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ABSTRACT

Secure 2-party computation (2PC) enables secure inference that of-
fers protection for both proprietary machine learning (ML) models
and sensitive inputs to them. However, the existing secure inference
solutions suffer from high latency and communication overheads,
particularly for transformers. Function secret sharing (FSS) is a
recent paradigm for obtaining efficient 2PC protocols with a pre-
processing phase. We provide Sigma, the first end-to-end system
for secure transformer inference based on FSS. By constructing
new FSS-based protocols for complex machine learning functional-
ities, such as Softmax, GeLU and SiLU, and also accelerating their
computation on GPUs, Sigma improves the latency of secure in-
ference of transformers by 11 − 19× over the state-of-the-art that
uses preprocessing and GPUs. We present the first secure inference
of generative pre-trained transformer (GPT) models. In particular,
Sigma executes Meta’s Llama2 (available on HuggingFace) with 13
billion parameters in 44 seconds and GPT2 in 1.6 seconds.
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1 INTRODUCTION

In the problem of secure inference, model providers own propri-
etary machine learning (ML) models that they want to offer as
services and clients who want to learn the inference results on their
sensitive data. The security requirement is that the client should
learn nothing about the model beyond the inference output and
the model provider should learn nothing about the client’s input.
This problem can be solved by the technique of secure 2-party com-
putation (2PC) that provides cryptographic security guarantees.

In recent years, the applicability of 2PC-based solutions has
scaled up frommodels with thousands of parameters [12, 42, 52, 54–
56, 59, 63, 65, 67, 78], to models with millions of parameters [23, 35,
38, 41, 46, 64, 79, 82], to BERT models with hundreds of millions of
parameters [9, 22, 36, 45, 49]. In this paper, we take a step further
in this direction by providing secure inference of Generative Pre-
trained Transformer (GPT) models with billions of parameters.

Transformer-based generative language models have gained sig-
nificant traction in recent times due to their remarkable perfor-
mance on various natural language tasks e.g., question-answering,
∗Equal Contribution. Work done while at Microsoft Research.

summarization, language translation, code generation [17, 18, 72].
Apart from ensuring model/input privacy, secure inference of such
models opens up other interesting scenarios like “prompt privacy”.
AI companies are spending significant efforts building prompts that
lead to good inference results and they want to keep the prompts
hidden. Secure inference allows a company holding a proprietary
prompt and a client holding sensitive data to generate inference
results from a public language model without revealing their inputs
to each other. However, the current state-of-the-art systems for
secure inference deliver unsatisfactory results on transformers.

We posit that a system for secure ML inference must satisfy
the following requirements: (1) accuracy - i.e., the accuracy under
secure inference should match that of the plaintext, (2) security -
i.e., the system should provide standard 2PC security, (3) efficiency -
i.e., the latency and communication overheads of secure inference
should be low, and (4) scalability - i.e., the system must scale to
models with billions of parameters. We show that existing systems
fail to meet (often more than one of) these requirements.

Existing secure transformer inference systems include THE-
X [22], Iron [36], and CrypTen [45, 49, 81] (we discuss other works
in Section 8). THE-X sacrifices both accuracy, by replacing complex
non-linearities (based on elementary functions, e.g., 𝑒𝑥 ) with simple
non-linearities (max(𝑥, 0)), and security, by revealing intermediate
values. Iron maintains both accuracy and security, but has huge
communication overheads, requiring over a hundred GB of commu-
nication even for BERT models. Although CrypTen leverages GPU
acceleration and preprocessing to improve efficiency, its online
latency and communication for secure inference are still significant.
Moreover, it fails to provide standard 2PC security because it uses
insecure1 local truncations. Furthermore, because of GPU memory
overflows, it fails to scale to larger models.

1.1 Our Contributions

In this paper, we propose Sigma2 - a system that advances the
state-of-the-art for secure inference of transformer-based models
along multiple dimensions. Like CrypTen, Sigmaworks in 2PC with
preprocessing model and uses GPU acceleration, but is an order
of magnitude more efficient in latency and communication while
providing standard 2PC security guarantees. Sigma maintains the
1Secure inference works like CrypTen [45] and many others [56, 70, 78, 79, 82] use
cheap local truncations that have recently been established as insecure [50].
2Secure Inference of GPT Models Accelerated
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model accuracy under secure inference through precise approxi-
mations of complex non-linearities and scales efficiently to GPT
models with billions of parameters.

Sigma leverages Function Secret Sharing (FSS) based 2PC pro-
tocols [13, 16, 35, 41] and builds on Orca [41] that is the state-of-
the-art in GPU-accelerated FSS-protocols. However, Orca focuses
primarily on convolutional neural networks (CNNs) that use simple
non-linearities like ReLU. We show that Orca’s techniques pose
unacceptable overheads for transformers because of their heavy
use of complex non-linearities (Section 7.1.2).

Since the latency of secure inference in transformers is dom-
inated by complex non-linearities - GeLU, SiLU, Softmax, layer
normalization [36] - we propose new FSS-based protocols for these
operations and accelerate them with GPUs. Realizing these oper-
ations requires accurate computation of various elementary func-
tions, e.g., exponentiation, reciprocal square root, inverse, etc. The
prior work of Pika [77] uses large look-up tables (LUTs) for these
functions. Although this approach is general, Grotto [69] shows
that large LUTs are inefficient and provides protocols based on
custom splines (when they exist). Sigma’s protocols minimize the
size of LUTs, to maintain accuracy, while being more efficient than
Grotto (Section 7.1.1). For instance, for GeLU over 50-bit values,
while Pika requires an LUT of size 250, Sigma uses an LUT of size
28 and overall requires 9× lower compute than Grotto in the same
threat model.

We evaluate Sigma on models based on GPT [17], BERT [26] and
Llama2 [73], which are widely used for next-word-predictions and
classification tasks. Our novel protocols securely and accurately
evaluate GPT-Neo with 1.3 billion parameters – “a transformer
model designed using EleutherAI’s replication of the GPT-3 archi-
tecture” [3] – in 7.4 seconds. Sigma also supports the Llama2models
recently released by Meta AI and available on Huggingface. It takes
27 seconds for Llama2-7B [5] and 44 seconds for Llama2 13B [4].
Sigma runs the smaller GPT2 model [2] from HuggingFace (tens of
millions of downloads each month) in 1.6 seconds, and the BERT
models in 0.1 − 4.7 seconds. Overall, Sigma improves the latency
of secure inference by 11.5 − 19.4× over the state-of-the-art.

To guarantee standard 2PC security, Sigma does away with local
truncations and instead uses secure faithful truncations. Trunca-
tions are used extensively in both linear layers, i.e., after matrix
multiplications, and non-linear layers. We provide a new protocol
for faithful truncation (Section 4.2) that is much more efficient than
the prior work [13] (up to 30×). Even though our truncations are
costlier than (almost free) local truncations in CrypTen, our massive
performance gains in GeLU, SiLU and Softmax make Sigma more
than 10× faster than CrypTen for end-to-end inference.

Our large scale evaluations are made possible by Sigma’s fron-
tend that allows users to succinctly express a transformer archi-
tecture of choice and run it with Sigma’s protocols optimized for
CPUs or GPUs (Section 6). The protocol design for CPUs and GPUs
differ, and we support both (Section 5.1). In fact, Sigma running on
CPUs is already faster than CrypTen running on GPUs. We discuss
some real world considerations when using SIGMA in Appendix A.
Sigma will be made publicly available.

2 PRELIMINARIES

2.1 Notation

Let 𝜆 be the computational security parameter, 𝑁 = 2𝑛 and 𝐿 = 2ℓ .
Let R denote the set of real numbers and U2𝑛 denote the set of
𝑛-bit unsigned integers. We use standard 2’s complement represen-
tation to represent signed values in U𝑁 . For 𝑥 ∈ U𝑁 , int𝑛 (𝑥) and
uint𝑛 (𝑥) denote the corresponding signed and unsigned integers
in Z, respectively. We denote arrays using boldface and its 𝑖-th
element (starting at 0) using the same symbol in normal typeface
followed by [𝑖], e.g., 𝒂 = {𝑎[0], 𝑎[1], 𝑎[2], . . . }.

2.1.1 Fixed-Point Representation. Fixed-point representation, pa-
rameterized by bitwidth 𝑛 and precision 𝑓 , encodes a real value
𝑟 ∈ R into an 𝑛-bit integer 𝑥 ∈ U𝑁 such that 𝑥 =

⌊
𝑟 · 2𝑓

⌋
mod 𝑁 .

Conversely, an 𝑛-bit fixed-point number 𝑥 with precision 𝑓 decodes
into real number int𝑛 (𝑥 )

2𝑓 .

2.1.2 Operators. For a predicate 𝑏, 1{𝑏} ∈ {0, 1} returns 1 if 𝑏 is
true and 0 otherwise. For 𝑛 < ℓ , 𝑥 ∈ U𝑁 , extend𝑛,ℓ (𝑥) returns 𝑥
appended with (ℓ−𝑛) 0’s on the left. For 𝑥 ∈ U𝑁 ,MSB𝑛 (𝑥) ∈ {0, 1}
denotes the most-significant bit of 𝑥 .

2.1.3 Secret Sharing. For 𝑥 ∈ U𝑁 , secret sharing samples random
shares 𝑥0, 𝑥1 ∈ U𝑁 such that 𝑥 = 𝑥0 + 𝑥1 mod 𝑁 holds, and is
denoted by share(𝑥). When 𝑥0 is held by 𝑃0 and 𝑥1 is held by 𝑃1,
we denote the process of exchanging the shares and adding them to
reconstruct the underlying value by reconstruct(𝑥𝑏 ) for 𝑏 ∈ {0, 1}.

2.2 Threat Model

This work considers standard 2PC in the preprocessing model [10,
11, 16, 25, 40] that has also received significant attention in the con-
text of secure machine learning [35, 41, 45, 68, 69, 82]. That is, there
are two parties 𝑃0 and 𝑃1 with inputs 𝑥0 and 𝑥1 and they wish to
compute a public function𝑦 = 𝑓 (𝑥0, 𝑥1) without revealing anything
more than the function output 𝑦 to each other. In a preprocessing
phase that is independent of the inputs to the function 𝑥0 and 𝑥1,
correlated randomness is generated and made available to 𝑃0 and
𝑃1. This randomness can be generated in multiple ways: a trusted
dealer [13, 16, 35, 41, 45, 68, 69, 82], generic 2PC protocols [31, 84],
or through specialized 2PC protocols [27]. In this work, we consider
the first approach. All our protocols satisfy the standard notion
of simulation-based security [19, 31, 51] with security provided
against a semi-honest static probabilistic polynomial time (PPT)
adversary corrupting either 𝑃0 or 𝑃1.

2.3 Function Secret Sharing

A Function Secret Sharing (FSS) [14, 15] scheme is a pair of algo-
rithms (Gen, Eval). Gen splits a function 𝑔 into two function shares
(𝑔0, 𝑔1) and Eval takes as input 𝑏 ∈ {0, 1}, function share 𝑔𝑏 and in-
put 𝑥 and returns 𝑔𝑏 (𝑥). The correctness property of an FSS scheme
requires that 𝑔0 (𝑥) + 𝑔1 (𝑥) = 𝑔(𝑥) for all 𝑥 . The security property
requires that each function share 𝑔𝑏 hides the function 𝑔.

Definition 1 (FSS: Syntax [14, 15]). A (2-party) FSS scheme is a
pair of algorithms (Gen, Eval) such that:

• Gen(1𝜆, 𝑔) is a PPT key generation algorithm that given 1𝜆 and
𝑔 ∈ {0, 1}∗ (description of a function 𝑔) outputs a pair of keys
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(𝑘0, 𝑘1). We assume that 𝑔 explicitly contains descriptions of input
and output groups Gin,Gout.
• Eval(𝑏, 𝑘𝑏 , 𝑥) is a polynomial-time evaluation algorithm that given
𝑏 ∈ {0, 1} (party index), 𝑘𝑏 (key defining 𝑔𝑏 : Gin → Gout) and
𝑥 ∈ Gin (input for 𝑔𝑏 ) outputs 𝑦𝑏 ∈ Gout (the value of 𝑔𝑏 (𝑥)).

(𝑘0, 𝑘1) are called FSS keys and the number of bits required to store
one FSS key is called key size. We formally define correctness and
security of an FSS scheme in Appendix B.

2.4 2PC with preprocessing from FSS

Consider secure computation of a circuit with gates {𝑔𝑖 }𝑖 and wires
{𝑤𝑖 }𝑖 . We describe the 2PC protocol with preprocessing using FSS
from [16] in two phases.

2.4.1 Offline Phase. For each wire𝑤𝑖 , sample a random mask 𝑟𝑖
from the appropriate group. Then, for each of the gate 𝑔 with input
wire 𝑤𝑖 and output wire 𝑤 𝑗 , generate an FSS key for its offset
function 𝑔[𝑟𝑖 ,𝑟 𝑗 ] (𝑥) = 𝑔(𝑥 − 𝑟𝑖 ) + 𝑟 𝑗 and provide one key to each
party. For input and output wires of the circuit belonging to party
𝑏, that party also learns the masks associated with those wires.

2.4.2 Online Phase. For each input wire𝑤𝑖 with value 𝑥𝑖 owned
by a party 𝑏, party 𝑏 calculates 𝑥𝑖 = 𝑥𝑖 +𝑟𝑖 and sends it to party 1−𝑏.
Now, the parties evaluate the circuit gates in topological order. To
evaluate a gate 𝑔 with input and output wire𝑤𝑖 and𝑤 𝑗 respectively,
both parties evaluate the corresponding FSS key on 𝑥𝑖 to get secret
shares of 𝑥 𝑗 = 𝑔[𝑟𝑖 ,𝑟 𝑗 ] (𝑥𝑖 ) = 𝑔(𝑥𝑖 − 𝑟𝑖 ) + 𝑟 𝑗 = 𝑔(𝑥𝑖 ) + 𝑟 𝑗 . The parties
then reconstruct these shares to get masked value 𝑥 𝑗 . For the output
wires, the party owning the wire subtracts the corresponding mask
to get the final output value.

2.4.3 Protocol Structure and Security for FSS protocols. We use
(·̂) to denote masked values. Consider a function 𝐹 and input 𝑥
such that 𝑦 = 𝐹 (𝑥). Protocol for 𝐹 , denoted by Π𝐹 , has two phases
Gen𝐹 and Eval𝐹 . Gen𝐹 is executed in the preprocessing phase on
input and output masks rin and rout, respectively, to produce the
preprocessing material or keys for 𝐹 made available to 𝑃0 and 𝑃1.
The number of bits required to store the key for Π𝐹 is called the key
size and is denoted by keysize(Π𝐹 ). Next, Eval𝐹 is the protocol run
by 𝑃0 and 𝑃1 in the online phase on masked input 𝑥 = 𝑥 + rin and
their respective keys. At the end of Eval𝐹 , 𝑃0 and 𝑃1 learn secret-
shares of masked output value 𝑦 = 𝑦 + rout. All protocols presented
in this paper have the above structure.

Security for Π𝐹 = (Gen𝐹 , Eval𝐹 ) is defined through the follow-
ing two interactions. 1) A real interaction in whichGen𝐹 is executed
in the preprocessing phase (with input and output masks rin and
rout) and 𝑃0 and 𝑃1 execute Eval𝐹 in the online phase with keys
obtained in the preprocessing phase. This interaction happens in
the presence of an adversaryA and the environmentZ. 2) An ideal
interaction in which 𝑃0 and 𝑃1 send their inputs to a functionality
that computes the functionality faithfully (i.e., unmasks 𝑥 to get 𝑥 ,
computes 𝑦 = 𝐹 (𝑥), computes 𝑦 = 𝑦 + rout and provides shares of 𝑦
to 𝑃0 and 𝑃1). We say that protocol Π𝐹 securely realizes function 𝐹
if for every adversary A in the real interaction, there is an adver-
sary S (called the simulator) in the ideal interaction such that no
environmentZ can distinguish between the two interactions.

2.5 Distributed Point Function (DPF)

The point function 𝑓 •
𝛼,𝛽

: U𝑁 → Gout takes as input 𝑥 ∈ U𝑁 and
outputs 𝛽 ∈ Gout if 𝑥 = 𝛼 and 0 otherwise. The corresponding FSS-
scheme for point function (Gen•𝑛, Eval•𝑛) is called Distributed Point
Function [14, 15]. Notationally, we write (𝑘•0 , 𝑘

•
1 ) ← Gen•𝑛 (1𝜆, 𝛼, 𝛽,

Gout) and 𝑦𝑏 = Eval•𝑛 (𝑏, 𝑘•𝑏 , 𝑥), for 𝑥 ∈ U𝑁 . For all our protocols, it
suffices to have Gout = {0, 1} and 𝛽 = 1, and this allows us to lever-
age the construction of DPF with early termination optimization
(that is applicable for small payloads) [15].

Theorem 1 (Cost of DPF from [15]). Given PRG 𝐺 : {0, 1}𝜆 →
{0, 1}2𝜆+2 and let 𝜈 = log2 (𝜆 + 1). When 𝑛 > 𝜈 , there exists a DPF
for 𝑓 •

𝛼,1 : U𝑁 → {0, 1} with key size (𝑛 − 𝜈) · (𝜆 + 2) + 2𝜆. Number
of PRG invocations in Gen•𝑛 is 2(𝑛 − 𝜈) and in Eval•𝑛 is 𝑛 − 𝜈 . When
𝑛 ⩽ 𝜈 , keysize of 2𝑛 and 0 PRG invocations in Gen•𝑛 and Eval•𝑛 is
required.

Similar to prior FSS works [15, 69, 77], we set 𝜆 = 127 and
implement the required length doubling PRG using 2 calls to AES-
128 in counter mode. As previously observed [15, 69], a single AES
call suffices for Eval•𝑛 as only half of the output is used. From here
on, we refer to it as an half-PRG call.

2.6 Comparisons using DPF Keys

Comparison function 𝑓 <
𝛼,𝛽

: U𝑁 → Gout takes as input 𝑥 ∈ U𝑁
and returns 𝛽 ∈ Gout if 𝑥 < 𝛼 and 0 otherwise. Previous works [13,
35] used a specialized FSS-scheme called Distributed Comparison
Function (DCF) to realize this functionality. Recent work of [69]
showed that when Gout = {0, 1}, 𝛽 = 1, FSS scheme for comparison
function can be constructed using the DPF construction from [15].

Theorem 2 (FSS for comparison using DPF [69]). There exists
an algorithm Eval<𝑛 such that ∀𝑥, 𝛼 ∈ U𝑁 :

(𝑘•0 , 𝑘
•
1 ) ← Gen•𝑛 (1𝜆, 𝛼, 1, {0, 1})

=⇒ Eval<𝑛 (0, 𝑥, 𝑘•0 ) + Eval
<
𝑛 (1, 𝑥, 𝑘•1 ) = 𝑓

<
𝛼,1 (𝑥)

and Eval<𝑛 invokes DPF half-PRGmax(𝑛−𝜈, 0) times. Thus, (Gen•𝑛, Eval<𝑛 )
is an FSS-scheme for comparison function.

Compared to DCF construction from [13] that requires a length
quadrupling PRG, the above construction lowers compute by > 2×.

3 OVERVIEW OF TRANSFORMERS

3.1 Architecture Overview

Transformers is a neural network architecture used commonly in
natural language tasks. At a high level, a transformer architecture
consists of an encoder and a decoder [76]. The encoder generates
a sequence of hidden states from the given input sequence. The
decoder takes the hidden states produced by the encoder and gener-
ates the output sequence. Real-world models stack multiple encoder
and decoder blocks, as shown in Figure 1, to obtain high accuracy
results. Further, transformers can be used in both encoder-decoder
(e.g., BERT) and decoder-only mode (e.g., GPT). We discuss the key
components of a single transformer block below:
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Figure 1: Architecture of a transformer neural network

3.1.1 Token embeddings. Transformers represent a natural lan-
guage input as a sequence of tokens (e.g., each word can be repre-
sented as a token) wherein each token is a one-dimensional vector of
size 𝑑𝑚𝑜𝑑𝑒𝑙 . The token embedding matrix𝑊𝑒 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑁𝑉 , where
𝑁𝑉 is the vocabulary size, maps each token to its corresponding
embedding vector. Further, each token is also assigned a positional
encoding vector of size 𝑑𝑚𝑜𝑑𝑒𝑙 that encodes the token’s position in
the input sequence [76]. The sum of the token embedding vector
and the positional encoding vector is used as input to the model.

3.1.2 Self-attention and multi-head attention (MHA). The self at-
tention mechanism helps the model attend to different parts in the
input sequence. It maps a query and a set of key-value pairs to an
output as follows:

Attention (Q, K, V) = softmax(QK𝑇 /
√︁
𝑑𝑚𝑜𝑑𝑒𝑙 )V

where 𝑄 ∈ R𝑦×𝑑𝑚𝑜𝑑𝑒𝑙 is the query matrix and 𝐾,𝑉 ∈ R𝑧×𝑑𝑚𝑜𝑑𝑒𝑙

are key and value matrices, respectively (here, 𝑦 and 𝑧 represent
the length of primary and context sequence.)

The multi-head attention module consists of multiple attention
heads that operate in parallel, each over 𝑑𝑚𝑜𝑑𝑒𝑙

𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠 in the above
formulation (e.g., 𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠 = 12 in GPT-2). The outputs of the
attention heads are concatenated and linearly transformed to obtain
the MHA output.

3.1.3 Softmax: For a vector 𝒙 ∈ R𝑘 , define 𝑥max = max(𝑥0, 𝑥1, . . . ,
𝑥𝑘−1). The softmax function on 𝒙 returns a vector 𝒚 ∈ R𝑘 s.t.:

𝑦 [𝑖] = 𝑒𝑥 [𝑖 ]∑𝑘−1
𝑗=0 𝑒𝑥 [ 𝑗 ]

= 𝑒𝑥 [𝑖 ]−𝑥max∑𝑘−1
𝑗=0 𝑒𝑥 [ 𝑗 ]−𝑥max

Since exponentials in the first expression can get arbitrarily large,
the second expression is preferred where exponential is only com-
puted on negative values (including 0).

3.1.4 Feed forward network (FFN). FFN consists of two fully con-
nected layers wherein the first layer transforms the input from
dimension 𝑑𝑚𝑜𝑑𝑒𝑙 to 𝑑ff , and the second layer transforms it back to
𝑑𝑚𝑜𝑑𝑒𝑙 (typically, 𝑑ff = 4×𝑑𝑚𝑜𝑑𝑒𝑙 ). FFN for a matrix𝑋 ∈ R𝑧×𝑑𝑚𝑜𝑑𝑒𝑙

(where 𝑧 is the sequence length) can be represented as:
FFN(𝑋 ) = GeLU(𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2

where𝑊1 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑ff ,𝑊2 ∈ R𝑑ff ×𝑑𝑚𝑜𝑑𝑒𝑙 are the weight matrices
and 𝑏1 ∈ R𝑑ff , 𝑏2 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 are the bias vectors for first and
second layers within FFN. GeLU is the Gaussian Error Linear Unit
activation function [37]. The Llama2 models [73] use SiLU, a special
variant of the Swish activation function [61], instead of GeLU.

3.1.5 Activation. An activation function applies a non-linear trans-
formation element-wise to the given input vector and its output
determines which of the neurons should be activated in the next
layer. Popular examples of activation functions include ReLU, GeLU,
tanh etc. Most of our models use GeLU, which returns a vector
𝒚 ∈ R𝑘 for 𝒙 ∈ R𝑘 s.t.:

𝑦𝑖 = GeLU(𝑥𝑖 ) = 𝑥𝑖
2 (1 + erf ( 𝑥𝑖√

2
))

where erf is an integral of a Gaussian [37]. The Llama2 models use
SiLU, which returns

𝑦𝑖 = SiLU(𝑥𝑖 ) = 𝑥𝑖 . 𝜎 (𝑥𝑖 ) = 𝑥𝑖
1+𝑒−𝑥𝑖

where 𝜎 (𝑥) is the Sigmoid function.

3.1.6 Layer normalization. Layer norm normalizes the distribution
of activations at each layer in the model. For a vector of real values
𝒙 ∈ R𝑘 , let𝑚 =

∑
𝑥𝑖/𝑘 and 𝑣 = (∑(𝑥𝑖 −𝑚)2)/𝑘 denote its mean

and variance, respectively. For 𝑧𝑖 = 𝑥𝑖 −𝑚 and model parameters
𝛾, 𝛽 ∈ R, layer normalization returns a vector 𝒚 ∈ R𝑘 s.t.:

𝑦𝑖 = 𝛾 ·
𝑥𝑖 −𝑚√

𝑣
+ 𝛽 = 𝛾 · 𝑧𝑖√︃∑

𝑧2
𝑖
/𝑘
+ 𝛽 (1)

Root Mean Squared Normalization (RMS Norm) is another kind
of normalization (used in the Llama2 models [73]) and is compu-
tationally simpler and more efficient than Layer Norm. For model
parameter 𝛾 ∈ R, the RMS Norm of 𝒙 ∈ R𝑘 is a vector 𝒚 ∈ R𝑘 s.t.:

𝑦𝑖 = 𝛾 ·
𝑥𝑖

𝑅𝑀𝑆 (𝒙) = 𝛾 ·
𝑥𝑖√︃∑
𝑥2
𝑖
/𝑘

(2)

3.2 Secure Inference of Transformers

Based on the above description and the literature on cryptographic
protocols, the layers in a transformer can be classified into two
categories - linear and non-linear.

3.2.1 Linear layers. These consist of the matrix multiplications
occurring in multihead attention (MHA) and feed forward (FFN)
layers. Similar to all prior works on secure inference, we work with
fixed-point arithmetic. Here, multiplying two fixed-point values
with precision 𝑓 over integers results in a fixed-point value with
implicit precision 2𝑓 . Hence, multiplications must be followed by
a truncation operation to bring the precision back to 𝑓 . For the
matrix multiplications over integers, we use the existing proto-
col [16, 35, 41] that relies on Beaver-triple like correlations gener-
ated in preprocessing phase. For truncations, as one of our contribu-
tions, we provide a significantly more efficient protocol compared
to the prior work [13, 35] (see Section 4.2).

3.2.2 Non-linear layers. These consist of GeLU, SiLU, Softmax,
LayerNorm and RMSNorm. In Section 5, we provide novel precise
protocols for these non-linearities over fixed-point arithmetic that
not only preserve the accuracy of transformers but also lead to
efficient secure inference on transformers (Section 7).
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3.2.3 Putting things together. For each of the layers of the trans-
formers, we provide a secure protocol where the evaluating parties
start with masked input, i.e., for an input 𝑥 and random mask rin,
parties hold 𝑥 = 𝑥 + rin and after the protocol learn masked output,
i.e., 𝑦 = 𝑦 + rout for output 𝑦 and mask rout. Given this invariant,
we are able to trivially put together the secure protocols for each
layer to obtain a secure protocol for inference and prove security
by invoking the sequential composition theorem [19, 51].

3.3 GPU-accelerated Secure Inference

Graphics Processing Units (GPUs) support thousands of concurrent
threads and provide much higher memory bandwidth compared
to CPUs [6]. Therefore, GPUs are a natural fit for accelerating
transformers in plaintext: (1) several linear layers (e.g., in FFN) in a
transformer network involve large matrix multiplications that can
be accelerated using GPUs, often by up to two orders of magnitude
compared to CPUs. (2) the non-linear layers are memory intensive
and hence benefit from the highmemory bandwidth of GPUs. Under
secure inference, the linear layers can be accelerated similar to
plaintext. However, the non-linear layers require several rounds of
network communication between the client and the model provider,
and transfer of large pre-generated keys from CPU to GPU over the
PCIe links. Therefore, communication and key transfer overheads
dominate the overall time under secure inference.

We reduce the size of communication and data transfer, at the ex-
pense of some extra computation, as follows: (1) we reduce network
communication with an efficient packing scheme for non-standard
bitwidths. This adds extra computation for packing and unpacking
values which we implement efficiently on the GPU itself. (2) we
reduce the number of DPF keys needed for GeLU/SiLU from two to
one at the cost of one extra evaluation of the same key per element.
These optimizations reduce network communication by 1.2 − 1.5×
and key transfer by 1.8× over a naïve port of our CPU protocols to
the GPU. Note that without these optimizations, a GPU’s compute
units would often remain idle. Hence, the additional computation
is essentially free for Sigma.

4 CRYPTO BUILDING BLOCKS

Similar toOrca [41], we design efficient protocols with multi-round
online phase. Our goal is to achieve low key size, online compute
and online communication while ensuring small constant round
complexity. At the end of Eval𝐹 , the evaluators learn secret-shares
of masked output value 𝑦 = 𝑦 + rout. Now, Eval𝐹 can be followed by
a reconstruct to obtain the masked output value 𝑦 and we denote
this modified protocol by Π̂𝐹 . As the input and output masks are
unknown to the evaluators, the cleartext values remain hidden from
the evaluators.

We first provide a summary of protocols for multiplication, se-
lection, and lookup tables from prior works. Then, we describe our
novel FSS-based protocols for truncation and comparison. All of
these are used as sub-protocols by our novel protocols for complex
non-linearities (Section 5).

4.1 Protocols from Previous Works

4.1.1 Multiplication. For secure multiplication of two 𝑛-bit in-
tegers, [16] provides a beaver-triple based (non-interactive) FSS-
protocol ΠMul

𝑛 with keysize of 3𝑛 bits.

4.1.2 Select. The functionality select𝑛 : {0, 1} × U𝑁 → U𝑁 takes
as input a selector bit 𝑠 and a payload 𝑥 such that select𝑛 (𝑠, 𝑥) = 𝑥 if
𝑠 = 1 and 0 otherwise. Orca [41] provides a non-interactive protocol
Πselect
𝑛 that realizes select𝑛 securely with keysize 4𝑛.

4.1.3 SelectLin. Let selectlin𝑛,𝛾 : {0, 1}2 × U𝑁 → U𝑁 be a func-
tionality parameterized by a length 4 vector of pairs of elements,
𝛾 = {(𝛼0, 𝛽0), (𝛼1, 𝛽1), (𝛼2, 𝛽2), (𝛼3, 𝛽3)}with 𝛼𝑖 , 𝛽𝑖 ∈ U𝑁 ,∀𝑖 ∈ [4].
It takes as input two selector bits 𝑠0, 𝑠1, and a payload 𝑥 , and outputs
selectlin𝑛,𝛾 (𝑠0, 𝑠1, 𝑥) = 𝛼2𝑠0+𝑠1𝑥 + 𝛽2𝑠0+𝑠1 . This functionality can be
easily realized using one-time truth tables as described in [24] and
results in a non-interactive protocol Πselectlin𝛾

𝑛 with keysize 8𝑛.

4.1.4 Look-up Table. The functionality LUT𝑛,ℓ,𝑻 : U𝑁 → U𝐿 is
parameterized by input bitwidth 𝑛, output bitwidth ℓ and a public
table 𝑻 ∈ U𝑁

𝐿
. It takes as input 𝑥 ∈ U𝑁 and returns 𝑇 [𝑥] ∈ U𝐿 .

Pika [77] provides a protocol ΠLUT
𝑛,ℓ,𝑻 such that keysize(ΠLUT

𝑛,ℓ,𝑻 ) =
keysize(DPF𝑛,1)+𝑛+2ℓ . Online phase invokes the DPF PRG 2𝑛−𝜈−1
times, where 𝜈 = log2 (𝜆 + 1), and communicates 2ℓ bits in 1 round.

4.2 Our Truncation Protocol

As discussed in Section 3.2, linear layers or matrix multiplica-
tion needs to be followed by an element-wise truncation to bring
down precision. Our protocols for complex non-linearities also
use multiple truncations. The literature considers (cheap) local
truncations [45, 56, 78, 79, 82] and (expensive) faithful trunca-
tions [13, 35, 64]. While local truncations are almost free to im-
plement, a very recent work Li et al. [50] shows that these do not
satisfy standard simulation-based security and are insecure. In light
of this, in this work, all our protocols for secure inference only
use faithful truncations or arithmetic right shifts (ARS). Here, we
provide new protocols for truncation that are much more efficient
than prior FSS-based protocol from [13, 35].

4.2.1 ARS with guaranteed gap. We first consider the case when
the input is known have a gap w.r.t. the bitwidth used. In particular,
we require that 𝑣 ∈ U𝑁 is such that 𝑣 ∈ [0, 2𝑛−2) ∪ [2𝑛 − 2𝑛−2, 2𝑛).
Looking ahead, within our protocols for non-linearities, this as-
sumption holds many a times from domain knowledge.

We first use the following relation from [28] to reduce ARS to
logical right shift (LRS), i.e., a reduction of shift of signed values to
unsigned values. In particular, for 𝑛-bit values and shift amount 𝑓 ,
when 𝑣 ∈ [0, 2𝑛−2) ∪ [2𝑛 − 2𝑛−2, 2𝑛), for 𝑥 = 𝑣 + 2𝑛−2,

ARS𝑛,𝑓 (𝑣) = LRS𝑛,𝑓 (𝑥) − 2𝑛−𝑓 −2

where LRS𝑛,𝑓 (𝑥) =
⌊
𝑥
2𝑓

⌋
. Note that constraint on 𝑣 implies that

𝑥 = 𝑣 + 2𝑛−2 seen as an unsigned value lies in [0, 2𝑛−1) which
would be crucial for the optimization that we do.

Now, given the above relation, to construct a protocol forARS𝑛,𝑓 (𝑣),
we construct a protocol for LRS𝑛,𝑓 (𝑥) using the following lemma
(also used in [13, 64]).
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Logical Right-Shift with Gap Π
GapLRS
𝑛,𝑓

GenGapLRS
𝑛,𝑓

(rin, rout) :

1: (𝑘•0 , 𝑘
•
1 ) ← Gen•

𝑓
(1𝜆, rin mod 2𝑓 , 1, {0, 1})

2: 𝑐
$← {0, 1}, 𝑟 (𝑤 ) = extend1,𝑛 (𝑐)

3: 𝑚 = 2𝑛−𝑓 · extend1,𝑛 (MSB𝑛 (rin))
4: 𝑟 = rout − LRS𝑛,𝑓 (rin)
5: share (𝑟 (𝑤 ) ,𝑚, 𝑟 )
6: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑘•

𝑏
| |𝑟 (𝑤 )

𝑏
| |𝑚𝑏 | |𝑟𝑏

EvalGapLRS
𝑛,𝑓

(𝑏, 𝑘𝑏 , 𝑥) :

1: Parse 𝑘𝑏 as 𝑘•
𝑏
| |𝑟 (𝑤 )

𝑏
| |𝑚𝑏 | |𝑟𝑏

2: �̂�𝑏 = Eval<
𝑓
(𝑏, 𝑘•

𝑏
, 𝑥 mod 2𝑓 ) + 𝑟 (𝑤 )

𝑏
mod 2

3: �̂� = reconstruct(�̂�𝑏 ), 𝑧 = extend1,𝑛 (�̂�)
4: 𝑢𝑏 = 𝑏𝑧 + 𝑟 (𝑤 )

𝑏
− 2𝑧𝑟 (𝑤 )

𝑏
5: 𝑡𝑏 =𝑚𝑏 · extend1,𝑛 (1 −MSB𝑛 (𝑥))
6: return 𝑏 · LRS𝑛,𝑓 (𝑥) + 𝑟𝑏 + 𝑡𝑏 − 𝑢𝑏

Figure 2: Protocol for Logical Right-Shift with Gap

Lemma 1. For 𝑥0 = 𝑥 mod 2𝑓 and 𝑟0 = rin mod 2𝑓 ,

LRS[r
in,rout ]

𝑛,𝑓
(𝑥) = LRS𝑛,𝑓 (𝑥) − LRS𝑛,𝑓 (rin)

+ 2𝑛−𝑓 · 1{𝑥 < rin} − 1{𝑥0 < 𝑟0} + rout (3)

When 𝑥 ∈ [0, 2𝑛−1), following observation3 (proof in Appendix C)
provides an efficient way to compute 1{𝑥 < rin}.

Lemma 2. For 𝑥 = 𝑥 + rin mod 𝑁 , if 𝑥 < 2𝑛−1,

1{𝑥 < rin} = 1{MSB𝑛 (𝑥) = 0} ∧ 1{MSB𝑛 (rin) = 1}

We provide a formal description of our protocol for LRS for inputs
with a gap in Figure 2 (security proof in Appendix D.1). Here, the
term 1{𝑥0 < 𝑟0} is computed using DPF-based comparison with
1-bit output to allow for smaller FSS key and lower online compute.
Once the evaluators learn the masked value of this bit (�̂� ), they
do a local extension (𝑧). They use 𝑧 and arithmetic shares of the
mask (𝑟 (𝑤 ) ) provided by the dealer to obtain arithmetic shares of
𝑢 = 1{𝑥0 < 𝑟0}. It is trivial to extend this to ARS (with the same
cost) and we summarize the cost in Theorem 3.

Theorem 3. There exists a protocol ΠGapARS
𝑛,𝑓

that realizes ARS𝑛,𝑓
securely for cleartext inputs in [0, 2𝑛−2) ∪ [2𝑛 − 2𝑛−2, 2𝑛) such that
keysize(ΠGapARS

𝑛,𝑓
) = keysize(DPF𝑓 ,1)+3𝑛. The online phase requires

1 evaluation of DPF𝑓 ,1 and communication of 2 bits in 1 round.

4.2.2 Truncate-Reduce. TR𝑛,𝑓 : U𝑁 → U2𝑛−𝑓 is defined as drop-
ping the lower 𝑓 bits of the 𝑛-bit input and returning the output as
an (𝑛 − 𝑓 )-bit number. It can be expressed as:

TR𝑛,𝑓 (𝑥) = LRS𝑛,𝑓 (𝑥) mod 2𝑛−𝑓

3Similar observation was also used by [28] for their probabilistic LRS protocol that
ignores the LSB correction term 1{𝑥0 < 𝑟0 } and referred to as MSB-to-Wrap optimiza-
tion in Sirnn [63] and used in various protocols.

Note that Equation 3 for LRS does not rely on gap in inputs. Now,
as the term 2𝑛−𝑓 · 1{𝑥 < rin} cancels out due to mod operation, we
can realize truncate-reduce securely using a single comparison for
1{𝑥0 < 𝑟0}. We omit details and summarize cost below:

Theorem 4. There exists a protocol ΠTR
𝑛,𝑓

that realizes TR𝑛,𝑓 se-

curely such that keysize(ΠTR
𝑛,𝑓
) = keysize(DPF𝑓 ,1) + 2(𝑛 − 𝑓 ). The

online phase requires 1 evaluation of DPF𝑓 ,1 and communicates 2
bits in 1 round.

4.2.3 ARS without known gap. Let SignExtℓ,𝑛 : U𝐿 → U𝑁 be
defined as sign extending a value in ℓ-bits to equivalent value in
𝑛-bits. When input to ARS is not known to have a gap, we express4
ARS𝑛,𝑓 as TR𝑛,𝑓 followed by SignExt𝑛−𝑓 ,𝑛 . We use our protocol
for (faithful) truncate-reduce and replace DCF in the protocol for
sign-extension from Orca [41] with DPF-based comparison. We
summarize overall costs below:

Theorem 5. There exists a protocol ΠARS
𝑛,𝑓

that realizes ARS𝑛,𝑓 se-

curely such that keysize(ΠARS
𝑛,𝑓
) = keysize(ΠTR

𝑛,𝑓
)+keysize(DPF𝑛−𝑓 ,1)+

2𝑛+1. Online phase requires 1 evaluation each ofDPF𝑓 ,1 andDPF𝑛−𝑓 ,1
and communicates 2(𝑛 − 𝑓 ) + 4 bits in 3 rounds.

4.2.4 Cost Comparison. In contrast, [13] gave a protocol forARS𝑛,𝑓
(also used in [35]) that requires a key size of approximately 𝑛(𝜆 +
2𝑛) + 𝑓 (𝜆 + 𝑛) bits and online phase makes 2(𝑛 + 𝑓 − 1) AES calls.
Concretely, for 𝑛 = 64, 𝑓 = 12, ΠGapARS

𝑛,𝑓
has 17.5× smaller key size

and 30× lower online compute, and ΠARS
𝑛,𝑓

has 2.5× smaller key size
and 3× lower online compute.

4.3 Our DReLU and Comparison Protocols

For an 𝑛-bit value 𝑥 ∈ U𝑁 in 2’s complement notation, derivative
of ReLU or DReLU is defined as

DReLU𝑛 (𝑥) = 1{𝑥 < 2𝑛−1} = 1 ⊕MSB𝑛 (𝑥)
and the offset function of DReLU𝑛 can be written as

DReLU[r
in,rout ]

𝑛 (𝑥) = DReLU𝑛 (𝑥 − rin mod 𝑁 ) ⊕ rout

= MSB𝑛 (𝑥 − rin mod 𝑁 ) ⊕ 1 ⊕ rout

Prior FSSworks [13, 16, 35, 41] provide a non-interactive protocol
for DReLU that uses a DCF key for comparison and evaluates it
twice during online phase. In contrast, we provide a non-interactive
protocol that does a single evaluation of a DPF key for comparison.
In all, we get > 4× reduction in online compute.

Our protocol builds on the logic used in CrypTFlow2 [64] for
MSB computation over secret shares (in log𝑛 rounds). For 𝑥 ∈ U𝑁
such that 𝑥 = 𝑥0 + 𝑥1 mod 𝑁 , 𝑦0 = 𝑥0 mod 2𝑛−1 and 𝑦1 = 𝑥1
mod 2𝑛−1,

MSB𝑛 (𝑥) = MSB𝑛 (𝑥0) ⊕MSB𝑛 (𝑥1) ⊕ 1{𝑦0 + 𝑦1 ≥ 2𝑛−1}
Using this above, we get

DReLU[r
in,rout ]

𝑛 (𝑥) = MSB𝑛 (𝑥) ⊕MSB𝑛 (2𝑛 − rin)
⊕ 1{2𝑛−1 − 𝑦0 − 1 < 𝑦1} ⊕ 1 ⊕ rout

where 𝑦0 = 𝑥 mod 2𝑛−1 and 𝑦1 = (2𝑛 − rin) mod 2𝑛−1.
4Similar approach was used in Orca [41] for stochastic truncations.
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DReLU ΠDReLU
𝑛

GenDReLU𝑛 (rin, rout) :
1: 𝑥1 = 2𝑛 − rin
2: 𝑦1 = 𝑥1 mod 2𝑛−1

3: (𝑘•0 , 𝑘
•
1 ) ← Gen•

𝑛−1 (1
𝜆, 𝑦1, 1, {0, 1})

4: 𝑟 = rout ⊕MSB𝑛 (𝑥1) ⊕ 1
5: share 𝑟
6: For 𝑏 ∈ {0, 1}, 𝑘𝑏 = 𝑟𝑏 | |𝑘•𝑏

EvalDReLU𝑛 (𝑏, 𝑘𝑏 , 𝑥) :
1: Parse 𝑘𝑏 as 𝑟𝑏 | |𝑘•𝑏
2: 𝑦 = 𝑥 mod 2𝑛−1
3: 𝑡𝑏 ← Eval<𝑛−1 (𝑏, 𝑘

•
𝑏
, 2𝑛−1 − 𝑦 − 1)

4: return 𝑏 ·MSB𝑛 (𝑥) ⊕ 𝑟𝑏 ⊕ 𝑡𝑏

Figure 3: Protocol for DReLU.

Based on above equation, we provide a protocol for DReLU𝑛

in Figure 3 (security proof in Appendix D.1) where we compute
1{2𝑛−1 − 𝑦0 − 1 < 𝑦1} using a single DPF-based comparison.

Theorem 6. ΠDReLU
𝑛 (non-interactively) securely realizesDReLU𝑛

with keysize(ΠDReLU
𝑛 ) = keysize(DPF𝑛−1,1) + 1. Online phase re-

quires 1 evaluation of DPF𝑛−1,1.

Comparison. To compare two values 𝑥,𝑦, i.e., to compute 𝑥 ⩾ 𝑦,
similar to all prior works, we re-write it as 𝑥 − 𝑦 ⩾ 0 and realize it
using a call to ΠDReLU

𝑛 .

5 OUR PROTOCOLS FOR COMPLEX

NON-LINEARITIES

Here, we describe our protocols for various complex non-linearities
- GeLU and SiLU (Section 5.1), softmax (Section 5.2), and layer
normalization (Section 5.3). Finally, in Section 5.4, we discuss a few
transformers-specific optimizations that allow us to compute these
non-linearities over smaller tensors or smaller bitwidths in certain
scenarios. Computing these non-linear functions requires efficient
computation of various unary functions - GeLU, SiLU, exponential,
inverse, and reciprocal square root. Pika’s approach to compute any
arbitrary elementary function is to just look up the correct output
from a table [77]. However, for an 𝑛-bit input, it requires a lookup
table (LUT) of size 2𝑛 , and computing it securely requires roughly
2𝑛−7 PRG calls. In contrast, Grotto [69] uses custom splines and
DPFs to realize a subset of functions required in transformers (see
Section 7 for a thorough comparison).

In Sigma, we devise function-dependent strategies to signifi-
cantly reduce the size of LUTs used, while ensuring that our proto-
cols provide good numerical approximations and hence, preserve
the accuracy of transformers when run securely using our proto-
cols. For 𝑓 = 12 used by all our benchmarks, our protocols use
LUTs of size 28 for GeLU and exponential, 210 for SiLU, an LUT
of size between 213 and 216 for inverse, and an LUT of size 213
for reciprocal square root, independent of bitwidth 𝑛. Note that
almost all our benchmarks require a bitwidth of around 50 and
our techniques result in significantly smaller LUTs than Pika that
are very efficient to compute securely. Moreover, our recipe for

−4 −2 0 2 4
0

0.1

0.2

𝑥

Figure 4: Plot for 𝛿 (𝑥) =
ReLU(𝑥) − GeLU(𝑥).

GeLU𝑛,𝑓 (𝑥) :
1: 𝑝 = ReLU𝑛 (𝑥)
2: 𝑐 = Clip𝑛,𝐴,𝐵 (𝑥)
3: 𝑎 = Abs𝑛 (𝑐)
4: 𝑡 = TR𝑛,𝑓 −6 (𝑎) mod 256
5: return 𝑝 − LUT8,𝑛,𝑻 (𝑡)

Figure 5: Our approximation for

GeLU𝑛,𝑓 (𝑥).

approximating reciprocal square root is general and applicable to
any elementary function.

For each of the non-linearities, we describe our secure protocol
as a sequence of calls to protocols described in Section 4 and se-
curity trivially holds in the simulation paradigm using sequential
composition [19, 51]. While for ease of exposition, we describe our
ideas for 𝑓 = 12 that is used by all our transformer benchmarks,
they can easily be generalized to higher precision values by using
appropriately larger LUTs.

5.1 GeLU

For a real number 𝑥 , GeLU(𝑥) = 0.5𝑥 (1 + erf (𝑥/
√
2)) where erf is

the error function [37]. Prior works, e.g., Crypten [45], Grotto [69],
provide protocols for GeLU in the same threat model as ours. How-
ever, these are an order of magnitude less performant than Sigma
(Section 7.1).

Ourmain insight is thatGeLU(𝑥) is same asReLU(𝑥) := max(𝑥, 0)
almost everywhere except in a small interval around 0. Let 𝛿 (𝑥) =
ReLU(𝑥) − GeLU(𝑥) (plot shown in Figure 4). Given that ReLU(𝑥)
can be efficiently realized using a call to DReLU and select, it suf-
fices to efficiently compute 𝛿 (𝑥) for 𝑥 near 0. Finally, we output
GeLU(𝑥) as ReLU(𝑥) −𝛿 (𝑥). We calculate 𝛿 (𝑥) using an LUT. How-
ever, for efficiency, we need to restrict the input domain of the LUT,
while ensuring that the results are precise enough.

First, we observe that 𝛿 (𝑥) becomes negligible outside the range
(−4, 4) and for precision 𝑓 = 12, 𝛿 (−4) = 𝛿 (4) = 0. Hence, we first
restrict the inputs to (−4, 4) or equivalently [−2𝑓 +2 + 1, 2𝑓 +2 − 1]
using a clip operation. Formally, for 𝑛-bit values and clipping nodes
𝐴, 𝐵, we define Clip𝑛,𝐴,𝐵 (𝑥) as (i) 𝐴 for 𝑥 < 𝐴 (ii) 𝑥 for 𝑥 ∈ [𝐴, 𝐵],
and (iii) 𝐵 for 𝑥 > 𝐵.

Next, we observe that 𝛿 (𝑥) is an even function between (−4, 4).
Hence, it suffices to compute the LUT using the absolute value of
the clipped input, that lies in [0, 2𝑓 +2 − 1] and requires 𝑓 + 2 bits to
represent. We further reduce the size of input domain to LUT by
scaling down to 6-bits of precision, retaining 8-bits of information
that are used as input to the LUT to compute 𝛿 (𝑥).

We provide a formal description of our approximation ofGeLU(𝑥)
in Figure 5. Here, 𝐴 = −2𝑓 +2 + 1 and 𝐵 = 2𝑓 +2 − 1. Also, 𝑻 ∈ U256

𝑁

is the table such that for all 𝑖 ∈ U256, 𝑇 [𝑖] =

⌊
𝛿 ( 𝑖26 ) · 2

𝑓
⌋
. For

𝑓 = 12, our approximation achieves5 an ULP error of 31 which

5We compute error by exhaustive testing on all inputs between (−4, 4) as the error is
0 outside this domain.
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GeLU (CPU) ΠGeLUCPU
𝑛,𝑚,𝑓

(𝑥)

1: 𝑦 ← Π̂TR
𝑚,𝑓 −6 (𝑥 mod 2𝑚)

2: 𝑑 ← Π̂DReLU
𝑚−𝑓 +6 (𝑦)

3: 𝑝 ← Π̂select
𝑚−𝑓 +6 (𝑑,𝑦)

4: 𝑎 ← 2 · 𝑝 − 𝑦
5: 𝑖 ← Π̂DReLU

𝑚−𝑓 +6 (𝑎 − 256) ⊕ 1

6: 𝑐 ← Π̂select
8 (𝑖, 𝑎 − 255 mod 256) + 255

7: return Πselect
𝑛 (𝑑, 𝑥) − ΠLUT

8,𝑛,𝑻 (𝑐)

Figure 6: CPU-optimized protocol for GeLU𝑛,𝑚,𝑓

suffices to maintain PyTorch accuracy for all benchmarks as shown
in Section 7.

Next, we describe how we translate the above cleartext func-
tion to secure protocols. We do a re-ordering of operations in the
above description to achieve secure operations on lower bitwidths,
resulting in lower keysize, online compute, and communication.
Moreover, since the performance bottlenecks are different on CPU
and GPU, we provide two different versions of the GeLU protocol.
Looking ahead, for GPUs, we trade-off lower keysize and commu-
nication with higher compute compared to CPU.

5.1.1 CPU Protocol. We make the following optimizations.

Optimization 1. Since 𝐴 = −𝐵, it holds that Abs𝑛 (Clip𝑛,𝐴,𝐵 (𝑥)) =
Clip𝑛,0,𝐵 (Abs𝑛 (𝑥)). Hence, we switch the steps (2) and (3) in Fig-
ure 5 to 𝑎 = Abs𝑛 (𝑥); 𝑐 = Clip𝑛,0,𝐵 (𝑎). This switch has 2 benefits.
First, the absolute value can be calculated for free given ReLU as
Abs𝑛 (𝑥) = 2 · ReLU𝑛 (𝑥) − 𝑥 . Second, since the input to Clip is
now guaranteed to be a positive number, it can be realized by 1
comparison (with 𝐵) instead of 2 before (one each with 𝐴 and 𝐵).

Optimization 2. Since the lower 𝑓 − 6 bits are going to be discarded
anyways, and do not affect the outcome of comparisons in ReLU or
Clip, it is safe to perform this operation as the very first step. This
reduces the bitwidth of comparisons in ReLU and Clip by 𝑓 − 6.

Optimization 3. This applies when domain knowledge helps in
restricting the inputs of GeLU to a sub-domain of U𝑁 . For instance,
in all transformers, GeLU is always preceded by a linear layer that
invokes a truncation by 𝑓 after a matrix multiplication. Due to
this, the effective input bitwidth of the GeLU input is𝑚 = 𝑛 − 𝑓 .
Combining this with the above, the comparisons can happen over
𝑚 − (𝑓 − 6) bits.

Based on the above optimizations, we present our CPU-optimized
protocol ΠGeLUCPU

𝑛,𝑚,𝑓
for GeLU𝑛,𝑚,𝑓 in Figure 6, where input/output

bitwidths are 𝑛, effective input bitwidth is𝑚, and precision is 𝑓 .

Cost Analysis. ΠGeLUCPU
𝑛,𝑚,𝑓

requires a key size equal to the key size

of 2 ΠDReLU
𝑚−𝑓 +6, 1 Π

LUT
8,𝑛,𝑻 , 1 Π

TR
𝑚,𝑓 −6 and 3 calls to Π

select of bitwidths 𝑛,
𝑚− 𝑓 +6 and 8. Online phase compute consists of a single evaluation
of these and communication of 4(𝑚 − 𝑓 ) + 2𝑛 + 46 bits in 6 rounds.

5.1.2 GPU Protocol. We note that the performance bottlenecks
on CPU and GPU are quite different. CPU implementations are

GeLU (GPU) ΠGeLUGPU
𝑛,𝑚,𝑓

(𝑥)

1: 𝑦 ← Π̂TR
𝑚,𝑓 −6 (𝑥 mod 2𝑚)

2: 𝑑𝑏 ← ΠDReLU
𝑚−𝑓 +6 (𝑦)

3: 𝑖𝑏 ← ΠDReLU
𝑚−𝑓 +6 (𝑦 + 255) ⊕ ΠDReLU

𝑚−𝑓 +6 (𝑦 − 256)
4: (𝑖, 𝑑) = reconstruct(𝑖𝑏 , 𝑑𝑏 )
5: 𝑧 = 𝑦 mod 256
6: 𝑐 ← Π̂

selectlin𝛾
8 (𝑖, 𝑑, 𝑧)

7: return Πselect
𝑛 (𝑑, 𝑥) − ΠLUT

8,𝑛,𝑻 (𝑐)

Figure 7: GPU-optimized protocol for GeLU𝑛,𝑚,𝑓 . The calls to

ΠDReLU
in steps 2-3 can use same key.

bottlenecked by compute (i.e., number of AES calls). However, once
AES calls are accelerated well on GPU, performance bottlenecks
become key transfer from CPU RAM to GPU memory and com-
munication between the two parties. Thus, when creating a secure
version of Figure 5 for the GPU, we focus on reducing key size and
communication while tolerating a higher compute. We later argue
that this trade-off results in lower runtime compared to a naïve
port of the CPU protocol.

Our starting point is the protocol outlined in Figure 6. To al-
low computing on smaller bitwidths, we keep optimizations 2 and
3 intact. Thus, we start by computing 𝑦 = TR𝑚,𝑓 −6 (𝑥 mod 2𝑚).
Crucially, we let go of optimization 1, and combine ReLU and Clip
differently. First, we compute DReLU bit 𝑑 = DReLU(𝑦). We addi-
tionally compute an interval containment bit 𝑖 = 1{−255 ⩽ 𝑦 ⩽
255} = DReLU(𝑦−256) −DReLU(𝑦+255). In doing so, we compute
one more DReLU than the CPU, i.e., a total of 3. However, crucially,
since all the DReLU evaluations are on 𝑦 shifted by a constant, they
can all use the same key. Hence, unlike GeLUCPU, this requires a
single DPF key.

Given 𝑖 and 𝑑 , we compute Abs(Clip(𝑦)) as 255 when 𝑖 = 0, and
when 𝑖 = 1, as −𝑦 when 𝑑 = 0 and 𝑦 when 𝑑 = 1. As an opti-
mization, similar to CPU, before a selection, we first reduce 𝑦 to 8
(relevant) bits and compute Abs(Clip(𝑧)), where 𝑧 = 𝑦 mod 256.
Note that since 𝑖 is computed on 𝑦, it only allows the value of 𝑧 to
propagate when −255 ⩽ 𝑦 ⩽ 255. Since 𝑑 already contains the sign
of 𝑦, the last 8 bits of 𝑦 (captured by 𝑧), suffice to correctly com-
pute Abs(Clip(𝑦)). For this selection based on 𝑖 and 𝑑 , we invoke
Π̂
selectlin𝛾
8 (𝑖, 𝑑, 𝑧) with 𝛾 = {(0, 255), (0, 255), (−1, 0), (1, 0)}. This

gives us 𝑐 = Abs(Clip(𝑧)).
We provide the formal GPU protocol in Figure 7. We also note

that unlike the CPU version, this does not require reconstructing
ReLU(𝑥) over𝑚 − 𝑓 − 6 bits (Step 3 in Figure 6). This is because
we extract the interval containment bit needed for Clip from 𝑥 and
not from Abs(𝑥). This allows us to save on communication as well
as one round, resulting in efficient GPU implementation.

Cost Analysis. ΠGeLUGPU
𝑛,𝑚,𝑓

requires a key size equal to the key size of

1 DPF𝑚−𝑓 +5 key (for the 3 calls to Π̂DReLU
𝑚−𝑓 +6), 1 Π

LUT
8,𝑛,𝑻 call, 1 Π̂TR

𝑚,𝑓 −6
call and 2 calls to Πselect for bitwidths 8 and 𝑛. The online phase
communicates 2(𝑚 − 𝑓 ) + 2𝑛 + 34 bits in 4 rounds.
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Compared to CPU protocol for 𝑛 = 64,𝑚 = 52, 𝑓 = 12, the
GPU protocol has 1.8× smaller keysize, 1.3× less communication,
and 1.5× larger number of half-PRG calls. Empirically, on a mi-
crobenchmark of 1 million GeLUs, our protocol takes about 70ms,
of which 34ms is key transfer, 16ms is compute (of which about 88%
is DReLU) and 20ms is communication. This is about 1.4× faster
than a naïve port of the CPU protocol.

Our CPU and GPU protocols for SiLU are similar and outlined
in Appendix E. Our techniques can be extended to support other
activations as well, and some of these are described in Appendix F.

5.2 Softmax

For a vector 𝒙 ∈ R𝑘 and 𝑥max = max(𝑥0, 𝑥1, . . . , 𝑥𝑘−1), softmax on
𝒙 returns a vector 𝒚 ∈ R𝑘 such that:

𝑦 [𝑖] = 𝑒𝑥 [𝑖 ]−𝑥max∑𝑘−1
𝑗=0 𝑒

𝑥 [ 𝑗 ]−𝑥max

5.2.1 Overview. We need protocols for max, exponentiation of
negative values and inverse. 𝑥max can be computed using 𝑘 − 1
invocations of our protocols for comparison of 2 elements (Sec-
tion 4.3) and select in 2

⌈
log2 (𝑘)

⌉
rounds. Now, we can subtract

𝑥max from every element 𝑥 [𝑖] to obtain 𝑥 [𝑖] − 𝑥max and invoke the
exponentiation protocol on this value to obtain 𝑧 [𝑖]. We can then
compute 𝑧 =

∑𝑘−1
𝑗=0 𝑧 [𝑖], invoke our protocol for inverse on 𝑧 to ob-

tain 𝑧−1, and compute 𝑦 [𝑖] = 𝑧−1 · 𝑧 [𝑖] followed by truncation. We
use ΠGapARS

𝑛,𝑓
for the final truncation as 𝑦 [𝑖] ∈ [0, 1] with precision

2𝑓 (due to being a probability distribution) resulting in the required
gap.

Below, we describe novel and efficient protocols for exponential
and inverse that we built using domain knowledge of softmax.

5.2.2 Negative Exponential. Define nExp(𝑥) = 𝑒−𝑥 for 𝑥 ∈ R+.
We observe that nExp is a monotonically decreasing function and
for 𝑓 = 12, 𝑥 ⩾ 16, fixed-point representation of nExp(𝑥), i.e.,⌊
𝑒−𝑥 · 212

⌋
= 0. Hence, we first clip the inputs to the interval

[0, 16) ⊂ R+ followed by using an LUT to compute nExp for this
interval. When 𝑥 ∈ [0, 16), we need 16-bits to represent fixed-
point values with precision 𝑓 = 12. Now, directly using lookup for
exponentiation would require an expensive LUT of size 216.

Next, we use the technique from Seedot [32] for nExp (also used
in [63]) that allows reducing one 16-bit LUT to two 8-bit LUTs.
Let 𝑐 = 𝑐1 | |𝑐0 be the 16-bit clipped value with 𝑓 = 12, where 𝑐1
is upper 8-bits and 𝑐0 is lower 8-bits. These can be calculated as
𝑐1 = TR16,8 (𝑐) and 𝑐0 = 𝑐 mod 256. Seedot showed that⌊

nExp
( 𝑐
212

)
· 2𝑓

⌋
≈ ARS𝑛,𝑓 (𝑻1 [𝑐1] · 𝑻0 [𝑐0])

where 𝑻1, 𝑻0 are 8-bit LUTs with 𝑛-bit values such that 𝑇1 [𝑖] =
⌊nExp(𝑖/24) · 2𝑓 ⌋ and 𝑇0 [𝑖] = ⌊nExp(𝑖/212) · 2𝑓 ⌋ for all 𝑖 ∈ U28 .
Here, ΠGapARS

𝑛,𝑓
suffices to perform ARS𝑛,𝑓 as its input is always

less than 22𝑓 , leading to a gap. Compared to using 16-bit LUT, the
above approach reduces online compute by 100× (1022 half-PRG
calls to 10 half-PRG calls including TR and ARS).

We provide a formal description of our protocol ΠnExp
𝑛,𝑚,𝑓

in Fig-
ure 8. Here, similar to GeLU, we introduce an additional parameter

Negative Exponential Π
nExp
𝑛,𝑚,𝑓

(𝑥)

1: 𝑑 ← Π̂DReLU
𝑚 ((𝑥 − 216) mod 2𝑚) ⊕ 1

2: 𝑐 ← Π̂select
16 (𝑑, 𝑥 − (216 − 1) mod 216) + (216 − 1)

3: 𝑐1 ← Π̂TR
16,8 (𝑐); 𝑐0 ← 𝑐 mod 256

4: 𝑡1 ← Π̂LUT
8,𝑛,𝑻1

(𝑐1); 𝑡0 ← Π̂LUT
8,𝑛,𝑻0

(𝑐0)
5: 𝑡 ← Π̂Mul

𝑛 (𝑡0, 𝑡1)
6: return Π

GapARS
𝑛,𝑓

(𝑡)

Figure 8: Protocol for nExp𝑛,𝑚,𝑓

𝑚 that captures effective bitwidth and helps reduce cost when pos-
sible from domain knowledge.

5.2.3 Inverse. We calculate inverse using an LUT of carefully cho-
sen size. It is easy to see that for a softmax of size 𝑘 , the input to
inverse 𝑧 ∈ [1, 𝑘]. That is, it has a non-zero integer part which is
also upper bounded. Hence, without losing any information, we re-
duce the bitwidth of input from 𝑛 to 𝑝 = 𝑓 +

⌈
log2 (𝑘 + 1)

⌉
retaining

precision 𝑓 . Next, we create an approximate input with lower preci-
sion by chopping off few lower bits6. In our specific case, we reduce
precision to 6, creating an input with bitwdth 𝑞 = 6 +

⌈
log2 (𝑘 + 1)

⌉
.

Finally, we use a 𝑞-bit LUT to read the output of inverse. The pro-
tocol for inverse ΠInv

𝑛,𝑓
returns ΠLUT

𝑞,𝑛,𝑻

(
Π̂TR
𝑝,𝑓 −6 (𝑥 mod 2𝑝 )

)
, where

𝑻 ∈ U2𝑞
𝑁

is a table such that 𝑇 [𝑖] =
⌊
2𝑓 +6/𝑖

⌋
for all 𝑖 ∈ U2𝑞 .

5.3 Layer Normalization

Equation 1, Section 3.1 provides the mathematical expression for
layer normalization. We note that all sub-expressions in the equa-
tion can be implemented using our existing protocols barring recip-
rocal square root. Below we provide an overview of our protocol for
reciprocal square root and defer the details of the overall protocol
and an additional optimization to Appendix G. The same techniques
yield a protocol for RMS Norm (Equation 2, Section 3.1) as well.

5.3.1 Reciprocal Square Root. While we aim to approximate the re-
ciprocal square root using an LUT, securely computing an𝑛-bit LUT
for a large 𝑛 (e.g., 50) is not efficient. So far, we have exploited two
main ideas to reduce the size of LUTs significantly. Either, the func-
tion is non-zero only in a small domain (e.g., GeLU(𝑥) − ReLU(𝑥),
nExp(𝑥)) or we use domain knowledge to restrict the input domain
(e.g., inverse in softmax). However, both these ideas are inapplicable
here. Although reciprocal square root is a monotonically decreasing
function, it only approximates to 0 for very large values. Moreover,
we do not have any useful lower or upper bound on the input.
Hence, our idea is to shift to a representation that allows repre-
senting a large dynamic range with a small number of bits. This is
exactly what floating-point representations allow. We use domain
knowledge to design a custom 13-bit floating-point representation
to encode the input and use it to index an LUT. We provide a formal
description in Appendix G.2.

6While doing this in general can lose all information from the input and result in
garbage result for inverse, it is still safe to do in our setting because the initial input
has a meaningful lower bound.
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5.4 Global Optimizations

5.4.1 Effective Bitwidth. In transformers, GeLU/SiLU is always
preceded by a linear layer which invokes a truncation after matrix
multiplication. This means, for 𝑛 bit inputs to the linear layer, the
output of truncation by 𝑓 lies in range [−2𝑛−𝑓 −1, 2𝑛−𝑓 −1). Hence,
the effective bitwidth of the input to GeLU is only𝑚 = 𝑛 − 𝑓 . This
lets us perform comparisons on a smaller bitwidth𝑚 instead of 𝑛.

Similarly, softmax is also preceded by a linear layer. As the first
step of softmax is to find the max element, all the comparisons in
max calculation can happen over an effective bitwidth of𝑚 = 𝑛− 𝑓 .
Then, the max element is subtracted from all the elements in the
input vector before being passed to the protocol for nExp. As both
input vector elements and max element have effective bitwidth of
𝑛 − 𝑓 , the input to nExp has effective bitwidth of𝑚 = 𝑛 − 𝑓 + 1.

5.4.2 Attention Mask. In transformer models, for input with se-
quence length 𝑘 , the input to softmax is always a batch of 𝑘 vectors
of size 𝑘 . In many GPT models, including those that we evaluate on,
the upper triangular elements of the softmax input are masked, i.e.,
their nExp is set to 0 in the softmax computations. Hence, we can
avoid calling the max and nExp protocols for the masked elements
and reduce their number of calls to half.

6 IMPLEMENTATION

We have implemented two versions of Sigma, one which is opti-
mized for CPUs and the other for GPUs.

6.0.1 GPU. The GPU code has around 9K lines of C++ and CUDA
code. For the GPU version, our starting point is Orca [41], which
is currently the state-of-the-art in GPU-accelerated FSS. Similar
to [41, 82], we use CUTLASS [1] to implement linear layers. We
borrow Orca’s ideas on AES acceleration, memory layout and
payload packing to build an efficient GPU-accelerated DPF ker-
nel. Securely realizing LUT𝑛,ℓ,𝑻 (Section 4.1) requires computing
Eval•𝑛 (𝑏, 𝑘•𝑏 , 𝑥), ∀𝑥 ∈ U𝑁 [77]. For this, we follow the depth-first
approach of [47], while using Orca’s AES kernel.

Building on our optimized kernels for DPFs and LUTs, we provide
efficient GPU implementations of our protocols for GeLU, SiLU,
Softmax, LayerNorm and RMSNorm. We carefully use templating
as in Orca [41] and Piranha [82] to ensure that compute happens on
lower bitwidths wherever possible. In GeLU, for example, we use
the fact that selectlin (Step 6 in Figure 7) runs on 𝑧 ∈ U256 to run
the protocol with the uint8_t data-type on the GPU. This helps us
reduce key size, which, in turn, reduces the time to transfer keys
from CPU to GPU memory.

Once the compute has been accelerated, key transfer and com-
munication dominate most of the runtime. For example, communi-
cation and key transfer consume 35% and 44% of the total runtime.
To lower communication, we observe that our protocols operate
on non-powers-of-2 bitwidths. Hence, there is often a gap between
the size of a ring element and the corresponding C++ data-type
e.g., uint64_t. In some cases, this gap can be quite large, e.g., se-
cure inference for BERT-large communicates ring elements with
bitwidths 50 in linear layers, 44 in GeLU, and 39 in Softmax. There-
fore, we pack elements before transmitting them over the network

Table 1: Number of scalar activations (GeLU in BERT and

GPT, SiLU in Llama2), 128-length Softmax, scalar reciprocal

square roots, blocks, attention heads ℎ and embedding length

𝑑𝑚𝑜𝑑𝑒𝑙 for transformers.

Model # Activation # Softmax # Rsqrt # blocks ℎ 𝑑𝑚𝑜𝑑𝑒𝑙

BERT-tiny 131072 512 512 2 2 128
BERT-base 4718592 18432 3072 12 12 768
BERT-large 12582912 49152 6144 24 16 1024
GPT-2 4718592 18432 3072 12 12 768
GPT-Neo 25165824 49152 6144 24 16 2048
Llama2-7B 45088768 131072 8192 32 32 4096
Llama2-13B 70778880 204800 10240 40 40 5120

to achieve significant communication savings over a naïve imple-
mentation that transmits standard data-types7. For example, we
reduce communication by 35% for BERT-large.

We provide kernels for packing and unpacking elements of ar-
bitrary bitwidths on the GPU as a part of Sigma. For packing, we
make each GPU thread responsible for writing a segment of 8 bytes
of data. It uses the size of the ring elements it needs to communicate
to fetch the elements that belong to its segment. It also performs
any shifts necessary to accommodate ‘partial’ elements in its seg-
ment (e.g. to pack only the first 8 bits of an element). This allows
us to ensure that the packing is tight.

Since packing and unpacking require additional computation, we
are implicitly trading lower communication for more computation.
We find that GPUs can effectively handle this additional computa-
tion due to their high degree of parallelism. However, the cost of
packing and unpacking values on CPUs overshadows the benefit of
lower communication. Therefore, we do not use this optimization
in our CPU implementation.

6.0.2 CPU. The CPU code is written with 7500 lines of C++ and
uses OMP for multithreading, Eigen [33] for matrix multiplications,
and cryptoTools [66] for PRG implementations that use native
x86 AES instructions.

6.0.3 SyTorch Frontend. We also develop SyTorch, a C++-based
frontend, for specifying the architecture of machine learning mod-
els to be used for secure inference. It allows users to express models
in a PyTorch-like high-level description and run them with vari-
ous backends, e.g., fixed-point cleartext or Sigma’s protocols for
CPUs/GPUs. We provide a sample SyTorch code snippet in Fig-
ure 13 (Appendix H). Given a SyTorch model and an input, the
outputs from all backends are bitwise equivalent.

The SyTorch program is compiled to a control flow graph (CFG),
which is automatically transformed, e.g., relevant truncations are
inserted and effective bitwidths are set (Section 5.4). The final opti-
mized graph is then interpreted. For each operation occurring in
the graph, the corresponding protocol is executed.
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Table 2: Sigma has lower computation, communication, and

key size than Grotto [69].

AES or half-PRG Comm. (Bytes) Key Size (KB)

Grotto Sigma Grotto Sigma Grotto Sigma
GeLU (CPU) 753 78 320 58 1.97 1.43
SiLU (CPU) 1087 90 320 58 1.97 1.46
Inverse 1092 254 320 36 1.97 0.17
Rsqrt 4215 1840 320 106 1.97 1.93

7 EVALUATION

We provide empirical results to justify the following claims. Sigma’s
protocols for complex non-linearities are up to 12× more efficient
than (FSS-based) Grotto [69] (Table 2) and up to 38× more effi-
cient than CrypTen [45] (Table 3). For end-to-end evaluation of
transformers, CrypTen [45] is our primary baseline.

CrypTen is the state-of-the-art that supports the operations
present in transformers, works in the 2PCwith preprocessingmodel,
and provides GPU-accelerated implementations. Note that SIGMA
provides standard 2PC security whereas Crypten is insecure due to
local truncations. Even so, Sigma is 11.5−19.4× faster than CrypTen
and requires 8.4 − 11.6× lower communication for small models
(Table 4). On larger models (such as Llama2-7B), CrypTen runs
out of GPU memory. In contrast, Sigma scales efficiently with the
number of model parameters, running inference on Llama2-7B and
Llama2-13B in 27 and 44 seconds respectively.

We observe that Sigma running on CPUs is already faster than
CrypTen running on GPUs. Furthermore, Sigma on GPUs is up
to an order of magnitude faster than Sigma running on CPU (Fig-
ure 9). Finally, we show that Sigma’s improvements over CrypTen
extend to the WAN setting as well (Appendix I), with Sigma beating
CrypTen by 9 − 13×.

Another potential baseline to compare against is MPCFormer
[49]; we explain why such a comparison is unfair to Sigma in
Appendix J.

7.0.1 Models and datasets. We evaluate BERT-tiny, BERT-base,
and BERT-large models [75] on the SST2, QNLI, and MRPC classi-
fication tasks from GLUE benchmark [80]. These models have 4.4
million, 110 million, and 330 million parameters respectively. The
prior work of Iron [36] also considers these models and datasets.
We evaluate GPT-2 with 124 million parameters from Hugging-
Face (downloaded 24 million times within the last month) on the
challenging Lambada dataset [58], which has next-word-prediction
tasks. For billion parameter models, we evaluate GPT-Neo-1.3B,
LLaMa2-7B and LLaMa2-13B from HuggingFace [3–5], also on
Lambada. These models use GeLU, SiLU and Softmax in abundance
(Table 1). We also report the number of reciprocal square roots
arising because of layer normalizations. Prior works have observed
that these non-linearities are the performance bottlenecks in secure
inference of transformers [36, 49]. Following Iron [36], we evaluate
all models on inputs of sequence length 128. We evaluate other
sequence lengths in Appendix K. We set the precision 𝑓 = 12, and

7While Orca packs 1 or 2-bit values, we support packing for all non-powers-of-2
bitwidths in Sigma, providing benefit in all our protocols. While reporting improve-
ments, we use the baseline that packs 1 or 2-bit values but uses standard data-types
for rest.

the bitwidths to be large enough so that Sigma’s accuracy matches
that of 32-bit floating-point PyTorch (Appendix L). In particular,
for BERT-tiny a bitwidth of 37 suffices, whereas the other models
require larger bitwidths (between 48 and 51).

7.0.2 Hardware. We evaluate on two machines connected via LAN
with 9.4 Gbps bandwidth and 0.05 ms ping time. Each machine has
1 TB RAM, an A6000 GPU with 46GB GPU memory, and an AMD
Epyc 7742 processor. Sigma running on CPUs uses 4 threads.

7.1 Non-linearities

We show our performance improvements for GeLU, SiLU, Softmax,
and layer normalization over the baselines.

7.1.1 Comparison with Grotto. Grotto [69] is a recent work that
provides FSS-based protocols forGeLU, SiLU, inverse (that arises in
Softmax), and reciprocal square root (that arises in layer normaliza-
tion). Table 2 shows that, for each of these functions, Sigma beats
Grotto in all aspects: computation, communication, and key size.
Since the source code of Grotto is unavailable, we cannot evaluate
it on our setup. However, the communication and the key size are
independent of the setup. The compute cost of FSS-based protocols
like Grotto and Sigma is heavily dominated by PRG calls, and we
use these as a proxy for the computation overheads.

7.1.2 Comparison with Orca. Orca [41] is the state-of-the-art in
GPU-accelerated FSS and it proposes the recipe of using 2PC floating-
point protocols [62] for complex non-linearities like Softmax. The
communication overheads of this approach are severe – requiring
7 GB (for BERT-tiny) to 1.1 TB (for GPT-Neo) of communication for
evaluating GeLU and Softmax. In contrast, Sigma’s communication
is between 20 MB and 4 GB (Table 4) for these models.

7.1.3 Comparison with CrypTen. We compare Sigma (both CPU
and GPU implementations) and CrypTen by measuring their la-
tency and communication in evaluating activations (GeLU/SiLU),
Softmax and LayerNorm (Table 3). For GeLU and Softmax, Sigma’s
communication is an order of magnitude lower than CrypTen. Due
to this, Sigma’s protocols running on CPUs outperform CrypTen
on GPUs on all transformers. For LayerNorm, CrypTen’s communi-
cation is low because of its use of local truncation. However, our
protocol for reciprocal square root is more efficient and our run-
times for LayerNorm on CPUs are 2.6 − 20× better. Furthermore,
with GPU acceleration, Sigma outperforms CrypTen by at least 10×
for all three non-linearities on all transformers. Finally, the lower
communication of Sigma running on GPUs (vs. CPUs) is due to
communication packing (Section 6).

7.2 Transformers

We evaluate Sigma on end-to-end transformer inference to show
that it beats CrypTen in latency and communication. We also show
that GPU acceleration is helpful for Sigma, and that Sigma scales
well to larger models. Preprocessing costs are not included for
both CrypTen and Sigma. CrypTen does not report preprocessing
cost, and we describe Sigma’s preprocessing cost in Appendix M.
From Tables 4 and 8, we see that Sigma’s total time, which includes
preprocessing, is 1.3 − 5× lower than just CrypTen’s online time.
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Table 3: Sigma outperforms CrypTen (GPU) on Activation (GeLU in BERT and GPT, SiLU in LLAMA), Softmax and Norm

(LayerNorm in BERT and GPT, RMSNorm in Llama2). CT denotes CrypTen, and S-CPU and S-GPU stand for Sigma running on

CPU and GPU respectively. "-" denotes GPU memory overflow.

Model

Activation (GeLU / SiLU) Softmax Norm (LayerNorm / RMSNorm)

Time (s) Communication (GB) Time (s) Communication (GB) Time (s) Communication (GB)

CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU
BERT-tiny 0.27 0.06 0.007 0.10 0.01 0.003 0.71 0.09 0.02 0.09 0.01 0.005 0.60 0.03 0.03 0.003 0.004 0.002
BERT-base 4.59 3.76 0.25 3.45 0.25 0.16 7.53 4.42 0.44 3.27 0.37 0.26 4.31 0.67 0.25 0.11 0.15 0.11
BERT-large 11.50 9.84 0.66 9.19 0.66 0.42 17.35 11.94 1.13 8.72 1.00 0.69 8.75 1.78 0.55 0.29 0.40 0.30
GPT-2 4.47 3.76 0.25 3.45 0.25 0.16 6.89 2.76 0.27 3.27 0.19 0.13 3.94 0.69 0.25 0.11 0.15 0.11
GPT-Neo 20.35 20.35 1.33 18.38 1.69 0.86 16.33 7.55 0.66 8.72 0.50 0.36 8.91 3.39 0.80 0.57 0.80 0.60
Llama2-7B - 51.19 5.09 - 2.50 1.47 - 22.97 1.45 - 1.37 0.90 - 4.81 1.59 - 1.60 1.52
Llama2-13B - 78.03 8.04 - 3.84 2.31 - 38.85 2.29 - 2.10 1.40 - 7.19 2.72 - 2.44 2.37

Table 4: Sigma vs CrypTen on end-to-end inference. "-" de-

notes GPU memory overflow.

Model

Time (s) Communication (GB)

CrypTen Sigma Speedup CrypTen Sigma
BERT-tiny 1.71 0.09 19.4× 0.20 0.02
BERT-base 21.55 1.84 11.7× 8.34 0.99
BERT-large 54.53 4.73 11.5× 23.36 2.63
GPT-2 20.45 1.61 12.7× 8.34 0.82
GPT-Neo 108.30 7.43 14.6× 46.89 4.02
Llama2-7B - 27.01 - - 12.35
Llama2-13B - 44.13 - - 19.33

0

5

10

15

20

BER
T-tin

y

BER
T-ba

se

BER
T-la

rge GPT
2

GPT
-Ne

o

Llam
a2-7

B

Llam
a2-1

3B

CrypTen-GPU SIGMA-CPU SIGMA-GPU

Sp
ee

du
p

(n
or

m
al

iz
ed

 to
 S

IG
M

A-
CP

U)

1

Figure 9: SigmaGPU and CrypTen speedups over Sigma CPU.

7.2.1 Comparison with CrypTen. Table 4 shows the performance
of various transformer models with CrypTen and Sigma, both run-
ning on GPUs. There are two factors here: 1) Sigma uses secure
but more expensive (in compute and communication) truncations
than CrypTen’s local truncations, and 2) Sigma’s protocols for non-
linearities have massive improvements over CrypTen (Section 7.1.3).
Overall, for end-to-end inference, Sigma outperforms CrypTen by
11.5 − 19.4× in latency and 8.4 − 11.6× in communication.

7.2.2 GPU acceleration. Figure 9 shows the speedups of CrypTen
and Sigma running on GPUs over Sigma running on CPUs. For
end-to-end transformer inference, Sigma running on CPUs is al-
ways faster than CrypTen running on GPUs. Sigma’s protocols
for GPUs are an order of magnitude faster compared to their CPU
counterparts for all models except BERT-tiny, which is too small to
leverage GPUs effectively.

7.2.3 Scaling to larger models. Sigma scales efficiently to large
models. Figure 10 shows the runtime of Sigma as the number
of model parameters increases. We use GPT-Neo, Llama2-7B and
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Figure 10: Sigma scaling to larger models. CrypTen runs out

of memory for 7B and 13B models.

Llama2-13B as our 1.3, 7 and 13 billion parameter models respec-
tively. We create a GPT-like 2.7 billion parameter model by increas-
ing the number of blocks and attention heads in GPT-Neo to 20
and 32. We see that Sigma running on GPUs performs inference on
the 13 billion parameter LLaMa2 model in 44 seconds. In contrast,
CrypTen overflows GPU memory on the 7 billion and 13 billion
parameter models and crashes with an out-of-memory exception.

8 RELATEDWORK

Secure inference (with MPC or with other techniques like TEEs [74]
or FHE [30]) has a vast literature and we don’t attempt to survey it.
Here, we focus on works related to transformers, GPU acceleration
of MPC, and FSS.

After the success of large models like GPT3/GPT3.5 with 175
billion parameters, there are ongoing efforts to reduce the cost
and latency of inference by using smaller models [8, 71, 72]. For
example, phi-1 outperforms GPT-3.5 models while using only 1.3
billion parameters [34]. Another approach to reduce the latency of
secure inference involves replacing complex non-linearities that are
expensive in MPC with simple non-linearities. The simple approxi-
mations significantly impact accuracy but, at least for BERT class
models, this accuracy loss can be recovered by further retraining
of the simplified models [53]. THE-X [22], MPCformer [49] and
Privformer [9] use simple non-linearities. In contrast, Iron [36],
CrypTen [45], and Sigma use precise approximations of complex
non-linearities and there is no accuracy loss. Recent pipelining
optimizations have improved the performance of CrypTen by up to
13% [81] and such optimizations can benefit Sigma as well.
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There are several works that focus on accelerating secure in-
ference with GPUs, but to support CNNs and not transformers.
CryptGPU accelerates 3-party secure inference with GPUs [70].
Piranha is a general framework that supports various number of
parties [82]. Delphi performs a network architecture search to nav-
igate performance-accuracy tradeoffs. GForce uses custom training
approaches to improve inference efficiency [57]. Beyond inference,
Visor [60] focuses on video analytics and general protocols like
Yao’s garbled circuits have also been accelerated with GPUs [39].

Several recent works consider 2PC in the preprocessing model
based on FSS techniques. [16] initiated this study and showed how
to construct 2PC protocols for any computation comprising of
gates for which FSS constructions exist for the corresponding offset
gate. [13] provides various FSS protocols for functions occurring in
fixed-point arithmetic, while [35, 68, 77, 83] provides specialized FSS
protocols for ML operations. [68] and [41] accelerate FSS protocols
on GPUs while [7] and [69] consider FSS protocols for various
elementary functions such as sigmoid, GeLU, and so on.

9 CONCLUSION

We build Sigma, the first system for FSS-based secure inference of
transformers. To this end, we build novel protocols for GeLU, SiLU,
Softmax, and layer normalization. The same techniques generalize
to construct efficient protocols for other activations such as sigmoid,
CELU, etc. Sigma satisfies standard 2PC security, matches PyTorch
accuracy, and is an order of magnitude faster than the baselines.
Similar to all prior works on secure inference of transformers, Sigma
focuses on semi-honest security and we leave security against ma-
licious adversaries [21, 23, 28, 29, 43, 48] for future work.
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A REALWORLD CONSIDERATIONS

A.0.1 Generality. This work focuses on transformers as it is the
most important AI workload today. However, our work also gener-
alizes to other networks that may use activations such as Softmax,
GeLU, etc. These functions are known to be expensive under vari-
ous secure computation settings. For example, [41] reports that in
the secure training of some CNNs, Softmax accounts for 92% of the
training runtime. Sigma’s fast, accuracy-preserving approximations
of these functions can ameliorate such performance bottlenecks.

A.0.2 Practicality. Secure inference is much more expensive than
plaintext inference. For example, cleartext inference with LLAMA-
7B using PyTorch takes 0.37 seconds, while Sigma takes 27 seconds,
a gap of 73×. This gap is prevalent across networks. For CNNs,
PyTorch takes 2.4ms for cleartext VGG16 inference on ImageNet,
while Orca [41], the current state-of-the-art in the secure inference
of CNNs, takes 0.5s (a gap of more than 200×). We believe that
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there are several use-cases where such an overhead is acceptable
to provide strong privacy guarantees.

A.0.3 Preventing Model Extraction. Model extraction attacks try
to infer model weights given access to model inputs and the cor-
responding outputs. In secure inference, the client has access to
inputs and outputs in the clear and can potentially try to mount a
model extraction attack. Circumventing such attacks is orthogonal
to the entire line of work on secure inference that only deals with
computing functions without trusting anyone with cleartext inputs.
How the outputs of the function are used (even if adversarially)
is an independent line of investigation. It is to be noted that such
model extraction attacks are known only for very simple networks
[20].

B FSS CORRECTNESS AND SECURITY

Definition 2 (FSS: Correctness and Security [14, 15]). Let G = {𝑔}
be a function family, 𝑃G = {𝑔} be the set of descriptions of functions
in G, and Leak be a function specifying the allowable leakage about
𝑔. When Leak is omitted, it is understood to output onlyGin andGout.
We say that (Gen, Eval) as in Definition 1 is an FSS scheme for G
(with respect to leakage Leak) if it satisfies the following.

• Correctness: For all 𝑔 ∈ 𝑃G describing 𝑔 : Gin → Gout, and every
𝑥 ∈ Gin, if (𝑘0, 𝑘1) ← Gen(1𝜆, 𝑔) then
Pr [Eval(0, 𝑘0, 𝑥) + Eval(1, 𝑘1, 𝑥) = 𝑔(𝑥)] = 1.
• Security: For each 𝑏 ∈ {0, 1} there is a PPT algorithm Sim𝑏 (sim-
ulator), such that for every sequence (𝑔𝜆)𝜆∈N of polynomial-size
function descriptions from G and polynomial-size input sequence
𝑥𝜆 for 𝑔𝜆 , the outputs of the following Real and Ideal experiments
are computationally indistinguishable:
– Real𝜆 : (𝑘0, 𝑘1) ← Gen(1𝜆, 𝑔𝜆); Output 𝑘𝑏 .
– Ideal𝜆 : Output Sim𝑏 (1𝜆, Leak(𝑔𝜆)).

C PROOF OF LEMMA 2

To calculate 1{𝑥 < rin}, consider four cases:
(1) Case 1:MSB𝑛 (𝑥) = 1 andMSB𝑛 (rin) = 0.

Since 𝑥 ≥ 2𝑛−1 > rin, 1{𝑥 < rin} = 0 follows trivially.
(2) Case 2:MSB𝑛 (𝑥) = 0 andMSB𝑛 (rin) = 1.

Since 𝑥 < 2𝑛−1 ≤ rin, 1{𝑥 < rin} = 1 follows trivially.
(3) Case 3:MSB𝑛 (𝑥) = MSB𝑛 (rin) = 0.

As 𝑥 < 2𝑛−1 and rin < 2𝑛−1, 𝑥 + rin < 2𝑛 =⇒ 𝑥 = 𝑥 + rin
mod 2𝑛 = 𝑥 + rin ≥ rin =⇒ 1{𝑥 < rin} = 0.

(4) Case 3:MSB𝑛 (𝑥) = MSB𝑛 (rin) = 1.
As 𝑥 < 2𝑛−1 and 2𝑛−1 ≤ rin < 2𝑛 , 𝑥 + rin ∈ [2𝑛−1, 2𝑛 +2𝑛−1).
But as 𝑥 ≥ 2𝑛−1, 𝑥 + rin < 2𝑛 . Hence, 𝑥 = 𝑥 + rin mod 2𝑛 =

𝑥 + rin ≥ rin =⇒ 1{𝑥 < rin} = 0.
Hence, 1{𝑥 < rin} = 1{MSB𝑛 (𝑥) = 0 andMSB𝑛 (rin) = 1} = MSB𝑛 (rin)·
(1 −MSB𝑛 (𝑥)).

D SECURITY PROOFS

Let Sim<
𝑛 be the simulator for the FSS-scheme of comparison func-

tion from Theorem 2. As we useGen•𝑛 from [15] directly in this FSS-
scheme, Definition 2 implies that the security of the FSS-scheme for
comparison trivially follows from the security of DPF construction
of [15].

D.1 DReLU

For 𝑏 ∈ {0, 1}, let SimDReLU
𝑏

be the simulator for the protocol
ΠDReLU
𝑛 . It is given the input 𝑥 ∈ U𝑁 and output 𝑢𝑏 ∈ {0, 1}.

It simulates the view of party 𝑏, by simulating the message 𝑟𝑏 | |𝑘•𝑏
from dealer by following these steps:

(1) Set 𝑦 = 𝑥 mod 2𝑛−1
(2) Invoke Sim<

𝑛 to simulate the DPF key𝑘•
𝑏,sim

(3) Set 𝑡𝑏,sim ← Eval<𝑛−1 (𝑏, 𝑘
•
𝑏,sim, 2

𝑛−1 − 𝑦 − 1)
(4) Set 𝑟𝑏,sim = 𝑏 ·MSB𝑛 (𝑥) ⊕ 𝑢𝑏 ⊕ 𝑡𝑏,sim.
(5) Output 𝑟𝑏,sim | |𝑘•𝑏,sim.

D.2 LRS with Gap

For 𝑏 ∈ {0, 1}, let SimGapLRS
𝑏

be the simulator for the protocol
Π
GapLRS
𝑛,𝑓

. It is given the input 𝑥 ∈ U𝑁 and output 𝑦𝑏 ∈ U𝑁 . It simu-

lates the view of party𝑏, by simulating themessage𝑘•
𝑏
| |𝑟 (𝑤 )

𝑏
| |𝑚𝑏 | |𝑟𝑏

from dealer and �̂�1−𝑏 from the other party, by following these steps:

(1) Sample 𝑟 (𝑤 )
𝑏,sim, �̂�1−𝑏,sim

$← {0, 1}.
(2) Invoke Sim<

𝑓
to simulate DPF keys 𝑘•

𝑏,sim

(3) Set �̂�𝑏,sim = Eval<
𝑓
(𝑏, 𝑘•

𝑏,sim, 𝑥 mod 2𝑓 ) ⊕ 𝑟 (𝑤 )
𝑏,sim

(4) Set �̂�sim = �̂�𝑏,sim ⊕ �̂�1−𝑏,sim, 𝑧sim = extend1,𝑛 (�̂�sim)
(5) Set 𝑢𝑏,sim = 𝑏𝑧sim + 𝑟 (𝑤 )𝑏,sim − 2𝑧sim𝑟

(𝑤 )
𝑏,sim

(6) Sample𝑚𝑏,sim
$← U𝑁 .

(7) Set 𝑡𝑏,sim =𝑚𝑏,sim · extend1,𝑛 (1 −MSB𝑛 (𝑥))
(8) Set 𝑟𝑏,sim = 𝑦𝑏 − 𝑏 · LRS𝑛,𝑓 (𝑥) − 𝑡𝑏,sim + 𝑢𝑏,sim
(9) Output 𝑘•

𝑏,sim | |𝑟
(𝑤 )
𝑏,sim | |𝑚𝑏,sim | |𝑟𝑏,sim and �̂�1−𝑏,sim.

E SILU

For a real number 𝑥 , SiLU(𝑥) = 𝑥 . 𝜎 (𝑥) = 𝑥
1+𝑒−𝑥 , where 𝜎 (𝑥)

is the Sigmoid function. Like GeLU, SiLU is the same as ReLU
almost everywhere except in a small interval around 0. We define
𝛿 (𝑥) = ReLU(𝑥)−SiLU(𝑥) and compute SiLU(𝑥) asReLU(𝑥)−𝛿 (𝑥).
𝛿 (𝑥) is even (as it was for GeLU), and, for precision 𝑓 = 12, is zero
outside the interval (−16, 16).

Our approximation of SiLU follows from our approximation of
GeLU, with a few small differences. The clipping interval (𝐴, 𝐵) is
now [−2𝑓 +4 + 1, 2𝑓 +4 − 1]. As a result, the LUT for 𝛿 (𝑥) is larger,
and has 210 = 1024 entries instead of 28 = 256 entries as it did
for GeLU. Correspondingly, our CPU and GPU protocols for SiLU
are also similar to those for GeLU, while accounting for the above
differences.

F OTHER ACTIVATIONS

Our approach to constructing efficient yet sufficiently precise ap-
proximations of GeLU and SiLU can be extended to other activa-
tions as well. Consider the Continuously Differentiable Exponential
Linear Unit, orCELU, defined asCELU(𝑥) =𝑚𝑎𝑥 (0, 𝑥)+𝑚𝑖𝑛(0, 𝑒𝑥−
1)[69]. To approximateCELU, we define a piecewise-linear function
𝑓 (𝑥) as

𝑓 (𝑥) =
{
−1 𝑥 ⩽ 0
𝑥 𝑥 > 0
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𝑓 (𝑥) is similar to ReLU and can be realized with our protocols
for DReLU and a slightly modified version of selectlin𝑛,𝛾 , where 𝛾
is now a pair of 2-vectors {(𝛼0, 𝛽0), (𝛼1, 𝛽1)}, that takes as input
a selection bit 𝑠 and a payload 𝑥 and outputs 𝛼𝑠𝑥 + 𝛽𝑠 . Setting
(𝛼0, 𝛽0) = (0,−1), (𝛼1, 𝛽1) = (1, 0) and using DReLU(𝑥) as the
selection bit with 𝑥 as the payload allows us to realize 𝑓 . We define
𝛿 (𝑥) = CELU(𝑥) − 𝑓 (𝑥), which is 0 when 𝑥 > 0 and 𝑒𝑥 when 𝑥 ⩽ 0.
CELU(𝑥) is naturally computed as 𝑓 (𝑥)+𝛿 (𝑥). For precision 𝑓 = 12,
𝛿 (𝑥) disappears outside (−16, 0), and can thus be realized with an
LUT (of size 1024) after appropriate clipping of the input. The above
protocol can be adapted to compute an approximation of the more
general Scaled Exponential Linear Unit, or SELU[44] as well.

We can also design an approximation of the pervasive Sigmoid
activation, defined as 𝜎 (𝑥) = 1

1+𝑒−𝑥 . We start by setting 𝛿 (𝑥) =
1

1+𝑒 |𝑥 | and realizing that

𝜎 (𝑥) =
{
𝛿 (𝑥) 𝑥 ⩽ 0
1 − 𝛿 (𝑥) 𝑥 > 0

𝛿 (𝑥) disappears outside (−16, 16) for precision 𝑓 = 12 and can be
realized with an LUT (of size 1024, since it is even). We can then use
themodified selectlin defined abovewith (𝛼0, 𝛽0) = (1, 0), (𝛼1, 𝛽1) =
(−1, 1), withDReLU(𝑥) as the selection bit and 𝛿 (𝑥) as the payload,
to get 𝜎 (𝑥).

G LAYER NORMALIZATION

The functionality of layer normalization, as defined in Section 5.3,
calls reciprocal square root with variance of the input vector as an
input. Our protocol for reciprocal square root (Appendix G.2) makes
use of the protocol for interval lookup (Appendix G.1). Finally, we
provide the overall optimized protocol for layer normalization in
Appendix G.3.

G.1 Interval Lookup

Let𝒑, 𝒒 ∈ U𝑘
𝑁
be arrays defining𝑘 disjoint intervals [𝑝 [𝑖], 𝑞[𝑖]]∀𝑖 ∈

[𝑘], constrained with 𝑝 [𝑖 + 1] = 𝑞 [𝑖]∀𝑖 ∈ [𝑘 − 1], 𝑝 [0] = 0 and
𝑞 [𝑘 − 1] = 2𝑛 − 1. Let 𝒗 ∈ U𝑘

𝐿
be a payload array. We define the

functionality IntervalLookup𝑛,U𝐿,𝒑,𝒒,𝒗 : U𝑁 → U𝐿 which returns
𝑣 [𝑖] when 𝑥 ∈ [𝑝 [𝑖], 𝑞[𝑖]] for some 𝑖 ∈ [𝑘]. Since this functionality
is equivalent to a 0-degree spline, we use the protocol for splines
from Grotto [69] to implement this. Even though the protocol in-
vokes DPF evaluation 𝑘 times, they significantly reduce the number
of half PRG calls compared to 𝑛𝑘 using the memoization technique,
which caches the intermediate seeds in DPF tree to be reused in
subsequent evaluations. We omit details and directly summarize
the costs of the protocol:

Theorem 7. Let ℓ =
⌈
log2 ( |G|)

⌉
and 𝒑, 𝒒 ∈ U𝑘

𝑁
, 𝒗 ∈ G𝑘 be arrays

of size 𝑘 . There exists a protocol ΠIntervalLookup
𝑛,G,𝒑,𝒒,𝒗

which securely re-

alizes IntervalLookup𝑛,G,𝒑,𝒒,𝒗 such that keysize(ΠIntervalLookup
𝑛,G,𝒑,𝒒,𝒗

) =
keysize(DPF𝑛,1) + 3ℓ . In the online phase, the protocol requires 𝑘
memoized evaluations of DPF𝑛,1 and communication of 4ℓ bits in 1
round.

G.2 Reciprocal Square Root

For bitwidth 𝑛, input precision 𝑓 in and output precision 𝑓 out, we
define the function RecSqrt𝑛,𝑓 in,𝑓 out to be the approximation of the
reciprocal square root of a fixed-point number 𝑥 ∈ U𝑁 with scale
𝑓 in. It returns a fixed-point number 𝑦 ∈ U𝑁 with scale 𝑓 out, i.e.,

uint𝑛 (𝑦) ≈
√︃
2𝑓 in/𝑥 · 2𝑓 out .

As discussed in Section 5.3.1, since the inputs of reciprocal square
root occurring in layer normalization are unconstrained, to get a
small LUT, we first convert the input to a custom floating point
representation. This allows us to represent a large dynamic range
using only a small number of bits. A similar protocol for converting
fixed-point numbers to IEEE 32-bit floating-point numbers was
provided by Orca [41].

A floating-point representation has a sign bit, exponent bits,
and mantissa bits. Taking inspiration from the bfloat16 datatype
which is being extensively used in ML, we also use a 7-bit mantissa.
As we are only interested in non-zero positive 𝑛-bit integers with
𝑛 ≤ 64, a 6-bit exponent suffices and we don’t need a sign bit. This
13-bit index is used to look-up the fixed-point output.

Let 𝑥 ∈ U𝑁 be the input to RecSqrt. We convert the integer rep-
resentation of 𝑥 to float-like representation and input precision 𝑓 in
would be handled in the LUT later. Let𝑚 ∈ U128, 𝑒 ∈ U64 represent
the mantissa and exponent of the floating point representation of
𝑥 . So, it must hold that:

uint𝑛 (𝑥) ≈ 2uint6 (𝑒 ) · (1 + uint7 (𝑚)
128

) (4)

From here on, we suppress uint(·) whenever it is clear from
context. Let 𝑘 ∈ U64 be a number such that 2𝑘−1 ≤ 𝑥 < 2𝑘 . As
1 ≤ (1 +𝑚/128) < 2, it holds that 2𝑒 ≤ 2𝑒 · (1 +𝑚/128) < 2𝑒+1 and
hence, we can set 𝑒 = 𝑘 − 1. To calculate𝑚, we plug 𝑒 = 𝑘 − 1 in
Equation 4:

𝑥 ≈ 2𝑘−1 · (1 + 𝑚

128
)

=⇒ 𝑚 ≈ 𝑥 · 128
2𝑘−1

− 128 = 𝑥 · 2𝑛−𝑘
2𝑛−8

− 128

Let 𝑢 = 2𝑛−𝑘 ∈ U𝑁 . As 𝑥 < 2𝑘 , 𝑥 · 2𝑛−𝑘 < 2𝑛 and can be encoded
in 𝑛 bits. So, we can approximate𝑚 as:

𝑚 ≈ TR𝑛,𝑛−8 (𝑥 · 𝑢) − 128 mod 128
= TR𝑛,𝑛−8 (𝑥 · 𝑢) mod 128 (5)

To securely calculate 𝑒 = 𝑘 − 1 and 𝑢 = 2𝑛−𝑘 , we can use the
protocol for interval lookup (Appendix G.1). LetG = U213×U2𝑛 . Let
𝒑, 𝒒 ∈ U𝑛

𝑁
, 𝒗 ∈ G𝑛 be arrays s.t. 𝑝 [0] = 0,𝑞 [0] = 1, 𝑣 [0] = (0, 2𝑛−1),

and ∀𝑖 ∈ [1, 𝑛 − 1]:
𝑝 [𝑖] = 𝑞 [𝑖 − 1] + 1, 𝑞[𝑖] = 2𝑖+1 − 1, 𝑣 [𝑖] = (𝑖, 2𝑛−𝑖−1)

Then, it trivially holds that:

(extend6,13 (𝑒), 𝑢) = IntervalLookup𝑛,G,𝒑,𝒒,𝒗 (𝑥)

Finally, we can calculate𝑚 using Equation 5 and concatenate 𝑒 to
get the required floating point representation as:

𝑝 =𝑚 | |𝑒 = extend7,13 (𝑚) · 26 + extend6,13 (𝑒)
Note that local extension suffices in case of 𝑚, as the result is
being multiplied by 26, due to which wrap error vanishes. Now, we
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Reciprocal Square Root Π
RecSqrt
𝑛,𝑓 in,𝑓 out

(𝑥)

1: (𝑒𝑏 , 𝑢𝑏 ) ← Π
IntervalLookup
𝑛,G,𝒑,𝒒,𝒗

(𝑥)
2: 𝑢 = reconstruct(𝑢𝑏 )
3: 𝑡 ← Π̂Mul

𝑛 (𝑥,𝑢)
4: �̂�𝑏 ← ΠTR

𝑛,𝑛−8 (𝑡) mod 128
5: 𝑝𝑏 ← extend7,13 (�̂�𝑏 ) · 26 + 𝑒𝑏
6: 𝑝 = reconstruct(𝑝𝑏 )
7: return ΠLUT

13,𝑛,𝑻 (𝑝)

Figure 11: Protocol for RecSqrt𝑛,𝑓 in,𝑓 out

construct the required 13-bit look-up table. Let 𝑻 ∈ U213
𝑁

be a table
such that for all 𝑖 ∈ U213 , 𝑖 =𝑚 | |𝑒 where𝑚 ∈ U128 and 𝑒 ∈ U64, we
have:

𝑞 = 2𝑒 · (1 + 𝑚

128
),𝑇 [𝑖] =

⌊√︃
2𝑓 in/𝑞 · 2𝑓

out
⌋

mod 𝑁

Based on the above discussion and using the table 𝑻 , we describe
the protocol ΠRecSqrt

𝑛,𝑓 in,𝑓 out
in Figure 11.

G.3 Overall Protocol for Layer Normalization

G.3.1 Naïve Protocol. A protocol for layer normalization for fixed-
point numbers can be implemented as follows. We first locally
add the elements of the vector 𝒙 , locally multiply the result with⌊
2𝑓 /𝑘

⌋
and truncate to get𝑚. Then, we locally subtract𝑚 from

each element in 𝒙 to get 𝒛. We then use a beaver-like protocol to
compute the sum of squares of the elements in 𝒛 and call it 𝑠 . Note
that 𝑠 has precision 2𝑓 . Hence, we truncate by 𝑓 . Next, we locally
multiply the result with

⌊
2𝑓 /𝑘

⌋
and again truncate by 𝑓 to get

the variance 𝑣 . We then use the protocol ΠRecSqrt
𝑛,𝑓 ,𝑓

(Section 5.3.1) to
calculate the fixed-point number corresponding to the reciprocal
square root of 𝑣 , which we securely multiply with each element
of 𝒛 followed by truncation. Finally, we multiply the result with 𝛾 ,
truncate and locally add 𝛽 .

G.3.2 Optimization. As 𝑠 is truncated and divided by 𝑘 before
eventually being passed to Π

RecSqrt
𝑛,𝑓 ,𝑓

, we can avoid the truncation

and division by 𝑘 in the protocol by setting 𝑓 in = 2𝑓 + log2 (𝑘)
while invoking the reciprocal square root protocol. Note that even
though fixed-point precision is an integer, here we can use real
valued precision as the protocol RecSqrt𝑛,𝑓 in,𝑓 out doesn’t impose
any restriction on the input precision 𝑓 in and it is only handled
while computing the entries of the LUT.

Based on the above discussion, we provide the protocolΠLayerNorm
𝑛,𝑘,𝑓

for layer normalization in Figure 12. To avoid invoking reciprocal
square root on 0 we add 1 to 𝑠 in line 6. Here, we note that as the
elements of 𝒑 have an absolute value less than

√
𝑘 (with precision

2𝑓 ), leading to a gap, we can useΠGapARS
𝑛,𝑓

to perform this truncation
cheaply. Similarly, as the model weight 𝛾 is a number with small
magnitude and multiplication with elements of 𝒒 (bounded by

√
𝑘

Layer Normalization Π
LayerNorm
𝑛,𝑘,𝑓

(�̂�, 𝛾, 𝛽)

1: 𝑦 =

⌊
2𝑓 /𝑘

⌋
·∑𝑘−1

𝑖=0 𝑥 [𝑖]
2: �̂� ← Π̂ARS

𝑛,𝑓
(𝑦)

3: �̂� = �̂� − �̂�
4: 𝑠𝑏 =

∑𝑘−1
𝑖=0 ΠMul

𝑛 (𝑧 [𝑖], 𝑧 [𝑖])
5: 𝑠 = reconstruct(𝑠𝑏 )
6: 𝑡 ← Π̂

RecSqrt
𝑛,2𝑓 +log2 (𝑘 ),𝑓

(𝑠 + 1)
7: �̂� ← Π̂Mul

𝑛 (�̂�, 𝑡)
8: �̂�← Π̂

GapARS
𝑛,𝑓

(�̂�)
9: �̂� ← Π̂Mul

𝑛 (�̂�, 𝛾)
10: 𝒗𝑏 ← Π

GapARS
𝑛,𝑓

(�̂�) + 𝑏 · 𝛽
11: return 𝒗𝑏

Figure 12: Protocol for LayerNorm𝑛,𝑘,𝑓

in precision 𝑓 ) results in elements with a gap, ΠGapARS
𝑛,𝑓

can be used
to truncate vector 𝒖 as well.

H SAMPLE SYTORCH CODE

TransformerBlock(u64 n_heads , u64 n_embd)

{

attn = new MultiHeadAttention <T>(n_heads ,

n_embd );

ffn = new FFN <T>(n_embd , 4* n_embd );

ln0 = new LayerNorm <T>( n_embd );

ln1 = new LayerNorm <T>( n_embd );

}

Tensor <T> &_forward(Tensor <T> &input)

{

auto &ln0_out = ln0 ->forward(input);

auto &attn_out = attn ->forward(ln0_out );

auto &attn_ip = add(attn_out , input);

auto &ln1_out = ln1 ->forward(attn_ip );

auto &ffn_out = ffn ->forward(ln1_out );

auto &ffn_out_add = add(ffn_out , attn_ip );

return ffn_out_add;

}

Figure 13: SyTorch code for a GPT-2 Transformer block.

I INFERENCE IN THEWAN SETTING

We compare Sigma and CrypTen in the WAN setting in Table 5.
Our WAN has bandwidth 293 Mbits per second and ping latency
60ms. The time for secure inference in a WAN is dominated by the
time required for communication, and we see that Sigma’s FSS-
based protocols with low communication overhead allow it to beat
CrypTen by 9 − 13×.
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Table 6: Secure inference of GPT2 with Sigma and CrypTen

with varying sequence length.

Sequence Time (s) Comm (GB)

length CrypTen Sigma CrypTen Sigma
64 14.22 0.96 3.92 0.37

128 20.45 1.61 8.34 0.82
256 36.68 3.26 21.11 1.98
512 85.75 8.01 63.73 5.29

1024 269.06 23.17 228.97 15.92

Table 5: Sigma vs CrypTen on end-to-end inference in the

WAN setting. "-" denotes GPU memory overflow.

Model

Time (min) Communication (GB)

CrypTen Sigma Speedup CrypTen Sigma
BERT-tiny 1.19 0.13 9.1× 0.20 0.02
BERT-base 9.86 0.97 10.1× 8.34 0.99
BERT-large 22.29 2.14 10.4× 23.36 2.63
GPT-2 9.85 0.93 10.6× 8.34 0.82
GPT-Neo 35.07 2.60 13.5× 46.89 4.02
Llama2-7B - 6.06 - - 12.35
Llama2-13B - 8.78 - - 19.33

J COMPARISONWITH MPCFORMER

MPCFormer [49] replaces cryptographically expensive non-linearities
likeGeLUwith simple quadratic functions and retrains the resulting
(simpler) model. Comparing Sigma’s performance to MPCFormer is
unfair to Sigma, which makes no changes to the underlying plain-
text models or their weights. Moreover, MPCFormer uses CrypTen
as its backend and if we were to write our models as they are using
MPCFormer, it would be the same as writing them in CrypTen.
Hence, using MPCFormer as a baseline would be the same as using
CrypTen.

K SEQUENCE LENGTH

We evaluate Sigma on input token sequences of lengths between
64 and 1024 in Table 6. For reference, the lengths for inputs in
the Lambada dataset are below 180. The speedups of Sigma over
CrypTen don’t varymuchwith sequence length. As sequence length
increases, the number of GeLUs increases linearly but the compute
of softmax increases super-linearly. A sequence length of 𝑘 requires
evaluating 𝑘 softmax operations with inputs of length 𝑘 .

Table 8: For different models, we show the size of FSS keys,

the time taken by the dealer to generate them, the time to

transfer them on the network, and online time of Sigma.

Model

Key size

(GB)

Generation

time (s)

Transfer

time (s)

Online

time (s)

BERT-tiny 0.32 0.06 0.27 0.09
BERT-base 16.69 1.43 14.20 1.84
BERT-large 45.06 3.75 38.35 4.73
GPT2 14.17 1.26 12.06 1.61
GPT-Neo 75.57 6.25 64.32 7.43
Llama2-7B 271.65 21.93 231.19 27.01
Llama2-13B 444.36 35.49 378.18 44.13

L ACCURACY RESULTS

Table 7: For different models and datasets, we show the size

of the training set (BERTmodels need finetuning), the size of

validation set on which accuracy is measured, the accuracy

of PyTorch floating-point, Sigma’s accuracy, and the bitwidth

BW used by Sigma to get this accuracy.

Model Dataset Train Val PyTorch Sigma BW
Size Size Acc Acc

SST2 67k 872 81.19% 81.42% 37
BERT-tiny MRPC 3.7k 408 72.54% 72.79% 37

QNLI 105K 5463 81.64% 81.73% 37
SST2 67k 872 90.59% 90.25% 50

BERT-base MRPC 3.7k 408 84.31% 83.82% 50
QNLI 105K 5463 88.72% 89.03% 50
SST2 67k 872 88.99% 88.99% 50

BERT-large MRPC 3.7k 408 78.67% 78.92% 50
QNLI 105K 5463 92.23% 92.31% 50

GPT2 Lambada - 5153 32.46% 33.28% 50
GPT-Neo Lambada - 5153 57.46% 57.81% 51
Llama2-7B Lambada - 5153 70.17% 70.01% 48
Llama2-

13B

Lambada - 5153 73.14% 72.98% 48

M PREPROCESSING COST

We use a dealer to generate FSS keys and transfer them to the
machines performing secure inference. Since the dealer has been
accelerated with GPUs, the time to generate the keys is small (even
smaller than the secure inference time) and the bulk of the prepro-
cessing time goes in transferring the keys from the dealer machines
(Table 8). Note that CPU key size is roughly 1.25× larger than the
GPU key size for the models in Table 8, due to differences such as
the protocols for GeLU (Section 5.1).
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