
A flexible Snark via the monomial basis

Steve Thakur

Panther Protocol

Abstract

We describe a pairing-based Snark with a universal updateable CRS that can be instantiated
with any pairing-friendly curve endowed with a sufficiently large prime scalar field. We use the
monomial basis, thus sidestepping the need for large smooth order subgroups in the scalar field. In
particular, the scheme can be instantiated with outer curves to widely used curves such as Ed25519,
secp256k1, BN254 and BLS12-381. This allows us to largely circumvent the overhead of non-native
field arithmetic for succinct proofs of valid signatures in Ed25519 and secp256k1 and one layer
recursion with BN254 or BLS12-381.

The proof size is constant (10 G1, 20 Fp), as is the verification time, which is dominated by a single
pairing check (i.e. two pairings). The Prover time is dominated by the 10 multi-scalar multiplications
in G1 - with a combined MSM length of 22 · |Circuit|1 - and, to a lesser extent, the computation of a
single sum of polynomial products over the prime scalar field via multimodular FFTs.2

The scheme supports succinct lookup arguments for subsets as well as subsequences. Our
construction relies on homomorphic table commitments, which makes them amenable to vector
lookups. The Prover algorithm runs in runtime O(M · log(M)), where M = max{|Circuit|, |Table|}.

Furthermore, the scheme supports custom gates, albeit at the cost of a larger proof size. As an
application of the techniques in this paper, we describe a protocol that supports multiple univariate
custom gates Gi of high degree that are sparsely distributed in the sense that∑

i

deg(Gi) ·#(Gi gates) = O(|Circuit|).

This comes at the cost of three additional G1 elements and does not blow up the proof generation
time, i.e. it does not entail MSMs or FFTs of length larger than the circuit size.

1 Introduction

The goal of this work was to construct a Snark with the following properties/attributes:

1 Compatibility with a wider class of prime fields

In particular, we need compatibility with pairing-friendly outer curves to widely used curves
such as Ed25519, secp256k1, BN254 and BLS12-381. This was the key goal of the paper.

The use cases necessitated a Snark that could sidestep the overhead of non-native field
arithmetic that arises when statements in the base fields of these curves are proved using a Snark
in a mismatched pairing-friendly curve. These use cases include EdDSA, ECDSA signatures and
one layer recursion with the widely used curves BN254 and BLS12-381. As far as we know, the
existing Snarks that allow for constant-sized proofs and constant verification times ([Groth16],
[GWC19], [CHMMVW20] etc.) explicitly assume the existence of a sparse vanishing polynomial
that splits completely over the scalar field and hence, need the scalar field to have a large smooth
order subgroup.

1The version optimized for the Prover time (rather than the proof size) has 14 MSMs, each of length |Circuit|.
2The Prover uses ordinary FFTs in the cases where the scalar field has high 2-adicity

1

2 A constant-sized proof and a constant verification time.

The proof size is 10 G1 elements and 20 Fp elements in the version we present here. We have
tried to keep the number of G1 elements to a bare minimum since for our primary use cases, they
are over twice as large as the Fp elements and determine the number of MSMs, which is the most
expensive part of the proof generation.

We note that this version is optimized for the proof size and the verification time rather than
the Prover time. It is straightforward to reduce the combined MSM length (and consequently,
the Prover time) by allowing for more G1 elements in the proof.

3 A bare minimum of pairings in the verification

It is widely known that pairings are expensive, especially in curves that fall outside of highly
optimized families. The pairing-friendly curves we instantiate the scheme with for our primary
use cases are constructed via the Cocks-Pinch or Brezing-Weng algorithms and the pairings are
not as highly optimized as those in the BLS, BN or MNT families. This makes it all the more
desirable to have a bare minimum of pairings in the verification.

The verification time in our scheme is dominated by a single pairing check, i.e. two pairings.
As usual, the Miller loops in these two pairings can be parallelized and the two final exponentiations
can be batched. The verication does not involve pairings with Prover defined G2 points,which
makes recursive aggregation of proofs convenient.

4 A universal updateable trusted setup and a CRS size linear in the circuit size

We use the KZG10 commitment scheme which allows for this. While we certainly would
have preferred a transparent setup, there is - as far as we know - no scheme at the moment that
achieves a transparent setup in conjunction with a constant proof size, constant verification time
and a quasi-linear Prover time. In our scheme, the version optimized for the proof size requires
a CRS of length 3 · |Circuit|, while that optimized for the Prover time requires a CRS of length
|Circuit|.

5 Support for lookup arguments for subsets and subsequences

The scheme supports lookup arguments for subsets as well as subsequences. Our construction
relies on homomorphic table commitments, which makes them amenable to vector lookups. The
Prover algorithm runs in runtime O(M · log(M)), where M := max{|Circuit|, |Table|}.

We do not yet have a protocol in the monomial basis that enables a Prover time independent
of the table size after preprocessing, as is the case with [EFG22].

6 No superlinear computations in the proof generation other than a single sum of polynomial
products over the prime scalar field

This scheme uses a monomial basis rather than a Lagrange basis. Consequently, the only
juncture where the scheme needs (multimodular) FFTs is a sum of six3 polynomial products
for the batched Hadamard product subprotocol. The products can be parallelized and there are
further savings if the Prover uses a single inverse FFT for the sum rather than using an inverse
FFT per product.

Unlike the uses cases targeted by the impressive body of work in recent years ([CBBZ22] etc)
that avoids FFTs altogether, we found that for our use cases and circuit sizes, the polynomial

3Sum of six polynomial products - some of them of degree 3 · |Circuit| - in the version optimized for the proof
size; the version optimized for the Prover time has a single sum of more products of lengths ≤ |Circuit|.

2

products were not the primary bottleneck. The MSMs continue to be the biggest contributors to
the Prover time, even in the cases where the scalar fields have low 2-adicity and the polynomial
products require multimodular FFTs rather than ordinary FFTs. This discrepancy between the
total MSM runtime and the total polynomial product runtime is even more pronounced (as one
would expect) when the base field is twice the size of the scalar field, as is the case for Cocks-Pinch
or Brezing-Weng outer curves.

We note that the simpler multimodular FFT algorithm outperforms Schönhage-Strassen
([SS71]) and the ECFFT ([BCKL21]) for polynomial products over prime finite fields.

7 Support for custom gates

The scheme supports custom gates, albeit at the cost of slightly larger proof sizes. Our
primary use cases benefit from the use of elliptic curve custom gates since they reduce point
additions and point doublings to 2 gates instead of 9.

The scheme also supports multiple univariate custom gates of high degree that are sparsely
distributed, in the sense that∑

i

deg(Gi) ·#(Gi gates) = O(Circuit Size).

This comes at the cost of 3 extra G1 elements in the proof and does not blow up the proof
generation time because the MSMs and the FFTs are of lengths O

(
max(|Circuit|, deg(Gi)

)
with

this approach. We note, however, that this approach does not seem to be easily adaptable to
high degree gates other than those defined by univariate polynomials.

This protocol hinges on the Hadamard product protocol and an elementary lemma we use
throughout the paper (lemma 2.1), namely the fact that a randomized sum of rational functions
being a polynomial implies that all of the rational functions are polynomials with overwhelming
probability. The Verifier does not need to store the potentially large univariate polynomials that
define these custom gates. Instead, he stores the KZG10 commitments to these polynomials.

8 Constant-sized storage for the Verifier

Despite the CRS being of length linear in the circuit size, the Verifier stores a constant number
of G1 and G2 points. He also stores the KZG10 commitments to a few polynomials pre-processed
during the circuit generation.

9 A wider class of amicable curve pairs for pairing-based recursion

Arbitrarily deep recursion with pairings requires an amicable pair E1, E2 over prime fields
Fp1 , Fp2 such that p1 = |E2(Fp2)| and p2 = |E1(Fp1)|. At present - as far as we know - the pairing
based recursive schemes require both p1 − 1 and p2 − 1 to have large smooth divisors. Since our
scheme works with scalar fields without large smooth order subgroups, our approach allows for a
wider class of amicable curve pairs, albeit at the cost of more expensive polynomial products.

10 Immunity to Cheon-type attacks ([Che10])

Cheon’s attack against common reference strings brings the security of the scheme down to

O(
√

p−1
d +

√
d), where d is the largest divisor of p − 1 such that the element gsd

1 is part of

the CRS. Pairing-based Snarks including [Groth16], [GWC19], [CHMMVW20] require a 2-power
larger than the circuit size to divide p− 1 and hence, are affected by this attack to some extent.
If the scalar field Fp is such that p − 1 has no large smooth divisors - as could be the case with
our scheme - Cheon’s attack (and others similar to it) do not appear to affect the security level.
That said, this was one of our lower priorities.

3

1.1 The setup

Let G1, G2, GT be cyclic groups of order p for some prime p such that there exists a
pairing e : G1 ×G2 −→ GT which is bilinear, non-degenerate and efficiently computable. We fix
generators g1, g2 in G1, G2 respectively. For a trapdoor s ∈ F∗

p, the common reference string
(CRS) generated via a multi-party computation is given by

[g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

for an appropriate upper bound M . The verification key is [g1, g
s
1], [g2, g

s
2].

We define a simple vector commitment using the KZG10 polynomial commitment scheme.
A vector v = (v0, · · · , vn−1) ∈ Fn

p is identified with the polynomial
∑n−1

i=0 vi · Xi, which is then
committed as in [KZG10]. Thus, for a vector v = (v0, · · · , vn) ∈ Fn+1

p , we define the commitment

Com(v) := g

n∑
i=0

vi·si

1 =

n∏
i=0

(gsi

1)
vi ∈ G1.

1.2 Notations and terminology

As usual, Fp denotes the finite field with p elements for a prime power p and Fp denotes
its algebraic closure. F∗

p denotes the cyclic multiplicative group of the non-zero elements of Fp.
Fp[X] denotes the ring of univariate polynomials over Fp, which is a principal ideal domain.
Fp(X) denotes the field Frac(Fp[X]), the fraction field of Fp[X]. For a polynomial f(X), deg(f)
denotes its degree and Coef(f , i) denotes the coefficient at the position Xi. f ′(X) denotes the
derivative of f(X). Throughout this paper, p will be a large odd prime.

We fix a hashing algorithm HashFS that generates random and uniform challenges in Fp to
make the protocols non-interactive.

By the circuit size, we mean the total number of addition and multiplication gates in a fan-in
two circuit.

We denote by λ ∈ Z+ a security parameter. We denote by negl(λ) an unspecified function
that is negligible in λ (namely, a function that vanishes faster than the inverse of any polynomial
in λ). When a function can be expressed in the form 1−negl(λ), we say that it is overwhelming
in λ. By PPT, we refer to a probabilistic polynomial time algorithm.

Definition 1.1. An argument system is complete if an honest Prover can efficiently output an
accepting transcript with probability 1.

Definition 1.2. An argument system is sound if the probability of a cheating Prover successfully
convincing a Verifier is negligible.

Definition 1.3. An argument system is knowledge sound if for any probabilistic polynomial time
algorithm APPT that outputs an accepting transcript, there exists an extractor EPPT that, with
overwhelming probability, succeeds in extracting a valid witness.

1.3 Hardness assumptions

We state the computationally infeasible problems that the security of our constructions hinges
on.

Assumption 1.1. n-strong Diffie Hellman assumption: Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗

p. Any probabilistic polynomial-time algorithm

4

that is given the set {gsi : 1 ≤ i ≤ n} can output a pair (α, g1/(s+α)) ∈ F∗
p × G with at most

negligible probability.

Assumption 1.2. Knowledge of exponent assumption (KEA): Let G be a cyclic group of
prime order p generated by an element g, and let s ∈ F∗

p. Suppose there exists a PPT algorithm A1

that given pairs (h1, h
s
1), · · · , (hn, hsn) in G2, outputs a pair (C1,C2) ∈ G2 such that C2 = Cs

1.
Then there exists a PPT algorithm A2 that, with overwhelming probability, outputs a vector
(x1, · · · , xn) ∈ Fn

p such that

C1 =
n∏

i=1

hxi
i , C2 =

n∏
i=1

(hsi)
xi

A special case of the KEA assumption is that given the elements {gsi : 0 ≤ i ≤ n}, if a PPT
algorithm A1 is able to output a triplet (C1,C2, f(X)) ∈ G×G×Fp[X] with deg(f(X) ≥ 1 such

that C2 = C
f(s)
1 , then there is a PPT algorithm A2 that with overwhelming probability, outputs

a polynomial e(X) such that
C1 = ge(s) , C2 = ge(s)·f(s).

1.4 The AGM model

In order to achieve additional efficiency, we also construct polynomial commitment schemes
in the Algebraic Group Model (AGM) [FKL18], which replaces specific knowledge assumptions
(such as Power Knowledge of Exponent assumptions). In our protocols, by an algebraic adversary
APPT in a CRS-based protocol, we mean a PPT algorithm which satisfies the following:

Whenever APPT outputs an element A ∈ Gi (i = 1, 2), it also outputs a vector v =
(v0, · · · , vn−1) ∈ Fn

p such that

A =
〈
v , CRS

〉
=

n−1∏
i=0

(gsn

1)vi = g

n−1∑
i=0

vi·si

1 .

The AGM allows a Prover to commit to multiple polynomials fi(X) ∈ Fp[X] of a bounded
degree and open these polynomials at some point α ∈ Fp. To show that fi(α) = βi for each index
i , it suffices for the Prover to show that for a randomly and uniformly generated challenge λ,
the polynomial

fλ(X) :=
∑
i

λi−1 · fi(X)

is valued β :=
∑

i λ
i−1 · βi at X = α. If the Prover were dishonest about one or more of the

elements f(αi), the pairing check would fail with overwhelming probability.

The algebraic group model implies that there is an efficient extractor Emulti−PC that - given
access to the multi-commitment opening proof - can extract the polynomials in expected polynomial
time. We refer the reader to [GWC19], [CHHMVW20] and [FKL18] for a more detailed exposition
of the AGM.

1.5 Commitments to index sets

For an index set I ⊆ [0, length(CRS)], we commit to the set I by committing to the polynomial

χI (X) :=
∑
i∈I

Xi,

which we refer to as the indicator polynomial of I. Thus, the commitment is given by

5

Com(I) := Com(χI (X)) = g
χI (s)
1 = g

∑
i∈I

si

1 .

The polynomial χI (X) is binary in the sense that every coefficient lies in {0, 1} ⊆ Fp. Conversely,
every binary polynomial of degree ≤ n is of the form χI (X) for some subset I ⊆ [0, n].

1.6 The Hadamard product

For polynomials f1(X), f2(X), the Hadamard product f1 ⊙ f2(X) (or f1(X)⊙ f2(X)) is given by

f1 ⊙ f2(X) :=

min(deg(f1) , deg(f2))∑
i=0

Coef(f1 , i) · Coef(f2 , i) ·Xi.

For instance, for an index set I with indicator polynomial χI (X), we have

f(X)⊙ χI (X) =
∑
i∈I

Coef(f , i) ·Xi.

The dot product f1(X) ◦ f2(X) is the evaluation of the Hadamard product f1 ⊙ f2(X) at X = 1.

For a fixed integer N and a randomly generated challenge γ, the product

f∏
,γ
(X) := f1(γ ·X) ·XN · f2(X−1)

is a polynomial of degree

deg(f∏
,γ
) = deg(f1) +N − val(X)(f2(X)) ≤ deg(f1) +N.

Its coefficient Coef(f∏
,γ
, N) at XN is given by the sum

min(deg(f1) , deg(f2))∑
i=0

Coef(f1 , i) · Coef(f2 , i) · γi ,

which happens to coincide with the evaluation of the Hadamard product f1 ⊙ f2(X) at γ. We
exploit this simple fact in conjunction with the protocol for the degree upper bound to obtain a
protocol for the Hadamard product.

Showing that the high degree part f∏
,γ,+

(X) of f∏
,γ
(X) is divisible by XN+1 requires a

simple divisibility check. And since XN+1 is a monomial, the division requires a left shift by
N +1 positions rather than any expensive polynomial division. Lastly, the Prover show that the
polynomial

f∏
,γ
(X) − f∏

,γ,+
(X) − f1,2(γ) ·XN

is of degree ≤ N, where f1,2(X) is the committed polynomial that is claimed to be the Hadamard
product f1 ⊙ f2(X).

To show that a committed polynomial f(X) is of degree ≤ n for a public integer n, the Prover
verifiably sends a commitment to the polynomial f̂(X) := Xn · f(X−1). This implies that with
overwhelming probability, the rational function Xn · f(X−1) is a polynomial, whence it follows
that deg(f) ≤ n.

We note that Hadamard products are batchable in the sense that to prove the equations

fj,1 ⊙ fj,2(X) = fj,1,2(X) for j = 1, · · · , k ,

for committed polynomials fj,1, fj,2(X), fj,1,2(X), it suffices to show that for randomly generated
challenges γ, λ, the sum

6

fλ(X) :=

k∑
j=1

λj−1 · fj,1(γ ·X) ·XN · fj,2(X−1)

has coefficient
k∑

j=1
λj−1 · fj,1,2(γ) at the position XN . This boils down to expressing the difference

fλ(X) −
[k∑
j=1

λj−1 · fj,1,2(γ)
]
·XN

as a sum of a polynomial fλ,−(X) of degree ≤ N − 1 and a polynomial fλ,+(X) divisible by
XN+1.

Since this scheme uses the monomial basis, the Prover needs to show that certain triples
of committed polynomials satisfy the Hadamard product equation. In particular, for a fan-in
two arithmetic circuit, if polynomials L(X), R(X), O(X) represent the left, right and output
wire polynomials respectively and IA, IM are the index sets corresponding to the addition and
multiplication gates, the Prover needs to show that

[L(X) +R(X)−O(X)]⊙ χIA
(X) = 0 , [L(X)⊙R(X)−O(X)]⊙ χIM

(X) = 0.

1.7 Degree upper bounds

We describe the subprotocol that shows that for a committed polynomial f(X) and a public
integer n, we have the degree upper bound deg(f) ≤ n. It hinges on the simple observation that

deg(f) ≤ n ⇐⇒ Xn · f(X−1) ∈ Fp[X].

Thus, a Prover can demonstrate this upper bound on the degree by verifiably sending the KZG10
commitment to the polynomial f̂(X) := Xn · f(X−1). This can be accomplished by showing that
for a random challenge α, the equality f̂(α−1) = α−n · f(α) holds.

We note that the protocol is batchable. For committed polynomials fi(X) and integers ni,
we have deg(fi) ≤ ni for each index i if and only if, for a randomly generated challenge λ, the
rational function

fλ(X) :=

k∑
i=1

λi−1 ·Xni · fi(X−1)

is a polynomial (lemma 2.1). Thus, a Prover can demonstrate all of these degree upper bounds
by verifiably sending the KZG10 commitment to fλ(X).

This trick was introduced in [Th19] for the KZG setting. It has also been adapted for the
hidden order group setting in the scheme Behemoth ([SB23]), which achieves a transparent4 setup
and constant proof size and verification time at the cost of a quadratic Prover time.

1.8 The Permutation argument

The scheme hinges on a permutation argument akin to and influenced by PLONK’s ([GWC19]).
The Prover succinctly shows that certain wire values are equal by showing that the committed
wire polynomial is stable under the action of a prescribed permutation, a commitment to which
is stored by the Verifier. As one would expect, we need to commit to permutations in a
different manner compared to the schemes that use the Lagrange basis. For a permutation
σ : [0, N − 1] −→ [0, N − 1], we commit to σ by committing to the polynomial

4if the hidden order group is an imaginary quadratic class group or the Jacobian of a genus 3 hyperelliptic curve

7

Sσ(X) :=
N−1∑
i=0

σ(i) ·Xi.

In particular, we commit to the identity permutation of [0, N−1] by committing to the polynomial
Pid,N (X) :=

∑N−1
i=0 k ·Xk.

For polynomials f(X), f̃(X) ∈ Fp[X], we say σ(f) = f̃ if the coefficients of f(X), f̃(X)
satisfy the equations:

Coef(f̃ , j) = Coef(f , σ(j)) ∀ j ∈ [0, N − 1].

We briefly describe the mechanism whereby a Prover demonstrates this relation betwwen two
committed polynomials. In response to two randomly and uniformly generated challenges δ1, δ2,
the Prover shows that he knows a polynomial Fδ1,δ2(X) of degree ≤ n − 1 and with cyclic right
shift

F RShift
δ1,δ2 (X) := X · Fδ1,δ2(X) (mod XN − 1)

such that:
Coef(F RShift

δ1,δ2 , 0) = 1 = Coef(Fδ1,δ2 , N − 1)

and the following equation of Hadamard products holds:

[f(X)+δ1·
N−1∑
j=0

j·Xj+δ2·
N−1∑
j=0

Xj] ⊙ Fδ1,δ2(X) = [f̃(X)+δ1·
N−1∑
j=0

σ(j)·Xj+δ2·
n−1∑
j=0

Xj] ⊙ F RShift
δ1,δ2 (X).

The equation implies that for every i ∈ [0, N − 1],

Coef(Fδ1,δ2 , i) =
i∏

j=0

Coef(f , j) + δ1 · j + δ2

Coef(f̃ , j) + δ1 · σ(j) + δ2
.

In particular,

N−1∏
j=0

Coef(f , j) + δ1 · j + δ2 =
N−1∏
j=0

Coef(f̃ , j) + δ1 · σ(j) + δ2.

Since the challenge δ2 was randomly and uniformly generated, the Schwartz-Zippel lemma implies
that with overwhelming probability, the multisets {Coef(f , j)+δ1 ·j}j , {Coef(f̃ , j)+δ1 ·σ(j)}j
coincide. Furthermore, since the challenge δ1 was also randomly and uniformly generated, any
equation

Coef(f , j) + δ1 · j = Coef(f̃ , i) + δ1 · σ(i) , i, j ∈ [0, N − 1]

implies that with overwhelming probability,

j = σ(i) , Coef(f̃ , i) = Coef(f , σ(i)).

Thus, with overwhelming probability, σ(f) = f̃ .

8

1.9 Structure of the paper

In section 2, we discuss a few preliminary lemmas that will be used in the subsequent sections.
We also discuss a protocol that allows us to have no more than two G1 elements for the multiple
polynomial commitment openings in the Snark. We also describe the protocol for batched
divisibility which allows us to keep the G1 elements in the Snark proof to a bare minimum.

In section 3, we describe the Snark in the batched form. This version has 10 G1 elements and
20 Fp elements. The combined length of the 10 MSMs is 22 · |Circuit|. We note that it is possible
to reduce the total MSM length at the cost of a few more G1 elements in the proof. This reduces
the proof generation time but results in a larger proof size.

In section 4, we describe the various subprotocols that underpin the Snark In particular, we
describe the protocols for the Hadamard product and the permutation argument in the monomial
basis. Unlike in the case of the Snark, we have made no particular effort to make these modular
subprotocols efficient, beyond ensuring that the proof sizes and verification times are constant
and the proof generation times quasi-linear. The purpose of this section is merely to help explain
the ideas used in the Snark.

In section 5, we describe the lookup protocol. It allows the Prover to show that the coefficients
of a committed polynomial lie in a committed table, a commitment to which is stored by the
Verifier. The scheme supports succinct arguments for subsets as well as subsequences.

In section 6, we describe the protocol for univariate custom gates of high degree. The protocol
allows for multiple univariate custom gates Gi of high degree that are sparsely distributed, in the
sense that ∑

i

deg(Gi) ·#(Gi gates) = O(Circuit Size).

This comes at the cost of 3 extra G1 elements in the proof and does not blow up the proof
generation time. The protocol hinges on the Hadamard product subprotocol and an elementary
lemma we use throughout the paper, namely the fact that a randomized sum of rational functions
being a polynomial implies that all of the rational functions are polynomials.

In the Appendix, we provide sketches of the security proofs for the Snark and for the
subprotocols.

2 Preliminary lemmas

We will need the following lemma repeatedly.

Lemma 2.1. For rational functions hi(X) ∈ Fp(X) := Frac(Fp[X]), if the sum
∑k

i=1 λ
i−1 ·hi(X)

is a polynomial for a randomly generated λ ∈ Fp, then with overwhelming probability, each rational
function hi(X) is a polynomial.

Proof. Suppose there exists at least one index j such that hj(X) is not a polynomial. Let q(X) ∈
Fp[X] be an irreducible polynomial such that valq(X)(hj(X)) ≤ −1, i.e. hi(X) = hi,1(X)/hi,2(X)
with hi,1(X), hi,2(X) ∈ Fp[X] co-prime and hi,2(X) divisible by q(X).

Set fi(X) = q(X) · hi(X) for i = 1, · · · , k. Then
k∑

i=1

λi−1 · hi(X) = q(X)−1 ·
[k∑

i=1

λi−1 · fi(X)
]

∈ Fp[X]

and hence,
∑k

i=1 λ
i−1 · fi(X) is divisible by q(X). Applying the Schwartz-Zippel lemma to the

quotient field Fp[X]/(q(X)) implies that with overwhelming probability, q(X) divides each fi(X),
a contradiction.

9

Lemma 2.2. Let f1(X), f2(X) ∈ Fp[X]. Suppose there exists a polynomial F (X) of degree
≤ N − 1 with cyclic right shift

F RShift(X) := X · F (X) (mod XN − 1)

such that:

- Coef(F RShift , 0) = 1 = Coef(F , N − 1)

- For a randomly generated γ ∈ Fp, the polynomials f1(γ ·X) ·XN · F (X−1) and
f2(γ ·X) ·XN · F RShift(X−1) have the same coefficient at the position XN .

Then with overwhelming probability, the polynomials f1(X) (mod XN), f2(X) (mod XN)
have the same product over the multisets of coefficients.

Proof. Replacing f1(X), f2(X) by the residues modulo XN is necessary, we may assume without
loss of generality that they are of degree ≤ N − 1.

Let f1 ⊙ F (X), f2 ⊙ F RShift(X) denote the Hadamard products. The coefficients of

f1(γ ·X) ·XN · F (X−1) , f2(γ ·X) ·XN · F RShift(X−1)

at the position XN are given by f1 ⊙ F (γ), f2 ⊙ F RShift(γ) respectively. Thus,

f1 ⊙ F (γ) = f2 ⊙ F RShift(γ)

and the Schwartz-Zippel lemma implies that with overwhelming probability,

f1 ⊙ F (X) = f2 ⊙ F RShift(X).

Now,

Coef(F , N − 1) = 1 , F RShift(X) = X · F (X)− (XN − 1) = 1 +
[N−2∑

i=0

Coef(F , i) ·Xi+1
]

Induction on i implies that with overwhelming probability,

Coef(F (X) , i) =
i∏

j=0

Coef(f2 , j)

Coef(f1 , j)
∀ i ∈ [0, N − 1]

and in particular,
N−1∏
j=0

Coef(f2 , j)

Coef(f1 , j)
= 1,

which completes the proof.

2.1 Batched proof of divisibility

The Snark requires 7 polynomial commitment openings at 7 different points. Näıvely, this
would mean 7 extra G1 elements, which would increase the proof size as well as the number of
MSMs in G1, thus increasing the Prover time. Instead, we describe a protocol that requires the
Prover to send 2 G1 elements and 7 Fp elements. We note that in the primary uses cases we deal
with, the base field is more than twice the size of the scalar field, which makes the G1 elements
substantially larger than the Fp elements. So this protocol helps optimize the proof size as well
as the Prover time.

10

For committed polynomials hi(X) (i = 1, · · · , k) and publicly known sparse polynomials
ei(X), we describe a protocol to show that ei(X) divides hi(X) for each index i. The proof
consists of 2 G1 elements and k Fp elements. The goal is to keep the Snark proof size low and to
keep the number of MSMs to a bare minimum.

The protocol hinges on the simple observation (lemma 2.1) that for a set of rational functions
in Fp(X) := Frac(Fp[X]), if a randomized sum of these rational functions is a polynomial, then
with overwhelming probability, all of the rational functions are polynomials.

We need the polynomials ei(X) to be sparse so that the Verifier can evaluate them at a
challenge. The Snark (our primary use case for this protocol) has 7 such pairs fi(X), ei(X) and
all of the ei(X) are linear polynomials.

Protocol 2.3. Batched proof of divisibility (BatchDiv)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

Common Inputs: Elements ai ∈ G1; sparse public polynomials ei(X) ∈ Fp; i = 1, · · · , k
Claim: The Prover knows polynomials fi(X) such that

ai = g
fi(s)
1 , fi(X) ≡ 0 (mod ei(X)).

Proof generation algorithm

1. The hashing algorithm HashFS generates a challenge λ̃.

2. The Prover P computes the polynomial

f
λ̃
(X) :=

k∑
i=1

λ̃i−1 · ei(X)−1 · fi(X)

and sends the G1-element
B

λ̃
:= g

f
λ̃
(s)

1 .

3. The hashing algorithm HashFS generates a challenge α̃.

4. P sends the Fp-elements βi := fi(α̃) (i = 1, · · · , k).

5. The hashing algorithm HashFS generates a challenge ξ̃.

6. P computes

q(X) := (X − α̃)−1 ·
[
[f

λ̃
(X)− f

λ̃
(α̃)] +

k∑
i=1

ξ̃i · [fi(X)− βi]
]

and sends the G1-element
Q̃ := g

q(s)
1 .

Verification algorithm

11

7. The Verifier V computes the Fp-element

β̃ :=
[k∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

k∑
i=1

ξ̃i · βi

8. V verifies the equation

Q̃s−α̃ ?
= B

λ̃
·
[k∏
i=1

(ai)
ξ̃i
]
· g−β̃

1

via the pairing check e
(
Q̃ , gs−α̃

2

) ?
= e

(
B

λ̃
·
[k∏
i=1

(ai)
ξ̃i
]
· g−β̃

1 , g2
)
.

3 The Snark in the batched form

We now describe the scheme in its basic form. i.e. without higher arity, custom gates or
lookups. The proof in this version consists of 10 G1 elements and 20 Fp elements. The verification
is constant and is dominated by a single pairing check. The Prover time is dominated by the 10
MSMs in G1 with a combined length of 22 · |Circuit|.

The protocol largely boils down to the Hadamard product protocol and the permutation
argument. We use the protocol for batched divisibility to reduce the number of G1 elements
arising from the multiple polynomial openings. This results in a smaller proof size and fewer
MSMs than would be the case otherwise.

We note that rather than sending a commitment to the permutation polynomial F (X) defined
in step 3 below, it seemed more convenient for the Prover to send a commitment to the reverse
of the polynomial

F RShift(X) := X · F (X) (mod XN − 1),

i.e. the reverse of the cyclic right shift of F (X) instead.

Protocol 3.1. The Snark

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Common preprocessed inputs:

� Integers n, N = 3n; The CRS [g1, g
s
1, · · · , gsN

1], [g1, g
s
2].

� Index sets IA, IM, IPub corresponding to the addition, multiplication gates and public
inputs respectively.

� indicator polynomials χIA
(X), χIM

(X), χIPub
(X) and the reverses

χ̂IA
(X) := XN · χIA

(X−1) , χ̂IM
(X) := XN · χIM

(X−1) , χ̂IPub
(X) := XN · χIPub

(X−1).

� The polynomials

N−1∑
i=0

Xi , Pid(X) :=

N−1∑
i=0

i ·Xi , Pσ(X) :=

N−1∑
i=0

σ(i) ·Xi.

12

for a permutation σ of [0, N − 1].

Verifier preprocessed inputs:

g1, g
s
1, g

sN

1 ∈ G1, g2, g
s
2 ∈ G2.

ĈA := g
χ̂IA

(s)

1 , ĈM := g
χ̂IM

(s)

1 , ĈPub := g
χ̂IPub

(s)

1 , APub := g
Ppub(s)
1

Cσ := g
Pσ(s)
1 , Cid := g

Pid(s)
1 , C1 := g

∑N−1
i−0 si

1

Claim: The Prover knows polynomials L(X), R(X), O(X) of degree ≤ n− 1 such that:

� [L(X)⊙R(X)−O(X)] ⊙ χIM
(X) = 0

� [L(X) +R(X)−O(X)] ⊙ χIA
(X) = 0

� The concatenated polynomial Wires(X) := L(X)+Xn ·R(X)+X2n ·O(X) is stable under
the action of the permutation σ, i.e.

Coef(Wires , σ(i)) = Coef(Wires , i) ∀ i ∈ [0, N − 1].

� Wires(X) ⊙ χIPub
(X) = Ppub(X), or equivalently, [Wires(X)−Ppub(X)]⊙χIpub

(X) = 0.

The proof generation:

Committing to the wire polynomials

1 The Prover P sends the G1-elements

AL := g
L(s)
1 , AR := g

R(s)
1 , AO := g

O(s)
1 , AL,R := g

L⊙R(s)
1 .

Committing to the reverse of the cyclic right shift of the permutation polynomial

2 The hashing algorithm HashFS generates challenges δ1, δ2.

3 P computes the polynomial

F (X) :=

N−1∑
i=0

i∏
j=0

Coef(Wires(X) , j) + δ1 · σ(j) + δ2
Coef(Wires(X) , j) + δ1 · j + δ2

·Xi

and the right shift
F RShift(X) := X · F (X) (mod XN − 1).

P sends the G1-element

13

A
F̂ ,1

:= g
F̂ RShift(s)
1 ,

where
F̂ (X) := XN · F (X−1) , F̂ RShift(X) := XN · F RShift(X−1)

The twist

4 The hashing algorithm HashFS generates a challenge γ.

5 P sends the evaluation γL,R := L⊙R(γ) ∈ Fp.

Aggregation of the multiple twisted products (for the Hadamard products)

6 The hashing algorithm HashFS generates a challenge λ.

7 P computes the polynomial f̃γ,λ(X) :=

L(γ ·X) · R̂(X) + λ · [L(γ ·X) +R(γ ·X)−O(γ ·X)] · χ̂IA
(X)

+ λ2 · [L⊙R(γ ·X)−O(γ ·X)] · χ̂IM
(X)

+ λ3 ·
[
Wires(γ ·X) + δ1 · Pid(γ ·X) + δ2 ·

N−1∑
i=0

(γ ·X)i
]
· F̂ (X)

− λ3 ·
[
Wires(γ ·X) + δ1 · Pσ(γ ·X) + δ2 ·

N−1∑
i=0

(γ ·X)i
]
· F̂ RShift(X)

+λ4 ·
[
Wires(γ ·X)− Ppub(γ ·X)

]
· χ̂Ipub

(X) .

The low-degree part

8 P computes the the residue f̃γ,λ,−(X) := f̃γ,λ(X) (mod XN) and sends the G1-element

Ãγ,λ,− := g
f̃γ,λ,−(s)
1 .

The high-degree part

9 P computes the polynomial

f̃γ,λ,+(X) :=
2N∑

i=N+1

Coef(f̃γ,λ , i) ·Xi−N−1

and sends the G1-element Ãγ,λ,+ := g
f̃γ,λ,+(s)
1 .

Degree upper bounds

10 The hashing algorithm HashFS generates a challenge λ̂.

14

11 P computes f̂
λ̂
(X) := Xn−1 · L(X−1) + λ̂ ·Xn−1 ·R(X−1)

+ λ̂2 ·Xn−1 ·O(X−1) + λ̂3 ·XN−1 · f̃γ,λ,−(X−1)

and sends the G1-element
A

λ̂
:= g

f̂
λ̂
(s)

1 .

The evaluation challenge

12 The hashing algorithm HashFS generates a challenge α.

13 P sends the Fp-elements

βL := L(α) , βR := R(α) , βO := O(α) , βL,R := L⊙R(α)

β̃γ,λ,− := f̃γ,λ,−(α) , β̃γ,λ,+ := f̃γ,λ,+(α) , βid := Pid(α) , βσ := Pσ(α)

β
F̂
:= F̂ (α) = αN · F (α−1) , ν

γ,F̂
:= F̂ (γ−1 · α) = (γ−1 · α)N · F (α−1 · γ)

ν
γ,R̂

:= R̂(γ−1 · α) = (γ−1 · α)N ·R(γ · α−1) , βpub := Ppub(α).

14 The hashing algorithm HashFS generates a challenge ξ.

15 P computes the polynomial fξ(X) :=

L(X) + ξ ·R(X) + ξ2 ·O(X) + ξ3 · f̃γ,λ,−(X) + ξ4 · Pid(X) + ξ5 · Pσ(X)

+ξ6 · f̃γ,λ,+(X) + ξ7 · Ppub(X) + ξ8 · L⊙R(X) + ξ9 · [F̂ RShift(X)]

16 P computes the polynomial fγ,λ,α(X) :=

βL · R̂(γ−1 · α) + λ · [βL + βR − βO] · χ̂IA
(X) + λ2 · [βL,R − βO] · χ̂IM

(X)

+ λ3 ·
[
[βL + βR · αn + βO · α2n] + δ1 · βid + δ2 ·

αN − 1

α− 1
] · F̂ (γ−1 · α)

− λ3 ·
[
[βL + βR · αn + βO · α2n] + δ1 · βσ + δ2 ·

αN − 1

α− 1

]
· F̂ RShift(X)

+ λ4 · [βL − βpub] · χ̂Ipub
(X).

Batched divisibility

We use the following notations for brevity:

(i). h1(X) := L⊙R(X)− γL,R , e1(X) := X − γ ,

(ii). h2(X) :=
[
f̃γ,λ,−(X) + γL,R ·XN + (γ−1 · α)N+1 · f̃γ,λ,+(X)

]
− fγ,λ,α(X) ,

e2(X) := γ ·X − α

15

(iii). h3(X) := fξ(X)− fξ(α) , e3(X) := X − α

(iv). h4(X) := f̂
λ̂
(X) − f̂

λ̂
(α−1) , e4(X) := X − α−1

(v). h5(X) := F̂ RShift(X) , e5(X) := X.

(vi). h6(X) := F̂ RShift(X) −
[
(α−1 · γ) · ν

γ,F̂
+ (γ−1 · α)N − 1

]
, e6(X) := γ ·X − α

(vii). h7(X) := R(X) − (γ · α−1)N · ν
γ,R̂

, e7(X) := α ·X − γ.

17 The hashing algorithm HashFS generates a challenge λ̃.

18 The Prover P computes

h
λ̃
(X) :=

7∑
i=1

λ̃i−1 · ei(X)−1 · hi(X)

and sends the G1-element
B

λ̃
:= g

h
λ̃
(s)

1

19 The hashing algorithm HashFS generates a challenge α̃.

20 P sends the Fp-elements βi := hi(α̃) (i = 1, · · · , 7).

21 The hashing algorithm HashFS generates a challenge ξ̃.

22 P computes the polynomial

q̃(X) := (X − α̃)−1 ·
[
[h

λ̃
(X)− h

λ̃
(α̃)] +

7∑
i=1

ξ̃i · [hi(X)− βi]
]

and sends the G1-element
Q̃ := g

q̃(s)
1 .

The verification

23 The Verifier V computes the Fp-element βWires := βL + αn · βR + α2n · βO and the
G1-element

Aλ,α :=
[
g
βL·νγ,R̂
1

]
·
[
(ĈA)

λ·[βL+βR−β0]
]
·
[
(ĈM)λ

2·[βL,R−β0]
]
·

·
[
(g1)

λ3·ν
γ,F̂

·[βWires+δ1·βid+δ2·α
N−1
α−1

]] · [(A
F̂ ,1

)−λ3·[βWires+δ1·βσ+δ2·α
N−1
α−1

]] · [(Ĉpub)
λ4·[βL−βpub]

]
24 V computes the Fp-element

βξ := βL + ξ · βR + ξ2 · βO + ξ3 · β̃γ,λ,− + ξ4 · βid + ξ5 · βσ

+ ξ6 · β̃γ,λ,+ + ξ7 · βpub + ξ8 · βL,R + ξ9 · [α−1 · β
F̂
+ αN − 1]

16

25 V computes the G1 element

Aξ := AL ·Aξ
R ·Aξ2

O · Ãξ3

γ,λ,− ·Cξ4

id ·Cξ5

σ · Ãξ6

γ,λ,+ ·Aξ7

pub ·Aλ8

L,R ·Aξ9

F̂ ,1

26 V computes the Fp-element

β
λ̂

:= α1−n · βL + λ̂ · α1−n · βR + λ̂2 · α1−n · βO + λ̂3 · α1−N · β̃γ,λ,−

Batched divisibility checks:

27 V computes the linear polynomials e1(X), · · · , e7(X) and the G1 elements a1, · · · , a7
given by:

e1(X) := X − γ , e2(X) := γ ·X − α , e3(X) := X − α , e4(X) := X − α−1

e5(X) := X , e6(X) := γ ·X − α , e7(X) := α ·X − γ

a1 := AL,R · g
−γ

L,R

1 , a2 :=
[
Ãγ,λ,− · (gsN1)γL,R · Ã(γ−1·α)N+1

γ,λ,−
]
·A−1

λ,α

a3 := Aξ · g
−βξ

1 , a4 := A
λ̂
· g−β

λ̂
1 , a5 := A

F̂ ,1

a6 := A
F̂ ,1

· g
−[(α−1·γ)·ν

γ,F̂
+(γ−1·α)N−1]

1 , a7 := AR · g
−(γ·α−1)N ·ν

γ,R̂

1

28 V computes the Fp-element

β̃ :=
[7∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

7∑
i=1

ξ̃i · βi

The pairing check

29 V verifies the equation:

Q̃s−α̃ ?
= B

λ̃
·
[7∏
i=1

(ai)
ξ̃i
]
· g−β̃

1

via the pairing check

e
(
Q̃ , gs

2

)
?
= e

(
B

λ̃
·
[7∏
i=1

(ai)
ξ̃i
]
· g−β̃

1 ·
(
Q̃
)α̃−1

, g2

)
.

This version has 10 G1 elements and 20 Fp-elements. The proof generation runtime is dominated
by

- The 10 MSMs in G1 with a total MSM length of 22 · |Circuit|.
- The computation of the sum of six polynomial products in Step 7 (to a lesser extent than the
MSMs).

We note that it is possible to reduce the total MSM length (and hence, the Prover time) at the
cost of more G1 elements in the proof.

17

4 The underlying subprotocols

In this section, we describe the subprotocols underpinning the Snark. Unlike in the case
of the Snark, we have made no particular effort to make these modular subprotocols efficient,
beyond ensuring that the proof sizes and verification times are constant and the Prover times
quasi-linear. The purpose of this section is merely expository.

4.1 Protocol for the degree upper bound

RDegUp[g1, a, n] = {(a ∈ G1, n ∈ Z), f(X) ∈ Fp[X]) : g
f(s)
1 = a , deg(f) ≤ n}

Protocol 4.1. Proof of degree upper bound (PoDegUp):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

Common Inputs: Elements a ∈ G1, n ∈ Z.

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that

a = g
f(s)
1 , deg(f) ≤ n.

1. The Prover P computes f̂(X) := Xn · f(X−1) and sends the G1-element â := g
f̂(s)
1 .

2. The hashing algorithm HashFS generates a challenge α ∈ F∗
p.

3. The Prover computes the polynomials q(X) , q̂(X) such that

f(X) = q(X) · (X − α) + f(α) , f̂(X) = q̂(X) · (X − α−1) + α−n · f(α)

and sends the G1-elements
Q := g

q(s)
1 , Q̂ := g

q̂(s)
1

and the Fp-element β := f(α).

4. The Verifier V computes β̂ := α−n · β and verifies the equations

Qs−α ?
= a · g−β

1 , Q̂s−α−1 ?
= â · g−β̂

1

via the (batchable) pairing checks

e(Q , gs−α
2)

?
= e(a · g−β

1 , g2) , e(Q̂ , gs−α−1

2)
?
= e(â · g−β̂

1 , g2).

4.2 The Hadamard product protocol

As mentioned in the introduction, we exploit the fact that the product f1(γ ·X) ·XN ·f2(X−1)
has coefficient f1⊙ f2(γ) at the position XN . We note that the protocol is batchable in the sense
that to show that:

fj,1 ⊙ fj,2(X) = fj,1,2(X) for j = 1, · · · , k ,

18

it suffices to show that for randomly generated challenges γ, λ, the sum

fλ(X) :=
k∑

j=1

λj−1 · fj,1(γ ·X) ·XN · fj,2(X−1)

has coefficient
k∑

j=1
λj−1 · fj,1,2(γ) at the position XN . This boils down to expressing the difference

fλ(X) −
[k∑
j=1

λj−1 · fj,1,2(γ)
]
·XN

as a sum of a polynomial fλ,−(X) of degree ≤ N − 1 and a polynomial fλ,+(X) divisible by
XN+1.

RHadProd[g1, (a1,a2), a1,2] =

{ (
(a1, a2, a1,2 ∈ G1) , f1(X), f2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1⊙f2(s)
1 = a1,2

}

Protocol 4.2. Proof of the Hadamard Product (PoHadProd)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

A public integer N ≤ M

Verifier’s preprocessed inputs: The elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2

Common Inputs: Elements a1, a2, a1,2 ∈ G1

Claim: The Prover knows polynomials f1(X), f2(X) such that:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1⊙f2(s)
1 = a1,2

(f1 ⊙ f2 denotes the Hadamard product)

Proof generation algorithm

1. The hashing algorithm HashFS generates a challenge γ.

2. P sends the Fp element γ1,2 := f1 ⊙ f2(γ)

3. P computes the product

fγ(X) := f1(γ ·X) · XN · f2(X−1).

The low degree part

4. P computes the residue

fγ,−(X) := fγ(X) (mod XN)

and sends the G1 element
aγ,− := g

fγ,−(s)
1 .

19

Degree upper bound on the low degree part

5. P computes the polynomial

f̂γ,−(X) := XN−1 · fγ,−(X−1)

and sends the G1 element
âγ,− := g

f̂γ,−(s)
1 .

High degree part

6. P computes the polynomial

fγ,+(X) :=

deg(fγ)∑
j=N+1

Coef(fγ , j) ·Xj−N−1

and sends the G1 element
aγ,+ := g

fγ,+(s)
1 .

The evaluation challenge

7. The hashing algorithm HashFS generates a challenge α.

8. P sends the Fp elements

βγ,1 := f1(γ ·X) , β̂2 := f2(α
−1) , βγ,− := fγ,−(α) , βγ,+ := fγ,+(α)

The batched divisibility (BatchDiv) subprotocol

9. P computes the following polynomials:

(i). h1(X) := f1(X)− βγ,1 , e1(X) := X − γ−1 · α

(ii). h2(X) := f2(X)− β̂2 , e2(X) := X − α−1

(iii) h3(X) := fγ,−(X)− βγ,− , e3(X) := X − α

(iv) h4(X) := fγ,+(X)− βγ,+ , e4(X) := X − α

(v) h5(X) := f̂γ,−(X)− α1−N · βγ,+ , e5(X) := X − α−1

(vi) h6(X) := f1 ⊙ f2(X)− γ1,2 , e6(X) := X − γ

10. P computes the G1- elements bi := g
hi(s)
1 (i = 1, · · · , 6) as follows:

b1 := a1 · g
−βγ,1

1 , b2 := a2 · g−β̂2
1 , b3 := aγ,− · g−βγ,−

1 , b4 := aγ,+ · g−βγ,+

1

b5 := bγ,− · g−α1−N ·βγ,+

1 , b6 := a1,2 · g
−γ1,2
1 .

20

11. P sends a proof for the protocol BatchDiv on the tuple [g1, (bi)
6
i=1, (ei(X))6i=1]

The verification

12. The Verifier V computes the G1-elements bi (i = 1, · · · , 6) as in Step 10.

13. V verifies the BatchDiv subprotocol.

14. V verifies the equation βγ,1 · αN · β̂2
?
= βγ,− + αN · γ1,2 + αN+1 · βγ,+ .

4.3 Proof of cyclic right shift

We describe a protocol to show that for a public integer N and committed polynomials f(X),
f1(X), the polynomials are of degree ≤ N − 1 and the latter is a cyclic right shift of the first in
the sense that:

f1(X) = Coef(f , N − 1) +

N−2∑
j=0

Coef(f , j) ·Xj+1 ≡ X · f(X) (mod XN − 1)

The two polynomials are linked by the equation

X · f(X)− f1(X) = Coef(f , N − 1) · [XN − 1].

and hence, no expensive polynomial multiplication or division is necessary.

RRShift[g1, (a,b)] =


(
(a, b ∈ G1) :
f(X) ∈ Fp[X] with deg(f) ≤ N

a = g
f(s)
1 , b = g

fRShift(s)
1


Protocol 4.3. Proof of cyclic right shift (PoRShift)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

A public integer N ≤ M.

Verifier’s preprocessed inputs: The Elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2 ;

Common Inputs: Elements a, b ∈ G1.

Claim: The Prover knows a polynomial f(X) of degree ≤ N − 1 such that

a = g
f(s)
1 , b = g

fRShift(s)
1

where
fRShift(X) := X · f(X) (mod XN − 1).

1. The Prover P sends the Fp-element

cN−1 := Coef(f , N − 1).

2. P sends proofs of PoDegUp[g1, a, N − 1], PoDegUp[g1, b, N − 1].

21

(degree upper bounds)

3. The Verifier V verifies the proofs of degree upper bounds and the equation

e(a , gs
2) · e(b−1 , g1)

?
= e(gsN−1

1 , g
cN−1

2).

4.4 The permutation argument

We now describe the permutation argument that the Snark hinges upon. For a committed
permutation σ : [0, N−1] −→ [0, N−1] and two committed polynomials f(X), f̃(X), the Prover
succinctly shows that the polynomials are of degree ≤ N − 1 and are linked by the permutation
σ in the following sense:

Coef(f̃ , j) = Coef(f , σ(j)) ∀ j.

The permutation σ is committed via the KZG10 commitment to the polynomial

Sσ(X) :=
n−1∑
j=0

σ(j) ·Xj .

PoPerm (Proof of permutation)

RPerm[g1, (a,Cσ), b)] =



(
(a, Cσ, b ∈ G1) :
f(X) ∈ Fp[X] with deg(f) ≤ N
Permutation σ : [0, N − 1] −→ [0, N − 1]

)
:

a = g
f(s)
1 , b = g

fσ(s)
1 , Cσ = g

N−1∑
k=0

σ(k)·sk

1


Protocol 4.4. Proof of permutation (PoPerm)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

Common preprocessed inputs: The polynomials

N−1∑
i=0

Xi , Pid(X) :=
N−1∑
i=0

i ·Xi , Pσ(X) :=
N−1∑
i=0

σ(i) ·Xi.

for a permutation σ of [0, N − 1].

Verifier preprocessed inputs: The elements g1, g
s
1, g

sN
1 ∈ G1 , g2, g

s
2 ∈ G2.

The KZG commitments

Cσ := g
Pσ(s)
1 , Cid := g

Pid(s)
1 , C1 := g

∑N−1
i−0 si

1

Common Inputs: Elements a,b ∈ G1

Claim: The Prover knows a polynomial f(X) of degree ≤ N − 1 such that

a = g
f(s)
1 , b = g

fσ(s)
1 where fσ(X) :=

N−1∑
k=0

Coef(f , σ(k)) ·Xk.

22

The proof generation

1. P sends a proof of PoDegUp[g1, a, N − 1]. (proof of degree upper bound)

2. The hashing algorithm HashFS generates two challenges δ1, δ2.

3. P computes the polynomials

fδ1,δ2(X) := f(X)+δ1 ·
(N−1∑

i=0

i·Xi
)
+δ2 ·

N−1∑
i=0

Xi , f̃δ1,δ2(X) := fσ(X)+δ1 ·Pσ(X)+δ2 ·
N−1∑
i=0

Xi

and the G1-elements

aδ1,δ2 := g
fδ1,δ2 (s)

1 = a ·Cδ1
id ·Cδ2

1 , bδ1,δ2 := g
f̃δ1,δ2 (s)

1 = b ·Cδ1
σ ·Cδ2

1 .

4. P computes the polynomial

Fδ1,δ2(X) :=
N−1∑
i=0

i∏
j=0

Coef(fσ , j) + δ1 · σ(j) + δ2
Coef(f , j) + δ1 · j + δ2

·Xi

and the right shift
F RShift
δ1,δ2 (X) := X · Fδ1,δ2(X) (mod XN − 1).

5. P sends the G1-elements

a∨ := g
Fδ1,δ2

(s)

1 , b∨ := g
F RShift
δ1,δ2

(s)

1 .

and a proof of PoRShift[g1, (a
∨, b∨)]. (proof of cyclic right shift)

6. P computes the polynomial

H(X) := fδ1,δ2(X) ⊙ Fδ1,δ2(X) = f̃δ1,δ2(X) ⊙ F RShift
δ1,δ2 (X).

and sends the G1-element
A := g

H(s)
1 .

7. P sends a batched proof for the following Hadamard products:

- PoHadProd[g1, (aδ1,δ2 , a
∨), A]

- PoHadProd[g1, (bδ1,δ2 , b
∨), A]

8. P computes the polynomial q0(X) such that

F RShift
δ1,δ2 (X) = q0(X) ·X + 1

and sends the G1-element Q0 := g
q0(s)
1 .

The verification

9. The Verifier V computes the G1-elements

aδ1,δ2 = a ·Cδ1
id ·Cδ2

1 , bδ1,δ2 = a ·Cδ1
σ ·Cδ2

1 .

23

10. V verifies the subprotocol proofs PoRShift[g1, (a
∨, b∨)], PoHadProd[g1, (aδ1,δ2 , a

∨), A],
PoHadProd[g1, (bδ1,δ2 , b

∨), A] and the equation

Qs
0

?
= b∨ · g−1

1

via the pairing check
e(Q0, , g

s
1)

?
= e(b∨ · g−1

1 , g2).

5 Lookups

Let T (X) be a polynomial such that the Verifier has access to the commitment T := g
T (s)
1 .

We discuss a protocol that allows a Prover to succinctly demonstrate show that for a committed
polynomial f(X) and an index set I, we have the set containment:

{Coef(f , i) : i ∈ I} ⊆ {Coef(T , j) : j ∈ [0, deg(T)]}

Note that it suffices to show that ∑
i∈I

[X + Coef(f , i)]−1

can be expressed as a linear combination∑
j∈J

mj · [X + Coef(T , j)]−1

for some subset J ⊆ [0, deg(T)] and a sequence mj ∈ Fp (j ∈ J). This is because setting

fΠ,I(X) :=
∏
i∈I

X + Coef(f , i) , TΠ,J :=
∏
j∈J

X + Coef(T , j)

yields

f ′
Π,I(X)

fΠ,I(X)
=

∑
i∈I

[X + Coef(f , i)]−1 ,
T ′
Π,J (X)

TΠ,J (X)
=

∑
j∈J

[X + Coef(T , j)]−1,

where h′(X) denotes the derivative of a polynomial h(X). Thus, this would imply that the
coefficient multiset of fI(X) has at its underlying set the coefficient set
{Coef(T , j) : j ∈ [0, deg(T)]} with each Coef(T , j) occurring with multiplicity precisely mj .

Note that the polynomial T (X) is part of the preprocessed circuit and is known to have
no repeated coefficients. Were that not the case, the Prover would need to verifiably send a
commitment to the polynomial TΠ,J :=

∏
j∈J

X + Coef(T , j) and show that it is co-prime to its

derivative. However, this is unnecessary for the lookup protocol since this claim is proven and
verified during the circuit generation.

To this end, the Prover P constructs the subset J ⊆ [0, deg(T)] such that the set
{Coef(T , j) : j ∈ J } is the underlying set of the coefficient multiset of fI(X). P sends a
commitment to the indicator polynomial χJ (X) and shows that this is a commitment to the
indicator polynomial of some index set. In other words, he shows that this is a polynomial with
all of its coefficients in {0, 1}. He then verifiably sends a commitment to the polynomial

TJ (X) :=
∑
j∈J

Coef(T , j) ·Xj ,

24

which is the Hadamard product of T (X) and χJ (X). The Prover computes the multiplicities
mj with which the Coef(T , j) occur in fI(X). He sends a commitment to the polynomial
MulJ (X) :=

∑
j∈J

mj ·Xj .

Now, for a randomly generated challenge α, the Prover needs to show that∑
i∈I

[α+ Coef(f , i)]−1 =
∑
j∈J

mj · [α+ Coef(T , j)]−1,

whence it will follow that {Coef(T , j) : j ∈ J } is the underlying set of {Coef(f , j) : j ∈ I}
with each Coef(T , j) occurring with multiplicity mj = Coef(M , j).

In response to a challenge α generated by the Fiat-Shamir heuristic, the Prover verifiably
sends commitments to the polynomials

fI,α,inv(X) :=
∑
i∈I

[Coef(f , i) + α]−1 ·Xi , TJ ,α,inv(X) :=
∑
j∈J

[Coef(T , j) + α]−1 ·Xj .

It is straightforward to do so, since they are the unique polynomials that satisfy the equations

fI,α,inv(X) ⊙ [f(X) + α ·
N−1∑
i=0

Xi] = χI (X) , TJ ,α,inv(X) ⊙ [T (X) + α ·
N−1∑
i=0

Xi] = χJ (X)

Lastly, the Prover shows that the dot product of MulJ (X) and TJ ,α,inv(X) coincides with the
evaluation of fI,α,inv(X) at X = 1.

Protocol 5.1. Proof of coefficient subset containment

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

A public integer N ≤ M.

Common preprocessed input: Index set I; a polynomial T (X) that is known to have no
repeated coefficients

Verifier’s preprocessed input: Elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2

The commitments

CI := g
χI (s)
1 , T := g

T (s)
1 , Cid := g

∑N−1
i=0 sk

1 .

Common Inputs: An element a ∈ G1

Claim: The Prover knows a polynomial f(X) such that

a = g
f(s)
1 , {Coef(f , i) : i ∈ I} ⊆ {Coef(T , k) : k ∈ [0, deg(T)]}.

Proof generation algorithm

25

1. The Prover computes fI(X) := f(X)⊙ χI (X) and sends the G1-element

aI := g
fI(s)
1

2. P chooses an index set J such that the sets

{Coef(f , i) : i ∈ I} , {Coef(T , j) : j ∈ J }

coincide and computes
TJ (X) := T (X)⊙ χJ (X).

3. P sends the G1-elements

CJ := g
χJ (s)

1 , TJ := g1
TJ (s)

4. P computes the multiplicities mj (j ∈ J) with which the elements Coef(TJ , j) occur in
the multiset

Coef(f , i) : i ∈ I

and computes the polynomial

MulJ (X) :=
∑
j∈J

mj ·Xj .

5. P sends the G1-element MJ := g
MulJ (s)
1 .

6. The hashing algorithm HashFS generates a challenge α.

7. P computes the polynomial

fI,α,inv(X) :=
∑
i∈I

[Coef(f , i) + α]−1 ·Xi

and sends the G1-element
aI,α,inv := g

fI,α,inv(s)
1

8. P computes the polynomial

TJ ,α,inv(X) :=
∑
j∈J

[Coef(T , j) + α]−1 ·Xj

and sends the G1-element
TJ ,α,inv := g

TJ ,α,inv(s)
1

9. P sends the elements

βI,α,inv := fI,α,inv(1) ∈ Fp , QI,α,inv(X) := g
[fI,α,inv(s)−βI,α,inv]

/
[s−1]

1 ∈ G1.

10. P sends (batched) proofs of the following Hadamard and dot products:

- PoHadProd[g1, (a, CI), aI]

- PoHadProd[g1, (aI,α,inv , a ·Cα
id), CI].

- PoHadProd[g1, (T, CJ), TJ]

26

- PoHadProd[g1, (CJ , Cid ·C−1
J), g1].

- PoHadProd[g1, (TJ ,α,inv , T ·Cα
id), CJ]

- PoDotProd[g1, (MJ , TJ ,α,inv), βI,α,inv]

The verification

11. V verifies the Hadamard and dot product subprotocols.

12. V verifies the equation

(QI,α,inv)
s−1 ?

= aI,α,inv · g
−βI,α,inv

1 ∈ G1

via the pairing check e(QI,α,inv , gs−1
2)

?
= e(aI,α,inv · g

−βI,α,inv

1 , g2). .

We note that prior to us becoming aware of the work of [Hab22], our protocol required the

Prover to show that
f∏ (X)

gcd(f∏ (X), f ′∏ (X)) divides
T∏ (X)

gcd(T∏ (X), T ′∏ (X)) . This entailed subprotocols for the

derivatives in addition to expensive polynomial divisions, which made the protocol inefficient in
practice. While the protocol from [Hab22] is meant for the Lagrange basis with a smooth order
subgroup, we noticed that the underlying trick could be combined with the Hadamard product
protocol to yield the analogous protocol in the monomial basis setting.

5.1 Subsequences

The lookup argument can also be extended to succinctly show that the coefficients of a
polynomial at an index set form a subsequence in a table. As before, let f(X), T (X) be committed
polynomials of degree ≤ N−1 and let I, J be index sets to which the Verifier stores commitments.
A Prover can show that the subsequences[

Coef(f , i)
]
i∈I ,

[
Coef(T , j)

]
j∈J

coincide. We note that this property can be rephrased as follows:

The Prover can construct a permutation σ : [0, N − 1] −→ [0, N − 1] such that:

1. [f(X)⊙ χJ (X)]σ = T (X)⊙ χI (X), i.e.

Coef
(
T ⊙ χJ , k

)
= Coef

(
f ⊙ χI , σ(k)

)
∀ k ∈ [0, N − 1].

2. The permutation σ is increasing on the set I in the sense that:

∀ i1, i2 ∈ I, i1 < i2 ⇐⇒ σ(i2)− σ(i1) ∈ [1, N − 1] ⊆ Fp.

The Prover constructs this permutation and sends a commitment to the polynomial

Sσ(X) :=
N−1∑
k=0

σ(k) ·Xk.

27

He uses the preceding protocol (i.e. the protocol for coefficient set containment) to show that the
set of the coefficients of this committed polynomial is the interval [0, N − 1], which implies that
it is indeed a commitment to some permutation of [0, N − 1]. The Prover uses the protocol for
the permutation and the Hadamard product protocol to show that this committed permutation
σ satisfies the equation

[f(X)⊙ χJ (X)]σ = T (X)⊙ χJ (X).

It then remains to show that this permutation σ is increasing on the set I, or equivalently, that
for any i1, i2 ∈ I with i1 < i2,

Coef(Sσ(X) , i2) − Coef(Sσ(X) , i1) ∈ [1, N − 1] ⊆ Fp.

To that end, the Prover constructs and sends the commitment to the polynomial S̃σ(X) given
by

Coef(S̃σ(X) , k) := σ(mk) where mk := max(I ∩ [0, k]).

Note that this polynomial is created by replacing the 0’s in the coefficients of Sσ(X) so that there
are “jumps” precisely at the indices I. The coefficients of this polynomial are in non-decreasing
order if and only if σ is increasing on I. The Prover uses the Hadamard product protocol and
the protocol for coefficient set containment to show that this committed polynomial fulfills the
following properties:

1. S̃σ(X)⊙ χI (X) = Sσ(X)⊙ χI (X)

2. The polynomial[
(1−X) · S̃σ(X)

]
⊙ XN − 1

X − 1
=

N−1∑
k=0

[
Coef(S̃σ , k + 1)− Coef(S̃σ , k)

]
·Xi

has all of its coefficients in the interval [0, N − 1].

This shows that sequence of coefficients of S̃σ(X) is non-decreasing. Since the coefficients of
Sσ(X)⊙ χI (X) form a subsequence of this sequence, it follows that the coefficients of
Sσ(X)⊙ χI (X) appear in increasing order, i.e. σ is increasing on the index set I.

6 Univariate custom gates of high degree

We describe a protocol that allows for univariate custom gates of high degree. For committed
polynomials f(X), f̃(X), a public univariate polynomial P (X) and an index set I, we describe
a protocol that allows a Prover to succinctly demonstrate that the coefficients of f(X), f̃(X) are
linked as follows:

P
(
Coef(f , i)

)
= Coef(f̃ , i) ∀ i ∈ I, .

In other words, there exist ci ∈ Fp (i ∈ I) such that

f(X)⊙ χI (X) =
∑
i∈I

ci ·Xi , f̃(X)⊙ χI (X) =
∑
i∈I

P (ci) ·Xi.

In addition to requiring that P (X) is univariate, we also need the product deg(P) ·
∣∣I∣∣ to

be O(Circuit size). This is so that the Prover can compute the polynomial hλ(X) defined below,
without incurring a high computational cost. The basic idea (lemma 2.1) is that for rational
functions fi(X) ∈ Fp(X) (i ∈ I), if the sum

fλ(X) :=
∑
i∈I

λi · fi(X)

28

is a polynomial for some randomly generated λ, then with overwhelming probability, the rational
functions fi(X) are all polynomials. Thus, to show that the relation

P (Coef(f , i)) = Coef(f̃ , i) ∀ i ∈ I

holds, it suffices to verifiably send a KZG10 commitment to the polynomial

hλ(X) :=
∑
i∈I

P (X)− Coef(f̃ , i)

X − Coef(f , i)
· λi

for some randomly generated challenge λ. The Prover first sends a commitment to this polynomial.

In response to a challenge α generated after the commitment has been sent, the Prover sends
the commitment to the polynomial

h∨α(X) :=
∑
i∈I

P (α)− Coef(f̃ , i)

α− Coef(f , i)
·Xi.

The Hadamard product protocol allows the Prover to succinctly show that this G1 element is
indeed a KZG10 commitment to this polynomial. This is the unique polynomial that fulfills both
of the Hadamard product equations

h∨α(X) ⊙ [α · χI (X)− f(X)]
?
= P (α) · χI (X)− [f̃(X)⊙ χI (X)]

h∨α(X) ⊙ χI (X)
?
= h∨α(X).

Now, the Prover shows that the committed polynomials h∨α(X) and hλ(X) satisfy the equations

h∨α(λ) = hλ(α).

This implies that with overwhelming probability,

hλ(α) =
∑
i∈I

P (α)− Coef(f̃ , i)

α− Coef(f , i)
· λi.

Since α was randomly and uniformly generated after bλ was sent, it follows that with overwhelming
probability,

hλ(X) =
∑
i∈I

P (X)− Coef(f̃ , i)

X − Coef(f , i)
· λi.

Since λ was randomly and uniformly generated, lemma 2.1 implies that overwhelming probability,
the rational functions

P (X)− Coef(f̃ , i)

X − Coef(f , i)

are all polynomials, whence it follows that with overwhelming probability,

P (Coef(f , i)) = Coef(f̃ , i) ∀ i ∈ I.

Protocol 6.1. Proof of coefficient relation (CoefRel)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1] , [g2, g
s
2]

A public integer N ≤ M.

Verifier’s preprocessed inputs: The Elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2 ;

29

A commitment CI := g
χI (s)
1 to an index set I. A public polynomial P (X) and the

commitment
CP := g

P (s)
1 .

Common Inputs: Elements a, ã ∈ G1

Claim: The Prover knows polynomials f(X), f̃(X) such that

a = g
f(s)
1 , ã = g

f̃(s)
1 , P (Coef(f , i)) = Coef(f̃ , i) ∀ i ∈ I.

Proof generation algorithm

1. P computes
fI(X) := f(X)⊙ χI (X) , f̃I(X) := f̃(X)⊙ χI (X)

and sends the G1-elements
aI := g

fI(s)
1 , ãI := g

f̃I(s)
1 .

2. The hashing algorithm HashFS generates a challenge λ.

3. P computes the polynomial

hλ(X) :=
∑
i∈I

P (X)− Coef(f̃ , i)

X − Coef(f , i)
· λi

and sends the G1 element
bλ := g

hλ(s)
1

4. The hashing algorithm HashFS generates a challenge α ∈ Fp.

5. P sends the Fp-elements βλ := hλ(α) , βP := P (α).

6. P computes the polynomial

h∨α(X) :=
∑
i∈I

βP − Coef(f̃ , i)

α− Coef(f , i)
·Xi

and sends the G1-element
b∨ := g

h∨
α(s)

1 .

7. P sends the G1-elements

Q1 := g
hλ(s)−βλ

s−α

1 , Q2 := g
P (s)−βP

s−α

1 , Q3 := g
h∨α(X)(s)−βλ

s−λ

1

8. P sends (batched) proofs of the following Hadamard product protocols:

- PoHadProd[g1, (a, CI), aI]

- PoHadProd[g1, (ã, CI), ãI].

30

- PoHadProd[g1, (b
∨, Cα

I · a−1
I), CβP

I · ã−1
I]

- PoHadProd[g1, (b
∨, CI), b

∨].

The verification

9. V verifies the the PoHadProds (the Hadamard product subprotocols) and the batchable
equations

Qs−α
1

?
= bλ · g−βλ

1 , Qs−α
2

?
= CP · g−βP

1 , Qs−λ
3

?
= b∨ · g−βλ

1

via pairing checks.

When the protocol (in the batched version rather than this modular version) is merged with the
Snark, the Hadamard products and the polynomial openings do not contribute any extra G1

elements to the proof. But the proof does need commitments to the polynomials f(X)⊙ χI (X),
hλ(X) and h∨α(X).

Multiple univariate gates: The protocol naturally extends to multiple univariate polynomials
P1(X), · · · , Pk(X) and pairwise disjoint index sets I1, · · · , Ik with the caveat that we need the
sum k∑

j=1

deg(Pj) · |Ij |.

to be small enough for the Prover to compute the polynomial

k∑
j=1

∑
i∈Ij

Pi(X)− Coef(f̃ , i)

X − Coef(f , i)
· λi

for a randomly and uniformly generated challenge λ ∈ Fp. The Verifier needs to store commitments
to the polynomials Pj(X) and the indicator polynomials χIj

(X).

The proof is similar to the case k = 1 we described above. The Prover sends a commitment
to

hλ(X) :=

k∑
j=1

∑
i∈Ij

Pi(X)− Coef(f̃ , i)

X − Coef(f , i)
· λi.

In response to a challenge α, he sends a commitment to the polynomial

h∨α(X) :=

k∑
j=1

∑
i∈Ij

Pi(α)− Coef(f̃ , i)

α− Coef(f , i)
· λi

and shows that this committed polynomial satisfies the Hadamard products

h∨α(X) ⊙
[
α ·

k∑
j=1

χIj
(X) − f(X)

]
=

[k∑
j=1

Pj(α) · χIj
(X)

]
− [f̃(X)⊙

k∑
j=1

χIj
(X)]

h∨α(X) ⊙
[k∑
j=1

χIj
(X)

]
.

Lastly, he shows that h∨α(λ) = hλ(α)

31

7 Acknowledgements

We thank Kapil Shenvi Pause for the Rust implementation of the bare-bones version of the
scheme and for helpful feedback on previous drafts. We thank Mark Blunden, Anish Mohammed
and Assimakis Kattis for helpful feedback on previous drafts. We thank Roman Melnikov for
helpful conversations. We thank Remco Bloemen for communicating to us a protocol
(https://xn–2-umb.com/22/ntt-argument/) linking monomial and Lagrange bases in settings
where the scalar field has a large smooth order subgroup. We thank Sergio Juarez and Naman
Kumar for help with the benchmarks and with the implementation.

References

[BCKL21] E. Ben-Sasson, D. Carmon, S. Kopparty, D. Levit, Elliptic Curve Fast Fourier Transform (ECFFT)
Part I: Fast Polynomial Algorithms over all Finite Fields, https://arxiv.org/abs/2107.08473

[Bl22] R. Bloemen, NTT transform argument (blogpost), https://xn–2-umb.com/22/ntt-argument/

[BGG17] S. Bowe, A. Gabizon, M. Green, A multi-party protocol for constructing the public parameters of the
Pinocchio zk-Snark

[AC22] R. Akeela, W. Chen, Yafa-108/146: Implementing ed25519-embedding Cocks-Pinch curves in arkworks-rs,
https://eprint.iacr.org/2022/1145

[CBBZ22] B. Chen, B. Bünz, D. Boneh, Z. Zhang, HyperPLONK: PLONK with Linear-Time Prover and High-Degree
Custom Gates, https://eprint.iacr.org/2022/1355

[Ch10] J.H.Cheon, Discrete Logarithm Problems with Auxiliary Inputs

[CHMMVW20] A. Chiesa,Y. Hu, M. Maller, P. Mishra, N. Vesely and N.P. Ward. Marlin: Preprocessing zk- Snarks
with universal and updatable SRS. Eurocrypt 2020, Part I, volume 12105 of LNCS

[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast lookups,
https://eprint.iacr.org/2022/1763

[FST06] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves

[FS87] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS

[FKL18] G. Fuchsbauer, E. Kiltz,and J. Loss. The algebraic group model and its applications. In Advances in
Cryptology - CRYPTO 2018- 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
1923, 2018, Proceedings, Part II, pages 33–62, 2018.

[GWC19] A. Gabizon, Z. Williamson, O. Ciobotoru PLONK: Permutations over Lagrange-bases for Oecumenical
Noninteractive arguments of Knowledge, https://eprint.iacr.org/2019/953

[GW20] A. Gabizon, Z. Williamson, Plookup: A simplified polynomial protocol for lookup tables,
https://eprint.iacr.org/2020/315.pdf

[Hab22] Ulrich Habock, Multivariate lookups based on logarithmic derivatives,
https://eprint.iacr.org/2022/1530

[KS98] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Mathematics of
computation, 67(223):1179–1197, 1998

[KZG10] A. Kate, G. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010.

[Lee21] J. Lee, Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments.
In Theory of Cryptography Conference, pages 1–34. Springer, 2021.

[Mil86] V. Miller, Short Programs for functions on Curves

[Sh01] V. Shoup, The NTL Library, https://libntl.org/

[Sh20] V. Shoup Arithmetic Software Libraries, https://www.shoup.net/papers/akl-chapter.pdf

32

https://xn--2-umb.com/22/ntt-argument/
https://arxiv.org/abs/2107.08473
https://xn--2-umb.com/22/ntt-argument/
https://eprint.iacr.org/2022/1145
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/315.pdf
https://eprint.iacr.org/2022/1530
https://libntl.org/
https://www.shoup.net/papers/akl-chapter.pdf

[Ngu05] L. Nguyen, Accumulators from bilinear pairings and applications, CT-RSA, 3376:275–292, 2005

[PST13] C. Papamanthou, E. Shi and R. Tamassia, Signatures of correct computation, in: Theory of Cryptography
2013, Lecture Notes in Comput. Sci. 7785, Springer, Heidelberg (2013), 222–242.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments.
https://eprint.iacr.org/2022/957.

[SB23] Behemoth: transparent polynomial commitment scheme with constant opening proof size and verifier time

[SS71] A. Schönhage, V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7(34):281–292,197.

[SSSPPLC22] H. Sun, H. Sun, K. Singh, A. Pedireddy, H. Patil, J. Liu, W. Chen, The inspection model for
zero-knowledge proofs and efficient Zerocash with secp256k1 keys, https://eprint.iacr.org/2022/1079

[Th19] S. Thakur, Batching non-membership proofs with bilinear accumulators, https://eprint.iacr.org/2019/1148

[ZBK+22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, M. Simkin. Caulk: Lookup arguments
in sublinear time. https://eprint.iacr.org/2022/621.

A Deferred proofs

A.1 The batched divisibility protocol

Proposition A.1. The protocol BatchDiv is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness. Suppose a
PPT algorithm APPT outputs an accepting transcript consisting of the G1 elements B

λ̃
, Q̃ and

the Fp-elements β1, · · · , βk.
Since the challenge α̃ was randomly and uniformly generated after the elements B

λ̃
and

β1, · · · , βk were sent, the equation

Q̃s−α̃ ?
= B

λ̃
·
[k∏
i=1

(ai)
ξ̃i
]
· g−β̃

1

implies that with overwhelming probability, an extractor EPPT can simulate the extractor Emulti−PC

to extract a polynomial h∗(X) such that

B
λ̃
·
[k∏
i=1

(ai)
ξ̃i
]
= g

h∗(s)
1 , h∗(α) = β̃.

The Verifier independently computes the Fp-element

β̃ :=
[k∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

k∑
i=1

ξ̃i · βi.

Hence, it follows that with overwhelming probability, the extracted polynomial h∗(X) satisfies
the equation

h∗(α) = [

k∑
j=1

λ̃j−1 · βj · ej(α̃)−1] +

k∑
i=1

ξ̃i · βi.

Since the challenge ξ̃ was randomly and uniformly generated after the G1 element B
λ̃
and the

Fp-elements β1, · · · , βk were sent, it follows that with overwhelming probability, EPPT can simulate
the extractor Emulti−PC to extract polynomials f∗

λ(X) and f∗
1 (X), · · · , f∗

k (X) such that

B
λ̃
= g

f∗
λ(s)

1 , f∗
λ(α̃) = β̃ , ai = g

f∗
i (s)

1 , f∗
i (α̃) = βi (i = 1, · · · , k).

33

https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/1079
https://eprint.iacr.org/2019/1148
https://eprint.iacr.org/2022/621

Thus, with overwhelming probability, the extracted polynomials f∗
λ(X) and f∗

i (X) (i = 1, · · · , 7)
satisfy the equation

f∗
λ(α̃) =

[k∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

k∑
i=1

ξ̃i · βi =
[k∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

k∑
i=1

ξ̃i · f∗
i (α̃).

Since the challenge α̃ was randomly and uniformly generated after the element B
λ̃
was sent, the

Schwartz-Zippel lemma implies that with overwhelming probability, the extracted polynomials
f∗
λ(X), f∗

i (X) (i = 1, · · · , k) satisfy the equation

f∗
λ(X) =

[k∑
j=1

λ̃j−1 · f∗
i (X) · ej(X)−1

]
+

k∑
i=1

ξ̃i · f∗
i (X).

In particular, it follows that with overwhelming probability, the rational function

k∑
j=1

λ̃j−1 · f∗
j (X) · ej(X)−1 ∈ Fp(X)

formed by the extracted polynomials f∗
j (X) and the public polynomials ei(X) is a polynomial in

Fp[X]. The challenge λ̃ was randomly and uniformly generated. Hence, lemma 2.1 implies that
with overwhelming probability, each of the rational functions f∗

j (X) · ej(X)−1 is a polynomial,
whence it follows that ej(X) divides f∗

j (X) for each index j = 1, · · · , k.

A.2 Security proof of the Snark

Theorem A.2. The protocol 3.1 is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness.

Suppose a PPT algorithmAPPT outputs an accepting transcript consisting of the 10G1-elements

AL, AR, AO, AL,R, AF̂ ,1
, Ãγ,λ,−, Ãγ,λ,+, Aλ̂

, B
λ̃
, Q̃

and 20 Fp-elements

γL,R , βL, βR, βO, βL,R, β̃γ,λ,−, βid, βσ, β̃γ,λ,+, βpub, βF̂ , νγ,F̂ , νγ,R̂, β1, · · · , β7.

As in the protocol, the challenges

δ1, δ2, γ, λ, λ̂, α, ξ, λ̃, α̃, ξ̃

are computed by hashing the transcript at each stage, where the intermediary transcripts Ti are
given by:

1. T0 := CA
∣∣∣∣ CM

∣∣∣∣ Cid

∣∣∣∣Cσ

∣∣∣∣ Cpub

∣∣∣∣ Apub

∣∣∣∣ AL

∣∣∣∣ AR

∣∣∣∣ AO

∣∣∣∣ AL,R.

δ1, δ2 := HashFS(T0, 0), HashFS(T0, 1)
2. T1 := T0

∣∣∣∣ AF,1

γ := HashFS(T1)
3. T2 := T1

∣∣∣∣ γL,R

λ := HashFS(T2)

34

4. T3 := T2
∣∣∣∣ Aγ,λ,−

∣∣∣∣ Aγ,λ,+

λ̂ := HashFS(T3)
5. T4 := T3

∣∣∣∣ A
λ̂

α := HashFS(T4)
6. T5 := T4

∣∣∣∣ βL ∣∣∣∣ βR ∣∣∣∣ βO ∣∣∣∣ βL,R ∣∣∣∣ β̃γ,λ,− ∣∣∣∣ βid ∣∣∣∣ βσ ∣∣∣∣ β̃γ,λ,+ ∣∣∣∣ βpub ∣∣∣∣ βF̂ ∣∣∣∣ ν
γ,F̂

∣∣∣∣ ν
γ,R̂

λ̃ := HashFS(T5)
7. T6 := T5

∣∣∣∣ B
λ̃

α̃ := HashFS(T6)
8. T7 := T6

∣∣∣∣ β1 ∣∣∣∣ β2 ∣∣∣∣ β3 ∣∣∣∣ β4 ∣∣∣∣ β5 ∣∣∣∣ β6 ∣∣∣∣ β7
ξ̃ := HashFS(T7)
9. T8 := T7

∣∣∣∣ Q̃
As in the protocol, we denote:

1. e1(X) := X − γ , a1 := AL,R · g
−γ

L,R

1

2. e2(X) := γ ·X − α , a2 :=
[
Ãγ,λ,− · (gsN

1)γL,R · Ã(γ−1·α)N+1

γ,λ,+

]
·A−1

λ,α where

βWires := βL + αn · βR + α2n · βO

and
Aλ,α :=

[
g
βL·νγ,R̂
1

]
·
[
(ĈA)

λ·[βL+βR−β0]
]
·
[
(ĈM)λ

2·[βL,R−β0]
]
·

·
[
(g1)

λ3·ν
γ,F̂

·[βWires+δ1·βid+δ2·α
N−1
α−1

]] · [(A
F̂ ,1

)−λ3·[βWires+δ1·βσ+δ2·α
N−1
α−1

]] · [(Ĉpub)
λ4·[βL−βpub]

]
3. e3(X) := X − α , a3 := Aξ · g

−βξ

1 ,

where Aξ := AL ·Aξ
R ·Aξ2

O · Ãξ3

γ,λ,− ·Cξ4

id ·C
ξ5
σ · Ãξ6

γ,λ,+ ·Aξ7

pub ·Aλ8

L,R ·Aξ9

F̂ ,1

βξ := βL + ξ · βR + ξ2 · βO + ξ3 · β̃γ,λ,− + ξ4 · βid + ξ5 · βσ + ξ6 · β̃γ,λ,+ + ξ7 · βpub
+ξ8 · βL,R + ξ9 · [α−1 · β

F̂
+ αN − 1].

4. e4(X) := X − α−1 , a4 := A
λ̂
· g−β

λ̂
1

5. e5(X) := X , a5 := A
F̂ ,1

6. e6(X) := γ ·X − α , a6 := A
[γ−1·α]
F̂ ,1

· g
[1−sN]−β

γ,F̂

1

7. e7(X) := α ·X − γ , a7 := AR · g
−(γ·α−1)N ·ν

γ,R̂

1

The Verifier V independently computes

β̃ :=
[7∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

7∑
i=1

ξ̃i · βi.

The pairing check implies that with overwhelming probability,

35

Q̃s−α̃ ?
= B

λ̃
·
[7∏
i=1

(ai)
ξ̃i
]
· g−β̃

1 = B
λ̃
· g

−[
7∑

j=1
λ̃j−1·βj ·ej(α̃)−1]

1 ·
[7∏
i=1

(ai · g−βi
1)ξ̃

i]
.

The challenge ξ̃ was randomly and uniformly generated after theG1-elementB
λ̃
and the Fp-elements

β1, · · · , β7 had been sent and the elements a1, · · · ,a7 were computable from the Prover’s intermediate
transcript. Hence, with overwhelming probability, an extractor EPPT can simulate the extractor
Emulti−PC to extract polynomials h

λ̃
(X) and h∗i (X) (i = 1, · · · , 7) such that

ai := g
h∗
i (s)

1 , B
λ̃
= g

h∗
λ̃
(s)

1 , h∗i (α̃) = βi

h∗
λ̃
(α̃) =

7∑
j=1

λ̃j−1 · βj · ej(α̃)−1 =
7∑

j=1

λ̃j−1 · h∗i (α̃) · ej(α̃)−1.

Since the challenge α̃ was randomly and uniformly generated after the elements B
λ̃
was sent, the

Schwartz-Zippel lemma implies that with overwhelming probability, the extracted polynomials
h∗
λ̃
(X), h∗j (X) (j = 1, · · · , 7) satisfy the equation

h∗
λ̃
(X) =

7∑
j=1

λ̃j−1 · h∗j (X) · ej(X)−1.

Thus, in particular, the rational function
∑7

j=1 λ̃
j−1 · h∗j (X) · ej(X)−1 is a polynomial. The

challenge λ̃ was randomly and uniformly generated after the elements a1, · · · ,a7 ∈ G1 and the
linear polynomials e1(X), · · · , e7(X) had been communicated to the Verifier. More precisely, λ̃
was randomly and uniformly generated after the Prover’s intermediate transcript had enough
information for the Verifier to independently compute the the elements a1, · · · ,a7 ∈ G1

and the linear polynomials e1(X), · · · , e7(X). Hence, lemma 2.1 implies that with overwhelming
probability, each of the rational functions h∗j (X) · ej(X)−1 is a polynomial, i.e. h∗j (X) is divisible
by ej(X) for j = 1, · · · , 7.

Thus, it follows that with overwhelming probability, EPPT can simulate the extractor Emulti−PC

to extract polynomials

P ∗
L,R(X), f̃∗

γ,λ,−(X), f̃∗
γ,λ,+(X), f∗

ξ (X), f̂∗
λ̂
(X), F̂ ∗

1 (X), R∗(X)

such that

1. AL,R = g
P ∗
L,R(s)

1 , P ∗
L,R(γ) = γL,R

2. Ãγ,λ,− = g
f̃∗
γ,λ,−(s)

1 , Ãγ,λ,+ = g
f̃∗
γ,λ,+(s)

1

3. Aξ = g
f∗
ξ (s)

1 , f∗
ξ (α) = βξ.

4. A
λ̂

= g
f̂∗
λ̂
(s)

1 , f̂∗
λ̂
(α−1) = β

λ̂

5. A
F̂ ,1

= g
F̂ ∗
1 (s)

1 , F̂ ∗
1 (0) = 0

6. (γ−1 · α) · [F̂ ∗
1 (γ

−1 · α) + 1− (γ−1 · α)N] = ν
γ,F̂

7. AR = g
R∗(s)
1 , R∗(γ · α−1) = (γ · α−1)N · ν

γ,R̂
.

36

We initially fixate on the implications of Statement 3 in this list. Since the challenge ξ was
randomly and uniformly generated after the elements

βL, βR, βO, βL,R, β̃γ,λ,−, βid, βσ, β̃γ,λ,+, βpub, βF̂ , νγ,F̂ , νγ,R̂

had been sent, it follows that with overwhelming probability, EPPT can simulate the extractor
Emulti−PC to extract polynomials

L∗(X), R∗(X), O∗(X), F̂ ∗
1 (X), f̃∗

γ,λ,−(X), f̃∗
γ,λ,+(X)

such that the following equations in G1 and Fp hold:

1. AL = g
L∗(s)
1 , βL = L∗(α)

2. AR = g
R∗(s)
1 , βR = R∗(α)

3. AO = g
O∗(s)
1 , βO = O∗(α)

4. AL,R = g
P ∗
L,R(s)

1 , βL,R = P ∗
L,R(α)

5. Ãγ,λ,− = g
f̃∗
γ,λ,−(s)

1 , β̃γ,λ,− = f̃∗
γ,λ,−(α)

6. Ãγ,λ,+ = g
f̃∗
γ,λ,+(s)

1 , β̃γ,λ,+ = f̃∗
γ,λ,+(α)

7. βid = Pid(α)

8. βσ = Pσ(α)

9. βpub = Ppub(α)

10. A
F̂ ,1

:= g
F̂ ∗
1 (s)

1 , F̂ ∗
1 (α) := α−1 · [βF + αN − 1].

We define

F̂
∗
1(X) := F̂ ∗

1 (X) (mod XN) , F ∗
1 (X) := XN · F̂

∗
1(X

−1) =
N∑
i=0

Coef(F̂ ∗
1 , i) ·XN−i

F̂ ∗(X) := X · [F̂ ∗
1 (X) + 1−XN] , F̂

∗
(X) := F̂ ∗(X) (mod XN)

F ∗(X) := XN · F̂
∗
(X−1) =

N∑
i=0

Coef(F̂ ∗ , i) ·XN−i

By construction, the polynomials F ∗(X), F ∗
1 (X) satisfy the equations

F ∗
1 (X) = X · F ∗(X) (mod XN) , Coef(F ∗ , N − 1) = Coef(F ∗ , N − 1) = 1.

We define
Wires∗(X) := L∗(X) +Xn ·R∗(X) +X2n ·O∗(X).

R
∗
(X) := R∗(X) (mod XN) , R̂∗(X) := XN ·R∗

(X−1) =

N−1∑
i=0

Coef(R , i) ·XN−i.

f̃∗
γ,λ(X) := f̃∗

γ,λ,−(X) + γL,R ·XN + f̃∗
γ,λ,+ ·XN+1,

where L∗(X), R∗(X), O∗(X), f̃∗
γ,λ,−(X), f̃∗

γ,λ,+(X) are the aformentioned polynomials extracted
by EPPT.

37

As in the protocol, set

βWires := βL + αn · βR + α2n · βO = L∗(α) + αn ·R∗(α) + α2n ·O∗(α) = Wires∗(α)

and
Aλ,α := g

βL·νγ,R̂
1 · (ĈA)

λ·[βL+βR−β0] · (ĈM)λ
2·[βL,R−β0]·

·(g1)λ
3·ν

γ,F̂
·[βWires+δ1·βid+δ2·α

N−1
α−1

] · (A
F̂ ,1

)−λ3·[βWires+δ1·βσ+δ2·α
N−1
α−1

] · (Ĉpub)
λ4·[βWires−βpub]

Now, the extracted polynomial
f∗
γ,λ,α(X) :=

L∗(α) · R̂∗(γ−1 · α) + λ · [L∗(α) +R∗(α)−O∗(α)] · χ̂IA
(X) + λ2 · [P ∗

L,R(α)−O∗(α)] · χ̂IM
(X)

+λ3 · F̂ ∗(γ−1 · α) · [βWires + δ1 · βid + δ2 ·
αN − 1

α− 1
]− λ3 · [βWires + δ1 · βσ + δ2 ·

αN − 1

α− 1
]

+λ4 · [βWires − Ppub(α)] · χ̂Ipub
(X) ,

with overwhelming probability, satisfies the equation

Aλ,α = g
f∗
γ,λ,α(s)

1

and the congruence

f̃∗
γ,λ,−(X) + γL,R ·XN + f̃∗

γ,λ,+(X) ·XN+1 ≡ f∗
γ,λ,α(X) (mod γ ·X − α).

It follows that with overwhelming probability, the polynomial f̃∗
γ,λ(X) defined by

f̃∗
γ,λ(X) := f̃∗

γ,λ,−(X) + γL,R ·XN + f̃∗
γ,λ,+(X) ·XN+1

is congruent to the polynomial

f∗γ,λ(X) := L∗(γ ·X) · R̂∗(X) + λ · [L∗(γ ·X) +R∗(γ ·X)−O∗(γ ·X)] · χ̂IA
(X)

+λ2 · [P ∗
L,R(γ ·X)−O∗(γ ·X)] · χ̂IM

(X)

+λ3 ·
[
Wires∗(γ ·X) + δ1 · Pid(γ ·X) + δ2 ·

N−1∑
i=0

(γ ·X)i] ·X · [F̂ ∗
1 (X)−XN + 1]

]
− λ3 ·

[
Wires∗(γ ·X) + δ1 · Pσ(γ ·X) + δ2 ·

N−1∑
i=0

(γ ·X)i
]
· F̂ ∗

1 (X)

+λ4 · [Wires∗(γ ·X)− Ppub(γ ·X)] · χ̂Ipub
(X)

modulo (γ ·X − α).

The challenge α was randomly and uniformly generated after the G1 elements Ãγ,λ,−, Ãγ,λ,+

were sent and after the challenge γ was generated. Hence, this forces the equality

f̃∗
γ,λ(X) = f∗γ,λ(X)

with overwhelming probability. In particular, the coefficient Coef(f̃∗
γ,λ , N) of the extracted

polynomial f̃∗
γ,λ(X) at the position XN coincides with the sum

HP1(γ) + λ · HP2(γ) + λ2 · HP3(γ) + λ3 · [HP4(γ)− HP5(γ)] + λ4 · HP6(γ)

where the HPi(X) are the following Hadamard products:

38

1. HP1(X) := L∗(X)⊙R∗(X).

2. HP2(X) := [L∗(X) +R∗(X)−O∗(X)]⊙ χIA
(X).

3. HP3(X) := [P ∗
L,R(X)−O∗(X)]⊙ χIM

(X).

4. HP4(X) := [Wires∗(X) + δ1 · Pid(X) + δ2 · XN−1
X−1]⊙ F ∗(X)

5. HP5(X) := [Wires∗(X) + δ1 · Pσ(X) + δ2 · XN−1
X−1]⊙ F ∗

1 (X)

6. HP6(X) := [Wires∗(X)− Ppub(X)]⊙ χIpub
(X).

and L∗(X), R∗(X), O∗(X), P ∗
L,R(X), Wires∗(X) are the aforementioned polynomials extracted

by EPPT.We now argue that with overwhelming probability, the following claims are valid regarding
these extracted polynomials.

Claim 1: Coef(f̃∗
γ,λ , N) = γL,R = P ∗

L,R(γ).

Claim 2: The polynomials L∗(X), R∗(X), O∗(X) are of degrees ≤ n− 1.

We first explain why the validity of these two claims would imply soundness. The challenge
λ was randomly and uniformly generated after the G1 elements

AL , AR , A0 , AL,R , A
F̂ ,1

, γL,R

had been sent. Hence, if Claims 1 and Claims 2 are both valid, the Schwartz-Zippel lemma
will then imply that with overwhelming probability, the extracted polynomials L∗(X), R∗(X),
P ∗
L,R(X), O∗(X), F ∗

1 (X) are such that the following evaluations of Hadamard products are valid:

- L∗(X)⊙R∗(X) is valued P ∗
L,R(γ) at X = γ.

- [L∗(X) +R∗(X)−O∗(X)]⊙ χIA
(X) is valued 0 at X = γ.

- [P ∗
L,R(X)−O∗(X)]⊙ χIM

(X) is valued 0 at X = γ.

- [Wires∗(X)+ δ1 ·Pid(X)+ δ2 · X
N−1

X−1]⊙F ∗(X) − [Wires∗(X)+ δ1 ·Pσ(X)+ δ2 · X
N−1

X−1]⊙F ∗
1 (X)

is valued 0 at X = γ.

- [Wires∗(X)− Ppub(X)]⊙ χIpub
(X) is valued 0 at X = γ.

Since the challenge γ was randomly and uniformly generated after AL,AR,A0,AL,R,AF̂ ,1
had been sent, the Schwartz-Zippel lemma will then imply that with overwhelming probability,
all of the following Hadamard product equations hold.

- L∗(X)⊙R∗(X) = P ∗
L,R(X)

- [L∗(X) +R∗(X)−O∗(X)]⊙ χIA
(X) = 0.

- [P ∗
L,R(X)−O∗(X)]⊙ χIM

(X) = 0.

-
[
Wires∗(X)+δ1 ·Pid(X)+δ2 · X

N−1
X−1

]
⊙F ∗(X) =

[
Wires∗(X)+δ1 ·Pσ(X)+δ2 · X

N−1
X−1

]
⊙F ∗

1 (X)

-
[
Wires∗(X)− Ppub(X)

]
⊙ χIpub

(X) = 0.

39

Furthermore, the polynomials F ∗(X), F ∗
1 (X) satisfy the equations

F ∗
1 (X) = F ∗RShift(X) := X · F ∗(X) (mod XN)

Coef(F ∗ , N − 1) = Coef(F ∗
1 , 0) = 1.

Thus, it will then follow that

N−1∏
i=0

Coef(Wires∗(X) , i) + δ1 · i+ δ2 =

N−1∏
i=0

Coef(Wires∗(X) , i) + δ1 · σ(i) + δ2 ,

whence it will follow that with overwhelming probability, the polynomial Wires∗(X) is preserved
under the action of σ, which would complete the proof of soundness. We now prove claims 1 and
2.

Proof of Claims 1 and 2: Since

f̃∗
γ,λ(X) = f̃∗

γ,λ,−(X) + γL,R ·XN + f̃∗
γ,λ,+(X) ·XN+1,

it follows that with overwhelming probability, the extracted polynomials f̃∗
γ,λ(X), f̃∗

γ,λ,−(X)
satisfy the equation

Coef(f̃∗
γ,λ , N) = γL,R + Coef(f̃∗

γ,λ,− , N).

It remains to argue that the polynomial f̃∗
γ,λ,−(X) is of degree ≤ N − 1 and the three

polynomials L∗(X), R∗(X), O∗(X) are all of degrees ≤ n − 1. As noted above, the pairing
check implies that with overwhelming probability, EPPT can simulate the extractor Emulti−PC to
extract a polynomial f̂∗

λ̂
(X) such that

A
λ̂

= g
f̂∗
λ̂
(s)

1

and
f̂∗
λ̂
(α−1) = β

λ̂
:= α1−n · βL + λ̂ · α1−n · βR + λ̂2 · α1−n · βO + λ̂3 · α1−N · βγ,λ,−

= α1−n · L∗(α) + λ̂ · α1−n ·R∗(α) + λ̂2 · α1−n ·O∗(α) + λ̂3 · α1−N · f̃∗
γ,λ,−(α).

Since the challenge α was randomly and uniformly generated after the element A
λ̂
had been sent,

the Schwartz-Zippel lemma implies that with overwhelming probability, the extracted polynomial
f̂∗
λ̂
(X) is given by

f̂∗
λ̂
(X) = Xn−1 ·

[
L∗(X−1) + λ̂ ·R∗(X−1) + λ̂2 ·O∗(X−1)

]
+ λ̂3 ·XN−1 · f̃∗

γ,λ,−(X
−1)

In particular, it follows that the expression on the right is a polynomial in Fp[X] rather than

merely a rational function. Since the challenge λ̂ was randomly and uniformly generated after
the elements AL, AR, AO, Ãγ,λ,− had been sent, lemma 2.1 implies that with overwhelming
probability, all four of the rational functions

Xn−1 · L∗(X−1) , Xn−1 ·R∗(X−1) , Xn−1 ·O∗(X−1) , XN−1 · f̃∗
γ,λ,−(X

−1)

are polynomials. Thus, with overwhelming probability, the extracted polyonmials L∗(X), R∗(X),
O∗(X), f̃∗

γ,λ,− satisfy the degree upper bounds

deg(L∗), deg(R∗), deg(O∗) ≤ n− 1 , deg(f̃∗
γ,λ,−) ≤ N − 1,

which completes the proof.

40

A.3 Subprotocol proofs

A.3.1 The degree upper bound protocol

Proposition A.3. The protocol PoDegUp is secure in the algebraic group model.

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

The equations
Qs−α ?

= a · g−β
1 , Q̂s−α ?

= â · g−β̂
1

verified via the (batchable) pairing checks

e(Q , gs−α
2)

?
= e(a · g−β

1 , g2) , e(Q̂ , gs−α−1

2)
?
= e(â · g−β̂

1 , g2)

imply that with overwhelming probability, an extractor EPPT can simulate the extractor Emulti−PC

to extract polynomials f∗(X), f̂∗(X) such that

a = g
f∗(s)
1 , â = g

f̂∗(s)
1 , f∗(α) = β , f̂∗(α−1) = α−n · β.

Since the challenge α was randomly and uniformly generated, the Schwartz-Zippel lemma implies
that with overwhelming probability, the extracted polynomials f∗(X), f̂∗(X) satisfy the equation

f̂∗(X) = Xn · f∗(X−1).

Thus, with overwhelming probability, the rational function Xn · f∗(X−1) is a polynomial and
hence, deg(f∗) ≤ n.

A.3.2 The Hadamard product protocol

Proposition A.4. The protocol PoHadProd is secure in the algebraic group model.

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

The subprotocol BatchDiv that with overwhelming probability, an extractor EPPT can simulate
the extractor of BatchDiv to extract polynomials f∗

1 (X), f∗
2 (X), f∗

1,2(X), f∗
γ,−(X), f∗

γ,+(X),

f̂∗
γ,−(X) such that:

- g
f∗
1 (s)

1 = a1, f∗
1 (γ · α) = βγ,1

- g
f∗
2 (s)

1 = a2, f∗
2 (α

−1) = β̂2

- g
f∗
γ,−(s)

1 = aγ,−, f∗
γ,−(α) = β∗

γ,−

- g
f∗
γ,+(s)

1 = aγ,+, f∗
γ,+(α) = β∗

γ,+

- g
f̂∗
γ,−(s)

1 = âγ,−, f̂∗
γ,−(α

−1) = α1−N · f∗
γ,−(α

−1)

- f∗
1,2(γ) = γ1,2

Thus, the equation

βγ,1 · αN · β̂2
?
= βγ,− + αN · γ1,2 + αN+1 · βγ,+

41

may be rephrased as

f∗
1 (γ · α) · αN · f∗

2 (α
−1) = f∗

γ,−(α) + αN · f∗
1,2(γ) + αN+1 · f∗

γ,+(X).

Since the challenge α was randomly and uniformly generated after the elements aγ,−, aγ,+, âγ,−
were sent, the Schwart-Zippel lemma implies that with overwhelming probability, the extracted
polynomials satisfy the equation

f∗
1 (γ ·X) ·XN · f∗

2 (X
−1) = f∗

γ,−(X) +XN · f∗
1,2(γ) +XN+1 · f∗

γ,+(X).

Since the extracted polynomials f̂∗
γ,−(X), f∗

γ,− also satisfy the equation

f̂∗
γ,−(α

−1) = α1−N · f∗
γ,−(α

−1) ,

the Schwartz-Zippel lemma implies that with overwhelming probability, the extracted polynomials
satisfy the equation f̂∗

γ,−(X) = XN−1 ·f∗
γ,−(X

−1). In particular, it follows that with overwhelming

probability, the rational functionXN−1·f∗
γ,−(X

−1) is a polynomial, which implies that deg(f∗
γ,−) ≤

N − 1.

Thus, the twisted product f∗
1 (γ ·X) ·XN · f∗

2 (X
−1) has coefficient f∗

1,2(γ) at the position XN .
Since the challenge γ was randomly and uniformly generated, it follows that with overwhelming
probability, f∗

1,2(X) = f∗
1 ⊙ f∗

2 (X).

A.3.3 Proof of cyclic right shift

Proposition A.5. The protocol PoRShift is secure in the algebraic group model.

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

The subprotocols for the degree upper bounds imply that with overwhelming probability, an
extractor EPPT can extract polynomials f∗(X), f∗(X) such that

a = g
f∗(s)
1 , b = g

f∗
1 (s)

1 , max
(
deg(f∗), deg(f∗

1)
)

≤ N − 1.

The pairing check implies that with overwhelming probability, the extracted polynomials f∗(X),
f∗
1 (X) satisfy the equations

cN−1 · (XN − 1) = X · f∗(X)− f∗
1 (X)

and hence,
f1(X) ≡ X · f(X) (mod XN − 1),

whence it follows that with overwhelming probability, f∗
1 (X) is the cyclic right shift of f(X).

A.3.4 The permutation argument

Proposition A.6. The protocol PoPerm is secure in the algebraic group model.

42

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

The subprotocols PoRShift[g1, (a
∨, b∨)], PoHadProd[g1, (aδ1,δ2 , a

∨), A] and
PoHadProd[g1, (bδ1,δ2 , b∨), A] imply that with overwhelming probability, an extractor EPPT
can simulate the extractors of the Hamard product and cyclic right shift protocols to extract
polynomials f∗(X), f̃∗(X), F ∗(X) such that

a = g
f∗(s)
1 , b = g

f̃∗(s)
1 , deg(F ∗) ≤ N − 1

[f∗(X)+ δ1 ·Pid(X)+ δ2 ·
N−1∑
i=0

Xi] ⊙ F ∗(X) = [f̃∗(X)+ δ1 ·Pσ(X)+ δ1 ·
N−1∑
i=0

Xi] ⊙ F ∗RShift(X).

Furthermore, the pairing check

e(Q0, , g
s
1)

?
= e(b∨ · g−1

1 , g2)

implies that with overwhelming probability, the extracted polynomial F ∗(X) and its cyclic right
F ∗RShift(X) := X · F ∗(X) (mod XN − 1) satisfy the equations

Coef(F ∗RShift , 0) = Coef(F ∗ , N − 1) = 1.

Thus, with overwhelming probability, the extracted polynomials f(X), f̃∗(X) satisfy the
equation

N−1∏
i=0

Coef(f∗ , i) + δ1 · i+ δ2

Coef(f̃∗ , i) + δ1 · σ(i) + δ2
= 1.

Since the challenges δ1, δ2 were randomly and uniformly generated, it follows that with overwhelming
probability,

Coef(f̃∗ , i) = Coef(f∗ , σ(i)) ∀ i ,

which completes the proof of soundness.

A.4 The lookup protocol

Proposition A.7. The protocol 5.1 is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness. Suppose a
PPT algorithm APPT outputs an accepting transcript.

The three Hadamard product subprotocols

- PoHadProd[g1, (a, CI), aI]

- PoHadProd[g1, (a, CJ), TJ]

- PoHadProd[g1, (CJ , Cid ·C−1
J), g1]

imply that with overwhelming probability, an extractor EPPT can extract an index set J ∗ (with
indicator polynomial χJ∗ (X)) and a polynomial f∗(X) such that

a = g
f∗(s)
1 , aI = g

f∗⊙χI (s)
1 , CJ = g

χJ∗ (s)

1 , TJ = g
T⊙χ∗

J (s)

1 .

Furthermore, the Hadamard product subprotocols

- PoHadProd[g1, (aI,α,inv , a ·Cα
id), CI]

43

- PoHadProd[g1, (TJ ,α,inv , T ·Cα
id), CJ]

imply that with overwhelming probability, EPPT can extract polynomials f∗
I,α,inv

(X), T ∗
J∗,α,inv

(X)
such that

TJ ,α,inv := g
T ∗
J∗,α,inv

(s)

1 , aI,α,inv := g
f∗
I,α,inv(s)

1 ∈ G1 ,

and

T ∗
J ∗,α,inv(X) ⊙

[
T (X) + α · Pid(X)

]
= χJ∗ (X) , f∗

I,α,inv(X) ⊙
[
f∗(X) + α · Pid(X)

]
= χI (X).

Thus, with overwhelming probability, the extracted polynomials T ∗
J ∗(X), f∗

I(X) satisfy the
equations

Coef
(
T ∗
J ∗,α,inv , k

)
=

{[
α+ Coef

(
T , k

)]−1
if k ∈ J ∗

0 if k /∈ J ∗

Coef
(
f∗
I,α,inv , k

)
=

{[
α+ Coef

(
f∗ , k

)]−1
if k ∈ I

0 if k /∈ I
.

The pairing check

e
(
QI,α,inv , gs−1

2

) ?
= e

(
TI,α,inv · g

−βI,α,inv

1 , g2
)

implies that with overwhelming probability, the extracted polynomial f∗
I,α,inv

(X) satisfies the
equation

βI,α,inv = f∗
I,α,inv

(1) =
∑
i∈I

[
α+ Coef

(
f∗ , k

)]−1
.

Furthermore, the subprotocol PoDotProd[g1, (MJ , TJ ,α,inv), βI,α,inv] implies that with overwhelming
probability, EPPT can extract a polynomial MulJ ∗(X) such that

MJ = g
MulJ∗ (s)
1 ,

f∗
I,α,inv(α) = MulJ ∗(X) ◦ T ∗

J ∗,α,inv(X) =
∑
j∈J ∗

Coef
(
MulJ ∗ , j

)
·
[
α+ Coef

(
T , j

)]−1
,

where ◦ denotes the dot product.

Since the challenge α was randomly and uniformly generated after the element MJ ∈ G1

was sent, the Schwartz-Zippel lemma implies that with overwhelming probability, the extracted
polynomials f∗(X), MulJ ∗(X) satisfy the equality∑

i∈I

[
X + Coef

(
f∗ , i)

]−1
=

∑
j∈J ∗

Coef
(
MulJ ∗ , j

)
·
[
X + Coef

(
T , j)

]−1

of rational functions. It now follows that with overwhelming probability, the multiset of the
coefficients of f∗(X) at the index set I has underlying set {Coef

(
T , j) : j ∈ J ∗} with each

Coef
(
T , j) occurring with multiplicity Coef

(
MulJ ∗ , j

)
.

44

A.5 The univariate custom gate protocol

Proposition A.8. The protocol 6.1 is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness. Suppose a
PPT algorithm APPT outputs an accepting transcript

The equations

Qs−α
1

?
= bλ · g−βλ

1 , Qs−α
2

?
= CP · g−βP

1 , Qs−λ
3

?
= b∨ · g−βλ

1

verified via pairing checks imply that with overwhelming probability, P (α) = βP and an extractor
EPPT can extract polynomials h∗λ(X), h∨,∗α (X) such that

bλ = g
hλ(s)
1 , b∨ = g

h∨,∗
α (s)

1 , h∗λ(α) = βλ = h∨,∗α (λ).

The Hadamard product subprotocols

- PoHadProd[g1, (a, CI), aI]

- PoHadProd[g1, (ã, CI), ãI]

imply that with overwhelming probability, EPPT can extract polynomials f∗(X), f̃∗(X) such that
the Hadamard products f∗

I (X) := f∗(X) ⊙ χI (X), f̃∗
I (X) := f̃∗(X) ⊙ χI (X) satisfy the

equations

aI := g
f∗
I (s)

1 , ãI := g
f̃∗
I (s)

1 ∈ G1.

Furthermore, the Hadamard product subprotocols

- PoHadProd[g1, (aδ1,δ2 , a
∨), A]

- PoHadProd[g1, (bδ1,δ2 , b
∨), A]

imply that with overwhelming probability, the extracted polynomials h∨,∗α (X), f∗(X) satisfy the
following equations:

h∨,∗α (X) ⊙ [α · χI (X)− f∗(X)] = P (α) · χI (X)− f̃∗(X)⊙ χI (X)

h∨,∗α (X) ⊙ χI (X) = h∨,∗α (X).

Thus, with overwhelming probability,

h∗,∨α (X) =
∑
i∈I

P (α)− Coef(f̃∗ , i)

α− Coef(f∗ , i)
·Xi.

In particular,

h∗λ(α) = βλ = h∨,∗α (λ) =
∑
i∈I

P (α)− Coef(f̃∗ , i)

α− Coef(f∗ , i)
· λi.

Since the challenge α was randomly and uniformly generated after the element bλ was sent, it
follows that with overwhelming probability, the extracted polynomials h∗λ(X), f∗(X) and f̃∗(X)
satisfy the equation

h∗λ(X) =
∑
i∈I

P (X)− Coef(f̃∗ , i)

X − Coef(f∗ , i)
· λi.

Thus, the sum ∑
i∈I

P (X)− Coef(f̃∗ , i)

X − Coef(f∗ , i)
· λi ∈ Fp(X) := Frac(Fp[X]).

45

is a polynomial. Since the challenge λ was randomly and uniformly generated, lemma 2.1 implies
that with overwhelming probability, each of the rational functions

P (X)− Coef(f̃∗ , i)

X − Coef(f∗ , i)
(i ∈ I)

is a polynomial. This, in turn, implies that with overwhelming probability,

P (Coef(f∗ , i)) = Coef(f̃∗ , i) ∀ i ∈ I,

which completes the proof.

B Multimodular FFTs

A consequence of using the monomial basis is that the only superlinear computations the
Prover performs are products of polynomials in Fp[X]. The simplest and the most efficient way
to do so is to use multimodular FFTs (terminology as in the NTL library).

We fix highly 2-adic primes p1, p2 such that p < min(p1, p2) and the product p1 · p2 is larger
than p2 · M where M is an upper bound on the degrees of any polynomials to be multiplied.
Given polynomials f1(X), f2(X), ∈ Fp[X], a the Prover computes the product f1(X) · f2(X) as
follows.

1. Lift the polynomial f1(X), f2(X) to characteristic zero. Denote these polynomials by f̃1(X),
f̃2(X).

2. Compute the polynomials f̃1(X) · f̃2(X) (mod pi · Z[X]) using FFTs in Fpi for i = 1, 2.

3. Use the Chinese remainder theorem on the coefficients of these polynomials to recover the
polynomial f̃1,2(X) := f̃1(X) · f̃2(X) ∈ Z[X].

4. Reduce the coefficients of f̃1,2(X) modulo p to retrieve the Fp-polynomial f1(X) · f2(X).

Computing a sum
∑k

j=1 fj,1(X) · fj,2(X) entails k FFTs and a single inverse FFT per prime
modulus used in addition to the Chinese remainder theorem and reduction of the coefficients
modulo p.

C List of protocols and the relations they are arguments of knowledge for

1. PoDegUp (Proof of degree upper bound)

RDegUp[g1, (a, n)] = {(a ∈ G1, n ∈ Z), f(X) ∈ Fp[X]) : g
f(s)
1 = a , deg(f) ≤ n}

2. PoHadProd (Proof of Hadamard product)

RHadProd[g1, (a1,a2), a1,2] =

{ (
(a1,a2,a1,2 ∈ G1), f1(X), f2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1⊙f2(s)
1 = a1,2

}
(⊙ denotes the Hadamard product of polynomials).

3. PoDotProd (Proof of dot product)

RDotProd[g1, (a1,a2), α1,2] =

{
(a1,a2 ∈ G1), f1(X), f2(X) ∈ Fp[X]) :

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , f1 ⊙ f2(1) = α1,2

}
(◦ denotes the dot product of polynomials)

46

4. PoRShift (Proof of cyclic right shift)

RRShift[g1, (a,b)] =


(
(a, b ∈ G1)
f(X) ∈ Fp[X] with deg(f) ≤ N

)
:

a = g
f(s)
1 , b = g

fRShift(s)
1


f RShift(X) is the polynomial X · f(X) (mod XN − 1).

5. PoPerm (Proof of permutation)

RPerm[g1, (a,Cσ), b)] =



(
(a, Cσ, b ∈ G1)
f(X) ∈ Fp[X] with deg(f) ≤ N − 1
Permutation σ : [0, N − 1] −→ [0, N − 1]

)
:

a = g
f(s)
1 , b = g

fσ(s)
1 , Cσ = g

n∑
i=0

σ(i)·si

1


6. PoCoefSet (Protocol for coeffcient subset containment)

RCoefSet[g1, (a, T), CI] =


(
(a, T, CI ∈ G1),
f(X), T (X) ∈ Fp[X] , I ⊆ [0, N − 1]

)
:

a = g
f(s)
1 , T = g

T (s)
1 , CI = g

χI (s)

1

{Coef(f , i) : i ∈ I} ⊆ {Coef(T , i) : j ∈ [0, N − 1]}


7. PoSubseq (Protocol for subsequences)

RSubseq[g1, (a, ã), (CI , CĨ)] =



(
(a, ã, CI , CĨ ∈ G1),

f(X), f̃(X) ∈ Fp[X] , I, Ĩ ⊆ [0, N − 1]
Permutation σ : [0, N − 1] −→ [0, N − 1]

)
:

a = g
f(s)
1 , b = g

f̃(s)
1 , CI = g

χI (s)

1 , CĨ = g
χ
Ĩ
(s)

1

[f(X)⊙ χI (X)]σ = [f̃(X)⊙ χ
Ĩ
(X)]

∀ i, j ∈ I, i < j ⇐⇒ σ(i) < σ(j)


8. PoCoefRel (Protocol for coefficient relation)

RCoefRel[g1, (a, ã, CI), P (X)] =


(
(a, ã, CI ∈ G1, P (X) ∈ Fp[X]),

f(X), f̃(X) ∈ Fp , I ⊆ [0, deg(f)]
)
:

g
f(s)
1 = a , g

f̃(s)
1 = ã , g

χI (s)

1 = CI

P (Coef(f , i)) = Coef(f̃ , i) ∀ i ∈ I



Steve Thakur
Panther Protocol Cryptography Team
Email: steve@pantherprotocol.io,
stevethakur01@gmail.com

47

© 2023 Panther Ventures Limited. This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of the license, visit
https://creativecommons.org/licenses/by-sa/4.0/

48

https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	The setup
	Notations and terminology
	Hardness assumptions
	The AGM model
	Commitments to index sets
	The Hadamard product
	Degree upper bounds
	The Permutation argument
	Structure of the paper

	Preliminary lemmas
	Batched proof of divisibility

	The Snark in the batched form
	The underlying subprotocols
	Protocol for the degree upper bound
	The Hadamard product protocol
	Proof of cyclic right shift
	The permutation argument

	Lookups
	Subsequences

	Univariate custom gates of high degree
	Acknowledgements
	Deferred proofs
	The batched divisibility protocol
	Security proof of the Snark
	Subprotocol proofs
	The degree upper bound protocol
	The Hadamard product protocol
	Proof of cyclic right shift
	The permutation argument

	The lookup protocol
	The univariate custom gate protocol

	Multimodular FFTs
	List of protocols and the relations they are arguments of knowledge for

