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Abstract. We present Phoenixx, a round and leader based Byzantine
fault tolerant consensus protocol, that operates in the partial synchrony
network communications model. Phoenixx combines the three phase ap-
proach from HotStuff, with a novel Endorser Sampling, that selects a
subset of nodes, called endorsers, to “compress” the opinion of the net-
work.

Unlike traditional sampling approaches that select a subset of the net-
work to run consensus on behalf of the network and disseminate the
outcome, Phoenixx still requires participation of the whole network. The
endorsers, however, assume a special role as they confirm that at least
2f + 1 validators are in agreement and issue a compressed certificate,
attesting the network reached a decision. Phoenixx achieves linear com-
munication complexity, while maintaining safety, liveness, and optimistic
responsiveness, without using threshold signatures.
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1 Introduction

Since the introduction of Bitcoin [16], blockchain technology became one of the
most in demand topics of research in information technology and computer sci-
ence. In a blockchain network, each participant, also referred to as a node or a
validator, maintains a ledger and provides a payment service to clients. A con-
sensus protocol is necessary for these validators to agree on the ordering of client
transactions, and ensuring a consistent ledger state is maintained.

Blockchain applications aim to provide the service on a worldwide scale, thus
operating in a decentralized, global and open network, which needs to withstand
the actions of malicious validators, also referred to as Byzantine failures. This has
generated a renewed interest in BFT consensus protocols. The scope, however, is
different from traditional algorithms: blockchain networks require a protocol that
supports scaling to a large number of validators, deployed on a global network.
Due to this network model containing a large number of validators, one of the
main goals for an efficient BFT consensus protocol is to provide linear scalability.
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In this paper, we present Phoenixx, a novel BFT consensus protocol that
builds on top of the cutting edge research behind HotStuff [21] and DiemBFT [1].
To the best of our knowledge, Phoenixx is the first BFT replication protocol that
achieves linear authenticator complexity, and potential quantum security, with-
out the use of threshold signatures. This result is possible due to a novel Endorser
Sampling approach. Phoenixx provides strong probabilistic guarantees of safety,
liveness, and optimistic responsiveness, and constant-sized proofs of block final-
ity. Phoenixx is designed to be flexible, not restricting the kind of cryptography
that can be used, and particularly well-suited for the use of quantum secure hash
based signatures for future proofing.

Our contributions. Succinctly, the main contributions of this work is Phoenixx,
a novel BFT consensus protocol that:

• achieves linear authenticator complexity regardless of the used cryptography
(e.g., hash-based, elliptic curve-based, pairing-based, lattice-based, ... ).

• does not rely on any Distributed Key Generation (DKG) steps, which are
traditionally very expensive in large-scale distributed systems.

• uses a different endorser sampling approach.

• produces constant-sized proofs of finality.

2 Previous Work

Byzantine fault tolerance (BFT) is defined as the ability of a networked system to
operate correctly, even when one or more of its components experiences arbitrary
failures. The problem of reaching consensus in the presence of byzantine failures
was first introduced in the celebrated Byzantine Generals Problem paper by
Lamport et al. [15].

The first solution to the problem, under a synchronous network communica-
tion model, is proposed in [17], which proves that the problem is only solvable if
the size of the system, N is at least 3f + 1, where f is the number of byzantine
components. One of the first applications of BFT consensus algorithms was to
solve the state machine replication (SMR) problem. In this setting, each com-
ponent of the system serves client requests and replicates the same state. A
BFT SMR consensus protocol allows non-faulty components to agree on a de-
terministic ordering of client requests, ensuring that the overall system state is
consistent.

When the network is asynchronous, the proven FLP impossibility [9] shows
that, under the presence of a single byzantine failure, the problem is unsolvable
by a deterministic algorithm.

DLS [8], is one approach developed to sidestep this impossibility, and oper-
ates under the partially synchronous communication model, where the network
maintains synchrony most of the time. The network, however, experiences spo-
radic periods of asynchrony. DLS guarantees safety at all times and liveness only
when the network becomes synchronous. This work pioneered the use of a leader
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based, round by round paradigm, which became the standard for most BFT
consensus protocols developed since. DLS, however, is very inefficient, having
O(n4) expected communication complexity.

PBFT [5], is the first practical solution to this communication complexity
problem and reduces the complexity to O(n2) when an honest leader drives
the protocol, and O(n3) when the leader experiences a fault. As with other
traditional BFT consensus protocols, DLS and PBFT were designed targeting
systems deployed on LANs, with f = 1 or f = 2, i.e. N = 4 or N = 7.

The latest years of research in decentralized networks have produced many
BFT protocols, tailored specifically to blockchain applications, in search of the
desired linear scalability.

SBFT [11] improves on PBFT, by applying threshold signatures, reducing
the complexity to O(n) and O(n2) for the best and worst case, respectively.

Tendermint [13, 14], Casper [4], and GRANDPA [19] borrow the two-phase
approach from PBFT, but include a synchronous core that relies on the worst-
case message propagation time, achieving complexity of O(n2) for all cases.
These protocols can be optimized using threshold signatures, thus achieving the
desired complexity of O(n). However, by depending on an upper bound worst-
case network delay, these protocols fail to provide a classic property of BFT
consensus algorithms: optimistic responsiveness.

Looking to address the outstanding issues with BFT consensus protocols used
in blockchain networks, HotStuff [21] pioneered a novel three phase approach,
using threshold signatures, that achieves both linear complexity O(n) and opti-
mistic responsiveness. HotStuff also created a framework for representing most
BFT consensus protocols, which allows for a clean separation of the mechanisms
needed to achieve safety and liveness.

DiemBFT [1] proposes improvements to HotStuff and simplifies the safety
argument, encapsulating a set of safety rules in a separable system component
called the safety module. Additionally, it provides a better synchronization mech-
anism, which improves liveness, and introduces the concept of a nil block, en-
abling progress even in rounds where the leader is byzantine. HotStuff and Diem
rely on the use of threshold signatures to achieve linear scalability.

3 Problem Statement

State of the art BFT consensus protocols rely on the use of aggregate signa-
tures [3] to achieve linear scalability as these types of signatures allow third
parties to aggregate public keys and signatures without requiring any interac-
tion between individual signers. Traditionally, a Quorum Certificate (QC) ag-
gregates 2f + 1 votes, so its size grows linearly with the number of validators in
the network. However, using signature aggregation schemes, 2f + 1 votes can be
expressed as a single signature, resulting in a constant-sized QC. This approach,
however, is not future proof as these signatures are not quantum secure.

Quantum security. Quantum-secure aggregate signatures are an active area
of research. Most of the existing schemes, however, have significant issues in a
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conversion into threshold signature schemes using generic MPC techniques [7]
We highlight [12] that showcases an approach for constructing a hash-based t-of-
n threshold signature scheme using STARKs [2]. This approach, however, comes
at the cost of significant time to aggregate signatures, which is unpractical for a
real-world distributed system deployment.

Throughout the paper, we use authenticator complexity to measure the scala-
bility of Phoenixx. We borrow the definition from HotStuff [21]: the sum, over all
validators, of the number of authenticators received by each participant to reach
a consensus decision after GST . One of the consequences of using this metric
is that the consensus protocol can, at least theoretically, use multi-signatures or
threshold signatures, since these provide linear costs. We note that, even though
these are different types of signatures, some require overhead during the consen-
sus protocol, as participants must incur in additional communication rounds to
ensure the correct signing of data. Moreover, threshold signature schemes require
a distributed key generation (DKG) process, with strict availability requirements
from participants. In fact, many blockchain consensus protocol proposals require
the network membership to change. Consequently, validators must frequently
(e.g., daily or even per block) perform a completely new DKG setup to obtain a
new network public key.

Existing sampling approaches. The concept of having a group of valida-
tors perform special operations on behalf of a network is not novel, as other
works employ similar ideas. For example, Algorand [10] uses a cryptographic
sortition-based committee selection algorithm to choose a subset of the network
to participate in each step of the consensus algorithm for each round. Validators
not selected by the algorithm do not participate in the protocol, and simply wait
for the consensus decision.

Our solution. Phoenixx requires no threshold signatures, and operates using
a small endorser sample that confirms they witnessed N − f signatures for the
same round proposal. This confirmation signature is called an endorsement, and
a participant considers a round proposal certified once it collects a given num-
ber of endorsements, forming a endorser quorum certificate (EQC). Contrasting
with other sampling approaches, in Phoenixx, the entire network is required
to participate in the protocol, since no honest endorser will produce their en-
dorsement without first receiving a network majority of signatures for the same
proposal.

4 Phoenixx Preliminaries

4.1 Model & Goals

We assume a fixed size network of N = 3f + 1 validators, where f is the number
of faulty validators, and the remaining 2f +1 are honest. Validators have a fixed
ID, or public identity, that is known before the protocol starts. In other words,
the “membership list” of the network is known by all participants.
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To model the network communications we use the partial synchrony model,
which states that there is an unknown Global Stabilization Time (GST ), after
which two honest validators are able to communicate in a bounded time ∆.

We assume a global adversary capable of simultaneously coordinating all the
Byzantine validators in the network and isolate honest validators from the rest
of the network, provided that the BFT assumption is not broken. This adversary
can also view the state of every honest validator at any time and can instantly
modify the state of all Byzantine validators accordingly.

Consensus critical messages are signed by validators, and there are no re-
strictions on the cryptographic primitives used for this signing process, as long
as signatures can be verified using the public identity of the node.

Phoenixx consensus protocol has the following goals:

Goal 1 (Probabilistic Safety). With overwhelming probability, no two honest
validators commit different decisions.

Goal 2 (Probabilistic Liveness). With overwhelming probability, all honest
validators eventually commit a decision.

Goal 3 (Optimistic responsiveness). Under synchrony, an honest leader can
drive a decision as fast as allowed by actual message delays.

Goal 4 (Scalability). Complexity of the protocol should, in the worst case,
increase linearly with respect to the network size. Also, the proof size of a reached
decision should remain constant.

4.2 Phoenixx Overview

The Phoenixx consensus protocol operates in a succession of rounds, identified
by monotonically increasing round numbers. For each round, there is a single
leader and an unique endorser set known by all parties.

During protocol execution, validators create, distribute, execute and vote on
proposals - the core structure of Phoenixx, which encapsulates a parentEQC,
the current round of the protocol, a block (containing a batch of transactions),
and a signature from the author.

Validators maintain a tree of pending proposals, with the root as the latest
committed proposal. Each proposal contains a link to its parent, which allows
computation of a branch by following parent links from a leaf proposal to the
root. When an EQC is gathered for a proposal, it becomes certified. Future
proposals can then reference this EQC as a parent.

A proposal P can be committed when it becomes the head of a “3-chain”
of certified proposals created in consecutive rounds. Once this happens, any
pending proposals part of the branch ending in P are committed in order. For
example, consider proposals P0; P1, with parent P0; and P2 with parent P1.
P0 becomes committed when an EQC is formed for P2, iff round(P0) + 1 =
round(P1) ∧ round(P1) + 1 = round(P2).
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Phoenixx provides a probabilistic guarantee that only one branch ever be-
comes committed. Therefore, there are no forks. This guarantee is achieved by
using a concise set of safety rules, which are always followed by honest valida-
tors.

Rule 1 (Voting). Validators must only vote for one proposal per round, in
strictly increasing rounds.

Rule 2 (Endorsing). Validators that are selected as endorsers for a round
must only endorse the same proposal they voted for, and only after seeing a
network quorum certificate (NQC) of votes for that proposal. Validators must
only endorse one proposal per round, in strictly increasing rounds.

Rule 3 (Locking). Validators keep track of a preferred round and must only
vote for a proposal if the round of its parent is at least the preferred round.
When a validator votes for a proposal, it checks if the round of its grandparent
is higher than the current preferred round. If so, the preferred round is updated
to that value.

4.3 Phases

There is no explicit definition of phases in Phoenixx. Each round, however, can
be split into three logical phases: Propose, Confirm, and Endorse. There is also
a Timeout mechanism for rounds to be abandoned when no progress is made.

Propose. For the leader of each round, the protocol begins with an attempt
to create a new proposal, extending from the highest certified proposal from its
local tree, defined as highProposal. The leader builds a new block of transactions
using highProposal as the parent, and creates a new proposal containing this
block. The proposal carries the certificate for highProposal as the parentEQC.
Then, the leader sends the proposal to every validator in the network.

As a regular validator, each round starts by waiting to receive a proposal
from the leader of the round. This waiting period is limited to a configurable
timeout, defined as proposeT imeout, which is set up at the start of each round.

Confirm. When a validator receives a proposal, it verifies the validity and
integrity of the block, processes the parentEQC, and speculatively executes the
block. Provided no failures occurred, the validator attempts to confirm the
proposal. This is done by creating and signing a vote, if safety rules 1 and 3
allow. If a vote is produced, the validator sends it to every endorser for the
current round.

Endorse. When an endorser receives 2f + 1 votes for the same proposal, it
combines them into an NQC and the proposal becomes confirmed. Upon con-
firmation, there is an attempt to endorse the proposal if safety rule 2 allows.
If an endorsement is produced, the endorser sends it to every validator in the
network. When a validator receives a quorum of endorsements q · |E|, it combines
them3 into an EQC, the proposal becomes certified, and the validator moves

3“Combining” simply represents appending items to a data structure, such as a list.
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to the next round. If the EQC contains information to commit a proposal CP ,
then the branch of proposals ending in CP will be committed.

Timeouts. When waiting for a proposal, if proposeT imeout is triggered, the
validator creates a nil proposal, using its local highProposal as the parent, and
a deterministically generated block that doesn’t contain transactions. The nil
proposal is then used to perform the Confirm phase of the protocol. This timeout
procedure provides faster agreement on rounds where the leader is offline.

At the beginning of each round, validators start a timer with a configured
roundT imeout. If this timeout is triggered, the validator creates and signs a
timeout vote, certifying the intention to skip the round. After timing out, vot-
ing is disallowed for the round. The timeout vote is sent to every endorser, and
when 2f+1 timeouts are collected, the endorser aggregates them into a timeout
certificate TC. Then, the endorser creates and signs an endorseT imeout vote
and sends it to every validator in the network. When a validator receives a quo-
rum of endorser timeouts (1− q), it combines them into an endorser timeout
certificate ETC, and moves to the next round. Validators only advance rounds
by receiving either an EQC or an ETC.

5 Phoenixx Spec

We proceed with a detailed description of Phoenixx, and explicitly divide the
protocol into logical modules.

5.1 Application Interfaces

To ensure that Phoenixx operates safely and correctly, applications wishing to
use the protocol to achieve consensus need to comply with some basic require-
ments. No restrictions are imposed on the structure and contents of a block.
The block, however, must contain the following mandatory information: round
number, parent blockID, proposer ID, timestamp.

We group all the application specific functions into the Application module.
The RoleSelection module provides the selection of leaders and endorsers. Access
to private keys for signing consensus data is encapsulated in a separate Signer
module. The implementation of these modules is independent from Phoenixx,
but function signatures are provided in Algorithm 1 below.

Algorithm 1 - Application Interfaces

1: Module - Application

. Propose a new block chaining on the given parent for the given round
2: function Propose(round, parentID)

. Compute deterministic nil block with given parent and round
3: function ComputeNil(round, parentID)

. Validate a block and speculatively execute its transactions
4: function Validate(block)

. Commit a branch of blocks using provided EQC as proof
5: function Commit(blocks, eqc)

. Drop a list of blocks
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6: function Drop(blocks)

7: Module - Role Selection
. Get the validator’s role for the given round

8: function GetRole(round)

. Get the validator ID that is the leader for the given round
9: function GetLeader(round)

. Get list of validator IDs that are endorsers for the given round
10: function GetEndorsers(round)

11: Module - Signer

. Sign provided data with a specified type for a given round
12: function Sign(round, type, data)

5.2 Safety Module

Inspired by the work from [1], we define the Safety module, which maintains
the core safety rules of Phoenixx. Function signatures for this module are de-
scribed in Algorithm 2.The Safety module is the only component that can access
the Signer module. This allows validators to compartmentalize their system by
physically separating these two modules from the rest.

Algorithm 2 - Safety Module

1: Module - Safety

. Certify a proposal, if proposing rule allows
2: function CertifyProposal(proposal)

. Create a confirm vote for a proposal, if voting and locking rules allow
3: function AttemptVote(proposal)

. Create an endorsement for a confirmed proposal, if endorsing rule allows
4: function AttemptEndorsement(proposal, networkQC)

. Certify a timeout or endorseTimeout for a given round
5: function CertifyTimeout(round, endorser)

5.3 Phoenixx Algorithm

The main Phoenixx module combines all other modules to execute the protocol,
as described in Algorithm 3.

Algorithm 3 - Phoenixx

. Vote collection
1: function CollectVote(v, quorum)

// V is a map that collect votes with a matching hash value
2: V [hash(v)]←− V [hash(v)] ∪ v
3: if |V [hash(v)]| = quorum then

// Get the list of vote authors and respective signatures from V
4: return QC{v.block, v.type, v.commit, V [hash(v)].authors, V [hash(v)].signatures}
5: round←− 1
6: main loop:

// Setup timeouts (reset timers)
7: proposalT imeout.Reset
8: roundTimeout.Reset

// Round selections
9: role←− RoleSelection.GetRole(round)
10: leader ←− RoleSelection.GetLeader(round)
11: endorsers←− RoleSelection.GetEndorsers(round)

// Leader proposes new block, extending highest known EQC
12: if role.IsLeader then
13: block ←− Application.Propose(round, highEQC.blockID)
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14: proposal←− Proposal{highEQC, block}
15: sig ←− Safety.CertifyProposal(proposal)
16: if sig 6= nil then
17: proposal.sig ←− sig
18: broadcast proposal

// All validators wait for round proposal, with specific timeout
19: wait for proposal p where (p.round = round) ∧ (p.author = leader)

// Vote for nil proposal if timeout expires
20: if proposalTimeout.Expired then
21: parentID ←− highEQC.blockID
22: nilBlock ←− Application.ComputeNil(round, parentID)
23: nilProposal←− Proposal{highEQC, nilBlock}
24: vote←− Safety.AttemptVote(nilProposal)
25: if vote 6= nil then
26: send vote to endorsers

// Proposal received in time, attempt to vote for it
27: if received p then
28: proposalT imeout.Stop
29: if Application.Validate(p.block) then
30: vote←− Safety.AttemptVote(p)
31: if vote 6= nil then
32: send vote to endorsers

// Endorsers collect votes until a network QC or TC is formed
33: if role.IsEndorser then
34: wait for votes v where (v.type = confirm) ∧ (v.round = round)
35: networkQC ←−CollectVote(v, 2f + 1)
36: if networkQC 6= nil then
37: endorse←− Safety.AttemptEndorsement(p, networkQC)
38: if endorse 6= nil then
39: broadcast endorse
40: wait for votes v where (v.type = timeout) ∧ (v.round = round)
41: networkTC ←−CollectVote(v, 2f + 1)
42: if networkTC 6= nil then
43: endorseT imeout←− Safety.CertifyTimeout(round, true)
44: if endorseT imeout 6= nil then
45: broadcast endorseT imeout

// All validators collect votes until an EQC or ETC is formed
46: wait for votes v where (v.type = endorse) ∧ (v.round = round)
47: eqc←−CollectVote(v, q)
48: if eqc 6= nil then
49: highEQC ←− eqc
50: if eqc.commit 6= nil then
51: Application.Commit(blocks through eqc.commitID, eqc)
52: Application.Drop(blocks from competing branches)
53: round←− round + 1
54: wait for votes v where (v.type = endorseT imeout) ∧ (v.round = round)
55: etc←−CollectVote(v, (1− q))
56: if etc 6= nil then
57: round←− round + 1

// At any time, if round timeout is triggered, send timeout and reset
58: if roundTimeout.Expired then
59: timeout←− Safety.CertifyTimeout(round, false)
60: send timeout to endorsers
61: roundTimeout.Reset

6 Analysis

We now explore a scenario where safety is broken due to endorser sampling,
depicted in Figure 1, where EQCs are formed for rounds k and k+1, committing
proposal k−1. Then, 2f+1 validators vote for proposal k+2 and become locked
on round k. The endorser set of round k+ 2 creates an EQC for proposal k+ 2,
which commits proposal k. Now, we assume that the leader of round k + 3 is
Byzantine, and intentionally creates a proposal that uses k − 1 as its parent.
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Proposal k + 3 can never be confirmed, because 2f + 1 validators are locked
in round k, and parent(k + 3) = k − 1 < k. However, if enough Byzantine
validators are selected as endorsers for round k + 3, they can form a quorum
without any votes from honest endorsers. Furthermore, they can disregard the
endorsing safety rule completely, and create an EQC for proposal k+3, without
requiring any votes from honest validators during the confirm phase. Then, the
leader of k + 4 creates a proposal using k + 3 as a parent, and 2f + 1 validators
vote for it, as the locking rule is now met since parent(k+ 4) = k+ 3 > k. Then,
EQCs are formed for round k+ 4 and k+ 5, causing proposal k+ 3 to commit,
creating a fork and breaking safety.

Fig. 1: Safety violation with fully Byzantine endorser quorum

To analyze the impact of endorser sampling in the Phoenixx protocol, we
calculate the probability that a given endorser sample contains a specific number
of Byzantine validators. The number of Byzantine validators selected on each
endorser set can be upper bounded by a binomial distribution. This is noted
as the function B, and depends only on the assumed percentage of Byzantine
validators in the network (fixed to 1/3) and the size of the endorser sample |E|.
The distribution of Byzantine validators in a endorser set is given by Byz ∼
B(|E|, 1/3).

Probabilistic Safety. From the analysis above, we know that safety is broken
if an endorser set contains at least a quorum of Byzantine validators. Therefore,
the probability of breaking safety is given by Pf = P (Byz ≥ q · |E|)

We can make this probability negligible by selecting appropriate values of
|E| and q. Therefore, Phoenixx is probabilistically safe as, with overwhelming
probability, only a single growing branch of blocks becomes committed. Further-
more, Phoenixx maintains safety at all times, even during periods of network
asynchrony, such as GST .

Probabilistic Liveness. In Phoenixx, rounds can be abandoned when no
progress is observed. When roundTimeout triggers, validators send timeout votes
to the endorsers and reset the timer. This means that validators keep sending
timeout votes for a round until they can make progress by receiving either an
EQC or an ETC. Since the endorser set is responsible for endorsing timeouts,
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progress might not be possible if there are not enough honest endorsers. This is a
“dual” scenario to the one of breaking safety, since liveness is lost if an endorser
set does not contain a timeout quorum of honest endorsers. By selecting the
endorser set quorum for an ETC as (1−q), we ensure both scenarios are equally
unlikely. We note that a proposal cannot extend an ETC, and therefore, safety
is not violated if both an EQC and an ETC are formed during the same round.

The probability of loss of liveness is given by Pl = P (Honest < (1 − q) ·
|E|) ⇐⇒ P (Byz ≥ q · |E| + 1). This probability is at most equal to the one of
breaking safety, so in practice, liveness never breaks, since breaking safety is the
worst case, and happens first.

Optimistic responsiveness. Phoenixx has no explicit step where an intro-
duced waiting period depends on an estimated network delay. Therefore, Phoenixx
has optimistic responsiveness. Due to endorser sampling, however, an honest
leader alone might not be able to drive a round to a decision. This can hap-
pen if the endorser set does not contain enough honest validators to form a
quorum and certify the proposal. Byzantine endorsers can refuse to endorse a
confirmed proposal, causing the round to be abandoned by a timeout. In this
case, optimistic responsiveness is not achieved, and the probability is given by
Presp = P (Honest < q · |E|) ⇐⇒ P (Byz ≥ (1− q) · |E|+ 1).

Game theory remarks. A side effect of relying on the endorser set to create
timeout certificates is that Byzantine endorsers might be able to create an ETC
without needing any honest endorsers, and without receiving any timeout votes
from honest validators. By creating a “fake” ETC, Byzantine endorsers can force
a round to be skipped, even if progress could be possible. Since the dual quorum
of (1 − q) is used for ETCs, the probability of this scenario occurring is not
negligible, and is given by: P (Byz ≥ (1− q) · |E|) An interesting takeaway if we
assume the Byzantine endorsers always attempt to cause maximum disruption,
is that the situation that disrupts optimistic responsiveness is a subset of the
one where a “fake” ETC can be created. This means that Byzantine endorsers
can only stand to gain by exploring the second situation if: Byz = (1− q) · |E|.

In the remaining cases, where Byz ≥ (1 − q) · |E| + 1, Byzantine endorsers
are encouraged to let the round have an actual timeout, since creating a “fake”
ETC would only advance the round faster.

6.1 Scalability

We assume one authenticator is a single cryptographic signature and use Table 1
to show how many signatures each participant in the network receives for each
phase of a round of Phoenixx, depending on their role. We assume, w.l.o.g., that
the leader sends the proposal to itself and is not an endorser.

The sum of authenticators received by all participants is the sum of authen-
ticators received by each validator and each endorser, which is given by:

(N − |E|)× [(q · |E|+ 1) + 0 + |E|] + |E| × [(q · |E|+ 1) + N + |E|]

= N × [(2 + q) · |E|+ 1]N × [(2 + q) · |E|+ 1]N × [(2 + q) · |E|+ 1]
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Role Propose Confirm Endorse

Validator q · |E|+ 1 0 |E|

Endorser q · |E|+ 1 N |E|

Table 1: Authenticator Complexity

The sum depends linearly on the size of the network N . Therefore, Phoenixx
has linear authenticator complexity: O(n).

The proof of finality is defined as the cryptographic proof that a given block
has been committed. In Phoenixx, the EQC provides proof of commitment of
a block, and contains q · |E| signatures from endorsers. When the network size
increases, if the endorser set remains constant, so does the EQC size. This
way, Phoenixx achieves constant-sized proofs of finality, regardless of the type
of cryptography used.

6.2 Parameter Selection

Phoenixx has an upper bound on the value of |E| as if |E| = N , the endorser
sample equals the network size and the protocol becomes quadratic. Below, we
expose two charts that describe the scaling properties of Phoenixx 4. Both graphs
represent a setting with a maximum failure probability of Pf = 10−14 and q = 0.6
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Timeouts. Based on empirical results from currently deployed blockchain net-
works [20], [18], [6], we recommend the following timeout values: roundT imeout =
6s and proposeT imeout = 4s.

4Note: Phoenixx has over one order of magnitude less endorsers than Algorand un-
der the same 80% honest node assumption, while providing stronger safety properties.
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7 Safety proof

Lemma 1. Under the BFT assumption, given two blocks B, B′, which are con-
firmed by two respective network quorum certificates NQC, NQC ′, then:

round(B) = round(B′)⇒ B = B′

This is equivalent to saying there can only be one confirmed block per round.

Proof. By definition, network quorum certificates have at least 2f + 1 votes.
Due to the BFT assumption, any certificate has at most f votes from byzantine
validators, meaning that it has at least f + 1 votes from honest validators.

Let honest(NQC) be the set of honest validators that contributed to a cer-
tificate. We compute the intersection of honest validators in two certificates as:

|honest(NQC) ∩ honest(NQC ′)| ≥ (f + 1) + (f + 1)− (2f + 1) ≥ 1

Consequently, both certificates contain at least one vote from the same honest
validator, h. Since round(B) = round(B′), due to Rule 1, h could only have voted
for one block in this round, which implies that B = B′.

Definition 1 (Sampling Assumption). For each round, the leader and en-
dorser set are selected in a way that can’t be manipulated by byzantine actors.

Lemma 2. Under the sampling and BFT assumptions, given an endorser set E,
the number of byzantine endorsers byz(E) can be upper bounded by the following
binomial distribution:

P (byz(E) = k) =

(
|E|
k

)
(1/3)k(2/3)|E|−k

Proof. Under the sampling assumption, all validators have equal probability of
endorser selection. Therefore, the endorser selection is effectively a random sam-
ple of the network with multiple draws, without replacement, so byz(E) follows
an hypergeometric distribution.

Let us assume the number of validators in the network is much larger than
the size of the endorser set. This means that after each draw, the number of
byzantine validators in the network remains virtually the same. This implies
that byz(E) can be upper bounded by a binomial distribution.

Then, byz(E) follows a probability mass function F(k, n, p), where n is the
size of the endorser sample |E| and p is the probability of a selected validator
being byzantine, which, under the BFT assumption, is upper bounded by 1/3.

Lemma 3. Under the sampling and BFT assumptions, given a block B, which
is certified by an endorser quorum certificate EQC, then, with overwhelming
probability, there exists a network quorum certificate NQC for the same block.
This is equivalent to saying that, with overwhelming probability, a block being
certified implies it was also confirmed in the same round.
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Proof. Let honest(EQC) be the set of honest endorsers that contributed to
an endorser certificate. For a single endorser certificate, we have either of the
possibilities: honest(EQC) ≥ 1 ∨ honest(EQC) = 0

It suffices to prove that the first possibility only occurs if the block is con-
firmed , and that the second possibility occurs with negligible probability. We
start by proving the first possibility.

Proof. Due to Rule 2, any honest endorser that contributed to a certificate
must have voted and then seen a network quorum certificate NQC for the
same block, meaning the block was confirmed. Using Lemma 1, we know that
there is only one confirmed block per round, which implies that EQC and
NQC certify the same block B. �

The second possibility occurs if enough byzantine validators are selected to
be endorsers. We prove that the probability of this happening is negligible.

Proof. Using Lemma 2, we know that byz(E) can be upper bounded by the
probability mass function F(k, |E|, 1/3). Let q be the quorum percentage of
endorsers needed to form a certificate.

We want to know the probability that at least q · |E| byzantine validators
are selected in a given endorser set. This is computed from the binomial CDF:

P (byz(E) ≥ q · |E|) =

|E|∑
k=q·|E|

(
|E|
k

)
(1/3)k(2/3)|E|−k

By selecting appropriate values of q and |E|, the probability that a quorum
of byzantine validators is selected to be endorsers can be made negligible. �

Notation 1. For any block B, let ”←−” denote parent relation, i.e. B.parent←−
B. Let ”

∗←−” denote ancestry, that is, the reflexive transitive closure of the parent
relation.

Definition 2 (Probabilistic Safety). Phoenixx is probabilistically safe if
given two blocks B, B′, such that B is committed at round k and B′ is committed
at round k′ > k, then, with overwhelming probability, B′ extends B (i.e., B ∗←−
B′).

Theorem 1. Phoenixx is probabilistically safe under the sampling and BFT
assumptions.

Proof. Two blocks B0,B′0 are committed if there exist two chains of certified
blocks, proposed in contiguous rounds:

B0 ←− EQC0 ←− B1 ←− EQC1 ←− B2 ←− EQC2

B′0 ←− EQC ′0 ←− B′1 ←− EQC ′1 ←− B′2 ←− EQC ′2
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Without loss of generality, we can assume that round(B′0) ≥ round(B0). We
want to prove that for any two committed blocks B0, B′0, such that round(B′0) ≥
round(B0) then, with overwhelming probability, B0

∗←− B′0.
We have the following two possibilities for the round of block B′0:

round(B0) ≤ round(B′0) ≤ round(B2) ∨ round(B′0) > round(B2)

We start by proving the first possibility.

Proof. In this case, we know that round(B′0) must be one of: round(B0),
round(B1) or round(B2). Then, using Lemma 3, with overwhelming proba-

bility, B′0 must be one of B0, B1 or B2, which implies that B0
∗←− B′0. �

In the second case, let B′i be a block such that round(B′i) > round(B2)
and let B′i−1 be the parent of B′i i.e., round(B′i) > round(B′i−1). Then either
round(B0) ≤ round(B′i−1) ≤ round(B2) and by the previous statement, B′i−1

is one of B0, B1 or B2, which implies B0
∗←− B′i−1 or round(B′i−1) > round(B2).

Then, we need to prove that round(B′i) > round(B2) implies round(B′i−1) ≥
round(B0).

Proof. We know that, due to Rule 2 and Lemma 3, with overwhelming proba-
bility, two endorser quorum certificates are backed by two respective network
quorum certificates.

Using Lemma 1, the intersection of two network QCs contains at least
one honest validator. This way, there exists an honest validator, h, which has
voted for both blocks B2 and B′i.

Due to Rule 3, after h votes for B2, which includes an EQC for B1, it sets
preferred round = round(parent(B1)) ≥ round(B0).

Since round(B′i) > round(B2), due to Rule 3, h could only have voted
for B′i if

round(parent(B′i)) ≥ preferred round ⇐⇒ round(B′i−1) ≥ round(B0)
�

By induction, with overwhelming probability: B0
∗←− B′0

8 Conclusion

Recent exponential growth of interest in blockchain technology caused the resur-
gence of BFT consensus protocols. Protocols such as HotStuff and DiemBFT are
a reference, as they achieve linear scalability and optimistic responsiveness at
the cost of requiring threshold signatures to achieve linear complexity. Phoenixx
breaks free from this paradigm, and takes advantage of a novel Endorser Sam-
pling approach to achieve linear complexity without any type of threshold sig-
natures and the associated complex DKG steps.

Phoenixx ensures safety and liveness under partial synchrony, while main-
taining optimistic responsiveness. Due to Endorser Sampling, these properties
are guaranteed probabilistically, but a correct selection of parameters results in
negligible probability of failure, safeguarding the practical use of the protocol.
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When paired with hash-based signatures, we hope Phoenixx can influence the
next generation of scalable and (quantum) secure blockchain applications.
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A Endorser Sampling analysis

The endorser sampling approach used in Phoenixx is essentially a selection of
a fixed number of validators from the network to perform special functions. We
define the following:

• Number of validators in the network: n
• Sampled set: E , with size |E|
• Assumed fraction of byzantine validators in the network: b
• Random variable counting the number of byzantine validators selected: Byz

We assume that the algorithm used to sample is unmanipulatable. There-
fore, all validators have equal probability of being selected. Thus, the selection
is effectively a random sample of the network with multiple draws, without re-
placement, so Byz follows an hypergeometric distribution:

Byz ∼ HyperGeo(n, b · n, |E|) =

(
b·n
k

)
×
(

(1−b)· n
|E|−k

)(
n
|E|
)

We are interested in calculating the probability of failure, which happens
when a large number, given by k, of byzantine validators are selected. This
probability can be computed using the cumulative distribution function of the
hypergeometric as follows:

P (Byz ≥ k) = 1− P (Byz ≤ k − 1)

= 1− CDFHyperGeo(n, b · n, |E|, k − 1)

= 1−
k−1∑
i=0

(
b·n
i

)
×
(

(1−b)· n
|E|−i

)(
n
|E|
)

To provide better comparison between different sampling approaches, we
need to eliminate the influence of the size of the network, n. Without loss of
generality, we assume that the size of the network is much larger than the size
of the sample (i.e., n� |E|). Using this assumption, we can see that after each
draw, the number of byzantine validators in the network remains virtually the
same. This means that the cumulative hypergeometric degrades to a binomial
distribution, i.e., sampling with replacement, which provides an upper bound for
the probability of failure, given by:

Pfail(Safety) = P (Byz ≥ k) ≈ 1− CDFBinom(|E|, b, k − 1)

≈ 1−
k−1∑
i=0

(
|E|
i

)
bi(1− b)|E|−i

Let us assume the sample is selected from the network with the sole purpose
of running a BFT consensus algorithm, i.e., only the validators that are selected
participate in consensus. For the BFT assumption to stand in the selection, only
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up to 1/3 of selected validators can be byzantine. It is easy to see that if the
assumption of byzantine validators in the whole network is also 1/3, the selected
sample will never be safe:

P

(
Byz ≥ |E|

3

)
≈ 1− CDFBinom

(
|E|, 1/3, |E|

3
− 1

) ∣∣∣∣∣
lim|E|→n

= 0.5

Of course, if |E| = n, the whole network is selected, and the algorithm de-
grades into a traditional BFT consensus where safety is preserved at all times.
This means that, under the BFT assumption of 1/3 byzantine validators, it is
impossible to exclusively use a sample of the network to run consensus. This
provides the motivation for relaxing that assumption in other projects to 20% or
25% byzantine validators, in order to maintain scalability. We take Harmony as
an example, where each validator is assigned voting shares based on their stake
in the protocol. Then, multiple selections of 600 voting shares are performed,
one for each shard, with the assumption that up to 25% of voting shares are
malicious. The probability of failure of a shard in this setup is given by:

Pfail(Safety) = P (Byz ≥ 200)

≈ 1− CDFBinom(600, 1/4, 199)≈ 3× 10−6≈ 3× 10−6≈ 3× 10−6

In order to represent failure probability in a protocol agnostic manner, we
use the Mean Time To Failure (MTTF) metric, which is calculated in years as:

MTTF =
SelectionDuration

3.154× 107 · Pfail(Safety)

where SelectionDuration is the duration of a single selection in seconds.
For Harmony, assuming that fresh selections are run every 24 hours, this

yields a MTTF of:

MTTFHarmony =
24× 3600

3.154× 107 · 3× 10−6
≈ 913 years913 years913 years

When designing Phoenixx, one of the goals was to provide the best resilience
possible to byzantine actors, so we want to keep the traditional BFT assumption
of 1/3 of byzantine validators in the network. From the result above, we know
the whole network needs to participate in consensus. This was the main motiva-
tion behind searching for a novel way of selecting validators to perform special
functions, which led to the use of the endorser sampling approach that Phoenixx
relies on.

The Confirm phase is of paramount importance to the safety of Phoenixx,
because it is a step of the protocol that always depends on the full network. Since
honest endorsers only endorse a proposal after receiving a full network QC of
2f+1, and there is only one proposal per round that can achieve this, there is no
possibility that a network attacker can “trick” honest endorsers into endorsing
another proposal. This allows Phoenixx to withstand the influence of more than
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a 1/3 percentage of byzantine validators in a single endorser set without breaking
safety. We define q as the quorum percentage of endorsers needed to create an
EQC. Safety breaks when the number of byzantine validators selected is q · |E|
or larger. This way, the probability of breaking safety in Phoenixx is given by:

P (Byz ≥ q · |E|) ≈ 1− CDFBinom(|E|, 1/3, q · |E| − 1)

We can give an example of sensible values of q and |E| that achieve an MTTF,
of let’s say, at least one million years, assuming each round of Phoenixx takes 2
seconds and, of course, one sample is selected per round:

2

3.154× 107 · Pfail(Safety)
≥ 106 ⇐⇒ Pfail(Safety) ≤ 6.34× 10−146.34× 10−146.34× 10−14

After iterating different possible solutions, we reach values of q = 60% and
|E| = 200, which allow us to calculate the probability of failure:

Pfail(Safety) = P (Byz ≥ 120)

≈ 1− CDFBinom(200, 1/3, 119)≈ 1.11× 10−14≈ 1.11× 10−14≈ 1.11× 10−14

which results in an MTTF of:

MTTFPhoenixx =
2

3.154× 107 · 1.11× 10−14
≈ 5.7 million years5.7 million years5.7 million years

This example provides evidence that, due to endorser sampling, Phoenixx
can scale better than other BFT based solutions that rely on sampling a subset
of the network, while maintaining the standard BFT assumption of 1/3 byzantine
validators. Continuing with this example, we can compute concrete probabilities
for all the relevant scenarios explored in the analysis section:

Pfail(Liveness) = P (Byz ≥ 121)

≈ 1− CDFBinom(200, 1/3, 120)≈ 3.65× 10−15≈ 3.65× 10−15≈ 3.65× 10−15

Pfail(Responsiveness) = P (Byz ≥ 81)

≈ 1− CDFBinom(200, 1/3, 80) ≈ 0.02≈ 0.02≈ 0.02

Pgame(ETC) = P (Byz = 80)

≈ PDFBinom(200, 1/3, 80)≈ 8.24× 10−3≈ 8.24× 10−3≈ 8.24× 10−3

Finally, we note that using the binomial distribution to upper bound the
calculations above is useful to provide comparisons with other systems and to
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remove the influence of the size of the network from the analysis of endorser
sampling. However, we expect the size of networks using Phoenixx to stay in the
thousands of validators, for example n = 1000. In this case, n is not much larger
than |E| = 200, so it is more accurate to use the cumulative hypergeometric
distribution directly to calculate the above probabilities and MTTF:

Pfail(Safety) = P (Byz ≥ 120)

= 1− CDFHyperGeo(1000, 333, 200, 119) ≈ 2.59× 10−182.59× 10−182.59× 10−18

Pfail(Liveness) = P (Byz ≥ 121)

= 1− CDFHyperGeo(1000, 333, 200, 120)≈ 6.15× 10−19≈ 6.15× 10−19≈ 6.15× 10−19

Pfail(Responsiveness) = P (Byz ≥ 81)

= 1− CDFHyperGeo(1000, 333, 200, 80) ≈ 0.01≈ 0.01≈ 0.01

Pgame(ETC) = P (Byz = 80)

= PDFHyperGeo(1000, 333, 200, 80) ≈ 5.5× 10−3≈ 5.5× 10−3≈ 5.5× 10−3

MTTFPhoenixx =
2

3.154× 107 · 2.59× 10−18
≈ 24.5 billion years≈ 24.5 billion years≈ 24.5 billion years

This means we can adjust the q parameter to provide lower MTTF, but
drastically improve the responsiveness of the system, or reduce the size of the
endorser sample |E|, which improves scalability.
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B Safety Module implementation

Algorithm 4 - Safety Module implementation

. Safety variables
1: lastProposeRnd, lastV oteRnd, lastEndorseRnd, preferredRnd←− 0
2: latestV ote, latestEndorse←− nil

. Helper functions
3: function VerifyVotingRule(round)
4: if round ≤ lastV oteRnd then
5: return false
6: lastV oteRnd←− round
7: return true
8: function VerifyEndorsingRule(networkQC)
9: round←− networkQC.round

10: blockID ←− networkQC.blockID
11: if round ≤ lastEndorseRnd then
12: return false
13: if latestVote = nil then
14: return false
15: if (latestV ote.round 6= round) ∨ (latestV ote.blockID 6= blockID) then
16: return false
17: lastEndorseRnd←− round
18: return true
19: function VerifyLockingRule(eqc)
20: if eqc.round < preferredRnd then
21: return false
22: if eqc.parentRound > preferredRnd then
23: preferredRnd←− eqc.parentRound
24: return true
25: function VerifyProposeRule(round)
26: if round ≤ lastProposeRnd then
27: return false
28: lastProposeRnd←− round
29: return true
30: function VerifyCommitRule(eqc, round)
31: twoRound←− eqc.parentRound
32: oneRound←− eqc.round
33: if (twoRound+ 1 = oneRound) ∧ (oneRound+ 1 = round) then
34: return eqc.parentBlock
35: return nil

. Safety Module functions
36: function CertifyProposal(proposal)

// Check locking rule as it might update preferred round
37: VerifyLockingRule(proposal.parentEQC)

// Certify proposal by signing the blockID if propose rule allows
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38: rnd←− proposal.round
39: signature←− nil
40: if VerifyProposeRule(rnd) then
41: signature←− Signer.Sign(rnd, propose, proposal.blockID)
42: return signature

43: function AttemptVote(proposal)
44: parentEQC ←− proposal.parentEQC
45: round←− proposal.round
46: if (latestV ote 6= nil) ∧ (latestV ote.round = round) then
47: return latestV ote
48: if VerifyLockingRule(parentEQC) = false then
49: return nil
50: if VerifyVotingRule(round) = false then
51: return nil
52: commit←−VerifyCommitRule(parentEQC, round)

// Create, certify and store confirm vote for the proposal
53: vote←− V ote{proposal.block, confirm, commit, validatorID}
54: vote.sig ←− Signer.Sign(round, confirm, vote.data)
55: latestV ote←− vote
56: return vote
57: function AttemptEndorsement(proposal, networkQC)
58: parentEQC ←− proposal.parentEQC
59: round←− proposal.round
60: if (latestEndorse 6= nil) ∧ (latestEndorse.round = round) then
61: return latestEndorse
62: if VerifyEndorsingRule(networkQC) = false then
63: return nil
64: commit←−VerifyCommitRule(parentEQC, round)

// Create, certify and store endorsement for the proposal
65: endorsement←− V ote{proposal.block, endorse, commit, validatorID}
66: endorsement.sig ←− Signer.Sign(round, endorse, vote.data)
67: latestEndorse←− endorsement
68: return endorsement
69: function CertifyTimeout(round, endorser)
70: if round < lastV oteRnd then
71: return nil

// Create and certify timeout vote with correct type for the round
72: type←− endorser ? endorseT imeout : timeout
73: timeout←− V ote{round, type, nil, validatorID}
74: timeout.sig ←− Signer.Sign(round, type, timeout.data)

// Disallow voting for the round
75: if round > lastV oteRnd then
76: lastV oteRnd←− round
77: return timeout


