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ABSTRACT
Recently, the FinTracer algorithm was introduced as a versatile

framework for detecting economic crime typologies in a privacy-

preserving fashion. Under the hood, FinTracer stores its data in a

structure known as the “FinTracer tag”. One limitation of FinTracer

tags, however, is that because their underlying cryptographic im-

plementation relies on additive semi-homomorphic encryption, all

the system’s oblivious computations on tag data are linear in their

input ciphertexts. This allows a FinTracer user to combine informa-

tion from multiple tags in some ways, but not generically. In this

paper, we describe an efficient method to perform general nonlinear

computations on FinTracer tags, and show how this ability can be

used to detect a wide range of complex crime typologies, as well

as to extract many new types of information, while retaining all of

FinTracer’s original privacy guarantees.
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1 INTRODUCTION
There is no doubt that detecting financial crimes such as money

laundering and fraud is easiest when all information regarding a

particular crime is pooled together. However, this information is

often siloed among the different financial institutions, and cannot be

shared due to privacy, commercial, and in some countries also legal

considerations. This real-world problem presents an opportunity

for privacy-preserving algorithms. Collaborative protocols, which

jointly compute functions of interest without invasion of privacy,

have, indeed, been previously proposed for this purpose. (See, e.g.,

[13].)

The recent introduction of FinTracer [5] changes this landscape
by providing an algorithmic primitive that is both lightweight and

highly customisable, which can be used as a powerful building-

block in the construction of larger, more sophisticated algorithms.

FinTracer is an algorithm based on the idea that information can

be stored in a data structure known as a FinTracer tag, over which
computations can then be performed securely. A FinTracer tag

stores a single Boolean for each bank account in a candidate set 𝑉 ,
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and it is this Boolean that is then manipulated in the computation.

Due to the lightweight nature of the FinTracer algorithm, the set𝑉

can be as large as all accounts, nation wide, even in an economy

the size of Australia’s.
1

We expand on the FinTracer tag data structure later on, but for

the purpose of introducing it, it is enough to note that information

in a tag is stored in the form of a partial mapping from𝑉 to a semi-

homomorphically-encrypted value. For reasons of execution speed,

the algorithm uses ElGamal encryption [7, 11] over the additive

Curve25519 [3] twisted Edwards elliptic curve group [4], and curve

points are stored in their extended projective form [9].

Here, the plaintext corresponding to the stored ciphertext is an

integer modulo the elliptic curve size (approximately 2
252

), where

zero encodes a “False”, nonzero encodes a “True”, and any element

of 𝑉 that is not part of the partial mapping is taken to be mapped

to a default value, this default value usually being an encrypted

zero, which is to say “False”. We refer to these plaintext numbers

as the tag values.
FinTracer tags are stored in a distributed fashion, partitioned

among financial institutions, so that each financial institution only

holds the part of the mapping relating to its own accounts. None

of the financial institutions holds the cryptographic key for de-

crypting tag values. This is generated and kept by the Financial

Intelligence Unit (FIU) that performs financial crime investigation

using FinTracer.

In [5] it was shown that such a design for tags allows the com-

putation of many functions of real-word interest for intelligence

analysts investigating financial crime.

This design was inherently limited, however, in that if all values

private to a single party are stored in the beginning of the compu-

tation as encrypted tag values, then due to the semi-homomorphic

nature of the chosen underlying encryption scheme the only opera-

tions that can be computed obliviously over these values are linear

functions of the private inputs.

All operations discussed in [5] can be described as linear func-

tions over the private inputs, whose results for each account are

then mapped to either False or True based on whether the linear

function’s output is zero or nonzero, and it is this Boolean that is

ultimately revealed to the FIU. We refer to operations that can be

described in this way as linear operations.

1
Australia’s Gross Domestic Product (GDP) was $1.423T as of 2020 [6], making it the

world’s 13
th
largest economy.
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In this paper, we show how nonlinear operations can be com-

puted over FinTracer tags, and demonstrate the use of such nonlin-

ear operations in substantially expanding FinTracer’s abilities to

be used in detecting financial crime.

1.1 The privacy assumptions
Although adaptable to other paradigms, the FinTracer algorithm

was initially developed for the Australian financial market, and be-

cause of this its original description reflected the privacy constraints

of that environment.

We will continue this, and describe the computation of nonlinear

operations within the same constraint environment. Chiefly, these

constraints can be described as follows.

The Australian Transaction Reports and Analysis Centre (AUS-
TRAC) is Australia’s anti-money laundering and counter-terrorism

financing regulator and financial intelligence unit. It is the govern-

ment agency “responsible for preventing, detecting and responding

to criminal abuse of the financial system to protect the community

from serious and organised crime” [2].

The Anti-Money Laundering and Counter-Terrorism Financing

Act 2006 (AML/CTF Act) [8] requires reporting entities (those enti-

ties that provide designated services—services which, under the Act,

are identified as posing a risk for money laundering and terrorism

financing) to maintain an AML/CTF program. Each reporting entity

is required to provide a report to AUSTRAC on International Funds

Transfer Instructions, cash deposits and withdrawals equal to or

greater than AU$10,000, and cross-border movements, as well as to

submit Suspicious Matter Reports (SMRs).

Reporting entities are required to analyse their own data to

identify any suspicious activity. If a suspicion is formed that an

entity or transaction may be linked to a crime, an SMR must be

submitted to AUSTRAC. Reporting entities do not have access to

data from other financial institutions in their analysis process. In

fact, they “must not disclose any information about an SMR, or do

anything which could reasonably infer that [they] have submitted

an SMR or are required to submit an SMR about one of [their]

customers (except for certain limited circumstances)” [1]—to do so

would in most circumstances be a criminal offence.

Consider, now, an algorithm working in an environment that

contains AUSTRAC and some set 𝐹 of financial institutions which

are reporting entities to AUSTRAC. In view of the AML/CTF Act, an

algorithm working in such an environment must face strict restric-

tions against any suspicions (or any grounds for suspicions) being

leaked from one 𝑓 ∈ 𝐹 to any other, either directly or indirectly, but

AUSTRAC itself is empowered to receive information on suspicion,

whether it can be formed by a single 𝑓 ∈ 𝐹 or only by multiple

financial institutions working in tandem.

Although AUSTRAC does have information-gathering powers

under the AML/CTF Act, we want to design our algorithms so

as to maximally protect the privacy of account owners for whom

no suspicion of criminal behaviour exists. This being the case, we

designed our algorithms so that AUSTRAC only receives in the

course of running them either general statistics or information

about accounts that are actively suspicious, in the sense that they

match sought patterns of criminal activity. We refer to such patterns

as criminal typologies.

The requirement for financial institutions to maintain their own

AML/CTF programs gives each financial institution a strong incen-

tive to learn of any suspicion that any collaborative algorithm may

report to AUSTRAC about that institution’s own clients. AUSTRAC

can legally share this information.

The idea of FinTracer is to provide a distributed computation

environment, where AUSTRAC and a set of participating financial

institutions 𝐹 each operate their own computation node, where

AUSTRAC can query the system for any type of behaviour pattern

indicating criminal activity, similar to what can be done in standard

graph query languages. The algorithm must then retrieve for AUS-

TRAC instances of such typologies, even though these instances

are composed of account and transaction data that may not all be

available to any single party: account information will be known

only to the financial institution managing the account, and transac-

tion information will be known only to the financial institutions

participating in the transactions.

In accordance with the above, such an algorithm must work

within the following constraints:

• The algorithm must not supply to the AUSTRAC node any

information beyond the requested query result and general,

privacy non-invasive statistics.

• The algorithm must supply to each participating financial

institution the portion of the result related to their own

accounts, but is not allowed to supply to the financial insti-

tutions any other information.

Though our solution was initially built for the Australian finan-

cial market, and therefore tailored to Australian law, the descrip-

tions above should be taken merely as describing a deployment

example. The system is a general-purpose system with applicability

anywhere where the legal requirements meet the constraints set out

above. The role taken up by AUSTRAC in our Australian example

is in this more general context known as a Financial Intelligence
Unit (FIU).

Throughout the rest of the paper, we will therefore use generic

terms, instead of referring specifically to AUSTRAC and to its re-

porting entities. In our descriptions, we will consider a system

running on a network where one node is the FIU node, to be oper-

ated by the relevant FIU, and the rest of the nodes will be financial

institutions from whom the FIU receives information. Figure 1 de-

picts the architecture of such a system. It is this architecture that

we implemented and used in our experiments.

1.2 FinTracer and FinTracer tags
Let 𝐺 be a digraph, 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝐸 is a set of directed edges

(𝑎, 𝑏) in which 𝑎 and 𝑏 are accounts and (𝑎, 𝑏) ∈ 𝐸 reflects a particu-

lar relation of interest that is manifested in the domestic transaction

data between 𝑎 and 𝑏. Such a relation may take into account both

any transactions from 𝑎 to 𝑏 and any transactions from 𝑏 to 𝑎. The

set 𝑉 , in turn, is the set of accounts induced by 𝐸.

A FinTracer query is a graph query, asked by the FIU, that is run

on𝐺 . However, because the FIU has, per assumption, no knowledge

of any a priori non-suspicious accounts or transactions, it is not
able to describe𝐺 directly. Instead, the FIU formulates the nature of

the relation to be described by 𝐸 in the form of a query, 𝑄𝐺 , which

each financial institution can interpret separately. This is normally

conveyed as a SQL query.
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Figure 1: Architecture of the FinTracer system. One node is
to be operated by the FIU, and each of the other nodes by one
financial institution. The user querying the system is an FIU
analyst.

Let 𝑆, 𝐷 ⊆ 𝑉 be sets of accounts similarly described by queries

𝑄𝑆 and 𝑄𝐷 , respectively. We refer to 𝑆 as the source accounts and
𝐷 as the destination accounts.

The basic FinTracer query, which the FinTracer algorithm of [5]

is able to resolve, is described by a tuple ⟨𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩, where 𝑘
is a natural. The answer, 𝐴, is the subset of 𝐷 whose distance on 𝐺

from any 𝑠 ∈ 𝑆 is at most 𝑘 . We describe this relation as

𝐴 = DistanceAtMost(𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘),

or algorithmically as

𝐴← DistanceAtMost(𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘).

The FinTracer algorithm allows one to answer such queries without

impinging on the privacy of any non-matching account. We will

use it as a building block to construct more advanced algorithms.

To simplify the presentation, throughout the remainder of this

paper, where it is not ambiguous we will describe the inputs to

FinTracer as the tuple ⟨𝐺, 𝑆, 𝐷, 𝑘⟩, but it should be understood that

this is shorthand for ⟨𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩: the values of 𝐺 , 𝑆 and 𝐷

are generally not known to the FIU, so can only be defined by a

description.

The answer delivered from the algorithm, 𝐴, first appears in

the form of a FinTracer tag. As described above, a FinTracer tag

is a data structure that stores a partial mapping from 𝑉 to semi-

homomorphically encrypted values, the plaintext of which indicates

either zero for “False” or nonzero for “True”, with the default (for

accounts not in the partial mapping) usually being “False”.

Importantly, FinTracer tags are stored in a distributed fashion:

each financial institution only holds the portion of the tag related

to its own accounts. Other financial institutions are not even aware

of the existence of particular accounts, unless these accounts trans-

acted with their accounts, and the FIU may not be aware of the

existence of any specific account, unless a suspicion exists regarding

it.

Additionally, the private key to decrypt any data in a tag is held

exclusively by the FIU, so initially the existence of any such tag

does not add any information to any party: all tag values are held

by the participating financial institutions, but only the FIU holds

the key to decrypt them.

In [5], it is shown how to compute the answer to a query as

above in the form of a FinTracer tag (i.e., how to create, in a privacy-

preserving manner, a tag such that exactly those 𝑑 ∈ 𝐷 that match

the query have nonzero values in the tag). It is also shown, sepa-

rately, how the information from such a tag can be retrieved, in a

way that ensures that the FIU receives only the information it is

entitled to receive, and each financial institution receives exactly

the information it should as well.

2 THE POWER OF NONLINEAR OPERATIONS
In the FinTracer algorithm, the value of the source accounts, 𝑆 , can

be provided in the form of a FinTracer tag. In such a case, whether

any account appears in 𝑆 may be information not directly available

to any of the computing parties: no party other than the FIU pos-

sesses the private key with which the tag values are encrypted, and

the FIU does not possess any part of the tag’s mapping.

The reason 𝑆 can be given as a FinTracer tag is that FinTracer’s

tag propagation mechanism relies exclusively on additive semi-

homomorphic operations that are computed obliviously by the

non-FIU nodes.

Such a mechanism is, however, intrinsically limited in that it

is only able to compute linear operations. For FinTracer queries,

specifically, this indicates that given fixed values for all other pa-

rameters of the FinTracer query (𝐺 , 𝐷 and 𝑘), the relation between

the tag values of 𝑆 and the tag values ultimately returned to the

FIU node must necessarily be a linear function.

Consider, however, operations that take multiple tags, each con-

taining some Boolean information per account, and compute a new

tag, where each account is associated with a new Boolean that

is the result of applying a user-chosen Boolean function on the

original tag values, where the new Boolean related to each account

is computed only based on the Boolean values associated with the

same account in the input tags.
2
Such Boolean operations may be

linear or nonlinear, depending on the choice of Boolean function.

In this paper, we describe how to compute any Boolean operation,

linear or nonlinear, in a privacy-preserving manner, over FinTracer

tags.

In [5], it was shown how important criminal typologies can be

formulated as basic FinTracer queries. However, these were neces-

sarily typologies that could be described using only a single type

of relationship that connects two accounts. On its own, FinTracer

(1) Cannot describe more complex typologies that include a

larger number of relationships between a larger number of

accounts, and

(2) Cannot retrieve for each found typology more information

than the identity of the found set of accounts.

Before continuing to describe how Boolean tag operations can

be performed under privacy preservation, we first show, in this sec-

tion, some examples of the power of the combination of FinTracer

propagation with Boolean operations, how this combination can

be used to describe a diverse array of realistic criminal typologies

that are not queryable using FinTracer alone, and how this combi-

nation allows users to answer many more questions that may be

interesting in the context of financial crime investigation.

2
Our description ignores the values associated with accounts that do not appear in the

tag’s partial mapping. These values are, however, known to the financial institution

by their very absence, so can be imputed where appropriate.
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2.1 Chained operations
In its standalone formulation, FinTracer utilises two distinct data

types: sets (such as 𝑆 and 𝐷) for inputs, and tags (such as 𝐴) for

outputs. Sets can be made into tags, and, in fact, the parameter 𝑆 is

only ever used as a tag so it can be communicated via a tag rather

than via a set description.

The same is not true for 𝐷 . In standalone FinTracer, the destina-

tion set, 𝐷 , must be communicated as a set, known to the non-FIU

computing nodes, because FinTracer works by initially computing

a tag,𝑇𝑘 , of all accounts that can be reached from 𝑆 using a walk on

𝐺 of length at most 𝑘 . FinTracer’s information retrieval procedure

then uses 𝑇𝑘 and 𝐷 to return to the FIU node the account values in

𝑇𝑘 , but just over the domain 𝐷 .

The Boolean intersection operation allows FinTracer to accept

also its 𝐷 parameter as a tag. In this case, the answer to be retrieved

is simply 𝑇𝑘 ∩ 𝐷 (where Boolean operation notation indicates that

this operation is applied account-by-account on both tags).

The ability to use a tag, potentially unknown to the non-FIU

computing nodes, to define the destination set, 𝐷 , creates a com-

puting environment in which both FinTracer’s inputs and outputs

(excepting 𝐺 and 𝑘) are tags. Sets, as a separate data type, are no

longer needed in the system at all. In such an environment one can

combine operations, chaining them together to create arbitrarily

complex queries.

2.2 Describing complex typologies
Consider the following typology.We are seeking instances of triplets

⟨𝑎, 𝑏, 𝑐⟩, such that 𝑎, 𝑏 and 𝑐 are accounts, where

• Cash was deposited into 𝑎 and then funnelled into 𝑏, and

• The owner of 𝑏 is a known associate of the owner of 𝑐 who

is a known person of interest.

Each of the above is a relationship that FinTracer can find, but

the combination of the two is not. In order to find all 𝑏 matching

this description, one would need to follow a process such as the

below:

• Find 𝐵1, the set of all 𝑏1 for which there exists an 𝑎 such that

the ⟨𝑎, 𝑏1⟩ pair holds the first sought relationship.
• Find 𝐵2, the set of all 𝑏2 for which there exists a 𝑐 such that

the ⟨𝑏2, 𝑐⟩ pair holds the second sought relationship.

• Retrieve 𝐵 = 𝐵1∩𝐵2 as the set of all 𝑏 matching the typology.

Note that only the retrieval phase adds any information to the

computing parties. The finding of the sets 𝐵1 and 𝐵2, as well as the

finding of their intersection, is done obliviously.

The process depicted above is emblematic of how complex ty-

pologies can be described by stitching together simpler two-account

typologies, but relies on the ability to perform the final intersection—

this being a nonlinear operation.

For example, in the ⟨𝑎, 𝑏, 𝑐⟩ example given above, once we have

found 𝐵, we can use additional FinTracer runs that use the found 𝐵

set as their source account set 𝑆 in order to find all 𝑎 and all 𝑐 that

participate in such a relationship. The full process is as follows.

• Find 𝐵1, the set of all 𝑏1 for which there exists an 𝑎 such that

the ⟨𝑎, 𝑏1⟩ pair holds the first sought relationship.
• Find 𝐵2, the set of all 𝑏2 for which there exists a 𝑐 such that

the ⟨𝑏2, 𝑐⟩ pair holds the second sought relationship.

• Find 𝐵 = 𝐵1 ∩ 𝐵2 as the set of all 𝑏 matching the typology.

• Find 𝐴, the set of all 𝑎 for which there exists a 𝑏 ∈ 𝐵 such

that the ⟨𝑎, 𝑏⟩ pair holds the first sought relationship.
• Find 𝐶 , the set of all 𝑐 for which there exists a 𝑏 ∈ 𝐵 such

that the ⟨𝑏, 𝑐⟩ pair holds the second sought relationship.

• Retrieve ⟨𝐴, 𝐵,𝐶⟩.

This is an example of a typology involving three roles, 𝑎, 𝑏 and
𝑐 , for each of which we can retrieve the full result set (𝐴, 𝐵 and 𝐶 ,

respectively).

The same technique can be extended to retrieve the account

sets of all roles in any typology that can be described by a tree of

relationships.
3

2.3 Exact Distance
A run DistanceAtMost(𝐺, 𝑆, 𝐷, 𝑘) of the basic FinTracer algorithm
only answers which subset of 𝐷 is at distance at most 𝑘 on 𝐺 from

any element in 𝑆 .

An intelligence analyst investigating 𝐺 can get a little more

information by considering the inverted graph, 𝐺−1, being the

digraph over the same vertex set 𝑉 , but with all edges running in

the opposite direction to their direction in𝐺 . Running the FinTracer

algorithm on ⟨𝐺−1, 𝐷, 𝑆, 𝑘⟩ answers the question of which subset

of 𝑆 connects to any element of 𝐷 by a path of length at most 𝑘 on

𝐺 .

This, however, is basically all the information such an intelli-

gence analyst can glean from the standalone FinTracer algorithm

regarding the particular relationship described by ⟨𝐺, 𝑆, 𝐷, 𝑘⟩.
Once nonlinear operations are allowed, however, more complex

information can be retrieved.

To begin with (although this is perhaps not the example of high-

est practical value for financial crime investigation) consider how

one may supplement the function “DistanceAtMost(𝐺, 𝑆, 𝐷, 𝑘)”
by a second function, “DistanceExactly(𝐺, 𝑆, 𝐷, 𝑘)”, that returns
those accounts in𝐷 whose minimal distance on𝐺 from any account

in 𝑆 is exactly 𝑘 .
In [5], a similarly-described function appears, but it is subtly

different: it returns those accounts in 𝐷 satisfying that there is a

walk on𝐺 from some 𝑠 ∈ 𝑆 to them that is of length 𝑘 exactly. This

is, however, not the same. DistanceExactly is, in fact, not a linear

operation, so cannot be computed using the tools of [5] alone.

To see this, consider, for example, the graph 𝐺 = ⟨𝑉 , 𝐸⟩ with
𝑉 = {𝑎, 𝑏, 𝑐} and 𝐸 = {(𝑎, 𝑏), (𝑏, 𝑐)}, which we will query with

𝐷 = {𝑐} and 𝑘 = 2. If we initialise 𝑆 with nonzero 𝑆 (𝑎) and 𝑆 (𝑏)
being zero (encrypted), the return result tag at 𝑐 should be nonzero,

but if we initialise 𝑆 (𝑏) with any other value, the output should be

zero. Such an operation cannot be linear.

Given Boolean operations, however, the question becomes trivial,

as shown in Algorithm 1.

2.4 In-between accounts
Consider a relationship ⟨𝐺, 𝑆, 𝐷, 𝑘⟩ of the kind describable with Fin-

Tracer. While DistanceExactly can discover the subsets 𝑆 ′ ⊆ 𝑆
and 𝐷′ ⊆ 𝐷 such that elements of 𝑆 ′ are at distance exactly 𝑘 on𝐺

3
Typologies involving cycles may have a result set that is not a Cartesian product

of the account set results in each of their roles, so require a different approach. We

discuss methods to tackle this issue in a separate upcoming paper.

4
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Algorithm 1 Computing DistanceExactly(𝐺, 𝑆, 𝐷, 𝑘)
1: if 𝑘 = 0 then
2: return DistanceAtMost(𝐺, 𝑆, 𝐷, 𝑘).
3: else
4: 𝐴← DistanceAtMost(𝐺, 𝑆, 𝐷, 𝑘).
5: 𝐵 ← DistanceAtMost(𝐺, 𝑆, 𝐷, 𝑘 − 1).
6: return 𝐴 \ 𝐵. ⊲ Where “\” is set difference.
7: end if

from some element in 𝐷′ and vice-versa, in practice a financial in-

telligence analyst may want to retrieve the identities of all accounts

on the paths connecting 𝑆 ′ to 𝐷′.
With Boolean operations this is possible, and can be done using

the following process.

(1) For all 𝑗 : 1 ≤ 𝑗 < 𝑘 , find 𝐷 𝑗 , the set of all 𝑣 ∈ 𝑉 whose

distance from 𝑆 on the digraph 𝐺 is 𝑗 .

(2) For all 𝑗 : 1 ≤ 𝑗 < 𝑘 , find 𝑆 𝑗 , the set of all 𝑣 ∈ 𝑉 whose

distance from 𝐷 on the digraph 𝐺−1 is 𝑗 .
(3) Retrieve the union of all 𝐷 𝑗 ∩ 𝑆𝑘− 𝑗 over 𝑗 : 1 ≤ 𝑗 < 𝑘 .

3 THE ALGORITHM
We begin our description of how to compute Boolean operations

from the simplest operations to compute, and work our way to

general operations.

3.1 Union
One can equate the information contained in a FinTracer tag with

a set of accounts, a subset of 𝑉 , by considering each tag as repre-

senting the set of accounts that the tag maps to “True”. This being

the case, one can use set notation to describe operations on tags.

The simplest Boolean operation to compute on FinTracer tags is

union. Given two tags, 𝑇1 and 𝑇2, we seek to compute 𝑇 = 𝑇1 ∪𝑇2,
this being a tag mapping any account 𝑎 to “True” if either 𝑇1 or 𝑇2
maps it to “True”.

The reason this operation is simple to compute is that it can

usually be translated to a linear operation: by simply summing the

semi-homomorphically encrypted values in 𝑇1 and 𝑇2 correspond-

ing to each account, 𝑎, the result can be used simply as the tag value

for 𝑎 in 𝑇 . We denote such an operation by “𝑇 ← 𝑇1 +𝑇2”. This is
an operation that can be performed by the individual financial in-

stitutions in an embarrassingly-parallel manner, without any need

for communication.

The reason addition can be used as a way to compute union is

that in FinTracer, a tag value of zero encodes “False” and nonzero

encodes “True”. If the underlying tags were nonnegative integers,

addition would have corresponded directly with set union.

In reality, however, tag values are computed modulo the elliptic

curve size, leaving the possibility for two nonzero values to sum

together to exactly zero.

Where summed values are small, this is not a concern (given that

the group size is on the order of 2
252

), and evenwhen not, the chance

of such an event occurring accidentally is minute. Nevertheless, in

some cases, e.g. if the operands come from a third party, we do want

to protect the algorithm against the eventuality that the operands

may have been chosen maliciously so as to sum to zero.

In this case, the solution is to sanitise one of the operands prior
to the summation. Sanitisation is the operation of multiplying each

tag value by an independent, uniformly-chosen, random nonzero

integer modulo the elliptic curve group size. After sanitisation, each

nonzero value is transformed to a uniformly-distributed nonzero

value on the elliptic curve, meaning that the result of any sum-

mation with a nonzero value performed on it, even if maliciously

chosen, has only approximately 2
−252

probability of yielding a zero,

this probability being entirely negligible for our purposes.

Such sanitisation also requires no communication, and can be

performed independently at each financial institution.

3.2 Negation
The first nonlinear operation we tackle is negation. Negation is

rarely useful on its own, but is often a key ingredient in more

complex operations, such as when computing set difference.

While negation is not normally considered a nonlinear operation,

in our context it is, because we consider operations on encrypted

elliptic curve elements, rather than on Boolean values: the result of

“¬𝑇 ” on a tag 𝑇 will map any nonzero to a zero and any zero to a 1.

This is done as described in Algorithm 2. Here and throughout,

we use “on” blocks to indicate which nodes code runs on. Lines of

code that run on multiple nodes can run in parallel. The command

“transmit” is used to indicate inter-node communication. It sends

information from the executing nodes to designated target nodes.

The command “receive” indicates receipt of the information at

the target nodes. It is assumed that all such communication is

cryptographically and/or physically protected at the channel level,

to ensure that it cannot be intercepted other than by the sending and

the receiving parties. All other commands run in embarrassingly-

parallel fashion. We use “FIU” to indicate the FIU node, and 𝐹 as

the set of participating financial institutions.

Throughout, we take 𝐾
pub

to be the public key that was used to

encrypt tag values, which is assumed to be known to all parties,

and 𝐾priv to be the corresponding private key, known only to the

FIU.

The operation “sanitise” was discussed in Section 3.1. The op-

eration “refresh” is the addition of a freshly-encrypted zero to a

ciphertext. See Appendix A for a discussion of themathematics of re-

freshing and sanitisation, and [5] for implementation optimisations.

Both are linear operations that do not require communication.

For a tag,𝑇 , we use𝑇 𝑓 to indicate the portion of𝑇 that is visible

to financial institution 𝑓 . This is a tag representing the subset of 𝑇

whose accounts are managed by 𝑓 .

Note that the specific semi-homomorphic encryption system

used here cannot be fully decrypted. Decryption yields an elliptic

curve group element, not an integer. Line 18 of Algorithm 2 is

performed by comparing the decrypted value with the zero in the

elliptic curve group.

Furthermore, note that in the resulting tag, ¬𝑇 , the default value
assigned to an account not in the mapping may be a “True”, rep-

resented, e.g., as an encrypted “1”, rather than as the usual “False”

(“0”): the default value for ¬𝑇 should be the negation of the default

value of 𝑇 .

Theorem 1. Algorithm 2 is correct.
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Algorithm 2 Computing ¬𝑇
1: on all 𝑓 ∈ 𝐹 do:
2: Sanitise 𝑇 𝑓 .

3: Refresh 𝑇 𝑓 . ⊲ See Appendix A.

4: Add noise to 𝑇 𝑓 . ⊲ See Section 4.

5: Let 𝜋 𝑓 be a uniformly-chosen random bijection from

1, . . . , |dom(𝑇 𝑓 ) | to the domain of 𝑇 𝑓 .

6: Let 𝑣 𝑓 be a vector of encrypted elements of length

|dom(𝑇 𝑓 ) |.
7: for all 𝑖 ∈ 1, . . . , |dom(𝑇 𝑓 ) | do
8: 𝑣 𝑓 [𝑖] ← 𝑇 𝑓 (𝜋 𝑓 (𝑖)).
9: end for
10: transmit 𝑣 𝑓 to FIU.

11: end on
12: on FIU do:
13: zero← Enc𝑘pub (0). ⊲ Store an encrypted “zero”.

14: one← Enc𝑘pub (1). ⊲ Store an encrypted “one”.

15: for all 𝑓 ∈ 𝐹 do
16: receive 𝑣 𝑓 from 𝑓 .

17: for all 𝑖 ∈ 1, . . . , |𝑣 𝑓 | do
18: if Dec𝐾priv

(𝑣 𝑓 [𝑖]) = 0 then
19: 𝑣 𝑓 [𝑖] ← one.
20: else
21: 𝑣 𝑓 [𝑖] ← zero.
22: end if
23: end for
24: Refresh 𝑣 𝑓 .

25: transmit 𝑣 𝑓 to 𝑓 .
26: end for
27: end on
28: Let 𝑅 be a new empty tag.

29: on all 𝑓 ∈ 𝐹 do:
30: receive 𝑣 𝑓 from FIU.

31: for all 𝑖 ∈ 1, . . . , |𝑣 𝑓 | do
32: if 𝜋 𝑓 (𝑖) ∈ 𝑉 then ⊲ See Section 4.

33: 𝑅 𝑓 [𝜋 𝑓 (𝑖)] ← 𝑣 𝑓 [𝑖].
34: end if
35: end for
36: end on
37: ⊲ 𝑅 is the final result, equal to ¬𝑇 .

Proof. In Algorithm 2, the financial institutions send to the

FIU the original tag values. These tag values are then negated

by the FIU and placed back in their appropriate tag positions by

the financial institutions. Hence, correctness of the algorithm is

straightforward. □

Theorem 2. Algorithm 2 does not reveal any new information to
the financial institutions. It only reveals to the FIU information regard-
ing the number of zero-valued tags and the number of nonzero-valued
tags in the portion of tag 𝑇 managed by each financial institution.

Proof. The financial institutions only receive a vector of freshly-

encrypted items of a length that they themselves determine. Hence,

no information is passed to any 𝑓 . The FIU receives tag values that

have been refreshed, sanitised, combined with noise and permuted.

Refreshing and sanitisation, as explained in Appendix A, en-

sure that the encrypted values themselves contain no information

other than the Boolean value they are meant to convey. By permut-

ing them using the random permutation 𝜋 𝑓 , their order becomes

equally uninformative, so the information given to the FIU is only

the total number of “False” and the total number of “True” values

in the tag. □

The process of adding noise on Line 4 of Algorithm 2 ensures

that no private information about any specific account is divulged

to the FIU from these two sums. The specifics of such noise addi-

tion and proofs of the process’s privacy guarantees are given in

Section 4. Once such private information is purged, the remaining

information, ultimately transmitted to the FIU, is only the approx-

imate size of the number of “False” and “True” tag values. These

two numbers qualify as “general statistics”, which we assumed can

be shared with the FIU.

We note that if several tags need to be negated, this can be done

simultaneously, by use of a single long vector for their values and

a single large permutation to scramble all encrypted values jointly.

The noise-adding technique detailed in Section 4 will, in this case,

require for the joint vector less noise than would have been required

to negate all of them, if done separately.

3.3 Intersection
Much as we computed set union in Section 3.1, we also want to com-

pute set intersection. The way to do this is to exploit De Morgan’s

laws, namely by computing 𝐴 ∩ 𝐵 as ¬(¬𝐴 ∪ ¬𝐵).
For this, we merely utilise the techniques developed in the pre-

vious sections, noting that computing ¬𝐴 and ¬𝐵 can be done in

parallel. Hence, the algorithm requires only two rounds of negation.

If the intersection 𝐴 ∩ 𝐵 is to be the final result returned by the

algorithm (as in the first ⟨𝑎, 𝑏, 𝑐⟩ example given in Section 2.2), it is,

in fact, possible to simply compute

¬(𝐴 ∩ 𝐵) = ¬𝐴 ∪ ¬𝐵

instead, and then read it directly (as detailed in [5]), saving the

second negation round altogether.

3.4 General Boolean functions
Because the Boolean operations described so far span the set of all

Boolean functions, it is straightforward from here to implement

any such function.

Specifically, Boolean functions can be represented in disjunctive

normal form, and computing them directly in this form using the

negation, disjunction and conjunction operators already described

can always be done, requiring at most two negation rounds for any

such function.

Moreover, if multiple functions need to be computed together,

this can also be done in parallel, still in a grand total of at most two

negation rounds.

4 DIFFERENTIAL PRIVACY
The process of adding noise, exemplified in Line 4 of Algorithm 2,

entails the addition of a random number 𝑥0 of “fake” accounts that

are associated with a zero value and a random number 𝑥1 of “fake”

accounts that are associated with a nonzero value. These are “fake”

6
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in the sense that they are not in 𝑉 and are eliminated later, on

Line 32 of the same algorithm.

The question is therefore what distribution to choose 𝑥0 and 𝑥1
from, in order to ensure that results are privacy-preserving. Here,

“privacy preserving” means that the value associated with any par-

ticular account should not be information that can be gleaned by the

recipient of the noise-added information. Specifically, even without

the addition of noise the FIU only learns in negation operations the

total number of zero and the total number of nonzero tag values in

the negated tag. The distribution of 𝑥0 and 𝑥1 needs to be chosen

so as to ensure that the FIU cannot use these two revealed numbers

in order to derive information about any specific tag value.

In this section, we describe distributions that satisfy this con-

straint.

4.1 FinTracer’s noise formula
In [5], an algorithm A𝜖,𝛿 was described that generates a nonneg-

ative number 𝑥 from a distribution 𝐷𝜖,𝛿 regarding which it was

proved that it is the minimal-expectation distribution such that

adding 𝑥 fake items to a list provides a privacy preservation con-

dition the paper defined as strict (𝜖, 𝛿)-differential privacy for the

identity of the elements of the list, from an observer that can only

determine the size of the list after the addition of the fake items.

Strict (𝜖, 𝛿)-differential privacy is a strengthening of the conditions

of standard (𝜖, 𝛿)-differential privacy, which is defined as follows.

Definition 4.1. A probabilistic algorithm A working on an input

𝑋 that is a set is called (𝜖, 𝛿)-differentially private if for all 𝑋 , with
probability at least 1 − 𝛿 over the execution probabilities of A, the

output 𝑣 of the algorithm satisfies that for any other input set 𝑌 ,

with |𝑋 △𝑌 | = 1 (where △ is the symmetric set difference operator),

𝑒−𝜖Prob[A(𝑌 ) = 𝑣] ≤ Prob[A(𝑋 ) = 𝑣] ≤ 𝑒𝜖Prob[A(𝑌 ) = 𝑣] .

In this paper, we extend the work of [5] to describe how to use

Algorithm A𝜖,𝛿 inside a larger algorithmic framework that allows

users to perform operations on tags, that guarantees an overall

(𝜖0, 𝛿0)-differential privacy for the entire system, for any chosen

𝜖0 and 𝛿0.

To do this, we utilise the following property.

Theorem 3 (Additivity of differential privacy). If B is an
algorithm whose output on input 𝑋 is informationally-equivalent to
(A1 (𝑋 ), . . . ,A𝑛 (𝑋 )), where eachA𝑖 is an (𝜖𝑖 , 𝛿𝑖 )-differentially pri-
vate algorithm, and where the execution of each A𝑖 uses randomness
that is independent of the randomness used for any other A 𝑗 , then B
satisfies

(∑𝑛
𝑖=1 𝜖𝑖 ,

∑𝑛
𝑖=1 𝛿𝑖

)
-differential privacy.

Proof. Theorem 3 can be derived directly from Definition 4.1.

The probability that none of the events with probabilities 𝛿1, . . . , 𝛿𝑛
will happen is bounded by 1 − ∑𝑛

𝑖=1 𝛿𝑖 . If this happens, then the

probability for each of the 𝑛 A𝑖 (𝑋 ) results is bound to within a

multiplicative range of 𝑒±𝜖𝑖 compared to the respective A𝑖 (𝑌 ).
Hence, the overall probability of the result is bound to within∏𝑛
𝑖=1 𝑒

𝜖𝑖 = exp(∑𝑛𝑖=1 𝜖𝑖 ). □

4.2 Resilience against multiple changes
Definition 4.1 is limited in that it allows the addition or subtraction

of only a single element in 𝑋 . In conventional 𝜖-differential privacy,

this is not an issue, because resilience against multiple changes in

𝑋 can be derived by transitivity, but for (𝜖, 𝛿)-differential privacy
this is not so.

We therefore define the following, to describe resilience against

𝑚 changes.

Definition 4.2. A probabilistic algorithm A working on an input

𝑋 that is a set is called (𝜖, 𝛿,𝑚)-differentially private if for all 𝑋 and

for all integers 𝑘 in 1 ≤ 𝑘 ≤ 𝑚, with probability at least 1 − 𝑘𝛿/𝑚
over the execution probabilities ofA, the output 𝑣 of the algorithm

satisfies that for any other input set 𝑌 , with |𝑋 △ 𝑌 | ≤ 𝑘 (where △
is the symmetric set difference operator),

𝑒−𝑘𝜖/𝑚Prob[A(𝑌 ) = 𝑣] ≤ Prob[A(𝑋 ) = 𝑣]

≤ 𝑒𝑘𝜖/𝑚Prob[A(𝑌 ) = 𝑣] .

Definition 4.3. A probabilistic algorithm A working on an input

set 𝑋 and returning an integer 𝑣 ≥ |𝑋 | is called strict (𝜖, 𝛿,𝑚)-
differentially private if it is (𝜖, 𝛿,𝑚)-differentially private, and for

all 𝑣 > |𝑋 | and all input sets 𝑌 , with |𝑋 △ 𝑌 | = 1,

𝑒−𝜖/𝑚Prob[A(𝑌 ) = 𝑣] ≤ Prob[A(𝑋 ) = 𝑣]

≤ 𝑒𝜖/𝑚Prob[A(𝑌 ) = 𝑣] .

The reason we need to use (𝜖, 𝛿)-differential privacy (and by

extension (𝜖, 𝛿,𝑚)-differential privacy) instead of themore common

𝜖-differential privacy is that our purpose is to add fake elements

to the tag representing the result set, so as to obscure the exact

size of its original support. To ensure that the revealed value of the

final size of the set satisfies the stricter and more popular condition

of 𝜖-differential privacy, this value, 𝑣 , would have had to have a

positive probability to take any integer value. In our case, however,

this size is restricted to be at least |𝑋 |, the size of the original set,
because we are only adding fake entries, not removing any real

entries.

In particular, 𝜖-differential privacy will necessarily be broken

whenever 𝑣 = |𝑋 |, and no fake entries are added to 𝑋 at all.

Instead, (𝜖, 𝛿)-differential privacy ensures that 𝜖-differential pri-

vacy is maintained in all but 𝛿-rare cases.

The definition of strict (𝜖, 𝛿)-differential privacy (and by exten-

sion strict (𝜖, 𝛿,𝑚)-differential privacy) requires that the stricter
conditions of 𝜖-differential privacy is met in all but the single case

𝑣 = |𝑋 | where, as discussed, 𝜖-differential privacy is impossible to

satisfy.

Consider, now, an algorithm A𝑚
𝜖,𝛿

the generates a nonnegative

integer value Δ out of a distribution 𝐷𝑚
𝜖,𝛿

, and let B be an algorithm

providing strict (𝜖, 𝛿,𝑚)-differential privacy to the size of its input

set 𝑋 by generating a value Δ ∼ 𝐷𝑚
𝜖,𝛿

and reporting |𝑋 | + Δ.
Consider now the properties that such a distribution 𝐷𝑚

𝜖,𝛿
must

satisfy in order for it to provide the stipulated strict (𝜖, 𝛿,𝑚)-differ-
ential privacy.

Let 𝑝𝑖 = Prob[Δ = 𝑖]. The value of 𝑝𝑖 is by definition zero for all

𝑖 < 0. After this, every 𝑝𝑖 satisfies

𝑝𝑖+1
𝑝𝑖
≥ 𝑒−𝜖/𝑚 .

This can be seen by substituting 𝑘 = 1 in Definition 4.2.

Any such distribution is necessarily a weighted average of shifted

exponential distributions, 𝐸
𝜖/𝑚
𝑖

, where the probability for 𝑥 ∼ 𝐸𝜖/𝑚
𝑖

to be any value 𝑥 ≥ 𝑖 is proportional to exp

(
− 𝜖𝑚 (𝑥 − 𝑖)

)
and zero

7
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otherwise. Let 𝛼𝑖 be such that 𝛼𝑖/(1− 𝑒−𝜖/𝑚) is the weight of 𝐸𝜖/𝑚𝑖
in the representation of 𝐷𝑚

𝜖,𝛿
as a weighted mixture of all 𝐸

𝜖/𝑚
𝑖

shifted geometric distributions.

The value of 𝛼𝑖 corresponds to the size of the maximum contri-

bution of 𝐸
𝜖/𝑚
𝑖

to any 𝑝𝑖 .

In [5], it was proved that for𝑚 = 1, the minimal-expectation

distribution that satisfies strict (𝜖, 𝛿,𝑚)-differential privacy can be

derived by a greedy algorithm that maximises each 𝛼𝑖 in order. For

a general𝑚, this is no longer guaranteed. However, we will still

use the greedy algorithm. The distribution 𝐷𝑚
𝜖,𝛿

derived through

such greedy optimisation is described in Algorithm 3.

In Algorithm 3, we use 𝑝𝑖 , as before, to represent Prob[𝑥 = 𝑖] for
𝑥 ∼ 𝐷𝑚

𝜖,𝛿
.

Algorithm 3 Computing 𝐷𝑚
𝜖,𝛿

1: 𝑝−1 ← 0. ⊲ 𝑥 = −1 is not in the support, but 𝑝−1 is here for
convenience.

2: for 𝑖 = 0, 1, . . . do
3: if 𝑖 < 𝑚 then
4: 𝛼𝑖 ← min

(
𝛿/𝑚 − 𝑝𝑖−1𝑒−𝜖/𝑚, 1 − 𝑒−𝜖/𝑚 −

∑𝑖−1
𝑗=0 𝛼 𝑗

)
.

5: else
6: 𝛼𝑖 ← min

(
𝑝𝑖−1 (𝑒𝜖/𝑚 − 𝑒−𝜖/𝑚), 1 − 𝑒−𝜖/𝑚 −

∑𝑖−1
𝑗=0 𝛼 𝑗

)
.

7: end if
8: 𝑝𝑖 = 𝑝𝑖−1𝑒−𝜖/𝑚 + 𝛼𝑖 .
9: end for

The basic idea for Algorithm 3 is that each 𝛼𝑖 is maximised se-

quentially, subject to the constraints imposed on it by the definition

of strict (𝜖, 𝛿,𝑚)-differential privacy. Namely:

(1) The weight of each shifted geometric distribution in the

linear combination is 𝛼𝑖/(1 − 𝑒−𝜖/𝑚), for which reason the

𝛼𝑖 must sum up to 1 − 𝑒−𝜖/𝑚 .

(2) For 𝑖 < 𝑚,

∑𝑖−1
𝑗=0 𝑝 𝑗 cannot exceed 𝑖𝛿/𝑚, for which reason

greedy attribution limits each 𝑝 𝑗 in this range to 𝛿/𝑚.

(3) For 𝑖 ≥ 𝑚, 𝑝𝑖 must be between 𝑒−𝜖/𝑚𝑝𝑖−1 and 𝑒𝜖/𝑚𝑝𝑖−1, to
satisfy general 𝜖/𝑚-differential privacy.

If 𝜖 is sufficiently small, the first few 𝛼𝑖 will be constrained by

𝛿/𝑚, the next few by 𝑝𝑖−1 (𝑒𝜖/𝑚 −𝑒−𝜖/𝑚), one additional 𝛼 𝑗 will be
constrained by 1 − 𝑒−𝜖/𝑚 −∑𝑖−1𝑗=0 𝛼 𝑗 , and all later 𝛼 𝑗 will be zeroes.

For larger 𝜖 values, the number of 𝛼𝑖 in either of the first two

categories may be zero.

This insight regarding the 𝛼𝑖 values also allows computing each

𝑝𝑖 using a closed-form formula, as follows.

Let 𝑘 = max

(
0,

⌈
𝑚
𝛿
− 1

1−𝑒−𝜖/𝑚
⌉)
.

For 0 ≤ 𝑖 < min(𝑘,𝑚 − 1), 𝑝𝑖 = 𝛿/𝑚.

If 𝑘 < 𝑚, for 𝑖 ≥ 𝑘 , 𝑝𝑖 =
(
1 − 𝑒−𝜖/𝑚

) (
1 − 𝑘𝛿

𝑚

)
𝑒−𝜖 (𝑖−𝑘 )/𝑚 .

Otherwise, for 𝑖 ≥ 𝑚−1, 𝑝𝑖 =
(
1 − (𝑚−1)𝛿𝑚

)
𝑝
𝜖/𝑚,𝛿/(𝑚−(𝑚−1)𝛿 )
𝑖−(𝑚−1) ,

where 𝑝
𝜖,𝛿
𝑖

is the probability that 𝑥 ∼ 𝐷𝜖,𝛿 equals 𝑖 . Such a variable

can be generated using A𝜖,𝛿 , whose code was given in [5].

The closed form formula, in turn, allows one to generate a vari-

able 𝑥 ∼ 𝐷𝑚
𝜖,𝛿

as described in Algorithm 4.

Algorithm 4 Generating variable 𝑥 ∼ 𝐷𝑚
𝜖,𝛿

1: 𝑘 ← max

(
0,

⌈
𝑚
𝛿
− 1

1−𝑒−𝜖/𝑚
⌉)
.

2: if min(𝑘,𝑚 − 1) > 0 then
3: 𝜌 ← Bernoulli(min(𝑘,𝑚 − 1)𝛿/𝑚).
4: else
5: 𝜌 ← 0.

6: end if
7: if 𝜌 = 1 then ⊲ Happens with probability min(𝑘,𝑚 − 1)𝛿/𝑚.

8: 𝑥 ← UniformInteger(0,min(𝑘,𝑚 − 1) − 1).
9: ⊲ Uniformly distributed between bounds, inclusive.

10: return 𝑥 .
11: else if 𝑘 < 𝑚 then
12: 𝑦 ← Geometric(𝑒−𝜖/𝑚).
13: return 𝑦 + 𝑘
14: else
15: Generate 𝑦 from 𝐷𝜖/𝑚,𝛿/(𝑚−(𝑚−1)𝛿 ) using Algorithm

A𝜖,𝛿 .
16: return 𝑦 +𝑚 − 1.
17: end if

4.3 Origin tracking
The above showed how we can attain (𝜖, 𝛿,𝑚)-differential privacy
for a given instance of noise addition, over our choice of 𝜖 , 𝛿 and𝑚.

In real usage, however, we would like to set our differential privacy

requirements once, system wide, and have the individual choices of

𝜖 , 𝛿 and𝑚 for each individual operation automatically computed

so as to uphold the overall desired system-wide conditions.

Our solution to providing system-wide differential privacy re-

quires each tag to be associated with the list of its origins. Each
such “origin” designates a set of accounts whose identity needs

to be kept private from the FIU. A tag’s origin list is the set of all

origins whose information had been used in constructing the tag’s

values.

Specifically:

(1) Whenever the user defines a new tag by means of a query

(such as when using the queries 𝑄𝑆 and 𝑄𝐷 ), this creates a

new origin and assigns this new origin as the sole origin for

the newly created tag.

(2) When computing a new tag from existing tags, the new tag’s

set of origins is the union of the sets of origins of all inputs

to the computation. For example, if we compute the tag

intersection “𝐵 ← 𝐵1 ∩ 𝐵2”, the origin list for 𝐵 will be the

union of the origin lists of the two operands 𝐵1 and 𝐵2.

Origins are thus, mathematically, the private account sets, so

their values are by definition unknown to the FIU, but the FIU can

nevertheless catalogue origins, such as by associating them with

the queries that originally defined them, and the time at which

those queries were run.

Neither the mathematical description of the origin as a private

account set, nor the information by which an origin can be cat-

alogued is, however, the information programmatically retained

(both by the FIU and by each 𝑓 ∈ 𝐹 separately) on each such origin,

in order to perform differential privacy calculations. This calculus

uses only two real nonnegative numbers, 𝜖𝑠 and 𝛿𝑠 , for each origin

𝑠 . Upon creation of an origin, these numbers are initialised by the
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values 𝜖0 and 𝛿0, respectively. We refer to 𝜖0 and 𝛿0 as the origin’s

initial privacy budget, and to the current values of 𝜖𝑠 and 𝛿𝑠 at any

given time as the origin’s remaining privacy budget.
Information that is known to the FIU does not create a new origin,

even if it is stored in the form of a tag, because such information

does not need protection from the FIU. For example, if the FIU has

a given list of accounts, explicitly numbered, which is of interest

to a particular investigation (e.g., accounts associated with known

persons of interest), such a list would not form its own, new origin,

even if used to initialise a tag.

Whenever an operation is performed on a tag that requires dif-

ferential privacy noise, this operation has a cost: it reduces the

remaining differential privacy budgets of each of the tag’s origins.

Each origin 𝑠 has some value deducted from its remaining 𝜖𝑠 and

𝛿𝑠 budgets. Here, the system offers a trade-off: we can set (e.g., at

user’s choice) how much privacy budget is to be expended for the

operation; the more differential noise is added, the smaller the spent

differential privacy budget.

Figure 2 presents an example.

Figure 2: An example of how differential privacy budget is
managed. In “Step 1”, two tags are defined from a query. Each
is associated with its own new origin, each origin set to an
(𝜖0, 𝛿0) initial differential privacy budget. In “Step 2”, a new
tag is computed from the two existing tags. Its origin list is
the union of the origin lists of both original tags. However,
the origins in this list will have lost some of their differential
privacy budget in the process of generating the new tag. How
much is lost depends on the FIU user, with less budget ex-
penditure corresponding to the addition of more differential
privacy noise in the process of computing the new tag. The
values of (𝜖, 𝛿) for each origin are known to the FIU user, but
not the contents of any of the three tags.

Consider an operation that is performed simultaneously over 𝑘

tags. (For example, this can be a simultaneous negation of multiple

tags.) Each tag is associated with a list of origins. Some origins may

be unique to only one of the 𝑘 tags, others may contribute to more

tags, and potentially to all 𝑘 . Let 𝐾 be the maximum number of tags

associated with any origin used in the computation.

Now, let us suppose that we use Algorithm 4 to generate the

number of fake accounts used according to distribution 𝐷𝐾
𝜖,𝛿

. We

will for this require two independent variables 𝑥0, 𝑥1 ∼ 𝐷𝐾𝜖,𝛿 , where

𝑥0 signifies the number of fake accounts with zero tag value and 𝑥1
signifies the number of fake accounts with nonzero tag value.

We use the following algorithm, which we will name B, to de-
termine what (𝜖, 𝛿) combinations are allowed.

(1) Every origin defined in the system receives an initial differ-

ential privacy budget (𝜖0, 𝛿0).
(2) At each operation in which tag values are communicated to

the FIU, each origin that contributes to 𝑘′ of the tags thus
communicated has its differential privacy budget reduced

by (2𝜖𝑘′/𝐾, 2𝛿𝑘′/𝐾), where 𝐾 is the maximum number of

tags associated with any origin used in the computation and

𝐷𝐾
𝜖,𝛿

is the distribution from which the number of fake zero-

valued tags 𝑥0 and the number of fake nonzero-valued tags

𝑥1 has been generated.

(3) The values of 𝜖 and 𝛿 in each operation are bound such that

at the end of each operation the differential privacy budget

of all origins remains nonnegative.

The choice of an appropriate (𝜖, 𝛿) pair is made at the FIU node.

One possible design for the system, for example, may allow this

choice to be made by the querying user. In this case, the software

should ensure that all origins participating in the operation have

enough differential-privacy budget remaining, before the operation

can be carried out. (In a practical implementation, it is also useful

for the software to monitor the expected amount of fake items

that are to be inserted due to a given operation, and to throttle

operations for which this expectation is unreasonably high.)

If the system is meant for ongoing operation by intelligence

analysts, it is prudent to always allow for the possibility that origins

will need to be queried again. In this case, instead of requiring that

the differential privacy budget at the end of each operation will be

nonnegative, the algorithm should require it to remain positive.

If one does notwish to allow individual querying users to set their

own differential privacy budget expenditures for each operation, a

convenient way to set this level of expenditure automatically is, for

example, to allot for each operation half (or some other set portion)

of the maximum allowed.

Theorem 4. Let 𝑆1, . . . , 𝑆𝑡 be the set of origins defined in the
system, and let 𝑎1, . . . , 𝑎𝑠 be the set of all accounts in the system. In
this context, we identify each origin with the set of results returned
by the query associated with that origin. Thus, each of 𝑆1, . . . , 𝑆𝑡 is a
subset of {𝑎1, . . . , 𝑎𝑠 }.

Define𝑀𝑖 𝑗 as the matrix such that𝑀𝑖 𝑗 = 1 if 𝑎𝑖 ∈ 𝑆 𝑗 and zero oth-
erwise. If all entries in𝑀𝑖 𝑗 are independent, then algorithm B ensures
(𝜖0, 𝛿0)-differential privacy to all 𝑆 𝑗 under all Boolean operations.

Proof. Consider a system, as above, that has undergone some

number, 𝑅, of Boolean operations, 𝑂1, . . . ,𝑂𝑅 . (For our purpose,

we can consider only the underlying negation operations, as these

are the only operations that reveal any information.) During each

of these operations, two numbers are revealed to the FIU, these

being the number of zero and the number of nonzero tag values

communicated to the FIU. As per Theorem 2, the algorithms used

for Boolean operations ensure that no other information is revealed.

Thus, the total amount of information revealed to the FIU is these

𝑥0
1
, . . . , 𝑥0

𝑅
and 𝑥1

1
, . . . , 𝑥1

𝑅
values.

Proving (𝜖0, 𝛿0)-differential privacy as per the theorem requires

us to show that the viewed values {𝑥0
1
, . . . , 𝑥0

𝑅
, 𝑥1

1
, . . . , 𝑥1

𝑅
} have,
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except with probability at most 𝛿0, the same probability to be pro-

duced by all Boolean operations, up to a multiplicative difference

of at most 𝑒𝜖0 , as the probability for them to be produced by the

same Boolean operations had one entry in𝑀 been flipped.

Let us say that𝑀𝑖 𝑗 had been flipped, and consider, accordingly,

only the differential privacy afforded to the origin 𝑆 𝑗 (given that,

by construction, there was no change to any other origin value).

For every 𝑟 in the range 1 ≤ 𝑟 ≤ 𝑅, the values of 𝑥0𝑟 and 𝑥1𝑟 are
chosen in B so as to satisfy the conditions of (𝜖𝑟 , 𝛿𝑟 , 𝐾𝑟 )-differential
privacy, for user-chosen 𝜖𝑟 and 𝛿𝑟 , where 𝐾𝑟 = max𝑗 ′

(
𝑘
𝑗 ′
𝑟

)
and

where 𝑘
𝑗
𝑟 is the number of tags simultaneously negated at operation

𝑂𝑟 that have 𝑆 𝑗 as part of their origin list.

By definition, we therefore have 𝐾𝑟 ≥ 𝑘 𝑗𝑟 , and can use Defini-

tion 4.2 to show that the distribution of no 𝑥
𝑞
𝑟 can change more

than is allowed by (𝜖𝑟𝑘 𝑗𝑟 /𝐾𝑟 , 𝛿𝑟𝑘
𝑗
𝑟 /𝐾𝑟 )-differential privacy between

any input sets 𝑋 and 𝑌 that differ by at most 𝑘
𝑗
𝑟 elements. Here,

“input set” refers to the intermediate data sent to the FIU as part of

Algorithm 2, before the addition of any noise.

In other words, if a change of a single value in 𝑆 𝑗 cannot propa-

gate to a change of more than 𝑘
𝑗
𝑟 elements in 𝑋𝑟 , the intermediate

data sent to the FIU while running operation 𝑂𝑟 (before the addi-

tion of any noise) then the value of 𝑥
𝑞
𝑟 satisfies (𝜖𝑟𝑘 𝑗𝑟 /𝐾𝑟 , 𝛿𝑟𝑘

𝑗
𝑟 /𝐾𝑟 )-

differential privacy for the set 𝑆 𝑗 .

Because all 𝑥
𝑞
𝑟 are visible to the FIU, and because the random

bits generating each are independent, we can use Theorem 3 to

determine that the overall differential privacy protection provided

by the system to 𝑆 𝑗 is the sum of all such (𝜖𝑟𝑘 𝑗𝑟 /𝐾𝑟 , 𝛿𝑟𝑘
𝑗
𝑟 /𝐾𝑟 )

values. In particular, by summing over both 𝑥0𝑟 and 𝑥1𝑟 we get

(2𝜖𝑟𝑘 𝑗𝑟 /𝐾𝑟 , 2𝛿𝑟𝑘
𝑗
𝑟 /𝐾𝑟 ), and the total value is the sum of this over all

𝑟 .

By construction, AlgorithmB ensures that this sum is always un-

der (𝜖0, 𝛿0), thus upholding the desired level of differential privacy

protection to all 𝑆 𝑗 , as stipulated by the theorem.

It remains to show, therefore, only that a change of a single value

in 𝑆 𝑗 cannot propagate to a change of more than 𝑘
𝑗
𝑟 elements in 𝑋𝑟 .

The value of𝑋𝑟 is the permuted, sanitised and refreshed concate-

nation of all values in all tags negated in 𝑂𝑟 . Because in Boolean

operations the computation of an account’s tag value only relates

to the value of the same account in the origin tags, it ultimately

depends only on whether or not the account participates in any

given origin. Specifically, a change in account 𝑎𝑖 in 𝑆 𝑗 can only

impact one tag value, that of 𝑎𝑖 , in any given tag, and even then

only in tags for which 𝑆 𝑗 is an origin. Thus, a single change in 𝑆 𝑗

can propagate to at most 𝑘
𝑗
𝑟 elements in 𝑋𝑟 by the definition of 𝑘

𝑗
𝑟 ,

and therefore the theorem is proved. □

For a discussion of the limitations of the guarantees afforded by

Theorem 4, see Appendix B.

5 PERFORMANCE
We tested the behaviour of the system against real Australian trans-

action data, kindly provided by AUSTRAC, in order to validate

that the system is able to detect actual crime typologies and actual

instances of financial crime in the real dataset. However, for the

purpose of measuring the system’s ability to scale out (as well as to
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Figure 3: Mean serial execution time vs tag size for union,
negation and intersection operations.

provide results that will be reproducible without access to classified

data), we also ran the system on synthetic, random data.

The number of customers served by each of Australia’s four

major financial institutions is approximately 15 million [12, 14], or

roughly 2
26

customers across all Australian banks. We therefore

estimate |𝑉 | at 227, for an average of 2 accounts per customer. We

generated random tags of sizes scaling up to this |𝑉 | and ran union,

negation and intersection 5 times each on every tag size tested, to

demonstrate the system’s consistent performance in each case.

Tables 1, 2 and 3 list the timing results for each operation. The

numbers reflect the “serial time” of the operations, this being the

execution time required by the FIU node plus the maximum exe-

cution time among all other nodes. The mean values for the serial

execution time are plotted in Figure 3.

Run times were measured on a distributed deployment on the

AWS cloud. Each of Australia’s four major banks was represented in

the experiment by a single EC2 g4dn.12xlarge node. These nodes

were chosen due to their large memory sizes (192GB each) as well

as having a GPU. The EC2 nodes used all have 48 vCPUs and 4

NVIDIA T4 16GB GPUs. The reported timing experiments, however,

only use a single vCPU and a single GPU per node to execute the

computations described in this paper.
4
Both the CPU and the GPU

parts of our algorithms are straightforward to parallelise, but such

parallelisation has been left for future work.

The algorithms were implemented in Go, running on the avail-

able CPUs, except for Curve25519 operations, which were imple-

mented in Cuda C++ and executed on the available GPUs.

The results show that most operations require mere seconds,

and even the heaviest operations when run at full scale (and using

only one CPU and one GPU at each node) complete in less than an

hour.

Regarding communication sizes, in our implementation cipher-

texts are transported between nodes in their extended projective

representation [9]. At 256 bytes per ciphertext, this translates to a

total of 64GB communicated for each negation at |𝑉 | = 2
27
. This

4
Some non-computational tasks such as inter-node communication run in parallel

across multiple vCPUs.
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Table 1: Union times (seconds).

|tagA| and |tagB| min max mean std relative std

100 0.06 0.06 0.06 0.00 0.01

10000 0.07 0.07 0.07 0.00 0.01

1000000 1.28 1.34 1.31 0.02 0.01

100000000 162.29 167.04 163.46 2.01 0.01

Table 2: Negation times (seconds).

|tag| min max mean std relative std

100 0.62 0.68 0.65 0.02 0.03

10000 0.69 0.75 0.72 0.02 0.03

1000000 8.18 8.37 8.30 0.07 0.00

100000000 1059.03 1068.04 1063.62 4.19 0.00

Table 3: Intersection times (seconds).

|tagA| and |tagB| min max mean std relative std

100 1.40 1.44 1.43 0.01 0.01

10000 1.61 1.77 1.72 0.06 0.03

1000000 26.35 26.69 26.54 0.14 0.00

100000000 3324.74 3358.96 3345.68 13.86 0.00

could have easily been compressible by a factor of 4 by convert-

ing the ciphertexts to a more compressed representation before

communicating them, at negligible addition to the computation

times.

6 CONCLUSIONS
The ability to perform general local Boolean computations expands

the spectrum of what a FinTracer-based system can compute obliv-

iously from linear operations alone to the entire gamut of all that a

vertex-centric program [10] running over the transaction graph can

compute in O(1). We have shown by the examples of in-between

accounts, the computation of distances, describing complex typolo-

gies and chaining operations that even a small number of such

Boolean operations can describe many complex relationships that

are meaningful to a financial investigator. Using classified data

made available by AUSTRAC for this research, we have shown that

these tools can detect actual instances of financial crime in a real

dataset.

Even when run at the scale of Australia’s national economy, our

algorithms were shown to be not only practical in both commu-

nication amounts and computation speeds, but also allowing for

interactive work, as well as for the use of our nonlinear operations

as building blocks in algorithms that are more complex and more

semantically meaningful to investigators of financial crime, thus

enabling, in a privacy-preserving way, investigation avenues that

were previously impossible, impractical, or requiring a high cost in

the privacy of uninvolved and innocent account-holders.
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A REFRESHING AFTER SANITISATION
In Algorithm 2, multiple tools are used to remove information from

a tag prior to sending the remaining information to the FIU. Among

these are “refreshing” and “sanitisation”.

Refreshing and sanitisation provide different kinds of informa-

tion erasure, which are useful in different contexts. To explain why

they are needed, and why they are needed jointly, let us begin with

a quick recap of ElGamal encryption.

When encrypting a plaintext, 𝑥 , this being an integer modulo the

elliptic curve group size, we first transform it into a group element,

a process known as encoding. The result is 𝑋 = 𝐺𝑥 , where 𝐺 is a

generator of the group. We will throughout use lowercase letters

to signify modular integers and uppercase letters to signify group

elements, as was done here.

To encrypt a message𝑚 using a private key 𝑎 and a correspond-

ing public key𝐴 = 𝐺𝑎 , we first encode𝑚 as𝑀 = 𝐺𝑚 , then generate

a random modular integer 𝑥 , known as a nonce. The ultimate ci-

phertext is (𝑀𝐴𝑥 ,𝐺𝑥 ) = (𝑀𝐺𝑎𝑥 ,𝐺𝑥 ).
This definition inherently makes the ElGamal encryption scheme

reliant on the hardness of two problems:

• First, it should be cryptographically hard to compute 𝑥 from

𝐺𝑥 . This is the discrete log problem. If computing the dis-

crete log is possible for an adversary, the private key 𝑎 can

immediately be derived from the public key 𝐴.

• Second, it should be cryptographically hard to compute𝐺𝑎𝑥

from 𝐺𝑎 and 𝐺𝑥 . This is the computational Diffie-Hellman
assumption. This assumption is needed because both𝐺𝑎 and

𝐺𝑥 are available to an attacker (the former being the public

key and the latter being a given part of the ciphertext), and

knowledge of 𝐺𝑎𝑥 allows retrieval of 𝑀 . For true crypto-

graphic security, one requires the stronger version of this

assumption, the decisional Diffie-Hellman assumption, which
is that this problem is hard even as a decision problem: given

𝐺𝑎 , 𝐺𝑥 and 𝑌 , it should be cryptographically hard to deter-

mine whether 𝑌 = 𝐺𝑎𝑥 .

For convenience, we write ciphertext tuples in additive notation.

This is to say, instead of writing the ciphertext as (𝑀𝐺𝑎𝑥 ,𝐺𝑥 ) =
(𝐺𝑚+𝑎𝑥 ,𝐺𝑥 ), we will write [𝑚 + 𝑎𝑥, 𝑥], where the square brackets
signify that all tuple elements are encoded into the elliptic curve

group.

The “refresh” operation for ElGamal is an operation that takes a

ciphertext [𝑚 + 𝑎𝑥, 𝑥] and returns a new ciphertext [𝑚 + 𝑎𝑥 ′, 𝑥 ′],
with an independent, uniformly distributed 𝑥 ′, thus disallowing
any observer of both [𝑚 + 𝑎𝑥, 𝑥] and [𝑚 + 𝑎𝑥 ′, 𝑥 ′] who does not

have the private key from being able to determine whether the two

ciphertexts carry the same encrypted message.

A completely different type of information protection is afforded

by sanitisation, which replaces [𝑚+𝑎𝑥, 𝑥] by [𝑘𝑚+𝑎𝑘𝑥, 𝑘𝑥], where
𝑘 is an independent, uniformly-distributed nonzero integer modulo

the group size.

The purpose of sanitisation is to erase from𝑚 all information

other than whether𝑚 = 0 or𝑚 ≠ 0. A zero remains a zero in the

multiplication, whereas multiplying any nonzero value by 𝑘 results

in a new ciphertext encrypting a message that is uniformly random

among all possible nonzero values.

In Algorithm 2, tags are both refreshed and sanitised before

being sent to the FIU. The reason for this is that the information

erasure provided by each operation is unrelated. Sanitisation is

required because FinTracer tags that haven’t been sanitised may

carry information that should not be sent to the FIU. For example, in

Algorithm 2 the FIU is allowed, on lines 19 and 21, to set tag values

explicitly, so it is possible that a user may encode more information

in them than just zeroes and ones. We sanitise to avoid the potential

for any such information leak.

However, even given sanitisation, refresh is still required. To

see why, consider a situation where a tag is sent from the FIU

to a financial institution and then returned without refresh from

the financial institution to the FIU without visiting other financial

institutions.

When the FIU sends the tag [𝑚 + 𝑎𝑥, 𝑥], it knows all of 𝑎,𝑚 and

𝑥 . We will consider the case𝑚 ≠ 0, as in the case𝑚 = 0 sanitisation

and refreshing are identical.

Now, the FIU receives from the financial institution a tag [𝑚′ +
𝑎𝑥 ′, 𝑥 ′], which it suspects to be the product of sanitisation from

the originally sent tag. To determine this, the FIU needs to answer

the question of whether there exists a 𝑘 value such that𝑚′ =𝑚𝑘
and 𝑥 ′ = 𝑥𝑘 .

The received message contains𝐺𝑥
′
, and by decrypting with the

private key 𝑎, the FIU can also determine from it 𝐺𝑚
′
.

The FIU can now check whether the new tag is a sanitisation of

the old tag by testing whether

(
𝐺𝑚

′
)𝑥

equals

(
𝐺𝑥
′
)𝑚

.

This process can also be used to check whether the returned

tag was a sanitised version of the sum of some specific set of tags

that were sent by the FIU, and the FIU can enumerate over such

possibilities, if their overall number is not too high.

In summary, for a party that has the private key and can also

gain knowledge of the nonce’s original integer value, 𝑥 , sanitisation

does not perform the information erasure that refreshing does, so

tags sent to it must be both sanitised and refreshed beforehand.

This is different to the situation of sending a tag to a party that

does not have the private key, where only refreshing is required.

For such a party to determine whether a tag equals its refreshed

counterpart is equivalent to a decisional Diffie-Hellman problem.

B DIFFERENTIAL PRIVACY LIMITATIONS
Throughout this paper, we discuss the privacy guarantees that

the described method for performing Boolean operations provides.

For the most part, these guarantees are afforded cryptographic

protection by the protocols employed, and in such cases we have

proved that the guarantees are upheld.

In Section 4.3, however, we introduce Algorithm B, which pro-

vides a different kind of protection, namely by use of differential

privacy. Theorem 4 provides formal guarantees for the use of Algo-

rithm B. However, unlike other forms of protection discussed in

this paper, the guarantees provided by Theorem 4 are

(1) Quite limited, and also

(2) Contingent on certain assumptions.

Our guarantees are limited in that our use of differential privacy

only protects the privacy of individual people from being associated
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with particular groups. (If 𝑆 is a set of accounts defined by any cri-

terion, it should not be possible for the FIU to ascertain whether a

particular account is in 𝑆 or not.) By contrast, our use of differential

privacy does not afford the same protection to entire groups, nor

do we attempt to obfuscate from the FIU the approximate size of

the entire set 𝑆 . Both of these may be sensitive (e.g., for commercial

reasons), but they are not protected by the algorithm. Our guaran-

tees are also limited by only covering Boolean operations, and not

any other type of operation the user may run on the system.

Our guarantees are contingent on assumptions in that Theorem 4

requires independence in the data. Chiefly, we assume that whether

any particular account belongs to the set defined by any origin is

(1) Independent of whether any other account is in the same set

(the account independence assumption), and

(2) Independent of whether the same account belongs to the set

defined by any other origin (the origin independence assump-

tion).

Consider, now, a system as described, employed for the purpose

of detecting financial crime. The veracity of the above assumptions

strongly depends on how this system is used in practice.

In this appendix, we analyse the expected usage of such a system,

determine towhat extent such assumptions are justified, and discuss

what actions operators of such a system should take in practice in

order to ensure that the desired privacy guarantees are met.

Our analysis will show that common operational scenarios do

tend to violate both account independence and origin independence,

requiring such a system, in practice, to be constantly monitored for

use and abuse.

Having said this, we note the following as mitigating factors.

First, any information reveal in our algorithms (excluding the

reveal of any final result by the original FinTracer algorithm) comes

from the transmission of data to the FIU at Step 10 of Algorithm 2.

As per Theorem 2, this reveal is solely of the number of zero and

the number of nonzero values communicated.

Second, in Algorithm 2, this transmission to the FIU is only used

by the FIU in order to perform a local computation whose results

are ultimately sent back to the financial institutions in Step 25. The

recipients gain by this no new information, because they merely re-

ceive refreshed encrypted values in an amount that they, themselves

have previously stipulated. Importantly, following this transmission

the FIU itself no longer requires the data, and it is never required

by any FIU-side user.

This being the case, we can make the following observations.

(1) Any information reveal that results from a failure of differ-

ential privacy guarantees is necessarily towards the FIU, not

towards any financial institution, and so does not run afoul

of any applicable law.

(2) The software system supporting such queries can be pro-

grammed so as not to display any of the intermediate infor-

mation that is generated for the purpose of oblivious nonlin-

ear computation, and to erase all such transient information

as soon as the operation is done and the information is no

longer needed. This would ensure that unless the software

is actively tampered with on the FIU side, no information at

all is leaked to any user, except for any final result explicitly

requested by FIU users.

Given the above, the risks posed by the system can be classified

as follows.

Intermediate Result Risk: There is the risk that FIU users

will design queries where some of the intermediate results

sent to the FIU

• Break the assumptions of Theorem 4, and

• Contain sensitive information, and

• Are exposed due to tampering of the FIU-side software.

Final Result Risk: There is the risk that FIU users will explic-

itly request from the system final results that, by themselves,

are privacy sensitive.

In the first case, the entire gamut of available cybersecurity

measures can be utilised to mitigate the system security aspect of

the risk.

To mitigate the risk portions related to the behaviour of FIU

users, which is relevant in both cases, one should make sure system

users receive the appropriate training; also, the system’s use should

be monitored.

For monitoring external to the FIU, we note that the system

runs a collaborative protocol: all financial institutions running the

protocol are aware of what FinTracer queries and what Boolean

functions are being computed, so the same monitoring can be done

by all participants. It is only the results that are privacy-protected.

In this section, we describe aspects of standard-looking use that

can cause our data assumptions to break. These are the usages that

system operators should be trained to watch out for and to avoid

as much as possible in the context of Intermediate Result Risk.

Mitigation against Final Result Risk is more straightforward:

(1) Operators should be trained only to retrieve accounts match-

ing full criminal typologies, rather than any interim results,

and

(2) The system should be programmed to automatically disal-

low some types of queries that are inherently privacy non-

preserving. For example, the systemmay automatically block

queries whose return results exceed a given size threshold.

(It is even possible to set such a threshold stochastically, us-

ing an additional layer of differential privacy, so as to hide

from the user even the exact size of the blocked result.)

B.1 Differential privacy and propagation
Theorem 4 deals only with Boolean operations. There is, however,

little reason to use the system purely for Boolean computation. The

system’s strengths come from combining the Boolean computations

described in this paper with the FinTracer algorithm, providing tag

propagation through the underlying transaction graph, which was

introduced in [5].

Tag propagation, however, voids the assumption that the values

of tags are independent between accounts.

Consider a FinTracer tag 𝑥 . This is a mapping from accounts to

encrypted values. For mathematical convenience, let us take each

account, 𝑎, and map it to a vector position 𝑝 (𝑎), then 𝑥 , defined
by 𝑥 [𝑝 (𝑎)] = 𝑥 (𝑎), can be thought of as a vector holding the same

information as 𝑥 . (This is, of course, a purely mathematical opera-

tion, not one performed during any part of the run of the algorithm:

no party involved in the computation has enough information to

construct the mapping 𝑝 . In practice, each party is only aware of a

small portion of the accounts in the domain of any tag.)
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Under this mathematical model, FinTracer propagation of 𝑥 to a

new tag, 𝑦, is mathematically equivalent to 𝑦 = 𝑀𝑥 , where𝑀 is the

adjacency matrix of the graph over which propagation is done (a

value known jointly to the computing parties) and𝑀𝑥 is matrix by

vector multiplication. For convenience, we denote the relationship

between 𝑥 and 𝑦 as 𝑦 = 𝑀𝑥 . We refer to 𝑀 as the propagation
operator of the FinTracer graph.

Given that𝑀 is a general matrix, there are relationships between

𝑥 and 𝑦 that cross single-account boundaries, and may cause a

correlation between the values assigned to multiple accounts in 𝑦,

contrary to our assumption of account independence.

The following is an example of how tag propagation, breaking

the account independence assumption, can be used to leak private

information from a FinTracer tag.

Consider a tag 𝑥 . There is some set of accounts, 𝑆 , for which

the tag values in 𝑥 are nonzero. We wish to ascertain whether a

particular person’s account, 𝑎, is in 𝑆 . Differential privacy preserva-

tion essentially means that we shouldn’t be able to determine this.

However, we will show that this is possible to do if one has access

to the total number of nonzero tag values in multiple queries, even

after the introduction of differential privacy noise.

Let us define the set 𝐴 = {𝑎}, and a new tag 𝑥 ′ whose positive
set is 𝑆 ′ = 𝑆 \𝐴.

Differential privacy noise is intended to prevent a user from

being able to determine whether there has been a change in any

single element, so it should not be possible to tell whether 𝑆 and 𝑆 ′

are the same, which is equivalent to determining whether 𝑎 ∈ 𝑆 .
However, let 𝑦 = 𝑀𝑥 and 𝑦′ = 𝑀𝑥 ′ be the images of 𝑥 and 𝑥 ′,

respectively, as mapped by some propagation operator𝑀 .

A difference of the single account 𝑎 between 𝑥 and 𝑥 ′ can trans-

late to an arbitrarily larger difference between 𝑦 and 𝑦′, depending
on the out-degree of 𝑎 in the FinTracer graph. Even if the FinTracer

graph is bounded to have low degree, one can simply continue

propagating along it, to further accentuate the difference to any

desired level.

The same trick can also be applied when only a single tag is

being queried. Consider the tag representing the set 𝑆 ∩ 𝐴. This
is non-empty if and only if 𝑎 is in 𝑆 . If we merely propagate this

tag through enough iterations, it may grow to any desired size,

assuming it started off as non-empty. But if it started off empty,

it will remain empty no matter how many times it is propagated,

making the two cases easily distinguishable.

In terms of the design of the system, our recommended handling

of this situation is to define the set underlying any tag that is a direct

output of FinTracer propagation as a new “origin”. The concern is

that this new origin may be highly correlated with other origins in

the system, which may break the assumptions of Theorem 4. To en-

sure that account independence is maintained as much as possible,

FIU operators should be trained not to work with tags of unnec-

essarily small support or with pairs of tags that are unnecessarily

similar.

B.2 Considerations when defining new origins
The assumption of origin independence is problematic in the con-

text of defining new origins, i.e. when the FIU defines a set of

accounts by use of a description that is sent out to financial in-

stitutions (e.g., in the form of a database query) for the financial

institutions to resolve.

It is an inherent problem in all differential privacy schemes that

if an attacker is given free access to query a system, by merely

repeating the same query enough times they can erode the protec-

tions provided by the differential privacy noise simply due to the

law of convergence to the mean.

Our algorithm protects against this on a technical level, by pre-

venting the same origin from being overly reused, but if a user of

the FIU node inadvertently redefines the same set through a second

description, defining by this an ostensibly-unrelated new origin,

this cannot be discovered purely using software: the same set can

be described using many semantically-identical descriptions that

software cannot equate.

There are certainly situations in which such unintentional reuse

of origin definitions may occur in the standard course of operating

a FinTracer-running system. A user trying to refine a query by

iteratively improving it may, in the process, create origin definitions

that are not identical but still quite similar, for example.

Alternatively, a new description may just happen to coincide

with some past origin defined over the course of the usage of the

system, as may easily happen for commonly useful sets.

In practical terms, it is impossible to maintain true origin in-

dependence in a system that is used over a long period of time

and has many users. However, users can be trained to avoid such

“iterative refinement”, and to consult an available library of existing

(or commonly-used) origins before defining new ones.

Once again, such training is never the sole line of defence for the

system’s differential privacy guarantees, but rather an additional

defence, if all other precautions, such as cybersecurity measures

preventing software tampering, have failed.
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