
Ordering Transactions with Bounded Unfairness:

Definitions, Complexity and Constructions

Aggelos Kiayias1, Nikos Leonardos2, and Yu Shen ∗3

1University of Edinburgh and IOG, aggelos.kiayias@ed.ac.uk
2National and Kapodistrian University of Athens, nikos.leonardos@gmail.com

3University of Edinburgh, yu.shen@ed.ac.uk

Abstract

An important consideration in the context of distributed ledger protocols is fairness in terms
of transaction ordering. Recent work [Crypto 2020] revealed a deep connection of (receiver)
order fairness to social choice theory and related impossibility results arising from the Condorcet
paradox. As a result of the impossibility, various relaxations of order fairness were investigated in
prior works. Given that distributed ledger protocols, especially those processing smart contracts,
must serialize the input transactions, a natural objective is to minimize the distance (in terms of
injected number of transactions) between any pair of unfairly ordered transactions in the output
ledger — a concept we call bounded unfairness. In state machine replication (SMR) parlance this
asks for minimizing the number of unfair state updates occurring before the processing of any
transaction. This unfairness minimization objective gives rise to a natural class of parametric
order fairness definitions that has not been studied before. As we observe, previous realizable
relaxations of order fairness do not yield good unfairness bounds.

Achieving optimal order fairness in the sense of bounded unfairness turns out to be connected
to the graph theoretic properties of the underlying transaction dependency graph and specifically
the bandwidthmetric of strongly connected components in this graph. This gives rise to a specific
instance of the definition that we call “directed bandwidth order-fairness” which we show that
it captures the best possible that any protocol can achieve in terms of bounding unfairness. We
prove ordering transactions in this fashion is NP-hard and non-approximable for any constant
ratio. Towards realizing the property, we put forth a new distributed ledger protocol called
Taxis that achieves directed bandwidth order-fairness in the permissionless setting. We present
two variants of our protocol, one that matches the property perfectly but (necessarily) lacks in
performance and liveness, and a second variant that achieves liveness and better complexity while
offering a slightly relaxed version of the directed bandwidth definition. Finally, we comment on
applications of our work to social choice theory, a direction which we believe to be of independent
interest.

∗This work was supported by Input Output (iohk.io) through their funding of the Edinburgh Blockchain Technol-
ogy Lab.

1

https://orcid.org/0000-0002-4316-8116
mailto:aggelos.kiayias@ed.ac.uk
mailto:nikos.leonardos@gmail.com
mailto:yu.shen@ed.ac.uk

Contents

1 Introduction 3
1.1 Our Results . 4

2 Preliminaries 6
2.1 Protocol Execution Model . 6
2.2 Transaction Profiles and Dependency Graphs . 7

3 Order Fairness 9
3.1 Bounded Unfairness and Serialization . 9
3.2 Transaction Dependency Graphs . 10
3.3 Bounded Unfairness from Directed Bandwidth . 11
3.4 Fairness versus Liveness . 15
3.5 Bounded Unfairness in a Permissionless Environment 17

4 Taxis Protocol 18
4.1 TaxisWL Protocol . 19
4.2 Taxis Protocol . 22
4.3 Taxis with Dynamic Participation . 24

5 Discussion and Future Directions 25

A Further Related Works 29
A.1 Blind Order Fairness . 29
A.2 Block Order Fairness . 30
A.3 Timed Order Fairness. 31

B Preliminaries (Cont’d) 31

C Proofs, Algorithms and Examples Omitted in the Main Body 34
C.1 Proofs Omitted in Section 3 . 34
C.2 Hardness of DirectedBandwidth over Oriented Graphs 36
C.3 An Exact Algorithm for DirectedBandwidth . 36
C.4 A Faster Algorithm for DirectedBandwidth over Dependency Graphs 37
C.5 Upper Bound on Worst Case Directed Bandwidth 39
C.6 Examples of Comparison with Existing Protocols . 40
C.7 Taxis protocols . 41

D Security Analysis 43
D.1 Notations and Preliminary Results . 43
D.2 Properties of Profile Blocks and Median Timestamp 48
D.3 Consistency, Liveness and Order-Fairness . 51

2

1 Introduction

The development of blockchain protocols, starting with the Bitcoin blockchain [Nak08], lead to
increased interest in a classic problem in distributed systems — the state-machine replication
(SMR) problem [Sch90]. In SMR, the task of executing a state machine is assigned to a set of
processors, and in the Byzantine fault tolerant version of the problem, processing requests should
proceed unhindered by the actions of faulty nodes, even if such nodes arbitrarily deviate from the
protocol in a coordinated manner.

A special case of state machine replication is the problem of ledger consensus, cf. [GKL15,
GKL17, PSS17, GK20], that requires the joint maintenance of a ledger of transactions so that two
fundamental properties are being met: (i) consistency, i.e., the ledger of settled transactions is
growing monotonically, (ii) liveness, i.e., the ledger of transactions incorporates new transactions
in a timely manner. A third property related to the order of transactions has received much less
attention in analysis work. In the original SMR abstraction of [Sch90], while proper ordering of
transactions is required, the fairness of this order is not explored.

The formal investigation of fairness in the context of ordering transactions was initiated with
the elegant results of [KZGJ20], which introduced it formally as “order-fairness” and pointed to an
inherent impossibility to attain it in the distributed setting that relates to the Condorcet paradox.
In a nutshell, (receiver) order-fairness posits that whenever two transactions tx and tx′ are received
in this order by most nodes in the system, then they should not be ordered differently in the ledger
they maintain. The Condorcet paradox kicks in when cycles in the receiving order of three or
more transactions exist across the nodes. In such case, it turns out that there may be no output
transaction order that satisfies order-fairness. This motivates relaxations of order-fairness that
enable protocol designers to circumvent the impossibility and realize them in a distributed setting.

There are two principal approaches in relaxing fairness. The first one relies on a concept of time
that can apply across all participants. In approximate order fairness [KZGJ20], fair ordering in the
output applies only to appropriately “spaced apart” transactions across all nodes. In timed-relative
fairness, cf. [Kur20], if a transaction tx is received by all honest parties prior to tx′, then tx must
be sequenced before tx′. There are two obvious disadvantages of this approach to fairness: first,
it requires reference to some shared notion of time. Second, it gives up on a lot of transactions
whose propagation patterns somewhat overlap; in many applications however (e.g., front running
mitigation) it is exactly for such transactions that fair ordering is needed.

The second principal approach, block-order fairness, gives up on assigning a unique sequence
number to all transactions in the output ledger. Transactions can be batched together in the same
“block” in which case the system can be said to refrain from actually ordering them. Block-order
fairness has the advantage that it can be defined without referring to any shared notion of time and
thus it can apply to transactions that are submitted concurrently and even apply to asynchronous
execution environments. However, given that many distributed ledger applications require a total
ordering of the output, it leaves open the question how far apart transactions may end up when
finally serialized. Further, by giving up serialization of all output transactions, one also runs the
risk of trivializing the challenge of fair ordering: the trivial protocol that issues all outputs in a
single uninterrupted batch also satisfies block-order fairness.

Motivated by the above, we set out to investigate the natural objective of minimizing the
number of unfairly ordered transactions preceding for any transaction in the serialized output of a
distributed ledger. This objective, similar to block order fairness, needs no shared notion of time
to be meaningful, but it also translates to an eminently practical guarantee in the SMR setting
that block-order fairness lacks: the system will strive to minimize the number of (inevitable) unfair
state updates that happen before the processing of any transaction.

3

1.1 Our Results

We introduce a new class of (receiver) order fairness definitions – bounded unfairness. In SMR
protocols all input transactions are eventually sequenced following an ordering σ which assigns a
unique index to each transaction. Our definition is parameterized by a threshold φ and a bound
B; each party that runs the protocol has an “input profile” which ranks all received transactions
according to the order they were received. For two transactions tx, tx′, we say that tx ≺φ tx′

if φ fraction of input profiles present tx before tx′. Given any two such transactions, the output
ordering σ should satisfy σ(tx)− σ(tx′) ≤ B., i.e., tx cannot be serialized more than B positions
later compared to tx′.

Observe that (φ,B)-fairness matches standard order fairness for the case of B = 0 while for any
choice B > 0 it relaxes it. The relaxation allows transactions tx ≺φ tx′ to be “unfairly” sequenced
as (tx′, . . . , tx) with tx′ coming at most B positions earlier. Given the unrealizability of fairness
for B = 0, the obvious question to ask here is for what values of B it is possible to realize the
property and what is the smallest possible choice for it. Observe that minimizing B is of practical
relevance in the context of an SMR system: the smallest B is, the smallest number of unfair state
updates will occur between the processing of any two input transactions.

In order to minimize B, we allow it to be a function of the parties’ input profiles and the given
pair of transactions. The input profiles define a transaction dependency graph G which includes
an edge (tx, tx′) if and only if tx ≺φ tx′. Given this, we observe that the problem of (φ,B)
fairness relates to the concept of graph bandwidth over G, cf. [JKL+19]. The bandwidth problem
asks for a vertex ordering σ : V → N that minimizes the maximum difference σ(u) − σ(v) across
all edges (u, v) ∈ E. We call this the directed bandwidth as it aims at minimizing the length of
the “backward edges” in G, i.e., those that violate fairness. We instantiate the bound B using the
directed bandwidth of the strongly connected component (SCC) that contains the two transactions,
or 0 if no such SCC exists.

Our first result regarding our new definition that bases fairness on directed bandwidth estab-
lishes that it is the best possible we can hope for in terms of minimizing unfair state updates
preceding any transaction. Indeed, we prove that for any protocol that serializes the transactions
there can be SCCs in the dependency graph within which two transactions must be ordered spaced
apart by as many positions as the directed bandwidth of the SCC. Any function B that beats this
bound is unrealizable!

Our second result regarding fairness based on directed bandwidth investigates the complexity
of the problem. By adapting previous results for the bandwidth problem over undirected graphs,
we prove that the directed bandwidth problem is NP-hard and non approximable for any constant
ratio. Armed with this result, we prove that any protocol that realizes our order fairness property
also solves directed bandwidth, i.e., it solves an NP-hard problem. We also prove upper and lower
bounds for the maximum directed bandwidth across all graphs; this result establishes the worst-
case that is to be expected in terms of serializing the transactions with bounded unfairness. In
particular we show that in the worst-case directed bandwidth equals n − Θ(log n) where n is the
number of transactions. Given the above, a natural question is how previous relaxations of order
fairness fare w.r.t. bounding unfairness. We present explicit counterexamples illustrating how such
previous definitions do not provide good bounds.

We then turn to investigate the inherent tension between liveness and our fairness definition.
Similar to block order fairness, we first prove that it is impossible to satisfy liveness and directed-
bandwidth order-fairness when the transaction delivery mechanism is asynchronous. Intuitively,
the reason is that Condorcet cycles may extend indefinitely in a manner which is impossible to
accommodate outputting any transaction in the cycle without breaking fairness. Given this impos-

4

sibility one has to either settle for weak-liveness (transactions are included eventually [KZGJ20])
or restrict fairness a bit more. Towards this latter target we consider a bounded delay transaction
dissemination environment where each transaction is disseminated within a window of time ∆tx.
In this setting our core observation is that Condorcet cycles spanning a long period of time can be
partitioned across the time domain in such a way that a bound on directed bandwidth of the graph
can be derived. In such graphs we prove that directed bandwidth is bounded by at most 3 times
the maximum number of transactions disseminated concurrently within a ∆tx time window. This
gives rise to a relaxed definition of our fairness notion that we call timed directed bandwidth.

The astute reader so far would have observed that we introduced our concept in a setting where
participants are static — the relation tx ≺φ tx′ which gives rise to the transaction dependency
graph is based on numbers of parties who witness a particular order between the two transactions.
In a permissionless environment however, e.g., such as that of Bitcoin, participants may engage with
a protocol in a transient manner hence making ≺φ ill defined. We address this issue by recasting
the relation in the permissionless setting as follows: tx ≺φ tx′ means that a φ fraction of hashing
power “stands behind” a particular ordering between two transactions for a minimum period of
time which is specified by a security parameter.

Armed with the above definitional framework, we focus on realizing directed bandwidth fair-
ness. We put forth Taxis, a permissionless protocol that operates in the same setting as Bitcoin.
We present two variants. In TaxisWL, miners continuously submit suffixes of their transaction input
profile packaged within proofs-of-work using the 2-for-1 POW technique of [GKL17] that are in-
cluded provided they are sufficiently recent using the recency condition of [PS17]. In this fashion it
is possible to continuously compute and expand the transaction dependency graph G on-chain for
the settled set of transactions. The ledger is then created by identifying SCCs of G and calculating
directed bandwidth.

Our second variation of the Taxis protocol breaks long cycles when they occur and uses the
median of timestamps to determine the transaction ordering within large SCCs. This enables us
to achieve liveness and timed directed bandwidth fairness, the relaxation of our directed bandwidth
fairness definition that relaxes fairness for particularly long Condorcet cycles.

We present a full analysis of our protocols in a permissionless dynamic participation setting
using the analytical toolset from [GKL17, GKL20]. Notably, we enhance the “typical execution”
concept by lower-bounding the difficulty that φ fraction of honest parties can acquire. This lower
bound makes it possible for us to show that, for a specific transaction tx, φ fraction of honest parties
can accumulate more difficulty than others (including the adversary and the rest of honest parties)
during K consecutive rounds, which guarantees that parties will agree on (i) the transactions
that precede tx; and (ii) a timestamp associated with tx. Combining these properties with our
dependency graph construction rules, we conclude consistency, liveness (for Taxis) and order-fairness
according to the description above.

Regarding performance, we note that TaxisWL runs exponentially on the number of edges of the
subgraph of the transaction graph that is defined by the (largest) Condorcet cycle. Recall that given
the hardness and non-approximability of directed bandwidth we cannot expect a polynomial-time
algorithm; furthermore, in practice, Condorcet cycles may be quite small or even not occurring at all
(in non-adversarial settings), see [KDL+21], hence for practical purposes exponential dependency on
their corresponding subgraph length may not be prohibitive. Furthermore, for Taxis, assuming a∆tx

bound on transaction dissemination, we improve the complexity to be bounded by an exponential
on the size of the largest Condorcet cycle (for constant throughput environments).

We conclude with a discussion on alternative ways to relaxing order-fairness and open questions
regarding the structure of transaction dependency graphs. While our concept of directed band-
width achieves an optimal of transactions in terms of bounding unfairness, there can be orthogonal

5

considerations that highlight the multi dimensionality of the fairness problem. We also discuss
issues related to dynamic participation and how our results can also translate to the permissioned
setting.

As a final contribution we would like to highlight how our work can have applications to so-
cial choice theory. Typically, in social choice, the input profiles of parties (e.g., rankings of the
candidates) are assumed to be finite sequences. Given such rankings, it is sought to produce an
agreeable ordering with good properties. In such case, fairness captures the natural property that
if candidate A is preferable by a majority of participants compared to another candidate B, then
A should be ranked higher in the final ranking. In the social choice context, our result can be seen
as a way to answer the social choice problem when participants have an ever evolving sequence of
preferences and it is desired to combine their preferences while minimizing the violations of their
preferences as much as possible. For instance, consider an infinite sequence of news items, and a
dynamic population of agent-editors with distinct preferences for each one, in terms of e.g., how
interesting each one is. The task is to produce a single output news feed that respects the prefer-
ences of the agent-editors as much as possible. Our results readily translate to this setting enabling
the agent-editors to produce a unified news feed with the minimum possible misplacement between
news items: specifically if φ fraction of agents deems item n as more interesting than item n′, then
n′ will be placed at most B positions before n in the unified news feed.

Organization of this paper. The rest of the paper is organized as follows. In Section 2, we
present preliminaries on the protocol exeuction model, transaction profiles and dependency graphs.
We formally define and analyze transaction order fairness in Section 3. In Section 4, we present our
fair-order protocol Taxis. We discuss some future research directions that might be of independent
interest in Section 5. Detailed description of related works, preliminaries, protocols, and proofs can
be found in the appendix.

2 Preliminaries

In this section we first briefly describe our protocol execution model, transaction diffusion mech-
anism and the dynamic environment. Refer to Appendix B for more details. We then introduce
transaction profiles and dependency graphs in Section 2.2. They are notations crucial to the dis-
cussion of order fairness.

2.1 Protocol Execution Model

We present our model in light of [GKL20]. Generally speaking, we build on Canetti’s formulation
of “real world” notion of protocol execution [Can00a, Can00b] for multi-party protocols and adapt
it to the bounded delays, dynamic participation and respecting environment.

The protocol execution proceeds in “rounds”. Inputs are provided by an environment program
Z to parties that execute the protocol Π. The adversary A is a single entity that takes control
of corrupted parties, and is both “adaptive” (i.e., A can take control of parties on the fly) and
“rushing” (A is allowed to observe honest parties’ actions before deciding her reaction). The hash
function H(·) is modeled as a random oracle FRO and abstracts parties attempting to solve “proof-
of-work” [DN92]. Following the convention that different types of messages are diffused by their
own network, we consider two diffusion functionalities — F∆

Diffuse for general messages and FDiffuse,tx

for transactions. For all messages except transactions, the communication is bounded-delay (a.k.a.,
“partial synchronous” [DLS88, PSS17]). I.e., there is an upper bound ∆ (measured in number of
rounds) and the adversary may delay the delivery of messages for up to ∆ rounds.

6

Transaction diffusion model. We denote the network functionality disseminating transactions
by FDiffuse,tx. Parties will communicate with FDiffuse,tx to receive new transactions. Note that
different from F∆

Diffuse where the adversary A can manipulate messages by adding adversarial delays
or re-ordering them, A can no longer launch the same attack on transactions in FDiffuse,tx.

The environment program Z is responsible for generating new transactions and handing them to
FDiffuse,tx. We consider two types of transaction diffusion functionality — Fasync

Diffuse,tx and F∆tx
Diffuse,tx.

The first functionality captures the asynchronous transaction diffusion, i.e., FDiffuse,tx can deliver
a transaction tx at any time (after tx is generated by Z). The only restriction is that FDiffuse,tx

should send all transactions to all parties eventually. The second one captures a ∆tx-disseminated
transaction diffusion network. Specifically, in F∆tx

Diffuse,tx forces transactions to be delivered to all
the honest parties within ∆tx rounds after they are learnt by at least one honest participant.

Considering the physical limits on transaction throughput, we assume that the total number of
transactions will be a polynomial function of the running time of protocol execution.

Dynamic participation and respecting environment. In order to describe the protocol ex-
ecution in a more realistic fashion, following the treatment in [BGK+18], we classify protocol
participants into different types (detailed in Table 1). Especially, alert parties — the core set of
parties to carry out the protocol — are those who have access to all the resources (random oracle,
network, clock) and are synchronized with each other.

We put some restriction on the environment’s power to fluctuate the number of alert parties.
Suppose Z with fixed coins produces a sequence of parties hr where r ranges over all rounds of the
execution. We define the following property (cf. [GKL20]):

Definition 1. For γ ∈ R+ we call (hr)r∈[0,B), where B ∈ N, (γ, s)-respecting if for any set S ⊆
[0, B) of at most s consecutive integers, maxr∈S hr ≤ γ ·minr∈S hr.

We say that Z is (γ, s)-respecting if for all A and coins for Z and A the sequence of alert
parties hr is (γ, s)-respecting. Note that this respecting environment now ties closer to the dynamic
participation and applies Definition 1 on the set of alert parties (which is slightly different from
[GKL17, GKL20]).

State machine replication. State machine replication [Sch90] is a problem that asks a set of
parties accepting input logs to maintain a public data structure that serializes the logs. This
public data structure is called ledger in the context of ledger consensus (cf. [GKL15, GK20]).
Conventionally, a public ledger should satisfy two properties (we adopt L as the settled part of the
ledger in party’s view, and L̃ the whole ledger held by the party).
� Consistency: For any two honest parties P1,P2 reporting L1,L2 at rounds r1 ≤ r2, respectively,

it holds that L1 is a prefix of L̃2.
� Liveness: (parameterized by u ∈ N, the “wait time” parameter): If a transaction tx is provided

to all honest parties for u consecutive rounds, then it holds that for any player P, tx will be in
L.

2.2 Transaction Profiles and Dependency Graphs

Let T denote the (finite) set of all possible transactions with elements tx. A transaction profile
(or “profile” for short) is a bijection R : T → [m] where m = |T|. For each (honest) party Pi, its
receiving transaction log forms a profile which is denoted by Ri. Consider a set of n parties P, we
write R = ⟨R1,R2, . . . ,Rn⟩ as the list of all transaction profiles. Regarding order fairness, we are
interested in a serialization function F that takes an indefinte number of transaction profiles R as
input and outputs a new profile denoted by σ, namely σ = F (R).

7

We adopt “≺” to describe the “order before” relation on T × T. Note that this relation is (i)
irreflexive (not tx ≺ tx); (ii) asymmetric (tx ≺ tx′ implies not tx′ ≺ tx) and (iii) transitive (i.e.,
tx ≺ tx′ and tx′ ≺ tx′′ implies tx ≺ tx′′). We write tx ≺i tx

′ if Ri(tx) < Ri(tx
′); i.e. tx ≺ tx′ in

party Pi’s profile (in other words, Pi receives transaction tx before tx′). For every pair of distinct
transactions tx, tx′ in T, they are ascribed either the relations tx ≺i tx

′ or tx′ ≺i tx in profile Ri.
In order to achieve order fairness, we are interested in the pairs of transactions such that one

is received by sufficiently many parties before the other. To measure what “sufficiently many”
means, we adopt φ ∈ R+ as the order fairness parameter. We say tx ≺φ

R tx′ if, for profiles R,
tx ≺ tx′ holds in at least φ fraction of these profiles (when the profile set is explicit in the context
we drop the subscript and simply write tx ≺φ tx′). Note that when φ ≤ 1/2, it results in a logical
contradiction as both tx ≺φ tx′ and tx′ ≺φ tx hold. Hence, we only care about φ such that
1/2 < φ ≤ 1.

Transaction timestamp assignment. We next present a timestamp assignment function Fts

which is useful in the context of state machine replica problem. Note that different from the one-
shot consensus where input profiles are given to parties as input in an instant, the transaction
log that a party receives grows with time. Hence, we assign each transaction a timestamp to
indicate when it is delivered. I.e., parties store transactions in pair ⟨tx, t⟩ where t ∈ N+ is the
time that they receive tx. We denote the timestamp of tx in profile R as TS(tx,R) and the list
of all timestamps associated with tx in R as TS(tx). We call the profiles R ∆tx-disseminated
if for all transactions, the timestamps associated with them are within a ∆tx time window (i.e.
∀tx ∈ T,maxTS(tx)−minTS(tx) ≤ ∆tx).

Consider an assignment of a timestamp to each transaction, which can be represented by a
function Fts : T → N+. If for profiles R it holds that ∀tx ∈ T, Fts(tx) ∈ TS(tx), then we say
Fts is compliant with R. Let Fts,R denote the set of all compliant Fts with R. Especially, we are
interested in the mapping from each transaction to its earliest receiving time; and we denote this
mapping by Fmin

ts (i.e., ∀tx ∈ T, Fmin
ts (tx) = minTS(tx)).

Transaction dependency graphs. Consider a list of transaction profiles R = ⟨R1,R2, . . . ,Rn⟩.
An (R, φ)-dependency-graph is a directed graph GR,φ constructed as follows. For each transaction
txi, add a vertex vi to GR,φ; then, for any pair of vertices txi, txj , add an edge (vi, vj) if txi ≺φ txj .
When ≺φ is the majority relation (i.e., φ = 1/2+1/m, wherem is the total number of transactions),
we write GR and call the graph R-dependency. Note that when φ > 1/2, at most one of (i, j) and
(j, i) can be added — i.e., a dependency graph is oriented.

Graph notations. A vertex ordering of a graph G = (V,E) is a bijection σ : V → [n] where
n = |V |. A null graph is the unique graph having no vertices. A subgraph S of G is another graph
such that V (S) ⊆ V (G) ∧ E(S) ⊆ E(G) (V (S) must include all endpoints of the edges in E(S)).
Conversely, a supergraph H of G is a graph formed by adding vertices, edges, or both to G. A
spanning supergraph is a supergraph by merely adding edges to the original graph.

A directed graph is strongly connected if every vertex is reachable from every other vertex. The
strongly connected components are maximal subgraphs of a directed graph that are themselves
strongly connected.

For a dependency graph G, we slightly abuse the notation and use transaction tx and its
generated vertex v interchangeably. For instance, (tx, tx′) denotes the edge from vertex v generated
by tx to vertex v′ generated by tx′. And σ(tx) is the same as σ(v) where v is generated by tx.

8

3 Order Fairness

In this section we first give a definition of order fairness in the sense of bounded unfairness. We then
connect order fairness to DirectedBandwidth and provide a fine-grained fair-order definition
which is the best that one can expect in this setting. Next, we study this problem in the context
of state machine replication and permissionless participation respectively. Due to the space limit,
all proofs in this section are presented in Appendix C.

3.1 Bounded Unfairness and Serialization

An ideal fair order σ on profiles R follows all φ-preferences in R. I.e., for all tx ≺φ tx′ it holds
σ(tx) < σ(tx′). Unfortunately, this is impossible with the existence of Condorcet cycles — φ-
preferences can be cyclic and hence no σ can satisfy all of them simultaneously. To see the simplest
example, fix φ = 2/3 and consider three transactions tx1, tx2, tx3 and three profiles R1 = tx1 ≺
tx2 ≺ tx3, R2 = tx2 ≺ tx3 ≺ tx1 and R3 = tx3 ≺ tx1 ≺ tx2. We have tx1 ≺φ tx2, tx2 ≺φ tx3
and tx3 ≺φ tx1.

Note that there is a hidden constant in σ(tx) < σ(tx′) (i.e., σ(tx)−σ(tx′) < 0) to indicate the
position that tx′ can be placed before tx. A natural relaxation on standard order fairness would
be to enlarge this distance to some realizable extent. I.e., an order is fair if for all preferences
tx ≺φ tx′, tx′ is not ordered at a position that is too earlier compared with tx. In order to acquire
a fine-grained fairness notion, we are interested in upper-bounding this distance on every pair of
transactions tx, tx′ in specific transaction profiles R. Thus we define B as a function of R, φ, tx
and tx′ and require σ(tx) − σ(tx′) < B. This gives us an intuitive and parametric definition of
order fairness.

Definition 2 ((φ,B)-fair-order). A profile σ is a (φ,B)-fair-order on R if for all tx, tx′ such
that tx ≺φ

R tx′, it holds that σ(tx)− σ(tx′) ≤ B where B is a function of R, φ, tx and tx′.

(φ,B)-fair-order is unrealizable when B is a function such that there exist R and it holds
that ∀σ, ∃(tx, tx′), σ(tx) − σ(tx′) > B(R, φ, tx, tx′). In other words, B is too “small” on some
profiles thus no ordering could order tx, tx′ “close enough” as specified by B. On the other hand,
Definition 2 is trivial when B is a function such that ∃(R, tx, tx′), B(R, φ, tx, tx′) ≥ m− 1 where
m is the total number of transactions in R (i.e., tx, tx′ can be arranged apart for an arbitrary
distance). The reason such a B is called trivial is that, intuitively, given a set of profiles, any
protocol that realizes an (unfair) order with B = m − 1 on one transaction pair tx, tx′ can be
converted into a new protocol with fair order B′ < m−1 on every pairs, by simply swapping tx, tx′

in the output profile1; moreover, as we show in Theorem 5, there exists a practical B which requires
distance strictly less than m− 1 (more precisely, m− logm/2) for every pair of transactions.

Serialization with adversarial profiles. We then consider order fairness in the presence of an
adversary. Given a protocol execution, the set of honest parties H is well-defined and we let h = |H|
denote the number of honest parties. We abstract the sequence of transactions received by an honest
party Pi as Ri, and write RH = ⟨R1,R2, . . . ,Rh⟩ as the honest profiles. Regarding corrupted parties,
note that they can deviate arbitrarily from the protocol thus the profile abstraction does not apply
to them. Instead, we model the adversarial manipulation as follows. Suppose F is a serialization
function that takes an indefinite number of profiles as input and outputs a new profile, for every

1Notice that B = m− 1 on a transaction pair tx, tx′ only when tx ≺φ tx′ and tx is put at the last but tx′ is put
at the first of the output profile. By swapping tx, tx′ we get a new order with largest unfair distance strictly smaller
than m− 1.

9

honest party we require that they output σ = F (R) where R = ⟨RH,RA⟩ and RA is some arbitrary
profiles (this models the adversarial behavior). Note that for different honest parties, RA can be
different to them. Thus, the following definition does not ask for agreement — i.e., honest parties
could output different profiles as long as they are all fair orderings on RH; it implies agreement
only in the all honest setting.

Definition 3 (implementing a fair-order serialization). Given a protocol execution, an (F,φ,B)-
consistent serialization event happens if and only if for any honest party Pi, there exist profiles
R = ⟨RH,RA⟩ such that
(i) RH is defined by the sequence of transactions received by honest parties;
(ii) Pi outputs σ = F (R) and σ is a (φ,B)-fair-order on honest profiles RH.

A protocol serializes transactions according to F with (φ,B)-order-fairness, if the (F,φ,B)-consistent
serialization event happens with overwhelming probability.

Notice that, in order to implement a non-trivial fair-order serialization, the adversary should
not be too powerful with respect to the fairness parameter φ. To model this we consider upper-
bounding profiles in RA and we write t as its maximum number of profiles. Then we consider the
threshold on t with respect to the number of honest parties h and fair-order parameter φ. For
instance, dishonest majority (t > h) is infeasible with any φ. This is because if the adversary could
select more profiles than the honest, then A can completely dominate the φ-preferences. In other
words, the adversary can vanish any tx ≺φ tx′ by simply inserting profiles with the opposite order.

To see how adversarial power should be restricted in terms of the fair order parameter, we prove
that when t ≥ (2φ− 1)h, it becomes impossible to implement non-trivial fair-order serialization.

Theorem 1. When t ≥ (2φ− 1)h, no protocol implements non-trivial fair-order serialization.

We say an adversary A is admissible with fairness parameter φ if it holds that t < (2φ − 1)h
and in Definition 3 the number of profiles in RA are upper-bounded by t. All following discussions
on order fairness and transaction serialization are with respect to an admissible adversary.

3.2 Transaction Dependency Graphs

Fix φ and n transaction profiles R, there will be a unique (R, φ)-dependency-graph GR,φ. When
φ < 1/2 + 1/n and n is odd (i.e., the majority preference), the dependency graph will be a
tournament (since all pairwise preference can be extracted). As φ increases, the graph becomes
more and more sparse. While the specific edges to be removed are subject to the profiles, we show
that the structure of dependency graphs depends on the fairness parameter φ, and a large φ implies
graphs without cycles of small size. For instance, when φ > 2/3, no directed triangle can exist in
the dependency graph; when φ > 3/4, no directed square can exist; etc. We formalize this property
in Theorem 2.

Theorem 2. For any φ > 1/2 and any profiles R, the (R, φ)-dependency-graph GR,φ does not
contain cycles of size k for all k < ⌈1/(1− φ)⌉.

Conversely, given an oriented graph G, there exist some profiles whose dependency graph is
exactly G. McGarvey [McG53] provides an approach to construct these profiles (with majority
preference). We briefly describe McGarvey’s approach here. Suppose we would like to construct a
profile set R from an oriented graph G with m vertices. For each edge (vi, vj) ∈ G, add two profiles
R1,R2 to R with R1(txi) = 1,R1(txj) = 2,R2(txi) = m− 1,R2(txj) = m and R1(txk) +R2(txk) =
m + 1 for all k ̸= i, j — i.e., txi, txj are put at the head and rear of the profile respectively and

10

the rest are in an exactly reversed order. Notice for all edge (vi, vj), txi, txj are in the same order
only in the two profiles constructed from them.

Dependency graph with adversarial profiles. Given a protocol execution, the (RH, φ)-
dependency-graph G is unique and well-defined. We are interested in the relationship between
G and dependency graphs that are constructed with adversarial profiles.

Note that parties cannot distinguish which profile is corrupted, thus for R = ⟨RH,RA⟩, it is
infeasible to consider the dependency graph based on preferences held by φ fraction of profiles. For
instance, when φh honest parties believe tx ≺ tx′, the adversary can collude with the minority and
vanish this preference in R; similarly, when (φh− 1) honest parties receive tx ≺ tx′, the adversary
can join forces with them and make this preference account for φ fraction in R.

Fix honest profilesRH, we show that for any admissible adversary A and any adversarial profiles
RA selected by A, it yields a dependency graph G′ on ⟨RH,RA⟩ with majority preference such
that all edges in G remain the same orientation in G′.

Theorem 3. Fix φ and honest profiles RH and denote the (RH, φ)-dependency-graph by G. For
any graph G′ ∈ {GR | R = ⟨RH,RA⟩ and RA is chosen by anadmissible adversary }, it holds that
G′ is a spanning supergraph of G.

Theorem 3 shows, with admissible adversarial manipulation, the φ-preferences are “robust”
among all dependency graphs. We write the set of all possible dependency graphs onR = ⟨RH,RA⟩
from majority preference as GRH,φ. Note that when given RH and φ, the set of all possible RA is
well-defined with an admissible adversary by Theorem 1.

3.3 Bounded Unfairness from Directed Bandwidth

Given honest transaction profiles R (with Condorcet cycles), our goal is to find an ordering that
does not put tx′ too early before tx when tx ≺φ tx′. Consider a dependency graph G ∈ GR,φ

and a vertex ordering σ on G. Theorem 3 implies that G contains cycles (as all edges forming
the cycles in GR,φ preserve in G), i.e., there will be back edges (tx, tx′) such that tx ≺φ tx′ and
σ(tx) > σ(tx′). The length of a back edge (tx, tx′) is the distance of its source and target in the
ordering σ(tx) − σ(tx′). Ideally, a fair order comes with back edges of small lengths. In order to
quantify how small the length of a back edge can be, we are interested in finding a vertex ordering
on the dependency graph G that minimizes the maximum length of back edges. Following the
similar treatment in [JKL+19] (where they consider the forward edges), we state this problem as
DirectedBandwidth in Definition 4.

Definition 4 (Directed Bandwidth). Given a directed graph G = (V,E), DirectedBand-
width asks to find a vertex ordering σ∗ such that DBW(σ∗, G) = minσ DBW(σ,G) where

DBW(σ,G) = max
(u,v)∈E,
σ(u)>σ(v)

σ(u)− σ(v).

The directed bandwidth of a graph G is DBW(G) = DBW(σ∗, G).

Note that when G is acyclic, there exist σ which is a topological ordering on G such that no
back edge exists; this has little to do with the fair-order serialization problem and DBW(G) = 0 for
an acyclic graph. We also note that DBW(G) = 0 if G is the null graph.

Analogous to Definition 4, Bandwidth [CCDG82, Fei00, CP08] is a well-known and extensively
studied graph problem aiming at minimizing the quantity BW(G, σ) = max(u,v)∈E |σ(u) − σ(v)|

11

among all vertex orderings on an undirected graph. Bandwidth has been proved to be both NP-
hard [Pap76] and NP-hard to approximate within any constant ratio [DFU11] over general graphs.
Further, Bandwidth remains NP-hard and NP-hard to approximate even on very restricted graphs
like caterpillars of hair length at most 3 (a restricted tree).

Since an undirected graph can be converted to a digraph by replacing each edge with two sym-
metric directed edges, there is a simple reduction from Bandwidth to DirectedBandwidth
and thus DirectedBandwidth is also NP-hard and NP-hard to approximate over general graphs.
Notice that, in our context, dependency graphs are all oriented graphs. We prove that Directed-
Bandwidth remains NP-hard and NP-hard to approximate within any constant ratio over oriented
graphs. Refer to Appendix C.2 for a detailed proof.

Theorem 4. DirectedBandwidth is NP-hard and NP-hard to approximate within any constant
ratio over oriented graphs.

DirectedBandwidth can be solved trivially in factorial time (O∗(n!)) by an exhaustive search
on all possible orderings; and, unlike some vertex ordering problems that can be solved by dynamic
programming or divide-and-conquer, so far there is no evidence that these techniques also applies
on DirectedBandwidth. A recent work by Jain et al. [JKL+19] provides exponential algorithms
to find the exact and approximate solutions to DirectedBandwidth. Specifically, the exact
algorithm runs in O∗(3|V | · 2|E|) time; and in order to get an ordering with bandwidth at most
(1 + ϵ) times the optimal one, an approximation algorithm runs in O∗(4|V | · (4/ϵ)|V |) time. We
briefly describe the exact algorithm for DirectedBandwidth in Appendix C.3.

Largest possible directed bandwidth. Since all oriented graphs can be generated by profiles,
we are interested in the largest possible bandwidth on graphs with a fixed number of vertices.

Note that, given n vertices, the worst bandwidth n − 1 can always be avoided by finding an
edge (i, j) and outputting σ such that σ(i) = 1 and σ(j) = n. And, for a small constant k, we
can check if a graph has bandwidth n − k by checking O(n2k) vertex orderings — i.e., we select
k vertices each at the head and rear of orderings and see if a back edge exists between the two
sets. Unfortunately, the time complexity of this simple approach grows to factorial when k = Θ(n)
hence it becomes impractical for large graphs. This raises the question whether it is possible to
find a vertex ordering with directed bandwidth, e.g., 0.99n, for any oriented graph with n vertices.

Here we give a negative answer to this question. We prove that, among all oriented graphs
with n vertices there exist some tournaments with large directed bandwidth compared with n2. In
Theorem 5 we show that the above simple approach to check bandwidth will soon terminate on
some graphs by considering Zarankiewicz’s problem. We refer to Appendix C.5 for a detailed proof.

Theorem 5. Let Gn denote the set of all oriented graphs with n vertices. It holds that

n− 4 log n < max
G∈Gn

DBW(G) < n− log n/2.

(φ, DBW)-fair-order. After extracting the directed bandwidth of a graph in Definition 4, we are
now ready to define fair order based on upper-bounding how much tx′ can be ordered before tx

when tx ≺φ tx′.
Note that, given a transaction profile set R and its dependency graph G, we cannot simply

define the upper bound as DBW(G). This is because G might contain several strongly connected

2This result implies that no algorithm can guarantee finding a vertex ordering of directed bandwidth 0.99n.

12

components and their sizes might differ a lot. Actually, the bandwidth of a graph G is the maximum
bandwidth among all strongly connected components in G.

DBW(G) = max{DBW(G′) : G′ is a strongly connected component of G}.

Suppose there is a SCC that contains thousands of transactions and DBW(G) is also in the thousands.
Then, for other relatively small SCCs with, for instance, 10 transactions, an upper bound as DBW(G)
does not set any limitation on how they should be ordered.

Additionally, note that when given RH and φ, a fair-order serialization should consider all
possible dependency graphs GRH,φ with admissible RA. Theorem 3 shows that A may create new
cycles or enlarge existing ones, but A cannot remove any edge that has already been there in GRH,φ.
Due to the above observations, we propose a fine-grained definition of order fairness (Definition 5)
on top of Definition 2 by replacing the initial function with largest DBW on all possible SCCs.
Specifically, for a pair of transaction tx ≺φ tx′, if among all possible dependency graphs GRH,φ

there is no graph with SCC that contains tx, tx′ simultaneously then the final output should follow
tx ≺ tx′. Otherwise, we will define the upper bound on their distance in the output by extracting
all SCCs containing tx, tx′ over GRH,φ and find the largest possible bandwidth.

Definition 5 ((φ, DBW)-fair-order). A profile σ is a (φ, DBW)-fair-order on R if for all tx, tx′ such
that tx ≺φ

R tx′, it holds that

σ(tx)− σ(tx′) ≤ max
G∈GR,φ

DBW
(
SCC(G, tx, tx′)

)
,

where SCC(G, tx, tx′) is a function that outputs an SCC in G that contains both tx, tx′ if it exists,
and a null graph otherwise.

Note that in an all honest setting, no RA exists, thus Definition 5 can be simplified as “tx ≺φ

tx′ =⇒ σ(tx) − σ(tx′) ≤ DBW(SCC(GR,φ, tx, tx
′))”. See below for an example where we have 8

transactions inR and the (R, φ)-dependency-graph is illustrated in Figure 1(a). Since DBW(GR,φ) =
3, a (φ, DBW)-fair-order on R should satisfy tx ≺φ tx′ =⇒ σ(tx)−σ(tx′) ≤ 3. We provide a profile
σ = tx2 ≺ tx3 ≺ tx1 ≺ tx5 ≺ tx6 ≺ tx8 ≺ tx4 ≺ tx7 which is a fair order on R in Figure 1(b).
Note that only back edges are illustrated and the back edges (5, 2), (4, 5) and (8, 1) are of maximum
length 3. Also compare with the lexicographic order which has a back edge of length 7 (Aequitas
and Themis may output this order, see below for comparison with existing protocols).

We highlight that Definition 5 is the most precise definition that we can make on top of Defini-
tion 2 and 3. For any new definition that tries to further reduce maxG∈GR,φ

DBW(SCC(G, tx, tx′))

for transactions tx, tx′, there will exist some profiles RA leading to SCCs with large bandwidth
which can invalidate the new definition. Refer to Section 5 for further discussions.

Theorem 6. Suppose that a protocol implements (φ,B)-fairness for a function B. Then for all R
there are tx, tx′ with tx ≺φ tx′, such that B satisfies B(R, φ, tx, tx′) ≥ maxG∈GR,φ

DBW(SCC(G, tx, tx′)).

Proof. Fix an order fairness parameter φ. Towards a contradiction, suppose there exist a func-
tion B such that ∃R,∀(tx, tx′), B(R, φ, tx, tx′) < maxG∈GR,φ

DBW(SCC(G, tx, tx′)). We consider
a protocol Π that implements (φ,B)-fair-order serialization and an execution E of Π. Suppose
in E an honest party outputs σ = F (⟨R,RA⟩). Let RA be profiles such that the (⟨R,RA⟩)-
dependency-graph G has a SCC GSCC containing tx, tx′ such that DBW(GSCC) = maxG∈GR,φ

DBW(SCC(G, tx, tx′)). For any vertex ordering σ on G, we have σ(tx) − σ(tx′) ≥ DBW(GSCC) =
maxG∈GR,φ

DBW(SCC(G, tx, tx′)) > B(R, φ, tx, tx′). This contradicts the fact that Π implements
(φ,B)-fair-order serialization.

13

1

2

3

4

5

6

7

8

2 3 1 5 6 8 4 7

1 2 3 4 5 6 7 8

(a) dependency graph GR,φ (b) (φ, DBW)-fair-order (above) and
lexicographic order (below)

Figure 1: Illustration of a dependency graph, a (φ, DBW)-fair-order and a lexicographic order on R.
Only back edges are illustrated in (b).

Comparison with existing protocols. We show that Aequitas [KZGJ20], Themis [KDL+21],
pompe [ZSC+20] and wendy [Kur20] fail to implement (φ, DBW)-fair-order serialization (Definition 3
and 5) even in the all honest setting. For Aequitas, the core observation here is that when an
alphabetical order is adopted to order transactions within a Condorcet cycle, it is always feasible to
simply manipulate the labels of transactions and produce any desired order. Next, Themis improves
the transaction linearization in a Condorcet cycle to a Hamiltonian-cycle-based order. We point
out that this treatment will always produce an order such that tx, tx′ are at the head and rear
respectively but it holds tx′ ≺φ tx. Regarding pompe and wendy, note that in order to be resistant
to possible adversarial manipulation, transactions are ordered by their median timestamp. Thus,
we could get any desired output by constructing profiles with carefully selected timestamps.

The following two examples show how these protocols fail our fair-order serialization definition.
In both examples we consider a Condorcet cycle of m transactions and denote its dependency graph
as G.

Example 1 (Aequitas and Themis). Suppose tx1 ≺φ tx2, we assign labels to transactions such
that label(tx2) < label(txi) < label(tx1) for all txi other than tx1, tx2. Since an alphabetical
order is adopted in a cycle, Aequitas will output σAequitas = tx2 ≺ . . . ≺ tx1; i.e., σAequitas(tx1) −
σAequitas(tx2) = m − 1. Note that Themis can also output σAequitas if the transaction label is well-
selected and the Hamiltonian cycle starts with tx2. Refer to Appendix C.6 to see a detailed profile
exampleR such that for all tx ≺φ tx′, an output σ satisfying our definition yields σ(tx)−σ(tx′) ≤ 1.
However, Aequitas and Themis outputs an order σAequitas and there exist some tx ≺ tx′ such that
σAequitas(tx)− σAequitas(tx

′) = m− 1.

Example 2 (pompe and wendy). Suppose tx1 ≺φ tx2, we assign timestamps to transactions so
that the median timestamps yield med(tx2) < med(txi) < med(tx1) for all i such that txi is
a transaction other than tx1, tx2. Since median timestamp decides the final order, pompe and
wendy will output σpompe = tx2 ≺ . . . ≺ tx1; i.e., σpompe(tx1) − σpompe(tx2) ≤ m − 1. Refer to
Appendix C.6 to see a detailed profile example R such that for all tx ≺φ tx′, an output σ satisfying
our definition yields σ(tx)− σ(tx′) ≤ ⌈m/3⌉. However, pompe and wendy outputs an order σpompe

on R and there exist tx ≺φ tx′ such that σpompe(tx)− σpompe(tx
′) = m− 1.

14

3.4 Fairness versus Liveness

We define our fair order notions based on the complete transaction profiles. However, during the
protocol execution parties can only learn a prefix of their profiles. In this section we discuss the
inherent tension between liveness and order fairness. Specifically, we prove that it is impossible
to satisfy all desired properties when the transaction dissemination is asynchronous (even if in the
non-corrupting setting); next, we show that, when there is an upper bound on transaction diffusion,
it is possible to have liveness with relatively weak but still useful fairness.

Fairness in an asynchronous network. Suppose the transaction dissemination is asynchronous
— i.e. a transaction can appear at any position of a (complete) transaction profile. In order to get
a complete view of the transaction set that precedes a specific transaction tx, parties may have to
wait indefinitely from the first time they saw tx. Note that standard liveness is still applicable with
asynchronous transaction diffusion network. We have the following dilemma: if a Condorcet cycle
spans for a long period of time and part of the transactions are delivered to all participants, then
these transactions should appear in the (settled) output. In such scenario, parties have to decide
the order with incomplete information.

We show below that the asynchronous dissemination will inevitably lead to the failure of
(φ, DBW)-order-fairness. I.e. in order to satisfy consistency and liveness, the honest parties have to
output an ordering σ on R such that tx ≺φ tx′ but σ(tx) − σ(tx′) = n − 1 where n is the total
number of transactions in R.

The general proof idea is to construct two executions that are indistinguishable up to some time
t + L (L is the liveness parameter) so that parties have to output transactions up to time t due
to liveness. However, the transaction profiles are different after time t + L such that in the first
execution it forms a Condorcet cycle but there is no cycle in the second. We extract the possible
outputs at the end of the first execution, by carefully considering consistency and liveness conditions
in both executions. We conclude that the output in the first execution must be an ordering with
the worst bandwidth, which implies the failure of order fairness.

Theorem 7. Suppose the transaction dissemination is asynchronous, there is no protocol that can
achieve consistency, liveness and (φ, DBW)-order-fairness.

One approach to solve this dilemma is to relax liveness (a.k.a. weak-liveness, cf. [KZGJ20]).
I.e., standard liveness holds if there is no Condorcet cycle or a cycle does not span for long time;
however, the system completely loses liveness during the ongoing of a large cycle.

Definition 6 (Weak-liveness, informal). If a transaction tx is provided to all honest parties
for sufficiently many consecutive rounds, then tx will be in L eventually.

Weak-liveness is not in-line with the standard BFT SMR problem; and since Condorcet cycles
can chain together thus form a cycle of infinite length, it is also difficult to measure how “weak” this
relaxation is compared with the standard definition (it is subject to the largest cycle in transaction
profiles). Hence, we turn to another direction towards the reconciliation — we would like to achieve
standard liveness as well as slightly weaker (but still non-trivial) fairness.

Fairness with ∆tx-disseminated transactions. Suppose there exists an upper bound ∆tx on
transaction dissemination, i.e., if t is the earliest timestamp associated with tx, then in all honest
profiles it cannot be the case ⟨tx, t′⟩ for t′ ≥ t. We show that the results in Theorem 7 can be
mitigated in this scenario.

The core observation is, if a Condorcet cycle spans for a long period of time, we can perform
partition on the set of transactions in this cycle, and these partitions correspond to a good partition

15

on the dependency graph such that we can figure out an upper bound on theDirectedBandwidth
problem.

The partition rule on the dependency graph goes as follows. Let TSCC denote the set of all
transactions in the Condorcet cycle and GSCC its corresponding generated graph. Consider a
timestamp assignment Fts on TSCC and a constant ∆ ∈ N+ such that ∆ ≥ ∆tx. An (Fts,∆)-
partition P on TSCC is a set of non-empty subsets P1, P2, . . . such that

Pi =
{
tx | tx ∈ TSCC ∧M + (i− 1)∆ ≤ Fts(tx) < M + i∆

}
where M = min{Fts(tx) | tx ∈ TSCC} (i.e. the earliest timestamp among all transactions in TSCC).
Note that the union of the parts of this partition is exactly the original transaction set and the
intersection of two distinct parts is empty.

An (Fts,∆)-partition on GSCC, the dependency graph of TSCC, is a set of non-empty subsets
V1, V2, . . . such that Vi is a set of vertices in GSCC such that all corresponding transactions are in
partition Pi.

Especially, consider the earliest timestamp assignment Fmin
ts , transaction dissemination ∆tx and

its corresponding (Fmin
ts , ∆tx)-partition on GSCC. The bandwidth of GSCC is at most twice of the

maximum number of vertices in a partition.

Theorem 8. Consider profiles R, their dependency graph G and a strongly connected component
GSCC ∈ G. Consider an (Fmin

ts , ∆tx)-partition on GSCC that corresponds to the sets V1, V2, . . . ,.
Then it holds that

DBW(GSCC) ≤ 2max
∣∣Vi

∣∣.
Note that it is a non-trivial task to design a protocol that allows parties to learn the earliest

timestamp of each transaction without any trusted third party3. Nonetheless, a protocol can, for
each transaction let parties agree on a timestamp that falls in its ∆tx dissemination time window;
and such protocol can be resistant to an adversary that controls up to half of the total resources,
which is compliant with any admissible adversary (for technical details on synthesizing a good
timestamp, see Section 4). Thus, we consider dependency graphs with a compliant timestamp
assignment Fts ∈ Fts,R and we allow that the specific assignment (as long as it is compliant with
R) can be chosen by the adversary.

We highlight that, in this context there exist a simple ordering trick that can provide us good
bandwidth. Specifically, consider a dependency graph G and anR-compliant timestamp assignment
Fts. By sorting vertices with a non-decreasing order on Fts (i.e., we order u before v if Fts(u) <
Fts(v)), it yields a vertex ordering with bandwidth upper bounded by three times the maximum
total number of concurrent transactions in a ∆tx time window (Theorem 9). We highlight that
this ordering approach can be done without knowing the exact upper bound (∆tx) on transaction
dissemination. Additionally, the bandwidth of this ordering is independent of the size of the
Condorcet cycle — in other words, its performance is better on large cycles compared with small
ones.

Theorem 9. Consider profiles R, its dependency graph G and a strongly connected component
GSCC ∈ G. Suppose Fts ∈ Fts,R is a compliant timestamp assignment with respect to R, and σ is a
vertex ordering on GSCC that orders vertices by a non-decreasing order on Fts, then it holds that

DBW(σ,GSCC) ≤ 3max
∣∣Vi

∣∣.
3We note that so far there is no protocol that can complete this task.

16

Timed directed bandwidth. Given that Definition 5 might conflict with liveness even if the
transaction dissemination is ∆tx-bounded, we shall define a feasible fair order based on our obser-
vations in Theorem 8 and 9. Our technique is to extend the bandwidth function DBW to a timed
fashion — i.e., the input dependency graph G is now accompanied with the earliest time that
a transaction appears in the (honest) profile. A timed directed bandwidth function TDBW on a
(strongly connected) graph G with timestamp assignment Fmin

ts works as follows. If the earliest
timestamp of two transactions are sufficiently apart from each other (i.e., the cycle is large and
spans for a long time) then TDBW returns an upper bound as extracted in Theorem 9; otherwise it
returns the directed bandwidth on graph G.

TDBW(G) =

{
3max

∣∣Vi(G)
∣∣ if ∃(tx, tx′)Fmin

ts (tx) ≥ Fmin
ts (tx′) + 3∆tx,

DBW(G) otherwise.

We are now ready to extend the (φ, DBW)-order-fairness (Definition 5) by replacing the bandwidth
function DBW with the timed bandwidth function TDBW. In this new definition, if two transactions
are not within the same Condorcet cycle over all possible dependency graphs, their order in the
output should follow parties’ preference; if they are in the same cycle on some graphs, and all cycles
are relatively small (i.e., it does not span for too long time) then their distance is upper-bounded
by the largest possible bandwidth of the SCCs; and finally if some cycles do span for a long time,
then we replace the upper-bound by three times the total number of concurrent transactions in a
∆tx time window.

Definition 7 ((φ, TDBW)-order-fairness). A profile σ is a (φ, TDBW)-fair-order on R if for all
tx, tx′ such that tx ≺φ

R tx′, it holds that

σ(tx)− σ(tx′) ≤ max
G∈GR,φ

TDBW
(
SCC(G, tx, tx′)

)
,

where SCC(G, tx, tx′) is a function that outputs an SCC in G that contains both tx, tx′ if it exists,
and a null graph otherwise.

3.5 Bounded Unfairness in a Permissionless Environment

In this section we show how to adapt our (φ,B)-order-fairness notion to a permissionless environ-
ment. We highlight that the only change we have to make in this new setting is to re-define the
abstraction of profiles and the “order before by sufficiently many” notion (≺φ); all other definitions
and arguments regarding order fairness could remain the same as above.

In a permissioned network, there is a one-to-one mapping from parties to profiles. This is
because (honest) parties are online during the entire execution, thus profiles are exactly the abstract
of their transaction logs at the end of the execution. Unfortunately, this is not the case in a
permissionless environment in that parties can join and leave by their will (without notifying
anyone else) and (possibly) no party can eventually hold a complete transaction profile.

Recall that in Section 2.1 we present a fine-grained classification on the type of participating
parties. Especially, alert parties are the core participants that own all resources to run the protocol
and have synchronized with each other. Under this dynamic participation model, we would like to
use a profile to refer to the transaction log that an alert party holds at a specific round. In other
words, we re-consider the mapping above in the permissionless setting as follows. Since there is no
guarantee that an alert party P at round r will remain alert at any round other than r, we abstract
the transaction log held by P at round r as a profile. Note that these profiles can be incomplete,
i.e., it may only contain a few transactions T ⊆ T and is a mapping T → [m] where m = |T |. We

17

say a profile is a (P, r)-profile, if it corresponds to the transaction log of an alert party at round
r. Also note that regarding Definition 3 with an admissible adversary, the number of profiles in
RA should be bounded by a round-by-round fashion — i.e., at a round r, RA can report at most
t < (2φ− 1)h profiles where h is the number of (P, r)-profiles.

Then, we re-define the notion of “order before by sufficiently many”. Let t be the earliest time
that at least one of tx and tx′ appears in φ fraction of the (P, t)-profiles. We say tx′ ≺φ tx, if
during a sufficiently long period of time, say, K rounds, at least φ fraction of the (P, r)-profiles
report tx′ ≺ tx where r ∈ [t, t+K) and P is an alert party at round r.

4 Taxis Protocol

In this section we present a new protocol Taxis and its basic building blocks. The ultimate product
of Taxis is a ledger L providing fair transaction order.

Before we introduce Taxis, we present its preliminary version TaxisWL as a direct comparison
with Aequitas. TaxisWL achieves consistency, weak-liveness and (φ, DBW)-order-fairness. Specifically,
while the liveness is weak (same as Aequitas), this protocol achieves the best transaction order
fairness that we can expect. Next, by adding a few simple modifications on TaxisWL, we present
Taxis that reconciles the tension between liveness and fair order. The ledger of Taxis satisfies
consistency, (standard) liveness and (φ, TDBW)-fair-order.

Taxis is a two-stage protocol that decouples the mining procedure of profiles and the final
serialization of transactions. We will use blockchain as an intermediate information aggregator to
collect profiles (i.e., transaction log) and build the ultimate ledger L on top of this blockchain. For
simplicity, we present TaxisWL and Taxis assuming static number of participants and discuss how
to adapt them to the dynamic participation in Section 4.3.

Blockchain notations. A block with target T ∈ N is a quadruple of the form B = ⟨ctr, r, h, x⟩
where ctr, r ∈ N, h ∈ {0, 1} and x ∈ {0, 1}∗. A blockchain C is a (possibly empty) sequence of
blocks; the rightmost block by convention is denoted by head(C) (note head(ε) = ε). These blocks
are chained in the sense that if Bi+1 = ⟨ctr, r, h, x⟩, then h = H(Bi), where H(·) is cryptographic
hash function with output in {0, 1}κ. We adopt TS(B) to denote the timestamp of B; and, slightly
abusing the notations and omitting the current time r, we will use C⌈k to denote the chain from
pruning all blocks B such that TS(B) ≥ r− k.

2-for-1 proof-of-Work. 2-for-1 PoW is a primitive that binds multiple PoW mining process
together by utilizing a single random oracle query. It was first proposed in [GKL15] to improve the
corruption threshold in ledger consensus. This primitive mitigates the possible attack with multiple
independent mining processes, where the adversary can join forces to any one of the oracles and
gain undesired advantage.

We will use 2-for-1 PoW to mine two types of blocks: ledger blocks and profile blocks. Ledger
blocks form the Taxis blockchain and they will only include recent profile blocks (unlike regular
blockchain, ledger blocks in Taxis will not include any transactions). Meanwhile, parties will use
profile blocks to report their local profiles. We denote the mining target of ledger blocks and
profile blocks by TLB and TPB, respectively. Taxis will maintain a constant ratio between them; for
simplicity, in our presentation and analysis, we assume TLB = TPB.

The main goal of adopting 2-for-1 PoW to bind the mining process of these two types of blocks
together, is to achieve better chain quality. Recall that chain quality is bad in the Bitcoin backbone
protocol [GKL15, GKL17], where the adversary can contribute more blocks to the common prefix
compared with her relative computational power. By adopting 2-for-1 PoW, Taxis guarantees that,

18

for a sufficiently long time, φ fraction of parties mine φ fraction of the profiles (and they are all
included by ledger blocks in the blockchain).

Freshness and recency parameter. For the sake of achieving better chain quality on profile
blocks, certain changes should be made to the 2-for-1 mining procedure. Ideally, the adversary A
should not be allowed to mine profile blocks timestamped in the very future; and, blocks should
go stale as time passes by so that A cannot choose to withhold them to gain a sudden advantage.
Analogous to the treatment in fruitchain [PS17], we introduce two mechanisms to help ensure the
freshness of profile blocks. On one hand, the header of a profile block should point to the last block
in the settled blockchain; this prevents the adversary from mining blocks in the very future, as an
honest ledger block will introduce fresh randomness which is unpredictable for A. On the other
hand, we set a recency parameter R (in rounds) such that a profile block PB referring to a settled
ledger block LB will only be valid before time TS(LB) + R (in other words, it cannot be included
by a ledger block with timestamp later than TS(LB) +R).

4.1 TaxisWL Protocol

Mining procedure. In every round, parties try to mine new blocks after they update their local
chains according to the chain selection rule (see below for validation details). Two different block
contents will be prepared: ledger block content LBContent which contains all (valid) newly seen pro-
file blocks; and profile block content PBContent that includes the local profile of the miner. Parties
then compute the merkle root stLB = MerkleTree(LBContent) and stPB = MerkleTree(PBContent),
respectively. Next, miners make a single random oracle query with the following input: ctr, a
random nonce; h, the reference to previous block; h′, the reference to the last block in the settled
part; r, the current timestamp; stLB, the merkle root of ledger block; and stPB, the merkle root
of the profile block. They receive an ouput

u = H(ctr, h, h′, r, stLB, stPB).

If u < TLB, the party succeeds in mining a ledger block. A new block LB with content LBContent
is generated and appended to the local chain. If the value of the reversed output string (which we
denote by [u]R) satisfies [u]R < TPB, a new profile block PB is mined and will be diffused to the
network.

Note that timestamp r is shared information in both blocks, so it is impossible to get two
products with different timestamps. This prohibits the adversary from manipulating timestamp
unless she completely drops from one mining procedure. For a ledger block, the reference to the
settled block (h′) and the merkle root of profile blocks (stPB) are dummy information and we do
not care about their values, they are only useful when parties want to check their validity (see
below). Similarly, for a profile block, the reference to the previous block (h) and the merkle root
of ledger blocks (stLB) are dummy information.

We also highlight that there is no need for parties to include their entire transaction log in
PB. A prefix of the profile can be pruned if all transactions in that prefix appear in the settled
blockchain for more than K rounds (i.e., these transactions have been reported for sufficiently
long time and parties agree on the set of transactions that precede them, see below for details).
Note that with ∆tx-disseminated transaction diffusion and liveness property of the blockchain, all
transactions received by an honest party before time t is guaranteed to be in the settled blockchain
within a constant time (see protocol analysis). Furthermore, if P notices that its local transaction
log shares a common prefix with another profile block PB in the settled blockchain, then P can
produce profile blocks with pointer to PB to indicate their common part and thus save space.

19

Protocol 1 TaxisWL-MiningProcedure(r)

1: Fetch information from F∆
Diffuse and FDiffuse,tx and get new chains (C1, . . . , CM), new

transactions (tx1, . . . , txi) and new profile blocks (PB1, . . . ,PBj)
2: Set bufferPB ← bufferPB ∥ (PB1, . . . ,PBj)
3: Set localProfile← localProfile ∥ (tx1, . . . , txi)
4: Cloc ← maxvalid(Cloc, C1, . . . , CM)
5: LBContent← (valid) profile blocks in bufferPB that are not mined in Cloc
6: PBContent← localProfile ◁ Remove a prefix to save space.

7: h′ ← hash value of block head(C⌈kloc)
8: h← hash value of block head(Cloc)
9: u← H(ctr, h, h′, r, stLB, stPB)

10: if u < TLB then
11: Set LB← ⟨ctr, h, h′, r, stLB, stPB⟩ and Cloc ← Cloc ∥ LB
12: Diffuse Cloc, LBContent
13: end if
14: if [u]R < TPB then
15: Set PB← ⟨ctr, h, h′, r, stLB, stPB⟩
16: Diffuse PB, PBContent
17: end if
18: ctr ← ctr + 1

Validity check of chains. Recall that the Taxis blockchain is similar to that of Bitcoin’s (except
that Taxis includes additional 2-for-1 PoW information) and so we follow [GKL17] regarding the
validity of ledger blocks. In addition, we also need to check the validity of profile blocks. For a
valid profile block PB, we require that its block header satisfies three properties: (i) PB correctly
reports a reference to LB where LB is the last block after pruning the blockchain for k rounds;
(ii) PB reports a timestamp that is earlier than the ledger block containing PB but no later than
TS(LB) + R; and (iii) hash of PB block header is smaller than the profile block target TPB. A
chain C in Taxis is valid if C itself is valid and all the profile blocks included in C are valid. See
Appendix C.7 for the complete description of IsValidChain in TaxisWL.

Extracting transaction order. We detail how the ledger L is extracted in TaxisWL. Generally
speaking, parties will use profile blocks in the settled part of the blockchain to build a dependency
graph; then, transaction order is determined by running graph condensation and (possibly) Di-
rectedBandwidth algorithm (see Algorithm 1) on all SCCs. Note that all of these computations
can be done locally based on the on-chain information.

As protocol execution proceeds, local chains held by honest parties will share a long common
prefix (we write k as the common prefix parameter — i.e., the rounds that parties need to prune
their local chain). Protocol participants will extract a transaction pool TXPool in their common
prefix by selecting those transactions that have been reported for sufficiently long time. More
specifically, in order for a transaction tx to be selected, there should exist a K-time-window of
tx, starting at time t such that (i) t is the timestamp of the earliest ledger block that includes a
profile block PB reporting tx; and (ii) this K-time-window should be fully included in the settled
blockchain — i.e., at round r a party only considers time window that starts before round r−k−K.

Transactions in TXPool are then added to a dependency graph G as vertices. Regarding rules
to add edges, for each transaction tx we care about the profile blocks in its K-time-window: if the
majority of these profile blocks report tx′ ≺ tx, then we add a dotted edge (tx′, tx) to G (when tx′

20

does not exist in G, a vertex of tx′ is added). Note that a dotted edge (tx′, tx) does not confirm
the preference tx′ ≺ tx in G. In order to count the edge in the subsequent computation, we need
to wait for the K-time-window of tx′ and see if the majority of those profile blocks report tx ≺ tx′.
When this holds, we update the dotted edge to solid (all the subsequent computations on G only
consider solid edges). The reason for designing this two-phase edge adding rule is becasue, for those
transaction pairs such that no φ-preference holds, the adversary might be able to report conflicting
orders in the corresponding K-time-windows4.

After constructing the dependency graph G, parties can linearize the transactions on top of G.
Notice that G can be cyclic. Parties first compute the condensation graph G∗ of G — i.e. each
SCC is replaced by a vertex. Since G∗ is acyclic, there exist source vertices (i.e., vertices without
incoming edges) in G∗. Protocol participants do the following steps repeatedly. Let Vsource denote
the set of all source vertices in G∗ such that for all v ∈ Vsource all transactions in v are in TXPool
(transactions that are waiting for some unconfirmed ones will never be selected in Vsource). If Vsource

is empty then parties terminate and output the final ledger L. Otherwise, they select v ∈ Vsource

such that the starting time of v’s associated K-time-window is the earliest among Vsource (if a vertex
in G∗ represents a SCC in G, we choose the earliest time window in that SCC). Then, if v represents
a single vertex in G, parties append the corresponding transaction to L directly; otherwise, they
run Algorithm 1 to extract the bandwidth-optimal order l on vSCC (i.e., the component in the
original graph that condenses to v in G∗) and append l to L. After processing v, we remove it from
G∗ and this yields a new source vertex set Vsource.

We present the full serialization code in Protocol 2. Note that we slightly abuse the notation
of block timestamp and we write TS(tx) as the beginning time of K-time-window associated with
tx— i.e., it is the timestamp of the first ledger block LB that includes a profile block with tx.

Protocol 2 TaxisWL-ExtractTransactionOrder(Cloc, r)
1: Initialize TXPool and graph G to be empty.

2: for tx ∈ PB ∈ LB ∈ C⌈K+k
loc do

3: Add tx to TXPool and vtx to G
4: end for

▷ Build graph
5: for tx ∈ TXPool do
6: PBtx ← {PB | PB ∈ LB s.t. TS(tx) ≤ TS(LB) < TS(tx) +K}
7: for tx′ ∈ PB ∈ PBtx do
8: if majority of PBtx report tx′ ≺ tx then
9: if (tx′, tx) ∈ G then

10: Mark (tx′, tx) as solid
11: else
12: Add edge (tx′, tx) to G and mark as dotted
13: end if
14: else
15: if (tx, tx′) ∈ G then
16: Mark (tx, tx′) as solid
17: else
18: Add edge (tx, tx′) to G and mark as dotted

4When an edge from tx′ to tx exist, tx will not get confirmed into the ledger. Also note that, with overwhelming
probability, solid edges will appear on those transaction pairs with φ-preference. For details, see the protocol analysis.

21

19: end if
20: end if
21: end for
22: end for

▷ Compute order.
23: Compute the condensation graph G∗ of G. ◁ Using solid edges only
24: Let Vsource be the set of vertices in G s.t. v is a source vertex in G∗ and all transactions

in v are in TXPool.
25: while Vsource ̸= ∅ do
26: Let v be the vertex in Vsource with earliest K-time-window
27: vSCC ← component in G that corresponds to v in G∗

28: Run Algorithm 1 on vSCC and get transaction order l
29: L = L ∥ l
30: Remove v from G∗ ◁ This yields a new Vsource

31: end while

Output: ledger L (a list of transactions with strict total order).

TaxisWL ledger properties. With bounded dynamic participation and appropriate parameters,
the ledger L of TaxisWL satisfies three properties — consistency, weak-liveness and (φ, DBW)-order-
fairness. Note that for consistency, a suffix of L should be pruned to be resistant to adversarial
manipulation. Refer to the protocol anaylsis in Appendix D and Theorem 27 to see the detailed
consistency parameter.

Theorem 10 (informal). In a (γ, s)-respecting environment, if Conditions (C1), (C2) and (C3)
are satisfied, the ledger L of TaxisWL achieves consistency, weak-liveness and (φ, DBW)-order-fairness
except with probability negligibly small in the security parameter.

4.2 Taxis Protocol

We present the full Taxis protocol on top of TaxisWL in this section. Briefly speaking, we add a
fallback mechanism to order transactions that remain unconfirmed for a long time based on the
beginning point of their K-time-window. Note that we only make two simple changes in the mining
and order-extraction stage.

Mining procedure. In Taxis, parties book-keep the local receiving time of transactions; and,
when mining profile blocks, they additionally attach these timestamps to each transaction. I.e., we
replace Line 3 in Protocol 1 with “Set localProfile ← localProfile ∥ (⟨tx1, r⟩, . . . , ⟨txi, r⟩)”
where r is party’s current local time. All the other steps in Protocol 1 remain the same. Since
parties will agree on the profiles of a transaction tx in a sufficiently long time window, they will agree
on the timestamp vector associated with tx as well. We present the complete mining procedure in
Appendix C.7.

Extracting transaction order. During the order-extraction stage, a fallback mechanism is
provided to deal with cycles that span for a long time. Specifically, for all unconfirmed vertices
Vunconfirmed in the condensation graph G∗, we check if there exist a vertex v ∈ Vunconfirmed such
that its corresponding SCC (vSCC) in G contain transactions whose K-time-window begins before
r − (K + k +∆timeout)

5. Note that ∆timeout is a timeout parameter that indicates the cycle spans

5We note that two large cycles cannot run in parallel, and there is at most one vertex with multiple transactions
that can pass the timeout check. Refer to protocol analysis for more details.

22

for a long time (see protocol analysis for more details). If such v in G∗ exists, we order all vertices
in vSCC in an increasing order based on their median timestamp. For a transaction tx, its median
timestamp med(tx) is computed on the timestamp vector associated with tx in its K-time-window.
Note that since parties will agree on tx’s the timestamp vector, they will also agree on med(tx);
and, taking the median guarantees that med(tx) falls in the ∆tx-dissemination time window with
tx, thus the results in Theorem 9 applies.

In addition, when tracing the previous dependency graphs, Taxis will be able to detect those
large cycles by carefully comparing the beginning point of K-time windows among all transactions
in the cycle, so that it will process them using the same fallback mechanism (this guarantees
consistency).

Protocol 3 Taxis-ExtractTransactionOrder(Cloc, r)
1: Extract TXPool and build graph G ◁ Same as Protocol 2 Line 1-22

▷ Compute order
2: Compute the condensation graph G∗ of G ◁ Using solid edges only
3: Let Vsource be the set of vertices in G s.t. v is a source vertex in G∗ and all transactions

in v are in TXPool
4: while Vsource ̸= ∅ do
5: Let v be the vertex in Vsource with earliest K-time-window
6: vSCC ← component in G that corresponds to v in G∗

7: if ∃v1, v2 ∈ vSCC s.t. TS(v1) +∆timeout ≤ TS(v2) then
8: Order transactions in vSCC in an increasing order based on their median times-

tamps and get l.
9: else

10: Run Algorithm 1 on vSCC and get transaction order l
11: end if
12: L = L ∥ l
13: Remove v from G∗ ◁ This yields a new Vsource

14: end while
▷ Run fallback if a cycle lasts for long

15: Let Vunconfirmed denote all vertices that remains in the graph
16: for v ∈ Vunconfirmed do
17: vSCC ← component in G that corresponds to v in G∗

18: if ∃v′ ∈ vSCC s.t. TS(v′) ≤ r− (K + k +∆timeout) then
19: Order vertices in vSCC in an increasing order based on their median timestamps

and get a prefix l up to v′

20: L = L ∥ l
21: end if
22: end for

Output: a list of transactions L with strict total order.

Taxis ledger properties. We provide a full analysis of the security of Taxis protocol with bounded
dynamic participation in Appendix D. Specifically, we prove that the ledger L of Taxis satisfies three
desired properties — consistency, (standard) liveness and (φ, TDBW)-order-fairness.

Theorem 11. In a (γ, s)-respecting environment, if Conditions (C1), (C2) and (C3) are satisfied,
the ledger L of Taxis achieves consistency, liveness and (φ, TDBW)-order-fairness with parameters as
specified in Theorem 27 and 28 except with probability negligibly small in the security parameter.

23

Performance analysis of Taxis. We detail the computation/communication complexity of the
Taxis protocol. For the proof of work part and communication overhead, it requires a random oracle
call per round and possibly (if a PoW is found) a message transmission with message size, worst
case, linear in the security parameter plus the number of transactions that are disseminated within
a sliding window of length polylogarithmic in the security parameter.

To maintain the local transaction dependency graph G, note that G can be built incrementally
since all vertices and edges are extracted from the settled part of the blockchain; and, every time a
vertex tx is added to G, the number of computational steps required (which will add the necessary
edges between the vertices) is linear in the number of transactions that appear in tx’s K-time-
window, which is also of length polylogarithmic in the security parameter.

Regarding solving DirectedBandwidth on each SCC of the transaction dependency graph,
note that while the exact algorithm (Algorithm 1) from [JKL+19] consumes exponential time with
respect to the number of concurrent transactions, we highlight that, in real execution, it runs in
practical time for two reasons. First, a polynomial-time fallback (Line 18-21 in Protocol 3) will
be triggered after a time slack of length ∆timeout has passed, where ∆timeout is a parameter that is
of the same order of magnitude with respect to the common prefix parameter (cf. Equation (1)
and (2)), the size of input (i.e., the number of vertices in a SCC) to DirectedBandwidth is
therefore bounded by a polylogarithmic function of κ times the transaction throughput. On the
other hand, the transaction dependency graph of a large Condorcet cycle is of good structure6 such
that we could improve the running time from O∗(3n · 2n2

) in [JKL+19] to f(t) · nt · 2nt where t is
the transaction throughput and f(t) is a function that depends only on t, note that t ≪ n. We
present and analyze this algorithm in Appendix C.4. Also note that while this local computation
is the most expensive step but it only needs to be performed once for each SCC throughout the
entire protocol execution.

4.3 Taxis with Dynamic Participation

We detail how to adapt the above two protocols TaxisWL and Taxis from static number of parties
to the dynamic participation.

Difficulty recalculation function. In a permissionless environment, mining difficulties TLB and
TPB should be adjusted as the participant population fluctuates. We adopt the same difficulty
adjustment function in Bitcoin7 to recalculate TLB (so TPB is adjusted as well). More specifically,
this function adjusts mining difficulty at the end of epochs (an epoch consists of m blocks), and
the target for the next epoch T ′

LB is computed base on current target TLB and the time elapsed to
mine m blocks — i.e., T ′

LB = Λ
m/f · TLB where f is the ideal block generation rate, and Λ is the

difference between the timestamps of the last block in the previous and current epoch. In addition,
the relative amount of difficulty that can be adjusted each time is bounded by a constant τ (which
is similar to that in Bitcoin where τ = 4 is in use).

Counting majority as accumulated difficulty. Note that after profile blocks are mined under
different difficulties, we should count “majority” in a K-time-window in a new sense. Precisely, we
say some blocks account for the majority if they accumulate more than d/2 difficulty where d is the
total difficulty of all profile blocks in the time window. This new majority rule applies to building

6If a Condorcet cycle spans for a long time, and the time points that two transactions enter this system are
sufficiently apart from each other, then the edge between these two transactions will never be selected as backward
edge. For large Condorcet cycles, such type of edges account for the vast majority of all the edges. See a detailed
explanation in Appendix C.4.

7We refer to [GKL17] for more details on analysis of Bitcoin with dynamic participation.

24

graph stage in Protocol 2 and Protocol 3. It also applies to the selection of median timestamps.
I.e., a timestamp t is selected for tx because t is the earliest timestamp such that all profiles that
report a timestamp no later than t yields more than half of the accumulated difficulties in tx’s
K-time-window.

5 Discussion and Future Directions

Alternative ways of relaxing order fairness. In this paper we define transaction order fairness
based on upper-bounding the positions that a transaction can be ordered before another when
violating their preference. It is worth highlighting however that the graph theoretic model we put
forth in Section 3 can accommodate a larger variety of order fairness relaxations.

For instance, one could consider the relaxation “an output profile σ should breaks the least
number of φ-preferences.” In the context of dependency graphs, this idea on fair order can be
related to the FeedbackArcSet problem [BFK+12] which asks to remove a subset of edges to
make the graph acyclic while keeping the subset as small as possible.

Another possible relaxation is to minimize the cumulative size of all violations. This means that
instead of focusing on the maximum distance of back edges in a component, we care about their
sum

∑
(u,v)∈E,σ(u)>σ(v) σ(u)−σ(v). This definition, can be considered as the “global” variant of our

order fairness notion; and, the corresponding graph problem — MinimumLinearArrangement
[BFK+12] — is also well-studied.

Another flavor of fairness that can also be cast in the same context is studied in a recent work,
Themis, [KDL+21], called consequent-transaction fairness, which can be viewed in our context as
maximizing the number of consecutive forward edges.

Structure of transaction dependency graphs. An interesting question arises with respect to
(R, φ)-dependency-graphs, as they were defined in Sec 2.2. In Theorem 2 we show that, unless
≺φ is the majority relation, GR,φ cannot have arbitrarily small cycles. Is this also a sufficient
condition? I.e., given a graph G without cycles of size less than ⌈1/(1−φ)⌉, do there exist profiles
R such that G = GR,φ? When ≺φ is the majority relation, this question was answered positively
for any oriented graph by McGarvey in [McG53] (see subsection 3.2). The majority case has been
studied further in other works. Stearns [Ste59] and later Erdős and Moser [EM64] give bounds on
the required size of R. More recently, Alon [Alo02] looked into a more refined property of R. We
suggest the study of similar questions with respect to GR,φ, when 1/2 < φ ≤ 1 as an interesting
direction.

(φ, DBW)-fair-order. Theorem 6 shows that (φ, DBW)-fair-order is the best that we can expect on
a Condorcet cycle SCC in terms of packing the transactions as tightly as possible. We note here
that it is possible for some transactions tx, tx′ to be put even closer than the bandwidth among
all bandwidth-optimal orderings. Nonetheless, there is no need to push this definition a step
further (e.g., to bound the distance of any two transactions by their maximum distance among all
bandwidth-optimal orderings). The reason is that Definition 5 has already been restricted enough
such that only a bandwidth-optimal ordering on this SCC will satisfy it. Even if we might be able
to bound the distance on some transaction pairs further it does not change the set of orderings
that satisfy this definition.

Securing order fairness with transient joining. Alert readers may notice that, in Section 3.5, it
becomes impossible to achieve order fairness in the permissionless environment if the joining pattern
of alert parties is transient — i.e., no party stays alert for a long time hence no transaction order
preference can persist in the network. While this problem stems from the nature of permissionless

25

settings and is thus intrinsically impossible to solve, we provide two alternative ways to model the
execution environment that can offer different trade-offs.

One route is to restrict the adversarial power on registering / de-registering parties. I.e., A
is allowed to kill at most τ fraction of honest parties during any time window of length K, but
τ should remain sufficiently small with respect to K so that when a transaction is received by
sufficiently many parties earlier than another, both could be continuously reported.

Alternatively, we could extend our dynamic participation model (Section 2.1) to let parties
“bootstrap” to collect transactions before they become alert. Specifically, we introduce a profile as
a new resource that an alert party needs in order to run the protocol. If a party P has passively
listened to the protocol and obtained a sufficiently long transaction log, then P is “profile-ready.”
Alert parties should be those that are also profile-ready. Given this and that the environment (which
controls how the population of parties fluctuates) is restricted to offer a sufficient number of alert
parties, in this new setting we guarantee that all alert parties can keep reporting transaction order
preference; and, this mechanism is robust against the adversarial registration and de-registration
on alert parties.

Order fairness in the permissioned setting. We note that (φ, DBW)-fair-order serialization
can also be achieved with a PKI. Specifically, parties could make use of the broadcast and set
consensus module in Aequitas [KZGJ20] to let parties agree on a dependency graph; then, instead
of alphabetically linearizing transactions in the same “block”, parties use Algorithm 1 to get the
bandwidth-optimal order. With this additional treatment, we can adapt Taxis as a permissioned
protocol that achieves consistency, weak-liveness and (φ, DBW)-order-fairness.

References

[ACG+18] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen
Tamari, and David Yakira. A fair consensus protocol for transaction ordering. In 2018
IEEE 26th International Conference on Network Protocols (ICNP), pages 55–65, 2018.

[Alo02] Noga Alon. Voting paradoxes and digraphs realizations. Advances in Applied Mathe-
matics, 29(1):126–135, 2002.

[BFK+12] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dim-
itrios M. Thilikos. A note on exact algorithms for vertex ordering problems on graphs.
Theory of Computing Systems, 50(3):420–432, Apr 2012.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic avail-
ability. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, pages 913–930, New York, NY, USA, 2018. Association
for Computing Machinery.

[Bol78] Béela. Bollobás. Extremal Graph Theory. L.M.S. monographs. Academic Press, 1978.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tol., 13(1):143–202, Jan 2000.

[Can00b] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://ia.cr/2000/

067.

26

https://ia.cr/2000/067
https://ia.cr/2000/067

[CCDG82] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs. The bandwidth problem
for graphs and matrices—a survey. Journal of Graph Theory, 6(3):223–254, 1982.

[CMS21] Christian Cachin, Jovana Micic, and Nathalie Steinhauer. Quick order fairness. CoRR,
abs/2112.06615, 2021.

[CP08] Marek Cygan and Marcin Pilipczuk. Faster exact bandwidth. In Hajo Broersma,
Thomas Erlebach, Tom Friedetzky, and Daniel Paulusma, editors, Graph-Theoretic
Concepts in Computer Science, pages 101–109, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[DFU11] Chandan Dubey, Uriel Feige, and Walter Unger. Hardness results for approximating the
bandwidth. Journal of Computer and System Sciences, 77(1):62–90, 2011. Celebrating
Karp’s Kyoto Prize.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, Apr 1988.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Proceedings of the 12th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’92, pages 13–147, Berlin, Heidelberg, 1992. Springer-Verlag.

[EM64] Paul Erdős and Leo Moser. On the representation of directed graphs as unions of
orderings. Math. Inst. Hung. Acad. Sci, 9:125–132, 1964.

[Fei00] Uriel Feige. Coping with the np-hardness of the graph bandwidth problem. In Algorithm
Theory - SWAT 2000, pages 10–19, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and dif-
ferential consensus. In Proceedings of the Twenty-Second Annual Symposium on Prin-
ciples of Distributed Computing, PODC ’03, pages 211–220, New York, NY, USA, 2003.
Association for Computing Machinery.

[GK20] Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. In
Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages 284–318, Cham,
2020. Springer International Publishing.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology - EUROCRYPT 2015, pages 281–310, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[GKL17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, pages 291–323, Cham, 2017. Springer International
Publishing.

[GKL20] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. Full analysis of nakamoto consensus
in bounded-delay networks. Cryptology ePrint Archive, Report 2020/277, 2020. https:
//ia.cr/2020/277.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems, 1994.

27

https://ia.cr/2020/277
https://ia.cr/2020/277

[JKL+19] Pallavi Jain, Lawqueen Kanesh, William Lochet, Saket Saurabh, and Roohani Sharma.
Exact and Approximate Digraph Bandwidth. In Arkadev Chattopadhyay and Paul
Gastin, editors, 39th IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2019), volume 150 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 18:1–18:15, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[KDK22] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the per-
missionless setting. In Proceedings of the 9th ACM on ASIA Public-Key Cryptography
Workshop, APKC ’22, pages 3–14, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[KDL+21] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis:
Fast, strong order-fairness in byzantine consensus. Cryptology ePrint Archive, Paper
2021/1465, 2021. https://eprint.iacr.org/2021/1465.

[Kur20] Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, AFT ’20, pages 25–36, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[KZGJ20] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzan-
tine consensus. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, pages 451–480, Cham, 2020. Springer International Pub-
lishing.

[McG53] David C. McGarvey. A theorem on the construction of voting paradoxes. Econometrica,
21(4):608–610, 1953.

[MS] Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value (mev) protection
on a dag.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.

[Pap76] Ch. H. Papadimitriou. The np-completeness of the bandwidth minimization problem.
Computing, 16(3):263–270, Sep 1976.

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC ’17, pages 315–324, New
York, NY, USA, 2017. Association for Computing Machinery.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, pages 643–673, Cham, 2017. Springer
International Publishing.

[Sax80] James B. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth
graphs in polynomial time. SIAM Journal on Algebraic Discrete Methods, 1(4):363–
369, 1980.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv., 22(4):299–319, dec 1990.

28

https://eprint.iacr.org/2021/1465

[SR20] Yaakov Sokolik and Ori Rottenstreich. Age-aware fairness in blockchain transaction
ordering. In 2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), pages 1–9, 2020.

[Ste59] Richard Stearns. The voting problem. The American Mathematical Monthly, 66(9):761–
763, 1959.

[ZSC+20] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine
ordered consensus without byzantine oligarchy. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, USA, 2020. USENIX
Association.

A Further Related Works

In a long line of research on understanding order fairness in the state machine replica (SMR)
problem, Schneider [Sch90] first proposes order — “Every non-faulty state machine replica processes
the requests it receives in the same relative order” — as the third property (other than consistency
and liveness) that an ideal BFT SMR protocol should satisfy. This is later formalized by Garay and
Kiayias [GK20] as “serializability” in ledger consensus. Serializability requires that if tx enters all
honest parties’ mempool before tx′, honest parties should reject the order tx′, tx (in their settled
ledger).

We provide an overview of all existing works on defining order fairness and implementing fair-
order protocols. Roughly speaking, we classify them into three directions — (i) blind-order-fairness,
which orders transactions while hiding their content; (ii) block-order-fairness, solving the Condorcet
paradox by claiming “blocks”; and (iii) timed-order-fairness, defining a time-based fair-order with-
out cyclic preferences. We highlight that, compared with our contributions, none of these existing
fair order notions provides bounded unfairness — i.e., there is no bound in the definition on how
“unfairly” a transaction could be put before another.

A.1 Blind Order Fairness

Blind order fairness [ACG+18, SR20, MS] considers the fair-order problem in a practical point
of view — i.e., since transaction content is the main information that an adversary will use to
manipulate transaction order, we hide the content before their order is finalized. In other words,
all protocol participants (including the adversary) are “blind” to the transactions; and, when parties
learn the transaction content, it has already been too late to re-order them. For the sake of hiding
content, cryptographic primitives are employed in blind-order-fairness protocols, e.g., commit-and-
reveal [ACG+18, SR20], verifiable secret sharing and threshold encryption [MS].

Aside from blindness, some works provide additional “fair” (random) pending transaction se-
lection rules. Helix [ACG+18] is a protocol that applies a verifiable random sampling on the public
memory pool, thus selecting transactions with equal probability. Analogous to this design, Sokolik
and Rottenstreich [SR20] present a random transaction inclusion scheme with weight measured by
the time that transactions stay in the mempool.

While blind-order-fairness achieves the minimum desideratum that the adversary cannot com-
pletely dominate the transaction order, we highlight a few flaws with the above-mentioned schemes.
First off, employing commit-and-reveal scheme to hide transaction content would incur the “selec-
tive open” issue — i.e., the adversary can commit a large number of transactions and only open
the one that gains the most profit. Moreover, blind-order-fairness is not resistant to a network ad-
versary. For instance, the adversary can still conduct censorship and learn the transaction source

29

or infer part of its metadata. And, most importantly, blind-order-fairness does not reflect the real
transaction diffusion pattern, which is contrary to our definition as well as block-order-fairness and
timed order fairness (see below).

A.2 Block Order Fairness

Kelkar et al. [KZGJ20] identifies the existence of Condorcet paradox (which is first observed in the
social choice theory) in defining fair-order based on aggregating φ-fraction of parties’ individual
preference. Condorcet paradox shows that the collective preferences can be cyclic. This non-
transitivity directly leads to the impossibility of achieving receive-order-fairness where processors
decide a final order following φ fraction of honest parties’ choice exactly (i.e., tx1 ≺φ tx2 indicates
tx1 before tx2 in the output).

Towards the goal of mitigation, Kelkar et al. work on a relatively weak definition, which
blockifies all transactions in a Condorcet cycle and claims that they are processed simultaneously.
They call this φ-block-order-fairness — “If tx1 ≺φ tx2, then the final output reports tx1 no later
than tx2.”. We point out that the output of φ-block-order-fairness is actually a partial order —
i.e., it does not indicate the order inside a block. Therefore in Definition 8, we adopt σ′ to denote
a surjection from T to {1, 2, . . . ,m} where m ≤ |T|.

Definition 8 (φ-block-order-fairness [KZGJ20], restated). A function F satisfies φ-block-
order-fairness if for all input R = R1,R2, . . . ,Rn and σ′ = F (R),

txi ≺φ txj =⇒ σ′(txi) ≤ σ′(txj).

Aequitas protocol family. Kelkar et al. [KZGJ20] also present a protocol family Aequitas that
achieves φ-block-order-fairness and can tolerate the adversarial nodes for up to 1/2 in a synchronous
network and up to 1/4 assuming asynchronous transaction dissemination. Notably, φ-block-order-
fairness in Aequitas is achieved by sacrificing (standard) liveness of the protocol. An intuitive
explanation is that when the protocol execution encounters Condorcet cycles, parties have to wait
indefinitely until the end of these cycles (which can last forever in the worst case), thus blocking
all the transactions in the cycle from getting settled.

Following the same definition in [KZGJ20], Kelkar et al. [KDK22] proposes a variant of Aequitas
that extends the participation model to a “permissionless” setting, where (a small fraction of)
parties can join and leave but the total number of parties running the protocol remains static
during the execution. The general idea is to let the transaction order of a modular chain simulate the
receiving order of a server in the previous model. Then, parties will run the permissioned Aequitas
protocol based on the on-chain data. Note that this protocol only works when no Condorcet cycles
exist (this is achieved by constraining the network delay).

Remark 1. Kelkar et al. [KZGJ20, KDK22] claim that Aequitas can achieve both standard liveness
and φ-block-order-fairness when the transaction diffusion network is fully synchronous — i.e., tx is
delivered to all honest parties within two consecutive rounds. However, we point out that this is not
true in our model where the input profiles are strict total orders on transactions. In other words,
even if a bunch of transactions are received in the same “round”, they may still form Condorcet
cycles. Note that this is not a peculiarity of our model: any fine grain timing model would result
on a strict total ordering for the input profiles.

In order to solve the weak-liveness issue in Aequitas, Kelkar et al. propose a leader-based
permissioned protocol Themis [KDL+21] that achieves Definition 8 with standard liveness. This
protocol is built on top of Hotstuff and is resistant to up to 1/4 corrupted nodes. Themis allows

30

leaders to split transactions in a Condorcet cycle into batches and output transactions in each
batch following the Hamiltonian-cycle order. We discuss the downside of this ordering policy in
the context of Definition 5 in Appendix C.6.

It is also worth noting that Cachin et al. [CMS21] elaborate on a variant of φ-block-order-
fairness, defining a differential order fairness property based on the standard validity notions for
consensus protocols [FG03]. They also present an efficient atomic broadcast protocol that guaran-
tees message delivery in a differential fair order.

A.3 Timed Order Fairness.

Block-order-fairness suffers from potential liveness failure unless assuming a non-corrupting adver-
sary and order fairness parameter φ = 1. However this would tremendously restrict the usage
scenarios of the fair-order protocol. Thus, some follow-up works [Kur20, ZSC+20] focus on further
weakening the order fairness notion to circumvent Condorcet cycles.

Since every protocol participants will conventionally maintain a local clock, it is reasonable to
let them assign a local timestamp to each transaction. Now, consider two (local) timestamp vectors
of transaction tx, tx′ respectively. We can decide the their order as tx, tx′ if these two vectors are
“separated” by a timestamp τ . More precisely, “separate” means that all timestamps assigned to
tx are earlier than τ and all timestamps assigned to tx′ are later than τ .

Definition 9 (timed-order-fairness [Kur20, ZSC+20], restated). A function F satisfies
timed-order-fairness if for all input R = R1,R2, . . . ,Rn and σ = F (R),

maxFts(txi) < minFts(txj) =⇒ σ(txi) < σ(txj)

where Fts is an admissible timestamp assignment with R.

While working on the same direction, [Kur20, ZSC+20] look at different problems. [Kur20]
designs a widget which consists of a fixed number of reputable validators to help any blockchain
protocols ensure fair ordering; and [ZSC+20] presents a state machine replica BFT protocol to
achieve order fairness.

Timed-order-fairness has been criticized for strongly relying on synchronized clocks. For in-
stance, the definition becomes meaningless when local clocks are apart from each other for an hour.
Nonetheless, we highlight that “timestamps” in Definition 9 does not necessarily need to be the
real world time. In fact, timed-order-fairness works as long as the protocol itself can maintain a
“protocol time”, which let all the time-aware parties’ local clocks stays in a narrow interval. This
can be easily achieved with some clock synchronization protocols.

B Preliminaries (Cont’d)

Round structure and protocol execution. As in [GKL15, PSS17], the protocol execution
proceeds in “rounds” with inputs provided by an environment program denoted by Z to parties
that execute the protocol Π. The adversary A is “adaptive,” and allowed to take control of parties
on the fly, as well as “rushing,” meaning that in any given round the adversary gets to observe
honest parties’ actions before deciding how to react. The diffusion functionality is similar to those
in [GKL15, PSS17]; it allows order of messages to be controlled by A, i.e., there is no atomicity
guarantees in message broadcast [HT94], and, furthermore, the adversary is allowed to spoof the
source information on every message (i.e., communication is not authenticated). A can inject
messages for selective delivery but cannot change the contents of the honest parties’ messages nor

31

prevent them from being delivered beyond ∆ rounds of delay — a functionality parameter. The
precise value of ∆ will be unknown to the protocol and hence protocol participants will not use ∆
as a parameter to select or filter the messages.

The environment program Z determines the protocol execution; it creates and interacts with
other instances of programs at the discretion of a control program C. Following [Can00b], (Z, C)
forms of a system of interactive Turing machines (ITM’s). The only instances allowed by C are
those of the protocol program Π, an adversary A. These are called ITI’s (interactive Turing
Machines Instances). We refer to [Can00b] for further details on the mechanics of the model. The
only additional feature that is relevant to our setting is that we assume each instance is initialized
with a special Boolean flag denoted as isAlert which is set to false upon initialisation.

Hash function as a random oracle. We model the hash function H(·) as a random oracle FRO.
It accepts queries of the form (compute, x) and (verify, x, y). For the first type of query, assuming x
was never queried before, a value y is sampled from {0, 1}κ and it is entered to a table TH . If x was
queried before the pair (x, y) is recovered from TH . The value y is provided as an answer. For the
second type of query, a membership test is performed on the table. Alert parties are allowed to ask
one query per round of the type compute and unlimited queries of the type verify. The adversary
A is given a bounded number of compute queries per round and no verify queries (the adversary
can easily simulate those locally). The bound for the adversary is determined as follows. Whenever
a corrupted party is activated the bound is increased by 1; whenever a query is asked the bound is
decreased by 1 (it is not necessary that the specific corrupted party makes the query).

The diffusion functionality. Message passing and round bookkeeping is maintained by this
functionality (note that transaction diffusion is maintained by an independent functionality which
prohibits the adversarial manipulation). A round variable r is initialized to 0. For each party
a string denoted by Receive() is maintained and the party is allowed to fetch the contents of
its corresponding Receive() at any time. The functionality records all messages of the form
(Diffuse,m) it receives from the parties. Completion of a round for a party is indicated by sending a
special message (RoundComplete). The adversary A is allowed to receive all the currently recorded
Diffuse messages at any time and messages to the Receive() strings as desired. The round is
completed when the adversary submits its (RoundComplete) message. In such case, the functionality
inspects the contents of all Receive() strings and includes any messages m that were diffused by
the parties ∆ rounds ago but not contributed by the adversary to the Receive() tapes (in this
way guaranteeing message delivery up to ∆ rounds). It also flushes any diffuse records that are
placed in the Receive() string of all parties. The variable r is then incremented and a new round
begins.

Dynamic participation. In order to describe the protocol execution in a more realistic fash-
ion, following the treatment in [BGK+18], we classify protocol participants into different types in
Table 1.

Basic types of honest parties
Resource Resource unavailable Resource available

random oracle stalled operational
network offline online
clock time-unaware time-aware

synchronized state desynchronized synchronized

Table 1: A classification of protocol participants.

32

Consider a party P at a given point of the protocol execution, we say (i) P is operational if P
is registered with the random oracle, and stalled otherwise; (ii) P is online if P is registered with
the network, and offline otherwise; (iii) P is time-aware if P is registered with the global clock,
and time-unaware otherwise; and (iv) P is synchronized if P has been participanted in the protocol
for sufficiently long time and it holds a chain that shares a common prefix with other synchronized
parties, and desynchronized otherwise.

We define alert parties based on the classification above. In short, alert parties are those who
have access to all the resources and are synchronized. They are the core set of parties to carry out
the protocol.

alert
def
= operational ∧ online ∧ time-aware ∧ synchronized.

In addition, we define active parties to depict parties including all that are alert, adversarial or
time-unaware.

active
def
= alert ∨ adversarial ∨ time-unaware

The dynamic bounded-delay setting. Given the functionalities as described above observe
that contrary to prior formalizations, the adversary can choose the termination of the round thus
deciding on the spot how many honest parties were activated adaptively. In each round, the number
of alert parties (cf. Section 2.1) that are active in the protocol is denoted by hr and is equal to
the total number of parties that have submitted the (RoundComplete) indicator to the diffusion
functionality and have their internal flag isAlert set to true. Determining hr can only be done by
examining the view of all alert parties and is not a quantity that is accessible to any of the honest
parties individually. The number of “corrupt” parties controlled by A in a round r is similarly
denoted by tr.

Parties, when activated, are able to read their input tape Input() and communication tape
Receive() from the diffusion functionality. If a party finds that its isAlert flag is false, it enters
a “bootstrapping” mode where it will diffuse a discovery message and synchronize. When the
synchronization phase terminates, the party will set its isAlert flag to true and after this point it
will be counted among the alert parties. An honest party goes “offline” when it misses a round,
i.e., the adversary issues a (RoundComplete) but that party misses the opportunity to complete its
computation. To record this action, whenever this happens we assume that the party’s isAlert
flag is set to false (in particular this means that a party is aware that it went offline; note, however,
that the party does not need to report it to anyone). Also observe that parties are unaware of the
set of activated parties. As in previous works (e.g., [GKL15]), we assume, without loss of generality,
that each honest party has the same computational power.

Properties of protocolsWe consider a “standalone” execution without any auxiliary information.
Hence we use viewΠ,A,Z to denote the random variable ensemble that is a concatenation of the
views of all parties ever activated (party P’s view after the execution is denoted by viewP

Π,A,Z). In
our theorems we will be concerned with properties of protocols Π. Such properties will be defined
as predicates over viewΠ,A,Z with a small probability of error in κ as well as in a parameter k that
is selected from {1, . . . , κ}.

33

C Proofs, Algorithms and Examples Omitted in the Main Body

C.1 Proofs Omitted in Section 3

Proof of Theorem 1. Suppose a protocol Π implements non-trivial (φ,B)-fair-order serialization
with t ≥ (2φ−1)h. Fix φ, h and t ≥ (2φ−1)h and consider two executions E1, E2 on Π with honest
profiles RH

1 and RH
2 respectively. Suppose there are m transactions. Profile RH

1 = R11,R12, . . . ,R1h

reports R1j(txi) = i for all i ∈ [m] when j ≤ ⌈φh⌉ and R1j(txi) = m + 1 − i for all i ∈ [m] when
j ≥ ⌈φh⌉+ 1. I.e., φ fraction of RH

1 share exactly the same order while the rest share exactly the
same reversed order. Similarly, in profile RH

2 , R2j(txi) = i for all i ∈ [m] when j ≤ ⌊(1− φ)h⌋ and
R2j(txi) = m+ 1− i for all j ≥ ⌊(1− φ)h⌋+ 1.

Since t ≥ (2φ− 1)h, we have two identical profiles R1 = ⟨RH
1 ,RA

1 ⟩ and R2 = ⟨RH
2 ,RA

2 ⟩. These
profiles can be constructed by, e.g., letting (2φ − 1)h profiles in RA

1 report an order the same as
R1h, letting (2φ−1)h profiles in RA

2 report an order the same as R2h and letting the rest of RA
1 ,RA

2

report the same order.
Notice that in RH

1 it holds that ∀i ∈ [m],∀j > i, txi ≺φ txj ; and in RH
2 we have ∀i ∈ [m],∀j <

i, txi ≺φ txj . And since R1 and R2 are identical we have F (R1) = F (R2).
Now, consider an order σ with σ(txi) = 1 and σ(txj) = m. If i > j then it implies for input

RH
1 in E1, txj ≺φ txi =⇒ σ(txj) − σ(txi) = m − 1. Conversely, when i < j it implies for input
RH

2 in E2, txj ≺φ txi =⇒ σ(txj) − σ(txi) = m − 1. Since the similar argument works for all
possible orderings, it implies that either B(RH

1 , φ, txi, txj) ≥ m− 1 or B(RH
2 , φ, txi, txj) ≥ m− 1,

which contradicts the fact that Π implements non-trivial fair-order serialization.

Proof of Theorem 2. Consider a cycle v1v2 · · · vkv1 of size k. By transitivity of ≺, for any party Pi

such that vk ≺i v1, there exists a j such that vj ̸≺i vj+1. Since vkv1 ∈ E(GR,φ), we have vk ≺φ v1.
Thus, there exists a j such that vj ̸≺i vj+1 for at least φ/(k − 1) fraction of parties. But because
vjvj+1 ∈ E(GR,φ), it holds

φ

k − 1
≤ 1− φ =⇒ k ≥ 1

1− φ
.

Proof of Theorem 3. Since the transaction space on R to construct G and G′ are the same, V (G) =
V (G′). It suffices to show that E(G) ⊆ E(G′). Suppose towards a contradiction, there is an edge
(tx, tx′) ∈ E(G) but (tx, tx′) /∈ E(G′). This implies tx ≺φ

RH tx′; and in the profile set R that
generates G′, less than half of the profiles report tx ≺ tx′. However since the adversary can append
at most (2φ− 1)h− 1 profiles, we get the following contradiction: φh < (1−φ)h+(2φ− 1)h− 1 =
φh− 1.

Proof of Theorem 6. Fix an order fairness parameter φ. Towards a contradiction, suppose there
exist a function B such that ∃R, ∀(tx, tx′), B(R, φ, tx, tx′) < maxG∈GR,φ

DBW(SCC(G, tx, tx′)).
We consider a protocol Π that implements (φ,B)-fair-order serialization and an execution E of Π.
Suppose in E an honest party outputs σ = F (⟨R,RA⟩). LetRA be profiles such that the (⟨R,RA⟩)-
dependency-graph G has a SCC GSCC containing tx, tx′ such that DBW(GSCC) = maxG∈GR,φ

DBW(SCC(G, tx, tx′)). For any vertex ordering σ on G, we have σ(tx) − σ(tx′) ≥ DBW(GSCC) =
maxG∈GR,φ

DBW(SCC(G, tx, tx′)) > B(R, φ, tx, tx′). This contradicts the fact that Π implements
(φ,B)-fair-order serialization.

Proof of Theorem 7. We first prove this theorem for 3 transactions and 1/2 < φ ≤ 2/3, then we
show how to extend this to an arbitrary number of transactions and φ.

34

Consider two executions E1, E2 with transaction profiles illustrated as in Figure 2. Note that
they are different only in the view of party P3 after time t + L. First, consider execution E2. We
have tx2 ≺φ tx3, tx3 ≺φ tx1 and tx2 ≺φ tx1. Hence at the end of the execution it should output
tx2 ≺ tx3 ≺ tx1. Now, consider this execution up to time t+ L. Since tx3 appears in all parties’
transaction profiles and L is the liveness parameter, tx3 should appear in the output at time t+L.
In addition, due to consistency parties should output tx2 ≺ tx3 at time t+L in E2. Since the two
executions are indistinguishable up to time t + L, in E1 it should also output tx2 ≺ tx3 at time
t + L. I.e., eventually E1 will output tx2 ≺ tx3 ≺ tx1 by consistency. However, since tx1 ≺φ tx2
in E1, this order gives the worst bandwidth 2.

P1
E1 tx1 tx2 tx3

P2 tx2 tx3 tx1

P3 tx3 tx1 tx2

P1
E2 tx1 tx2 tx3

P2 tx2 tx3 tx1

P3 tx3 tx2 tx1

t t+ L

Figure 2: Transaction profile illustration.

By replacing tx2, tx3 with a set of transactions, this proof can be extended to profiles with
arbitrary n transactions and output with the worst bandwidth n − 1. And, for φ > 2/3 it is still
feasible to construct similar profiles — in the first execution the dependency graph is a directed cycle
and by swapping the order of the last two transactions in the last profile, the second dependency
graph is acyclic.

Proof of Theorem 8. We first show that the subscripts of Pi are consecutive. Suppose — towards
a contradiction — there is no partition Vi (1 < i < n). Since all transactions are ∆tx-disseminated,
and the partition is a (Fmin

ts , ∆tx)-partition, for any two vertices u ∈ Vj (j ≤ i− 1) and v ∈ Vk (k ≥
i + 1), it holds that Fmin

ts (u) + ∆tx < Fmin
ts (v). I.e., in all profiles, transaction txu precedes txv;

hence edge (u, v) ̸∈ ESCC; this contradicts the fact that GSCC is strongly connected.
Consider a vertex ordering σ on GSCC that orders vertices by a non-decreasing order on Fmin

ts .
It holds that (∀u ∈ Vj , v ∈ Vk) j < k =⇒ σ(u) < σ(v). Since no back edge exists between two
non-adjacent partitions, we have

DBW(GSCC) ≤ DBW(GSCC, σ) ≤ max
i∈[n−1]

∣∣Vi

∣∣+ ∣∣Vi+1

∣∣ ≤ 2max
∣∣Vi

∣∣.

Proof of Theorem 9. Suppose a (Fmin
ts , ∆tx)-partition produces n ≥ 4 partitions (otherwise it is

trivial) and consider a back edge (u, v). The proof of theorem 8 shows that either u, v are in the
same partition, or u is in the next partition of v.

If u, v are in the same partition (i.e., u, v ∈ Vi), then Fts(u), Fts(v) are either in partition Vi

or Vi+1. Note that for all vertices v ∈ Vj , Fts(v) is either in Vj or Vj+1. We have σ(v) − σ(u) ≤
|Vi−1|+ |Vi|+ |Vi+1| ≤ 3max |Vi|.

35

If u, v are in the adjacent partition (i.e., u ∈ Vi and v ∈ Vi+1), since σ(v) ≥ σ(u), Fts(u), Fts(v) ∈
Vi+1; otherwise if Fts(v) ∈ Vi or Fts(u) ∈ Vi+2 it cannot form the order. Similarly, we have
σ(v)− σ(u) ≤ |Vi+1|+ |Vi+2| ≤ 2max |Vi|.

C.2 Hardness of DirectedBandwidth over Oriented Graphs

In this section we consider the hardness of DirectedBandwidth over oriented graphs. With
respect to the Bandwidth problem the following result of Dubey, Feige, and Unger is of interest.

Theorem 12 ([DFU11]). It is NP-hard to approximate Bandwidth within a ratio of c, for any
constant c > 0.

We provide the same result for DirectedBandwidth over oriented graphs.

Theorem 13. It is NP-hard to approximate DirectedBandwidth over oriented graphs within a
ratio of c, for any constant c > 0.

Proof. It suffices to show how to approximate Bandwidth within a constant, assuming we can
approximateDirectedBandwidth over any oriented graph. LetG = (V,E) be a simple connected
graph with bandwidth b. We define an oriented graph G′ = (V ∪ V ′, E′), where V ′ = {u′ : u ∈ V }
and E′ = {uu′ : u ∈ V } ∪ {u′v : uv ∈ E}. We call each u ∈ V the parent of u′, V the parent nodes
and V ′ the child nodes. Note that since G is undirected, for each uv ∈ E, both u′v and v′u are in
E′. We claim that the bandwidth of G at most twice the bandwidth of G′.

We first observe that the bandwidth of G′ is at most b. Indeed, let π = (u1, u2, . . . , un) be a
permutation of V with bandwidth b in G. We construct a permutation π′ of V ∪V ′ with bandwidth
b in G′. Set q = ⌊n/b⌋ and r = n mod b. For k = 0, 1, . . . , q − 1, let

σk = (u′qb+1, . . . , u
′
qb+b, uqb+1, . . . , uqb+b) and π′ = σ0 · · ·σq,

where σq = (u′qb+1, . . . , u
′
qb+r, uqb+1, . . . , uqb+r). To verify that DBW(π′, G′) ≤ b, consider any edge

uv ∈ E; edge uu′ has length either b or r < b and edge u′v is either a forward edge or has the same
length as uv under π.

Now let σ be a permutation of V ∪V ′ with bandwidth b′. We can construct a permutation π for
V by simply removing the child nodes. The bandwidth of π is at most 2b′. It follows that if b′ ≤ cb,
then we obtain a permutation of V with bandwidth 2cb. In other words, if we can approximate
DirectedBandwidth within ratio c, then we can approximate Bandwidth withing ratio 2c.

C.3 An Exact Algorithm for DirectedBandwidth

We briefly describe the exact algorithm for DirectedBandwidth in Algorithm 1. For more
technical details, refer to [JKL+19].

The general idea of this algorithm follows the strategy of “kill what cause you trouble” — i.e.,
since only the back edges show effect in deciding directed bandwidth of a graph G, we could first
guess the set of back edges R, then remove all forward edges (i.e., we get a directed acyclic graph
G′ = (VG, R)) and convert it to aDAG-Bandwidth problem on G′. ADAG-Bandwidth problem
asks to output a topological sort on a DAG D with the minimum bandwidth (note that this is the
bandwidth of the undirected graph D′ constructed from D, by connecting vertices u, v when at least
one (u, v) or (v, u) exists in D). Jain et al. [JKL+19, Section 3] presents an algorithm that solves
DAG-Bandwidth, following the idea from Cygan and Pilipczuk [CP08]. Roughly speaking, this
algorithm consists of two phases Bucketing and Ordering. The Bucketing phase allocates a

36

set of vertices to a range of consecutive positions of a targeted size; the outcome of this step is a
collection of bucketings containing a bucketing that is “consistent” with the final ordering. Then,
the Ordering phase extracts a topological ordering from the buckets acquired in the previous
phase.

Algorithm 1 DirectedBandwidth

Input: Graph G = (V,E).

1: Set DBW(G) = −∞
2: for R ⊂ E do
3: Set G′ = (V,R)
4: Solve DAG-Bandwidth and get DAG-BW (G′), σDAG. ◁ Run Bucketing and Ordering
5: if DAG-BW (G′) > DBW(G) then
6: DBW(G)←DAG-BW (G′), σ ← σDAG
7: end if
8: end for

Output: DBW(G), σ.

DAG-Bandwidth can be solved in O∗(3|V |) time [CP08, JKL+19]; since the total number of
possible back edge set is 2|E|, Algorithm 1 runs in O∗(3|V | · 2|E|) time.

C.4 A Faster Algorithm for DirectedBandwidth over Dependency Graphs

Algorithm 1 solves DirectedBandwidth over general graphs. The most time-consuming factor
lies at the stage that exhaustively iterates over subset of edges and sets them as forward ones; on
oriented graphs, this incurs an exponent that is quadratic in terms of the number of edges.

While this blow-up arises from the hardness of the underlying problem, thus becomes impossible
to improve in the worst case8, we present here that for a long-lasting Condorcet cycle, its dependency
graph is of good structure when considered with the (bounded) transaction throughput and its
directed bandwidth is relatively small compared with the number of vertices (see Theorem 8),
hence leads to a new algorithm which, while still runs in exponential time, reduces the exponent of
the most time-consuming factor from quadratic to linear in the number of vertices.

As a high-level intuition of the structure of such type of graphs, consider a graph G of long-
lasting Condorcet cycles and a vertex v ∈ G. Regarding all edges between v and v′, if v′ is a vertex
that enters the system earlier (later resp.) than v and their diffusion window does not overlap, then
due to the security of Taxis protocols, it is guaranteed that an edge (v′, v) ((v, v′) resp.) appears
in the dependency graph. And we shall never set these edges as backward edges when applying a
vertex ordering over the graph, as it incurs a directed bandwidth that is larger than the number
of transactions diffused between v and v′ (which is bounded by the transaction throughput) which
contradicts Theorem 8.

The main ideal of this algorithm follows that in [JKL+19] with two extra steps: (i) instead of
iterating all possible subset of edges, we pre-select some edges and never consider setting them as
backward edges in the final ordering; and (ii) regarding the subroutine of solving DAG-Bandwidth
by calling the bucketing and ordering algorithm in [CP08, JKL+19], we replace it with Saxe’s algo-
rithm [Sax80], an algorithm that decides if DAG-Bandwidth is smaller than a (fixed) parameter

8For instance, the network is congested and a large number of transactions enter the system at roughly the same
time and consequently all edges in the dependency graph can have either orientation.

37

in polynomial time. We provide a detailed description in Algorithm 2.
Compared with Algorithm 1, this new algorithm requires two extra inputs. First, the median

timestamp (in the K-time-window) of each transaction. This is represented as the a mapping Fts

from each vertex (transaction) to an integer (round number). And second, a parameter ∆∗
tx ∈ N+

as the threshold to select edges. We require that ∆∗
tx ≥ 3∆tx. Note that while in our model ∆tx is

a parameter that is unknown to parties, a rough estimation on ∆tx can be made by observing the
transaction diffusion pattern; and, overestimation does not hurt the correctness of this algorithm
but only incurs some penalty on its running time.

Algorithm 2 DirectedBandwidth over GR,φ

Input: G = (V,E) the graph, Fts : V → N+ a mapping and ∆∗
tx ∈ N+.

1: Set DBW(G) = −∞ and Ebackward = E
2: for (u, v) ∈ E do
3: if Fts(v)− Fts(u) ≥ ∆∗

tx then
4: Ebackward ← Ebackward\(u, v)
5: end if
6: end for
7: for R ⊂ Ebackward do
8: Set G′ = (V,R)
9: Solve DAG-Bandwidth and get DAG-BW (G′), σDAG. ◁ Call Saxe’s algorithm.

10: if DAG-BW (G′) > DBW(G) then
11: DBW(G)←DAG-BW (G′), σ ← σDAG
12: end if
13: end for

Output: DBW(G), σ.

Correctness of Algorithm 2. It is obvious that for any graphG, as long as there exist bandwidth-
optimal orderings such that all backward edges are in Ebackward, Algorithm 2 will output one of them
due to the correctness of Saxe’s algorithm. Thus, correctness of Algorithm 2 follows Lemma 14.

Lemma 14. Let G = (V,E) be a strongly connected component in the transaction dependency
graph and Fts be a mapping from each v ∈ V to the median timestamp in its K-time-window.
There exists an ordering σ on G such that (i) DBW(σ,G) = DBW(G); and (ii) ∀u, v ∈ V , σ(u) <
σ(v) =⇒ Fts(u) ≤ Fts(v) +∆∗

tx.

Proof. Let σ′ be a vertex ordering on G such that (i) DBW(σ′, G) = DBW(G); and (ii) ∃u, v ∈ V such
that σ(u) < σ(v) and Fts(u) > Fts(v) +∆∗

tx. If no such σ′ exists then the lemma holds. Otherwise
we show that by swapping vertex pairs we can convert σ′ to σ such that both items (i) (ii) in the
lemma holds on σ.

Let E′
σ denote the set of backward edges in σ that violates item (ii) in the lemma. I.e.,

E′
σ = {(v, u) | (v, u) ∈ E ∧ σ(u) < σ(v) ∧ Fts(u) > Fts(v) +∆∗

tx}.

Let d(E′
σ) denote the maximum distance among all edges in E′ (i.e., d(E′

σ) = max(u,v)∈E′
σ
{σ(v)−

σ(u)} or 0 if E′
σ is empty) and m(E′

σ, d
∗) denote the number of edges with distance d∗. Note that

d(E′
σ) ≤ DBW(E′

σ, G). Obviously when there exist σ such that DBW(σ,G) = DBW(G) and d(E′
σ) = 0

then the lemma holds.

38

Fix a bandwidth optimal ordering σ′ such that d(E′
σ′) = d∗ > 0. Let u, v be two vertices such

that (v, u) ∈ E′
σ′ and σ′(v) − σ′(u) = d(E′

σ′). Consider a new ordering σ′′ that differs from σ′ by
swapping the position of u, v. We show that DBW(G, σ′′) = DBW(G) and, either d(E′

σ′′) < d(E′
σ′), or

d(E′
σ′′) = d(E′

σ′) = d∗ but m(E′
σ′′ , d∗) ≤ m(E′

σ′ , d∗)− 1.
Since only the position of u, v is swapped, we consider edges with endpoints either in u or v.

Consider v first. Let v′ be a vertex other than u, v and consider the following three cases.
� When σ′′(v′) < σ′′(v), the distance of backward edge (v, v′) in σ′′ is less than that in σ′.
� When σ′′(v) < σ′′(v′) < σ′(v), if (v′, v) is a backward edge in σ′′ then its distance is strictly less

than d∗.
� When σ′(v) < σ′′(v′), note that it holds (v, v′) ∈ E; otherwise, since ∆∗

tx ≤ 3∆tx, a transaction
diffusion time window can last for at most ∆tx rounds, and in a typical execution the adversary
can only manipulate the median timestamp to some time within the diffusion window, we have:
when txv′ ≺ txv it implies that txv′ ≺ txu (i.e., (v′, u) is a backward edge in σ′), contradicting
the fact that (v, u) is the backward edge of largest distance. Thus, (v, v′) remains as forward
edges and has no effect on E′(σ′′).

A similar argument can be made for u due to symmetry. Since all newly introduced backward
edges have distance d′ < d∗ ≤ DBW(G), we get DBW(σ′′, G) = DBW(G) and if m(E′

σ′ , d∗) = 1 then no
backward edge of distance no less than d∗ exists in σ′′ hence d(E′

σ′′) < d(E′
σ′); if m(E′

σ′ , d∗) ≥ 1
then since (v, u) is no longer a backward edge in σ′′ we have d(E′

σ′′) = d(E′
σ′) and m(E′

σ′′ , d∗) ≤
m(E′

σ′ , d∗)− 1.
By iteratively applying the above swapping strategy, for any bandwidth-optimal ordering σ′ we

shall convert it into another bandwidth-optimal ordering σ that d(E′
σ) = 0 hence it satisfies both

item (i) (ii) in the lemma.

Time complexity of Algorithm 2. We define throughput t as the number of concurrent trans-
actions entered into the system within a ∆∗

tx time window, thus in the pre-processing stage in
Algorithm 2, for each vertex v at most t edges with target in v will be preserved in Ebackward. I.e.,
after this stage we have |Ebackward| ≤ |V |t. In addition, due to Theorem 8 the we have DBW(G) < t,
thus Saxe’s algorithm runs in f(t) · |V |t time where f(t) depends only on t (For more details, refer
to [Sax80]). Combining these two parts together we get f(t) · |V |t · 2|V |t (note that t≪ |V |).
Remark 2. The size of Ebackward still grows exponentially. However, note that the input to Saxe’s
algorithm should be a DAG. I.e., when iterating over the subset of Ebackward, we shall not call Saxe’s
algorithm in many scenarios. For instance, let C be a cycle in an SCC. If none of its edges are
in the subset of Ebackward then we can skip to the next iteration without calling Saxe’s algorithm
(because C preserves in the result graph thus it must not be a DAG). While this has no effect on
the asymptotic result, we remark it here for some intuition on the practicality of Algorithm 2.

C.5 Upper Bound on Worst Case Directed Bandwidth

Define DBW(n) = maxGB(G), where G over the set of oriented graphs on n nodes. The following
theorem concerns Zarankiewicz’s problem.

Theorem 15 ([Bol78]; Theorem 2.5, p. 311). For all natural numbers 2 ≤ a ≤ n, any bipartite
graph with parts of size n and more than (a− 1)1/an2−1/a + (a− 1)n/2 edges contains at least one
a× a clique.

We call a pair (S, T) of two disjoint sets of nodes of a digraph a one-way pair, if there are no
edges from a node in T to a node in S. The relation to this problem is captured in the following
observation.

39

Proposition 16. Consider a digraph G = (V,E) on n nodes. If there is a permutation on the
nodes of G with no back edges of length more than B, then there is a one-way pair (S, T) with
|S| = |T | = ⌊(n−B)/2⌋. Conversely, if there is a one-way pair (S, T) with |S| = |T | = n−B, then
there is a permutation on the nodes of G with no back edges of length at least B.

Proof. Let S be the set of the first ⌊(n−B)/2⌋ nodes of π and T the set of the last so many
nodes.

Theorem 17. Let Gn denote the set of all oriented graphs with n vertices. It holds that

n− 4 log n < max
G∈Gn

DBW(G) < n− log n/2.

Proof. Note that for both bounds we may restrict attention to tournament graphs. To prove the
lower bound, it suffices to show that there exists a tournament on n nodes such that for any
permutation there are back edges of length at least B = n − 4 log(n). We use a probabilistic
argument, drawing intuition from Zarankiewicz’s problem.

Set k = ⌊(n−B)/2⌋ = ⌊2 log(n)⌋. For any two nodes u, v, choose (u, v) or (v, u) with probability
1/2 each. There are

(
n
k

)(
n−k
k

)
pairs of disjoint sets of size k. Let X be the number of such pairs of

sets that have no edges from T to S. Then, using
(
n
k

)
≤ (en/k)k,

E[X] =

(
n

k

)(
n− k

k

)
2−k2 ≤

(en
k

)k(e(n− k)

k

)k
2−k2 < 1.

The last inequality holds because for the chosen value of k and n > 16, en < k2k/2 and so
(en/k)k/2k

2/2 < 1. It follows that there is a tournament with X = 0. By the first part of the
proposition above, a permutation with B ≤ n− 4 log(n) does not exist for this tournament.

For the upper bound, by the second part of the proposition it suffices to show that for any
tournament G = ([n], E) there is a one-way pair (S, T) with |S| = |T | = a, where a = ⌈log(n)/2⌉.
To that end, construct a bipartite graph G = (U, V,D) with U = {u1, . . . , un}, V = {v1, . . . , vn}
and E = {(ui, vj) : (i, j) ∈ E}. Note that if S × T is a clique of this graph, then (S, T) is a
one-way pair. By the second part of the proposition and Theorem 15, it suffices to show that
(a− 1)1/an2−1/a + (a− 1)n ≤

(
n
2

)
. This indeed holds for the chosen value of a.

C.6 Examples of Comparison with Existing Protocols

We first show that the output of Aequitas and Themis yields σ(tx)− σ(tx′) = m− 1 for tx ≺φ tx′

on some input profiles with m transactions. Consider a dependency graph G = (V,E) where
V = 1, 2, . . . ,m. Its edge set E = E1∪E2 contains two subsets, a cycle E1 = {(1, 2), (2, 3), . . . , (m−
1,m), (m, 1)}, and a set of some edges E2 = {(i, j)} such that 2 ≤ j ≤ i − 2 (E2 can contain an
arbitrary number of edges). Due to the profile construction rules proposed by McGarvey [McG53]
(see Section 3.2), we can always find profiles whose dependency graph is exactly G . Also see
Figure 3(a) for an illustration of G. Now we assign the labels to each transaction such that
label(tx2) < label(txi) < label(tx1) for all txi other than tx1, tx2, Aequitas will output σAequitas =
tx2 ≺ . . . ≺ tx1 which yields σAequitas(tx1) − σAequitas(tx2) = m − 1 for tx1 ≺φ tx2. Note that
following the Hamiltonian-cycle-based rule, Themis will output the same order as Aequitas (note
that the rotation on σAequitas does not matter since there is always a back edge from the last
transaction to the first). Next, consider an output σ = tx1 ≺ txn ≺ txn−1 ≺ . . . ≺ tx2 that
satisfies Definition 5, it holds that σ(txi)− σ(txj) ≤ 1 for all txi ≺φ txj .

Regarding pompe, we consider three profiles R1 = tx1, tx2, tx3, tx4, . . . , txm, R2 = tx2, tx3,
tx4, . . . , txm, tx1 and R3 = tx3, tx4, . . . , txm, tx1, tx2. I.e., we replace tx3 in the 3-transaction

40

1
2

3

4

5

6
7

8

9

10

m

...
...

1 2

3 4
......

m− 1 m

(a) Aequitas (b) pompe

Figure 3: Illustration of dependency graphs.

Condorcet cycle with m− 2 transactions, following the same order tx3, tx4, . . . , txm in all profiles.
See Figure 3(b) for an illustration of its dependency graph G. Suppose σ is a profile that satisfies
Definition 5 and

σ = tx3 ≺ . . . ≺ tx⌈n/3⌉ ≺ tx1 ≺ tx⌈n/3⌉+1 ≺ . . . ≺ tx⌈2n/3⌉ ≺ tx2 ≺ tx⌈2n/3⌉+1 ≺ . . . ≺ txm.

We have σ(txi) − σ(txj) ≤ ⌈m/3⌉ for all txi ≺φ txj . However, we consider a timestamp assign-
ment Fts on R1, R2 and R3 such that pompe would output σpompe under Fts and σpompe(tx1) −
σpompe(tx2) = m − 1 for tx1 ≺φ tx2 Specifically, let Fts(txi,R) = t, i.e., in all profiles it reports
txi is received at time t for all 3 ≤ i ≤ m. Then, let Fts(tx1,R1) = t − 2, Fts(tx1,R2) = t + 1,
Fts(tx1,R3) = t + 1 and Fts(tx2,R1) = t − 1, Fts(tx2,R2) = t − 1, Fts(tx2,R3) = t + 2, we
have med(tx1) = t + 1 and med(tx2) = t − 1, which yields an order with σpompe(tx1) = m and
σpompe(tx2) = 1.

C.7 Taxis protocols

Validity check of chains. Note that this part is the same for Taxis and TaxisWL. A ledger
block LB = ⟨ctr, h, h′, r, stLB, stPB⟩ is valid iff. it satisfies predicate validBlockTPB(LB) = H(LB) <
TLB ∧ ctr < 232. A ledger block chain C is valid iff. ∀LB ∈ C it holds validBlockTPB(LB) ∧ (h∗ =
H(LB)) ∧ (r < r∗) where h∗, r∗ are the corresponding block header information reported by LB’s
next block.

Protocol 4 IsValidChain(C, r)

1: r′ ← r, LB← head(C)
2: ⟨ctr, h, h′, r, stLB, stPB⟩ ← LB
3: h∗ ← H(ctr, h, h′, r, stLB, stPB)
4: while C ̸= ε do
5: ⟨ctr, h, h′, r, stLB, stPB⟩ ← LB
6: validLB, validPB ← true

▷ Check validity of ledger block
7: if (h∗ ̸= H(LB)) ∨ (h∗ ≥ T) ∧ (ctr ≥ 232) ∨ (r ≥ r′) then

41

8: validLB ← false
9: end if

▷ Check validity of profile blocks in LB
10: for PB ∈ LB do
11: LB′ ← the last ledger block s.t. TS(()LB) ≤ TS(()PB)− k
12: if TS(PB) ≥ TS(LB)∨h′ ̸= H(LB′)∨TS(PB) ≥ TS(LB′)+R∨H(PB) ≥ TPB then
13: validPB ← false
14: end if
15: end for
16: if validLB ∧ validPB = true then
17: r′ ← r, h∗ ← h
18: Remove the rightmost block in C
19: LB← head(C)
20: else
21: return false
22: end if
23: end while
24: return true

The mining procedure of Taxis. This mining protocol is generally the same as Protocol 1. The
only difference is that parties will append the local timestamp for each transaction.

Protocol 5 TaxisWL-MiningProcedure(r, κ)

1: Fetch information from F∆
Diffuse and FDiffuse,tx and get new chains (C1, . . . , CM), new

transactions (tx1, . . . , txi) and new profile blocks (PB1, . . . ,PBj)
2: Set bufferPB ← bufferPB ∥ (PB1, . . . ,PBj)
3: Set localProfile← localProfile ∥ (⟨tx1, r⟩, . . . , ⟨txi, r⟩)
4: Cloc ← maxvalid(Cloc, C1, . . . , CM)
5: LBContent← (valid) profile blocks in bufferPB that are not mined in Cloc
6: PBContent← localProfile ◁ After removing a prefix in settled part

7: h′ ← hash value of block head(C⌈kloc) ◁ Find rightmost blocks in the settled ledger
8: h← hash value of block head(Cloc)
9: u← H(ctr, h, h′, r, stLB, stPB)

10: if u < TLB then
11: Set LB← ⟨ctr, h, h′, r, stLB, stPB⟩
12: Cloc ← Cloc ∥ LB
13: Diffuse Cloc, LBContent
14: end if
15: if [u]R < TPB then
16: Set PB← ⟨ctr, h, h′, r, stLB, stPB⟩
17: Diffuse PB, PBContent
18: end if
19: ctr ← ctr + 1

42

D Security Analysis

In this section we provide a security analysis of the Taxis protocol. We show that, in a (γ, s)-
respecting environment, when appropriately parameterized, the ledger L in Taxis satisfies three
security properties—consistency, liveness and order fairness.

The first two properties have been introduced in Section 2.1; regarding the order fairness prop-
erty, it requires that the protocol implements (φ, TDBW)-fair-order serialization — i.e., in the settled
part of the final ledger, all the transactions will follow the order defined by Definition 7.

D.1 Notations and Preliminary Results

We adopt “Bitcoin backbone protocol” analytical toolset (cf. [GKL17, GKL20]) as the main frame-
work to carry out the security analysis of Taxis. In this section we revisit some notations and results
in the bounded-delay network from [GKL20].

Notably, we extend the notation of Dr that models the total difficulty that honest parties can

acquire during round r to Dtx
r (Dtx,tx′

r , resp.), which captures the amount of difficulty that φ
fraction of honest parties associated with tx (tx, tx′, resp.) can get. Specifically, Dtx

r argues for

the median timestamp of tx and Dtx,tx′
r is for the fraction of profiles that report tx′ ≺ tx in the

time window of tx (note that tx, tx′ and tx′, tx are two different pairs, details see analysis below).
We equip the typical execution (see Definition 14(b)) with lower bounds on Dφ,tx

r (Dtx≺φtx′
r , resp.)

as well. On the other hand, we quantify the length of a K-time-window (cf. Equation (2)) and
introduce a new restriction (cf. Condition (C3)) that lower-bounds φ so as to get desired properties
on profile blocks.

Our probability space is over all executions of length at most some polynomial in κ and λ and
we denote by Pr the probability measure of this space. Furthermore, let E be a random variable
taking values on this space and with a distribution induced by the random coins of all entities
(adversary, environment, parties) and the random oracle.

If at round r exactly h alert parties query the oracle with target T , the probability of at least
one of them will succeed is f(T, h) = 1− (1− pT)h ≤ pTh, where p = 1/2κ. During round r, alert
parties might be querying the random oracle for various targets. We denote by Tmin

r and Tmax
r the

minimum and maximum of those targets. Moreover, the initial target T0 implies in our model an
initial estimate of the number of alert parties h0. For convenience, we denote f0 = f(T0, h0) and
simply refer to it as f .

Definition 10. � Round r is good if f/2γ2 ≤ phrT
min
r and phrT

max
r ≤ (1 + δ)γ2f .

� Round r is a target recalculation point of a chain C, if C has a block with timestamp r and
height a multiple of m.

� A target recalculation point r is good if the target T for the next block satisfies f/2γ ≤ phrT ≤
(1 + δ)γf .

� A chain is good if all its target-recalculation points are good.
� A chain is stale if for some u ≥ ℓ + 2∆ it does not contain an honest block with timestamp

v ≥ u− ℓ− 2∆.
� The blocks between two consecutive target recalculation points u and v on a chain C are an epoch

of C. The duration of the epoch is u− v.

Definition 11. For a round r, let:
� GoodChains(r) ≜ “For all u ≤ r, every chain in Su is good.”
� GoodRound(r) ≜ “All rounds u ≤ r are good.”
� NoStaleChains(r) ≜ “For all u ≤ r, there are no stale chains in Su.”

43

� Accurate(r) ≜ “For all u ≤ r, all chains in Su are accurate.”
� Duration(r) ≜ “For all u < r and C ∈ Su, the duration Λ of any epoch in C satisfies 1

2(1+δ)γ2 ·
m
f ≤ Λ ≤ 2(1 + δ)γ2 · mf .”

� CommonPrefix(r) ≜ “For all u < r and C, C′ ∈ Su, head(C ∩ C′) was created after round
u− ℓ− 2∆.”

Random Variables. We are interested in quantifying the difficulty acquired by honest parties at
round r. Thus, following [GKL20], we define three random variables Dr, Yr and Qr with respect
to round r to analyze the total difficulties that are acquired by all alert parties. Especially, for a
specific transaction tx, we associate it with φ fraction of alert parties and wish to extract the lower
bound on total difficulties that these alert parties 9 can acquire during a round r.
� Dr is the sum of the difficulties of all blocks computed by honest parties at round r. Additionally,

fix φ fraction of honest parties with respect to transaction tx (transaction pair tx, tx′ resp.); let

Dtx
r (Dtx,tx′

r resp.) denote the sum of the difficulties of all blocks computed by these parties at
round r.

� Yr is the maximum difficulty among all blocks computed by honest parties at round r.
� Qr is equal to Yr when Du = 0 for all r < u < r +∆ and 0 otherwise.
A round r is called successful if Dr > 0 and isolated successful when Qr > 0. For a set of rounds
S we write h(S) =

∑
r∈S hr and similarly t(S), D(S), Dφ,tx(S), Y (S), Q(S).

Regarding the adversary, while he may query the random oracle for arbitrarily low target and
obtain blocks with arbitrarily high difficulty, we wish to upper-bound the difficulty he can during
a set of J queries. Consider a set of consecutive adversarial queries J and associate it with the
target of the first query (this target is denoted by T (J)). We define A(J) and B(J) to be equal to
the sum of the difficulties of all blocks computed by the adversary during queries in J for target at
least T (J)/τ and T (J), respectively.

Let Er−1 fix the execution just before round r. In particular, a value Er−1 of Er−1 determines
the adversarial strategy and so determines the targets against which every party will query the
oracle at round r and the number of parties hr and tr, but it does not determine Dr or Qr. For an
adversarial query j we will write Ej−1 for the execution just before this query.

Mathematical facts. Fact 1 captures some facts within a (γ, s)-respecting environment.

Fact 1. Let U be a set of at most s consecutive rounds in a (γ, s)-respecting environment and
S ⊆ U .
(a) For any h ∈ {hr : r ∈ U}, h

γ < h(S)
|S| ≤ γh.

(b) h(U) ≤ (1 + γ|U\S|
|S| h(S)).

(c) |S|
∑

r∈S(phr)
2 ≤ γ(ph(S))2.

We are also interested in some martingale inequalities (cf. [GKL17]).

Definition 12. A sequence of random variables (X0, X1, . . .) is a martingale with respect to the
sequence (Y0, Y1, . . .), if, for all n ≥ 0, Xn is determined by Y0, , Yn and E[Xn+1 | Y0, . . . , Yn] =
Xn.

9Note that 1/2 < φ ≤ 1, thus in the worst case there exist exponentially many φ fraction subsets of alert parties.
Nonetheless, since the number of transactions are polynomially bounded with respect to the total running time, we
show that the bad event—difficulties acquired are below the lower bound—is still negligibly small (see the proof of
Theorem 20 for details).

44

Theorem 18. Let (X0, X1, . . .) be a martingale with respect to the sequence (Y0, Y1, . . .). Suppose
an event G implies

Xk −Xk−1 ≤ b (for all k) and V =
∑
k

Var[Xk −Xk−1 | Y1, . . . , Yk−1] ≤ v.

Then, for non-negative n and t,

Pr[Xn ≥ X0 + t ∧G] ≤ exp
{
− t2

2v + 2bt/3

}
.

Protocol parameters and conditions. We summaries all the protocol parameters in Table 2.

Parameter Description

hr The number of alert parties mining in round r.

tr The number of corrupted parties mining in round r.

δ Advantage of honest parties (tr < (1− δ)hr for all r).

f
The probability at least one alert party out of n0 computes a block for target
T0.

m The length of an epoch in number of blocks.

∆ Network delay in rounds.

κ Security parameter; length of the hash function output.

(γ, s) Respecting environment parameter.

ϵ Quality of concentration of random variables.

λ Related to the properties of the protocol.

φ Order-fairness parameter (cf. Definition 7).

R The recency parameter.

K The length of a profile block window in number of rounds.

∆timeout The timeout parameter to process cycles that span for a long time.

Table 2: Summary of Taxis parameters.

In order to get desired convergence, we consider a sufficiently long consecutive sequence of at
least

ℓ =
4(1 + 3ϵ)

ϵ2f [1− (1 + δ)γ2f]∆+1
·max{∆, τ} · γ3 · λ (1)

rounds. Moreover, with the purpose of get desired properties on profile blocks, we would be
considering the length of a K-time-window (measured in number of rounds), the recency parameter
and the fallback timeout parameterto be at least

K = (
γ

ϵ
+ 1)(ℓ+ 3∆), R = 3ℓ+ 6∆ and ∆timeout = 3ℓ+ 7∆+ 5∆tx. (2)

The protocol parameters in Table 2 should satisfy certain conditions in order to make our
analysis viable. First, we require that the length of an epoch is lower-bounded w.r.t. ℓ.

2ℓ+ 6∆ ≤ ϵm

2(1 + δ)γ3f
(C1)

Then, we also require that network delay ∆ and party fluctuation ratio γ is well upper-bounded.

[1− (1 + δ)γ2f]∆ ≥ 1− ϵ and ϵ ≤ δ/8 ≤ 1/8 (C2)

45

Finally, we require that given ϵ, δ, the order fairness parameter φ should be large enough to ensure
that φ fraction of honest parties still substitute more than half of total number of parties (and the
advantage is large enough to aborb the error bounded by 5ϵ).

(1− 7ϵ)φ > 1− δ/2 (C3)

Typical executions. We define the notion of typical executions following [GKL17, GKL20]. The
idea here is that given a certain execution E, we compare the actual progress and the expected
progress that parties will make under the success probabilities. If the difference and variance are
reasonably small, and no bad events (see Definition 13) about the underlying hash function happen,
we declare E typical.

Definition 13. An insertion occurs when, given a chain C with two consecutive blocks B and B′,
a block B∗ created after B′ is such that B,B∗,B′ form three consecutive blocks of a valid chain. A
copy occurs if the same block exists in two different positions. A prediction occurs when a block
extends one with later creation time.

Definition 14 (Typical execution). An execution E is typical if the following hold.

(a) For any set S of at least ℓ consecutive good rounds,

(1− ϵ)[1− (1 + δ)γ2f]∆ph(S) < Q(S) ≤ D(S) < (1 + ϵ)ph(S)

(b) Fix any transaction tx and preference pair tx, tx′ and any set S of at least 2ℓ consecutive good
rounds,

Dtx(S) > (1− ϵ)φph(S) and Dtx,tx′(S) > (1− ϵ)φph(S)

(c) For any set J of consecutive adversarial queries and α(J) = 2(1ϵ +
1
3)λ/T (J),

A(J) < p|J |+max{ϵp|J |, τα(J)} and B(J) < p|J |+max{ϵp|J |, α(J)}

(d) No insertions, no copies, and no predictions occurred in E.

Following [GKL20], we extract the quantitative relations between honest and adversarial hashing
power during some consecutive rounds with length at least ℓ in Lemma 19. Additionally, in order
to extract the accumulated difficulty of profile blocks, we conclude the relationship between total
difficulty acquired by all parties (D(S) +A(J)) and their hashing power in Lemma 19(d).

Lemma 19. Consider a typical execution in a (γ, s)-respecting environment. Let S = {r : u ≤
r ≤ v} be a set of at least ℓ consecutive good rounds and J the set of adversarial queries in
U = {r : u−∆ ≤ r ≤ v +∆}.
(a) (1 + ϵ)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ϵ)Q(S).
(b) T (J)A(J) < ϵm/4(1 + δ) or A(J) < (1 + ϵ)p|J |; τT (J)B(J) < ϵm/4(1 + δ) or B(J) <

(1 + ϵ)p|J |.
(c) If w is a good round such that |w − r| ≤ s for any r ∈ S, then Q(S) > (1 − ϵ)[1 − (1 +

δ)γ2f]∆|S|pnw/γ. If in addition T (J) ≥ Tmin
w , then A(J) < (1− δ + 3ϵ)Q(S).

(d) If w is a good round such that |w−r| ≤ s for any r ∈ S and T (J) ≥ Tmin
w , then D(S)+A(J ′) <

(1 + ϵ)p(h(S) + |J ′|) where J ′ denotes the set of adversarial queries in S.

46

Proof. For the proof of items (a)(b)(c), we refer to [GKL20]. Regarding Lemma 19(d), note that
we are under the same condition as that in Lemma 19(c), we have

A(J ′) < A(J) < (1−δ+3ϵ)Q(S) ≤ (1−δ+3ϵ)(1+ϵ)ph(S) < (1−δ+3ϵ)(1+ϵ)(1−δ)p|J ′| < (1+ϵ)p|J ′|.

The second inequality follows Lemma 19(c); the third one comes from Definition 14(a); the last
inequality is a consequence of Condition (C2).

By combining the upper bound on A(J ′) with D(S) < (1 + ϵ)ph(S) (which comes from the
definitions) we get the desired inequality.

We claim that almost all executions that are polynomially bounded in κ and λ are typical.

Theorem 20. Assuming the ITM system (Z, C) runs for L steps, the probability of the event “E
is not typical” is bounded by poly(L)(e−λ + 2−κ).

Proof. Definition 14 extends the definition of typical executions in [GKL20] by adding item (b).
Hence regarding the proof of item (a)(c)(d) in Definition 14, we refer to [GKL20]. In this proof we
only consider Definition 14(b) and the eventual error probabilities.

Fix a transaction tx and its associated φ fraction alert parties. Fix a set of R ≥ 2ℓ consecutive
rounds S = s1, s2 . . . , sR and let hj , j ∈ [R] denote the number of honest queries make during round
sj . We work on per query that φ fraction of honest parties make during S. Let J denote the queries
(made by φ fraction of honest parties) in S, ν = |J | ≥ φh(S), and Zi the difficulty of any block
obtained from query i. Consider the sequence of random variables

X0 = 0;Xk =
∑
i∈[k]

Zi −
∑
i∈[k]

E[Zi|Ei−1], k ∈ [ν].

This is a martingale sequence with respect to sequence (E0, E1, . . . , Eν) in that

E[Xk|Ek−1] = E[Zk − E[Zk|Ek−1]|Ek−1] + E[Xk−1|Ek−1] = Xk−1.

The last equation follows the linearity of conditional expectation and the fact that Xk−1 is a
deterministic function with respect to Ek−1.

Regarding the details relevant to Theorem 18, we pick t as

ϵ
∑
i∈[ν]

E[Zi|Ei−1 = Ei−1] ≥ ϵφ
∑
j∈[R]

phj = ϵφph(S)
def
= t

and consider an execution satisfying Gt. Fix i ∈ [ν], let j be the round sj that query i belongs to.
Let

Zi − E[Zi|Ei−1 = Ei−1] ≤
1

Tmin
j

=
phj

phjTmin
j

≤ γph(S)

phjTmin
j R

≤ γph(S)

fR/(2γ2)
=

2γ3t

ϵφfR

def
= b

and we see that the event G implies Xk −Xk−1 ≤ b. To get the bound on V , note that

Var(Xk −Xk−1|Ek−1) = E[(Zi − E[Zi|Ei−1])
2|Ek−1] ≤ E[Z2

i |Ek−1].

Hence, based on the independence of random variables as well as Fact 1(c), we pick v as∑
k∈[ν]

E[Z2
i |Ek−1 = Ek−1] ≤ φ

∑
j∈[R]

∑
i∈[hj]

1

T 2
i

· pTi = φ
∑
j∈[R]

phj

Tmin
j

= φ
∑
j∈[R]

(phj)
2

phjTmin
j

≤ 2φγ2

f

∑
j∈[R]

(phj)
2 ≤ 2φγ3

fR
· (ph(S))2 ≤ 2γ3t2

ϵ2φfR

def
= v.

47

In view of these bounds (note that bt = ϵv), by Theorem 18, we have

Pr[−Xν ≥ t ∧Gt] ≤ exp
{
− t2

2v(1 + ϵ
3)

}
≤ exp

{
− ϵ2φfR

4γ3(1 + ϵ
3)

}
≤ e−λ.

Note that the last inequality comes from Condition (C1) and φ vanishes since Condition Condi-
tion (C3) implies that φ > 1/2.

The above arguments also applies, when we fix a transaction preference pair tx, tx′. Now
consider the execution that runs for L steps. The total number of transactions is bounded by
poly(L); and the total number of preference pairs is bounded by poly(L) as well. Regarding the
preference pairs notice that they grow quadratically with the number of transactions hence remain
a polynomial function of the running time. We get

Pr[failure of Definition 14(b)] = 1− (1− e−λ)poly(L) ≤ poly(L)e−λ. (3)

Combining Equation (3) and those error probabilities in [GKL20], we get asymptotically the
same result. I.e., the probability that “E is not typical” is bounded by poly(L)(e−λ + 2−κ).

Security properties of the Taxis blockchain from [GKL20]. We briefly describe the blockchain
security properties common prefix and chain quality, which applies to the blockchain (i.e., chain
of ledger blocks) in Taxis. Notably, common prefix is defined by pruning blocks according to their
timestamps.

� Common Prefix (CP) with parameter k ∈ N. For any two alert parties P1,P2 holding chains

C1, C2 at rounds r1, r2, with r1 ≤ r2, it holds that C⌈k1 ≼ C2.
� Chain Quality (CQ) with parameter k ∈ N and µ ∈ [0, 1]. For any party P with chain C and

any segment of that chain of difficulty d such that the first block of the segment was computed
at least k rounds earlier than the last block, the blocks the honest parties have contributed in
the segment have total difficulty at least µ · d.

While we introduce 2-for-1 PoW to produce profile blocks and collect them later, the Taxis
blockchain is still of the same structure as Bitcoin backbone protocol [GKL15, GKL17], thus
achieving blockchain properties remains the same as the analysis in [GKL20]. Hence, for these
two properties, we refer to [GKL20]. When appropriately parameterized, blockchain in Taxis sat-
isfies these two security properties except with probability negligibly small in κ. In addition, the
same argument stands for those predicates defined in Definition 11.

Theorem 21 (Security of Taxis blockchain). In a typical execution and (γ, s)-respecting envi-
ronment, if Conditions (C1), (C2) are satisfied, then the Taxis blockchain satisfies common prefix
with parameter k = ℓ + 2∆ and chain quality with parameters ℓ + 2∆ and δ − 3ϵ. Meantime, all
predicates of Definition 11 hold.

D.2 Properties of Profile Blocks and Median Timestamp

In this section we focus on the properties of profile blocks collected in the Taxis blockchain. We
first show that thanks to the freshness introduced by block hash in the settled blockchain and
the recency parameter R, the adversary cannot start to mine profile blocks containing a specific
transaction tx much earlier than the beginning of tx’s K-time-window. Note that Lemma 22 holds
also for those adversarial transactions.

48

Lemma 22. In a typical execution and (γ, s)-respecting environment, consider a transaction tx.
Suppose r is the timestamp of the earliest ledger block that contains a profile block with tx. Then,
the adversary mined profile blocks containing tx no earlier than r − 4(ℓ+ 2∆).

Proof. For the sake of a contradiction, suppose the adversary mined such a block at round r′ <
r − 4(ℓ + 2∆). We show that this implies the happening of prediction (cf. Definition 13) or the
violation of either CommonPrefix or Accurate, contradicting the execution being typical.

Let PB denote the first profile block with tx. Since PB is considered “recent” with respect
to the ledger block with timestamp r, PB should point to a ledger block LB with timestamp
TS(LB) ≥ r − 3ℓ + 6∆. We write the creation time of LB as rLB. We have rLB ≥ r − 4(ℓ + 2∆);
otherwise, it violates Accurate in that LB’s timestamp deviates from its creation time for more
than ℓ+2∆ rounds. However, since the creation time of LB is r′LB ≥ r− 4(ℓ+2∆), A start to mine
PB at round r′ < r− 4(ℓ+2∆) using LB’s block hash implies a happening of prediction because A
successfully extends a block before its creation time. This concludes our proof.

Next, we show that, in a typical execution, the profile blocks (weighted in terms of their diffi-
culty) that φ fraction of honest parties (φ satisfies Condition (C3)) can produce is proportional to
their relative hashing power, except with some well-bounded disadvantage 5ϵ. Note that this result
directly implies φ fraction of honest parties will accumulate more than half of the total difficulty
(i.e., more difficulty than the coalition of the rest of honest parties and the adversary).

Lemma 23. In a typical execution and (γ, s)-respecting environment, assuming all the conditions
are satisfied, consider a transaction tx. Let r be the timestamp of the earliest ledger block containing
tx, and d the total difficulty of profile blocks containing tx which are included in a ledger block with
timestamp r′ such that r ≤ r′ ≤ r + K. We have (i) φ-fraction of honest parties mined profile
blocks with total difficulty at least d/2; and (ii) for any transaction tx′, φ-fraction of honest parties
mined profile blocks of tx′, tx with total difficulty at least d/2.

Proof. Let C denote a chain held by an honest party at round r + K + (ℓ + 2∆). Let S0 = {u :
r ≤ u ≤ r + K} denote the valid timestamp set for ledger blocks that include timestamp blocks
with tx. Let LB be the last block produced by honest parties before round r +K and denote its
timestamp by rLB. Since C will become stale if there is no honest block from rLB +K − (ℓ + 2∆)
for ℓ+ 2∆ rounds, we get that r +K − (ℓ+ 2∆) < rLB ≤ r +K.

Let S1 = {u : r + (ℓ+ 2∆) ≤ u ≤ rLB −∆} and S2 = {u : r − 4(ℓ+ 2∆) ≤ u ≤ rLB + ℓ+ 2∆}.
S1 is the time interval for all honest parties to mine profile blocks with tx; and S2 is for the
adversary. The lower bound of S1 is derived from the fact that every honest party will learn the
earliest ledger block after (ℓ+ 2∆) rounds after its timestamp, and the upper bound is because all
timestamp blocks will take up to ∆ rounds to diffuse to all honest parties. The lower bound of S2

is acquired due to the unpredictability discussed in Lemma 22. Regarding the upper bound of S2,
it is achieved by considering the first honest block LB′ after rLB +K, which will have timestamp
rLB′ < rLB+ ℓ+2∆ (otherwise it violates NoStaleChains). The adversary cannot produce blocks
in S0 after rLB′ as it can no longer revert LB′, so all the subsequent timestamp blocks produced
after rLB′ are invalid w.r.t. the current chain.

Let J denote the adversarial queries associated with S2. We first consider item (i). In order to
prove that φ fraction of honest parties can produce at least half of timestamp block difficulty, it
suffices to show that Dtx(S1) > d/2.

We show that the number of alert parties in S2 is at most 4ϵ more than that in S1.

h(S2) ≤ (1 +
γ|S2\S1|
|S1|

)h(S1) ≤

(
1 +

γ(5ℓ+ 10∆)

K − (ℓ+ 3∆)

)
h(S1) < (1 + 5ϵ)h(S1).

49

The first inequality comes from Fact 1(b); the second one follows the discussion above; the last one
holds since by Equation (2) we get |S1| ≥ K − (ℓ+ 3∆) = γ(ℓ+ 3∆)/ϵ.

Next, note that by combining Condition (C1) with Equation 2 we get |S2| ≤ K + 5(ℓ+ 2∆) ≤
(γ/ϵ+ 6)(ℓ+ 3∆) < 2γ(ℓ+ 3∆)/ϵ ≤ 1

2(1+δ)γ2 · mf . This implies that during S2, the blockchain will

evolve at most two epochs, which satisfies the pre-condition of Lemma 19(d). We get

Dtx ≥ (1− ϵ)φph(S1) > (1− 6ϵ)φph(S2) > (1− 6ϵ)
φ

2− δ
p[h(S2) + |J |]

> (1− 7ϵ)
φ

2− δ
[D(S2) +A(J)] > (1− 7ϵ)

φ

2− δ
[D(S1) +A(J)] >

1

2
[D(S1) +A(J)] =

d

2
.

The first inequality comes from the typical execution (cf. Definition 14); the second one is achieved
by substituting h(S1) with h(S2); the next inequality follows the honest majority setting; and the
forth one is by applying Lemma 19(d); the last inequality holds due to Condition (C3).

Regarding item (ii), we associate a transaction pair tx′, tx with a set of φ fraction honest parties
and get the same result.

Lemma 23 implies that, first, the median timestamp med(tx) of tx in the K-time-window is
within the ∆tx rounds that tx is disseminated to all honest parties; and second, if tx′ ≺φ tx, then
in the dependency graph G in an honest party’s view after both tx, tx′ are in TXPool, there will
be an edge (tx′, tx) in G.

Lemma 24. In a typical execution and (γ, s)-respecting environment, consider a ∆tx-disseminated
transaction tx. Let r denote the least round that tx is received by at least one honest party.
The weighted median timestamp associated with tx in its K-time-window satisfies r ≤ med(tx) <
r +∆tx.

Proof. Suppose med(tx) < r or med(tx) ≥ r + ∆tx, which means that there exist profile blocks
with more than half of the total difficulty that report a timestamp earlier than r or no earlier than
r+∆tx. This contradicts the fact that the difficulty of profile blocks containing tx and reporting a
timestamp t of tx such that r ≤ t < r+∆tx constitutes at least half of the total difficulty, according
to Lemma 23.

Lemma 25. In a typical execution and (γ, s)-respecting environment, consider two transactions
tx, tx′ such that tx ≺φ tx′. Let r be the time such that both the K-time-window of tx and tx′ are
in TXPool, and let G = (V,E) denote the dependency graph at round r in an honest party’s view.
It holds that (tx, tx′) ∈ E.

Proof. Lemma 23 implies that in the K-time-window of both tx and tx′, majority of the profile
blocks (counted by their accumulated difficulty) will report tx ≺ tx′. At a round that tx′ ∈ TXPool,
an edge (tx, tx′) will be added to G. Moreover, at a round that tx ∈ TXPool, it will not add edge
(tx′, tx) to G or remove (tx, tx′) if it exists. This concludes our proof.

Lemma 26. In a typical execution and (γ, s)-respecting environment, if a transaction tx is associ-
ated with a K-time-window starting at time r, then for every transaction tx′ such that tx ≺φ tx′ is
false (either tx′ ≺φ tx or incomparable), tx′ is associated with a K-time-window starting at time
r′ ≤ r + 3ℓ+ 7∆+ 2∆tx.

Proof. Suppose t is the earliest round such that tx is received by at least one honest party. Since
all transactions are ∆tx-disseminated, for every tx′ such that tx ≺φ tx′ is false, tx′ is received by
at least one honest party no later than t + ∆tx (otherwise tx′ must be at a later position in all
profiles).

50

We have r ≥ t− (ℓ+2∆), since a ledger block with timestamp r should be learnt by all honest
party before round r+ ℓ+2∆. Next, we consider a tx′ such that tx′ ≺φ tx and its K-time-window
starting at time r′. tx′ will be received by all honest parties no later than r+2∆tx, since it is ∆tx-
disseminated. Moreover, due to chain quality, there will be at least one profile block PB containing
tx produced at time before r+2∆tx + ℓ+2∆; and PB will be included in a ledger block with time
r′ ≤ r + 2∆tx + 2ℓ+ 5∆ (again because of chain quality and it takes up to ∆ rounds to diffuse PB
to all honest parties). This concludes our proof.

D.3 Consistency, Liveness and Order-Fairness

We prove that the ledger L of Taxis satisfies three desired properties. For consistency, parties
have to remove a suffix of transactions from their local ledger L according to the starting point
of their K-time-window. More specifically, suppose the consistency parameter is kL. At round
r parties remove transactions in L such that the settled part does not contain transactions with
K-time-window starting after r − kL. Note that the beginning time of K-time-window might not
be monotonically increasing in L, hence a transaction tx whose time window starts before r − kL
might also be removed if a transaction with later starting point precedes tx in L (but parties should
let the settled part contain as many transaction as possible).

We say that a vertex v in the condensed dependency graph G∗ is confirmed if all the transactions
in v have their K-time-window in the settled part of the Taxis blockchain and all their ancestors in
G∗ have confirmed.

Theorem 27 (Consistency). In a typical execution and (γ, s)-respecting environment, Consis-
tency is satisfied by setting the settled transactions to be those reported more than K+4ℓ+9∆+2∆tx

rounds deep.

Proof. Consider two honest parties P1,P2 reporting L1,L2 at rounds r1 ≤ r2, respectively. For the
sake of a contradiction, suppose after removing all unsettled transactions from L1,L2 it holds that
L1 ̸⪯ L2, and let tx1, tx2 denote the transaction in L1 and L2 after the fork respectively. Let Gr

denote the dependency graph at round r and G∗
r its condensation graph, and v1, v2 the vertices in

G∗
r that contains tx1, tx2 correspondingly.
Since transactions are more than K + 4ℓ+ 9∆+ 2∆tx rounds deep and TXPool contains trans-

actions that are K + ℓ+ 2∆ round deep, by considering Lemma 26, it holds that for a transaction
tx1 (tx2 resp.) in the settled part of L, if tx2 ≺φ tx1 (tx1 ≺φ tx2 resp.) then tx2 (tx1 resp.) will
be in TXPool.

If tx1 and tx2 are not in the same cycle, we have v1 ̸= v2 and consider three scenarios. (i)
Suppose tx1 ≺φ tx2, at round r2 since tx2 ∈ L we have tx1 ∈ TXPool. And, an edge (v1, v2) must
exist in G because of Lemma 25. This contradicts the fact that L2 report tx2 before tx1, as (v1, v2)
implies that tx1 must be ordered before tx2. (ii) Suppose tx2 ≺φ tx1, at round r1 since tx1 ∈ L we
have tx2 ∈ TXPool. And, an edge (v2, v1) must exist in G because of Lemma 25. This contradicts
the fact that L1 report tx1 before tx2. (iii) We suppose tx1, tx2 are incomparable. Consider Gr1 it
holds that both tx1, tx2 are in TXPool. For all round r ≥ r1, the existence and orientation of edge
between tx1, tx2 are the same as that at round r1. If (tx1, tx2) ∈ Gr1 , then it contradicts the fact
that L2 reports tx2 before tx1 at round r2; if (tx2, tx1) ∈ Gr1 , then it contradicts the fact that L1
reports tx1 before tx2 at round r1; and if no edge exists, L1 reports tx1 before tx2 implies that
the beginning time of the K-time-window of tx1 is earlier than that of tx2, again this contradicts
the fact that L2 reports tx2 before tx1.

If tx1 and tx2 are in the same cycle, we have v1 = v2. Note that after the completion of an
SCC (completion means that all transactions in SCC are confirmed), no vertices can be added or

51

removed. This is because if a vertex is added, it implies that some vertices in the SCC are waiting
for other transactions, contradicting that SCC is complete; if a vertex is removed, then it implies
some of the vertices in the SCC contains the transaction that are not in TXPool. Suppose the cycle
is small, we directly get the contradiction in that Algorithm 1 is deterministic.

Now, suppose that the cycle is large and it runs the fallback mechanism in Protocol 3. And
consider a transaction tx in this cycle with K-time-window starting at round r. Lemma 26 guar-
antees that all transactions that might have a median timestamp earlier than tx will start their
K-time-window no later than 3ℓ + 7∆ + 2∆tx, since Lemma 24 implies that the median times-
tamp will fall in the ∆tx-dissemination window. Hence, when tx is still in Vunconfirmed at round
r + K + 4ℓ + 9∆ + 7∆tx, it implies that a cycle spans for more than 3∆tx rounds exist. And by
outputing transactions with an increasing order on their median timestamps up to tx, we get that
the output at the ongoing of this long cycle is consistent. When tracing back at the future rounds,
note that for tx to be in Vunconfirmed at round r +K + 4ℓ+ 9∆+ 7∆tx, there must exist a tx′ such
that its K-time-window starts no earlier than r+3ℓ+7∆+7∆tx which will pass the check in Line 7
in Protocol 3 and always output the same order due to the median timestamp rule.

Theorem 28 (Liveness). In a typical execution and (γ, s)-respecting environment, Liveness is
satisfied for wait time K + 6ℓ+ 14∆+ 7∆tx rounds.

Proof. Let r denot the least round such that tx is learnt by all alert parties. Similar to the
argument in Lemma 26 we get that tx and its K-time-window will start with a timestamp no later
than r+2ℓ+5∆. Since the fallback in Protocol 3 guarantees that tx is forcibly inserted into L after
remaining in the dependency graph for more than ∆timeout rounds, by considering Equation (2) we
get K + 6ℓ+ 14∆+ 7∆tx, this completes the proof of liveness.

Theorem 29 (Order-Fairness). In a typical execution and (γ, s)-respecting environment, Taxis
implements (φ, TDBW)-fair-order serialization.

Proof. Fix an execution E and honest profiles RH. Consider the dependency graph G in an honest
party’s view at the end of the execution. Lemma 25 shows that all edges in GRH,φ will be in G.

I.e., G is a spanning supergraph of GRH,φ. It suffices to prove that there exist RA such that the

(⟨RH,RA⟩)-dependency graph is exactly G. Note that RH in K rounds are proportional to the
profile blocks mined with timestamps fall in these K rounds. Their exist some RA that is also
proportional to the adversarial profile blocks mined in this time period.

Note that by considering Lemma 26 and ∆timeout in Equation (2), we get that any cycle that
passes the fallback check has vertices with timestamp difference more than 5∆tx rounds. Since the
adversarial manipulation on the transaction is up to ∆tx rounds, this implies that there exist at
least two transactions in the cycle such that the first time that they are delivered to an honest
party is at least 3∆tx apart. Combining this result with Theorem 8 and 9 we learn that their order
follows Definition 7. This concludes the proof.

52

	Introduction
	Our Results

	Preliminaries
	Protocol Execution Model
	Transaction Profiles and Dependency Graphs

	Order Fairness
	Bounded Unfairness and Serialization
	Transaction Dependency Graphs
	Bounded Unfairness from Directed Bandwidth
	Fairness versus Liveness
	Bounded Unfairness in a Permissionless Environment

	Taxis Protocol
	TaxisWL Protocol
	Taxis Protocol
	Taxis with Dynamic Participation

	Discussion and Future Directions
	Further Related Works
	Blind Order Fairness
	Block Order Fairness
	Timed Order Fairness.

	Preliminaries (Cont'd)
	Proofs, Algorithms and Examples Omitted in the Main Body
	Proofs Omitted in Section 3
	Hardness of DirectedBandwidth over Oriented Graphs
	An Exact Algorithm for DirectedBandwidth
	A Faster Algorithm for DirectedBandwidth over Dependency Graphs
	Upper Bound on Worst Case Directed Bandwidth
	Examples of Comparison with Existing Protocols
	Taxis protocols

	Security Analysis
	Notations and Preliminary Results
	Properties of Profile Blocks and Median Timestamp
	Consistency, Liveness and Order-Fairness

