(
(k∗ · b q2c)

>A
)
to define c∗0 in Game 2, the statistical view of the adversary

does not change by this modification.
Game 4: As the last step, the key K0 is drawn uniformly at random rather

than generated via the KDF as KDF(k). It is obvious that with this change,
an adversary distinguishing Game 3 and Game 4 can be used to directly
construct a KDF distinguisher with the same success probability.

In Game 4 we see that the adversary is tasked to decide which of two randomly
drawn keys K0 and K1 it was sent while the rest of its view is completely
independent of these keys. This gives the adversary an even one half chance to
win Game 4 and overall provides us with the inequality claimed in Theorem 4.�

8 Conclusion

In this paper we have introduced the new notion of a sender-binding key en-
capsulation mechanism (SB-KEM) with corresponding IND-SB-CPA security,
building on the works of Beskorovajnov et al. [4]. Although slightly stronger
than plain CPA, IND-SB-CPA security is weaker than all other previously pro-
posed (tag-)KEM notions, giving CPA security only for the encapsulated key
and non-malleability for the sender ID. Despite its weakness we showed that
the sender-binding property makes up for the lack of key non-malleability: It is
still possible to realize secure communication via authenticated channels from
an IND-SB-CPA secure SB-KEM. This is true both for single-message and ses-
sion communication, where the SB-KEM needs to be paired with IND-OTDEM
and IND-RCCADEM respectively. This means it is now possible to get secure
communication from weaker assumptions. We show the real world merit of this
advancement by providing a post-quantum secure SB-KEM construction based
on the standard assumption of LWE. The efficiency of our construction is directly
derived from the previous KEMs construction [6] ours is based on.

An interesting theoretic problem for future work is whether IND-SB-CPA
security is in fact the weakest possible KEM notion to allow for UC-secure
communication via hybrid encryption and authenticated channels.
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A SB-KEM from DR-KEM

In this appendix we will comprehensively show how an IND-SB-CPA secure SB-
KEM can be constructed via DR-KEM. We start by recapitulating the necessary
theoretic basics, then provide a generic transformation and finally develop a
new and efficient construction from LPN in the standard model. Most of these
constructions follow a similar structure as the corresponding SBE constructions
in [4].

A.1 DR-KEM Preliminaries

The basics needed to understand our transformation include the definitions of
DR-KEM, IND-CPADR-KEM security and soundness as well as the ideal key
registration functionality FKRK.

The following definition of a DR-KEM is based on [26]. Note that [26] present
the definition in the CRS-model while we assume group parameters to be fixed
out of scope.

Definition (DR-KEM): A dual receiver key encapsulation mechanism (DR-
KEM) is given by a set of three PPT algorithms (gen, enc, dec) with

gen : 1λ 7→ (sk , pk)

enc : (pk1, pk2) 7→ (K ,C )

dec : (sk i, pk1, pk2,C ) 7→ K

such that the following correctness property holds:

K = dec(sk i, pk1, pk2,C )

whenever (sk1, pk1), (sk2, pk2)← gen(1λ), i ∈ {1, 2} and (K ,C )← enc(pk1, pk2).

The basic CPA security notion corresponding to the DR-KEM setting looks
as follows:

Definition (IND-CPADR-KEM): A DR-KEM Σ = (gen, enc, dec) satisfies
indistinguishability under chosen plaintext attack (IND-CPA) (cf. [26]), iff for
any PPT adversary A the advantage

AdvCPA
A,Σ (λ) :=

∣∣∣∣∣P[b← A(pk1, pk2,Kb,C
∗)
∣∣ (pk1, sk1), (pk2, sk2)← gen(1λ);

(K0,C
∗)← enc(pk1, pk2);K1

$← {0, 1}|K0|; b
$← {0, 1}

]
− 1

2

∣∣∣∣∣
is negligible in λ.

Another property often required of dual-receiver schemes is soundness, so we
will also state its formal definition here.
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Definition (Soundness): A DR-KEM Σ = (gen, enc, dec) satisfies soundness
(cf. [26]), iff for any PPT adversary A the advantage

AdvSound
A,Σ (λ) := P

[
dec(sk1, pk1, pk2,C ) 6= dec(sk2, pk1, pk2,C )

∣∣
C ← A(sk1, pk1, sk2, pk2); (sk1, pk1), (sk2, pk2)← gen(1λ)

]
is negligible in λ.

Lastly, in our generic transformation we encounter the key registration func-
tionality FKRK. The following definition is taken from [4].

FfKey
KRK

Provides:
Key registration with knowledge.
Parameters:

• Function fKey : (sk , pk) 7→

{
true, well-formed key pair
false, otherwise

State:

• Function pReg : mid 7→ (P, sk , pk) of pending registrations.
• Function pRet : mid 7→ (Pi, Pj) of pending retrievals.
• Set R of registered tuples (P, sk , pk).

Behaviour:

• Upon receiving (register, sid , sk , pk) from a party P , draw fresh mid , send
(register, sid ,mid , P, pk) to the adversary A and append mid 7→ (P, sk , pk)
to pReg.

• Upon receiving (register ok, sid ,mid) from the adversary A, retrieve
(P, sk , pk) := pReg(mid), check
◦ fKey(sk , pk) = true
◦ @ sk ′, pk ′ : (P, sk ′, pk ′) ∈ R
◦ @ P ′, sk ′ : (P ′, sk ′, pk) ∈ R

and append (P, sk , pk) to R if all checks were successful.
• Upon receiving (retrieve, sid , Pi) from a party Pj , draw fresh mid , send
(retrieve, sid ,mid , Pi, Pj) to the adversary A and append mid 7→ (Pi, Pj) to
pRet.

• Upon receiving (retrieve ok, sid ,mid) from the adversary A, look up
(Pi, Pj) := pRet(mid) and (Pi, sk i, pk i) ∈ R. If no such entry exists in R,
set pki := ⊥. Send (retrieved, sid , pk i, Pi) to Pj .
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A.2 Transformation from DR-KEM to SB-KEM

To use a DR-KEM in conjunction with the key registration functionality FKRK,
we assume it to permit an efficiently computable boolean function fKey. This
function indicates whether a key pair (sk , pk) is well formed, i.e. , whether it
could have been output by the DR-KEMs key generation algorithm or not:

fKey : (sk , pk) 7→

{
true, (sk , pk)← gen(1λ)

false, else.

This is mainly for convenience. In [4] it was discussed how the need for a function
fKey can easily be disposed of by having the registration functionality (partially)
generate the keys.

Let (gen, enc, dec) be a DR-KEM with key function fKey. We define a new
SB-KEM (Gen, Enc, Dec):

Gen(1λ) executed by party P :
• (sk , pk)← gen(1λ).
• Register (sk , pk) with FfKey

KRK.
↪→ Return (SK ,PK ) := ((sk , pk), P ).

Enc(PKR, S) = Enc(R,S) executed by party S:
• Retrieve pkR and pkS from FfKey

KRK.
↪→ Return (K ,C )← enc(pkR, pkS).

Dec(SKR, S, C) = Dec((skR, pkR), S, C) executed by party R:
• Retrieve pkS from FfKey

KRK.
↪→ Return K := dec(skR, pkR, pkS , C).

The intuition behind this construction is the same as when an SBE scheme
is constructed from DRE: By encapsulating the key such that both sender and
receiver may decapsulate it with their respective secret keys, soundness of the
DR-KEM guarantees to the receiver that the sender has knowledge of the key
regardless of who might have constructed the ciphertext C .

Lemma 4: If the DR-KEM (gen, enc, dec) is IND-CPA secure and sound, then
in the FfKey

KRK hybrid model (Gen, Enc, Dec) is an IND-SB-CPASB-KEM secure SB-
KEM scheme.

Proof. We conduct the proof by contradiction. Let (gen, enc, dec) be a sound
DR-KEM scheme with key function fKey and ASB be an adversary which has
non-negligible success probability in winning the IND-SB-CPASB-KEM game with
respect to (Gen, Enc, Dec). We use ASB to construct an adversary ADR with
non-negligible success probability in winning the IND-DR-CPA-KEM game with
respect to (gen, enc, dec).

Key point in this proof is that while ADR has to provide ASB with the correct
answers to any oracle queries it makes, it also acts as FfKey

KRK for ASB and hence
has access to any keys ASB registers. Note that we let ADR handle all interactions
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CDR ADR ASB

(sk1, pk1)← gen(1λ)

(sk2, pk2)← gen(1λ)
(K0, C

∗)← enc(pk1, pk2)

K1
$← {0, 1}|K0|

b
$← {0, 1}

(pk1, pk2, (Kb, C
∗))

S,R
$← P

(pkS , pkR) := (pk1, pk2)

FfKey
KRK

reg.← pkS , pkR

(S, S,R,R)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Oracle Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(R′, S′, C)

if R′ ∈ {S,R}
∧ S′ 6∈ {S,R} :

(skS′ , pkS′)← F
fKey
KRK(S

′)
K := dec(skS′ , pkS′ , pkR′ , C)

else
K := ⊥

K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b

?
= b∗ b∗ b∗

Fig. 9. Reduction for DR-KEM Construction

of ASB with FfKey
KRK exactly as the functionality itself would do, with the exception

that instantaneous oks are assumed whenever the functionality would ask the
adversary for permission. Now for any oracle query (R′, S′,C ), ADR looks up
the keys (skS′ , pkS′) which ASB must have registered for the decapsulation not
to fail. Due to the soundness property of the DR-KEM those keys can now be
used to correctly decapsulate the key

K = dec(skS′ , pkS′ , pkR′ ,C ) = dec(skR′ , pkR′ , pkS′ ,C )

and answer the oracle query. This gives ADR the same non-negligible success
probability as ASB. The reduction is shown in Figure 9. �

We can now show that IND-SB-CPASB-KEM is in fact strictly weaker than
IND-gtag-CCAtag-KEM with party IDs as the tag space by showing that the above
construction does not satisfy IND-gtag-CCA security.

Lemma 5: (Gen, Enc, Dec) is not IND-gtag-CCA secure.

Proof. We prove this by constructing an adversary Agtag-CCA which has non-
negligible probability of winning the IND-gtag-CCA game. The challenger
Cgtag-CCA provides Agtag-CCA with input (pkR, S) where public key pkR has
been registered with FKRK for some party R. Agtag-CCA goes on to generate keys
(skS , pkS) for party S and registeres them with FKRK as well before the challenge
is created. Now when the challenger hands challenge (Kb,C

∗) to Agtag-CCA it
can use skS to decrypt the challenge ciphertext and win the security game. �
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B Efficient LPN-based Construction

In addition to our LWE-based construction in Section 7, we now provide an LPN
and McEliece-based SB-KEM construction as well. This construction is based on
the idea from [4], which in turn adapted the construction from [27] by replacing
the trapdoor mechanism with McEliece. We augment this construction by adding
sender IDs in such a way that we are still able to use the same public key
replacement trick for our proof [27, 22]. Sender IDs are encoded in suitable matrix
form which we denote by M(S). We define an SB-KEM Σ := (gen, enc, dec) as
follows:

gen(1λ):
•
(
(S ,G ′,P), (G , t)

)
← genMcEliece(1

λ)

• C $← Zl×n2

↪→ Return (sk , pk) :=
(
(S ,G ′,P), (G ,C , t)

)
.

enc(pk , S) = enc
(
(G ,C , t), S

)
:

• r $← Zl2.
• k $← {0, 1}ν(λ)
• e0, e1 ← Bnθ
• c0 := r> · G ⊕ e0

( ∼= encMcEliece((G , t), r)
)

• c1 = r> · (C ⊕M(S))⊕ e1 ⊕ encode(k)
↪→ Return (K ,C ) :=

(
KDF(k), (c0, c1)

)
.

dec(sk , S,C ) = dec
(
(S ,G ′,P), S, (c0, c1)

)
:

• r ← decMcEliece
(
(S ,G ′,P), c0

)
• k ′ := c1 ⊕ r · (C ⊕M(S)).
• k ← decode(k ′)
↪→ Return K := KDF(k).

For the encoding and decoding (encode, decode) we propose to use a suitable
Goppa code, which is fixed for all parties. More details can be found in [4].

Theorem 5: The SB-KEM Σ = (gen, enc, dec) is IND-SB-CPASB-KEM secure,
given that both the McEliece indistinguishability assumption and the learning
parity with noise decisional problem (LPNDP) hold. In particular, let A be
an IND-SB-CPASB-KEM adversary against the cryptosystem. Then there is a
distinguisher AGoppa for Goppa codes and a distinguisher ALPN for LPNDP,
such that for all λ ∈ N:

AdvSB-CPA
A,Σ (λ) ≤ Adv

LPNDPθ(2n,l)
ALPN

(λ) + AdvIND
AGoppa,GR

(λ).

Proofsketch.

Game 0: This is the IND-SB-CPASB-KEM game.
Game 1: Swap C in the public key for C ⊕ S.
Game 2: Replace Goppa code matrix G with uniformly randomly drawn matrix

for the challenge. Reduce to Goppa code indistinguishability.
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Game 3: Draw c0 and c1 − encode(k) randomly. Reduce to LPN.
Game 4: Draw c1 completely at random. Was a one-time pad on encode(k)

anyway. Challenge is now independent of k .
Game 5: Swap K0 = KDF(k) for uniform randomness. O
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