Representations of Group Actions and their Applications in Cryptography

Giuseppe D’Alconzo, Antonio J. Di Scala
giuseppe.dalconzo@polito.it, antonio.discala@polito.it
Department of Mathematical Sciences, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Cryptographic group actions provide a flexible framework that allows the instantiation of several primitives, ranging from key exchange protocols to PRFs and digital signatures. The security of such constructions is based on the intractability of some computational problems. For example, given the group action \((G, X, \star)\), the weak unpredictability assumption (Alamati et al., Asiacrypt 2020) requires that, given random \(x_i\)’s in \(X\), no probabilistic polynomial-time algorithm can compute, on input \(\{(x_i, g \star x_i)\}_{i=1}^{Q}\), the group element \(g\).

In this work, we study such assumptions, aided by the definition of group action representations and a new metric, the linear dimension, that estimates the “linearity” of a group action, or in other words, how much it is far from being linear. We show that under some hypotheses on the group action representation, and if the linear dimension is polynomial in the security parameter, then the weak unpredictability and other related assumptions cannot hold. This technique is applied to some actions from cryptography, like the ones arising from the equivalence of linear codes; as a result, we obtain the impossibility of using such actions for the instantiation of certain primitives.

As an additional result, some bounds on the linear dimension are given for classical groups, such as \(S_n\), \(GL(\mathbb{F}^n)\) and the cyclic group \(\mathbb{Z}_n\) acting on itself.

Keywords— One-way group actions, weakly pseudorandom, weakly unpredictable, representations.

1 Introduction

Group actions in cryptography. In recent years, the topic of cryptographic group actions has received a lot of attention. One of the main motivations of its study is the fact that this framework provides post-quantum assumptions. The topic was introduced by the seminal works of Brassard and Yung [BY91] and Couveignes [Cou06], but the interest to the field had a boost from constructions from elliptic curves isogenies [CLM+18; ADMP20]. In the last years, many cryptographic group actions have been
proposed, concerning the general linear group [JQSY19; RST22; TDJ+22], multivariate polynomials [Pat96], lattices [DVW22] and linear codes [BBPS23; RST22]. This framework allows to design a lot of primitives, the most famous one are key exchanges [CLM+18] and digital signatures [GMW91]. Notably, the 2023 NITS's call for digital signatures [NIS23] lists four candidates based on group actions in round 1 (MEDS [CNP+23], LESS [BBPS21], ALTEQ [TDJ+22] and SQIsign [DKL+20]). The design space provided by these objects is huge: in literature we can find oblivious transfers [ADMP20], (oblivious) PRFs [ADMP20; HMR23], ring and group signatures [BKP20; BDK+23], updatable encryption schemes [LR22], commitments [BY91; DFG23] and verifiable random functions [Lai23].

Our contribution. Given a group action \((G, X, \star)\), it is called one-way if the map \(\star\) is non-invertible: given \(y\) and \(x = g \star y\) it is hard to find \(g\). This is the main assumption at the core of the majority of the cryptographic constructions. However, many primitives require stronger assumptions than the previous in order to prove their security. For example, the weak unpredictability and the weak pseudorandomness properties are introduced in [ADMP20]. The former can be seen as the impossibility, for a probabilistic and polynomial-time (PPT) adversary, to compute \(g\) whenever he sees a polynomial number of pairs \((x_i, g \star x_i)\), for random \(x_i\). On the other hand, an action is weakly pseudorandom if an adversary cannot distinguish whether its input contains a polynomial number of pairs \((x_i, g \star x_i)\) or \((x_i, y_i)\), for random \(x_i\) and \(y_i\).

In this work, we analyze when these two stronger assumptions hold and we give a metric to estimate their validity. The main idea is that, if we linearize the group action, with non-negligible probability the set \(\{x_i\}\) forms a basis of a certain linear space. Using the knowledge of elements \(\{g \star x_i\}\), we can retrieve the secret \(g\). With tools from representation theory, we introduce the concept of group action representation, that is given by a classical representation \(\rho : G \to GL(F^n)\) endowed with a injective map \(\iota : X \to F^n\) such that they are compatible with the group action, i.e. it must hold that \(\rho(g)\iota(x) = \iota(g \star x)\). The integer \(n\) is called the dimension of the representation. Then, we report some theoretical results on representations of group actions and we introduce the linear dimension of a group action, denoted with \LinDim\, given by the minimal integer such that there exists a representation of such dimension

\[
\LinDim(G, X, \star) = \min \{\dim_{F^n}(\rho, \iota) \mid (\rho, \iota) \text{ is a representation of } (G, X, \star)\}.
\]

We show that, under some hypothesis on the representation and if the linear dimension of the group action is polynomial in the security parameter, the weak unpredictability and the weak pseudorandomness assumptions do not hold. We show that such requirements are satisfied by group action where \(X\) is a linear space and \(\star\) acts linearly. This implies that a large class of well-known cryptographic group actions are not weakly unpredictable nor weakly pseudorandom. For example, such actions cannot be used to build, among other primitives, pseudorandom functions or oblivious transfers. In particular, we present some attacks to the above assumptions for the group actions on linear codes underlying the LESS and the MEDS signature schemes, even if this does not impact on their security since they rely only on the one-wayness of the actions. More generally, since we show that the action on \(d\)-tensors does not satisfy the above assumptions, all the actions linked to isomorphism problems in the class \(\text{T}_1\) introduced in [GQ21] are not weakly unpredictable nor weakly pseudorandom.

As a theoretic result, we provide some bounds on the action of classical groups like the permutation group, the general linear group acting on a vector space and the cyclic group \(\mathbb{Z}_n\) acting on itself. The latter leads to an interesting closed formula which can be of independent interest.
This work is organized as follows. Section 2 recaps preliminaries like cryptographic assumptions on group actions. Section 3 defines the fundamental tools to analyze some assumptions, i.e. the representation and the linear dimension of a group action. Section 4 describes the hypotheses needed to attack the weak unpredictability and weak pseudorandomness assumptions and applies them to some cryptographic group actions from the literature. In Section 5 we study the linear dimension of actions derived by classic groups.

Concurrent works. In \[BCK23\], the authors model the lattice isomorphism problem as a group action and study its properties. Their approach is similar to ours, even if it is less general and they focus on a particular action. For instance, they define that a distribution on the set \(X\) induces linear independence whenever the sampled elements, under a certain function, are linearly independent with high probability. We generalize this property in the setting of group actions representations in Definition 11. Moreover, it is shown that the lattice isomorphism action is not weakly unpredictable nor weakly pseudorandom, like we do with the code equivalence and other actions.

2 Preliminaries

2.1 Notation

In the course of this paper, with \(\Pr[A]\) we denote the probability of the event \(A\). A function \(\mu(x)\) is negligible in \(x\) if for every positive integer \(c\) there exists a \(x_0\) such that for each \(x > x_0\) we get \(\mu(x) < \frac{1}{x^c}\). With \(S_X\) we denote the group of permutation of the set \(X\). Given a group \(G\) and an element \(x\) from the set \(X\) on which \(X\) acts, the set \(G_x\) contains elements of \(G\) that fix \(x\).

2.2 Cryptographic group actions

Definition 1. A group \(G\) is said to act on a set \(X\) if there is a map \(* : G \times X \rightarrow X\) that satisfies the following properties:

- if \(e\) is the identity element of the group \(G\), then \(e \ast x = x\) for every \(x\) in \(X\).
- given \(g\) and \(h\) in \(G\) and \(x\) in \(X\), we have that \((gh) \ast x = g \ast (h \ast x)\).

In this case, we say that the triple \((G, X, \ast)\) is a group action.

Observe that the action of \(G\) over \(X\) induces a group homomorphism from \(G\) to \(S_X\)

\[g \mapsto (f_g : X \rightarrow X, x \mapsto g \ast x)\,.

Alamati, De Feo, Montgomery and Patranabis \[ADMP20\] define the concept of effective group action, here we report the key points but a formal definition can be found in their work.

Definition 2. A group action \((G, X, \ast)\) is effective if the group \(G\) is finite and there exists a probabilistic polynomial time (PPT) algorithm for executing membership and equality testing, sampling, and for computing the group operation and the inverse of an element; the set \(X\) is finite and there exist PPT algorithms for computing membership testing and the unique representation of any element in \(X\); there exists an efficient algorithm to compute \(g \ast x\), for each \(g\) in \(G\) and \(x\) in \(X\).
Informally, a group action is said effective if it can be manipulated easily and it can be computed in practical time.

In the rest of this work, even when not explicitly written, we will consider effective group actions, even if some theoretical definitions work for generic group actions.

We report the two assumptions from [ADMP20].

In the following, $\lambda$ will be the security parameter and $(G, X, \star)$ will be a group action such that $\log(|G|) = O(\text{poly}(\lambda))$ and $\log(|X|) = O(\text{poly}(\lambda))$. With $D_G$ and $D_X$ we denote two distributions over $G$ and $X$ respectively.

**Definition 3.** The group action $(G, X, \star)$ is $(D_G, D_X)$-weakly unpredictable (wUn) if, for all PPT adversaries $A$ having access to the oracle $\Pi_g$, there exists a negligible function $\mu$ such that

$$\Pr[A_{\Pi_g}(1^\lambda, y) = g \star y] \leq \mu(\lambda).$$

In other words, an action is weakly unpredictable if it is hard to compute $g \star y$ given $y$ and a polynomial number of pair of the form $(x, g \star x)$.

**Remark 4.** A similar but weaker treatment of weakly unpredictable group actions is given in [Rei23], under the name of transparent security. The adversary $A$ has access to a more malleable oracle, called the transparent oracle: it acts as $\Pi_g$ but, instead of sampling the set element $x$ from $D_X$, it is queried by $A$. It can be seen that an adversary with the access to a transparent oracle can simulate $\Pi_g$ sampling $x$ from $D_X$ and then querying it. Therefore, all the results regarding the oracle $\Pi_g$ can be carried in the context of transparent security.

Another assumption from [ADMP20] makes use of the oracle $\Pi_g$.

**Definition 5.** The group action $(G, X, \star)$ is $(D_G, D_X)$-weakly pseudorandom (wPR) if, given the randomized oracle $U$ such that, when queried samples $x$ from $D_X$, $\sigma$ uniformly at random from $S_X$ and returns $(x, \sigma(x))$, for all PPT adversaries $A$, there exists a negligible function $\mu$ such that

$$|\Pr[A_{\Pi_g}(1^\lambda) = 1] - \Pr[A^U(1^\lambda) = 1]| \leq \mu(\lambda).$$

In the above definition, the adversary should distinguish whether he has access to the oracle that uses the group element $g$ or not, picking at random in the set $X$.

When we omit the distributions $D_G$ and $D_X$ from definitions 3 and 5, we use the uniform ones.

### 3 Representations on the Linear Dimension of a group action

In this section, we explore the concept of representations of finite groups when we endow them with an injection of the set $X$ into a vector space. Such injection must be "compatible" with the map $\star$, as we see in the following definition.

**Definition 6.** The pair $(\rho, \iota)$ is a representation of the group action $(G, X, \star)$ over $\mathbb{F}$ if $\rho : G \rightarrow \text{GL}(\mathbb{F}^n)$ is a homomorphism of groups, $\iota : X \rightarrow \mathbb{F}^n$ is injective and $\rho(g)(\iota(x)) = \iota(g \star x)$ for every $g$ in $G$ and $x$ in $X$. The integer $n$ is said dimension of the representation and is denoted with $\text{dim}_\mathbb{F}(\rho, \iota)$. 


Given a group action \((G, X, \star)\) and a representation of \(G\), it is natural to ask whether a compatible injection \(\iota\) is admitted. In the following, we look for necessary and sufficient conditions for the existence of an injection \(\iota\) given a representation \(\rho\) of \(G\).

**Proposition 7.** Let \((G, X, \star)\) be a group action, let \(N\) be the kernel of the homomorphism \(G \to \mathcal{S}_X\) and let \(\mathcal{O} = X/G\) be the space of orbits of the action of \(G\) on \(X\) i.e. the quotient of \(X\) by the action of \(G\). Let \(\rho : G \to \text{GL}(\mathbb{F}_q^n)\) be a linear representation. The following are equivalent

(i) there is an injection \(\iota : X \to \mathbb{F}_q^n\) such that \(\rho(g)(\iota(x)) = \iota(g \star x)\) for every \(g\) in \(G\) and \(x\) in \(X\),

(ii) there is a \(\rho\)-invariant subspace \(V \subset \mathbb{F}_q^n\) such that \(\{g \in G : \rho(g)|_V = \text{Id}\}\) \(= N\) and maps \(\tau : \mathcal{O} \to X, \upsilon : \mathcal{O} \to V\) such that for all \(o \in \mathcal{O}\):

\[
\begin{cases}
\tau(o) \in o, \\
\rho(G)\upsilon(o) = \rho(G\tau(o)), \\
\text{if} \ o \neq o' \in \mathcal{O} \text{ then } \rho(G)\upsilon(o) \cap \rho(G)\upsilon(o') = \emptyset.
\end{cases}
\]

**Proof.** (i) \(\implies\) (ii). Let \(V = \text{span}_{\mathbb{F}_q}(\iota(X))\) be the linear subspace generated by the image of \(\iota\). If \(g \in N\) then \(\rho(g)(\iota(x)) = \iota(x)\) for all \(x \in X\). So \(N \subset \{g \in G : \rho(g)|_V = \text{Id}\}\) hence \(N = \{g \in G : \rho(g)|_V = \text{Id}\}\) because \(\iota\) is injective.

For each \(o \in \mathcal{O}\) choose any element \(\tau(o) \in o\) and define \(\upsilon\) as follows:

\[\upsilon(o) = \iota(\tau(o)).\]

By construction we have that \(\tau(o)\) is in \(o\). The second condition is as follows:

\[
\rho(G)\upsilon(o) = \{\rho(g) : \rho(g)(\upsilon(o)) = \upsilon(o)\} =
\{\rho(g) : \iota(g \star \tau(o)) = \iota(\tau(o))\} =
\{\rho(g) : g \star \tau(o) = \tau(o)\} =
\rho(G\tau(o)).
\]

The third condition follows from the injectivity of \(\iota\) since

\[
\rho(G)\upsilon(o) \cap \rho(G)\upsilon(o') = \iota(G \star \tau(o)) \cap \iota(G \star \tau(o')).
\]

(ii) \(\implies\) (i). Here we show how to define the injection \(\iota : X \to \mathbb{F}_q^n\). Let \(\pi : X \to X/G = \mathcal{O}\) be the projection to the space of orbits. Let \(x \in X\) be any point and let \(o = \pi(x)\) its projection. Let \(g \in G\) such that \(g \star \tau(o) = x\) and define

\[\iota(x) = \rho(g)(\upsilon(o)).\]

First of all notice that \(\iota(x)\) is well defined. Indeed if for another \(g' \in G\) we have \(g' \star \tau(o) = x\) then \(g' = g \cdot h\) with \(h \in G_{\tau(o)}\). So

\[
\rho(g')(\upsilon(o)) = \rho(g \cdot h)(\upsilon(o)) =
\rho(g)(\rho(h)(\upsilon(o))) =
\rho(g)(\upsilon(o))
\]

since \(\rho(h) \in \rho(G)\upsilon(o)\). Notice that \(\iota\) is injective by the third condition. Indeed, assume \(\iota(x) = \iota(y)\) where

\[x = g_x \star \tau(o)\]

and \(y = g_y \star \tau(o')\).
So \( \iota(x) = \iota(y) \) means
\[
\rho(g_x)(v(o)) = \rho(g_y)(v(o')), 
\]
and then by the third condition we get \( o = o' \). Moreover, \( \rho(g_y^{-1}g_x) \) is in \( \rho(G)o(o) \) and hence \( \rho(g_y^{-1}g_x) \) is in \( \rho(G)_{\tau(o)} \). Then there is \( h \in G_{\tau(o)} \) such that \( \rho(g_y^{-1}g_x) = \rho(h) \) and so \( \rho(h^{-1}g_y^{-1}g_x) = \text{Id} \). Thus \( h^{-1}g_y^{-1}g_x \) is in \( N \), which gives \( g_x \ast \tau(o) = g_y \ast \tau(o) \) hence \( x = y \) and our \( \iota \) is indeed injective. Finally, we check that \( \rho(g)(v(x)) = \iota(g \ast x) \) holds for every \( g \) in \( G \) and \( x \) in \( X \). Let \( x = g_x \ast \tau(o) \) and let \( g \) be arbitrary in \( G \), then
\[
\begin{align*}
\rho(g)(\iota(x)) &= \rho(g)(\rho(g_x)(v(o))) \\
&= \rho(gg_x)(v(o)) \\
&= \iota(gg_x \ast \tau(o)) \\
&= \iota(g \ast (g_x \ast \tau(o))) \\
&= \iota(g \ast x).
\end{align*}
\]
This completes the proof of the proposition. \( \square \)

For our analysis, the following metric gives a useful tool in the study of cryptographic assumptions based on group actions.

**Definition 8.** Let \((G, X, \ast)\) be a group action. For every field \( \mathbb{F} \), the **linear dimension** of \((G, X, \ast)\) is the integer
\[
\text{LinDim}_\mathbb{F}(G, X, \ast) = \min \{ \dim_\mathbb{F}(\rho, \iota) \mid (\rho, \iota) \text{ is a representation of } (G, X, \ast) \}.
\]

**Remark 9.** Observe that the linear dimension is well-defined since the set
\[
S_{\mathbb{F},(G,X,\ast)} = \{ \dim_\mathbb{F}(\rho, \iota) \mid (\rho, \iota) \text{ is a representation of } (G, X, \ast) \}
\]
is non-empty for every field \( \mathbb{F} \) and every group action \((G, X, \ast)\).

Indeed, let \( X = \{ x_1, \ldots, x_{|X|} \} \) and define \( \mathbb{F}[X] \) as the vector space of linear combinations of the elements of \( X \)
\[
\mathbb{F}[X] = \left\{ \sum_j c_j x_j : c_j \in \mathbb{F} \right\}.
\]
It can be shown that the dimension of \( \mathbb{F}[X] \) over \( \mathbb{F} \) is \( |X| \). Let \( \iota \) be the map that sends \( x_j \in X \) to \( x_j \in \mathbb{F}[X] \). Moreover, let \( \rho \) be the map from \( G \) to \( \text{GL}(\mathbb{F}[X]) \) such that \( \rho(g) \) is the permutation matrix associated to the invertible map
\[
x \mapsto g \ast x.
\]
Hence, \( \rho(g)(\iota(x)) = \rho(g \ast x) \) and since \( \mathbb{F}[X] \cong \mathbb{F}^{|X|} \), we have that \( |X| \) is in \( S_{\mathbb{F},(G,X,\ast)} \).

The above remark tells us that the cardinality of \( |X| \) is an upper bound for the linear dimension of a group action. Moreover, we can prove the following lower bound.

**Proposition 10.** Let \((G, X, \ast)\) be a group action and \( N \) the kernel of the homomorphism \( G \to S_X \). For every finite field \( \mathbb{F} \) of cardinality \( q \) it holds that
\[
\text{LinDim}_\mathbb{F}(G, X, \ast) = \Omega \left( \sqrt[\log_q (|G|)} \right).
\]

In particular, when the action is faithful \( \text{LinDim}_\mathbb{F}(G, X, \ast) = \Omega \left( \sqrt[\log_q (|G|)} \right). \)
Proof. Consider the action of the quotient \( G/N \) on \( X \)
\[ \star/N : (gN, x) \mapsto g \star x. \]

It can be shown that it is indeed a group action and it is faithful. Moreover, if \( \rho \) is a representation of \( G \) to \( \mathbb{F}^n \) and \( \iota \) an injection of \( X \) to \( \mathbb{F}^n \), then \( \rho \) can be extended to
\[ \tilde{\rho} : G/N \to \text{GL}(\mathbb{F}^n), \quad gN \mapsto \tilde{\rho}(gN) = \rho(g). \]

It holds that
\[ \tilde{\rho}(gN)(\iota(x)) = \iota(gN \star/N x) \]
holds for every \( gN \) in \( G/N \) and \( x \) in \( X \). Since the action of \( G/N \) is faithful, \( \tilde{\rho} \) is injective. Now we have that
\[ |G/N| = |\tilde{\rho}(G/N)| \leq |\text{GL}(\mathbb{F}^n)|. \]

The cardinality of \( \text{GL}(\mathbb{F}^n) \) is given by
\[ \prod_{j=0}^{n-1} q^n - q^j \]
and is \( \mathcal{O}(q^{n^2}) \). This implies
\[ |G/N| = \mathcal{O}(q^{n^2}) \]
and hence
\[ n = \Omega\left(\sqrt{\log_q(|G/N|)}\right) \]
leading to the thesis.

Moreover, whenever the set \( X \) is a vector space of dimension \( n \) on the field \( \mathbb{F} \) and the action of \( G \) is linear, i.e.
\[ g \star (\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 (g \star x_1) + \lambda_2 (g \star x_2), \]
we have that
\[ \text{LinDim}_\mathbb{F}(G, X, \star) \leq n. \]

As we will see in the next sections, many group action used in cryptography follow the above structure, and hence, a practical upper bound of the linear dimension is known.

4 On Weakly Pseudorandom and Unpredictable group actions

Here we propose an attack on the two assumptions presented in Subsection 2.2, and a relation to the linear dimension.

We need the following known combinatorial fact. Given \( v_1, \ldots, v_k \) uniformly sampled from \( \mathbb{F}^k_q \), it is known that they form a basis with probability
\[ \prod_{i=1}^k (1 - q^{-i}) = O(1 - q^{-1}). \]

This means that, for the uniform distribution on \( \mathbb{F}^k_q \), we have that the sampled elements are linearly independent with non-negligible probability (with respect to \( k \)). We need to generalize this fact for a group action \((G, X, \star)\) and a representation \((\rho, \iota)\).

Definition 11. Given a group action \((G, X, \star)\), a distribution \(D_X\) on \( X\) and a representation \((\rho, \iota)\) of dimension \( n \) over \( \mathbb{F} \), we say that \((\rho, \iota)\) induces linear independence with respect to \(D_X\) if, given \(\{x_1, \ldots, x_Q\}\) sampled according to \(D_X\), with \(Q = \text{poly}(n)\), there exists a negligible function \(\mu(n)\) such that
\[ \Pr[\{\iota(x_1), \ldots, \iota(x_Q)\} \neq \mathbb{F}^n] \leq \mu(n). \]

In particular, if \( X \) is a vector space, the uniform distribution over \( X \) induces a linear independence. Due to the above definition, we can analyze whenever an attacker can retrieve the secret \( g \) from a tuple of the form \(\{(x_i, g \star x_i)\}_i\).

Definition 12. Given the group action \((G, X, \star)\), the representation \((\rho, \iota)\) is admissible if the following hold
1. \(\rho(g)(\iota(x)) = \iota(g \star x)\) for every \( g \) in \( G \) and \( x \) in \( X \);
2. $\ell$ is polynomial time computable;
3. a preimage of $\rho(g)$ can be found in polynomial time for every $g$ in $G$.

**Proposition 13.** Let $\lambda$ be the security parameter. Given the group action $(G, X, \ast)$ and two distributions $D_G$ and $D_X$ over $G$ and $X$ respectively, if there exists a field $\mathbb{F}$ such that $\text{LinDim}_D(G, X, \ast) \leq \text{poly}(\lambda)$ and an admissible representation $(\rho, \iota)$ which induces linear independence with respect to $D_X$, then the group action is not $(D_G, D_X)$-weakly unpredictable.

**Proof.** Let $A$ be the adversary having access to the oracle $\Pi_\lambda$. If $n = \text{LinDim}_D(G, X, \ast)$, then there exist $\rho: G \to \text{GL}(\mathbb{F}^n)$ and $\iota: X \to \mathbb{F}^n$ such that $(\rho, \iota)$ is admissible by hypothesis. The strategy of the adversary is the following.

1. $A$ performs a number of queries $Q$ to the oracle $\Pi_\lambda$ until he obtains the set $Y = \{(x_i, g \ast x_i)\}_{i=1,\ldots,n}$ such that $\{\iota(x_1), \ldots, \iota(x_n)\}$ is a basis of $\mathbb{F}^n$.
2. $A$ evaluates $\iota$ on the set $Y$

$$\{(\iota(x_i), \iota(g \ast x_i))\}_i = \{(\iota(x_i), \rho(g)(\iota(x_i)))\}_i.$$  
3. Since $\{\iota(x_1), \ldots, \iota(x_n)\}$ is a basis of $\mathbb{F}^n$, $A$ can find the invertible matrix $\rho(g)$ and then inverting $\rho$, obtaining an element $h$ in $G$ such that $\rho(h) = \rho(g)$.

Let us analyse this strategy. Since $n = \text{poly}(\lambda)$ and the representation induces linear independence, $A$ requires a polynomial number of queries to retrieve a set $Y$ with non-negligible probability in step 1. Step 2 is polynomial-time since the representation is admissible and $\iota$ is evaluated at most $2Q$ times. Moreover, since finding a preimage of $\rho(g)$ is a polynomial-time task, the adversary $A$ finds an element $h$ of $G$ such that $\rho(g) = \rho(h)$. This implies that the action of $h$ on all the elements of $X$ coincides with the one of $g$. Hence, on a given $y$, he can compute $h \ast y = g \ast y$ in polynomial time with non-negligible probability. Therefore, the action cannot be weakly unpredictable. $\square$

**Proposition 14.** Let $\lambda$ be the security parameter. Given the group action $(G, X, \ast)$ and two distributions $D_G$ and $D_X$ over $G$ and $X$ respectively, if there exists a field $\mathbb{F}$ such that $\text{LinDim}_D(G, X, \ast) \leq \text{poly}(\lambda)$ and an admissible representation $(\rho, \iota)$ which induces linear independence with respect to $D_X$, then the $(D_G, D_X)$-weak pseudorandomness assumption does not hold.

**Proof.** The strategy of $A$ is the same as the one in the proof of Proposition 13, with some differences. In this case, the adversary can query to an oracle, but he does not know which one.

When he has access to $\Pi_\lambda$, the above strategy leads to a win with non-negligible probability, say $\frac{1}{M}$ for a non-negative $\ell$, since he finds $g$ and can check that the oracle outputs pairs of the form $(x, g \ast x)$.

Conversely, it is not needed to study its behavior when he has access to the oracle $U$ and suppose that he returns a random bit, as in the worst scenario. We have that

$$|\Pr[A^U(1^\lambda) = 1] - \Pr[A^U(1^\lambda) = 1]| \leq \frac{1}{M} - \frac{1}{2}$$

is non-negligible. Hence, the action is not $(D_G, D_X)$-weakly pseudorandom. $\square$

Even if the requirements of the previous propositions are non-trivial, in the next section we show how a large class of group action used in cryptography satisfy them.
4.1 Analysis of some group actions from cryptography

Here we propose some representations of known cryptographic group actions.

The hardness of the code equivalence problem has been used to build different primitives [BBPS21; CNP+23]. We refer to (Linear) Code Equivalence Problem as the following one: given two linearly equivalent linear codes \( C \) and \( C' \), find an isometry between them. This problem can be rephrased in the setting of group actions.

**Definition 15.** Let \( G = \text{GL}(\mathbb{F}_q^k) \times \text{Mon}(\mathbb{F}_q^n) \), where Mon is the group of monomial matrices, and let \( X = \mathbb{F}_q^{k \times m} \) be the set of \( k \times m \) matrices with coefficients in \( \mathbb{F}_q \). The (Linear) Code Equivalence Problem asks, on inputs \( M, M' \) in \( X \), to find \( (S, Q) \) in \( G \) such that \( M' = SMQ \).

The action underlying this problem is given by \((G, X, \star)\), where

\[
\star : G \times X \rightarrow X, \ ((S, Q), M) \mapsto SMQ.
\]

The map \( \star \) for the above definition is given by the left-right multiplication of the two matrices \( S \) and \( Q \).

**Corollary 16.** The group action of the Code Equivalence Problem is not wUn nor wPR.

**Proof.** Since the space of \( k \times n \) generator matrices is a vector space of dimension \( kn \), we can see it as \( \mathbb{F}^{kn} \) and \( \iota \) is the natural bijection. Since \( G \) is the product \( \text{GL}(\mathbb{F}^k) \times \text{Mon}(\mathbb{F}^n) \), we define the representation \( \rho \) as follows

\[
\rho : G \rightarrow \text{GL}(\mathbb{F}^{kn}), \ ((S, R)) \mapsto S \otimes R^T,
\]

where \( \otimes \) denotes the Kronecker product. It can be seen that \( \rho(g)(\iota(x)) = \iota(g \star x) \) for every \( g \) in \( G \) and \( x \) in \( X \). Moreover, the computation of \( \iota \) is polynomial time and such is finding a preimage of \( \rho(S, R) \). Indeed, let \( A = S \otimes R^T \) and divide \( A \) in \( n \times n \) blocks. Let \((i,j)\) be such that the block \( A_{(i,j)} \) is non-zero and set \( R' = A^T_{(i,j)} \). Now compute \( S' \) as follows. Let \( u \) and \( v \) be indexes such that \( R'_{uv} \) is non-zero. Then, for every \( i,j = 1, \ldots, k \)

\[
S'_{ij} = \frac{A_{(i,j)uv}}{R'_{uv}}.
\]

In this way, we found a pair \((S', R')\) such that the image through \( \rho \) is the same as \( \rho(S, R) \) and, observing that computing \( S' \) and \( R' \) is a polynomial time task, we can apply propositions 14 and 13 to get the thesis.

Another problem with the relative group action that raised interest is the Tensor Isomorphism Problem. It received a lot of attention both from a theoretical point of view [GQ21; GQ19] and from a cryptographic point of view [JQSY19; DFG23].

**Definition 17.** Let \( d \) be a positive integer. Let \( G = \Pi_{i=1}^d \text{GL}(\mathbb{F}_{q^n}) \) and let \( X = \otimes_{i=1}^d \mathbb{F}_{q^n} \) be the set of \( d \)-tensors with coefficients in \( \mathbb{F}_q \). The map \( \star : G \times X \rightarrow X \) is defined as

\[
\star : \left( (A_1, \ldots, A_d), \sum_{i_1,\ldots,i_d} T_{i_1,\ldots,i_d} e_1 \otimes \cdots \otimes e_d \right) \mapsto \sum_{i_1,\ldots,i_d} T_{i_1,\ldots,i_d} A_1 e_1 \otimes \cdots \otimes A_d e_d.
\]

The \( d \)-Tensor Isomorphism Problem asks, on inputs \( T, T' \) in \( X \), to find \( (A_1, \ldots, A_d) \) in \( G \) such that \( T' = (A_1, \ldots, A_d) \star T \).

**Corollary 18.** The action of the \( d \)-Tensor Isomorphism is not wUn nor wPR.
Proof. The set of \( d \)-tensors in \( \mathbb{F}^{n_1} \otimes \cdots \otimes \mathbb{F}^{n_d} \) is a vector space of dimension \( N = n_1 \cdots n_d \). Therefore, \( \iota \) is the natural bijection. The representation \( \rho \) is the Kronecker product of matrices
\[
\rho : G \rightarrow \text{GL}(\mathbb{F}^N), \ (A_1, \ldots, A_d) \mapsto A_1 \otimes \cdots \otimes A_d
\]
and it can be inverted iteratively with the computation from the proof of Corollary 16; consider \( A_1 \otimes (A_2 \otimes \cdots \otimes A_d) \) and find matrices \( A'_1 \) in \( \text{GL}(\mathbb{F}^{n_1}) \) and \( B_1 \ \text{GL}(\mathbb{F}^{N/n_1}) \) such that
\[
A'_1 \otimes B_1 = A_1 \otimes \cdots \otimes A_d.
\]
Then, we find \( A'_2 \) in \( \text{GL}(\mathbb{F}^{n_2}) \) and \( B_2 \ \text{GL}(\mathbb{F}^{\frac{N-n_1}{n_2}}) \) for which the following holds
\[
A'_2 \otimes B_2 = B_1.
\]
Proceeding in this way, we find \( A'_1, \ldots, A'_d \) such that
\[
A'_1 \otimes \cdots \otimes A'_d = A_1 \otimes \cdots \otimes A_d.
\]
Hence, we have the thesis using propositions 14 and 13. \( \square \)

Due to the TI-completeness of \( d \)-Tensors Isomorphism [GQ21], all the group actions derived from problems in TI cannot be wUn or wPR. In particular the action on matrix codes from [CNP+23] and the one on trilinear forms from [TDJ+22]. This is easy to see and we analyze the reductions between equivalence problems arising from group actions.

Suppose we have two group actions \( (G, X, \ast) \) and \( (G', X', \ast') \) and a polynomial time reduction \( \Phi : X \rightarrow X' \) such that, for every \( x, y \) in \( X \)
\[
\exists g \in G \text{ such that } g \ast x = y \iff \exists g' \in G' \text{ such that } g' \ast' \Phi(x) = \Phi(y). \tag{1}
\]
Even if this kind of reductions concern decision problems, most of the time they can be viewed as reductions between search problems, for instance like the ones in [GQ19; FGS19]. If so, we define
\[
\mathcal{R}_\Phi = \left\{ (g, g') \in G \times G' \mid g \ast x = y \iff g' \ast' \Phi(x) = \Phi(y), \ \forall x, y \in X \right\}
\]
and we denote with \( G'_{\Phi} \) the projection of \( \mathcal{R}_\Phi \) to the second coordinate. Then, there is a pair of maps
\[
f_\Phi : G \rightarrow G', \ g \mapsto f_\Phi(g)
\]
and
\[
f'_\Phi : G'_{\Phi} \rightarrow G, \ g' \mapsto f'_\Phi(g')
\]
such that both \( (g, f_\Phi(g)) \) and \( (f_\Phi(g), g') \) are in \( \mathcal{R}_\Phi \). With this notation, we can conclude that the reduction \( \Phi \) induces the following equation
\[
\Phi(g \ast x) = f_\Phi(g) \ast' \Phi(x).
\]

Let us go back to group actions representations. Given a reduction \( \Phi \) between \( (G, X, \ast) \) and \( (G', X', \ast') \) as in Eq. (1) and given a representation \( (\rho', \iota') \) for \( (G', X', \ast') \), we have that the tuple \( \{x_i, g \ast x_i\} \) is sent to \( \{\Phi(x_i), f_\Phi(g) \ast' \Phi(x_i)\} \). Using Proposition 13, we retrieve \( f_\Phi(g) \) in \( G' \), and this implies the following result.

**Theorem 19.** Group actions derived from equivalence problems in the class TI for which there exists a reduction \( \Phi \) to the \( d \)-Tensors Isomorphism Problem having a polynomial-time \( f_\Phi \) cannot be wUn nor wPR.
Proof. From the above analysis and from Corollary 18, we can retrieve an element \( h \) of \( G \) such that \( h \) acts like the secret \( g \). Since we can obtain \( f_\theta(g) \) from the proof of Proposition 13, \( h \) can be found computing \( f_\theta'(f_\theta(g)) \), and this concludes the proof. \( \square \)

Observe that many reductions from [GQ19; FGS19] satisfy the hypotheses of Theorem 19, hence, it is safe to avoid any of these group actions in the design of primitives requiring weak unpredictability or weak pseudorandomness.

5 On the Linear Dimension of some classic groups

5.1 The symmetric group \( S_n \)

Let \( S_n \) be the symmetric group in \( n \) letters \( x_1, \ldots, x_n \), i.e. it is the group of all bijections of the set \( X_n = \{x_1, \ldots, x_n\} \). The action is the trivial one, let \( \tau \) be in \( S_n \) and \( x_j \) be in \( X_n \). We define \( \tau \star x_j = x_{\tau(j)} \).

Surprisingly, the \( n-2 \) dimensional representation \( \rho : S_n \rightarrow \text{GL}(\mathbb{F}_q^{n-2}) \) of the symmetric group \( S_n \), when \( p \) divides \( n \), stated by L.E. Dickson in [Dic08, Theorem, page 123] does not admit a compatible injection \( \iota \). We show that, in general, the linear dimension of the symmetric group is \( n - 1 \).

Proposition 20. For \( n > 2 \) we have

\[
\text{LinDim}_{\mathbb{F}_q}(S_n, X_n) = n - 1.
\]

For \( n = 2 \):

\[
\text{LinDim}_{\mathbb{F}_q}(S_2, X_2) = \begin{cases} 2 & \text{if } 2 \mid q, \\ 1 & \text{otherwise}. \end{cases}
\]

Proof. First we show that \( \text{LinDim}_{\mathbb{F}_q}(S_n, X_n) \geq n - 1 \). Indeed, assume that \( d = \text{LinDim}_{\mathbb{F}_q}(S_n, X_n) \leq n-2 \). Let \( \rho \) be a representation \( \rho : S_n \rightarrow \text{GL}(\mathbb{F}_q^d) \) and let \( \iota : X \rightarrow \mathbb{F}_q^d \) be an injective map such that

\[
\rho(\tau)(\iota(x_j)) = \iota(\tau \star x_j)
\]

for all \( \tau \in S_n, x_j \in X_n \).

We have that the vectors of the set \( B = \{ \iota(x_1), \ldots, \iota(x_d) \} \) are either linearly independent or one of them is a linear combination of the others. Assume that \( \iota(x_j) \) is a linear combination of the others vectors of \( B \). Namely,

\[
\iota(x_j) = \sum_{s \neq j, 1 \leq s \leq d} c_s \iota(x_s),
\]

where the coefficients \( c_s \) are in \( \mathbb{F}_q \).

Let \( \tau \) from \( S_n \) be the transposition between \( x_j \) and \( x_n \). Then

\[
\rho(\tau)(\iota(x_j)) = \rho(\tau) \left( \sum_{s \neq j, 1 \leq s \leq d} c_s \iota(x_s) \right)
\]

\[
= \sum_{s \neq j, 1 \leq s \leq d} c_s \rho(\tau) \iota(x_s)
\]

\[
= \sum_{s \neq j, 1 \leq s \leq d} c_s \iota(\tau \star x_s)
\]

\[
= \sum_{s \neq j, 1 \leq s \leq d} c_s \iota(x_s)
\]

\[
= \iota(x_j).
\]
So \( \rho(\tau)(\iota(x_j)) = \iota(\tau \ast x_j) = \iota(x_n) = \iota(x_j) \) which is a contradiction. Then, the vectors of \( B \) are linearly independent and they form a basis of \( \mathbb{F}_q^n \). But then \( \iota(x_{n-1}) \) is a linear combination of vectors of \( B \) and we can use a transposition between \( x_{n-1} \) and \( x_n \) to get a contradiction as above. So \( \mbox{LinDim}_\rho(S_n, X_n) \geq n - 1 \).

Now let \( \rho_n : S_n \to \mbox{GL}(\mathbb{F}_q^n) \) be the standard representation. Namely,

\[
\rho_n(\sigma)(e_i) = e_{\sigma(i)}
\]

where \( \{e_1, \ldots, e_n\} \) is the canonical basis of \( \mathbb{F}_q^n \). Observe that the vector \( u = \sum_{j=1}^{n} e_j \) is invariant by \( \rho_n \), so we get a representation

\[
\tilde{\rho}_n : S_n \to \mbox{GL}(\mathbb{F}_q^n / \mathbb{F}_q u)
\]

on the quotient linear space \( \mathbb{F}_q^n / \mathbb{F}_q u \cong \mathbb{F}_q^{n-1} \):

\[
\tilde{\rho}_n(\sigma)(\pi(v)) := \pi(\rho_n(\sigma)(v))
\]

where \( \pi : \mathbb{F}_q^n \to \mathbb{F}_q^n / \mathbb{F}_q u \) is the projection to the quotient. Let us define \( \iota : X_n \to \mathbb{F}_q^n / \mathbb{F}_q u \) as

\[\iota(x_j) := \pi(e_j).\]

Then \( \iota(x_j) = \iota(x_s) \) if and only if \( e_j = e_s + \lambda u \), with \( \lambda \) in \( \mathbb{F}_q \). Thus, for \( n \geq 3 \) the map \( \iota \) is injective. Let us check that

\[
\tilde{\rho}_n(\tau)(\iota(x_j)) = \iota(\tau \ast x_j)
\]

for all \( \tau \) in \( S_n \) and \( x_j \) in \( X_n \). We have

\[
\tilde{\rho}_n(\tau)(\iota(x_j)) = \pi(\rho_n(\tau)(\iota(x_j))) = \pi(\rho_n(\tau)(e_j)) = \pi(e_{\tau(j)}) = \iota(x_{\tau(j)}) = \iota(\tau \ast x_j)
\]

Finally, for \( n = 2 \) the map \( \iota \) is still injective for \( p \neq 2 \). For \( p = 2 \) our map \( \iota \) fails to be injective. Actually, any 1-dimensional representation of \( S_2 \) is trivial in characteristic \( p = 2 \). So \( \mbox{LinDim}_\rho(S_2, X_2) = 2 \) since the standard representation and the inclusion \( \iota(x_1) = e_1, \iota(x_2) = e_2 \) satisfies

\[
\rho_2(\tau)(\iota(x_j)) = \iota(\tau \ast x_j)
\]

for all \( \tau \) in \( S_2 \) and \( x_j \) in \( X_2 \).

\[\square\]

**An application to \( n \)-bit permutations.** It is well-known that any 2-bit permutation is given by an affine map. Namely, that the boolean functions components of any bijection \( f : \mathbb{F}_2^2 \to \mathbb{F}_2^2 \) are affine:

\[f(x, y) = (ax + by + c, a'x + b'y + c')\]

where \( a, b, c, a', b', c' \in \mathbb{F}_2 \).

Here we give a proof of this fact together with a generalization to permutations of \( n \)-bit.

Let \( P(\mathbb{F}_2^n) \) be the group of bijections of \( \mathbb{F}_2^n \) and let \( \mbox{aff}(\mathbb{F}_2^n) \) be the subgroup of affine maps i.e. \( g \in \mbox{aff}(\mathbb{F}_2^n) \) iff \( g(x) = ax + b \) where \( b \in \mathbb{F}_2^n, a \in \mbox{GL}(\mathbb{F}_2^n) \).
Proposition 21. There is a group monomorphism \( \alpha : \text{P}(\mathbb{F}_2^n) \rightarrow \text{aff}(\mathbb{F}_2^{2n-2}) \) and an injection \( \iota : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^{2n-2} \) such that
\[
\rho(g)(\iota(x)) = \iota(g(x))
\]
for all \( g \in \text{P}(\mathbb{F}_2^n) \), \( x \in \mathbb{F}_2^n \).

Proof. This is a consequence of Proposition 20. To see why, notice that we can identify the symmetric group \( S_{2^n} \) with the group of permutations \( \text{P}(\mathbb{F}_2^n) \) of \( \mathbb{F}_2^n \). That is to say,
\[
S_{2^n} \cong \text{P}(\mathbb{F}_2^n).
\]

Such identification can be done by using the binary representation of the subindex \( j \) of the letter \( x_j \in X_{2^n} \). Namely,
\[
x_j \leftrightarrow (d_{n-1}, d_{n-2}, \ldots, d_1, d_0) \in \mathbb{F}_2^n
\]
where \( j = \sum_{i=0}^{n-1} d_i 2^i \).

Now by Proposition 20 there is a representation \( \rho : S_{2^n} \rightarrow \text{GL}(\mathbb{F}_2^{2n-1}) \) and map \( \iota : X_{2^n} \rightarrow \mathbb{F}_2^{2n-1} \) such that
\[
\rho(g)(\iota(x)) = \iota(g(x))
\]
for all \( x \in X_{2^n} \), \( g \in S_{2^n} \).

Now let \( H \subset \mathbb{F}_2^{2n-1} \) be the affine hyperplane generated as follows
\[
H = \{c_0 \cdot \iota(x_0) + \cdots + c_{2^n-1} \cdot \iota(x_{2^n-2}) : \sum_{i=0}^{2^n-2} c_i = 1\}.
\]

It is clear that \( \iota(x_j) \) is in \( H \) for \( j = 0, \ldots, 2^n - 2 \). Notice that, for \( j = 2^n-1 \), \( \iota(x_{2^n-1}) = \iota(x_0) + \cdots + \iota(x_{2^n-2}) \) and \( \sum_{i=0}^{2^n-2} 1 = 1 \); hence, also \( \iota(x_{2^n-1}) \) is in \( H \). So \( \iota(X_{2^n}) \subset H \).

Now, since the linear maps of \( \rho(S_{2^n}) \) permute \( \iota(X_{2^n}) \), they preserve the affine hyperplane \( H \) and hence, they act on \( H \) as affine maps. Keeping in mind the above identification of \( S_{2^n} \cong \text{P}(\mathbb{F}_2^n) \), we get a monomorphism \( \alpha : \text{P}(\mathbb{F}_2^n) \rightarrow \text{aff}(H) \) such that
\[
\alpha(g)(\iota(x)) = \iota(g(x))
\]
for all \( g \in \text{P}(\mathbb{F}_2^n) \) and \( x \in \mathbb{F}_2^n \). Finally, being \( H \) an affine hyperplane of \( \mathbb{F}_2^{2n-1} \), it has dimension \( 2^n - 2 \), hence \( H \cong \mathbb{F}_2^{2n-2} \) and we are done.

This shows that 2-bit permutations are affine 2-bit maps. The 3-bit permutations can be regarded as 6-bit affine maps and so on.

5.2 The General Linear Group \( \text{GL}(\mathbb{F}_q^n) \)

For \( g \) in \( \text{GL}(\mathbb{F}_q^n) \) and \( v \) in \( \mathbb{F}_q^n \), let us define \( \ast \) as \( g \ast v = g(v) \). Set \( Y_n := \mathbb{F}_q^n \).

Proposition 22. We have that \( \text{LinDim}_{\mathbb{F}_q}(\text{GL}(\mathbb{F}_q^n), Y_n) \geq n \).

Proof. Since the action of the symmetric group \( S_n \) on \( X_n \) is equal to the action of \( \rho_n(S_n) \subset \text{GL}(\mathbb{F}_q^n) \) on \( \iota(X_n) \subset \mathbb{F}_q^n \) we have
\[
\text{LinDim}_{\mathbb{F}_q}(\text{GL}(\mathbb{F}_q^n), Y_n) \geq n - 1.
\]

Assume that there is a representation \( \rho : \text{GL}(\mathbb{F}_q^n) \rightarrow \text{GL}(\mathbb{F}_p^{n-1}) \) and an injective map \( \iota : \mathbb{F}_q^n \rightarrow \mathbb{F}_p^{n-1} \) such that
\[
\rho(g)(\iota(v)) = \iota(g \ast v)
\]
for all \( g \) in \( \text{GL}(\mathbb{F}_q^n) \) and \( v \) in \( Y_n \). One of the vectors \( \iota(e_j) \), for \( j = 1, \ldots, n \), must be a linear combination of the others. Namely, there is a \( j \) such that

\[
\iota(e_j) = \sum_{s \neq j, 1 \leq s \leq n} c_s \iota(e_s),
\]

where the coefficients \( c_s \) are in \( \mathbb{F}_{p^k} \). From the action of the permutations, it follows that all coefficients \( c_s \) are equal. Then, swapping \( e_j \) with any of the other vectors implies \( c_s = -1 \). Hence, we get

\[
\sum_{j=1}^n \iota(e_j) = 0.
\]

Now let \( g \) be an element of \( \text{GL}(\mathbb{F}_q^n) \) such that \( g(e_1) = \lambda e_1, \lambda \neq 1 \), and \( g(e_j) = e_j \) for \( 1 < j \leq n \). Then

\[
0 = \rho(g) \left( \sum_{j=1}^n \iota(e_j) \right)
= \sum_{j=1}^n \rho(g) \iota(e_j)
= \sum_{j=1}^n \iota(g \ast e_j) = \iota(\lambda e_1) + \sum_{j=2}^n \iota(e_j).
\]

So \( \iota(\lambda e_1) = \iota(e_1) \) which contradicts the fact that \( \iota \) is injective.

\[ \square \]

### 5.3 The cyclic group \((\mathbb{Z}_n, +)\) acting on itself

In this subsection, we compute the linear dimension for the action of the additive group \( \mathbb{Z}_n \) acting on itself. For instance, let \( G = \mathbb{Z}_n, X = \mathbb{Z}_n \) and \( \ast = + \).

To state our main theorem we need the following definitions.

Let \( q \) be a prime power and \( n \) a positive integer such that \( \gcd(q, n) = 1 \), the order of \( q \) modulo \( n \) is denoted by \( \text{ord}_n(q) \). For \( n = 1 \) we set \( \text{ord}_1(q) = 0 \).

Let \( \text{LD}(n, q) \) be defined as

\[
\text{LD}(n, q) = \min \left\{ \sum_{j=1}^{\ell} \text{ord}_{n_j}(q) : n = \prod_{j=1}^{\ell} n_j, \gcd(n_i, n_j) = 1, i \neq j \right\}
\]

For example \( \text{LD}(15, 2) = 4 = \text{ord}_{15}(2) \) and \( \text{LD}(21, 2) = 5 < \text{ord}_{21}(2) = 6 \). Notice that \( \text{LD}(1, q) = 0 \) for every \( q \).

**Theorem 23.** Fix a prime \( p \) and let \( n = p^m r \), with \( \gcd(p, r) = 1 \). Then

\[
\text{LinDim}_{\mathbb{F}_{p^k}}(\mathbb{Z}_n, \mathbb{Z}_n) = \begin{cases} 
\text{LD}(r, q) & \text{if } m = 0, \\
\text{LD}(r, q) + (p^{m-1} + 1) & \text{if } m > 0.
\end{cases}
\]

For the proof of the theorem we need the following facts from linear algebra.

Let \( w = \text{LinDim}_{\mathbb{F}_{p^k}}(\mathbb{Z}_n, \mathbb{Z}_n) \) and let \( A \) be a matrix in \( \text{GL}(\mathbb{F}_{p^k}) \). Denote with \( n \) the order of \( A \), i.e. the order of the cyclic subgroup of \( \text{GL}(\mathbb{F}_{p^k}) \) generated by \( A \), and write \( n = p^m r \) with \( \gcd(p, r) = 1 \).

Let \( f(X) \in \mathbb{F}_q[X] \) be the minimal polynomial of \( Ap^m \) and let \( f(X) = \prod_{i=1}^{\ell} f_i(X) \) be its factorization in irreducibles \( f_i(X) \)'s. Since \( P(X) = X^r - 1 \) has simple roots and
$P(A^m) = 0$, we get that \( f_i(X) \neq f_j(X) \) for \( i \neq j \). Then \( A^m \) decomposes in \( s \) blocks \( A_1, \ldots, A_s \) as follows

\[
A^m = \begin{bmatrix}
A_1 & 0 & 0 & 0 \\
0 & A_2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & A_s
\end{bmatrix},
\]

where the minimal polynomial of the block \( A_i \) is \( f_i(X) \). Let \( r_i \) be the order of the block \( A_i \). Then \( r_i = \text{LCM}(r_1, r_2, \ldots, r_s) \) i.e. \( r \) is the least common multiple of the \( r_i \)'s.

The characteristic polynomial \( \chi_i \) of each block \( A_i \) is the \( d_i \)-th power of \( f_i \), i.e. \( \chi_i(X) = f_i^{d_i}(X) \). Moreover, each block \( A_i \) is itself a matrix block of size \( d_i \) associated to the multiplication for \( \alpha \) in the vector space \( \mathbb{F}_q(\alpha) \).

Now let \( N = A^r - \text{Id} \). Since \( (N + \text{Id})^p = N^p + \text{Id} = (A^r)^p = \text{Id} \), we have that \( N^p = 0 \) and hence, \( N \) is nilpotent. Now observe that \( N \) commutes with \( A^p \), so also \( N \) decompose in nilpotent blocks as

\[
N = \begin{bmatrix}
N_1 & 0 & 0 & 0 \\
0 & N_2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & N_s
\end{bmatrix}.
\]

The following lemma is a direct consequence of the above decompositions.

**Lemma 24.** Let \( w = \text{LinDim}_q(\mathbb{Z}_n, \mathbb{Z}_n) \) and let \( n = p^m r \). Let \( \rho : (\mathbb{Z}_n, +) \to \text{GL}(\mathbb{F}_q^w) \) and \( \iota : (\mathbb{Z}_n, +) \to \mathbb{F}_q^w \) such that

\[
\rho(g)(\iota(x)) = \iota(g \ast x)
\]

for all \( g, x \) in \( \mathbb{Z}_n \). Then the matrix \( A = \rho(1) \) has order \( n \) and w.r.t the above decomposition (2):

- \( f_i \neq X - 1 \implies d_i = 1 \),
- \( f_i \neq X - 1 \implies N_i = 0 \),
- for \( f_j = X - 1 \), the block \( A_j = \text{Id} \).

**Proof.** (of Theorem 23) By the above Lemma 24 we see that just one block of \( N_j \) is different from zero. Assume that it is \( N_1 \), and so \( A_1 = \text{Id} \). Then, the minimum size for \( N_1 \) to be nilpotent of order \( p^m \) but not of order \( p^m - 1 \) is \( p^m - 1 + 1 \).

For \( i > 1 \), let \( n_i \) be the order of each block \( A_i \). To obtain the minimum size for \( A_i \), we have to minimize over \( \deg(f_i) \) where \( f_i \in \mathbb{F}_q[X] \) is irreducible such that

\[
n_i = \text{ord}(\alpha)|q^{\deg(f_i)} - 1.
\]

where \( \text{ord}(\alpha) \) is the order of \( \alpha \) in the multiplicative group \( \mathbb{F}_q(\alpha)^* \). Thus

\[
\deg(f_i) = \text{ord}_{n_i}(q),
\]

15
since there is an irreducible \( f_i \in \mathbb{F}_q[X] \) with \( \deg(f_i) = \text{ord}_{n_i}(q) \). By the Chinese Remainder Theorem, we can assume \( \gcd(n_i, n_j) = 1 \) and so

\[
 r = \text{lcm}(n_2, \ldots, n_s) = \prod_{j=2}^{s} n_j .
\]

We have shown the inequality

\[
\text{LinDeg}_{\mathbb{F}_q}(\mathbb{Z}_n, (\mathbb{Z}_n, +)) \geq \begin{cases} 
\text{LD}(ss, q) & \text{if } m = 0, \\
\text{LD}(ss, q) + (p^{m-1} + 1) & \text{if } m > 0.
\end{cases}
\]

To show the equality, we need to construct the injective function

\[
\iota : (\mathbb{Z}_n, +) \to \mathbb{F}_q^w
\]

and the representation

\[
\rho : (\mathbb{Z}_n, +) \to \text{GL}(\mathbb{F}_q^w),
\]

where

\[
w = \begin{cases} 
\text{LD}(ss, q) & \text{if } m = 0, \\
\text{LD}(ss, q) + (p^{m-1} + 1) & \text{if } m > 0.
\end{cases}
\]

We will assume \( m > 0 \) since for the case \( m = 0 \), it is enough to avoid the nilpotent block.

The previous proof show us how to construct a matrix \( A \) in \( \text{GL}(\mathbb{F}_q^w) \) of order \( n \) by using blocks. Let \( A \) in \( \text{GL}(\mathbb{F}_q^w) \) defined as

\[
A = \begin{bmatrix}
N + \text{Id} & 0 & 0 & 0 \\
0 & A_2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & A_s
\end{bmatrix},
\]

where \( \text{Id} \) is the \((p^{m-1} + 1) \times (p^{m-1} + 1)\) identity and \( N \) is the well-known \((p^{m-1} + 1) \times (p^{m-1} + 1)\) lower diagonal nilpotent matrix. Then

\[(N + \text{Id})^{p^m} = \text{Id},
\]

but \((N + \text{Id})^{p^{m-1}} \neq \text{Id}.

For each \( j > 1 \) let \( \mathbb{F}_q(\alpha_j) \) be the extension of degree \( \text{ord}_{n_j}(q) \) such that \( \alpha_j \) has order \( n_j \). The existence of such \( \alpha_j \) is well-known, see e.g. [LN97, Theorem 2.46, page 65]. The extension \( \mathbb{F}_q(\alpha_j) \) is a vector space over \( \mathbb{F}_q \) isomorphic to \( \mathbb{F}_q^{\text{ord}_{n_j}(q)} \). So let \( A_j \) be the \( \text{ord}_{n_j}(q) \times \text{ord}_{n_j}(q) \) matrix corresponding to the multiplication by \( \alpha_j \) in \( \mathbb{F}_q(\alpha_j) \). Moreover, let \( v_j \in \mathbb{F}_q^{\text{ord}_{n_j}(q)} \) be a vector corresponding to \( 1 \in \mathbb{F}_q(\alpha_j) \) w.r.t. the isomorphism \( \mathbb{F}_q(\alpha_j) \cong \mathbb{F}_q^{\text{ord}_{n_j}(q)} \). Finally, let \( v_1 = [1, 0, \ldots, 0] \in \mathbb{F}_q^{(p^{m-1} + 1)} \) and let \( v = v_1 + v_2 + \cdots + v_s \in \mathbb{F}_q^w \).

Define \( \rho : (\mathbb{Z}_n, +) \to \text{GL}(\mathbb{F}_q^w) \) as

\[
\rho(j) := A^j
\]

and \( \iota : \mathbb{Z}_n \to \mathbb{F}_q^w \) as

\[
\iota(j) = A^j \cdot v .
\]

We have that \( \rho(g)(\iota(j)) = \iota(g \ast j) \) holds for all \( g, j \) in \( \mathbb{Z}_n \) and so, to complete the proof, we need to check that \( \iota \) is injective.
Assume that for $0 \leq a < b \leq n - 1$ we have $i(a) = i(b)$. Then $A^h \cdot v = v$ for $0 < h = b - a < n$. Then

$$
\begin{cases}
(N + \text{Id})^h \cdot v_1 = v_1 \\
A^h_2 \cdot v_2 = v_2 \\
\vdots \\
A^h_s \cdot v_s = v_s
\end{cases}
$$

then the equalities $A^h_j \cdot v_j = v_j$ for $j = 2, \ldots, s$ imply that $r|h$. Moreover, the first equality implies that $(N + \text{Id})^h = \text{Id}$ since the vectors $\{N^0 \cdot v_1, N^1 \cdot v_1, \ldots, N^{p^n-1} \cdot v_1\}$ forms a basis of $\mathbb{F}_q^{p^{n-1}+1}$, and

$$(N + \text{Id})^h \cdot N^j \cdot v_1 = N^j \cdot v_1$$

for all $j = 0, \ldots, p^n-1$. So $p^n \mid h$ and $n = p^n r \mid h$. This is a contradiction with $0 < h = b - a < n$. This complete the proof.

\[\blacksquare\]

Acknowledgments

The authors are members of GNSAGA of INdAM and of CrypTO, the group of Cryptography and Number Theory of the Politecnico di Torino. The first author acknowledges support from TIM S.p.A. through the PhD scholarship.

References


