
Revealable Functional Commitments:
How to Partially Reveal a Secret Function⋆

Bharath Raj Namboothiry

Stanford University
brn@stanford.edu

Abstract. A revealable functional commitment allows a prover to com-
mit to a secret polynomial size function f . Later, the prover has the
ability to (1) prove that y = f(x) for public x, y and (2) open a small
window into f ’s machinery, via an encoded set of constraints - all with-
out divulging any other information about f . In this way, revealable
functional commitments allow the operator of a proprietary function to
prove desired predicate about the function. For example, a government
can commit to a bail decision algorithm, and prove that the same algo-
rithm is being used for all defendants. They can also quell concerns about
bias, and increase transparency processes by revealing windows into what
their function does - while keeping most of their function secret to prevent
exploitation. To build a revealable functional commitment, we introduce
a proof of reveal, to show that a set of constraints, combined with a set
of guarantees about those constraints, is consistent with a committed
secret function. We show that combining a algebraic holomorphic proof
(AHP), a proof of function relation (PFR) [4], and a proof of reveal
yields a secure revealable functional commitment scheme. Additionally,
we construct proof of reveals for two popular PFR-equipped AHPs, and
obtain two instantiations of revealable functional commitments. Towards
that end, we also develop interactive protocols that prove properties of
committed polynomials, which may have independent value.

Keywords: Cryptography, ZK Protocols, Commitment Schemes

1 Introduction

We introduce a new primitive called revealable functional commitments. In this
primitive, a committer commits to a secret function f : X → Y via a succinct
hiding and binding commitment scheme. Then, the committer can open the
function at any public point (x, y), and prove that f(x) = y without revealing
anything else about the function. Additionally, the committer can reveal an
arbitrarily sized public portion of the function, and prove that (1) the portion
is contained in the function and (2) aside from designated values, the portion is
self-contained.

⋆ Special thanks to Dan Boneh and Stanford ACG for their mentorship and guidance

2 B. Namboothiry

More specifically, a revealable function commitment is a tuple
(Setup,Commit,Eval,Reveal). Setup(1λ, N) is a randomized algorithm that
generates public parameters pp, which will support the commitments to
functions of size N . Commit(pp, f, r) is a deterministic algorithm that takes
as input the function description f , along with randomness r, and outputs
a hiding and binding commitment c. Eval is a interactive protocol between
a prover PE(pp, f, r, x, y) and a verifier VE(pp, c, x, y), which convinces the
verifier that f(x) = y. Finally, Reveal is an interactive protocol between a prover
PR(pp, f, r, q) and a verifier VR(pp, c, q) which convinces the verifier that q is a
valid reveal of f .

Informally, to be a valid reveal, q must be a description of a subset of the
constraints f imposes on its inputs. Additionally, values that q constrains must
not be constrained elsewhere, unless pre-designated by the prover. This second
condition is necessary to ensure that q actually discloses behavior of the function,
and cannot be “worked around” via intersecting constraints. This definition is
presented formally in section 3. Intuitively, the Reveal protocol does not disclose
any information about f that is not contained in q. The security properties we
seek for the entire scheme are formally defined in section 4.

Revealable functional commitments contribute the the budding field of algo-
rithmic fairness. Using the Commit method, parties can commit to proprietary
algorithms, and using the Eval method, the public can rest assured that the same
algorithm is being applied to all, as the commitment is binding. Additionally,
using the Reveal method, the owners of the algorithm can publish portions of the
function to prove to the public that the algorithm abides by agreed upon fair-
ness or compliance criteria. Below are some examples of real world applications
of this scheme:

– Bail Decisions: When a person is arrested (in the United States), they typi-
cally have a hearing where a judge decides if they should be released while
they await trial and if so, how much it will cost them. Unfortunately, bail
decisions are very prone to bias [1]. Recent legislature has proposed using an
algorithm to make bail decisions - an algorithm that would likely have to be
kept secret to prevent exploits. With a revealable functional commitment, a
government can make a hiding and binding commitment to a bail function,
and using the Eval method, defendants can ensure that the same function
is being applied to all. Additionally, machinery of the bail function can be
published to quell bias concerns. For example, the government can publish a
hash function, and prove that (1) the name, race, and gender of a defendant
are hashed in the function and (2) this information is not available to any
part of the function other than the published hash machinery.

– Credit Scoring: Credit bureaus in the United States assign credit scores to
customers, which are then used by various institutions for lending terms.
These algorithms are company secrets, and are therefore kept proprietary.
With a revealable functional commitment scheme, a credit bureau could
commit to a secret credit scoring function, and the public could be assured
that the same function is being used for all. Additionally, by publishing ma-

Revealable Functional Commitments 3

chinery, they could increase the amount of transparency into their algorithm,
while keeping privileged information hidden.

1.1 Previous Work

This work builds off of the previous work of Boneh, Nguyen, and Ozedmir [4].
In their paper, they introduce function hiding functional commitments, which
allow a prover to commit to a secret function, and then prove openings of the
committed function at a public points. Their construction consists exactly of
the methods Setup,Commit,Eval. This work allowed for a function to be private,
with the assurance that all evaluations actually came from the private function.
However, in the setting of algorithmic fairness, we are concerned with more than
just the consistency of the algorithm - we want to know the algorithm was not
biased in the first place. Therefore, this papers construction, with the inclusion
of the Reveal method, aims to tackle this exact problem.

2 Preliminaries

2.1 Notation and Terminology

For the reader’s reference, we will begin by covering mathematical notation and
terminology used in the paper. For n ∈ N>0 we denote [n] to be the sequence
(1, 2, . . . , n). We denote multisets as {{·}}. We use || to denote the concatenation
operator. Generally, λ will refer to the security parameter. We consider a function
f(n) as poly(n) if there is some c ∈ N such that f(n) = O(nc). We consider a
function g(n) as negl(n) if for all c ∈ N, g(n) = o(n−c). We refer to any such
g as negligible. We call a probability of 1− negl(n) an overwhelming probability.
We call an algorithm PPT if it is probabilistic and runs in time polynomial in
its input size.

Let F be a field of large prime order p with a canonical ordering such that
log(p) = Ω(λ), and 2k | (p − 1) for some k ∈ N. In the discussion of Plonk, we
also require that 3 | (p− 1). For γ ∈ F ∗, let ⟨γ⟩ = {yi}i∈N. Let F(<d)[X] denote
the set of polynomials in X of degree < d with coefficients in F.

Let {Dλ}λ∈N, {D′
λ}λ∈N be two families of probability distributions. When it

is clear from the context, we write {D} = {D′} to indicate that the distributions
are the same.

2.2 Commitment Schemes

A commitment scheme for a set of messages X consists of the following two
algorithms:

– Setup(1λ)→ pp: Given the security parameter λ, (randomly) sample public
parameters

– Commit(pp, x ∈ X .r ∈ R)→ c ∈ C: Given public parameters, message x, and
randomness r, (deterministically) produce a commitment c to x.

4 B. Namboothiry

A commitment scheme must satisfy the following two properties:

– Binding : For all PPT adversaries A:

Pr

 x1 ̸= x2∧
Commit(pp, x1, r1)

= Commit((pp, x2, r2)

∣∣∣∣∣∣ pp
$←− Setup(1λ)

(x1, r1, x2, r2)
$←− A(pp)

 ≤ negl(λ)

– Perfect Hiding: For all x1, x2 ∈ X , with pp← Setup(1λ),

{Commit(pp, x1, r) : r2
$←− R} = {Commit(pp, x2, r2) : r2

$←− R}

2.3 Polynomial Commitment Schemes

Polynomial Commitment Schemes (PCS) [3,9,5] allow a prover to commit to a
polynomial f ∈ F[X] with degree up to d. Afterwards, the prover can convince
the verifier that for some x, y ∈ F, f(x) = y. A PCS is defined by the following
algorithms:

– PC.Setup(1λ, {di}i) → (ck, vk) : Given the security parameter and a set of
degree bounds, output a commitment key (ck) and a verifying key (vk).

– PC.Commit(ck, f ∈ F<di [X], di, r)→ c : Given the commitment key, a poly-
nomial f of degree less than di, and randomness r, output a commitment c
to f

– PC.Eval(ck, f ∈ F<di [X], di, r, x ∈ F) → π : Given the commitment key,
polynomial f of degree less than di, randomness r and an evaluation point
x ∈ F, output an evaluation proof π

– PC.CheckEval(vk, c, di, x ∈ F, y ∈ F, π) → {0, 1} : Given verifying key, com-
mitment c, degree bound di, evaluation point x and claimed evaluation out-
put y, output decision ∈ {0, 1}

We consider a PCS secure if it is a hiding and binding commitment to f ,
with an evaluation proof that is an argument of knowledge. Additionally, evalu-
ation proofs may be zero-knowledge. In this paper, we will use the PCS scheme
from [4], which modifies [5] to make the evaluation routine honest-verifier zero-
knowledge.

Homomorphisms For commitments respecting the same degree bound, the
polynomial commitment schemes in [4,3,9,5] have commitment and randomness
spaces that are linearly homomorphic. That is, if a verifier has commitments
c1, c2 to polynomials f1, f2, they can derive a commitment c3 to polynomial f3
if f3 is a linear combination of f1 and f2. Similarly, a prover can derive the
commitment randomness r3 of c3 from a linear combination of the randomness
of c1 and c2

Revealable Functional Commitments 5

2.4 Polynomial Interactive Oracle Proofs

Polynomial interactive oracle proofs [4], or polyIOPs, are powerful tools that will
be the workhorses of our construction. Before giving a definition, it is helpful to
review oracle relations.

Oracle Relations Let O ⊆ (F[X])c be an oracle space for feild F and constant
c. Let X ⊆ {0, 1}∗ be an instance space, and let W ⊆ {0, 1}∗ be a witness
space. An oracle relation R ⊂ O × X ×W is a set of triples (o⃗, x, w), and the
language of R, denoted L(R) is the set of pairs (o⃗, x) where there exists w ∈ W
such that (o⃗, x, w) ∈ R. We denote RN as a restriction of R with ∥o⃗∥ ≤ N ∈ N.

A polyIOP for an oracle relation R is an interactive proof between a prover
P and a verifier V. In this protocol, P has the ability to send polynomial oracles
that V can access only through evaluation queries. Concretely, a polyIOP is a
tuple:

polyIOP = (P,V, k ∈ N, s : N→ N, d : N3 → N)

Above, P,V are PPT interactive algorithms. For (o⃗, x, w) ∈ RN , P receives
inputs (F, o⃗, x, w) and V receives (F, x,N) and input oracles o⃗. P and V then
interact, during which P can only send oracles to V. At any point, V can query
any of the sent or input oracles it has. After k rounds of interaction, V outputs
an accept/reject decision.

The functions s, d bound the number and degrees of polynomials sent in every
round. For each round i ∈ [k], V can send a message mi ∈ F∗, and P sends back
s(i) oracles oi,1 . . . oi,s(i) in F[X] such that ∀j ∈ [s(i)], deg(oi,j) < d(N, i, j). We
denote the input oracles as o⃗ = (o0,1 . . . o0,s(0)). This, s(0), {d(N, 0, j)}j encode

number and degree bounds on o⃗. A pair (o⃗, P̃) is considered admissable if the
degree bounds encoded in d are satisfied by all input and sent oracles. Also,
oracles are additive, meaning that if V has access to oracles f, g, it can derive
and query a new oracle f + g.

PolyIOP Security A polyIOP can have the following properties:

– Completeness: For all (o⃗, x, w) ∈ R,

Pr[⟨P(F, o⃗, x, w),V o⃗(F, x,N)⟩ = 0] ≤ negl(λ)

i.e. if the statement is in the relation, then the verifier should accept with
probability close to 1.

– Soundness: For all (o⃗, x) ∈ L(R),

Pr[⟨P,V o⃗(F, x,N)⟩ = 1] ≤ negl(λ)

i.e. for a statement not belonging to the language, the verifier only accepts
it with negligible probability.

6 B. Namboothiry

– Knowledge Soundness: A polyIOP has knowledge error ϵ if there exists a
PPT extractor E such that for all oracles o⃗, instances x, and PPT adversaries
P̃ such that

Pr[w ← E P̃(F, o⃗, x,N) ∧ (o⃗, x, w) ∈ R] ≥ Pr[⟨P̃,V o⃗(F, x,N)⟩ = 1]− ϵ

where E P̃ means the extractor has blackbox rewind access to the prover P̃
as a set of next-message functions. When ϵ is negligible, we consider the
polyIOP knowledge-sound

– (Perfect) Honest Verifier Zero Knowledge: There exists a PPT simu-
lator S, for all (o⃗, x, w) ∈ R,

{S(F, x,N)} =
{
View

(
⟨P(F, o⃗, x, w⟩),V o⃗(F, x,N)⟩

)}
where the View

(
⟨P(F, o⃗, x, w),V o⃗(F, x,N)⟩

)
is the view of the honest verifier

V during the interaction.

Definition 1 (Secure PolyIOP). A polyIOP for relation R is secure if it
is complete, sound, knowledge sound, and has (perfect) honest-verifier zero-
knowledge for R

Virtual Oracles Oracles sent by the prover or given initially are referred to as
concrete oracles. Virtual oracles [2] are polynomials whose evaluations can be
efficiently computed from concrete oracle evaluations. Formally, let f1 . . . fn ∈
F(<B)[X] be concrete oracles. A virtual oracle F ∈ F(<D)[X] has the form:

F (X) := G(X,h1(v1(X)), . . . hm(vm(X))

where for i ∈ [m], hi ∈ {f1, . . . fn}, vi ∈ F(<b)[X], G ∈ F[X,X1 . . . Xm], and
G, {vi}i are public. Particularly, we are interested in the cases were D is negl(λ)
and m, b,deg(G), and the monomial count of G are constants.

Oracles in secure polyIOP can be swapped with virtual oracles, as the under-
lying soundness depends only on the evaluations.

Compilation A polynomial commitment scheme can be leveraged to compile
a polyIOP into a standard protocol. Whenever P sends an oracle to V, simply
have the prover sent a commitment to the polynomial. Then when V sends an
evaluation query, P simply responds with the evaluation along with an evalu-
ation proof. We use this method in our construction of a revealable functional
commitment scheme

2.5 Algebraic Holographic Proofs

Index Relation Let I be an index space, let X be an instance space, and let
W be a witness space. We call R ⊆ I ×X ×W an index relation. Here, an index
i ∈ I explicitly represents a binary relation B ⊆ X ×W where x ∈ X , w ∈ W

Revealable Functional Commitments 7

represent public and witness inputs, respectively. Again, let RN denote the
restriction of R to indices |i| ≤ N ∈ N.

We can connect the concepts of index relations and oracle relations with an
algebraic hologoraphic proof, or AHP, using our previous definition of polyIOPs.

Definition 2 (Algebraic Holographic Proof). A (constant round) algebraic
holographic proof [5], or AHP, for an index relation R ⊆ I ×X ×W is a tuple:

(EncAHP,PAHP,VAHP, k ∈ N, s : N→ N, d : N3 → N)

– EncAHP deterministically maps an index i ∈ I to an encoded index o⃗ ⊂ O
– (PAHP,VAHP, k, s, d) is a polyIOP for the oracle relation:

RAHP := {(o⃗, x, (i, w)) | (i, x, w) ∈ R)}

.

Index-Private AHPs In our construction of revealable functional commit-
ments, we would like AHPs that are zero-knowledge for the index as well as the
witness. [4] captures this property with the following definition:

Definition 3 (Index-private AHP). Let AHP be an AHP with prover PAHP

and verifier VAHP/ For field F and (i, x, w) ∈ R, let

View(⟨PAHP(F, i, x, w),VEncAHP(i)
AHP (x)⟩)

be the view of VAHP. AHP is index-private if it is complete, knowledge-sound
[5], and there exists a PPT simulator S such that for all (i, x, w) ∈ R and field
F, S(F, x, 1|i|) is indistinguishable from the view of VAHP

2.6 Function-Hiding Functional Commitments

Our work directly builds off the work of Boneh, Nguyen, and Ozdemir on function
hiding functional commitment schemes (sometimes shortened to just “functional
commitment”) [4]. While we will give a brief self-contained overview of their
contributions in this section, we highly recommend reading their work first to
contextualize our contributions.

In a function hiding functional commitment scheme, a committer commits
to a secret function f : X → Y using a succinct hiding and binding commitment
scheme. Later, they can prove at any public point the evaluation of f , while
divulging no other information about the function.

More concretely a function hiding functional commitment scheme (which
we will abbreviate as simply functional commitment scheme), is a triple
{Setup,Commit,Eval}. Setup(1λ, N) is a randomized algorithm that outputs pub-
lic parameters pp to support commitments of complexity N . Commit(pp, f, r) is
a deterministic algorithm that takes a description of f ∈ F and randomness

8 B. Namboothiry

r, and outputs a hiding and binding commitment c to f . Eval is an interactive
protocol between a prover PEval(pp, f, r, x, y) and a verifier VEval(pp, c, x, y) that
convinces the verifier that f(x) = y, and that f is indeed a function (this latter
part is done through a proof of function relation, defined below).

Boneh, Nguyen, and Ozdemir [4] show that using an index-private AHP
and an associated proof of function relation (PFR), a functional commitment
scheme can be constructed that is (1) complete, (2) zero knowledge, and (3)
is an argument of knowledge for a function f ∈ F (we will define and rely
on these properties for our own construction). Additionally, they design efficient
PFRs for the commonly used Marlin [5] and Plonk [7] preprocessing zk-SNARKs,
thereby achieving functional commitment schemes for both. Our work will be
largely additive to these schemes, maintaining their construction while adding
new functionality.

Proof of Function Relation (PFR) AHP’s are designed for general index
relations, which are not necessarily functions. Therefore, the crux of functional
commitments lies in the ability to prove that a commitment is indeed to a
function, without leaking any other information about the function. This is ac-
complished using a polyIOP known as a Proof of Function Relation, or PFR.
To formalize this, we first need to translate the notion of functions into index
relations with functional sets:

Definition 4 (Functional Sets for Index Relations). Let R ⊆ I×(X×Y)×
W. A subset If ⊆ I is a functional set if for all i ∈ If , and for all x ∈ X , there
exists a unique y ∈ Y such that there is a w ∈ W such that (i, (x, y), w) ∈ R.
In other words, i’s residual relation is a function. Furthermore, If must have a
poly-time algorithm Extend such that for all (i, x) ∈ If×X , Extend(i, x)→ (y, w)
where (i, (x, y), w) ∈ R.

So, the task of a PFR becomes to prove that a given o⃗ is an encoding of an
i such that i ∈ If .

Definition 5 (Proof of Function Relation). Let an AHP have an encoded
index space O = (F[X])c and encoding function EncAHP : I → O. Let Π be a
polyIOP between Pf and Vf for the following oracle relation:

Rfunc = {(o⃗ ∈ O,⊥, i) : i ∈ If ∧ o⃗ = EncAHP(i)

We call Π a proof of function relation if it is a secure polyIOP for Rfunc

2.7 Rank-1 Constraint Systems (R1CS)

For n ∈ N constraints and h ≤ n instance variables, the rank-1 constraint
system (R1CS) index relation is:

RR1CS(n, h) :=

{(
(A,B,C) ∈ (Fn×n)3, x ∈ Fh;w ∈ Fn−h)

) ∣∣∣∣ z := (x,w)
(Az) ◦ (Bz) = Cz

}
Where ◦ is an elementwise multiplication of two equal size vectors.

Revealable Functional Commitments 9

2.8 Arithmetic Circuits

Intuitively, an arithmetic circuit a directed acyclic graph where nodes represent
gates and edges represent wires. Wires carry values in F, and gates are binary -
they add or multiply.

Formally, an arithmetic circuit C with ni inputs, ng gates, and no ≤ ng

outputs is a sequence of gate tuples (li, ri, si)i∈[ng] ∈ ([ni + ng] × [ni + ng] ×
{+,×})ng , constrained by li, ri ≤ i + ni. For gate i, we will call li, ri the left
and right input wire indices, i+ ni as the output wire index, and si as the gate
sign. The set of circuit input wire indices is [ni]. Let ACni,ng,no

denote the set
of arithmetic circuits with ni inputs, ng gates, and no outputs.

To evaluate C on input (x1 . . . xni
) ∈ Fni , simply compute the ng + ni wire

values, w1 . . . wng+ni in order. The first w1 . . . wni are simply the input values.
Then, each j ∈ [ng], wj+ni = wlj + wrj if s(j) = +, and wlj × wrj otherwise.
Then, the final no wire values are the circuit output. By evaluating, C defines a
function from x⃗ ∈ Fni to y⃗ ∈ Fno , which we denote as y⃗ = C(x⃗)

3 Valid Reveals

Before we begin defining revealable functional commitments, we first give some
intuition of what revealing a function actually means. Functional commitments
work in encoded function spaces [4], which are defined as follows:

Definition 6 (Encoded Function Space). Let Xλ and Yλ be input and output
spaces. An encoded function space is a finite set Fλ of poly-λ length strings
equipped with deterministic evaluation algorithm Evaluateλ : Fλ × Xλ → Yλ.
Note that each f ∈ Fλ must encode a function from Xλ to Yλ. Generally, λ
subscripts are omitted when unambiguous.

3.1 Constraint Consistency

Importantly, we are working with functions of fixed-length descriptions, with
fixed and finite input and output lengths. This means that we can interpret
f ∈ F as a set of constraints on a poly(λ) length input. In fact common encodings,
such as arithmetic circuits and R1CS instances, are already formatted in this
way. This leads to a rather convenient way to reveal partial information about
an encoded function - we can simply publish a set of constraints, and prove that
it is a subset of the secret function’s constraints. We refer to this property as
consistency.

3.2 Lock Checking

There is another consideration we need to make if we want our protocol to
have meaningful functionality. Suppose the prover’s function is handling sensitive
data, and the verifier would like to be convinced that a particular value x1 is

10 B. Namboothiry

hashed first in the function. In this case, it is not enough in this case that
the prover sends over a set of constraints that correspond to x1’s hashing. If
there are additional constraints outside of those that were revealed, the function
could easily reproduce x1’s true value elsewhere.So, the prover needs to have the
ability to convince the verifier that the published set contains all the constraints
on x1. Put simply, a prover needs to prove they are being transparent about
the operations performed on x1. To capture this, we introduce the following
vocabulary:

Definition 7 (Locked). Let U be a set of constraints on x and let S ⊆ U . A
variable x1 ∈ x is considered to be locked by S if x1 is constrained by S AND
there is no constraint in U \ S that constrains x1.

So, our protocol needs to also ensure that all values the revealer claims are
locked are indeed locked.

Definition 8 (Valid Reveal, Revealable Function Encoding). For func-
tion encoding f , let Uf be the exact set of constraints that f imposes on X ,
and let S be a set of constraints on X . Let L be an encoded set of variables in
x1, . . . xm. We consider q = (S,L) ∈ Q to be a valid reveal of f if:

– Consistency: S ⊆ Uf

– Lockedness: ∀l ∈ L, l is locked by S

Furthermore, we consider F to be a revealable function encoding if for
f ∈ F , there is a poly-time decider algorithm VR(f, q) → {0, 1} that accepts
when q is a valid reveal, and rejects otherwise.

As a note, L need not contain all locked values to qualify as a valid reveal.
This choice is intentional, as it lets the revealer decide the amount of information
to disclose.

4 Revealable Functional Commitments

Now we can define a revealable functional commitment scheme. Like a standard
functional commitment scheme, a revealable functional commitment scheme al-
lows the committer to commit to a secret function and then prove evaluations
of that function. In addition, the committer can also prove that a published set
of constraints and locks is a valid reveal. First, we can modify our definition of
encoded function spaces to fit this new problem.

Let {Xλ}λ∈N and {Yλ}λ∈N be families of input and output spaces, and let
{Qλ}λ∈N be a reveal space. Let {Fλ,Evaluateλ,VRλ}λ be a family of encoded
revealable function spaces. An tuple {Fλ,Evaluateλ,VRλ} is an encoded re-
vealable function space if {Fλ,Evaluateλ} is an encoded function space (de-
fined in preliminaries) and Fλ is a revealable function with decider algorithm
VRλ : Fλ ×Qλ → {0, 1}. We will omit λ when it is clear from context.

Revealable Functional Commitments 11

Arithmetic circuits are an illustrative example of a revealable encoded func-
tion space. Input and output spaces are X = Fni and Y = Fno . The encoded func-
tion space consists of poly(λ) sized directed acyclic graphs of additions and mul-
tiplications. Evaluate(f, x ∈ X) evaluates the circuit represented by the graph.
The reveal space would be poly(λ) sized acyclic graphs paired with an encoding
of locked wire values. VR(f, q) outputs 1 if and only if the revealed acyclic graph
q is a subcircuit of f , and if all locked wire values do not leave the subcircuit.
A revealable functional commitment scheme RFC for F is a tuple
(Setup,Commit,Eval,Reveal) where:

– Setup(1λ, N) → pp: Given the security parameter and max size, randomly
sample public parameters.

– Commit(pp, f ∈ F , r ∈ R) → c ∈ C: Given pp, an encoded function f , and
randomness r, deterministically produce a commitment c of f .

– Eval(PE(pp, f ∈ F , r ∈ R, x ∈ X , y ∈ Y),VE(pp, c, x, y)) → {0, 1}: An inter-
active protocol for PE to convince VE that f(x) = y.

– Reveal(PR(pp, f ∈ F , r ∈ R, q ∈ Q),VR(pp, c, q) → {0, 1}: An interactive
protocol for PR to convince VR that VR(f, q) = 1.

Here, we call R the randomness space and C the commitment space. A secure
revealable functional commitment scheme should have the following properties:

– Binding: Computing distinct function encodings with the same commitments
is infeasible

– Hiding: Commitments to distinct function encodings are indistinguishable
– Completeness: Correct evaluation proofs and reveal proofs are always ac-

cepted
– Reveal Soundness: Incorrect reveal proofs are accepted with negligible prob-

ability
– Protocol zero-knowledge: An evaluation proof divulges nothing other than

the evaluation and a reveal proof divulges nothing other than the validity of
the reveal

– Knowledge soundness: Evaluation proofs show that PE knows a function en-
coding consistent with the evaluation and the commitment. Similarly, reveal
proofs show that PR knows a function encoding consistent with reveal and
encoding

– Evaluation Binding: A malicious prover cannot construct conflicting evalu-
ation proofs on the same input.

The hiding and binding requirements are exactly those for classical com-
mitment schemes. Helpfully, evaluation/reveal binding is implied by binding
and extractability, and can thus be omitted from the formal definition (see
Supplement A of [4]). We compile these properties into the following definition:

Definition 9 (Secure Revealable Functional Commitment). A revealable
functional commitment scheme is secure is it has the following properties:

12 B. Namboothiry

– Committing: The tuple (Setup,Commit) is a hiding and binding commit-
ment scheme for the message space F and randomness R

– Complete: Eval is a complete protocol for the following relation:

Reval(pp) = {(c, x, y; f, r) : f ∈ F ∧ f(x) = y ∧ c = Commit(pp, f, r)}

And Reveal is a complete protocol for the following relation:

Rreveal(pp) = {(c, q; f, r) : f ∈ F ∧ VR(f, q) = 1 ∧ c = Commit(pp, f, r)}

– Reveal Soundness: Reveal is a sound protocol for Rreveal(pp)
– Protocol Extractablity: Eval is an argument of knowledge for Reval(pp)

and Reveal is an argument of knowledge for Rreveal(pp)
– Protocol Honest Verifier Zero Knowledge: Eval is an honest verifier

zero knowledge protocol for Reval and Reveal is an honest verifier zero
knowledge protocol for Rreveal

5 AHP-based Construction

Our task now is to construct a revealable functional commitment scheme for a
revealable encoded function space. Recall our preliminary conversation of func-
tional sets. Let’s augment this definition slightly:

Definition 10 (Revealable Functional Set). A functional set If of an index
relation R ⊂ I× (X ×Y)×W is considered a revealable functional set for R
with reveal space Q if If is a revealable function encoding. That is, there exists
a decider algorithm VR such that for all i ∈ If , q ∈ Q, VR(i, q) accepts if q is a
valid reveal of the residual X × Y function of i.

A functional set If of an index relation R ⊂ I × (X ×Y)×W, can naturally
be viewed as a revealable encoded function space, with the following algorithms:

– Evaluate(i ∈ If , x ∈ X) will compute (y, w) ← Extend(i, x) and output y.
Since y is unique, the output is deterministic.

– Reveal(i ∈ If , q ∈ Q) will output a decision based on if VR(i, q) = 1. A reveal
is always either valid or invalid, so the output is deterministic.

Additionally, since all revealable functional sets are functional sets, we note
that the notion of a PFR on a revealable functional set is well-defined.

5.1 Proof of Reveal

Throughout this paper, we will use the compilation property of polyIOPs to
construct our protocols. Our focus, the Reveal protocol, will hence boil down a
proof of reveal, defined as follows:

Revealable Functional Commitments 13

Definition 11 (Proof of Reveal). Let an AHP have an encoded index space
O = (F[X])c and encoding function EncAHP : I → O. Let If ⊂ I be a revealable
functional set. Let Π be a polyIOP between Pr and Vr for the following oracle
relation:

Rrev = {(o⃗ ∈ O, q ∈ Q, i ∈ If) : VR(i, q) = 1 ∧ o⃗ = EncAHP(i)}

We call Π a proof of reveal for If if it is a secure polyIOP for Rrev

Since encoded revealable function spaces and revealable functional sets are
both subsets of their non-revealable counterparts, the Setup,Commit,Eval pro-
tocols can be used as-is from standard functional commitments [4] (we include
them in the construction for completeness). The Commit algorithm uses a hiding
polynomial commitment scheme to commit to the polynomials that encode the
index. The Eval protocol uses the PFR (to ensure that the committed index is
to a function), followed by the AHP to prove that the evaluation and witness
are consistent with the committed index. Finally, Reveal protocol again uses the
PFR, along with the proof of reveal to prove that the published reveal is valid.

14 B. Namboothiry

Construction 1 (Revealable Functional Commitment Scheme)
Let R ⊂ I × (X × Y) × W be the evaluation index relation. Let AHP
= (EncAHP,PAHP,VAHP, kAHP, sAHP, dAHP) be an AHP Re. Let Πf =
(Pf ,Vf , kf , sf , df) be a PFR for revealable functional set {If ⊂ I,Extend,VR}.
Be the reveal index relation and let Πr = (Pr,Vr, kr, sr, dr) be a proof
of reveal for If such that sr(0) = sf (0) = sAHP(0), and ∀i ∈ [sAHP(0)].
dAHP(N, 0, i) = dr(N, 0, i) = df (N, 0, i), where N is the maximum supported
index size.

Additionally, let PC = (PC.Setup,PC.Commit,PC.Eval,PC.Check) be a polyno-
mial commitment scheme.

We construct RFCAHP,If ,Πr,Πf ,PC as the following tuple:

– Setup(1λ, N): Compute D, the union of all degree bounds, as

D =
⋃

piop∈{f,r,AHP}

{dpiop(N, i, j)}i∈[kpiop],j∈[spiop(i)]

and return pp← PC.Setup(1λ, D)
– Commit(pp, i ∈ If , r ∈ R) :
• Parse out (ro0,1 , . . . ro0,sAHP(0)

) = r and (ck, vk) = pp

• Set o⃗← EncAHP(i)
• ∀i ∈ [sAHP(0)], set co0,i ← PC.Commit(ck, o⃗[i], dAHP(N, 0, i), ro0,i
• Return c← (co0,i , . . . co0,sAHP(0)

)

– Eval(PE(pp, i, r, x, y),VE(pp, c, x, y)) :
• PE and VE both parse (ck, vk) = pp
• PE computes o⃗← EncAHP(i); (y, w)← Extend(i, x); and aborts if y ̸= y′

• PE and VE run the following polynomial IOPs, using the compilation
method (outlined below):

∗ Proof of function relation: ⟨Pf (o⃗,⊥, i),V o⃗
f (⊥)⟩

∗ Proof for R (evaluation): ⟨PAHP(i, (x, y), w),V o⃗
AHP((x, y))⟩

– Reveal(PR(pp, i, r, q ∈ Q),VE(pp, c, q)) :
• PE and VE both parse (ck, vk) = pp
• PE computes b← VR(i, q) and aborts if b ̸= 1
• PE and VE run the following polynomial IOPs, using the compilation
method:

∗ Proof of function relation: ⟨Pf (o⃗,⊥, i),V o⃗
f (⊥)⟩

∗ Proof of reveal: ⟨Pr(o⃗, q, i),V o⃗
r (q)⟩

Revealable Functional Commitments 15

Compilation Method: Let piop ∈ {AHP, f, r}. Pα and Vα use the following
method to “run” piop:

– ∀i ∈ [kpiop], j ∈ [spiop(i), when Ppiop sends oracle polynomial oi,j , Pα com-
putes and sends the following commitment to Vα:

coi,j ← PC.Commit(ck, oi,j , dpiop(N, i, j), roi,j
$←− R

– When Vpiop derives an oracle o that is a linear combination of other oracles
it holds, Vα derives commitment co and Pα derives commitment randomness
ro via PCS homomorphism.

– When Vpiop queries any polynomial oracle o with degree bound do at z ∈ F:
• Vα sends z to Pα

• Pα obtains/derives ro, and sends (π ← PC.Eval(ck, o, do, ro, z), y ← o(z))
to Vα

• Vα obtains/derives co and asserts PC.Check(vk, co, do, z, y, π) = 1

Theorem 1. Let AHP be an index-private algebraic holographic proof with injec-
tive EncAHP, let Πf be a secure PFR for functional set If , let Πr be a secure proof
of reveal for If , and let PC be a perfectly hiding PCS with knowledge-soundness
and HVZK evaluation. RFCAHP,If ,Πr,Πf ,PC is a secure revealable functional com-
mitment scheme for function encodings i ∈ If

As previously stated, this construction is almost identical to that of theorem
2 in [4], with the addition of the Reveal method. We encourage the reader to
take a look at their work for a full proof. Here, we will provide a proof sketch,
and argue why their proof implies the result above.

Proof Sketch: The tuple (Setup,Commit) is binding and hiding as EncAHP is
injective, and PC.Commit is both hiding and binding.

The completeness of the protocol follows from the completeness of the sub-
protocols.

The reveal soundness follows from the security of Πr

[4]’s argument for the evaluation extractability is as follows. An extractor
EE for Reval uses the PFR extractor Ef , the AHP extractor EAHP, and the PCS
extractor EPC. Throughout the extraction, EE uses EPC to extract polynomials
and commitment randomness for adversary A’s commitments and oracle evalu-
ations. From these polynomials, it extracts i ∈ If using Ef . It then uses EAHP to
extract w ∈ W. If everything succeeds, then EE knows (1) f = i ∈ If , (2) the
randomness involved in i’s commitment (meaning the commitment to f can be
freshly computed and compared to c), (3) w such that (i, (x, y)w) ∈ R, implying
that f(x) = y - exactly the conditions it looks to satisfy. Using a similar ap-
proach, we can have an extractor ER for Rreveal find that f = i ∈ If , recompute
and compare a commitment to f , and then verify that VR(i, q) = 1

Finally, an HVZK simulator can be built. Simply use simulators for
Πr, Πe,AHP to simulate all oracle queries and evaluations. Here, the index-
privacy of AHP is crucial, as it must not divulge i. Using the PCS evaluation

16 B. Namboothiry

simulator, we can also simulate all sent evaluation proofs.

With this theorem in hand, the task of instantiating a revealable functional
commitment is clear: create a proof of reveal for an index-private AHP equipped
with a proof of function relation.

6 Revealable Functional Commitments from Marlin

Marlin [5] is an AHP for Rank-1 constraint systems. Previously [4], it was used to
construct a functional commitment scheme, which involved constructing a proof
of function relation. First, we will introduce the arithmetization that Marlin uses
to translate matrices into polynomials. Then, we will give a revealable functional
set for R1CS, and observe that any arithmetic circuit can be compiled into
this set. Finally, we will give a proof of reveal for Marlin, thereby achieving a
revealable functional commitment scheme.

We would like to point out that the key property of a selected AHP, index-
privacy, is required in the construction of a revealable functional commitment
scheme. [4] makes a minor modification to the protocol to achieve this. For the
purposes of this paper, “Marlin” will refer to the version of the algorithm with
the desired properties.

6.1 Arithmetization

Recall from preliminaries that an R1CS instance for n constraints and ≤ n
variables is defined by three matrices A,B,C ∈ Fn×n. These matrices can be
encoded using two cyclic subgroups of F. Let H = ⟨h⟩ be a subsgroup of F
of order n. A 1 × n node vector z (which incodes input, witness, and output
variables), is said to satisfy the R1CS instance if Az ◦ Bz = Cz. Intuitively,
for i ∈ [n], the rows Ai, Bi, Ci together form a constraint on z. Let there be at
most m pairs of indices (r, c) such that at least one of Arc, Brc, Crc is non-zero,
where m is the order of cyclic subgroup K = ⟨k⟩ of F. Let’s order these pairs in
a list (ri, ci)

m−1
i=0 (with the excess list elements being 0 if there are less than m

pairs. Now, we can encode the R1CS matrices with the following 5 polynomials
K→ H ∪ {0} of degree less than |K|:

row(ki) = ri col(ki) = coli

valA(ki) = Arici valB(ki) = Brici valC(ki) = Crici

Note that this arithmetization differs slightly from the canonical one in [5].
Typically, each matrix gets its own row, col, and val polynomials, totaling to 9
polynomials. However in practice [6], the encoding above is used. Our protocols
can easily be reverted to the canonical encoding, but we chose to optimize for
efficiency and succinctness.

Revealable Functional Commitments 17

6.2 A Revealable Function Set for R1CS

We unfortunately cannot make any sort of function commitment for a general
R1CS instance, due to the fact that not all instances encode deterministic func-
tions. To build a revealable functional commitment, we must first find a reveal-
able functional set. The modification is simple: move the output variables to the
end of the vector z[4].

Definition 12 (Output-Final R1CS). For n, t, s ∈ N where s, s + r ∈ [n],
let I = (Fn×n)3,X = Ft,Y = Fs,X = X × Y,W = Fn−t−s. The index relation
RR1CS−f(n, t, s) ⊆ I × X×W is:

RR1CS−f(n, t, s) :=

{
(A,B,C) ∈ I

(x ∈ X , y ∈ Y) ∈ X;w ∈W

∣∣∣∣ z := (x,w, y)
(Az) ◦ (Bz) = Cz

}
[4] accompany this definition with a natural functional set: t-FT. For indices

in t-FT, each element in z beyond the input is completely determined by the
previous elements.

Definition 13 (Functional Triple (t-FT)). Let n, t ∈ N such that t ∈ [n].
Matrix M ∈ Fn×n is considered t-diagonal if and only if M is a diagonal
matrix, the first t entries along the diagonal are zero, and the last n− t entries
are non-zero. Let t-Diag ⊂ Fn×n be the set of such matrices.

M ∈ Fn×n is considered t-strictly lower triangular if and only if M is
strictly lower triangular with the first t rows equal to zero. Let t-SLT ⊂ Fn×n

be the set of such matrices.
(A,B,C) ∈ (Fn×n)3 is a functional triple if and only if A,B ∈ t-SLT and

C ∈ t-Diag. Let t-FT ⊂ (Fn×n)3 be the set of such triples.

We can take this one step further, showing that t-FT is actually a revealable
functional set.

Theorem 2. t-FT is a revealable functional set for RR1CS−f with reveal space
QMarlin =

(
Fn)3

)∗ × ([n]2)∗

Proof. [4] already show that t-FT is a functional set for RR1CS−f . So what is left
to show is that it is a revealable function encoding. As we discussed previously,
for i ∈ [n], the rows (Ai, Bi, Ci) ∈ (Fn)3) represent a constraint on z. So, the
exact set of constraints that an instance imposes on z is U = {(Ai, Bi, Ci)}i∈[n].

Suppose S ⊂ U , and consider the i’th element of z. For z[i] to be locked by
S, the following need to be true:

– S constrains z[i]: There exists (Aj , Bj , Cj) = s ∈ S where at least one row
Mj ∈ s has a non-zero element at Mj [i].

– U \ S does not constrain z[i]: For all (Ak, Bk, Ck) = u ∈ U \ s, and for all
Mk ∈ u, Mk[i] is zero

So, for q = (S,L) ∈ QMarlin, it is easy to check if q is a valid reveal of
f = (A,B,C) ∈ t-FT. In other words, there exists a poly-time decider algorithm
VRtFT (f, q) → {0, 1} that gathers U , checks that S ⊂ U , and then checks that
for all l ∈ L, l is locked by S.

18 B. Namboothiry

6.3 Reveal Encoding

Since we aren’t working with the actual matrices A,B,C, but rather their arith-
metizations, we need to discuss how we will encode subsets of the rows and sets
of locked values.

Let R ⊂ H correspond to the indices of the revealed rows. In order to reveal
whole constraints, for any r ∈ R, r is revealed in the A,B and C matrices. Let
I ⊂ K be the group elements x ∈ K where row(x) ∈ R. For an R1CS instance
encoded into the five polynomials o⃗ = (row, col, valA, valB , valC), a the set of
constraints on rows R consists of the five polynomials: rowr, colr, val

A
r , val

B
r , val

C
r

where for f ∈ o⃗, fr : I 7→ H ∪ 0 is simply fr(x) = f(x)
Note then that R is equal to and defined by rowr(I). In addition, we encode

a set of locked points L ⊆ K using a polynomial colu. A valid colu looks just like
col, but with disclosed locked values zeroed out:

colu(x) =

{
col(x) if /∈ L

0 or col(x) otherwise

In order then for q = (rowr, colr, val
A
r , val

B
r , val

C
r , colu) to be considered a

valid reveal of an R1CS instance encoded as o⃗ = (row, col, valA, valB , valC), on
rows R, we simply need all of the polynomials in q to be as defined (note, all of
these polynomials are interpolated over K, and thus have degree bound |K|).

So, a proof of reveal for t-FT is as follows:

Definition 14 (Proof of Reveal for t-FT). Π is a proof of reveal for
t-FT if it is a secure polyIOP for the following oracle relation:

RTFT−POR = {o⃗ = (row, col, valA, valB , valC),

q = (rowr, colr, val
A
r , val

B
r , val

C
r , colu), i = (A,B,C) ∈ t− FT) :

q is a valid reveal of i as defined above, o⃗ encodes i}

With this, the stage is set build a proof of reveal. First, we present some
necessary sub-protocols and pre-processing steps.

6.4 Pre-Processing

Before the reveal can take place, there is a bit of preprocessing that needs to
happen in both the verifier and the prover. They will need to both interpolate
the following polynomial U : K→ H ∪ {0}:

U(ki) =

{
hi if i < |H|
0 otherwise

This “universal” polynomial creates a mapping between the group members
of K and H, which will become useful to us in the following compliment protocol.

Revealable Functional Commitments 19

For the rest of this section, it is safe to assume that all provers and verifiers have
interpolated this polynomial beforehand (this can be done in time O(|K| log(|K|))
via Fast Fourier Transform (FFT) [8]). Additionally, assume every prover has
sent their verifier a commitment to U which the verifier has checked. With these
assumptions, every verifier can query U in constant time by asking the prover
for an evaluation proof.

6.5 Marlin PolyIOPs

In this section, we will give a series of polyIOPs that will culminate in a proof-
of-reveal for t-FT.

Borrowed Protocols For the rest of this paper, we will borrow the following
polyIOPs. Proofs of their security are available in [4,7].

– Zero over K: Let F (X) be a virtual oracle:

F (X) := G (X, fj1(α1X), . . . , fjt(αtX)) ∈ F(<D)[X]

where f1 . . . fn are concrete oracles, ji ∈ [n], αi ∈ F∗, and D, t, deg(G), as
well as G’s monomial count are negl(λ). Then Zero over K is a secure polyIOP
for the following relation:

Rzero = {((f1, . . . fn),(α⃗, j⃗, G),⊥) : fi ∈ F(<B)[X], α⃗ ∈ (F∗)t, j⃗[n]t,

∀k ∈ K, F (k) = 0}

– Multiset Equality over K is a secure polyIOP for the following relation:

Rms =
{
f, g ∈ F(<B)[X],⊥,⊥) : {{f(k) : k ∈ K}} = {{g(k) : k ∈ K}}

}
– Group Product over K is a secure polyIOP for the following relation:

RGrpProd =

{
(f ∈ F(<B)[X],⊥,⊥) :

∏
k∈K

f(k) = 1

}

Compliment from K to H Now, we will begin constructing explicit polyIOPs.
Let V have access to oracle polynomials f, g from P that they know map K to
H ∪ {0}, and they also know that 0 is in the image of both polynomials. First,
we will design a polyIOP for the relation Rcomp, which convinces a verifier that
the image of g does not intersect with the image of f except at 0.

20 B. Namboothiry

Compliment from K to H

Rcomp = {((f, g) ∈ F(<|K|)[X],⊥,⊥) : g(K) = H \ f(K) ∪ {0}}

1. P interpolates the following polynomials K 7→ H ∪ {0} and sends grants
oracle access to V:

– Uf (x) =

{
U(x) if U(x) ∈ f(K)

0 otherwise

– U ′
f (x) =

{
1/Uf (x) if Uf (x) ̸= 0

0 otherwise

2. Run Zero over K to confirm that Uf (x)(Uf (x)− U(x)) = 0
3. Run Multiset Equality to confirm that Uf (K) = f(K)
4. V sends a random challenge c to P
5. Run Zero over K to confirm that (Uf (x) + c · U ′

f (x))(Uf (x)U
′
f (x)− 1) = 0

6. Run Multiset Equality to confirm that g(K) = (U · (1− (Uf · U ′
f)))(K)

Theorem 3. Compliment from K to H is a secure for the relation Rcomp

Proof. Since there is no witness, it suffices to show completeness, soundness,
and HVZK.

Completeness: Suppose that f, g are functions from K 7→ H ∪ {0} such that
K \ f(K) ∪ {0} = g(K). P honestly generates Uf , U

′
f and sends their oracles to

V. With honest generation, steps 2 and 4 pass with the completeness of their
respective protocols. In step 5, the right factor will be 0 when U(x) ∈ f(K) and
the left factor will be 0 otherwise, so it will pass with completeness of Zero.
Finally, in step 6, notice that the right hand side of the equation in step 5 is
exactly equal to K \ f(K) ∪ {0}, so step 5 passes by completeness of Multiset
Equality. Therefore, this protocol is complete.

Soundness: Suppose that f, g are functions from K 7→ H ∪ {0} such that
K \ f(K) ∪ {0} ̸= g(K). Let P pick any Uf , U

′
f . To pass step 2, on every x ∈ K,

Uf (x) has to equal either 0 or U(x). Then, to pass step 3, it must be that
Uf (K) = f(K). It is clear to see that these two properties force Uf to be as
defined in the protocol, so we can trust it. In step 5, if the right factor is equal
to 0 then U ′

f (x) = 1/Uf (x). By Schwartz-Zippel lemma, with random challenge
c, if left factor is equal to 0 then with high probability Uf (x) = U ′

f (x) = 0.
So, if the Zero test in step 5 passes, then U ′

f must be as defined, so we
can trust it. Since we now trust the given polynomial oracles, we know that
(U ·(1−(Uf ·U ′

f)))(K) = K\f(K)∪{0}, and can conclude soundness from step 6.

Revealable Functional Commitments 21

HVZK : Honest verifier zero-knowledge of this protocol follows from the sub-
protocols. In particular, the sent oracles reveal exactly the information about
the image of f that we tolerate V knowing.

Proof of Reveal for t-FT Finally, we are ready to present a proof of reveal
for t-FT.

t-FT Reveal

1. For f ∈{ rowr, colr, val
A
r , val

B
r , val

C
r , colu}, P interpolates the following poly-

nomial and sends an oracle to V

fK(x) =

{
f(x) if x ∈ I

0 otherwise

2. Run Zero over K to confirm that rowr,K(x)(rowr,K(x))− row(x)) = 0
3. Run Compliment from K to H to verify

rowr,K(K) = H \ (row− rowr,K)(K) ∪ {0}

4. For f ∈ {col, valA, valB , valC}:
– V sends new random challenge c to P
– Run Zero over K to confirm that (rowr,K(x)+ cfr,K(x))(f(x)− fr,K) = 0

5. Run Zero over K to confirm that colu,K(x)(colu,K − col(x)) = 0
6. Run Compliment from K to H to verify

(colr,K − colu,K)(K) = H \ (col− colr,K + colu,K)(K) ∪ {0}

7. P interpolates the following polynomial and sends an oracle to V:

BM(x) =

{
1 if x ∈ I

0 otherwise

8. Run Zero over K to confirm that BM(x)(1−BM(x)) = 0
9. Run Zero over K to confirm that BM(x)row(x)− rowr,K(x) = 0

10. For f ∈{ rowr, colr, val
A
r , val

B
r , val

C
r , colu}, run Zero over K to confirm that

BM(x)f(x)− fK(x) = 0

Theorem 4. t-FT Reveal is a proof of reveal for t-FT

Proof. We must show completeness, soundness and knowledge-soundness.
HVZK follows from the subprotocols.

Completeness: Let’s assume that q is a valid reveal of o⃗, and that the prover
is honest. We can step through every test (i.e. every rejection opportunity),
and see if the protocol always passes. The Zero test from step 2 will pass, as
rowr,K(x) is always either zero or rowr(x) = row(x). Step 3 will pass, as the

22 B. Namboothiry

image of rowr,K is exactly rowr(I) ∪ {0}, and H \ (row − rowr,K) is exactly
rowr(I). Next, stepping into a general case of step 4, we see that if x ∈ I
then f(x) − fr,K = 0, and if x /∈ I then rowr,K(x) = 0 and c ∗ fr,K(x) = 0.
Next, based on the definition of a valid colu polynomial, we know that either
colu(x) = 0 or colu(x) − col(x) = 0, so step 5 passes. Next, consider the
image polynomial colr,K − colu,K. This is exactly colr,K(K) with the unse-
cured elements removed. Given an honest prover, this set would be exactly
H \ (col − colr,K + colu,K)(K) ∪ {0}, so step 6 passes. Steps 8, and 9 simply
check that the polynomial BM is formed as intended, using rowr,K as a tool to
separate I from K \ I, and will certainly pass. Finally, BM zeros out everything
outside of I, we know that over K BM(x)f(x) = fK(x) for all f in q, so step 10
passes. Thus, the protocol is complete.

Soundness: Given a proposed valid reveal q we will show that to pass all
the tests, q must be valid. To pass step 2, it must be that rowr,K is either
zero or row(x) for all x ∈ K. For step 3 to pass, notice that there cannot be
a y ∈ H such that y ∈ rowr,K(K) and y ∈ (row − rowr,K)(K). In other words,
to pass step 3, it must be that rowr,K encodes entire rows (i.e, there are no
missing non-zero elements in the rows that it reveals). With these two pieces
of information, we know that the reveal set I ⊂ K, which is determined by
rowr,K, is as desired (and by consequence, that rowr,K is exactly the polynomial
described in step 1). Stepping into a general case of step 4, the Zero test can
only pass if for every x ∈ K either f(x) = fr,K(x) or rowr,K + cfr,K = 0. Looking
at the latter condition, we know it is equivalent to saying rowr,K = 0 = fr,K with
overwhelming probability. So to pass step 4, each fr,K must be as described in
step 1.

Next, step 5 straightforwardly passes from the description of colu,K. In step
6, the image of colr,K − colu,K is exactly the set of secured elements (plus 0). To
pass step 6, it must be that the secured elements do not ever show up in the
image of col− colr,K + colu,K, which is exactly the property we want from these
polynomials. So at this point, we know that all fK from step 1 are as formed,
and that their collection encodes a valid reveal. What is left to show is that the
low-degree polynomials in the verifier’s hand are actually consistent with each
fK. To do this, we use a bitmask polynomial BM that is 1 on I and zero every-
where else. To pass step 8, BM must be 0 or 1 everywhere on K. T0 pass step
9, BM must be 0 outside of I and 1 inside of I, so we now know that BM is as
described in step 7. Finally, to pass step 10, each function f ∈ q must match fK
on I, which qualifies q as a valid reveal! So, we have shown the protocol is sound.

Knowledge-Soundness: Knowledge soundness here is easy to see, as o⃗ explic-
itly encodes the witness (A,B,C). Given oracle access to o⃗ (which a malitious
P̃ cannot tamper with), an extractor keep querying o⃗ until they recover all of
(A,B,C).

Revealable Functional Commitments 23

7 Revealable Functional Commitments from Plonk

Plonk [7] is an AHP that proves evaluations of arithmetic circuits. In this sec-
tion, we work with a simplified version of the Plonk encoding, consistent with
proof of function relation found in [4]. After orienting ourselves in the revealable
functional commitments context, we can present a proof of reveal.

7.1 AC as a Revealable Functional Set

Arithmetic circuits yeild quire nicely to our setting. Recall thatACni,ng,no
(some-

times abbriviated as AC) is the set of arithmetic circuits with ni inputs, ng gates,
and no outputs. As it turns out, AC is already a revealable functional set. Since
there are no witness inputs, each C ∈ ACni,ng,no

must be a function of the pub-
lic witness inputs, so we know that it is a functional set. As for revealability,
we discussed earlier that subcircuits of C constitute a subset of the constraints
that C imposes on its inputs. Additionally, there exists an efficient algorithm to
verify that a circuit C ′ is truly a subcircuit of C. Finally, given a set of locked
wire pins in a subcircuit, it is easy to check that there are no outgoing wires
that constrain those pin values outside of the subcircuit. We will formalize these
notions in our discussion of the Plonk arithmetization.

7.2 Arithmetization and Reveal Encoding for Plonk

To encode circuits in ACni,ng,no
, Plonk assumes the existance of two multiplica-

tive subgroups of F : Kg = ⟨γ3⟩ of order ng and K = ⟨γ⟩, of order 3ng. The
elements of K represent pin indicies, while the elements of Kg represent gates.
This is intuitive, as each gate has 3 pins (two input and one output).

In the Plonk scheme, we represent a circuit C as two polynomials, (w, s)
upon K and Kg respectively. For each gate l ∈ {0, . . . (ng − 1)}:

– s(γ3l) = 1 if gate l is an addition gate and 0 if l is a multiplication gate.
– γ3l, γ3l+1, γ3l+2 correspond to the left pin, right pin, and output pin of gate

l. w permutes all of K with respect to the wiring of C. Therefore each cycle
of w represents an equivalence class of pins. A more precise definition can
be found in [7, 4].

Reveal Encoding We define a valid reveal of a circuit C = (w, s) on the group
K is a tuple q = (I, wS , sS , L ⊂ I) where I ⊂ K is contiguous such that:

1. ∀x ∈ Ig = I ∩Kg, sS(x) = s(x)
2. ∀x ∈ I, wS(x) = w(x)
3. wS is a permutation on L

where Ig is the “gate set” which is the intersection Kg ∩ I. These properties
succinctly capture the notion of valid reveal for the plonk arithmetization. Since
I is contiguous, it is immediate that S = (wS , sS) encodes a subcircuit of C.

24 B. Namboothiry

By the first property, we know that S correctly presents the gate types of the
subcircuit, and by the second property, we know that it correctly represents all
the wires of the subcircuit. So, use these two properties to achieve consistency. As
for lockedness, the pins ∈ L are those designated to be locked. The third property
implies that there are no wires extending from L to other parts of the circuit (in
K \L). If there were, then there would be a cycle in w that intersects L, and no
choice of wS could simultaneously agree with w on L and be a permutation on
L. So, these three properties are capture the general definition of a valid reveal,
enabling a definition of a proof of reveal for AC:

Definition 15 (Proof of Reveal for AC). Π is a proof of reveal for
ACni,ng,no

if it is a secure polyIOP for the following oracle relation:

RAC−POR(I) = {o⃗ = (w, s),

q = (I, wS , sW , L), C ∈ ACni,ng,no
) :

q is a valid reveal of i as defined above, o⃗ encodes C}

With this, the stage is set build a proof of reveal. First, we present some
necessary sub-protocols and pre-processing steps.

7.3 Pre-Processing

In these protocols, it is assumed that the following vanishing polynomials are
computed in pre-processing and are queryable by the prover and verifier:

vI(x) =
∏
i∈I

(x− i) vL(x) =
∏
i∈I

(x− i) vgI (x) =
∏
g∈Ig

(x− g)

Instead of having to generate these polynomials as above over a poorly-
formed subset, we can generate them directly over a subgroup using a similar
approach to the Marlin protocol. This is done by the prover interpolating the
indicator polynomial BM (as in Marlin) and sending an oracle to the verifier.
We will see this in the final PLONK protocol.

We will also have the verifier and the prover calculate the following:

t(x) =
x|K| − 1

vI(x)
+ vI(x) ϕ =

∏
k∈K

t(k)

Finally, they will interpolate a polynomial g over K, where g(1) = ϕ and
g(x) = 1 for all other x ∈ K. In total, the preprocessing is bottlenecked by
the calculation of the vanishing polynomials, which using FFT polynomial mul-
tiplication [8] and a divide-and-conquer approach, this pre-processing can be
completed with O(i log2(i)) complexity, where i = |I|.

Revealable Functional Commitments 25

7.4 Marlin PolyIOPs

In this section, we will give a series of polyIOPs that will culminate in a proof-
of-reveal for AC.

Zero over I We construct a secure polyIOP to test if a virtual oracle is zero
over I ⊂ F. Let F be a virtual oracle defined as follows:

F (X) := G (X, fj1(α1X), . . . fjt(αtX)) ∈ F(<D)[X]

where f1, . . . fn are concrete oracles, and t = D = deg(G). Our polyIOP
shows that ∀x ∈ I, F (x) = 0. This also handily enables equality checking over
any set I.

Zero over I Relation:

Rzero ={((f1, . . . fn), (α⃗, j⃗, G),⊥)) : fi ∈ F(<B)[X], α⃗ ∈ (F∗)t, j⃗ ∈ [n]t

∀x ∈ I, F (x) = 0, where F is defined above}

1. For i ∈ [t], let hi = fi. P samples random ri ← F(<2)[X] and computes mask
mi(X) = ri(α

−1
i X) · vI(α−1

i X), and computes h′
i = hi +mi.

2. P computes F ′(X) = G(X,h′
1(α1X), h′

2(α2X), . . . , h′
t(αtX)) and quotient

q1 = F ′/vI . P sends polynomials {mi}i, {ri}i and q1 with degree bounds B,
2 and D ·B − |I|, respectively.

3. For j ∈ [t], V derives h′
i = hi + mi through additive homomorphism. V

randomly samples β1, β2, c← F∗ \K and sends c.
4. P computes q2 = r1+cr2+ · · ·+ct−1rt. V derives concrete oracle q2 through

additive homomorphism.
5. Let M(X) = m1(α1X) + cm2(α2X) + · · · + ct−1mt(αtX). V computes

vI(β1), vI(β2), queries q1(β1) and q2(β2), and queries h′
i(αiβ1) and mi(αiβ2).

V then asserts

M(β2)− q2(β2) · vI(β2)
?
= 0

F ′(β1)− q1(β1) · vI(β1)
?
= 0

Theorem 5. Zero over I is a secure polyIOP for relation Rzero

Proof. The proof of this is almost identical to the one seen in [4], so we will omit
it here.

Set Product over I The next polyIOP we present is to complete the same
product check as Group Product over K, but over an arbitrary subset I of a
group K rather than the entire group. With this, they will be able to show that

26 B. Namboothiry

for a function f ,
∏

x∈I f(x) = 1.

Set Product over I Relation:

RSetProd =

{
(f ∈ F(<B)[X],⊥,⊥) :

∏
x∈I

f(x) = 1

}

1. P computes f ′(x) = f(x)(x|K|−1)
g(x)vI(x)

+ vI(x)
g(x) and sends an oracle of f ′ to V

2. Run Zero over K to verify that:

vI(x)(g(x)f
′(x)− vI(x))− f(x)(x|K| − 1) ≡ 0

3. Run Group Product over K to verify that
∏

k∈K f ′(x) = 1

Theorem 6. Set Product over I is a secure polyIOP for relation RSetProd

Proof. There is no witness, so it suffices to show completeness, soundness, and
honest-verifier zero-knowledge. HVZK follows from the HVZK of the underlying
sub-protocols

Completeness: By construction it is clear that steps 1, 2 are complete. Now
assume that

∏
x∈I f(x) = 1. Then, it must be that

∏
k∈K

f ′(x) =
∏
x∈I

[
f(x)(x|K| − 1)

g(x)vI(x)
+

vI(x)

g(x)

]
·

∏
x∈K\I

[
f(x)(x|K| − 1)

g(x)vI(x)
+

vI(x)

g(x)

]

=
∏
x∈I

[
f(x)(x|K| − 1)

g(x)vI(x)

]
·

∏
x∈K\I

[
vI(x)

g(x)

]

=
∏
x∈I

[f(x)] ·
∏
x∈I

[
(x|K| − 1)

g(x)vI(x)

]
·

∏
x∈K\I

[
vI(x)

g(x)

]

= 1 ∗
∏
x∈K

[
x|K| − 1

g(x)vI(x)
+

vI(x)

g(x)

]

=
∏
x∈K

[
x|K| − 1

vI(x)
+ vI(x)

]
·
∏
x∈K

[
1

g(x)

]
= ϕ · 1

ϕ
= 1

So we know that the check in step 3 passes and have shown completeness.

Soundness: Suppose
∏

x∈I f(x) = p. We want to show that if the verifier V
accepts the proof described above, then p = 1.

Revealable Functional Commitments 27

Firstly, we note that ϕ =
∏

k∈K t(k) =
∏

xınK

(
x|K|−1
vI(x)

+ vI(x)
)

is non-zero

because it is the sum of two vanishing polynomials each of which are non-zero
on the corresponding set’s complement.

If Step 3 holds if
∏

x∈I f(x) = p, then∏
k∈K

f ′(x) = p · ϕ · 1
ϕ
= 1

implying p = 1, as required.

Generalized Multiset Equality over I We present a polyIOP for checking
that the images of two polynomials are the same as multisets over an arbitrary
subset I of subgroup K.

Generalized Multiset Equality over I Relation:

Rmse =
{
((f, g) ∈ F(<B)[X],⊥,⊥) : {{f(x) : x ∈ I}} = {{g(x) : x ∈ I}}

}

1. P computes h(x) = f(x)
g(x) and sends it to V.

2. P and V run Set Product over I to check that
∏

x∈I h(x) = 1.
3. Run Zero on I to confirm h(x)g(x)− f(x) = 0.

Theorem 7. Generalized Multiset Equality over I is a secure polyIOP for rela-
tion Rmse.

Proof. The proof of this is almost identical to the one seen in [4], so we will omit
it here.

Permutation on I We can now use the generalized multiset equality to
formulate a polyIOP to check whether the image of some polynomial is a
permutation of its domain.

Permutation on I Relation:

Rperm =
{
((w ∈ F(<B)),⊥,⊥) : w(I) = I

}

1. Run Generalized Multiset Equality over I on (w, Id) where Id is the identity
function Id(x) = x to verify {{w(x) : x ∈ I}} = {{x : x ∈ I}}.

Theorem 8. Permutation on I is a secure polyIOP for relation Rperm.

Proof. The proof of this is almost identical to the one seen in [4], so we will omit
it here.

28 B. Namboothiry

Proof of Reveal for AC Finally, we are ready to present a proof of reveal for
AC:

AC Reveal

1. Use Zero over Ig to verify that sS(X)− s(X) ≡ 0 over Ig

2. Use Zero over I to verify that wS(X)− w(X) ≡ 0 over I
3. Use Permutation over L to verify that wS is a permutation on L

Theorem 9. AC Reveal is a proof of reveal for ACni,ng,no

Proof. Soundness, completeness, and HVZK follow from the underlying proto-
cols. Knowledge soundness follows directly from the oracle access to w, s. An
extractor can simply perform a trace through K to retrieve the entire original
circuit C.

Thus, we have presented all the components that instantiate a revealable
functional commitment for Plonk!

8 Conclusion and Future Work

In this paper, we have defined the idea of a revealable functional commitment,
and showed how to construct them using an algebraic holomorphic proof, a
proof of function relation, and a newly-coined proof of reveal. We then explicitly
construct proofs of reveal for both Marlin and Plonk, two AHP’s that capture
the entire space of arithmetic circuits. By combining these with their associated
PFRs, we are able to get two public-coin revealable functional commitment
schemes. For all protocols, verification time is logarithmic in the size of the
function and linear in the input/reveal size, and proving time is quasi-linear.
Furthermore, all interactive protocols we present can be turned non-interactive
using the Fiat-Shamir heuristic.

We hope that future work can design revealable functional commitment
schemes and/or proofs of reveals for different proof systems. We are also excited
about the potential application areas for this work. Revealable functional com-
mitments enable zero-knowledge proofs for many algorithmic predicates. Outside
of those mentioned, possible applications include intellectual property law, new
proofs of work for decentralized systems, and more. Additionally, next steps
might include zero knowledge proofs for particular algorithmic fairness predi-
cates.

Revealable Functional Commitments 29

References

1. Arnold, D., Dobbie, W., Yang, C.S.: Racial Bias in Bail Decisions*.
The Quarterly Journal of Economics 133(4), 1885–1932 (05 2018).
https://doi.org/10.1093/qje/qjy012, https://doi.org/10.1093/qje/qjy012

2. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.: Linear-
size constant-query iops for delegating computation. Cryptology ePrint Archive,
Paper 2019/1230 (2019), https://eprint.iacr.org/2019/1230, https://eprint.
iacr.org/2019/1230

3. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Recursive zk-snarks from
any additive polynomial commitment scheme. Cryptology ePrint Archive, Paper
2020/1536 (2020), https://eprint.iacr.org/2020/1536, https://eprint.iacr.
org/2020/1536

4. Boneh, D., Nguyen, W., Ozdemir, A.: Efficient functional commitments: How to
commit to a private function. Cryptology ePrint Archive, Paper 2021/1342 (2021),
https://eprint.iacr.org/2021/1342, https://eprint.iacr.org/2021/1342

5. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.: Marlin: Preprocess-
ing zksnarks with universal and updatable srs. Cryptology ePrint Archive, Paper
2019/1047 (2019), https://eprint.iacr.org/2019/1047, https://eprint.iacr.
org/2019/1047

6. arkworks contributors: arkworks zksnark ecosystem (2022), https://arkworks.rs
7. Gabizon, A., Williamson, Z.J., Ciobotaru, O.M.: Plonk: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint
Arch. 2019, 953 (2019)

8. Jia, Y.B.: Polynomial multiplication and fast fourier transform (September 2020)
9. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials

and their applications. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT
2010. pp. 177–194. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

https://doi.org/10.1093/qje/qjy012
https://doi.org/10.1093/qje/qjy012
https://eprint.iacr.org/2019/1230
https://eprint.iacr.org/2019/1230
https://eprint.iacr.org/2019/1230
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2021/1342
https://eprint.iacr.org/2021/1342
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://arkworks.rs

	Revealable Functional Commitments: How to Partially Reveal a Secret Function

