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Abstract—Oblivious sorting is arguably the most impor-
tant building block in the design of efficient oblivious
algorithms. We propose new oblivious sorting algorithms
for hardware enclaves. Our algorithms achieve asymptotic
optimality in terms of both computational overhead and
the number of page swaps the enclave has to make to
fetch data from insecure memory or disk. We also aim
to minimize the concrete constants inside the big-O. One
of our algorithms achieve bounds tight to the constant in
terms of the number of page swaps.

We have implemented our algorithms and made them
publicly available through open source. In comparison
with (an unoptimized version of) bitonic sort, which is
asymptotically non-optimal but the de facto algorithm
used in practice, we achieve a speedup of 2000× for 12

GB inputs.

1. Introduction

Although Oblivious RAM [18], [19], [43] pro-
vides a generic approach for compiling any program
to an oblivious counterpart, for computational tasks in
practice, we can often design efficient oblivious algo-
rithms that asymptotically and concretely outperform
the generic ORAM simulation. Oblivious sorting [7],
[10], [34], [40], [42] is arguably one of the most im-
portant building blocks in the design of such efficient
oblivious algorithms. Specifically, oblivious sorting is
key to common graph algorithms [8], [23], [35] in-
cluding breadth-first search [8], [23], connected compo-
nents [40], minimum spanning tree/forest [40], cluster-
ing [35], list ranking [40], tree computations with Euler
tour [40], and tree contraction [40]. Oblivious sort-
ing can also be used for securely initializing common
ORAM algorithms [45] including Path ORAM [44],
which has been deployed at a large scale in practice [1].
Moreover, any computational task that can be efficiently
expressed as a streaming-Map-Reduce algorithm has
an efficient oblivious implementation using oblivious
sort [23], [35].

Status quo of oblivious sorting. It is long known
that using sorting networks such AKS [3], oblivious
sorting can be accomplished with O(N logN) cost

where N denotes the size of the input array; fur-
ther, O(N logN) cost is known to be optimal [16],
[34] (either assuming the indivisibility model [34] or
assuming the Li-Li network coding conjecture [16]).
Unfortunately, AKS [3] is completely impractical due to
the enormous constants involved in the expander graphs
in its construction. Although more efficient O(N logN)
or Õ(N logN) oblivious sorting algorithms1 exist (e.g.,
randomized shell sort [21], bucket oblivious sort [4]
and improved variants [40]), they have not been the
schemes of choice for practical implementation either.
Instead, the famous Bitonic sort [7] is the de facto
oblivious sorting scheme in practice. Even though Bit-
noic sort has 1

4N logN(logN+1) number of compare-
and-exchanges, which is non-optimal, its simplicity and
small constant make it attractive in practice.

Oblivious sorting for hardware enclaves. In this pa-
per, we consider efficient oblivious sorting algorithms
for hardware enclaves. Our motivating application is se-
curely outsourcing data and computation to an untrusted
worker equipped with a secure processor such as Intel
SGX. The untrusted worker can be a cloud server host-
ing an outsourced encrypted database, or a blockchain
consensus node executing the smart contract logic of
confirmed transactions in a privacy-preserving manner.
Our goal is to safeguard the privacy of the data from
both software attacks (e.g., from an untrusted operating
system or co-resident applications) and physical attacks
(e.g., from the administrator of the machine).

In the past, the majority of the literature on oblivious
algorithms adopt the standard Random Access Machine
(RAM) model (i.e., the textbook model of computation
for analyzing algorithms), which focuses on minimizing
the computational overhead. However, as earlier works
have pointed out, the standard RAM model is not the
best fit for studying algorithms for hardware enclaves,
since page swaps in and outside the enclave constitute a
major performance bottleneck. Specifically, in many ap-
plications, the data size is much larger than the amount
of protected enclave memory. In these cases, the data
is stored in encrypted format in either insecure memory
or disk external to the enclave. Whenever the enclave

1. We use Õ(·) to hide poly log log factors.
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needs to fetch some data from outside the enclave, it
must swap the corresponding page into the enclave, and
meanwhile swap another page out to make room. The
page swap is a heavy-weight operation, since it involves
encryption of the page to be swapped out and decryption
of the page that is swapped in. Moreover, for Intel SGX,
we also need to make an Outside Call (OCall) in case a
disk swap is needed. Earlier studies [45] have provided
detailed benchmarking results showing that the cost of
a 4KB page swap can be 66× more expensive than
moving a 4KB page in memory.

Challenges. Therefore, to design concretely efficient
oblivious sorting algorithms for hardware enclaves, we
are faced with the following two main challenges.
1) First, we would like to have an algorithm whose

computational overhead is both asymptotically op-
timal (i.e., O(N logN)), and concretely better than
the de facto O(N log2 N) bitonic sort for moderate
to large data sizes.

2) We would like to have algorithms that are not only
optimal in terms of computational overhead, but
also optimal in terms of page swaps. This model of
algorithm design matches the goal of the classical
external-memory model [2].

3) Although a few earlier works [10], [20], [40] have
constructed asymptotically optimal oblivious sort-
ing algorithms in the external-memory model, these
algorithms are not practically efficient. Therefore,
another interesting question is whether we can get
an optimal external-memory oblivious sorting algo-
rithm that is tight to the constant in the big-O.
Throughout the paper, we use the following notation

which is standard in the external-memory algorithms
literature: we use M to denote the size of the enclave’s
protected memory, B to denote the page size, and N
to denote the number of input elements.

1.1. Our Results and Contributions

Asymptotically and concretely optimal external-
memory oblivious sorting. We propose two new obliv-
ious sorting algorithms for hardware enclaves, called
flex-way butterfly o-sort and flex-way distribution o-
sort, respectively. Both algorithms achieve asymptotic
optimality in both the computational overhead and num-
ber of page swaps, with small constants in the big-O.
Our algorithms are designed to minimize the number
of page swaps which is a heavy-weight operation for
hardware enclaves. Specifically, the flex-way butterfly
o-sort algorithm achieves roughly 2N

B logM
B

N
B page

swaps, and the flex-way distribution o-sort achieves
roughly N

B logM
B

N
B page swaps for practical choices of

M,N,B, i.e., when B = logc N for some constant c
and M ∈ Bω(1) (we call this the “strong tall cache as-
sumption”). Due to the lower bound of [2], N

B logM
B

N
B

number of page swaps is tight to the constant.

Table 1 shows the performance of our algorithms in
comparison with prior work. Here we use the number of
compare-and-exchanges to characterize the computation
overhead, since in our schemes, the cost of compare-
and-exchanges dominates the computational overhead.
For completeness, besides the strong tall cache assump-
tion mentioned earlier, which is a fit for hardware
enclaves, the table also gives the performance of our
algorithms (including the constant in the big-O) for the
standard tall cache assumption commonly adopted in
the standard external-memory algorithms literature.

Results on oblivious shuffling. As a by-product, we
also get efficient external-memory algorithms for obliv-
ious shuffling. We list these results also in Table 1.
Oblivious shuffling is also considered an important
primitive in the design of oblivious algorithms, be-
cause various prior works [5], [38], [46] showed a
paradigm for designing efficient oblivious algorithms:
first obliviously shuffle the input, and then design a
corresponding oblivious algorithm for a shuffled array
— for various computational tasks, we can enjoy more
efficient oblivious algorithms for an obliviously shuffled
array than an arbitrary input array.

Technical highlight. To achieve the aforementioned
performance bounds, we devise some new building
blocks which may be of independent interest. Our algo-
rithm is inspired by the bucket oblivious sort algorithm
by Asharov et al. [4] as well as the multi-way gen-
eralization proposed by Ramachandran and Shi [40].
However, previously, these algorithms are studied in a
theoretical context, and as Table 1 shows, their concrete
performance suffers. One interesting technical contri-
bution we make is to devise a new p-way MergeSplit
algorithm which is at the core of the (multi-way) bucket
oblivious sort. Our new p-way MergeSplit makes use
of the following techniques. First, in one key building
block called Balance, we rely on an oblivious Euler
tour algorithm to balance the number of keys in the
left and right halves of the array. To make the Euler
tour algorithm oblivious without incurring additional
overhead, our key observation is a packing trick: when
the number of ways p is sufficiently small, we can pack
the entire adjacency matrix of the graph into a single
memory word, which allows us to access an entry of the
matrix obliviously with constant overhead. We describe
various additional algorithmic tricks in Section B.

Open-source implementation. We implemented our al-
gorithms and evaluated their concrete performance. The
core algorithm implementation (counting both oblivious
sorting algorithms) has 1,600 lines of code. Although
our implementation uses Intel SGX, the algorithm de-
sign should work for any common hardware enclave
architecture. Our implementation has been made open
source at https://github.com/odslib/oblsort.

Evaluation. We evaluated the performance of our obliv-
ious sorting algorithms against the prior work. The
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TABLE 1: Comparison with prior works. The theoretically optimal construction [40] suffers from astronomical
constants in computation due to the use of expander graphs. For algorithms in our results, we include an additional
N/B number of page swaps due to rounding in the worst case.

Algorithm Page Swaps Exchanges

Prior works
Theoretically optimal [40] O(NB logM

B

N
B ) O(N logN)

Bitonic (unoptimized) [7] ( 12 + o(1))NB log2 N ( 14 + o(1))N log2 N

Bitonic (optimized) [7], [15] ( 12 + o(1))NB log2 N
M ( 14 + o(1))N log2 N

Randomized Shell Sort† [21] (24 + o(1))N log N
M 24N logN

Bucket o-sort [4] (4 + o(1))NB log N
B (1 + o(1))N logN log2 logN

Multi-way bucket o-sort∗ [40] (17 + o(1))NB logM
B

N
B (16 + o(1))N logN log logN

OR-shuffle [42] ( 12 + o(1))NB log2 N
M ( 14 + o(1))N log2 N

Our results
Standard tall cache assumption: B ≥ log2 N and M ≥ B2:

Flex-way butterfly o-sort ((3 + o(1)) logM
B

N
B + 1)NB (2.23 + o(1))N logN

Flex-way butterfly o-shuffle ((2 + o(1)) logM
B

N
B + 1)NB (2 + o(1))N logN

Strong tall cache assumption: B = logc N and M ∈ Bω(1):

Flex-way butterfly o-sort ((2 + o(1)) logM
B

N
B + 1)NB (max(c, 1) + 1.23 + o(1))N logN

Flex-way distri. o-sort ((1 + o(1)) logM
B

N
B + 1.5)NB

1
2 (c+ 1 + o(1))N logN log logN

log log logN

Flex-way butterfly o-shuffle ((1 + o(1)) logM
B

N
B + 1)NB (max(c, 1) + 1 + o(1))N logN

∗: We replaced the SPMS algorithm in [40] with external-memory merge sort for better concrete performance.
†: Parametrized with inverse-polynomial failure probability.

results show that for sorting an array of 100 million
128-byte elements, depending on whether disk swaps
are incurred, our flex-way butterfly o-sort is 246× (or
2000×) faster than an unoptimized recursive implemen-
tation of bitonic sort, and at least 12.4× (or 7.6×)
faster than the multi-way bucket o-sort algorithm of
Ramachandran and Shi [40]. We also implemented an
optimized version of bitonic sort using the optimizations
in ObliDB [15]. For the same data size as above, our
flex-way butterfly o-sort is 4.1× (or 4.2×) faster than
the optimized version of bitonic; and at a larger data size
of 1 billion with 200-bytes-wide elements, our flex-way
butterfly sort is 7.2× (or 4.8×) faster than the optimized
bitonic sort.

For our flex-way distribution o-sort, although it
incurs fewer page swaps than our flex-way butterfly
o-sort, the computational overhead is slightly higher.
Therefore, in a scenario without disk swaps, its perfor-
mance is roughly comparable to our flex-way butterfly
o-sort. With disk swaps, our flex-way distribution o-
sort is 2.4× slower than our flex-way butterfly o-sort
for sorting an input array of 100 million entries each of
128 bytes. The reason is that the flex-way distribution
o-sort has a preprocessing phase that requires randomly
accessing pages on disk, and for the SSD drive we use,

random access is much slower than sequential access.
We also compare the performance of our oblivious

shuffling algorithm with prior work. For shuffling 100
million 128-byte elements, depending on whether disk
swaps are involved, our flex-way butterfly o-shuffle is
5.5× (or 7.5×) faster than OrShuffle [42] and 16× (or
10.7×) faster than the multi-way bucket shuffle [40].

2. Preliminaries

2.1. Problem Definition and Threat Model

Problem definition. We consider a general sorting ab-
straction where the input array contains N elements,
each with a comparison key (or key for short) and a
payload string. We assume that the key fits in one
memory word, whereas we didn’t place any restriction
on the payload length. The goal is to sort the input
array by the elements’ keys. For shuffling, the input is
the same, and we want to output a random permutation
of the input array.

Threat model. We assume that the server utilizes secure
hardware enclaves, such as Intel’s SGX, to ensure the
integrity of computations. Although recent studies have
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revealed vulnerabilities in off-the-shelf trusted hard-
ware, such as Spectre [30] and Foreshadow [47], this
paper does not address the design of provably secure
trusted hardware. While Intel’s SGX is employed as a
test-bed to showcase our ideas, our algorithmic con-
structions are applicable to various existing hardware
enclave technologies.

Due to the limited capacity of enclave’s secure
memory, a page swap mechanism is needed to retrieve
encrypted pages from external storage while evicting
some pages from the internal memory — see Sec-
tion E.3 for detailed explanation. During the page swap,
the operating system can observe the page-level ac-
cesses and tamper with the pages it provides. Further,
we assume that the OS can also monitor fine-grained
memory accesses within the enclave, e.g., through well-
known cache-timing attacks [9], [41].

2.2. Computational Model

We assume that the CPU has a constant number of
registers. To capture the amount of data transfer across
the enclave’s boundary, we adopt the external-memory
model [2] where we treat the enclave’s memory as the
“cache”, and the outside insecure memory or storage as
the “external memory”.

Notations. Throughout the paper, we use N to de-
note the number of input elements we want to sort or
shuffle. When we use divide-and-conquer or recursion
techniques, we often need to denote the size of a
subproblem. We often use n to denote the size of a
subproblem, and we explicitly distinguish n from N .

2.2.1. Word Size and Instruction Set. We assume that
each memory word is at least logN bits long, i.e., a
memory word can at least store an index into the array.
We assume that the following operations on words take
constant time: integer addition, multiplication, bitwise
AND, XOR, and SHIFT. Using these operations, we
can construct a series of constant-time operations on
memory words, as elaborated in Section E.2. Besides,
we assume that generating a random (or cryptographi-
cally secure pseudo-random) bit takes constant time.

2.2.2. SGX Enclave and External-Memory Model.
As mentioned in Section 1, the external-memory
model [2] is a great fit for hardware enclaves like Intel’s
SGX. In particular, we care about optimizing both the
computation overhead and the number of page swaps.

2.3. Background on Bucket Oblivious Sort

We first review some background on bucket oblivi-
ous sort by Asharov et al. [4] and a subsequent multi-
way variant by Ramachandran and Shi [40].

2.3.1. Original Bucket Oblivious Sort. Asharov et
al. [4]’s idea is to first design an oblivious random
bucket assignment algorithm, which randomly assigns
each input element to one of O(N/Z) output buckets,
each of poly-logarithmic capacity Z; further, the oblivi-
ousness property requires that the access patterns do not
leak the destination bucket of each element. Then, from
the oblivious random bucket assignment, they get an
oblivious shuffling algorithm, which randomly permutes
the inputs without revealing the permutation. Finally,
they can apply any non-oblivious, comparison-based
sorting algorithm to the shuffled array. Specifically, their
algorithm works as follows:

Oblivious random bucket assignment. Given an input
array of length N , the goal is to obliviously assign each
element into a random bucket of poly logN capacity
Z, and there are in total 2N/Z buckets. In Asharov et
al. [4], both Z and N must be a power of 2. Notice
that each bucket will be half full in expectation.

To achieve this, Asharov et al. [4] uses a butterfly
network of buckets, each also of capacity Z. Each
bucket can contain real elements and fillers. The levels
in the butterfly network are numbered 0, 1, . . . , log 2N

Z ,
and each level has 2N/Z buckets. Initially, a random
label of log 2N

Z bits is assigned to each input element.
The label denotes which final-layer bucket the element
goes to. They place exactly Z/2 input elements in each
bucket at layer 0, and pad the buckets to a full capacity
with fillers. Then, all elements are routed to their des-
tination buckets in the final layer along the topology of
the butterfly network. In the butterfly network, a pair
of buckets in level ℓ route to a pair of buckets in level
ℓ + 1 — this is accomplished through a MergeSplit
operation. The MergeSplit operation takes two input
arrays (i.e., buckets) each of size Z, where each array
contains real elements marked with either 0 or 1, as
well as some fillers. MergeSplit then routes each real
element to either the left output bucket or the right
output bucket in layer ℓ + 1 according to their mark,
and each output bucket is again padded with fillers to
a maximum capacity. Specifically, the ℓ-th bit of the
random label is used as the mark at level ℓ.

Oblivious shuffling. An oblivious shuffling algorithm
can be obtained by first running an oblivious random
bin assignment algorithm on the input array and then
sorting within each bucket. The real elements are then
extracted from each bucket — this step reveals the
number of real elements in each bucket, but Asharov
et al. [4] proved that this information is simulatable
without knowledge of the input array.

Oblivious sort. An oblivious sort algorithm can be
obtained by first applying an oblivious shuffling algo-
rithm on the input, and then applying any non-oblivious,
comparison-based sorting algorithm on the outcome.

Efficiency. Asharov et al. [4] suggested a couple ways
to instantiate the MergeSplit primitive.
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• For asymptotically optimal computation overhead,
they realize each MergeSplit using O(1) number
of linear-time oblivious compactions [39]. In this
way, the resulting oblivious shuffling and sorting
algorithms would achieve O(N logN) computation
overhead, but they did not propose a practically
efficient instantiation of linear-time oblivious com-
paction. Known constructions are complicated and
suffer from astronomical constants due to their use
of expander graphs.

• Alternatively, they suggested using bitonic sort [7]
or an O(n log n) deterministic 0-1 sorting algo-
rithm [34] proposed by Lin, Shi, and Xie to instantiate
the MergeSplit. These algorithms are more practi-
cal but the resulting oblivious shuffling and sorting
algorithms would have O(N logN(log logN)2) or
O(N logN log logN) computation overhead assum-
ing Z = poly logN .

Asharov et al. [4] did not consider how to implement
the algorithm efficiently in an external memory model.

2.3.2. Multi-way Generalization. Ramachandran and
Shi [40] proposed a multi-way generalization of the
bucket oblivious sort algorithm, where they insisted the
number of ways be a power of 2. Take 4-way as an
example. In the original bucket oblivious sort, we look
at the next bit of the element’s label at each level to
decide whether to route the element left or right. In
a 4-way instantiation, we look at the next two bits of
the element’s label at each level to route it in one of
the four ways. Equivalently, this can be interpreted as
merging each 2 × 2 batch of 2-way MergeSplit gates
in the original bucket oblivious sort into a single 4-way
MergeSplit gadget.

Specifically, Ramachandran and Shi [40] suggested
using p ∈ Θ(logN) ways to reduce the number of
levels in the butterfly network by a Θ(log logN) factor.
They suggested using the following approaches for
instantiating each p-way MergeSplit as well as the non-
oblivious, comparison-based sorting algorithm to be
applied to the shuffled array:
• For optimal asymptotics, they suggested using the

AKS sorting network [3] or an optimal sorting net-
work for log p-bit keys to instantiate the p-way
MergeSplit. Further, they suggested using Sample
Partition Merge Sort (SPMS) [12] to instantiate the
non-oblivious, comparison-based sorting. In this way,
the resulting sorting algorithm achieves O(N logN)
computational overhead and O(NB logM

B

N
B ) page

swaps, both of which are asymptotically optimal.
• For a more practical instantiation, they applied a

bin-packing algorithm based on bitonic sort [7],
[11] to instantiate the p-way MergeSplit, and they
suggested a new method to instantiate the non-
oblivious, comparison-based sort. The resulting algo-
rithm achieves O(N logN log logN) computational
overhead, and O(NB logM

B

N
B ) page swaps.

2.4. Why Prior Approaches are Slow

To the best of our knowledge, the closest to what we
want for hardware enclaves is the (practical) oblivious
sorting algorithm by Ramachandran and Shi [40], which
achieves O(N logN log logN) computational overhead
and O(NB logM

B

N
B ) page swaps (see Section 2.3).

However, Ramachandran and Shi’s (practical) al-
gorithm [40] also suffers from several inefficiencies
asymptotically and concretely:
• Multi-way MergeSplit. They lack an efficient instanti-

ation of the p-way MergeSplit. Specifically, they use
bitonic sort, which is asymptotically non-optimal.

• Rounding. They pad the input array size to the next
power of 2, introducing a 2× factor in both compu-
tation and page swap overhead in the worst case.

• Cache-agnostic restriction. They propose a cache-
agnostic algorithm, which cannot be configured with
the parameters M and B [17]. Due to the specific
recursion technique adopted by their cache-agnostic
algorithm, they effectively require that the number of
levels of the multi-way butterfly network be a power
of 2 as well. This introduces another 2× factor in
the number of page swaps. For the hardware enclave
setting, we typically know the parameters M and B
upfront, so it is unnecessary to insist on having a
cache-agnostic algorithm.

• Slack parameter. They insist that each bucket is half
full, which introduces up to 2× overhead to both
computation and page swaps.

• Transposition. They use a matrix transpose algorithm
to rearrange the array between two recursive calls,
leading to another 2× increase in the number of page
swaps. It also incurs some additional computation but
is dominated by other computational costs.

• Memory marshalling overhead. Because their algo-
rithm is not in-place, the enclave’s memory usage
effectively increases by 2×. Consequently, their batch
size is reduced by a factor of 2×, which affects the
concrete performance.

• Other inefficiencies. Ramachandran and Shi [40] sug-
gested using the SPMS algorithm [12] for instantiat-
ing the non-oblivious, comparison-based sort. Unfor-
tunately, the SPMS algorithm holds more theoretical
interest than practical application. Since the cache-
agnostic property is not needed, we can instead use
more efficient instantiations such as external-memory
merge sort. In fact, the constants in Table 1 already
assumes we have replaced the SPMS algorithm with
external-memory merge sort.

3. New Building Blocks

3.1. Balance

Our crucial contribution towards constructing an
efficient oblivious sort is an efficient multi-way
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MergeSplit algorithm, which in turn relies on a central
building block called Balance.

Syntax. The Balance algorithm takes as input an array
A containing n elements, each marked with a key from
{0, 1, . . . , p − 1}. It is promised that each distinct key
appears even number of times. The goal of Balance is
to rearrange the array A such that

• each key appears the same number of times in the
left and right half of the array; and

• the last element of A is the same as the input array.

The requirement of preserving the last element of the
array is used in later building blocks when the array
length is not a power of 2 — see Section D.

Parameter requirements. We require that p ≤
min(

√
logN,n).

Intuition: translate Balance into an Euler-tour on the
exchange graph. First, we pair up elements from the
left and right halves of the array A, specifically A[i] and
A[n/2+i] for each i ∈ 0, . . . , n/2− 1. Imagine now we
scan through all the pairs, and whenever we encounter
a pair, we want to decide whether to exchange them or
not. Our goal is that after the exchanges, the left and
right halves are balanced for every key.

We can equivalently think of this as a graph prob-
lem. We create a multi-graph G (called the exchange
graph), whose vertices correspond to the p distinct keys
{0, 1, . . . , p − 1}. If an element with the key u is
paired with an element with the key v, we draw an
edge between the vertices u and v. Observe that the
resulting multi-graph may have parallel edges and self-
loops. Further, since each key appears an even number
of times in the input array, every vertex in G has an
even number of incident edges (each self-loop counts
twice).

Now, our goal is to orient the edges (i.e., assign a
direction to each edge), such that every vertex has the
same in-degree and out-degree. In particular, if there is a
directed edge (u, v), it means that during one encounter
with the pair u and v, we should rearrange them such
that u appears on the left and v appears on the right.
Clearly, if every vertex has the same in-degree and out-
degree, it means that the corresponding key appears the
same number of times in the left and right halves.

To achieve this, we find an Euler tour in the ex-
change graph G and then orient the edges accord-
ingly. To make the algorithm oblivious and efficient,
we preprocess G to compress it into a simple graph. In
particular, the preprocessing removes parallel edges and
self-loops as they occur (see lines 4-6 of Algorithm 1).
More specifically, if there are r edges between two
vertices u and v, we do the following preprocessing:

• Case 1: r is even. In this case, we can assign r/2 of
these edges one direction and the remaining r/2 the
opposite direction. We can prune all these r edges,
i.e. there is no edge left between u and v.

• Case 2: r is odd. In this case, we can assign (r−1)/2
of these edges one direction, and (r−1)/2 of them the
opposite direction. We can prune these r − 1 edges,
such that there is only one edge left between u and
v whose direction remains to be assigned.

With the above pre-processing, the pruned graph G
always has 0 or 1 edge remaining between every pair
of vertices. Therefore, the total number of edges is at
most p2 ≤ logN , and the adjacency matrix can hence
fit in a single memory word. It is also easy to see that
in the pre-processed graph, all vertices still have even
degree. At this moment, we find an Euler tour to orient
the remaining edges (see lines 7-12 of Algorithm 1).

If the Euler tour we find causes the last pair of
elements to be swapped, we reverse the Euler tour rather
than swap the elements (see line 14-15 of Algorithm 1).

Example. Figure 1a depicts the network structure of
the Interleave (see Algorithm 2) algorithm which calls
Balance as a building block. In the first level, the
input array has the keys [0, 2, 0, 1, 1, 1, 2, 2, 1, 0, 0, 2]
and p = 3. The union of the solid and dashed edges in
Figure 1b depict the multi-graph G. The dashed edges
will be oriented and pruned during the preprocessing.
We then run an oblivious Euler-tour algorithm to orient
the remaining solid edges as depicted in Figure 1c.

Oblivious Euler-tour algorithm for small graphs.
Without the obliviousness requirement, there is a stan-
dard Euler-tour algorithm with O(p2) overhead where
p2 is the maximum number of edges for a graph with
p vertices. Unfortunately, the standard Euler-tour al-
gorithm is not oblivious. Our key insight is that we
can have an oblivious version of the standard Euler-
tour algorithm, as long as the adjacency matrix of the
graph can fit in a single memory word, that is, the
number of vertices p ≤

√
logN . In this way, we can

obliviously access each entry of the adjacency matrix by
invoking O(1) word-level operations supported by the
RAM. Further, to ensure obliviousness, we also need to
make sure that the Euler-tour algorithm does not abort
prematurely which may leak the number of edges in
the graph. In our oblivious implementation, we make
sure that the loop always iterates for a fixed number of
iterations (see line 8 of Algorithm 1).

Detailed algorithm description. We give a full descrip-
tion of our Balance algorithm in Algorithm 1. Basically,
• Construct pre-processed graph. Lines 4-6 construct

the simple graph G where parallel edges and self-
loops have been pruned. This part requires O(n)
numerical computation and no exchange.

• Euler tour. Lines 7-12 finds an Euler tour using
depth-first search (DFS), and the orientation of the
edges are stored in another directed simple graph D
whose adjacency matrix can also be packed into a
single word. Starting from vertex 0, we traverse G
through unvisited edges until a dead end is reached.
The unvisited edge can be indexed using the least
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Algorithm 1 Balance(A, p)
Input: Input array A contains n elements each marked
with a key in {0, 1, ..., p− 1}. Let ki denote the key of
the i-th element. Each key occurs even times.
Output: A is rearranged such that each key appears
the same number of times in the left and the right half.
Also, the last element of A should not change.
// All if conditionals use fake accesses to ensure that the
access patterns are identical for both branches.

1: n← |A|, m← n/2
2: if n = 2 then return
3: Construct a simple graph G and digraph D, both

with p vertices numbered from 0 to p − 1 and
no edge initially. Represent each graph with an
adjacency matrix and pack it in a word.

4: for i← 0 to m− 1 do
5: if (ki, ki+m) ∈ G then prune (ki, ki+m) of G
6: else if ki ̸= ki+m then add (ki, ki+m) to G.
7: Start the walk at vertex t← 0.
8: for p+min(m, 1

2p(p− 1)) iterations do
9: if ∃ v such that (t, v) ∈ G then

10: Add (t, v) to D and delete it from G.
11: t← v
12: else t← min(t+ 1, p− 1)

13: For all 0 ≤ u < v < p, add directed edge (u, v) to
D if there is no edge between u and v in D.

14: if (km−1, kn−1) /∈ D then reverse all edges in D.
15: Reverse the edge between km−1 and kn−1 in D.
16: for i← 0 to m− 2 do
17: Exchange A[i] and A[i+m] if (ki, ki+m) /∈ D.
18: Reverse the edge between ki and ki+m in D.

significant bit (LSB) operation as described in Sec-
tion 2.2.1. As each vertex has an even degree, we are
guaranteed to return to the starting vertex. We then
move to the next vertex and repeat the process until
all the edges are visited. To make the search obliv-
ious, we always pad the number of iterations to be
the worst-case upper bound over all possible inputs,
which is the number of vertices plus the number of
edges. In other words, we perform fake operations
after all vertices have been visited. This part requires
O(p + min(p2, n)) = O(min(logN,n)) numerical
computation as long as p ≤ min(

√
logN,n), and no

exchange.
• Conditional exchange of elements. Lines 13-18 ex-

change the element pairs based on the orientation
of their corresponding edge in D. Some pairs may
not have any corresponding edge in D because they
appear even number of times and all the edges got
pruned. Therefore, we add an edge in D between any
pair that is not directly connected (the direction can

be arbitrary, see line 13). Every time a conditional
exchange occurs between two elements with keys u
and v, we reverse the edge in D between vertices u
and v in D (see line 18), so that next time u and v
will be arranged in the opposite order. This effectively
guarantees that the pruned edges between u and v
are assigned to either direction the same number of
times. This part takes O(n) numerical computation
and n/2− 1 exchanges.

Finally, we can always avoid exchanging the last
element pair by conditionally Negate the adjacency
matrix and use a reversed Euler tour (see line 14-15
of Algorithm 1).

Fact 3.1 (Computation overhead of Balance). The
Balance algorithm requires O(n) numerical computa-
tion and n/2− 1 exchanges.

Proof. We can obtain the fact by summing up the cost
of each component analyzed above.

Claim 3.2 (Obliviousness of Algorithm 1). The memory
access patterns of Algorithm 1 are deterministic and
depend only on the length of the input array and the
parameter p but not the contents of the array.

Proof. As mentioned, the adjacency matrices of G and
D can each be packed into a single word. In this way,
accessing an entry in the adjacency matrices requires
O(1) word-level operations. Further, recall that all if
conditionals use fake accesses to ensure that the access
patterns for both branches are the same. With this
in mind, it is easy to see that lines 4-6 where we
construct the pre-processed graph G have deterministic
and fixed access patterns. Lines 7-12 where we find
the Euler tour iterate for a fixed number of times and
the access patterns within each iteration of the loop
are fixed. Similarly, Lines 13-18 where we perform the
actual conditional exchanges also enjoy deterministic
and fixed access patterns.

3.2. Interleave

Syntax. Interleave receives an input array containing
n = pZ elements marked with keys in {0, 1, . . . , p−1}.
It is promised that each distinct key appears exactly Z
times. The output is a rearranged array such that the
i-th element has key i mod p. For p = 3 and Z = 4
as an example, the output elements should have the key
sequence 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2.

Parameter requirements. We require that Z be a
power of two and p ≤

√
logN .

Intuition: recursive Balance. The basic idea behind
Interleave is to recursively balance the number of each
key on the left and right half of the array. At the base
case, each key appears only once, and we can use a
permutation network to arrange them in order.
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(a) Interleave network for p = 3 and Z = 4

(b) Level 1 exchange graph. (c) Euler tour.

Figure 1: An example of the Interleave algorithm. The
algorithm recursively balances the input and runs per-
mutation at the base case. In Figure 1a, the dotted lines
mean the two elements will not be swapped. In Figure
1b and 1c, solid and dashed edges jointly denote the
exchange graph G before pre-processing, and the solid
edges denote the graph G after pre-processing.

Algorithm 2 Interleave(A, p)
Input: The input array A contains n = pZ elements
each marked with a key from {0, 1, . . . , p − 1}. Each
key appears exactly Z times and Z is a power of two.
We require p ≤

√
logN .

Output: A is rearranged such that the i-th element has
key i mod p.

1: n← |A|
2: if n = p then: PERMUTE(A); return
3: BALANCE(A, p)
4: INTERLEAVE(A[0 : n

2 − 1], p)
5: INTERLEAVE(A[n2 : n− 1], p)

Detailed algorithm. Algorithm 2 shows the Interleave
procedure. At line 3 we call Balance so that each key
appears Z/2 times on the left and Z/2 times on the
right. As Z is a power of two, we can call Interleave
on both halves recursively.

For the base case, there are p elements with distinct
keys in {0, 1, ..., p− 1}. In Section D, we show how to
modify Waksman’s permutation network to sort them
obliviously in p log p time for p ≤

√
logN .

Fact 3.3 (Computation cost of Interleave). The
Interleave algorithm requires O(n log n) numerical
computation and no more than 1

2n(log n + log p) ex-
changes.

Proof. Deferred to Section C.3.1.

Claim 3.4 (Obliviousness of Algorithm 2). The memory
access patterns of Algorithm 2 are deterministic and
depend only on the length of the input array and the
parameter p but not the contents of the array.

Proof. Deferred to Section C.3.2.

3.3. Multi-way MergeSplit

Syntax. A p-way MergeSplit takes in p input buckets
each containing Z elements. Each element is either a
real or a filler element. Every real element has a key
in 0, 1, ..., p− 1, and a payload string. The goal of the
MergeSplit function is to redistribute the real elements
so that all elements with key j appear in the j-th output
bucket. All output buckets are padded with fillers to a
maximum capacity of Z. If any bucket overflows (i.e.,
if any key appears more than Z times in the input), the
algorithm simply aborts. For the special case p = 2, this
is exactly the MergeSplit primitive used in the original
bucket oblivious sort by Asharov et al. [4].

Parameter requirements. We require the number of
ways p ≤

√
logN and the bucket size2 Z ≤ 2

√
logN .

We require the bucket size Z to be a power of 2, but
do not require p to be a power of 2. This weakened
precondition provides flexibility for constructing the
butterfly network in Section 4.1.

Obliviousness requirement. For obliviousness, we re-
quire that for any input where each key does not appear
more than Z times, the memory access patterns of the
algorithm are deterministic and the same.

Intuition. Our new MergeSplit algorithm has a pre-
processing step to obliviously mark every filler element
also with a key so that each distinct key appears exactly
Z times. Next, we call Interleave to rearrange elements
into chunks of size p where each chunk contains el-
ements with keys ordered from 0 to p − 1. Finally,
we create the buckets by extracting the corresponding
elements from each chunk.

Detailed algorithm. Algorithm 3 shows the MergeSplit
procedure. The preprocessing can be achieved with two
linear passes on the keys. The first pass counts the
occurrences of each distinct key. If any key appears
more than Z times, we detect a bucket overflow and
simply abort. The second pass marks the fillers and
ensures that each key appears Z times. We make both

2. Our flex-way butterfly sorting network later chooses Z =
logc N for a constant c > 1 to get both negligible in N failure
probability and optimal computational overhead.
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Algorithm 3 p-way MergeSplit for p ≤
√
logN

Input: A := A0||A1|| . . . ||Ap−1 where p ≤
√
logN .

For j ∈ {0, . . . , p − 1}, each bucket Aj has size Z
where Z is a power of 2 and Z ≤ 2

√
logN . Each Aj

contains real and filler elements; and each real element
has a key from {0, . . . , p− 1}.
Output: p buckets denoted A′ = A′

0||A′
1|| . . . A′

p−1. We
want to route all real elements in the input with key k
to A′

k, padded with fillers to a size of Z. Output Abort
if any bucket overflows.

Algorithm:
1⋆ For k ∈ {0, . . . , p − 1}, let Ck ← Count of real

elements marked with key k in A.
2 Abort if any Ck > Z.
3⋆ For k ← 0 to p − 1: mark the next Z − Ck fillers

with the key k.
4 Interleave(A, p)
5 For k ← 0 to p−1: A′

k ← [A[k], A[p+k], ..., A[p(Z−
1) + k]]

⋆: can be accomplished obliviously with a linear scan
as long as all counts fit in a single word

passes oblivious by packing the counts in a single
word and updating them through the Extract and Set
operations defined in Section 2.2.

Fact 3.5 (Computation cost of MergeSplit). The
MergeSplit algorithm requires O(pZ log(pZ)) numeri-
cal computation and no more than pZ( 12 logZ+log p+
1) exchanges.

Proof. Deferred to Section C.3.3.

Claim 3.6 (Obliviousness of Algorithm 3). As long
as the input promises that each key appears no more
than Z times, then the memory access patterns of
Algorithm 3 are deterministic and depend only on the
length of the input array and the parameter p but not
the contents of the array.

Proof. Deferred to Section C.3.4.

To conclude, in Section 3, we presented a novel
multi-way MergeSplit algorithm. For p ∈ Θ(

√
logN)

and Z ∈ Ω(logN), our new MergeSplit algorithm
reduces computational overhead by a factor of (2.25−
o(1)) log logN compared to the oblivious Bin-Packing
algorithm [11], [40] based on bitonic sort. It also out-
performs an implementation using two-way MergeSplit
based on OrCompact [42] with a savings factor of
(0.25 − o(1)) log logN . In terms of actual run time,
our algorithm is about 18 times faster than Bin-Packing
and 2 times faster than the implementation based on
OrCompact (see Section 5 Figure 8).

4. Flex-Way Butterfly Oblivious Shuffling
and Sorting Algorithms

Given our new p-way MergeSplit algorithm in Sec-
tion 3.3, we use a multi-way butterfly network like
Ramachandran and Shi [40] to build oblivious shuf-
fling and sorting. In this section, we describe several
optimizations at the butterfly network level which fur-
ther improve the computational overhead by up to 4×,
and the number of page swaps by up to 8× under
the standard tall-cache assumption that M ≥ B2 and
B ≥ log2 N . In particular, we save up to 2× in both
metrics with a new rounding technique, up to 2× in
both metrics with a tightened slack factor, and up to
2× in page swaps that stems from their need to be
cache-agnostic. Moreover, under a strong tall cache
assumption, we save another 2× factor in page swaps
by eliminating the need for matrix transposition. In
Section B.1, we also describe how to search for optimal
concrete parameters for hardware enclaves.

4.1. Flex-Way Butterfly Network

We explain our flex-way butterfly network designed
for the oblivious random bucket assignment. Recall
that we can get oblivious shuffling and sorting from
oblivious random bucket assignment.

The slack factor ϵ. Asharov et al. [4] and Ramachan-
dran and Shi [40] require that each bucket is half loaded
in expectation. A simple observation is that as long as
the bucket size Z is super-logarithmic, it suffices to let
each bucket be 1/(1+ϵ) loaded in expectation to ensure
negligibly small failure, where we set ϵ ∈ Θ( 1

log logN ).
In practice, when we fix Z, we can choose ϵ accordingly
based on the concrete security parameter desired — see
Section B.1. In this way, the number of buckets per level
is (1 + ϵ)N/Z.

A new rounding technique. The earlier work of Ra-
machandran and Shi [40] (which in turn builds on
top of Asharov et al. [4]) requires rounding the input
length to the next power of 2. This can incur a 2×
overhead in the worst case. To get rid of this 2× factor,
we no longer insist on the number of ways to be a
power of 2, and moreover, we allow the number of
ways to be non-uniform in the entire butterfly network.
More concretely, we have the following problem. Re-
call that originally, the number of buckets per level is
NBkt := (1+ ϵ)N/Z. Our goal is to round NBkt up to
some integer NBkt∗, and moreover, express the rounded
number of buckets as NBkt∗ := p1×p2× . . .×pL, such
that the following conditions are satisfied:

1) For every ℓ ∈ [L],
⌊√

logN
⌋
/2 ≤ pℓ ≤

⌊√
logN

⌋
;

2) NBkt∗ = (1 + o(1))NBkt.
The first condition requires that the number of ways
is not too small — this is needed to ensure that the
total computational overhead is O(N logN) since our
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Figure 2: The 3× 2× 3 butterfly network assigns elements to 18 buckets according to the residue of their random
labels. The routing is in-place as MergeSplit simply overwrites the input buckets.

MergeSplit takes O(Z logZ) computational overhead.
The second condition makes sure that the rounding
introduces only (1 + o(1))× overhead rather than 2×.

In the Appendix (Lemma C.1), we show that it is
always possible to find a feasible rounding-factoring
solution for any NBkt.

Our flex-way butterfly network. As mentioned, in our
butterfly network, the numbers of ways p1, . . . , pL need
not be a power of two, which makes the instantiation of
our flex-way butterfly network more flexible. Further,
we adopt an in-place optimization, which saves the
enclave memory usage by a factor of 2.

Specifically, in earlier works [4], [40], the ran-
dom labels assigned to elements are represented as bit
strings. Suppose the number of ways p = 2k, then at
each level, the earlier works would look at the next
k bits of the label, starting from the most significant
bit, to determine how to route each element (see also
Section 2.3.2).

In our case, we choose an integer label τ uni-
formly at random from the range [0,NBkt∗) where
NBkt∗ = p1 × . . . × pL. We maintain the following
invariant: an element with the label τ reaches the j-th
bucket at level ℓ only if τ ≡ j mod

(∏
h≤ℓ ph

)
. For

the special case when p1 = p2 = . . . pL = 2k, this
invariant is equivalent to consuming the next k bits at
each level, starting from the least significant bit of the
label. The advantage of this approach is that the data
movements now become in place, that is, if a set of
buckets j1, . . . , jp are the inputs to some MergeSplit
instance, then the outputs would be written to exactly
the same buckets j1, . . . , jp at the next level. The in-
place nature effectively doubles the utilization of the
Enclave Page Cache (EPC) and reduces the memory
marshalling overhead.

Figure 2 provides an illustrative example of our flex-
way butterfly network with structure NBkt∗ = 3×2×3,
and Figure 4 explicitly compares our approach with
prior work [4], [40] for the special case where the

butterfly network is two-way.

Figure 3: Route elements in batch from the i-th level to
the j-th level of the butterfly network. In this example,
j = i+ 2, pi+1 = 3, pi+2 = 2, and Pi :=

∏i
h=1 ph.

Optimizing the number of page swaps. We use a
similar “batching + matrix transposition” trick as in
earlier works [40] to achieve O((N/B) logM/B N/B)
number of page swaps rather than O(N logN) page
swaps if implemented naı̈vely. In comparison with
Ramachandran and Shi [40], the main difference is
that we can avoid a 2× blow up due to the cache-
agnostic restriction. More specifically, if the EPC can
fit pi×pi+1× . . .×pj number of buckets, we can fetch
this many buckets in one batch and perform multiple
layers of routing within the enclave before writing back
the output buckets. We illustrate this batching idea in
Figure 3. In general, since the buckets are stored in
pages, we also need to apply a matrix transposition trick
as described in [40], which enhances locality by moving
the relevant set of buckets adjacent to each other.

We use a “piggybacking” trick to save a constant
number of scans. For example, the preprocessing op-
erations, such as reading input, tagging random labels,
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Figure 4: Our practical scheme (on the right) eliminates matrix transposition when each bucket occupies a page.
It also enables in-place routing by restructuring the butterfly network.

and padding fillers, are piggybacked on top of reading
and processing the first level of the butterfly network —
this saves an extra preprocessing pass. Similarly, recall
that at the end of the random bin assignment algorithm,
we need to randomly shuffle within each bucket. Here,
we piggyback the within-bucket shuffling on top of the
last level of the butterfly network, which avoids an extra
scan. Moreover, the first level of the external-memory
merge sort is piggybacked on top of the last level of
the butterfly network too (after we perform the within-
bucket shuffling), which saves an extra scan.

Putting it all together. Given the oblivious random
bucket assignment based on our flex-way butterfly net-
work, we can get oblivious shuffling by randomly
permuting within each bucket, and removing all filler
elements. Given oblivious shuffling, we can now get
oblivious sorting by running an external-memory merge
sort algorithm on the shuffled array, which uses quick-
sort to create sorted chunks that fit in EPC and a priority
queue to merge these chunks hierarchically.

To summarize, our oblivious sorting algorithm dif-
fers from Ramachandran and Shi [40] in the follow-
ing aspects. First, we devise a more efficient multi-
way MergeSplit algorithm. Second, we use a butterfly

network with variable number of ways and constructed
to facilitate in-place routing. Third, we applied the
simpler and more efficient external-memory mergesort
in the non-oblivious sorting phase. Finally, we introduce
various other optimizations, including choosing tighter
parameters, avoiding the cache-agnostic overhead, and
reducing the number of page swaps via piggybacking.

Analysis. Using a similar proof scheme as Ramachan-
dran and Shi [40], we can show that when the bucket
size Z ∈ Ω(logN(log logN)3) and the slack factor
ϵ ∈ Θ(1/ log logN), the failure probability will be
negligibly small in N , and our algorithms obliviously
simulate the shuffling and sorting procedures — see
Lemma C.4 and Lemma C.9. The time complexity
of the algorithms has been listed in Table 1, and the
analysis is deferred to Section C.4 and C.5.

4.2. Further Optimizations Under Strong Tall
Cache Assumption

In this section, we describe another optimization for
reducing the number of page swaps. The optimization is
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to make the bucket size equal to the page size3, which
eliminates the need for matrix transposition, as shown
in Figure 4. The optimization effectively reduces the
number of page swaps by half in the shuffling phase.

As a trade-off, the number of exchanges during
the multi-way MergeSplit increases as the bucket size
grows. However, under a strong tall cache assumption
suitable for hardware enclaves, i.e., assuming that the
page size B ∈ logc N for constant c > 0 and the
enclave size M ∈ Bω(1), we can still get asymptotically
tight bounds with small constants for both the page
swaps and computational overhead. The bounds have
been listed in Table 1, and the proofs are deferred to
Section C.4 and C.5.

5. Experimental Results

We evaluated the performance of our sorting and
shuffling algorithms on an Intel Xeon Platinum 8352S
processor, using a single core running at 2.2 GHz
frequency. Throughout the evaluation, we restrict the
failure probability of all our algorithms within 2−60.
The implementation details are described in Section B.

Figure 5 and 6 compares the performance of our
algorithms with prior work. Specifically, they include
two sets of data points, with or without disk swaps. For
the scenario without disk swaps, we provision enough
RAM space and avoid disk swaps. For the scenario
with disk swaps, we restrict the RAM space to 192 MB
and disk swaps are incurred during the sorting/shuffling
algorithms. In our experiments, we use ThinkSystem’s
SATA 6Gbps SSD and allocate 128MB of enclave
protected memory. Figure 5(a) and 6(a) illustrate the
runtime in relation to the input size, where each element
consists of an 8-byte key and a 120-byte payload. Figure
5(b) and 6(b) examine the runtime when the input size
remains constant at 100 million, while the size of each
element varies from 8 bytes to about 1 KB. In all
evaluation, our algorithms significantly outperform all
the baselines.

Comparison with prior work. For sorting an array of
100 million 128-byte elements, depending on whether
disk swaps are involved, our flex-way butterfly sort is
246× (or 2000×)4 faster than an unoptimized recursive
implementation of bitonic sort, and at least 12.4× (or
7.6×) faster than the multi-way bucket o-sort algorithm
of Ramachandran and Shi [40]5. For the same setup

3. When the page size is very small, e.g., when B ≤ logN , a
bucket may span across multiple pages to ensure the negligible failure
probability. For our enclave model, recall that the page size is not an
intrinsic invariant, and we can always tune the page size larger. This
characteristic also allows us to achieve perfect alignment even though
the bucket size is restricted to be a power of two.

4. The numbers in the parentheses are for the scenario with disk
swaps.

5. Here we are comparing with a faster version of Ramachandran
and Shi’s algorithm [40] where the SPMS sort is replaced with a
faster external-memory merge sort.

Figure 5: Comparing our sorting algorithms with prior
work. The connected lines represent the case when data
fits in RAM, while the scattered dots represent the case
when data goes to an SSD.

as above, our flex-way butterfly o-sort is 4.1× (or
4.2×) faster than an optimized version of bitonic; and
at a larger data size of 1 billion with 200-bytes-wide
elements, our flex-way butterfly sort is 7.2× (or 4.8×)
faster than the optimized bitonic sort.

The results for oblivious shuffling is similar. For
shuffling 100 million elements of 128 bytes, depending
on whether disk swaps are involved, our flex-way but-
terfly shuffle algorithm is 5.5× (or 7.5×) faster than
OrShuffle [42] and 16× (or 10.7×) faster than the
multi-way bucket shuffle [40].
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Figure 6: Comparing our shuffling algorithm with prior
work.

When all data fits in RAM, our flex-way distribution
o-sort has comparable performance with our flex-way
butterfly o-sort (when the input is not shuffled a priori).
This is because the page-wise shuffling algorithm can-
not fully randomly permute the array, which requires a
larger bucket size to attain the desired security param-
eter — see Section A. When disk swaps are involved,
our flex-way distribution o-sort is less performant since
the initial page-wise shuffling phase requires accessing
random pages on disk.6 However, if the input array
is already randomly shuffled a priori (not necessarily

6. Despite the short seek time of SSDs, randomly reading 4 kB
data blocks is still 33 times slower than sequential access in our test
setup, which is mainly due to the read-ahead mechanism in the Linux
file system and hardware.

obliviously), our flex-way distribution o-sort algorithm
slightly outperforms our flex-way butterfly o-sort —
specifically, with 100 million entries each of 128-bytes
(already shuffled), the performance gap is 5.5% when
data fits in RAM and 25.7% when data goes to SSD.

Performance breakdown. Figure 7 provides a runtime
breakdown for each algorithm, separating computation
time from page swaps. In this example, we limit the
available RAM space to 192 MB, so the runtime also
includes cryptographic costs (the orange bar) and the
overhead of OCalls and disk I/O (the gray bar). The
runtime of the parameter solvers is insignificant and do
not show up in the figure.

Figure 8 shows a micro benchmark of the multi-
way MergeSplit algorithm. Our implementation based
on the Interleave building block is about 18 times faster
than the oblivious Bin-Packing algorithm [11] used in
[40]. It is also about 2 times more efficient than an
implementation using OrCompact [42].

Figure 7: Breakdown of page swaps and computation
time on input of 100 million 128-byte elements, using
192MB RAM and unlimited disk space.

Figure 8: Throughput of our multi-way MergeSplit
compared with prior methods. Each bucket contains
4096 elements of 136 bytes, including the 8-byte label.

Deferred Materials

We defer the following materials to the appendices:
1) a description of our flex-way distribution o-sort algo-
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rithm; and 2) practical optimizations including a solver
for optimal concrete parameters. 3) detailed proofs for
our schemes; 4) details of the Permute building block
which is an improvement of Waksman’s permutation
network; and 5) additional background materials.
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Appendix A.
External-Memory Flex-Way Distribution
Oblivious Sorting Algorithm

In this section, we introduce the flex-way distribu-
tion o-sort, an alternative oblivious sorting algorithm in-
spired by the butterfly-random-sort algorithm presented
in [40]. The flex-way distribution o-sort offers improved
constants in terms of the number of page swaps. As a
trade-off, it has slightly worse complexity for compu-
tation. The efficiency of the algorithm depends on the
page size being reasonably small. Therefore, we present
the algorithm under the strong tall cache assumption
which is suitable for hardware enclaves, that is, assum-
ing that the page size B = logc N and the enclave
memory size M = Bω(1).

The key distinction of flex-way distribution o-sort
is that elements are assigned to buckets directly based
on their ranks rather than randomly-assigned labels.
Specifically, we route elements through the butterfly
network by comparing them with Θ(N/ log3+ϵ′ N) piv-
ots that are sampled randomly from the input array.

This modification eliminates the need for the
external-memory merge sort, thus saving an additive
N
B · logM

B

N
B term in page swap cost.

A.1. Algorithm Description

Load-balancing the input array using page-wise
shuffling. For load-balancing purpose, our flex-way
distribution o-sort algorithm requires the input elements
to be distinct and randomly shuffled. To ensure elements
are distinct, we can assign each element its index in the
input array as a tie-breaker.

The initial shuffling is more challenging to achieve.
Although it needs not be oblivious, i.e., we do not
need to hide the permutation that is applied, we cannot
directly apply a linear-time shuffling algorithm such
as the Fisher-Yates since it suffers from Θ(N) page
swaps. In our actual instantiation, instead of using a
full permutation, we will actually use a weaker version
that shuffles the input array only on a page granularity.

To accomplish this, we will simply initialize a ran-
dom permutation π on [1 . . . N/B], and to read the i-th
page of the permuted array, we simply read the π[i]-
th page of the original array. Initializing the random
permutation π can be accomplished by invoking our
earlier flex-way butterfly o-shuffle algorithm on N/B
indices, or using a more efficient non-oblivious variant.

One challenge is that the permutation π itself may
not fit within the enclave memory, and it is too costly
to read π[i] whenever we want to access page i during
the algorithm. Fortunately, observe that we actually
only need to access the random permutation π in the
first memory pass of the flex-way distribution o-sort
algorithm, and the access to π is sequential. This means
we only need to incur |π|/B additional page swaps for
reading π during the execution of the entire algorithm.

Later in Section A.2 and Lemma C.16, we show
that even such a weak page-wise permutation achieves
sufficient load-balancing, as long as we set the final
partition size to be a poly-logarithmic factor larger than
the page size — because of this choice of partition size,
we will need the strong tall cache assumption to get our
desired asymptotic bounds.

Obliviously finding approximate pivots. Before in-
stantiating the butterfly network, we want to find q− 1
pivots that are approximately the q-quantiles. The high-
level idea is to obliviously down-sample the original
array by a 1/ logN factor, and then obliviously sort
the down-sampled array. More concretely, we can run
the following algorithm where we use a batch size
Z ′ ≥ log3+ϵ′ N for some constant ϵ′ ∈ (0, 1), and
assume N is a multiple of Z ′.
• For each iteration i ∈ [N/Z ′], do the following:

– Fetch the i-th batch of Z ′ elements from the input
array I into the enclave. For each element in the
batch, flip a coin that comes up heads with prob-
ability 1/ logN . If the coin is heads, write down
the element itself into an output Yi (which was
initialized to be empty), otherwise write down a
filler into Yi.
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– Use oblivious compaction to move all elements
marked with 1 in Yi to the front, and truncate the
resulting array at length 2Z ′/ logN , let the out-
come be Xi. By Lemma C.14, all elements marked
with 1 are in Xi except with negligible probability
in N .

• Obliviously sort the array X1||X2|| . . . ||XN/Z′ , mov-
ing all real elements to the front and sorted by
their respective keys, and let the outcome be D.
By Lemma C.14, the number of real elements in
D is in the range [(1 − N−1/3)N/ logN, (1 +
N−1/3)N/ logN ] except with negligible probability.

• Number the elements in D from 0 to |D| −
1. Choose the pivots to be the elements indexed
0, ⌊a⌋, ⌊2a⌋, . . . , ⌊(q − 1) · a⌋ in D where a =
(1+δ)N
q·logN .

Partitioning based on pivots. The next step is to
divide elements into q partitions by comparing with the
pivots. To achieve negligible overflow probability, each
partition should contain R ∈ Θ(log3+ϵ′ N) elements
(see Lemma C.15). The partitions are defined using
q − 1 pivots denoted as Q1, Q2, . . ., Qq−1, which ap-
proximate the q-quantiles of the input. For convenience
of handling border cases, we define Q0 = −∞ and
Qq = +∞.

To assign elements to partitions, we adapt the flex-
way butterfly network described in Section 4.1 with the
following modifications:

• We change the number of ways at each level from
Θ(
√
logN) to Θ(log logN), and we set the bucket

size Z ∈ Θ(B logN(log logN)3), where B is the
page size.

• We calculate the keys for multi-way MergeSplit (Al-
gorithm 3) by comparing the elements with pivots,
rather than using the residue of the random labels.

• We rearrange the buckets in the butterfly network so
that each partition becomes consecutive.

Intuitively, we want to create partitions with finer gran-
ularity as the level of the butterfly network increases.

Reusing the notations from Section 4.1, we set the
number of ways at each level as p1, . . . , pL, where pl ∈
Θ(log logN) and p1×p2×. . .×pL = q, and we require
that the final partition size R to be a multiple of the
bucket size Z. The following invariant is maintained:
an element e reaches the j-th bucket at level ℓ only if
e ∈ [Qdi, Qd(i+1)), where i =

⌊
jZ
dR

⌋
and d =

∏
h>ℓ ph.

Considering an element in partition [Qdi, Qd(i+1)), to
decide which partition it should go to in the next p-way
MergeSplit operation, the element is compared with p−
1 pivots: Qd(i+1/p), Qd(i+2/p), . . ., Qd(i+(p−1)/p). Note
that we cannot perform a binary search here due to the
obliviousness requirement, which is the reason why we
require p ∈ Θ(log logN).

Figure 9 illustrates an example that assigns elements
into 6 partitions through 3× 2 butterfly networks.

Sorting each partition. Once the partitioning is com-
plete, we can apply bitonic sort within each partition
and remove all the fillers to obtain the final output.

Optimizing page swaps. Same as in Section 4.1, we
apply the trick of batching and “piggybacking” to opti-
mize the number of page swaps. Since the bucket size
is greater than the page size, we can always eliminate
matrix transposition.

A.2. Analysis

Our flex-way distribution o-sort algorithm oblivi-
ously simulates the sorting functionality, and we state
its time complexity in Theorem A.1.

Theorem A.1 (Flex-way distribution o-sort). Our flex-
way distribution o-sort obliviously simulates the sorting
functionality. When the page size B = logc N for c > 0
and the enclave size M ∈ Bω(1), it incurs ( 12 + c +

o(1))N logN log logN
log log logN exchanges and O(N logN log logN

log log logN )

numerical computation and (1+o(1))NB (logM
B

N
B +1.5)

page swaps.

Proof. Deferred to Section C.6.

Appendix B.
Implementation and Practical Optimization

B.1. Solving Optimal Concrete Parameters

To search for optimal concrete parameters, we have
developed an automatic solver that works as follows:
• The solver tests all feasible bucket sizes Z and selects

the one that yields the minimum estimated runtime.
For a fixed target failure probability, enlarging the
buckets reduces the slack factor. However, it also
increases the depth of recursion in MergeSplit and
may potentially augment the number of page swaps
since fewer buckets can fit in the enclave. In practice,
we limit Z within the range of [256, 16384].

• Once Z is fixed, the solver employs binary search to
find the minimum slack factor ϵ that satisfies the de-
sired failure probability which we set to be 2−60. For
this step we assume the butterfly network to be two-
way only since when it is multi-way, the failure prob-
ability can only be better. For flex-way butterfly o-
sort, we utilize the complementary cumulative distri-
bution function of the binomial distribution to tighten
the bound of failure probability. The calculation for
flex-way distribution o-sort is more complicated, and
we describe it in Section C.7. Correspondingly, the
solver calculates the minimum number of buckets
NBkt =

⌈
N

⌊Z/(1+ϵ)⌋

⌉
.

• The solver runs a depth-first search to determine the
optimal structure of the butterfly network, considering
both the costs of computation and page swaps. The
time to perform a p-way MergeSplit is measured as
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Figure 9: The butterfly network assigns elements from 18 buckets into 6 partitions based on the selected pivots.
The routing can be implemented in-place as MergeSplit simply overwrites the input buckets.

Tms(p), the time to run bitonic sort within a bucket is
Tbtnc, and the time to swap a bucket is Tswap. We use
the following objective and constraints for flex-way
butterfly o-sort and o-shuffle (the formula are similar
for flex-way distribution o-sort):

min
L,np,pℓ,aj

(np · Tswap + Tbtnc +

L∑
ℓ=1

Tms(pℓ)

pℓ
) · NBkt∗

s.t. NBkt ≤ NBkt∗ =

L∏
ℓ=1

pℓ

M/Z ≥
aj+1∏

i=aj+1

pℓ ∀0 ≤ j ≤ np

0 = a0 < a1 < a2 < ... < anp+1 = L

2 ≤ pℓ ≤
√
w, pℓ ∈ Z, 1 ≤ ℓ ≤ L

In the formula above, L represents the number of
butterfly network levels. The number of buckets after
rounding up is given by NBkt∗ =

∏L
ℓ=1 pℓ, where pℓ

is the way at level ℓ. The solver schedules np passes
of page swaps at levels a1, a2, ..., anp , and the batch
size should not exceed the enclave size. The number
of ways is upper-bounded by

√
w, where w is the

width of a memory word.
Table 2 and Table 3 lists the optimal butterfly network
parameters for various input sizes under our test envi-
ronment. The butterfly network is more flattened than a
2-way butterfly network, and the extra padding overhead
caused by rounding is less than 2%.

B.2. Implementation Details

We offer a C++ implementation of flex-way but-
terfly o-sort/shuffle and distribution o-sort to showcase
their practicality. Our implementation ensures data pri-
vacy and authenticity even in the presence of malicious
operating systems. Additionally, we have incorporated
multiple optimization techniques to enhance efficiency.

Security guarantees. To achieve obliviousness, we
eliminate any dependency of branch or memory access
on secret data. We employ AES-256-GCM mode to

encrypt and authenticate data before transferring them
out of the Enclave Page Cache, and to maintain the
freshness of each page, a unique timestamp is always
applied.

Labels and randomness. In flex-way butterfly o-sort
and o-shuffle, each element is wrapped with an 8-byte
word consisting of a 63-bit random label and a 1-bit
mark for fillers. In distribution o-sort, we also wrap
each element with a memory word, consisting of a tie-
breaker and a bit to mark fillers.

To resist malicious operating systems, we gener-
ate the random seed within the enclave using the
sgx read rand function. Subsequently, we employed
AES-CTR mode to produce pseudo-random numbers
for labels and tie-breakers.

Efficient page swaps. As discussed in Section E.3, each
OCall has a startup cost due to context switching. To
minimize the total cost, we combine multiple page reads
or writes into a single OCall. For example, during
the external mergesort, each sorted chunk is read in
through a two-page ring buffer, where the second page
is fetched lazily, allowing us to synchronize page reads
from multiple sorted chunks.

Advanced CPU instructions. We apply Intel’s Ad-
vanced Vector Extensions 512 (AVX-512) to accel-
erate the oblivious compare-and-exchange operation.
Specifically, we utilize two Blend instructions (VP-
BLENDMQ) to conditionally swap up to 32 bytes at a
time7. We employ AVX2 instructions in the preprocess-
ing step of MergeSplit to count the occurrences of all
keys. Further, when searching the Euler tour, we apply
the CPU’s built-in instruction for counting trailing zeros
(TZCNT) to skip vertices with degree 0. Lastly, we
leverage Intel’s Advanced Encryption Standard Instruc-
tions (AES-NI) to accelerate encryption, authentication,
and pseudo-random number generation.

Accelerate permutation at the base case. We replace
Permute with an optimal sorting network [29] at the
base case of Interleave for better concrete performance.

7. Although AVX-512 supports blending 512-bit words, it is slower
than blending 256-bit words twice on our SkyLake CPU.
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TABLE 2: Example of parameters for flex-way butterfly o-sort/shuffle targeting failure probability of 2−60 or
smaller. ϵ stands for the minimum slack factor that satisfies the failure probability requirement, and ϵactual is the
actual slack factor taking rounding into account. The parameters are optimized for the scenario when each element
is 128 bytes (including the sort key and payload), the EPC size is 128MB, and the RAM space is unlimited.

N Z ϵ ϵactual Butterfly Network Structure Page Swaps

106 4096 0.1674 0.1796 (8× 6)× 6

(2 + ϵ)NB107 8192 0.1158 0.1239 (7× 7)× (4× 7)

108 4096 0.1753 0.1796 (5× 6× 6)× (4× 5× 8)

109 16384 0.0839 0.1010 (5× 8)× (5× 8)× (6× 7)
(3 + 2ϵ)NB

1010 4096 0.1852 0.208 (2× 8× 8)× (5× 6× 6)× (2× 8× 8)

TABLE 3: Example of parameters for flex-way distribution o-sort targeting failure probability of 2−60 or smaller.
α stands for the sampling rate, and ϵactual is the actual slack factor with rounding taken into account. In the
expression of butterfly network structure, the last factor represents the number of buckets in each partition. The
parameters are optimized for the setting of 128-byte wide element, 4kB page, 128MB EPC, and unlimited RAM.

N Z α ϵactual Butterfly Network Structure Page Swaps

106 32768 0.02 0.278 (3)× 13
(1 + α)(1.5 + ϵ)NB

107 16384 0.01 0.5483 (3× 7)× 45

108 32768 0.01 0.4156 (3× 5)× (4× 4)× 18 (1 + α)(2.5 + 2ϵ)NB

109 32768 0.015 0.3873 (7)× (8)× (6)× (7)× 18 (1 + α)(4.5 + 4ϵ)NB

1010 16384 0.015 0.6053 (6× 6)× (3× 6)× (6× 6)× 42 (1 + α)(3.5 + 3ϵ)NB

B.3. Implementation of Baselines

In our performance evaluation, we compare our
algorithms with several baselines. Below, we explain
how these baselines are implemented.
• To optimize page swaps in bitonic sort/shuffle and
OrShuffle, we utilize a direct map cache, which ex-
hibits 10% ∼ 15% fewer cache misses than a fully-
associative LRU cache in our experiment.

• For bitonic sort, we have adopted a recursive im-
plementation that handles arbitrary input sizes [31].
With the aforementioned cache optimization, it is
essentially equivalent to the implementation of the
ObliDB work [15]. We also include a non-optimized
version of bitonic sort that encrypts each element
separately and does not utilize a cache.

• Bitonic shuffle is implemented as described in [42].
Each element is assigned a 64-bit random key for
comparison, and the array is sorted accordingly.

• For OrShuffle, we incorporate the optimization using
prefix sums, as suggested in [42]. We did not imple-
ment the BORPStream algorithm introduced in [42],
because by their evaluation results, it is concretely
slower than OrShuffle in a non-streaming setup.

• We used the practical variant of the multi-way bucket
o-sort and replaced the cache-agnostic SPMS sort
[12] with external mergesort to enhance concrete
performance.

• The baseline algorithms also utilize AVX-512 instruc-
tions to accelerate element exchanges and AES-NI to
speed up encryption and authentication.

Appendix C.
Deferred Proofs

C.1. Rounding Lemma

When constructing our flex-way butterfly network,
we rely on the following lemma to show that the
multiplicative overhead due to rounding is always o(1).

Lemma C.1 (Rounding lemma). For integer N ′ ≥ 2
and 2 ≤ pmax < 2

√
logN ′ , we can find p1, p2, . . . , pL ∈

N such that for every ℓ ∈ [L],

⌊pmax/2⌋ ≤ pℓ ≤ pmax;

and moreover,

1 ≤
∏

ℓ∈[L] pℓ

N ′ ≤ 1 +
1

⌊pmax/2⌋
.

Proof. Set L =
⌈
logpmax

N ′⌉. Define

β = pLmax/N
′, γ =

pmax

⌊pmax/2⌋
, and κ =

⌈
logγ β

⌉
.
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Immediately, we have β ∈ [1, pmax) and γ ≥ 2. This
further implies

κ ≤ ⌈log β⌉ ≤
⌈√

logN ′
⌉
≤

⌈
logN ′

log pmax

⌉
= L.

Set
p1 = p2 = . . . = pκ−1 =

pmax

γ
,

pκ+1 = pκ+2 = . . . = pL = pmax,

and
pκ =

⌊
γκ−1

β
pmax

⌋
+ 1.

Since, logγ β ≤ κ < logγ β + 1, we have
pmax

γ
+ 1 ≤ pκ ≤ pmax.

Moreover, ∏
ℓ∈[L]

pℓ ≥
pLmax

β
= N ′,

∏
ℓ∈[L]

pℓ ≤
pκ

pκ − 1
· p

L
max

β
= (1 +

1

pmax/γ
)N ′.

C.2. Additional Preliminaries

It is well-known that matrix transposition can be
done with O(N/B) page swaps [17]. The following
lemma quantifies the constants in the big-O notation. In
particular, our oblivious sorting and shuffling algorithms
invoke matrix transposition where each atomic element
is an entire bucket.

Lemma C.2. Suppose that each bucket contains Z ∈
ω(1) elements, and that the enclave size M ≥ B2,
M < N . Transposing a matrix containing N/Z buckets
incurs (1 + o(1))N/B page swaps.

Proof. We apply the cache-agnostic transposition algo-
rithm [17], which operates recursively by dividing the
matrix into smaller submatrices until the submatrix can
be transposed entirely within the cache.

We demonstrate that the dimensions of the subma-
trices are sufficiently large at the base case so that only
a o(1) percentage of the pages lie on the edge.

Let’s consider a row-major matrix with m rows and
n columns, where mn = N/Z. We use Q(m,n) to
denote the number of page swaps required to transpose
this matrix. Our goal is to prove that Q(m,n) ∈
(1 + o(1))mnZ/B.
Case 1: min(m,n) ≤

√
M
2Z . Suppose that m ≤ n.

This indicates n >
√

2M
Z , since M < N and N =

mnZ. The algorithm divides the greater dimension n
by 2 and conquer each half until at some point the
number of columns n′ satisfies M/2 ≤ 2mn′Z ≤ M .

At this base case, the input submatrix contains m rows
and the number of column n′ ≥

√
M
8Z ∈ ω(BZ ).

Therefore, it requires no more than 2m + mn′Z/B ∈
(1 + o(1))mn′Z/B page reads to fetch the input sub-
matrix. Since the output submatrix is contiguous, it also
requires no more than (1 + o(1))mn′Z/B page writes
to output the result. The recurrence relation is hence

Q(m,n) =

{
(1 + o(1))mnZ/B, 2mnZ ≤M

Q(m,
⌊n
2

⌋
) +Q(m,

⌈n
2

⌉
), 2mnZ > M

whose solution is Q(m,n) ∈ (1 + o(1))mnZ/B.
The case n < m is analogous.

Case 2: min(m,n) >
√

M
2Z . The algorithm performs

divide-and-conquer until the size of submatrix, m′×n′,
satisfies M/2 ≤ 2m′n′Z ≤M . Since the algorithm al-
ways divides the greater dimensions by 2, we have 1

2 ≤
m′

n′ ≤ 2. This further implies min(m′, n′) ≥
√

M
8Z ∈

ω(BZ ). Therefore, the number of page swaps is no more
than 2m′ + 2n′ +m′n′Z/B ∈ (1 + o(1))m′n′Z/B.

The recurrence relation is hence

Q(m,n) =
(1 + o(1))mnZ/B, 2mnZ ≤M

Q(
⌊m
2

⌋
, n) +Q(

⌈m
2

⌉
, n), otherwise and m ≥ n

Q(m,
⌊n
2

⌋
) +Q(m,

⌈n
2

⌉
), otherwise

whose solution is Q(m,n) ∈ (1 + o(1))mnZ/B.

The following Bernstein’s inequality [6] is applied
in the security proof of flex-way distribution o-sort.

Theorem C.3 (Bernstein’s inequality). Let X :=
(x1, . . . , xm) be a population of m points where xi ∈
[0, B] for all i ∈ [m]. Let (X1, . . . , Xn) be a sam-
ple drawn from X without replacement. Let µ :=
1
m

∑m
i=1 xi be the mean of X , and let

σ2 :=
1

m

m∑
i=1

(xi − µ)2

be the variance of X . Then, for all ϵ > 0,

Pr[
1

n

n∑
i=1

Xi − µ ≥ ϵ] ≤ exp

(
− nϵ2

2σ2 + (2/3) ·B · ϵ

)
.

C.3. Analyzing Building Blocks

C.3.1. Fact 3.3: Computation cost of Interleave.

Proof. As each distinct key appears n/p times and n/p
is a power of two, Interleave involves log(n/p) levels
of recursion to reach the base case. On each level,
Balance costs fewer than n/2 exchanges and O(n) nu-
merical computation. Permute is called n/p times at the
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base case, and each takes up to p log p exchanges and
O(p log p) numerical computation. Hence, Interleave re-
quires no more than n( 12 log(n/p)+log p) = 1

2n(log n+
log p) exchanges. Since n ≥ p, the complexity of
numerical computation is O(n log n).

C.3.2. Claim 3.4: Obliviousness of Algorithm 2.

Proof. The if condition at line 2 only depends on the
input size and parameter p. As shown in Claim 3.2 and
Claim D.2, the Balance and Permute sub-procedures
have access patterns that depend only on their input
lengths and p, and given the input length of the original
array, the input lengths to all recursive calls are fixed.

C.3.3. Fact 3.5: Computation cost of MergeSplit.

Proof. Preprocessing p buckets of size Z requires
O(pZ) numerical computation, and the final trans-
position makes pZ exchanges. By Fact 3.3, the
Interleave procedure incurs O(pZ log(pZ)) numerical
computation and no more than pZ( 12 logZ + log p)
exchanges. Therefore, MergeSplit algorithm requires
O(pZ log(pZ)) numerical computation and no more
than pZ( 12 logZ + log p+ 1) exchanges in total.

C.3.4. Claim 3.6: Obliviousness of Algorithm 3.

Proof. For p ≤
√
logN and Z ≤ 2

√
logN , it only

requires p logZ ≤ logN bits to store all the counts
in the preprocessing step. As described in the detailed
algorithm, by packing the counts into a single word, the
preprocessing step can have a fixed access pattern. By
Claim 3.4, the call to Interleave is also deterministic
and depends only on the input size and p. The transpo-
sition at the end clearly enjoys fixed access patterns as
well.

C.4. Analyzing Flex-Way Butterfly O-Shuffle

In the analysis below, we set the bucket size
Z ∈ Ω(logN(log logN)3), and the slack factor ϵ ∈
Θ( 1

log logN ).

Lemma C.4. Our flex-way butterfly o-shuffle algorithm
described in Section 4 obliviously simulates the random
permutation functionality.

Proof. The proof is similar to earlier works [4], [40].
The access patterns within the enclave as well as the
page swap patterns are deterministic and depend only on
input length N , M , B, the size of each element, and the
desired failure probability (which in term decide how
we choose the other parameters including Z, ϵ and the
number of ways). Therefore, it suffices to prove that
the outcome of the algorithm has negligible statistical
distance from a perfectly random permutation. Using
the same proof as earlier works [4], [40], it suffices to
prove that except with negligible (in N ) probability, no

bucket will receive more than Z elements. This holds as
long as Z is super-logarithmic in N due to the following
reasoning.

Consider a fixed bucket A(ℓ)
j at level ℓ and index j.

It can only receive real elements from Pℓ initial buckets,
each filled with Z/(1 + ϵ) real elements, where Pℓ :=∏ℓ

h=1 ph. An element with label τ reaches A
(i)
j only

when τ ≡ j (mod Pi), which occurs with a probability
1/Pi. Since the labels are chosen independently, we can
apply a Chernoff bound to show that A

(i)
j overflows

with a probability

Poverflow = exp(−Ω(ϵ2Z)) ≤ exp(−Ω(logN log logN))

= N−Ω(log logN).

At each level, there are (1+ϵ)N/Z buckets, and the
butterfly network has a maximum of log((1 + ϵ)N/Z)
levels (corresponding to the case where every level is
two-way). By applying a union bound over all levels
and all buckets, we obtain the desired bound on the
failure probability.

Lemma C.5. Given bucket size Z = logc N where
c > 1, flex-way butterfly o-shuffle incurs (1 + c +
o(1))N logN exchanges and O(N logN) numerical
computation.

Proof. By Lemma C.1, the flex-way butterfly network
contains no more than (logO(N/Z))/ log p levels, and
MergeSplit is called (1 + o(1))N/(pZ) times at each
level. By Fact 3.5, each MergeSplit operation incurs no
more than pZ( 12 logZ + log p+ 1) exchanges.

Substituting p ∈ Θ(
√
logN) and Z ∈ Θ(logc N), it

requires the following number of exchanges for routing:

(1 + o(1))N
logO(N/Z)

log p
(
1

2
logZ + log p+ 1)

∈ (1 + c+ o(1))N logN.

Calling bitonic sort to shuffle each bucket at the
last level requires 1

4Z logZ(logZ+1) exchanges. Since
the size of each bucket is polylogN and the label
length is Θ(logN), the probability of label collision in
each bucket is O(N−C) for some positive constant C.
Therefore, we only need 1 + o(1) trials in expectation.
Since there are (1+o(1))N

Z buckets, the expected number
of exchanges to sort the buckets at the last level is

(1 + o(1))N
1

4
logZ(logZ + 1) ∈ o(N logN).

Finally, removing fillers takes O(N) exchanges. Hence,
the total number of exchanges is

(1 + c+ o(1))N logN.

For numerical computation, labeling all the ele-
ments requires O(N logN) computation, as we as-
sumed that each label has O(logN) bits and generating
each random bit requires constant time. To extract
the keys for MergeSplit, only one division and one
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modulus operation are required per element. Under the
word-RAM model in Section 2.2, we can determine
the multiplicative inverse of all choices of the divisor
p ≤

√
logN at compile time, allowing each division

and modulo operation to be done in constant time.
Since there are Θ(N) elements and Θ( logN

log logN ) levels,
key extraction requires o(N logN) numerical compu-
tation in total. For both MergeSplit and bitonic sort,
the amount of numerical computation is asymptotically
upperbounded by the number of exchanges. There-
fore, the time complexity of numerical computation is
O(N logN).

Corollary C.6. Given bucket size Z =
Θ(logN(log logN)3), flex-way butterfly o-shuffle
incurs (2 + o(1))N logN exchanges.

Proof. We can obtain the result by substituting c =
1+(3+o(1)) log log logN

log logN ∈ 1+o(1) in Lemma C.5.

Lemma C.7. Given that B ≥ log2 N , M ≥ B2 and
Z ∈ Θ(logN(log logN)3), the number of page swaps
for flex-way butterfly o-shuffle is

((2 + o(1)) logM
B

N

B
+ 1)

N

B
.

Proof. By Lemma C.1, there are (1+o(1))N/Z buckets
in total. Each MergeSplit performs at least pmin =
1
2

√
logN ways of partitioning and at most pmax =√

logN ways of partitioning.
Hence, the total number of levels in the butterfly net-
work can be upper-bounded as:

Ltotal ∈
⌈
logpmin

((1 + o(1))N/Z)
⌉

⊂ (1 + o(1))
logN − logZ

1/2 · log logN
A single pass of batch execution can route all elements
through at least:

Lbatch =

⌊
logpmax

M

Z

⌋
≥ logM − logZ

1/2 · log logN
− 1

levels. Therefore, the number of passes is at most:

npass =

⌈
Ltotal

Lbatch

⌉
∈ (1 + o(1))

logN − logZ

logM − logZ − 1/2 · log logN
+ 1.

Substituting Z ∈ Θ(logN(log logN)3), we obtain:

npass ∈ (1 + o(1))
logN

logM − 3/2 log logN
+ 1

Given B ≥ log2 N , we can further derive:

npass ≤ (1 + o(1)) logM
B

N

B
+ 1.

Each pass requires (1+o(1))NB page swaps, except that
in the first pass we only need to read (1+o(1))NB pages
and similarly in the last pass we only need to write
(1+ o(1))NB pages. Between every neighboring passes,
matrix transposition results in another (1+o(1))NB page
swaps according to Lemma C.2. Therefore, the total
number of page swaps is

nswap ∈ 2(npass − 1)(1 + o(1))
N

B
+ (1 + o(1))

N

B

= ((2 + o(1)) logM
B

N

B
+ 1)

N

B
.

Theorem C.8 (Flex-way butterfly o-shuffle for strong
tall cache). When B = logc N for c > 0 and M ∈
Bω(1), by setting Z = max(B, logN(log logN)3) and
eliminating matrix transposition, flex-way butterfly o-
shuffle incurs (1 + o(1))NB (logM

B

N
B + 1) page swaps

and (1 + o(1))(max(c, 1) + 1)N logN exchanges.

Proof. Similar to Lemma C.7, the total number of levels
in the butterfly network can be upper-bounded as:

Ltotal ∈ (1 + o(1))
log(N/B)

1/2 · log logN

A single pass of batch execution can route all elements
through at least:

Lbatch =

⌊
logpmax

M

Z

⌋
≥

log M
B

1/2 · log logN
− 1

levels. Therefore, the number of passes is:

npass =

⌈
Ltotal

Lbatch

⌉
∈ (1 + o(1)) logM

B

N

B
+ 1.

Each pass requires (1+o(1))NB page swaps, except
that in the first pass we only need to read (1+ o(1))NB
pages and similarly in the last pass we only need to
write (1 + o(1))NB pages. Therefore, the total number
of page swaps is

nswap ∈ (npass − 1)(1 + o(1))
N

B
+ (1 + o(1))

N

B

= ((1 + o(1)) logM
B

N

B
+ 1)

N

B
.

The number of exchanges can be obtained by applying
Lemma C.5.

C.5. Analyzing Flex-Way Butterfly O-Sort

Lemma C.9. Our flex-way butterfly o-sort algorithm
described in Section 4 obliviously simulates the sorting
functionality.

Proof. The proof resembles earlier works [4], [40],
which showed that if we apply an oblivious ran-
dom permutation algorithm and then any non-oblivious,
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comparison-based sort, the resulting algorithm oblivi-
ously simulates the sorting functionality.

Lemma C.10. Given bucket size Z = logc N where
c > 1, flex-way butterfly o-sort incurs (1.23 + c +
o(1))N logN exchanges and O(N logN) numerical
computation.

Proof. When merging multiple sorted chunks in the
external memory mergesort, it is sufficient to store
pointers in the heap. This approach ensures that each
element is copied only once during each pass. Con-
sequently, the complexity of merging in the exchange
model can be expressed as O(N logM/B

N
B ), which is

o(N logN).
At the base case, quick-sort incurs ln 2

3 n log n ≈
0.23n log n exchanges in expectation [27]. Suppose that
the batch size is M ′, where M ′ ≤ N , the number of ex-
changes incurred across all base case instances amounts
to an expected value of 0.23N logM ′ ≤ 0.23N logN .
By Lemma C.5, the expected number of exchanges
required by flex-way butterfly sort is

(1.23 + c+ o(1))N logN.

Since external memory mergesort uses O(N logN)
numerical computation, the overall numerical computa-
tion of flex-way butterfly sort is still O(N logN).

Corollary C.11. Given bucket size Z =
logN(log logN)3, flex-way butterfly o-sort incurs
(2.23 + o(1))N logN exchanges.

Proof. Similar to the proof of Corollary C.6.

Lemma C.12. Given that M ≥ B2 and B ≥ log2 N ,
the number of page swaps for flex-way butterfly o-sort
is

((3 + o(1)) logM
B

N

B
+ 1)

N

B
.

Proof. First, we show that during the last pass of shuf-
fling, elements can be rearranged into O(N/M) sorted
chunks. Let Mbatch represent the batch size at the last
level.
Case 1: If Mbatch ≥ M/2, then there are at most
2(1 + o(1))N/M batches, with each batch producing
a sorted chunk.
Case 2: If Mbatch < M/2, then we can allocate a
buffer of size M/2 in the enclave and always copy the
shuffled elements first to this buffer. When the buffer is
full, we sort all the M/2 elements and write them out as
a chunk. Consequently, there can be at most ⌈2N/M⌉
sorted chunks.

Assigning a one-page buffer to each sorted chunk,
in the worst-case, the required number of page swaps
to merge all the chunks hierarchically is:

n′
swap ∈ (1 + o(1))

N

B
· (1 + logM

B
O(

N

M
)).

Considering M ≥ B2 and B ≥ logc N , we have:

n′
swap ∈ (1 + o(1))

N

B
· logM

B

N

B
.

Combining this with Lemma C.7, we obtain the target
expression.

Theorem C.13 (Flex-way butterfly o-sort for strong tall
cache). When B = logc N for c > 0 and M ∈ Bω(1),
by setting Z = max(B, logN(log logN)3) and elim-
inating matrix transposition, flex-way butterfly o-sort
incurs N

B ((2 + o(1)) logM
B

N
B + 1) page swaps and

(1 + o(1))(max(c, 1) + 1.23)N logN exchanges.

Proof. The proof is similar to that of Theorem C.8.
The only difference is that we need additional (1 +
o(1))(logM

B

N
B + 1) page swaps and 0.23N logN ex-

changes to instantiate the external-memory merge sort,
as shown in Lemma C.10 and Lemma C.12.

C.6. Analyzing Flex-Way Distribution O-Sort

Lemma C.14 (Number of sampled elements). For
the algorithm described in Section A, the number
of elements sampled in each batch of size Z ′ ≥
log3+ϵ′ N is no more than 2Z ′/ logN , and the total
number of sampled elements is in the range [(1 −
N−1/3)N/ logN, (1 + N−1/3)N/ logN ] except with
negl(N) probability.

Proof. By Chernoff bound on the sum of independent
variables, the probability that more than 2Z ′/ logN ele-
ments are sampled in a batch of size Z ′ is upperbounded
by

exp(−Ω(log1+ϵ′ N)) ⊂ negl(N).

Similarly, the probability that the total number of sam-
pled elements deviates from N/ logN by N2/3/ logN
is upperbounded by

exp(−Ω((N−1/3)2N/ log2 N)) ⊂ negl(N).

Lemma C.15. Suppose that N/q ∈ Ω(log3+ϵ′ N),
and moreover, assume that the original array contains
distinct elements. Except with negl(N) probability, the
following holds: for any two consecutive pivots chosen
denoted Qi and Qi+1, the number of elements in the
original array in the range [Qi, Qi+1) is in the range
[(1− δ)N/q, (1 + δ)N/q], where δ ∈ Θ( 1

log logN ).

Proof. Consider two adjacent pivots Qi and Qi+1. The
probability that more than (1 + δ)N/q elements in the
original array are sandwiched between [Qi, Qi+1) is the
same as the probability that rank(Qi+1)− rank(Qi) >
(1 + δ)N/q where rank(·) denotes the rank of an
element in the original array. The above probability is
upperbounded by the probability that among the ele-
ments whose ranks are between [rank(Qi), rank(Qi +
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⌊(1 + δ)N/q⌋)), at most
⌈
(1 +N−1/3)N/(q logN)

⌉
of

them are selected. Let X1, . . . , X⌊(1+δ)N/q−1⌋ denote
whether each of these elements are selected — these
random variables are negatively correlated. By the Cher-
noff bound for negatively correlated random variables,
as long as N/q = Ω(log3+ϵ′ N), we have that except
with negl(N) probability, the number of elements in
the original array in the range [Qi, Qi+1) is at most
(1 + δ)N/q. The other direction can be proven in a
similar fashion.

Lemma C.16. Our flex-way distribution o-sort algo-
rithm described in Section A obliviously simulates the
sorting functionality.

Proof. Similar to Lemma C.4, the algorithm is oblivious
since the access patterns within the enclave as well as
the page swap patterns are deterministic and depend
only on input length N , M , B, the size of each element,
and the desired failure probability. Therefore, it suffices
to prove that the algorithm achieves sorting except with
negligible (in N ) probability. By Lemma C.15, the
number of elements in partition [Qi, Qj) is no more
than (1 + δ)(j − i)N/q.

Suppose that among all input pages, the number
of elements sandwiched between partition [Qi, Qj) is
x1, . . . , xN/B . By Lemma C.15, we have that except
with negl(N) probability, it must be that∑

j∈[N/B]

xj ≤ (1 + δ)(j − i)N/q

Considering a bucket Bkt∗ in this partition, it can
only receive elements from q/(j − i) buckets at the
initial level, containing at most Zq

(1+ϵ)(j−i) real elements
in total, where ϵ ∈ δ + Θ( 1

log logN ) is the slack factor
of padding.

Since the input is randomly shuffled on a page
granularity, among the at most n = Zq

(1+ϵ)(j−i)B pages
that can reach Bkt∗, let X1, . . . , Xn be the number of
elements in each of these pages sandwiched between
Qi and Qj . Let X =

∑
j∈[n] Xj .

Ignoring the negligible probability that the bad event
of Lemma C.15 happen, it holds that

E[X] ≤ (1 + δ)(j − i)N

qN
· Zq

(1 + ϵ)(j − i)
=

(1 + δ)Z

1 + ϵ

Similarly, we have that E[X] ≥ (1−δ)Z
1+ϵ .

Let µ = 1
N/B

∑
j∈[N/B] xj , and let

σ2 =
1

N/B

∑
j∈[N/B]

(xj − µ)2

=
1

N/B
(

∑
j∈[N/B]

x2
j −

N

B
· µ2)

≤ 1

N/B

∑
j∈[N/B]

xj ·B − µ2

≤ B · µ ≤ (1 + δ)(j − i)B2/q.

By Bernstein’s inequality (Theorem C.3), we have
the following:

Pr[X > Z] ≤ exp

−n ·
(

(ϵ−δ)(1−δ)Z
(1+δ)(1+ϵ)n

)2

2 · σ2


≤ exp

(
−Ω

(
Z2

(log logN)2nB2/q

))
≤ exp

(
−Ω

(
Z

B(log logN)2

))
.

Substituting Z ∈ Θ(B logN(log logN)3) and ap-
plying a union bound over all levels and all buckets, we
obtain the desired bound on the failure probability.

Lemma C.17 (Computational overhead of flex-way
distribution o-sort). When the page size B = logc N
for c > 0 and the enclave size M ∈ Bω(1), flex-way
distribution o-sort incurs 1

2 (1+c+o(1))N logN log logN
log log logN

exchanges and O(N logN log logN
log log logN ) numerical computa-

tion.

Proof. In the sampling process, running OrCompact
[42] on each batch of size Z ′ incurs O(Z ′ logZ ′)
exchanges. Since Z ′ ∈ poly logN , it takes
O(N log logN) exchanges to obtain all the samples.
As the sampling rate is O( 1

logN ), the multiplicative
overhead to sort the samples is o(1).

By Lemma C.1, the flex-way butterfly network
contains no more than (logO(N/Z))/ log p levels,
and MergeSplit is called (1 + o(1))N/(pZ) times at
each level. By Fact 3.5, each MergeSplit operation
incurs no more than pZ( 12 logZ + log p + 1) ex-
changes. Substituting p ∈ Θ(log logN) and Z ∈
Θ(log1+c N(log logN)3), it requires

1

2
(1 + c+ o(1))N

logN log logN

log log logN

exchanges for routing.
Calling bitonic sort within each partition at the last

level requires 1
4R logR(logR + 1) exchanges. Since

the size of each partition is R ∈ polylogN , it takes
o(N logN) exchanges to sort all the (1+o(1))N

R parti-
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tions. Finally, removing fillers takes O(N) exchanges.
Hence, the total number of exchanges is

1

2
(1 + c+ o(1))N

logN log logN

log log logN
.

For numerical computation, at each level of the
butterfly network, every element is compared with p−1
pivots. Since there are at most Θ( logN

log pmin
) levels. The

total number of comparisons is O(N logN log logN
log log logN ), and

each comparison takes O(1) numerical computation.
Pre-shuffling the input requires at most O(NB log N

B ) nu-
merical computation. The time complexity of all other
numerical computation is asymptotically upperbounded
by the number of exchanges, due to the same reason-
ing as Lemma C.5. Therefore, the time complexity of
numerical computation is O(N logN log logN

log log logN ).

Lemma C.18 (Number of page swaps for flex-way
distribution o-sort). When the page size B = logc N
for c > 0 and the enclave size M ∈ Bω(1), flex-way
distribution o-sort incurs ((1 + o(1)) logM

B

N
B + 1.5)NB

page swaps.

Proof. The assumptions made about the values of M
and B ensure that the final partition can fit within
the enclave. By applying similar reasoning as in The-
orem C.8, we can determine that it takes N

B ((1 +
o(1)) logM

B

N
B +1) page swaps to emulate the butterfly

network and sort the final partitions.
The sampling process requires a reading pass over

all the elements, but does not require writing them
back. By the assumption that page reads and writes
have the same overhead, the number of page swaps
can be estimated as 0.5N/B. Since the sampling rate
is O( 1

logN ), the multiplicative overhead to sort the
samples is o(1). Similarly, the multiplicative overhead
to generate and read the permutation π(

⌈
N
B

⌉
) is also

o(1).

C.7. Tighter Bound on Failure Probability of
Flex-Way Distribution O-Sort

In this section, we present an improved method
for estimating the failure probability when determining
concrete parameters for our flex-way distribution o-
sort. This method provides a significantly tighter up-
per bound compared to the Chernoff bounds used in
Lemma C.15 and Lemma C.16. The key idea is to avoid
setting a conservative threshold (δ) on the partition size.
Instead, we measure the conditional overflow probabil-
ity for each possible partition size and apply the law of
total probability.

Let’s consider a bucket Aij in the partition [Qi, Qj).
This bucket can only receive elements from q/(j − i)
buckets at the initial level and contains a total of rij :=

Zq
(1+ϵ)(j−i) real elements. We define the random variable
Xij to represent the size of partition [Qi, Qj) and let

|S| denote the sample size. As |S| is much larger than
the number of partitions q, we assume that |S| is a
multiple of q. Since Qi and Qj represent the i-th and
j-th quantile of the sample S, there are sij :=

(j−i)|S|
q

elements sampled in [Qi, Qj). Assume that Qi has rank
ri, and let Yr be a Bernoulli random variable that takes
1 when the element with rank r is sampled. Except for
the first and last partitions, the probability mass function
for Xij is given by:

Pr[Xij = x]

= Pr[Yri+x = 1 | Yri = 1]

· Pr[
ri+x−1∑
r=ri+1

Yr = sij − 1 | Yri = Yri+x = 1]

=
|S| − 1

N − 1
· pmfhg(sij − 1, x− 1, |S| − 2, N − 2)

where pmfhg is the probability mass function of the
hypergeometric distribution. The probability for the first
and the last partition can be analyzed similarly.

Given Xij = x, the probability that bucket Aij

overflows is given by:

Pr[Aij overflows | Xij = x] = sfhg(
Z

B
,
rij
B

,
x

B
,
N

B
)

where sfhg is the survival function of the hyperge-
ometric distribution. In the formula above, we have
considered the worst-case scenario where every page
contains elements of consecutive ranks.

Therefore, the total probability of bucket Aij over-
flowing is:

Pr[Aij overflows]

=

N∑
x=1

(Pr[Aij overflows | Xij = x] · Pr[Xij = x]).

Since calculating the exact formula above is compu-
tationally expensive, in practice, we can find an upper
bound on the failure probability by considering the two
ends separately and using a step size τ . Specifically, we
have:

Pr[Aij overflows] ≤
xmax/τ∑
γ=0

(Pr[Aij overflows | Xij = xmin + (γ + 1) · τ ]

· Pr[Xij = xmin + γ · τ ])
+ Pr[Aij overflows | Xij = xmin] + Pr[Xij > xmax]

where (j − i)N/q < xmin < xmax < N .

Finally, we obtain the overall failure probability by
applying a union bound across all buckets on all layers.
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Appendix D.
Permute Using Balance

At the base case of Interleave, there are p elements
with distinct keys in {0, 1, ..., p − 1}, and we can
apply Waksman’s permutation network [48] to reorder
them obliviously using no more than p log p exchanges.
Specifically, for p being power of two, Waksman [48]
gave an algorithm to calculate the routing plan by
accessing a permutation matrix of size p × p. Since
p ≤
√
logN and each entry of the matrix can be repre-

sented with one bit, we can pack the permutation matrix
into one logN -bit word and make the algorithm oblivi-
ous. Moreover, it turns out that we can also recursively
apply our Balance algorithm to emulate Waksman’s
network for arbitrary p no more than

√
logN .

Syntax. Permute takes in an array A with n elements
whose keys are a permutation of {0, 1, . . . , n− 1}. The
goal of Permute is to rearrange the array A such that
the i-th element has key i.

Parameter requirements. We require n ≤
√
logN to

achieve obliviousness.

Intuition: when n is a power of 2. Our permutation
network structure is the same as Waksman, but we
propose an algorithm that can calculate the routing
plan along the way using Balance as a primitive. For
simplicity, we first assume n to be a power of two.
As a preprocessing step, we modify each element’s key
to be its original key modulo n/2. The set of keys
hence becomes {0, 1, ..., n/2−1} and each distinct key
appears exactly twice. Also, the number of distinct keys
is no more than

√
logN . With these preconditions, we

can call Balance on the array, so that both the left and
right half contain a suit of these new keys. We then
call Permute on each half recursively. As a result, for
i ∈ {0, 1, ..., n/2 − 1}, both A[i] and A[i + n/2] have
new key i, which means their original keys are i and
i+ n/2. To complete the permutation, we just need to
conditionally exchange A[i] and A[i+n/2], putting the
one with the original key i at the front.

Detailed algorithm: when n is not necessarily a
power of 2. Algorithm 4 gives a full description of
Permute and generalizes it to handle lengths that are
non-powers of 2.
• Handling lengths that are non-powers of 2. If the

current n is not even, we pad a filler element with
key n at the end of the array (line 3). Since Balance
does not change the last element, the filler is still at
the end, and we may exclude it after performing the
Balance operation. In an actual implementation, the
filler can be imaginary and need not occupy any extra
space.

• Save and restore the original keys without extra space.
When we modify an element’s key k to the new key k
mod ⌈n/2⌉, we need to save the original key k. This
can be achieved without extra space. Conceptually,

Algorithm 4 Permute(A)
Input: The input array A contains n elements, where
n ≤

√
logN . The i-th element has a key π(i) along

with a payload, where π is a permutation of set
{0, 1, ..., n−1}. Also, we let each element own a stack,
which can be integrated into the same word storing the
key.
Output: A is rearranged such that the i-th element has
key i.

1: n← |A|, m← ⌈n/2⌉
2: if n = 1 then return
3: If n is odd, pad a filler with key n at the end of A.
4: for i← 0 to 2m− 1 do
5: b← ⌊A[i].key /m⌋. Push b to A[i].stack.
6: A[i].key ← A[i].key mod m

7: BALANCE(A, m)
8: If n is odd, remove the last element of A.
9: PERMUTE(A[0 : m− 1])

10: PERMUTE(A[m : n− 1])
11: for i← 0 to n− 1 do
12: Pop b from A[i].stack.
13: A[i].key ← A[i].key + b ·m
14: for i← 0 to ⌊n/2⌋ − 1 do
15: Obliviously exchange A[i] and A[i + m]. Put

the one with smaller key to the front.

Figure 10: Permute network for n = 7. The solid
numbers are the original keys. The numbers in the
parentheses on the left of the solid numbers are the
modified keys used in the previous Balance operation,
and the numbers in the parentheses on the right of the
solid numbers are the modified keys used in the next
Balance operation.

imagine that each element owns a stack, and when
we modify k to the new key k mod ⌈n/2⌉, we push
the bit whether k ≥ ⌈n/2⌉ to its stack (lines 5-6).
This way, we can recover the original key k after the
recursion (lines 12-13). Since storing k mod ⌈n/2⌉
and whether k ≥ ⌈n/2⌉ does not take up more bits
than storing the original k, we can integrate the stack
into the same word that stores the key.

Example. For example, Figure 10 depicts the network
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structure of the Permute algorithm for n = 7 (see
Algorithm 4). The first two levels of the network are
recursive calls of Balance. Then, in the remaining lev-
els, elements are exchanged by comparing the restored
keys. This network uses 14 exchanges, which is better
than an optimal comparison-based sorting network for
n = 7 using 16 compare-and-exchanges [29].

Fact D.1 (Computation overhead of Permute). The
Permute algorithm requires O(n log n) numerical com-
putation and no more than n log n exchanges.

Proof. Let f(n) denote the number of exchanges to
Permute an input of size n. When n is even, Balance
involves n/2 − 1 exchanges, and n/2 exchanges are
performed at the end. We need to solve two subprob-
lems of size n/2. When n is odd, Balance involves
(n+1)/2− 1 exchanges, and (n− 1)/2 exchanges are
performed at the end. We need to solve two subprob-
lems of size (n + 1)/2 and (n − 1)/2. To conclude,
f(n) = f(⌈n/2⌉) + f(⌊n/2⌋) + n − 1. For the base
cases, f(1) = 0 and f(2) = 1. We can inductively
prove that f(n) ≤ n log(n− 1) for n ≥ 3.

Finally, since Balance requires O(n) numeri-
cal computation, it follows that Permute requires
O(n log n) numerical computation.

Claim D.2 (Obliviousness of Algorithm 4). The mem-
ory access patterns of Algorithm 4 are deterministic and
depend only on the length of the input array but not the
contents of the array.

Proof. Clearly, all the if conditions depend only on
the input size n, so does the number of loop cycles. As
shown in Claim 3.2, the access patterns of the sub-
procedure Balance depend only on the length of its
input A and the parameter m. Further, given the length
of the original array, the input lengths and m to all
recursions are fixed. Finally, the conditional exchanges
at line 15 also enjoy deterministic and fixed access
patterns.

Appendix E.
Additional Background

E.1. Oblivious Algorithms

Access patterns. In the external-memory model, we
assume that the adversary can observe both memory
access patterns within the enclave and the page swap
patterns. In particular, a malicious operating system can
observe the page swap patterns for a hardware enclave
setting. A cache-timing adversary can learn the access
patterns within the enclave [24], [26].

Oblivious simulation. We define a general notion
of oblivious simulation like in [4], which works for
randomized functionalities too. Note that because of

our definition of access patterns, our notion of obliv-
ious simulation essentially achieves strong oblivious-
ness [34] or double obliviousness [37], that is, both the
accesses within the enclave and the page swap patterns
do not leak any sensitive information.

Intuitively, a program F obliviously simulates a
possibly randomized functionality f if: (1) F exhibits
the same input/output behavior as f ; (2) Second, there
exists a simulator Sim(|x|) that, without knowledge
of the input x, generates memory access and page
swap patterns that are statistically indistinguishable
from those produced by F . In case the patterns and
the functionality are randomized, we have to consider
the joint distribution of the simulator and the output of
the functionality.

For a program F and input x, let AccPtrn(F, x)
denote the distribution of memory addresses and page
swaps F produces on an input x.

Definition E.1 (Oblivious simulation [4]). A program
F obliviously implements the functionality f iff there
exists a simulator Sim and a negligible function ν(·)
such that the following holds:

{Sim(1λ), f(x)}x∈{0,1}λ

ν(λ)
≡ {AccPtrn(F, x), F (x)}x∈{0,1}λ

where
ν(λ)
≡ means that the two sides have statistical

difference at most ν(λ).

E.2. Constant-time Operations on Memory
Words

Given the basic operations described in Sec-
tion 2.2.1, we can also build the following operations
on memory words in constant time:
• Negate(W ). Negate all bits in W , which is equivalent

to XOR a bit array filled with 1s.
• Extract(W,a, b). Extract from W the bits between

offset a and b, which can be achieved with a left
shift followed by a logical right shift.

• Set(W,a, b, V ). Set bits of W between offset a and
b to be the lowest b− a+1 bits of V . The operation
can be done by Extract bits from W and V and
concatenate them using left shifts and XORs.

• LSB(W ). Find the offset of the least significant 1 bit
in W . Whereas LSB is equivalent to a single “count-
trailing-zeros” instruction on many modern CPUs, we
can also derive it from the previous primitives if the
length of W is no more than

√
logN . First, we can

get the mask for the least significant 1 bit using the
formula W AND (Negate(W )+1). Then, as shown in
[33], the bit can be indexed with a multiplication and
a look-up in a small table. Although the table look-up
is not oblivious in general, due to the limited length
of W , the table only contains

⌊√
logN

⌋
entries and

the length of each entry is at most
⌈
1
2 log logN

⌉
bits.

Therefore, the table can be packed into a single word
and looked up obliviously via Extract.
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We also construct some constant time operations on
unsigned integers using the primitives.
• Subtract(X,Y ). Subtract Y from X , which is equiv-

alent to X + Negate(Y ) + 1.
• IsLess(X,Y ). Return if X is less than Y , equivalent

to Extract the highest bit of Subtract(X,Y ).
• DivConst(X,C). Divide X by C, where C is an a-

priori known constant. As shown in [25], this stems
from multiplication combined with a right shift.

• ModConst(X,C). Return X modulo C, where C is
an a-priori known constant. This can be expressed as
Subtract(X,C ∗ DivConst(X,C)).

E.3. SGX Enclave and External-Memory
Model

Transfer of data across the boundary of SGX en-
clave. Secure processors, like those incorporating Intel
Software Guard Extensions (SGX), offer a hardware-
based secure environment known as the enclave. The
enclave ensures sensitive data to be decrypted and pro-
cessed only within its protected boundaries. To facilitate
this, SGX introduces a dedicated secure memory region
called the Enclave Page Cache (EPC). In SGX v1, the
EPC memory size is limited to 128MB, while in SGX
v2, it typically ranges from 8GB to 512GB.

In practice, it is common for the size of the data to
exceed the available EPC memory or even the physical
RAM capacity. Consequently, it becomes necessary to
store the data in an encrypted form in insecure physical
memory or external storage. Given our threat model
assumes a potentially malicious operating system, it is
imperative to also ensure the authentication of the data.

There are typically three approaches to transfer data
in and out of the enclave.
• Use built-in swapping instructions (e.g., EWB) that

provide cryptographic data protection.
Previous research has demonstrated that these built-in
instructions involve a complex page eviction process,
resulting in significant performance overheads [14],
[45]. Therefore, this approach is not employed in our
implementations.

• Use third-party cryptographic packages and copy data
to/from untrusted memory directly.
Alternatively, we can efficiently encrypt and authen-
ticate data within the enclave using a third-party
cryptographic package, leveraging hardware accel-
eration like Intel’s Advanced Encryption Standard
Instructions (AES-NI). The encrypted data can be
directly transferred between the EPC and non-EPC
memory through a unified virtual address space of
the enclave’s host process [13].

• Use third-party cryptographic packages and run ap-
plications outside the enclave via OCall.
When data exceeds the physical RAM capacity, ex-
ternal storage such as a disk file system needs to be

accessed. Such operation typically involves system
calls, which are prohibited inside the enclave. To
address this, we adopt the OCall mechanism to ex-
ecute untrusted applications outside the enclave [28].
Again, the data must be encrypted and authenticated
before transferred to the untrusted applications.

Motivation of external-memory model. Due to the
startup cost of OCall, disk swap, and cryptographic
operations, data should be transferred in a granularity of
at least 4KB [45], which resembles the paging mecha-
nism in operating systems. Nevertheless, the benchmark
study in [45] demonstrates that transferring 4KB of data
across the enclave boundary results in up to 66× higher
overhead compared to moving it within the enclave.
Consequently, an algorithm designed for enclave should
exploit data locality, ensuring maximum utilization of
a fetched page before swapping it out.

Therefore, the external-memory model [2] aligns
perfectly with hardware enclaves, as emphasized
by [45]. The external-memory model can be seen as
an enhancement of the traditional RAM model. While
the conventional RAM model primarily measures the
number of instructions, the external-memory model ad-
ditionally considers factors of cache misses and page
swaps, which are typically more resource-intensive.

Notations. We use the following notations globally:
• The page size B is the maximum number of elements

that fit in a page.
• The enclave size M is the maximum number of

elements that fit in the enclave’s protected memory.
Note that we define B and M in terms of the

number of elements rather than the number of bytes
— the definition disassociates our asymptotic bounds
with the length of the payload string.

By convention, the cost of a page swap includes
both reading a page into the enclave and writing a page
back to the external memory. In practice, however, page
reads and page writes do not necessarily occur together.
To account for this, we consider a single page read or
page write as equivalent to 0.5 page swaps, as they have
approximately the same overhead in our experiments.

E.4. Additional Overview of Previous Works

Deterministic sorting networks. Although AKS and
zig-zag sorting networks [3], [22] are well-known for
achieving a size of O(N logN), their construction of
expander graphs results in an astronomical constant.
In practice, Batcher’s odd-even mergesort and bitonic
sort [7] offer faster alternatives, but suffer from subop-
timal asymptotic complexity.

Probabilistic sorting networks. Leighton and Plax-
ton [32] proved that there is a network of depth
7.44 logN that succeeds on random input except with
negligible probability. However, they did not provide
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an explicit network construction, and for practical input
sizes, the constant must substantially increase to ensure
a reasonable success probability [32]. Although subse-
quent work [36] provided an empirical construction that
outperforms Batcher’s sorting network, no proof was
presented, and it is challenging to construct the circuit
for input sizes exceeding 214.

Randomized Shell sort. Randomized Shell sort [21]
implements oblivious sorting using 24N logN
compare-and-exchanges. However, its access pattern
exhibits poor locality, leading to high overhead from
page swapping. Additionally, the algorithm has a
non-negligible failure probability.

Goodrich’s oblivious external-memory sorting. The
sorting algorithm in [20] attains optimal complexity
for page swaps but incurs significant computational
overhead when strong obliviousness is required.
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