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Abstract

Interactive oracle proofs (IOPs) (Ben-Sasson et al., TCC 2016; Reingold et al., SICOMP 2021)
have emerged as a powerful model for proof systems which generalizes both Interactive Proofs (IPs)
and Probabilistically Checkable Proofs (PCPs). While IOPs are not any more powerful than PCPs
from a complexity theory perspective, their potential to create succinct proofs and arguments has been
demonstrated by many recent constructions achieving better parameters such as total proof length, alphabet
size, and query complexity. In this work, we establish new results on the relationship between various
notions of soundness for IOPs. First, we formally generalize the notion of round-by-round soundness
(Canetti et al., STOC 2019) and round-by-round knowledge soundness (Chiesa et al., TCC 2019). Given
this generalization, we then examine its relationship to the notions of generalized special soundness
(Attema et al., CRYPTO 2021) and generalized special unsoundness (Attema et al., TCC 2022). We show
that:

1. generalized special soundness implies generalized round-by-round soundness;
2. generalized round-by-round knowledge soundness implies generalized special soundness;
3. generalized special soundness does not imply generalized round-by-round knowledge soundness;
4. generalized round-by-round soundness (resp., special unsoundness) is an upper bound (resp., a lower

bound) on standard soundness, and this relationship is tight when the round-by-round soundness
and special unsoundness errors are equal; and

5. any special sound IOP can be transformed via (a variant of) the Fiat-Shamir transformation (in
the Random Oracle Model) into a non-interactive proof that is adaptively sound in the Quantum
Random Oracle Model.

1 Introduction

Probabilistic proof systems live at the heart of complexity theory and cryptography. Improvements in the
practical efficiency of these proof systems have led to breakthroughs in zero-knowledge, delegation of
computation, and other areas. Interactive oracle proofs (IOPs) were recently proposed [BCS16,RRR21] and
have emerged as a powerful model for proof systems. Many recent constructions [BCS16,BBHR18,CMS19,
GWC19,KPV19,COS20,BGKS20,Pol22,CBBZ23] of highly efficient and succinct proofs and arguments are
compiled from IOPs. IOPs combine aspects of both probabilistically checkable proofs (PCPs) and interactive
proofs (IPs), allowing a multi-round interaction between the prover and the verifier. A `-round IOP can be
viewed as a `-round interactive proof (IP) where the verifier has PCP-like access to each prover message.
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With the emergence of IOPs, the quest for understanding the security of IOPs has also started, specifically
with respect to rendering IOPs non-interactive via the Fiat-Shamir transformation [FS87]. Fortunately, a
recent fruitful line of work has introduced many tools to understand the security of IOPs under Fiat-Shamir:
these include the notions of state-restoration soundness [BCS16], round-by-round soundness [CCH+19], and
(generalized) special soundness [CDS94,Wik21,AFK22]. Another exciting line of work has attempted to
establish relationships between these soundness notions for IPs [Hol19] and studied similar notions for IOPs
[CMS19,KPV19,COS20].

This work formally analyzes and establishes the relationship between various soundness notions for IOPs.
The first such notion of soundness is round-by-round (RBR) soundness, which captures the idea of “persistent
falsehood” in an IOP: if the protocol is initiated in a state with a false statement and should be rejected by
the verifier (i.e., a “doomed state”), then no matter how cleverly the prover responds in subsequent rounds,
the protocol will “forever remain doomed” (except with negligible probability). RBR knowledge soundness
captures the idea that there exists an (efficient) extractor algorithm such that if there was such a prover that
could escape the “doomed state” with a higher (e.g., non-negligible) probability, then this extractor can extract
a valid witness given the (partial) transcript of this interaction. Other key soundness notions we consider are
special soundness and special unsoundness of IOPs. Special soundness was originally introduced [CDS94] in
the context of Σ-protocols [Bab85,GMR89] and was later generalized in [CDS94,Wik18,Wik21]. A protocol
is considered special sound if there exists an (efficient) extractor such that when given a tree of accepting
transcripts (see Definition 3.5) as input, then the extractor can output a valid witness for the input. Special
unsoundness [AFK22], on the other hand, argues about certain verifier challenges being extremely “lucky”
for a malicious prover in the following sense: if the verifier sends such a challenge, then a malicious prover
can convince the verifier of a false statement.

Establishing relationships among the various soundness notions for IOPs plays a critical role in proving the
Fiat-Shamir security [FS87] of multi-round (i.e., non-constant round) protocols. Consequently, understanding
these interrelations offers multiple avenues to ensure Fiat-Shamir security, significantly enhancing such
cryptographic protocols’ applicability. This is demonstrated by our results (Figure 1), establishing new
relationships among these soundness notions.

1.1 Our Results

In this paper, we formally establish new relations among generalized round-by-round (RBR) soundness and
generalized special soundness. More formally, let R be a relation (e.g., an NP relation) for which a `-round
interactive protocol is executed and let 𝐿R be the language corresponding to the relation R. Then for any
statement x ∉ 𝐿R, generalized RBR soundness is defined with respect a series of “doomed” sets D𝑖 for all
𝑖 = 0, ..., `. These sets represent protocol states (comprising of the statement and the transcript so far) from
which the prover cannot possibly convince the verifier that x ∈ 𝐿R, except with small probability. Intuitively,
the “doomed” set indicates that the protocol is in a point of no return for the prover: no matter what the prover
does, except with small probability, the verifier will reject at the end of the interaction. Slightly more formally,
generalized RBR soundness (Definition 3.11) requires the following:

• If a statement x ∉ 𝐿R, then the protocol begins in this “doomed” state.

• If the current state (comprising the statement and the transcript of all messages so far) is “doomed”,
then no matter what the prover’s next message is, the probability that the next state (including the
prover’s next message and the verifier’s next message) is not doomed is at most Y𝑖 ( |x|), where Y𝑖 are
predefined error functions. This means that once a state is doomed, it is highly likely that all future
states will remain doomed, no matter what the prover does.

2



• After all the interaction rounds, if the interaction ends in a doomed state, then the verifier will reject.

Note that this generalization considers the errors in each round individually, unlike previous definitions
as noted in Definition 3.11.1 Generalized RBR knowledge soundness is defined with respect to the same
framework: a protocol is generalized RBR knowledge sound if there exists an efficient extractor such that if
during any round 𝑖 of the interaction, if the prover can escape the doomed set D𝑖 with probability larger than
Y𝑖 , then the extractor can extract a valid witness from the transcript of this interaction thus far. For generalized
RBR knowledge soundness, the protocol always begins in a doomed state, even if x ∈ 𝐿R.

The generalized special soundness notion we consider is due to Attema et al. [ACF21] and is defined
with respect to a tree of protocol transcripts. For a `-round IOP Π = (P,V), and (𝑘1, . . . , 𝑘`) ∈ N`, a
(𝑘1, . . . , 𝑘`)-tree of accepting transcripts for x is a set of 𝑘 =

∏
𝑖 𝑘𝑖 accepting transcripts {𝜏1, . . . , 𝜏𝑘},

each with common first message 𝑚, arranged in a tree of depth ` + 1 as follows. The nodes in each tree
correspond to the prover’s messages and the edges correspond to the verifier’s challenges, every node at
depth 𝑖 − 1 (for 1 ≤ 𝑖 ≤ `) has 𝑘𝑖 children corresponding to pairwise distinct challenges, and every complete
transcript corresponds to exactly one path from the root node to a leaf node in the tree. The protocol
Π is (𝑘1, . . . , 𝑘`)-special sound if there exists a polynomial time algorithm Ext that, on input x and any
(𝑘1, . . . , 𝑘`)-tree of accepting transcripts for x, outputs a witness w such that (x,w) ∈ R.

The notion of ℓ-special unsoundness [AFK22] for an IOP Π = (P,V) says that if there exists a dishonest
prover strategy P∗ such that during any round of the protocol, for any message 𝑚 sent by P∗, there exists
a “lucky” set of verifier challenges L ⊂ C of size |L| = ℓ such that if the verifier V responds with 𝑐 ∈ L,
then P∗ can “behave honestly” for the remainder of the protocol and V will accept at the end of the protocol
execution; here, C represents the set of verifier challenges.

For these generalized soundness notions, we prove the following results; see Figure 1 for a high-level
overview of all of our results. First we show that special soundness implies round-by-round soundness.

Theorem 1.1 (Special Soundness Implies RBR Soundness). Let Π = (P,V) be a `-round IOP for a relation
R. Let C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , `} and let (𝑘1, . . . , 𝑘`) ∈ N`. Assume that Π
is (𝑘1, . . . , 𝑘`)-special sound. Then Π is RBR sound with errors(

Y1, . . . , Y`
)
=

(
𝑘1 − 1
|C1 |

, . . . ,
𝑘` − 1
|C` |

)
. (1)

Next, we show that round-by-round knowledge soundness implies special soundness.

Theorem 1.2 (RBR Knowledge Implies Special Soundness). Let Π = (P,V) be a `-round IOP for a relation
R. Let C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , `}. Assume Π has round-by-round knowledge
with errors (Y1, . . . , Y`), and let

(𝑘1, . . . , 𝑘`) = (⌈|C1 |Y1⌉ + 1, . . . , ⌈|C` |Y`⌉ + 1).

Suppose
∑

𝑖∈[`]
∏

𝑗∈[𝑖 ] 𝑘 𝑗 is upper bounded by a polynomial (on the lengths of inputs). ThenΠ is (𝑘1, . . . , 𝑘`)-
special sound.

We follow this up with a negative result: special soundness does not imply round-by-round knowledge
soundness.

1To the best of our knowledge, we are the first to formally define and analyze this generalized notion of round-by-round soundness.
While this notion of RBR soundness has been implicit in prior works (e.g., in RBR soundness proofs of [KPV19] as one example),
we were unable to find prior work formally defining and analyzing this generalized notion of RBR soundness.
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Theorem 1.3 (Special Soundness does not Imply RBR Knowledge). Assume NP ≠ P. Then for any
polynomial `( |x|), there exists a `-round IOP Π with the following properties:

• Π is (1, `. . ., 1)-special sound.

• If Π is RBR knowledge sound with errors (Y1, . . . , Y`), then Y𝑖 (ℓ) = 1 for some input length ℓ and some
𝑖 ∈ {1, . . . , `}.

Finally, we show tight relationships between standard soundness, generalized round-by-round soundness,
and special unsoundness.

Theorem 1.4 (Relation between Soundness, Round-by-round Soundness, and Special Unsoundness). Let Π
be a `-round IOP for a relation R with soundness error Y. Then the following hold:

1. RBR soundness is an upper bound for soundness. If Π is round-by-round sound with errors
(Y1, . . . , Y`), then

Y ≤ 1 −
∏̀
𝑖=1

(1 − Y𝑖)

for all x ∉ 𝐿R.

2. Special unsoundness is a lower bound for soundness. If Π is special unsound with errors (Y′1, . . . , Y′`),
then

1 −
∏̀
𝑖=1

(
1 − Y′𝑖

)
≤ Y

for all x ∉ 𝐿R. Moreover, there exists a dishonest unbounded prover P∗ that, given any input x,
manages to make the verifier accept with probability at least 1 −∏𝑖

(
1 − Y′

𝑖

)
.

3. Tightness of RBR soundness, soundness, and special unsoundness. Suppose Π is round-by-round
sound with errors (Y1, . . . , Y`) and that Π is special unsound with the same errors (Y1, . . . , Y`). Then

Y = 1 −
∏̀
𝑖=1

(1 − Y𝑖) .

Moreover, the error is tight in the sense that there exists a dishonest prover P∗ that, given any input x,
manages to have the verifier accept with probability at least Y.

1.1.1 Special Soundness and State-restoration Soundness

Our results on the relationship between special soundness and round-by-round soundness (i.e., Theorem 1.1)
gives us new relationships between special soundness and state-restoration soundness [BCS16]. Informally,
state-restoration (SR) soundness roughly states that an IOP remains secure (i.e., cannot convince a verifier of
a false statement) even if a malicious prover is allowed to rewind the verifier to any prior state at most 𝑏 ≥ 1
times (see [BCS16] for complete details). It is known that state-restoration soundness and (non-generalized)
round-by-round soundness are equivalent [Hol19] (up to some factors); moreover, state-restoration soundness
error Ysr (𝑏) and round-by-round soundness error Yrbr must satisfy Ysr (𝑏) ≤ 𝑏Yrbr [CMS19,KPV19,COS20],
and this relation holds between state-restoration knowledge soundness and round-by-round knowledge
soundness as well [COS20].

As a direct corollary of the above results (i.e., RBR soundness implies SR soundness) and Theorem 1.1,
we obtain the following result.
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Corollary 1.5 (Special Soundness Implies State-restoration Soundness). Let Π be a `-round (𝑘1, . . . , 𝑘`)-
special sound IOP with verifier challenge sets C1, . . . C`. Then for 𝑏 ≥ 1, Π has state-restoration soundness
error

Ysr (𝑏) ≤ 𝑏 ·max
𝑖

{
𝑘𝑖 − 1
|C𝑖 |

}
.

1.1.2 Special Soundness and Quantum-secure Fiat-Shamir

Recent cryptographic research put forth significant effort toward achieving post-quantum security of various
cryptographic primitives, which include post-quantum security of non-interactive proofs obtained via the
Fiat-Shamir transformation (or variants of this transformation) [CMS19,LZ19,DFMS19,CMSZ21]. With
respect to post-quantum security, of interest to us is the so-called BCS transformation due to Ben-Sasson
et al. [BCS16]; informally, this transformation compiles any IOP into a non-interactive proof via a variant
of the Fiat-Shamir transformation in the random oracle model. In [BCS16], it is shown that applying this
transformation to any state-restoration sound IOP results in an adaptively secure non-interactive proof in the
random oracle model (ROM). The follow up work due to Chiesa et al. [CMS19] extend this result to show
that compiling any round-by-round (knowledge) sound IOP with the BCS transformation yields an adaptively
(knowledge) sound non-interactive proof in the ROM; we refer the reader to prior work (e.g., [BCS16,CMS19])
for complete details on this transformation. Furthermore, [CMS19] show that this transformation yields a
non-interactive proof that is secure in the quantum ROM (QROM) (i.e., secure against quantum adversaries
that are allowed to query the random oracle in superposition).

As a direct consequence of [CMS19] and Theorem 1.1, any special sound IOP can be compiled via
the BCS transformation to obtain an adaptively sound non-interactive proof in the QROM. This gives the
following corollary.

Corollary 1.6 (Special Soundness Implies FS Security in the QROM). Let Π be a `-round (𝑘1, . . . , 𝑘`)-
special sound IOP. Let BCS(Π) be the non-interactive proof obtained by applying the BCS transformation to
Π in the random oracle model, and let Y = max𝑖{(𝑘𝑖 − 1)/|C𝑖 |}. Then BCS(Π) has adaptive soundness error
𝑂 (𝑡2Y + 𝑡3/2_) against quantum attackers that make at most 𝑡 − 𝑂 (𝑞 log ℓ) queries to the random oracle,
where _ is the output length of the random oracle in bits, 𝑞 is (an upper bound on) the total number of queries
made by the verifier during any execution of Π, and ℓ is the total number of symbols sent by both the prover
and verifier during any execution of Π.

Remark 1.7. Note that Corollary 1.6 directly implies that the Fiat-Shamir transformation of any special sound
interactive proof in the ROM is an adaptively secure non-interactive proof in the QROM.

To the best of our knowledge, the above corollary is the first result relating the special soundness of a
protocol and its security versus quantum adversaries when rendered non-interactive via the BCS transformation
(i.e., a variant of the Fiat-Shamir transformation). Thus Corollary 1.6 is the first result to our knowledge
relating special soundness of multi-round protocols to quantum security. Notably, due to Theorem 1.3, we do
not obtain that the BCS transformation of a special sound IOP is knowledge sound versus quantum adversaries;
we leave it as an interesting open problem to examine whether special soundness implies non-interactive
knowledge soundness versus quantum adversaries. We remark that the Fiat-Shamir transformation of
quantum-secure Σ-protocols (i.e., 1-round interactive arguments) was shown to be sound in the QROM
[DFMS19].
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Figure 1: Pictorial overview of the relations between soundness notions. FS and Q-FS denote non-interactive
adaptive security of the BCS transformation (i.e., a variant of the Fiat-Shamir transformation) in the random
oracle model and quantum random oracle model, respectively. SR denotes state-restoration soundness. “ =⇒ ”
arrows represent implications; “ ≠⇒ ” represents there is no implication; and the dashed↔ represents a
relationship between notions (described by the text). Text in bold indicate the main soundness notions we
study in this work. Thick arrows, lines, and background shading indicate our contributions. We remark that
Corollary 1.5 follows from Theorem 1.1 and [CCH+19,COS20], and Corollary 1.6 follows from Theorem 1.1
and [CMS19].
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1.2 Related Work

Interactive oracle proofs were introduced by Ben-Sasson et al. [BCS16] and independently by Reingold
et al. [RRR21]. [BCS16] additionally introduced the notion of state-restoration soundness to formally
show the Fiat-Shamir [FS87] security of multi-round IOPs in the random oracle model. The notion of
round-by-round soundness was later introduced by Canetti et al. [CCH+19] for a similar reason: to prove
Fiat-Shamir security of multi-round protocols, but in the plain model; however, round-by-round soundness
readily implies Fiat-Shamir security in the random oracle model [CCH+19]. It was widely known that
round-by-round soundness implies state-restoration soundness (e.g., [CCH+19,COS20]), and it was recently
shown that state-restoration soundness implies round-by-round soundness [Hol19]. Special soundness was
recently shown to also imply Fiat-Shamir security of multi-round protocols [AFK22]; moreover, this work
also shows that special unsoundness of multi-round protocols readily admits an attack on the Fiat-Shamir
transformed protocol.

Prior to these soundness tools, a variety of work [KRR17,CCRR18,HL18] circumvented the impossibility
results of [BDG+13] by using stronger hardness assumptions to construct Fiat-Shamir compatible hash
function families. Another line of work [GKR08,CMT12,BCGT13,Tha13,BTVW14,WTs+18,Set20,RR20]
follows the frameworks of Kilian [Kil92] and Micali [Mic94] to compile interactive oracle proofs into efficient
arguments and SNARKs via collision-resistant hash functions [Kil92,BCS16] or in the random oracle model
[Mic94,BCS16].

2 Technical Overview

We give an overview of our main contributions in this section. Before we begin, we informally fix some
notation. Given a `-round IOP Π = (P,V) for a relation R and vector (𝑘1, . . . , 𝑘`) ∈ N`, we say that tree 𝑇
is a (𝑘1, . . . , 𝑘`)-tree of transcripts for Π on any input x ∈ 𝐿R if 𝑇 is a depth ` + 1 tree such that nodes at
level 𝑖 have 𝑘𝑖 outgoing edges, and the tree is labeled in the following way: every node at level 𝑖 is labeled with
a prover message and every edge is labeled with the corresponding challenge; moreover, the root of the tree is
a single message 𝑚 sent by the prover, and all leaves are prover messages. We say that 𝑇 is an accepting tree
of transcripts if all root to leaf paths are accepting transcripts (i.e., they are accepted by V). Now given the
notion of a tree of accepting transcripts, the protocol Π is (𝑘1, . . . , 𝑘`)-special sound [ACK21] if there exists
a polynomial time extractor algorithm that when given as input any (𝑘1, . . . , 𝑘`)-tree of accepting transcripts
for an instance x, the extractor outputs a witness w such that (x,w) ∈ R. For generalized round-by-round
(knowledge) soundness, we point the reader back to the informal definition presented in Section 1.1 or the
formal definition in Definitions 3.11 and 3.12.

2.1 Special Soundness Implies Round-by-round Soundness

In this section, we give an overview of Theorem 1.1: special soundness implies round-by-round soundness.
More formally, we show that any (𝑘1, . . . , 𝑘`)-special sound IOP is generalized RBR sound with errors
Y𝑖 = (𝑘𝑖 − 1)/|𝐶𝑖 |. As a warm up, we first consider the non-generalized version of special soundness (i.e.,
𝑘-ary trees of accepting transcripts) and RBR soundness (i.e., a single error bound Y and doomed set D for
all rounds of RBR soundness).
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2.1.1 Warm Up: 1-round IOPs

Consider any 1-round (i.e., 3-move) public coin IOP Π = (P,V) with message spaceM and challenge space
C for some relation R. Suppose that Π is 𝑘-special sound. That is, there is an extractor Ext such that on
any input x and any 𝑘-tree of accepting transcripts of the form (𝑚, 𝑐𝑖 , 𝑧𝑖) for 𝑐𝑖 ∈ C distinct for all 𝑖 and
𝑚, 𝑧1, . . . , 𝑧𝑘 ∈ M, the extractor outputs a witness w such that (x,w) ∈ R.

Now we claim that Π is round-by-round sound with error Y = (𝑘 − 1)/|C|. This can be seen as follows.
Fix an input x and consider any first message 𝑚 ∈ M sent by the prover and any challenge 𝑐 sent by the
verifier. We say that (x, 𝑚, 𝑐) is completable if there exists 𝑧 ∈ M such that V(x, 𝑚, 𝑐, 𝑧) = 1; i.e., the verifier
accepts. Intuitively speaking, for Π to be round-by-round sound, then the number of compleatable transcripts
should be small for any x ∉ 𝐿R. In other words, for any first message 𝑚 sent by the prover, the probability
that (x, 𝑚, 𝑐) is completable for 𝑐 $← C should be at most Y defined above. Let 𝑝(x, 𝑚) be the probability
that (x, 𝑚, 𝑐) is completable for 𝑐 $←C, and suppose towards contradiction that 𝑝(x, 𝑚) > Y. This implies
that there exist 𝛼 = ⌈|C| · 𝑝(x, 𝑚)⌉ > Y |C| = (𝑘 − 1) distinct challenges 𝑐1, . . . , 𝑐𝛼 ∈ C such that (x, 𝑚, 𝑐𝑖)
is completable for all 𝑖 ∈ {1, . . . , 𝛼}. Notice that 𝛼 > 𝑘 − 1 and so 𝛼 ≥ 𝑘 . This tell us that any 𝑘 of the
𝛼 completable transcripts (x, 𝑚, 𝑐𝑖) form a 𝑘-tree of accepting transcripts of the form 𝑇 = {(x, 𝑚, 𝑐𝑖 , 𝑧𝑖)}𝑖
where 𝑧𝑖 completes (x, 𝑚, 𝑐𝑖). Thus by 𝑘-special soundness of Π, we have that (x,Ext(x, 𝑇)) ∈ R; however,
this is a contradiction since x ∉ 𝐿R. Then it must be the case that at most 𝛼 ≤ (𝑘 − 1) = Y |C| distinct
challenges can result in a completable transcript, which implies that 𝑝(x, 𝑚) ≤ (𝑘 − 1)/|C| as desired.

More formally, to show that Π has round-by-round soundness error Y = (𝑘 − 1)/|C|, we define a suitable
doomed set D as follows. First consider the following two sets:

• Define D0 to be the set of all (x, ∅) such that x ∉ 𝐿R, where ∅ denotes the empty transcript.

• Define D1 to be the set of all (x, 𝑚, 𝑐) for 𝑚 ∈ M and 𝑐 ∈ C that are not completable.

Then we setD = D0∪D1. Under this definition ofD, clearly we have (x, ∅) ∈ D for all x ∉ 𝐿R by definition;
moreover, for any transcript (x, 𝑚, 𝑐) that is not completable, then for all 𝑧 ∈ M we have V(x, 𝑚, 𝑐, 𝑧) = 0.
Now supposing that (x, ∅) is doomed (by definition), consider any potential prover message 𝑚. Let 𝑝(x, 𝑚)
denote the probability that (x, 𝑚, 𝑐) ∉ D, where the probability is taken over 𝑐 $←C. Suppose there exists a
message 𝑚 ∈ M such that 𝑝(x, 𝑚) > Y. Then by our above argument, we reach a contradiction as we can
construct a 𝑘-tree of accepting transcripts and output a witness w, violating the assumption that x ∉ 𝐿R.
Thus it must hold that 𝑝(x, 𝑚) ≤ Y = (𝑘 − 1)/|C|, as desired.

2.1.2 Extending to `-round IOPs

Notice that the above argument crucially relies on the fact that if a malicious prover can leave the doomed set
in the first round with probability larger than Y = (𝑘 − 1)/|C|, then we can manifest a 𝑘-tree of accepting
transcripts. To extend the above argument to ` > 1 round protocols, we want to preserve this fact. Recall the
notion of a completable transcript from above, which states that for a given partial transcript (x, 𝑚, 𝑐), there
exists a prover message 𝑧 ∈ M that causes the verifier to accept the entire transcript (x, 𝑚, 𝑐, 𝑧). Now we
extend this notion to any `-round IOP. Consider any partial transcript of the form 𝜏𝑖 := (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖),
where 𝑖 ≤ ` and message 𝑚 𝑗 ∈ M is sent by the prover at the start of round 𝑗 and the verifier responds with
challenge 𝑐 𝑗

$←C, for all 𝑗 ≤ 𝑖. Now intuitively, we want to say that 𝜏𝑖 is completable if there is a sequence of
messages and challenges 𝜎𝑖+1 = (𝑚𝑖+1, 𝑐𝑖+1, . . . , 𝑚`, 𝑐`, 𝑚`+1) such that V(𝜏𝑖 , 𝜎𝑖+1) = 1; i.e., (𝜏𝑖 , 𝜎𝑖+1) is a
complete accepting transcript. However, this definition falls short of what we need to show our result.
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In our argument for the 1-round IOP, we crucially relied on fact that the completable transcripts (x, 𝑚, 𝑐)
form an entire 𝑘-tree of accepting transcripts. Under our proposed extended definition of a completable
transcript, this fact would no longer hold. To see this, suppose that (x, 𝑚1, 𝑐1,𝑖) is completable for at least 𝑘
challenges 𝑐1,1, . . . , 𝑐1,𝑘 . Under our current definition of completable, this only implies that there exist 𝑘
sequences of messages and challenges 𝜎1,𝑖 such that (x, 𝑚1, 𝑐1,𝑖 , 𝜎1,𝑖) is an accepting transcript. Clearly, this
is not a 𝑘-tree of accepting transcripts, so we can no longer derive our contradiction as with the 1-round IOP
case.

We address the above issue by extending the definition of a completable transcript to a 𝑘-completable
transcript. For any partial transcript 𝜏𝑖 for as defined above, we say that 𝜏𝑖 is 𝑘-completable if there exists
a 𝑘-tree of transcripts 𝑇 of depth ` + 1 − 𝑖 such that for every 𝜎 ∈ 𝑇 , the transcript (𝜏𝑖 , 𝜎) is accepted by
the verifier, where 𝜎 is of the form (𝑚𝑖+1, 𝑐𝑖+1, . . . , 𝑚`, 𝑐`, 𝑚`+1). Now under this definition, we can now
proceed to extend our proof to `-round IOPs.

Suppose that Π is a 𝑘-special sound IOP. We argue that Π has round-by-round soundness error Y =

(𝑘 − 1)/|C|. Define a doomed set D as follows. First, consider the following sets:

• Define D0 to be the set of all (x, ∅) such that x ∉ 𝐿R.

• For all 𝑖 ∈ {1, . . . , `}, define D𝑖 to be the set of partial transcripts 𝜏𝑖 = (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) such
that 𝜏𝑖 is not 𝑘-completable.

Now takeD = ∪`
𝑖=0D𝑖 . Clearly, we have (x, ∅) ∈ D for allx ∉ 𝐿R. Moreover, if 𝜏` = (x, 𝑚1, 𝑐1, . . . , 𝑚`, 𝑐`)

is not 𝑘-completable, then for all 𝑚`+1 ∈ M we have V(𝜏`, 𝑚`+1) = 0 by definition of 𝑘-completable.
Let 𝜏0 = (x, ∅). We now argue that the probability that 𝜏1 = (𝜏0, 𝑚1, 𝑐1) is 𝑘-completable is at most Y for

all𝑚1 ∈ M and 𝑐1
$←C. Our argument now proceeds identically to the 1-round IOP case. Let 𝑝1(x, 𝑚1) denote

the probability over 𝑐1
$←C that 𝜏1 = (𝑚1, 𝑐1) is 𝑘-completable; in particular, 𝑝1(x, 𝑚1) = Pr[(x, 𝜏1) ∉ D]

by our definition. Suppose there exists 𝑚1 ∈ M such that 𝑝1(x, 𝑚1) > Y. Now this implies that there exist at
least 𝛼 > Y |C| = (𝑘 − 1) distinct challenges 𝑐1,1, . . . , 𝑐1,𝛼 ∈ C such that (x, 𝑚1, 𝑐1, 𝑗) is 𝑘-completable. By
definition of completable, this implies that for every 𝑗 ∈ {1, . . . , 𝛼} and partial transcript 𝜏1, 𝑗 = (𝑚1, 𝑐1, 𝑗),
there exists a 𝑘-tree of transcripts 𝑇2, 𝑗 of depth ` such that for all 𝜎 ∈ 𝑇1, 𝑗 , the complete transcript (x, 𝜏1, 𝑗 , 𝜎)
is accepted by the verifier. Since 𝛼 ≥ 𝑘 , taking any 𝑘 out of 𝛼 of the partial transcripts (x, 𝑚1, 𝑐1, 𝑗) along
with their 𝑘-tree of transcripts 𝑇2, 𝑗 forms a 𝑘-tree of accepting transcripts of depth ` + 1. Now by special
soundness of Π, there exists an efficient extractor that extracts a witness w such that (x,w) ∈ R when given
this 𝑘-tree of accepting transcripts, contradicting our assumption that x ∉ 𝐿R. Thus it must be the case that
𝑝1(x, 𝑚1) ≤ Y, as required.

Now consider any intermediate round 𝑖 ≤ ` − 1 and let 𝜏𝑖 = (𝑚1, 𝑐1, . . . , 𝑚1, 𝑐𝑖) be a partial transcript for
this round. Suppose that 𝜏𝑖 ∈ D; we now show that for all𝑚𝑖+1 ∈ M, the probability that 𝜏𝑖+1 = (𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1)
is 𝑘-completable is at most Y for 𝑐𝑖+1

$← C. Let 𝑝𝑖+1(x, 𝜏𝑖 , 𝑚𝑖+1) = Pr𝑐𝑖+1 [(x, 𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1) ∉ D] denote
this probability and suppose there exists 𝑚𝑖+1 ∈ M such that 𝑝𝑖+1(x, 𝜏𝑖 , 𝑚𝑖+1) > Y. By the same argument as
above and by definition of Y, there exist at least 𝑘 distinct challenges 𝑐𝑖+1,1, . . . , 𝑐𝑖+1,𝑘 such that the partial
transcript 𝜏𝑖+1, 𝑗 = (𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1, 𝑗) is 𝑘-completable. By definition of 𝑘-completable, this implies for each
𝜏𝑖+1, 𝑗 there exists a 𝑘-tree of transcripts 𝑇𝑖+2, 𝑗 of depth ` − 𝑖 such that for all 𝜎 ∈ 𝑇𝑖+1, 𝑗 , the transcript
(𝜏𝑖+1, 𝑗 , 𝜎) is a complete and accepting transcript. Then we can construct a 𝑘-tree of transcripts 𝑇𝑖+1 of
depth ` − 𝑖 + 1 as 𝑇𝑖+1 = {(𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1, 𝑗 , 𝜎) 𝑗∈{1,...,𝑘} : 𝜎 ∈ 𝑇𝑖+1, 𝑗}. Then clearly 𝑇𝑖+1 forms a 𝑘-tree of
transcripts that completes the partial transcript 𝜏𝑖; this contradicts the assumption that 𝜏𝑖 ∈ D, i.e., 𝜏𝑖 is not
𝑘-completable. Thus it must hold that 𝑝𝑖+1(x, 𝜏𝑖 , 𝑚𝑖+1) ≤ Y for all 𝑚𝑖+1 ∈ M, establishing the result.
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2.1.3 Extending to Generalized Special Soundness and Generalized Round-by-round Soundness

The above argument naturally generalizes to (𝑘1, . . . , 𝑘`)-special soundness and (Y1, . . . , Y`) round-by-round
soundness with message spacesM1, . . . ,M`+1 and challenge spaces C1, . . . , C`. First, we define a partial
transcript 𝜏𝑖 to be (𝑘𝑖+1, . . . , 𝑘`)-completable if there exists a (𝑘𝑖+1, . . . , 𝑘`)-tree of transcripts 𝑇 of depth
` − 𝑖 + 1 such that for all 𝜎 ∈ 𝑇 , (𝜏𝑖 , 𝜎) is a complete transcript and V(x, 𝜏𝑖 , 𝜎) = 1. Then under this
definition, we define our doomed set D = ∪`

𝑖=0D𝑖 where D0 is defined identically as above and D𝑖 is the set
of all partial transcripts 𝜏𝑖 that are not (𝑘𝑖+1, . . . , 𝑘`)-completable. Then setting Y𝑖 = (𝑘𝑖 − 1)/|C𝑖 |, we can
proceed with the above argument in an identical fashion, deriving our contradictions and showing generalized
round-by-round soundness of the IOP Π.

2.1.4 Special Soundness Implies Soundness in the Quantum Random Oracle Model

A direct consequence of the previous result is that the BCS transformation [BCS16] of a special sound IOP
is sound in the Quantum Random Oracle Model (QROM). By our previous result, any special sound IOP
is RBR sound, and the BCS transformation of any RBR sound IOP is a sound non-interactive proof in the
QROM [CMS19], giving this consequence (i.e., Corollary 1.6). In particular, this implies that the Fiat-Shamir
transformation of any special sound Interactive Proof is sound in the QROM.

2.2 Round-by-round Knowledge Implies Special Soundness

In this section, we give an overview of Theorem 1.2: round-by-round knowledge soundness implies special
soundness.

2.2.1 Warm Up: 1-round IOPs

We again consider analyzing a 1-round public coin IOP Π = (P,V) with message spaceM and challenge
space C for some relation R. Let Y be the round-by-round (RBR) knowledge error of Π. Let x be arbitrary
and let D be the doomed set for RBR knowledge error. By RBR knowledge, there exists a polynomial time
extractor Ext such that that if for all 𝑚 ∈ M it holds that 𝑝(x, 𝑚) = Pr𝑐 [(x, 𝑚, 𝑐) ∉ D] > Y, then Ext(x, 𝑚)
outputs a witness w such that (x,w) ∈ R, where the probability is taken over 𝑐 $←C. Crucially, for all such
transcripts (x, 𝑚, 𝑐) ∉ D, there exists 𝑧 ∈ M such that (x, 𝑚, 𝑐, 𝑧) is an accepting transcript; we leverage this
fact below.

Setting 𝑘 = ⌈|C|Y⌉ + 1, we now construct a polynomial-time extractor Ext′ such that given any 𝑘-tree
of accepting transcripts 𝑇 = {(x, 𝑚, 𝑐𝑖 , 𝑧𝑖) : 𝑐𝑖 ∈ C, 𝑧𝑖 ∈ M}𝑖∈{1,...,𝑘} , (x,Ext(𝑇)) ∈ R. Suppose that for
all 𝑚 ∈ M we have 𝑝(x, 𝑚) > Y. This implies that for any 𝑚 ∈ M, there are 𝛼 > Y |C| distinct challenges
𝑐1, . . . , 𝑐𝛼 such that Ext(x, 𝑚, 𝑐𝑖) outputs a valid witness, which implies that 𝛼 ≥ ⌈Y |C|⌉ + 1 = 𝑘 , and thus
there are at least 𝑘 distinct challenges 𝑐1, . . . , 𝑐𝑘 such that Ext(x, 𝑚, 𝑐𝑖) outputs a valid witness for all 𝑚 ∈ M.
Now given as input a tree of accepting transcripts 𝑇 defined above, our new extractor Ext′(x, 𝑇) simply runs
Ext on input (x, 𝑚), followed by (x, 𝑚, 𝑐𝑖 , 𝑧𝑖) for all 𝑖 ∈ {1, . . . , 𝑘}. Then Ext′ outputs the same witness w
that is given by Ext. Note that by assumption, we have that (x, 𝑚, 𝑐𝑖 , 𝑧𝑖) ∉ D, and we have 𝑘 = ⌈Y |C|⌉ + 1
such transcripts, so by RBR knowledge it must be the case that Ext(x, 𝑚, 𝑐𝑖 , 𝑧𝑖) outputs a valid witness for
some 𝑖. Otherwise, if (x, 𝑚, 𝑐𝑖 , 𝑧𝑖) ∈ D, then the verifier would reject this transcript, contradicting 𝑇 being a
tree of accepting transcripts.
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2.2.2 Extending to `-round IOPs

Extending the above intuition to `-round IOPs introduces some subtleties. Suppose again that Π is RBR
knowledge sound with error Y and let 𝑘 = ⌈|C|Y⌉ + 1. Let 𝑇 be a 𝑘-tree of accepting transcripts of depth ` + 1
with root 𝑚1. We now construct a special soundness extractor that extracts a valid witness given the tree 𝑇 .

Consider any partial transcript 𝜏𝑖 = (𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) such that 𝜏𝑖 is a path in 𝑇 . Then there is a unique
message 𝑚∗

𝑖+1 such that (𝜏𝑖 , 𝑚∗𝑖+1) is a path in 𝑇 . Now suppose that 𝜏𝑖 has the following properties:

• (x, 𝜏𝑖) ∈ D (i.e., 𝜏𝑖 is a doomed transcript);

• For all outgoing edges 𝑐𝑖+1,1, . . . , 𝑐𝑖+1,𝑘 connected to 𝑚∗
𝑖+1, we have (x, 𝜏𝑖 , 𝑚∗𝑖+1, 𝑐𝑖, 𝑗) ∉ D for all 𝑗 .

Clearly if 𝜏𝑖 has these properties, then our extractor Ext′ on input 𝑇 can run RBR knowledge extractor Ext on
input (x, 𝜏𝑖 , 𝑚∗𝑖+1, 𝑐𝑖, 𝑗) and obtain a valid witness. This follows by our definition of 𝑘 and by RBR knowledge:
the fraction of challenges 𝑐 ∈ C such that (x, 𝜏𝑖 , 𝑚∗𝑖+1, 𝑐) ∉ D is strictly larger than Y; i.e., 𝑘/|C| > Y.

Now we claim that for any tree of accepting transcripts 𝑇 , there exists some partial transcript 𝜏𝑖 that
satisfies the above stated properties for some 𝑖 ∈ {1, . . . , `}. If this claim is true, then the extractor Ext′ on
input any 𝑘-tree of accepting transcripts 𝑇 simply runs Ext on input (x, 𝜏𝑗 , 𝑚∗𝑗+1) over all possible partial
transcripts 𝜏𝑗 that are in 𝑇 that are a path from the root to node 𝑚∗

𝑗+1. Then clearly Ext outputs a valid witness
w such that (x,w) ∈ R; else this would violate RBR knowledge. Thus Ext′ outputs this same witness w.

All that remains to be shown is the above claim, which we formally prove in Section 4. At a high
level, we show the claim by reverse (strong) induction on 𝑖 ∈ {1, . . . , `}. For 𝑖 = `, if the claim does not
hold, then clearly 𝑇 is no longer a tree of accepting transcripts as there is some complete transcript that
remains in the doomed set, violating the assumption that 𝑇 is an accepting tree of transcripts. Then fixing
𝑖 < ` and assuming the claim is true for all 𝑗 such that 𝑖 < 𝑗 ≤ `, suppose 𝜏𝑖−1 is a partial transcript in
the tree 𝑇 . If 𝑚∗

𝑖
is the unique node in 𝑇 such that (x, 𝜏𝑖−1, 𝑚∗𝑖 ) is a path in 𝑇 and if for all outgoing edges

𝑐𝑖,1, . . . , 𝑐𝑖,𝑘 of 𝑚∗
𝑖

we have (x, 𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗) ∉ D, then we are done. Otherwise, there exists some outgoing
edge 𝑐𝑖, 𝑗∗ of 𝑚∗

𝑖
such that (x, 𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗∗) ∈ D. Now if this happens, by our induction hypothesis, we have

that for 𝑚∗
𝑖+1 which has incoming edge 𝑐𝑖, 𝑗∗ and all outgoing edges 𝑐𝑖+1, 𝑗 from 𝑚∗

𝑖+1, the partial transcript
(x, 𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗∗ , 𝑚∗𝑖+1, 𝑐𝑖+1, 𝑗) ∉ D. This completes the induction step and the proof.

2.2.3 Extending to Generalized Round-by-round Knowledge and Generalized Special Soundness

The above argument again naturally extends to the generalized RBR knowledge and generalized special
soundness cases. Taking 𝑘𝑖 = ⌈|C𝑖 |Y𝑖⌉ + 1 for RBR knowledge errors Y𝑖, the above argument holds by
replacing all 𝑘-tree of transcripts with (𝑘1, . . . , 𝑘`)-tree of transcripts and by considering the RBR knowledge
error Y𝑖 for any partial transcript 𝜏𝑖 . See Section 4 for full details.

2.3 Special Soundness Does Not Imply Round-by-round Knowledge

Roughly stated, Theorem 1.3 says that an IOP may be (𝑘1, . . . , 𝑘`)-special sound with small 𝑘𝑖’s, but at the
same time only have RBR knowledge with errors (Y1, . . . , Y`) if Y𝑖 = 1 for some 𝑖. We begin by providing
intuition on why this is the case. To this end, observe that the special soundness extractor Extspec by definition
is given access to a tree of accepting complete transcripts, while the RBR knowledge extractor Extrbr by
definition only receives partial transcripts as inputs. Thus, in some sense Extspec has more information to
work with than Extrbr. More precisely, suppose an IOP Π is built in a way that accepting complete transcripts
“contain full information” about a valid witness, but that no partial transcript contains such information. Then,
given a tree of accepting transcripts, the extractor Extspec is able to extract a witness from it, since the tree

11



contains complete transcripts that include “full information” about a valid witness. However, Extrbr is never
given a complete accepting transcript, and instead only sees a partial transcript as its input. Consequently, by
our assumptions on Π, the extractor Extrbr may be unable to reconstruct a witness from this partial transcript,
no matter how likely it is that the partial transcript leaves certain doomed set. Under this informally described
scenario, Π would be special sound, but it would not have RBR knowledge soundness.

We now formalize the above intuition. For simplicity, we restrict ourselves to IOP’s where the prover and
verifier perform only one round of communication, i.e., `( |x|) = 1 for all inputs x. Our full result deals with
IOP’s with arbitrarily (polynomially) many rounds of interaction (Section 4). Fix a relation R ∈ NP \ P.
Now we construct an IOP Π = (P,V) for R such that, as hinted above, its partial transcripts contain “no
information” about witnesses, while its complete transcripts do. To this end, for any (x,w) ∈ R, we have P
send a single bit 0 as its first message 𝑚1. Then we have V reply with a random string 𝑐, to which the honest
prover P replies by sending the entire witness w. Then V accepts the proof if and only if (x,w) ∈ R and
𝑚1 = 0. Clearly, Π is 1-special sound since any complete accepting transcript for x contains a witnessw. On
the other hand, all non-complete partial transcripts for Π are of the form (x), (x, 0), or (x, 0, 𝑐). None of
these partial transcripts have information related to a witness for x (other than the information provided by
the input x itself).

Now assume Π has RBR knowledge with error Y1, and let D and Ext be a corresponding doomed set and
an extractor algorithm. Then, by definition of RBR knowledge, whenever we have

Pr
𝑐
[(x, 0, 𝑐) ∉ D] > Y1, (2)

Ext can extract a valid witness for x just from seeing (x, 0). However, if x ∈ 𝐿R, then the probability
Pr𝑐 [(x, 0, 𝑐) ∉ D] must be 1 since for all 𝑐, the partial transcript (x, 0, 𝑐), which comprises all ` rounds of
interaction, can be extended into a complete accepting transcript (x, 0, 𝑐, 𝑚). Then by definition of doomed
set, we must have (x, 0, 𝑐) ∉ D. It follows from this and Eq. (2) that if Y1( |x|) < 1, then Ext is able to
output a witness for x just from seeing (x, 0). With these arguments in mind and assuming Y1( |x|) < 1,
it is straightforward to build a deterministic polynomial time algorithm that recognizes the language 𝐿R,
contradicting our assumption that R is in NP but not in P. Thus, Π cannot have RBR knowledge soundness;
i.e., if it has RBR knowledge, then the error Y1 is not negligible (in fact, it is 1).

In Section 4, we formally present the above ideas. Moreover, we generalize these arguments to construct a
`-round IOP that is special sound but does not have RBR knowledge soundness for any polynomial ` = `( |x|).

2.4 Special Unsoundness and Round-by-round Soundness are Dual

Finally, we relate round-by-round soundness and the notion of special unsoundness [AFK22]. Recall that,
informally, an IOP Π = (P,V) is ℓ-special unsound if there exists a dishonest prover strategy P∗ such that
during any round of the protocol, for any message 𝑚 sent by P∗, there exists a “lucky” set of verifier challenges
L ⊂ C such that |L| = ℓ such that if the verifier V responds with 𝑐 ∈ L, then P∗ can “behave honestly” for
the remainder of the protocol and V will accept at the end of the protocol execution.

Given the above notion of special unsoundness, it is immediate on an intuitive level that special unsoundness
and RBR soundness are “dual” notions: RBR soundness states that for any dishonest prover strategy, the
probability the prover gets “lucky” is upper bounded by some Y, whereas special unsoundness says that there
exists a prover strategy where the probability the prover gets “lucky” is lower bounded by some Y′. We
formalize this relationship in Section 4.1. Assume that Π is an Y-sound `-round IOP, and assume that Π
is generalzied round-by-round sound with errors (𝜖1, . . . , 𝜖`) and special unsound with errors (𝜖 ′1, . . . , 𝜖 ′`).
Then for 𝜖 = 1 −∏𝑖 (1 − 𝜖𝑖) and 𝜖 ′ = 1 −∏𝑖 (1 − 𝜖 ′𝑖 ), it holds that 𝜖 ′ ≤ Y ≤ 𝜖 . Moreover, we show that if
𝜖 ′
𝑖
= 𝜖𝑖 for all 𝑖, then Y = 𝜖 . See Section 4.1 for complete details.
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3 Preliminaries

A relation R is a subset of pairs (x;w) ∈ {0, 1}∗ × {0, 1}∗. The strings x are called inputs (these are
often called also statements or instances), and the strings w are called witnesses. To each relation R there
corresponds a language 𝐿R ⊆ {0, 1}∗ consisting of all statements x such that (x,w) ∈ R for some w; i.e.,
𝐿R := {x : ∃w s.t. (x,w) ∈ R}. When (x,w) ∈ R, we say that w is a valid witness for x. We assume our
relations to be in the class NP.

We parameterize our security functions either by the length |x| of an input, but for ease of exposition we
omit these from our notation, i.e., we write expressions such as “soundness error Y” instead of “soundness error
Y( |x|)”. We proceed similarly for other types of functions. A function Y is negligible if Y( |x|) = 𝑜(1/𝑝( |x|))
for any positive polynomial 𝑝.

We denote by N be the set of all positive integers. For any 𝑚 ∈ N, we let [𝑚] denote the set {1, . . . , 𝑚}.
For any finite set 𝑆, we let 𝑠 $← 𝑆 denote the process of sampling an element of 𝑆 uniformly and independently
at random.

3.1 Interactive Oracle Proofs

Given a map 𝑓 ∈ 𝐴𝐵 for some sets 𝐴, 𝐵, we denote by ⟦ 𝑓 ⟧ an oracle to the map 𝑓 . This is a hypothetical
algorithm that takes elements 𝑎 ∈ 𝐴 as input, and outputs 𝑓 (𝑎) instantaneously.

Definition 3.1 (Interactive Proofs (IP)). A `-round interactive proof for a relation R is a pair of interactive
algorithms Π = (P,V) such that:

• For x ∈ 𝐿R and w such that (x,w) ∈ R, before the start of the protocol, P receives both (x,w) as
input and V receives x as input.

• P(x,w) and V(x) exchange 2`( |x|) + 1 messages, where P sends the first and last message, and
during any round of interaction P sends message 𝑚𝑖 to V. After P sends 𝑚` ( |x | )+1, V either accepts
(outputs 1) or rejects (outputs 0).

We require the following properties to hold:
• Completeness: for all (x,w) ∈ R, we have

Pr [⟨P(w),V⟩(x) = 1] = 1,

where ⟨P(w),V⟩(x) denotes the output of P and V interacting on common input x where P is
additionally given w as input, and the above probability holds over the random coins of V.

• 𝜖-Soundness: for any x ∉ 𝐿R and any unbounded interactive algorithm P∗, we have

Pr [⟨P∗,V⟩(x) = 1] ≤ 𝜖,

where the probability is taken over the random coins of V.
We say that Π is public-coin if all messages sent by V are independent uniform random strings of some
bounded length and the output of V does not depend on any secret state.

Remark 3.2. In this paper, all IOP’s are assumed to be public-coin. Also, we often write ` to denote both the
function ` and the value `( |x|).

13



Definition 3.3 (Interactive Oracle Proof). An Interactive Oracle Proof (IOP) for a relation R is a `-round
IP (P,V) for R such that for all x, at the start of each round of interaction 𝑖 ∈ [`( |x|)], P sends 𝑚𝑖 and V
receives oracle access to 𝑚𝑖 via ⟦𝑚𝑖⟧. Crucially, at the end of the interactive phase, V does not necessarily
need to read the whole 𝑚𝑖 in order to decide whether to accept or reject.

Definition 3.4 (Message Spaces and 𝑖-round Partial Transcripts). Let Π be a `-round IOP Π = (P,V) for
a relation R. We let M1, . . . ,M`+1 denote the sets of all potential prover’s messages such that in any
round 𝑖 ∈ [`], P sends a message fromM𝑖 . The setM`+1 is the set of all potential prover’s final messages.
Similarly, we let C1, . . . , C` denote the sets of all potential verifier’s challenges such that in any round 𝑖 ∈ [`],
V sends a challenge from C𝑖 sampled uniformly at random.

For 𝑖 ∈ [`], we define a 𝑖-round partial transcript as a vector of the form 𝜏 = (𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) where
𝑚𝑖 ∈ M 𝑗 and 𝑐𝑖 ∈ C𝑗 for all 𝑗 ∈ [𝑖]. We also let a 0-round partial transcript be a vector of the form (x). We
write PartTr(𝑖) to denote the set of all 𝑖-round partial transcripts. A complete transcript is a transcript of the
form (x, 𝜏, 𝑚) where (x, 𝜏) ∈ PartTr(`) and 𝑚 ∈ M`+1. Such a transcript is accepting if V(x, 𝜏, 𝑚) = 1.

3.2 Special Soundness

Before introducing the notion of special soundness, we introduce notions related to trees of transcripts.

Definition 3.5 ((𝑘1, . . . , 𝑘`)-Tree of Transcripts). Let Π = (P,V) be a `-round IOP. Let (𝑘1, . . . , 𝑘`) ∈ N`.
A (𝑘1, . . . , 𝑘`)-tree of transcripts for x is a set of 𝑘 =

∏
𝑖 𝑘𝑖 complete transcripts (𝜏1, . . . , 𝜏𝑘) with common

first message 𝑚, arranged in a tree of depth ` + 12 and arity 𝑘1, . . . , 𝑘`, respectively. The nodes in the tree
correspond to the prover’s messages, and the edges correspond to the verifier’s challenges. Every internal
node at depth 𝑖 − 1 (1 ≤ 𝑖 ≤ `) has 𝑘𝑖 children with distinct challenges. For every 𝑗 ∈ [𝑘], 𝜏𝑗 represents one
root-to-leaf path. Finally, we say that the tree is a (𝑘1, . . . , 𝑘`)-tree of accepting transcripts for x if every
transcript is accepted by V.
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R3 R3 R3
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Figure 2: (3, 3, 3)-tree of transcripts with a highlighted complete/accepting transcript.

Given Definition 3.5, we can now define special soundness.

Definition 3.6 (Special Soundness). Let Π be a `-round IOP for a relation R, and let (𝑘1, . . . , 𝑘`) ∈ N`.
We say Π is (𝑘1, . . . , 𝑘`)-special sound if there exists a polynomial time algorithm Ext that, on input x and
any (𝑘1, . . . , 𝑘`)-tree of accepting transcripts for x, outputs a witness w such that (x,w) ∈ R.

2We set the root vertex of a tree to be of depth 1 (as opposed to 0).
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3.2.1 Notions Related to Trees of Transcripts

We need a few more technical definitions related to Definition 3.5 for our proofs. One notion is that of a
“partial” tree of accepting transcripts.

Definition 3.7 ((𝑘𝑖 , . . . , 𝑘`)-tree of Transcripts). Let Π be a `-round IOP, let (𝑘1, . . . , 𝑘`) ∈ N`, and let
𝑖 ∈ [`]. By a (𝑘𝑖 , . . . , 𝑘`)-tree of transcripts we refer to a subtree 𝑇 ′ of a (𝑘1, . . . , 𝑘`)-tree 𝑇 of transcripts
such that the root node of 𝑇 ′ is at depth 𝑖 in 𝑇 . In other words, 𝑇 ′ is a tree of depth ` − 𝑖 + 1, where for depths
1, . . . , ` − 𝑖 + 1, nodes have 𝑘𝑖 , . . . , 𝑘` children, respectively. Each complete path in 𝑇 ′ corresponds to a
suffix of a complete transcript. Note that if 𝑖 = 1 then we recover the original definition of (𝑘1, . . . , 𝑘`)-tree
of transcripts.

We also need the notions of complete and rooted paths along with a way to idenitfy paths via their labeling.

Definition 3.8 (Complete Paths, Rooted Paths, and Identification of Paths via their Label). Let 𝑇 be a tree of
accepting transcripts. We say a path in 𝑇 is complete if it starts at the root node and it ends in a leaf node.
We say a path is rooted if it start at the root node.

For ease of presentation we introduce the following abuse of notation and terminology: we identify rooted
paths via their labels, which are partial transcripts.3

Finally, we need the notion of a completable transcript.

Definition 3.9 (Completable Transcripts). Let 𝑖 ∈ [` + 1] and let (x, 𝜏) ∈ PartTr(𝑖 − 1) (see Definition 3.4).
We say (x, 𝜏) is completable if one of the following holds:

• 𝑖 ≤ ` and there exists a (𝑘𝑖 , . . . , 𝑘`)-tree of transcripts 𝑇 ′ such that, for all complete path 𝜏′ in 𝑇 ′, the
transcript (x, 𝜏, 𝜏′) is accepted by the verifier (following our convention from Definition 3.8, here we
identify the path 𝜏′ with the sequence of messages and challenges associated to each of its nodes and
edges (i.e., its label)). We say that 𝑇 ′ completes (x, 𝜏).

• 𝑖 = ` and there exists 𝑚 ∈ M`+1 such that the complete transcript (x, 𝜏, 𝑚) is accepted by the verifier.
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Figure 3: 3-round IOP tree with a highlighted completable partial transcript. In this figure, the highlighted
path through the tree ends in the second round with node R2, and the hanging tree (with dashed red edges) at
R2 represents the tree that completes the partial transcript.

3Technically, this is ambiguous because two distinct rooted paths could have the same label. However in our context there will
never be risk of confusion.
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3.3 Special Unsoundness

The notion of special unsoundness was introduced in [AFK22] in the context of analyzing the security of the
Fiat-Shamir transformation of the parallel repetition of an interactive proof. In particular, the authors describe
an attack on the Fiat-Shamir transformed protocol if it is special unsound.

Definition 3.10 (Special Unsoundness [AFK22]). Let Π be a `-round IOP, and let (ℓ1, . . . , ℓ`) ∈ N`. We
say that Π has (ℓ1, . . . , ℓ`)-special unsoundness if there exists a dishonest prover A of the following form
and, so that in the execution with V and input x the following holds:

• A starts off in active mode, which is so that in every round 𝑖, when A sends the message 𝑚𝑖, there
exists a subset L𝑖 ⊆ C𝑖 such that |L𝑖 | = ℓ𝑖 (defined as a function of the state of A at that point) such
that if the subsequent challenge 𝑐𝑖 is in L𝑖 , then A switches into passive mode.

• If A switches into passive mode, then it remains in passive mode until the end of the protocol, and V
accepts at the end of the protocol.

3.4 Generalized Round-by-round (Knowledge) Soundness

We define the notions of generalized round-by-round soundness and generalized round-by-round knowledge
soundness, respectively. These are essentially the original definitions from [CCH+19, CMS19] with the
following modification: instead of having a “one-size-fits-all” soundness/knowledge error for all rounds of
the protocol, we consider individual errors for each round of the protocol. Following [Hol19], we use a
formalism based on “doomed” sets of partial transcripts, as opposed to using a “state function” in the original
formulation (see [CCH+19,Hol19] for details).

Definition 3.11 ((Generalized) Round-by-round Soundness). An IOP Π = (P,V) for a relation R has
(generalized) round-by-round soundness with errors (Y1, . . . , Y`) if there exists a (not necessarily efficiently
computable) “doomed set” D of partial transcripts such that the following properties hold:

1. If x ∉ 𝐿R, then (x, ∅) ∈ D, where ∅ denotes the empty transcript.

2. For any x and any `-round partial transcript (x, 𝜏) ∈ PartTr(`) and any last prover message
𝑚 ∈ M`+1, if (x, 𝜏) ∈ D then 𝑉 (x, 𝜏, 𝑚) = 0.

3. If (x, 𝜏) ∈ PartTr(𝑖 − 1) is a (𝑖 − 1)-round partial transcript for some 𝑖 ∈ [`] and (x, 𝜏) ∈ D, then for
all 𝑚 ∈ M𝑖 we have

Pr
𝑐

$←C𝑖
[(𝜏, 𝑚, 𝑐) ∉ D] ≤ Y𝑖 .

If for all 𝑖 ∈ [`], Y𝑖 = Y𝑖 ( |x|) is a negligible function of the input length |x|, then we simply say that Π has
RBR soundness.

The original definition of round-by-round soundness considers only the scenario in which Y1 = . . . = Y`,
and in that case one says that Π has RBR soundness with error Y, where Y = Y𝑖 for all 𝑖.

Definition 3.12 ((Generalized) Round-by-round Knowledge). We say an IOP Π = (P,V) for a relation R has
(generalized) round-by-round knowledge with errors (Y1, . . . , Y`) if there exists a (not necessarily efficiently
computable) “doomed set” D of partial transcripts such that the following properties hold:
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• For all possible inputs x, we have (x, ∅) ∈ D.

• For any `-round partial transcript (x, 𝜏) ∈ PartTr(`) and any last prover message 𝑚 ∈ M`+1, if
(x, 𝜏) ∈ D, then V(x, 𝜏, 𝑚) = 0.

• There exists a polynomial time algorithm Ext, called extractor, with the following properties. If
(x, 𝜏) ∈ PartTr(𝑖 − 1) for some 𝑖 ∈ [`], (x, 𝜏) ∈ D, and for all 𝑚 ∈ M𝑖 we have

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D] > Y𝑖 ,

then Ext(x, 𝜏, 𝑚) outputs a witness w such that (x,w) ∈ R. In this case, we say that the partial
transcript (x, 𝜏, 𝑚) above is a RBR extractable partial transcript.

If for all 𝑖 ∈ [`], Y𝑖 = Y𝑖 ( |x|) is a negligible function of the input length |x|, then we simply say that Π has
RBR knowledge soundness.

Remark 3.13. We often drop “generalized” when discussing the above definitions and simply write RBR
soundness and RBR knowledge, unless otherwise stated (e.g., for clarity).
Remark 3.14. Let Π be an IOP with ` rounds. Suppose Π is round-by-round sound with errors (Y1, . . . , Y`).
Then Π is round-by-round sound with error Y), where

Y = max
𝑖∈[`]
{Y𝑖}.

Conversely, if Π is round-by-round sound with error Y, then it is generalized round-by-round sound with
errors (Y1, . . . , Y`) where Y𝑖 = Y for all 𝑖 ∈ [`]. Note that the original definitions of RBR soundness and
knowledge [CCH+19,CMS19] exactly consider this case (i.e., all errors are identical).
Remark 3.15 (RBR Knowledge Implies RBR Soundness). An IOP with RBR knowledge with errors
(Y1, . . . , Y`) is necessarily RBR sound with errors (Y1, . . . , Y`). This is because if (x, 𝜏, 𝑚) is an RBR
extractable partial transcript, then the extractor from the definition of RBR knowledge outputs a witness w
such that (x,w) ∈ R, and so x ∈ 𝐿R. Hence, if D is the doomed set with which Π has RBR knowledge,
the subset D′ ⊆ D consisting of all (x, 𝜏) ∈ D such that x ∉ 𝐿R is a doomed set with which Π has RBR
soundness with errors (Y1, . . . , Y`).

4 Relating Special Soundness and Round-by-round Knowledge

In this section, we recall our main results one by one and prove them in turn. We first recall Theorem 1.1.

Theorem 1.1 (Special Soundness Implies RBR Soundness). Let Π = (P,V) be a `-round IOP for a relation
R. Let C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , `} and let (𝑘1, . . . , 𝑘`) ∈ N`. Assume that Π
is (𝑘1, . . . , 𝑘`)-special sound. Then Π is RBR sound with errors(

Y1, . . . , Y`
)
=

(
𝑘1 − 1
|C1 |

, . . . ,
𝑘` − 1
|C` |

)
. (1)
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Proof. Assume Π is (𝑘1, . . . , 𝑘`)-special sound. We define a doomed set D of partial transcripts as the
union D =

⋃`

𝑖=0D𝑖, where each D𝑖 ⊆ PartTr(𝑖), i.e., D𝑖 consists of 𝑖-round partial transcripts. These sets
D𝑖 are defined as follows.

D0 := {(x) | x ∉ 𝐿R},
D𝑖 := {(x, 𝜏) ∈ PartTr(𝑖) | (x, 𝜏) is not completable} .

We now prove that Π has RBR soundness with errors Y𝑖 = (𝑘𝑖 − 1)/|C𝑖 | for all 𝑖 ∈ [`]. Let Ext be the special
soundness extractor and fix an input x. Let 𝑖 ∈ [`] and let (x, 𝜏) ∈ PartTr(𝑖 − 1) ∩ D = D𝑖−1 be a doomed
(𝑖 − 1)-round partial transcript. In particular, either 𝑖 = 1 and (x, 𝜏) = (x) ∈ D0, or (x, 𝜏) ∈ D𝑖 for 𝑖 > 1,
and (x, 𝜏) is not completable. Given 𝑚 ∈ M𝑖 , let

𝑝𝑖 (x, 𝜏, 𝑚) := Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D𝑖]

denote the probability of leaving the doomed set D𝑖. Assume 𝑝𝑖 (x, 𝜏, 𝑚) > Y𝑖. Then there are at least
𝑘𝑖 distinct challenges 𝑐1, . . . , 𝑐𝑘𝑖 such that (x, 𝜏, 𝑚, 𝑐 𝑗) ∉ D𝑖 for all 𝑗 ∈ [𝑘𝑖]. Thus, it follows that each
(x, 𝜏, 𝑚, 𝑐 𝑗) is completable. We now claim that (x, 𝜏) is also completable. Let 𝑇1, . . . , 𝑇𝑘𝑖 each be a
(𝑘𝑖+1, . . . , 𝑘`)-tree of transcripts such that each tree 𝑇𝑗 completes the 𝑖-round partial transcript (x, 𝜏, 𝑚, 𝑐 𝑗)
for all 𝑗 ∈ [𝑘𝑖]. By definition, for each complete path 𝜏𝑗 in 𝑇𝑗 , the complete transcript (x, 𝜏, 𝑚, 𝑐 𝑗 , 𝜏𝑗) is
accepted by the verifier. Now construct a (𝑘𝑖 , . . . , 𝑘`)-tree 𝑇 of transcripts as follows: create a root node 𝑉𝑅

with label 𝑚 and create 𝑘𝑖 children 𝑉𝑅1 , . . . , 𝑉𝑅𝑘𝑖
for the root node 𝑉𝑅, labeling the edges with the challenges

𝑐1, . . . , 𝑐𝑘𝑖 , respectively. Now attach the trees 𝑇1, . . . , 𝑇𝑘𝑖 to the child vertices 𝑉𝑅1 , . . . , 𝑉𝑅𝑘1
, respectively.

The resulting tree 𝑇 is a (𝑘𝑖 , . . . , 𝑘`)-tree of transcripts with root labeled as 𝑚. Moreover, each complete path
in 𝑇 has label of the form (𝑚, 𝑐 𝑗 , 𝜏

′) for some 𝑗 ∈ [𝑘𝑖]. Hence, 𝑇 completes (x, 𝜏) since (x, 𝜏, 𝑚, 𝑐 𝑗 , 𝜏
′) is a

complete transcript that is accepted by the verifier for all choices of 𝑚, 𝑐 𝑗 and 𝜏′.
Given that (x, 𝜏) is compleatable, if 𝑖 ≥ 2 then 𝑝𝑖 (x, 𝜏, 𝑚) cannot be larger than Y𝑖 if (x, 𝜏) ∈ D𝑖−1.

Now assume that 𝑖 = 1 so that (x, 𝜏) = (x, ∅) ∈ PartTr(0) is a 0-round partial transcript. By definition, we
have (x, ∅) ∈ D0. Suppose towards contradiction that 𝑝1(x, 𝑚) > Y1 for some 𝑚 ∈ M1. Then the tree 𝑇
with root 𝑚 that completes (x, ∅) (obtained through the argument above) is a (𝑘1, . . . , 𝑘`)-tree of accepting
transcripts for x. Given x and 𝑇 as input, the special soundness extractor Ext outputs a valid witness for
x, contradicting the fact that D0 consists precisely of those (x) such that x ∉ 𝐿R. Finally, notice that by
definition, for any (x, 𝜏) ∈ PartTr(`) with (x, 𝜏) ∈ D and any 𝑚 ∈ M`+1, we have that the verifier rejects
(x, 𝜏, 𝑚). This proves that Π is RBR sound with the claimed errors. □

As a corollary of Theorem 1.1 and [CMS19], we see that special sound IOPs can be compiled to secure
non-interactive proofs in the quantum random oracle model via the BCS transformation [BCS16].

Corollary 1.6 (Special Soundness Implies FS Security in the QROM). Let Π be a `-round (𝑘1, . . . , 𝑘`)-
special sound IOP. Let BCS(Π) be the non-interactive proof obtained by applying the BCS transformation to
Π in the random oracle model, and let Y = max𝑖{(𝑘𝑖 − 1)/|C𝑖 |}. Then BCS(Π) has adaptive soundness error
𝑂 (𝑡2Y + 𝑡3/2_) against quantum attackers that make at most 𝑡 − 𝑂 (𝑞 log ℓ) queries to the random oracle,
where _ is the output length of the random oracle in bits, 𝑞 is (an upper bound on) the total number of queries
made by the verifier during any execution of Π, and ℓ is the total number of symbols sent by both the prover
and verifier during any execution of Π.

Proof. This is a direct consequence of Theorem 1.1 and of [CMS19, Theorem 8.6]. The former yields
that any (𝑘1, . . . , 𝑘`)-special sound IOP has RBR soundness (in the usual, not generalized sense) at most
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max𝑖∈[`]{(𝑘𝑖 − 1)/|D𝑖 |}. The latter states that the BCS transformation of a RBR sound IOP is sound in
the Quantum Random Oracle Model, with the parameters and soundness errors from the statement of the
corollaries. □

Next, we recall and prove Theorem 1.2, which states that RBR knowledge implies special soundness.

Theorem 1.2 (RBR Knowledge Implies Special Soundness). Let Π = (P,V) be a `-round IOP for a relation
R. Let C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , `}. Assume Π has round-by-round knowledge
with errors (Y1, . . . , Y`), and let

(𝑘1, . . . , 𝑘`) = (⌈|C1 |Y1⌉ + 1, . . . , ⌈|C` |Y`⌉ + 1).

Suppose
∑

𝑖∈[`]
∏

𝑗∈[𝑖 ] 𝑘 𝑗 is upper bounded by a polynomial (on the lengths of inputs). ThenΠ is (𝑘1, . . . , 𝑘`)-
special sound.

Proof. Assume Π has RBR knowledge with errors (Y1, . . . , Y`). Let D be a corresponding doomed set. Let
(𝑘1, . . . , 𝑘`) = (⌈|C1 |Y1 + 1⌉, . . . , ⌈|C` |Y` + 1⌉), fix an input x, and let 𝑇 be a (𝑘1, . . . , 𝑘`)-tree of accepting
transcripts for x. For convenience we introduce the following notation. Let 𝜏 be a rooted path in 𝑇 (i.e., a
path starting at the root of 𝑇) with (x, 𝜏) ∈ PartTr(𝑖) for some 𝑖 = 0, . . . , `. Then by the definition of 𝑖-round
partial transcripts, 𝜏 ends with a challenge 𝑐 from C𝑖 . As such, the path 𝜏 has a uniquely defined node after 𝑐
in 𝑇 . We denote it by EndNode(𝜏).

To complete the proof, the following claim is needed.

Claim 4.1. There exists a rooted path 𝜏 in 𝑇 with the following properties:

• (x, 𝜏) ∈ PartTr(𝑖 − 1) and (x, 𝜏) ∈ D for some 𝑖 ∈ [`]; and

• for each of the 𝑘𝑖 edges with challenges (𝑐𝑖, 𝑗) 𝑗∈[𝑘𝑖 ] departing from node EndNode(𝜏), we have

(x, 𝜏,EndNode(𝜏), 𝑐𝑖, 𝑗) ∉ D .

Observe that for such a path 𝜏 satisfying Claim 4.1, the transcript (x, 𝜏,EndNode(𝜏)) is RBR extractable
since the fraction of challenges 𝑐 ∈ C𝑖 such that (x, 𝜏,EndNode(𝜏), 𝑐) ∉ D is at least 𝑘𝑖/|C𝑖 | > (𝑘𝑖−1)/|C𝑖 | =
Y𝑖 . Accordingly, we also call the path RBR extractable.

Assuming Claim 4.1 is true, we can complete the proof of Theorem 1.2 by defining a special soundness
extractor Extspec for Π in the following way. Given an input x and a (𝑘1, . . . , 𝑘`)-tree 𝑇 ′ of accepting
transcripts for x, Extspec enumerates all paths in 𝑇 ′ of the form (𝜏, 𝑚) where (x, 𝜏) ∈ PartTr(𝑖) and
𝑚 = EndNode(𝜏) for some 𝑖 = 0, . . . , `. Then it runs the RBR knowledge extractor Extrbr on all the
transcripts (x, 𝜏, 𝑚). If Extrbr outputs a witness w, then Extspec outputs the same w, otherwise it outputs ⊥
(i.e., it aborts). By the above claim, we know that at least one of the transcripts (x, 𝜏, 𝑚) is RBR extractable
so Extspec will output a valid witness and will not abort. Note that the total number of transcripts to inspect is
exactly the number of vertices in 𝑇 , which is exactly 1 +∑𝑖∈[`]

∏
𝑗∈[𝑖 ] 𝑘 𝑗 . By assumption, this is bounded

by a polynomial in |x|, and so Extspec runs in polynomial time. Thus the theorem follows, assuming our
previous claim is true.

We now proceed with proving Claim 4.1. For technical reasons, we actually prove the following more
general claim.

Claim 4.2. Suppose that 𝜏 is a rooted path in 𝑇 and (x, 𝜏) ∈ PartTr(𝑖 − 1). Then there exists a RBR
extractable rooted path in 𝑇 of the form (𝜏, 𝜏′, 𝑚), where (x, 𝜏, 𝜏′) ∈ PartTr( 𝑗 − 1) for some 𝑗 ≥ 𝑖 (if 𝑗 = 𝑖,
then 𝜏′ = ∅), and 𝑚 = EndNode(𝜏, 𝜏′).

19



Intuitively, Claim 4.2 says that if we are given a rooted path 𝜏 in the tree (not necessarily a complete path),
then the RBR extractable rooted path we are looking for can be found “by continuing 𝜏”. It is also easy to see
that Claim 4.2 implies Claim 4.1.

We prove Claim 4.2 by reverse induction on 𝑖 ∈ [`]. Suppose 𝑖 = ` and let (x, 𝜏) be as in the induction
hypothesis. Let 𝑐`,1, . . . , 𝑐`,𝑘` be all edges leaving from 𝑚 = EndNode(𝜏). Notice that for all 𝑡 ∈ [𝑘`],
the rooted path (𝜏, 𝑚, 𝑐`,𝑡 ) is a `-round partial transcript, and thus (x, 𝜏, 𝑚, 𝑐`,𝑡 ) ∉ D. If this were not the
case, the verifier would reject (x, 𝜏, 𝑚, 𝑐`,𝑡 , 𝑚

′), where 𝑚′ = EndNode(𝜏, 𝑚, 𝑐`,𝑡 ) ∈ M`+1, contradicting
the assumption that 𝑇 is a tree of accepting transcripts. Hence (x, 𝜏, 𝑚, 𝑐`,𝑡 ) ∉ D for all 𝑡 ∈ [𝑘`].

Now fix 𝑖 ∈ [`−1] and assume Claim 4.2 holds for all 𝑗 with 𝑖 < 𝑗 ≤ `. Let 𝑚 = EndNode(𝜏) ∈ M𝑖 and
𝑐𝑖,1, . . . , 𝑐𝑖,𝑘𝑖 ’s be as before. If (x, 𝜏, 𝑚, 𝑐𝑖,𝑡 ) ∉ D for all 𝑡 ∈ [𝑘𝑖], then the claim is shown. Otherwise, there
exists 𝑡0 such that (x, 𝜏, 𝑚, 𝑐𝑖,𝑡0) ∈ D. Let 𝑚′ = EndNode(x, 𝜏, 𝑚, 𝑐𝑖,𝑡0) ∈ M𝑖+1. Then (x, 𝜏, 𝑚, 𝑐𝑖,𝑡0 , 𝑚

′)
is of the form (x, 𝜏′, 𝑚′), where (x, 𝜏′) ∈ PartTr(𝑖 + 1) and (x, 𝜏′) ∈ D. Applying our induction hypothesis
on (x, 𝜏′), the claim then follows immediately. This completes the proof of Claim 4.2 and thus completes the
proof of the theorem. □

Finally, we recall and prove Theorem 1.3, which states that special soundness does not imply RBR
knowledge.

Theorem 1.3 (Special Soundness does not Imply RBR Knowledge). Assume NP ≠ P. Then for any
polynomial `( |x|), there exists a `-round IOP Π with the following properties:

• Π is (1, `. . ., 1)-special sound.

• If Π is RBR knowledge sound with errors (Y1, . . . , Y`), then Y𝑖 (ℓ) = 1 for some input length ℓ and some
𝑖 ∈ {1, . . . , `}.

Proof. Let R be a relation such that 𝐿R is a language in NP but not in P. Let ` = `( |x|) be a polynomial.
We define a `-round IOP Π for R as follows. Let (x,w) ∈ R. For every round 𝑖 ∈ [`], the honest prover P
sends a single bit 0 to the verifier V, and V responds with a uniformly sampled 𝑐𝑖

$←C. The last message sent
by P is the witness w. At the end of the protocol, V accepts only if (x,w) ∈ R and all messages sent by the
prover are the single bit 0.

ClearlyΠ is sound with soundness error 0; moreover, Π is (1, `. . ., 1)-special sound since any (1, `. . ., 1)-tree
of accepting transcripts for an input x contains a valid witness w for x in its one leaf. Observe also that Π is
perfectly complete, i.e., an honest prover convinces the verifier with probability 1.

Now assume Π has RBR knowledge with errors (Y1, . . . , Y`). Let D be the corresponding doomed set of
partial transcripts, and let Ext be the corresponding RBR knowledge extractor. We show the following claim.

Claim 4.3. There exists ℓ ∈ N such that for inputs x of length ℓ and some 𝑖 ∈ [`], we have Y𝑖 (ℓ) = 1.

Assume towards contradiction that this is not the case. Then there exists a deterministic polynomial time
algorithm that given any x ∈ 𝐿R outputs a valid witness w for x. By our previous assumption, we have
Y𝑖 ( |x|) < 1 for all 𝑖. Let 𝑖 ∈ [`], let (x, 𝜏) be a (𝑖 − 1)-round partial transcript with (x, 𝜏) ∈ D, and let
𝑚 ∈ M𝑖 . Define

𝜌(x, 𝜏, 𝑚) := Pr
𝑐∈C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D] .

Let (x, 𝜏′) be a `-round partial transcript generated from the interaction of the honest prover and the verifier.
Then we have (x, 𝜏′) = (x, 0, 𝑐1, 0, 𝑐2, . . . , 0, 𝑐`) for some challenges 𝑐𝑖

$←C. Observe that (x, 𝜏′,w) is a
complete transcript that is accepted by the verifier. Hence, by definition of RBR knowledge, (x, 𝜏′) ∉ D.
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Let 𝜌𝑖−1 := 𝜌(x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0). We claim that 𝜌𝑖−1 = 1 for some 𝑖 ∈ [`]. If this was not the case, Π
would not be perfectly complete since given (x,w), the honest prover would only convince the verifier with
probability at most 1 −∏𝑖∈[`] (1 − 𝜌𝑖−1) (i.e., the probability that, for some 𝑖, a doomed partial transcript
(x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0) escapes the doomed set after receiving a challenge 𝑐𝑖), but this latter probability is
strictly less than 1 unless 𝜌𝑖−1 = 1 for some 𝑖 ∈ [`]. Claim 4.3 follows.

Let 𝑖 ∈ [`] be such that 𝜌𝑖−1 = 1. Then given (x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0), the extractor Ext outputs a valid
witness w′ for x in polynomial time since 𝜌𝑖−1 > Y𝑖 ( |x|). Notice that, conversely, if x ∉ 𝐿R, then given any
partial transcript of the form (x, 0, 𝑐1, . . . , 𝑐𝑖−1, 0), Ext outputs ⊥ in polynomial time.

This gives the following polynomial algorithm Ext′ for the language 𝐿R. Given an arbitrary input
x, generate ` partial transcripts of the form (x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0), for 𝑖 ∈ [`]. Here the 𝑐𝑖 are strings
generated in an arbitrary deterministic manner. Give each of these as input to Ext. If for some of these Ext
outputs a valid witness w′ for x, then Ext′ outputs w′. Otherwise Ext′ outputs ⊥. The algorithm Ext′ is
deterministic and runs in polynomial time since (1) `( |x|) is polynomial; and (2) Ext runs in polynomial
time. This contradicts the fact that 𝐿R is in NP but not in P. Thus, our initial assumption that Y𝑖 ( |x|) < 1 for
all x and all 𝑖 ∈ [`] cannot hold. □

4.1 Special Unsoundness and Round-by-round Soundness are Dual

In this section we discuss relations between the soundness, the RBR soundness, and the special unsoundness
of an IOP Π. We will see that RBR soundness and special unsoundness are “dual” concepts of each other,
and that the former upper bounds the soundness of Π, while the latter lower bounds it, and moreover allows
an attack to Π whose success probability is this lower bound. We will also see that when the RBR soundness
and the special unsoundness errors are the same, then these errors are tight and their combination equals the
soundness of Π.

We begin by formulating a slight variation of the definition of special unsoundness presented in
Definition 3.10. The main differences are that instead of having sets of “lucky challenges”, we have sets of
“lucky partial transcripts”. The motivation behind this alternative formulation is that it highlights why special
unsoundness is the dual notion of RBR soundness.

Definition 4.4 (Special Unsoundness [AFK22] – alternative formulation). Let Π be a `-round IOP for a
relation R. We say Π is special unsound with errors (Y1, . . . , Y`) if there exist a set L of “lucky” partial
transcripts and an unbounded prover algorithm P∗ such that for all x, the following hold.

• For all x ∉ 𝐿R, we have that the 0-round partial transcript (x) ∉ L.

• Let (x, 𝜏) ∈ PartTr(`) be a `-round partial transcript. If (x, 𝜏) ∈ L, then V(x, 𝜏, 𝑚) = 1 for any
𝑚 ∈ M`+1. Moreover, for all 𝑖 ∈ [` − 1] and (x, 𝜏) ∈ L ∩ PartTr(𝑖 − 1), P∗ is able to compute
𝑚 ∈ M𝑖 such that (x, 𝜏, 𝑚, 𝑐) ∈ L for all 𝑐 ∈ C𝑖 .

• Let 𝑖 ∈ [`], let (x, 𝜏) ∈ PartTr(𝑖−1) be a (𝑖−1)-round partial transcript, and let 𝑚 ← P∗(x, 𝜏). Then

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∈ L] ≥ Y𝑖 .

Remark 4.5 (Special Unsoundness as the Dual Notion of RBR Soundness). Definition 4.4 can be understood
as the dual of RBR soundness in the sense that the sets L,D of lucky and doomed transcripts from the
respective definitions have opposite properties:
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• An input x ∉ L does not belong to L, while it belongs to D.

• The verifier rejects any doomed complete transcript, while it accepts any complete lucky transcript. On
the other hand, given a non-lucky partial transcript, if after some subsequent round the partial transcript
is lucky, the verifier will eventually accept.

• For all round 𝑖 ∈ [` − 1], and for all prover, the probability that a (𝑖 − 1)-round doomed partial
transcripts stops being doomed at Round 𝑖 is at most Y𝑖 . On the other hand, there exists a prover that for
all non-lucky (𝑖 − 1)-round partial transcript, the probability that the transcript becomes lucky in the
next round is at least Y′

𝑖
.

Remark 4.6 (Equivalence between Definition 3.10 and Definition 4.4). Definitions 3.10 and 4.4 are indeed
equivalent: the set of “lucky” challenges from Definition 3.10 depend on the partial transcript so far, hence
one may as well define a set of “lucky” partial transcripts instead, as we did in Definition 4.4. Moreover, the
active and passive modes of the adversary P∗ from Definition 3.10 can be seen as analogues of P∗ having or
not produced a lucky partial transcript. If it has (passive mode), then P∗ operates in a way that all subsequent
transcripts are lucky, and so, following this analogy, P∗ stays in passive mode until the end of the proof. As
required, at the end of the proof, if the complete transcript is lucky (analogously, if P∗ is in passive mode), the
verifier accepts.

The next result relates the notions of soundness, RBR soundness, and special unsoundness of an IOP. The
key observation is that the concepts of special unsoundness and round-by-round soundness are dual of each
other. As a result, and intuitively speaking, we have that the special unsoundness error lower bounds the
soundness of the protocol, while the round-by-round soundness error upper bounds it.

Theorem 1.4 (Relation between Soundness, Round-by-round Soundness, and Special Unsoundness). Let Π
be a `-round IOP for a relation R with soundness error Y. Then the following hold:

1. RBR soundness is an upper bound for soundness. If Π is round-by-round sound with errors
(Y1, . . . , Y`), then

Y ≤ 1 −
∏̀
𝑖=1

(1 − Y𝑖)

for all x ∉ 𝐿R.

2. Special unsoundness is a lower bound for soundness. If Π is special unsound with errors (Y′1, . . . , Y′`),
then

1 −
∏̀
𝑖=1

(
1 − Y′𝑖

)
≤ Y

for all x ∉ 𝐿R. Moreover, there exists a dishonest unbounded prover P∗ that, given any input x,
manages to make the verifier accept with probability at least 1 −∏𝑖

(
1 − Y′

𝑖

)
.

3. Tightness of RBR soundness, soundness, and special unsoundness. Suppose Π is round-by-round
sound with errors (Y1, . . . , Y`) and that Π is special unsound with the same errors (Y1, . . . , Y`). Then

Y = 1 −
∏̀
𝑖=1

(1 − Y𝑖) .

Moreover, the error is tight in the sense that there exists a dishonest prover P∗ that, given any input x,
manages to have the verifier accept with probability at least Y.
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Remark 4.7. The quantity 𝜌 := 1 −∏𝑖∈[`] (1 − 𝑥𝑖) is, for small 𝑥𝑖’s, approximately
∑

𝑖∈[`] 𝑥𝑖, as this is the
first-order term in the Taylor approximation of 𝜌 around the point (0, . . . , 0).

Proof. We begin by proving Item 1. Assume x ∉ 𝐿R and let P∗ be any unbounded dishonest prover. Let
(x, 𝜏) ∈ PartTr(`) be a `-round partial transcript produced during the interaction of P∗ and V, and let
𝑚 ∈ M` so that (x, 𝜏, 𝑚) is a complete transcript. Let 𝜌 := = 1 − Π𝑖∈[`] (1 − Y𝑖).

Define 𝑝 := Pr←⟨P∗,V⟩ [V(x, 𝜏) = 1]. Then 𝑝 ≤ 𝜌 for all input length ℓ and all (x, 𝜏), with |x| = ℓ. To
ensure V(x, 𝜏, 𝑚) = 1, it is necessary (but not sufficient) that (x, 𝜏) ∉ D`. Hence

Pr
(𝜏,𝑚)←⟨P∗,V⟩ (x)

[V(x, 𝜏) = 1] ≤ Pr
(𝜏,𝑚)←⟨P∗,V⟩ (x)

[(x, 𝜏) ∉ D`] .

Let 𝐸𝑖 be the event that the 𝑖-round partial transcript (x, 𝜏) is not in the doomed set D. Assume that if event
𝐸𝑖 occurs, then P∗ can send messages 𝑚 𝑗 for any 𝑖 + 1 ≤ 𝑗 ≤ ` to ensure that events 𝐸𝑖+1, . . . , 𝐸` each
occur with probability 1. Then Pr(𝜏,𝑚)←⟨P∗,V⟩ (x) [(x, 𝜏) ∉ D`] is exactly the probability that there exists a
round 𝑖 ∈ [`] such that event 𝐸𝑖 occurs (i.e., P∗ can escape the doomed set in round 𝑖). This follows by our
assumption that if 𝐸𝑖 occurs then P∗ can send messages such that 𝐸𝑖+1, . . . , 𝐸` each happen with probability
1. By the assumption of RBR soundness, 𝐸𝑖 occurs with probability at most Y𝑖 , and hence we have

Pr
(𝜏,𝑚)←⟨P∗,V⟩ (x)

[(x, 𝜏) ∉ D`] ≤ 𝜌 = 1 − Π𝑖∈[`] (1 − Y𝑖). (3)

Now consider any other attacker P∗′ such that once it has obtained some a partial transcript (x, 𝜏) ∉ D,
it produces a transcript extension 𝜏′ such that Pr𝑐 [(x, 𝜏, 𝜏′, 𝑐) ∉ D] > 0. We claim this attacker always
produces a non-doomed complete transcript (x, 𝜏) ∉ D with at most the probability that the previous attacker
P∗ does. This is because once a previously doomed partial transcript has been extended so that it is not in a
doomed set, P∗ ends with a non-doomed complete transcript with probability 1, while the probability of P∗′
may be smaller. This completes the proof of Item 1.

Next we prove Item 2. Fix an input x ∉ 𝐿Rx . Let P∗ be the dishonest prover from Definition 4.4. As
before, let (x, 𝜏) ∈ PartTr(`) be a `-round transcript produced during the interaction of the prover and the
verifier, and let 𝑚 ∈ M`. In order to have V(x, 𝜏, 𝑚) = 1, it is sufficient (but not necessary) that there exists
a prefix 𝜏𝑖 of 𝜏 such that (x, 𝜏𝑖) is an 𝑖-round partial transcript and (x, 𝜏𝑖) ∈ L. Let 𝐸 be the event that such a
prefix exists. Similar to Item 1, the probability of 𝐸 occurring is at least 𝜌′ := 1 −∏𝑖∈[`] (1 − Y′𝑖); i.e., the
probability that after ` trials, each with success probability Y′

𝑖
, at least one trial was successful. Hence

Pr
(𝜏,𝑚)←⟨P∗,V⟩ (x)

[V(x, 𝜏, 𝑚) = accept] ≥ 𝜌′, (4)

proving Item 2.
Item 3 follows directly from Items 1 and 2, since we have that any malicious prover convinces the verifier

with probability at most 1 −∏𝑖∈[`] (1 − Y𝑖), and that there exists a prover that convinces the verifier with at
least this probability. □

Remark 4.8. In [CCH+18], the authors prove that, given a `-round interactive proof/argument Π with
soundness Ysound and round-by-round soundness Yrbr (in the non-generalized sense of RBR soundness),
one has Ysound ≤ `Yrbr. The previous Theorem 1.4 yields a slight improvement in this formula, giving
Ysound ≤ 1 − (1 − Yrbr)`. We remark however that we expect this improvement to be known already (at least
in folklore), and that when the errors are small, the improvement is negligible (see Remark 4.7).
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