
HERMES: Efficient Ring Packing using MLWE
Ciphertexts and Application to Transciphering

Youngjin Bae1, Jung Hee Cheon1,2, Jaehyung Kim1, Jai Hyun Park2, and
Damien Stehlé3

1 CryptoLab Inc., Seoul, Republic of Korea
2 Seoul National University, Seoul, Republic of Korea

3 CryptoLab Inc., Lyon, France

Abstract. Most of the current fully homomorphic encryption (FHE)
schemes are based on either the learning-with-errors (LWE) problem or
on its ring variant (RLWE) for storing plaintexts. During the homomor-
phic computation of FHE schemes, RLWE formats provide high through-
put when considering several messages, and LWE formats provide a low
latency when there are only a few messages. Efficient conversion can
bridge the advantages of each format. However, converting LWE formats
into RLWE format, which is called ring packing, has been a challenging
problem.

We propose an efficient solution for ring packing for FHE. The main im-
provement of this work is twofold. First, we accelerate the existing ring
packing methods by using bootstrapping and ring switching techniques,
achieving practical runtimes. Second, we propose a new method for ef-
ficient ring packing, HERMES, by using ciphertexts in Module-LWE
(MLWE) formats, to also reduce the memory. To this end, we generalize
the tools of LWE and RLWE formats for MLWE formats.

On a single-thread implementation, HERMES consumes 10.2s for the
ring packing of 215 LWE-format ciphertexts into an RLWE-format ci-
phertext. This gives 41x higher throughput compared to the state-of-
the-art ring packing for FHE, PEGASUS [S&P’21], which takes 51.7s
for packing 212 LWE ciphertexts with similar homomorphic capacity.
We also illustrate the efficiency of HERMES by using it for transci-
phering from LWE symmetric encryption to CKKS fully homomorphic
encryption, significantly outperforming the recent proposals HERA [Asi-
acrypt’21] and Rubato [Eurocrypt’22].

1 Introduction

4 Fully Homomorphic Encryption (FHE) is a form of encryption that enables
computations on encrypted data without decryption. Most of the known FHE
schemes are based either on the learning-with-errors (LWE) problem [Reg09] or
on the ring learning-with-errors (RLWE) problem [SSTX09, LPR10] for storing

4 Version dated March 1, 2024

2 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

plaintexts. The main practical FHE schemes with plaintexts stored in LWE-
format ciphertexts were proposed in [DM15] and [CGGI16]. Efficient FHE sche-
mes with plaintexts stored in RLWE-format ciphertexts include BFV [Bra12,
FV12], BGV [BGV14], and CKKS [CKKS17]. An RLWE ciphertext typically
corresponds to a plaintext polynomial, whose degree is of the order of several
thousands. Rather than placing the data in the coefficients of the polynomial,
which is referred to coefficients-encoding, one often prefers slots-encoding: the
data is placed in the frequency domain of a Fourier transform over a finite field
(in the case of BGV/BFV) or over the complex numbers (in the case of CKKS).
Each slot can be filled with a small modular integer, an element of a small finite
field, or a real/complex number with moderate precision. By relying on slots,
RLWE schemes can support Single Instruction Multiple Data (SIMD) additions
and multiplications, which allow them to achieve amortized run-times. However,
they are cumbersome for operations between data points stored in different slots
or coefficients of the same ciphertext, and when there are only a few data points
to be computed upon compared to the capacity of the ciphertext. On the other
hand, LWE schemes are inefficient for handling many messages in parallel since
they do not natively provide SIMD operations. Instead, they do not require a
complex packing structure and provide low latency when only a few messages
are considered.

Ring packing is the task of converting many LWE-format ciphertexts to an
RLWE-format ciphertext. Below are several scenarios in which an efficient con-
version can be particularly beneficial (some also require a reverse conversion,
from RLWE-format to LWE-format, but this is typically easier to achieve).

• Heterogeneous operation types. Roughly speaking, RLWE schemes pro-
vide efficient addition and multiplication on small integers, complex num-
bers and finite field elements, while LWE schemes outperform them for ta-
ble look-ups or computations on individual bits. Conversion applications to
computations involving different types of operations are notably considered
in [BGGJ20, LHH+21].

• Heterogeneous computational widths. A complex task may involve
many data points at some stages, during which RLWE formats may be
preferable, and much fewer at other stages, during which LWE formats may
be considered. Notably, computations with plenty of inputs and a binary
decision being taken at the end are considered in [BGGJ20].

• Storing FHE ciphertexts. The RLWE SIMD structure may be optimized
depending on the specific computation to be performed. If the latter is not
known in advance or diverse computations can be performed on the same
data, it is interesting to store the data in LWE format, and convert it when
a computation is launched. This is discussed, e.g., in [CGGI17].

• Transciphering. The large size of RLWE ciphertexts may be problematic
when streaming data from small devices. It was suggested in [NLV11] to
use a symmetric cipher for sending the data from a client to a server, and
to let the server homomorphically decrypt it to obtain an FHE ciphertext.

HERMES: Efficient Ring Packing using MLWE Ciphertexts 3

In [CDKS21], the authors use an LWE-based symmetric cipher, and homo-
morphic decryption reduces to ring packing.

Even though converting data stored in (many) LWE ciphertexts to a ci-
phertext in RLWE format is central to the above applications, the current
approaches remain relatively inefficient. The algorithm from [LHH+21] takes
≈ 51.7s to pack 212 LWE ciphertexts into a slots-encoded RLWE ciphertext
of degree 216 with a single-thread implementation (the run-time is obtained
from [LHH+21, Table V] by adding the ‘LT’ and ‘Fmod’ timings). In [CDKS21,
Table 2], the authors report that their algorithm allows pack 25 LWE cipher-
texts into a coefficients-encoded RLWE ciphertext of degree 214, in 1.17s. The
authors of [BGGJ20] mention a 7s timing to pack LWE ciphertexts into a slots-
encoded RLWE ciphertext of degree 212. Note further that the experiments
from [BGGJ20, CDKS21] are not satisfactory for packing the order of several
hundreds or thousands LWE ciphertexts into an RLWE format that allows fully
homomorphic computations and is hence bootstrappable (i.e., of degree ≥ 215).

Contributions. Our main result is an efficient ring packing algorithm, for
CKKS computations, based on ring packing for RLWE-format ciphertexts with
small parameters. Its concrete efficiency is supported by experiments. Finally,
we illustrate the usefulness of our efficient ring packing by focusing on the tran-
sciphering application.

Our ring packing algorithm is inspired from the one proposed in [CGGI17],
itself based on the column method for matrix-vector multiplication described
in [HS14]. We adapt it to fully homomorphic RLWE computations in a way
that widely differs from [BGGJ20]. We leverage several techniques to optimize
the efficiency: CKKS bootstrapping [CHK+18], ring switching [GHPS13], and
intermediate Module-LWE computations [BGV14, LS15].

We implemented our algorithm in the HEaaN library [Cry]. One implemen-
tation allows to ring-pack 215 LWE ciphertexts into a slots-encoded CKKS ci-
phertext of degree 215 on which homomorphic computations can be directly
performed, in 10.2s with a single thread. This is ≈ 41 times faster in terms of
throughput than [LHH+21, Table V] mentioned above, for a similar task.

We use our ring packing algorithm for the transciphering application de-
scribed in [CDKS21]. As illustrated in Table 1, compared to state of the art
transciphering algorithms for the CKKS scheme [CHK+21, HKL+22], our ap-
proach achieves a significant reduction of server run-time while retaining a small
bandwidth consumption. We refer to Section 5.4 for a more detailed comparison.

Although we focus on the CKKS scheme, we note that our techniques are
also applicable to ring packing to RLWE formats that correspond to the BFV
and BGV schemes and to RLWE formats that do not necessarily enable fully
homomorphic encryption. Also, we chose to focus on the transciphering applica-
tion, but note that the algorithmic improvements are also beneficial to the other
applications mentioned above.

Technical overview. Before delving into the technical ingredients of our ring
packing algorithm, we take a step back and discuss the definition of ring packing.

4 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

Scheme N Latency (s) Expansion ratio

RtF-HERA [CHK+21]

216
142 1.24

RtF-Rubato [HKL+22] 71.1 1.31

This work 25.7 1.58

Table 1. Comparison between different transciphering schemes. Here N denotes the
degree of the output RLWE ciphertext, and latency denotes the total transciphering
time including online and offline phases of the client and server. The expansion ratio
is the ratio between the ciphertext bit-size and the final plaintext precision multiplied
by the number of slots. The first timings are borrowed from [CHK+21, HKL+22] and
all timings are for single-thread implementations parametrized to encrypt 16 messages
at once.

Which ring packing? There have been several works on packing LWE cipher-
texts into RLWE ciphertexts [CGGI17, MS18, BGGJ20, LHH+21, CDKS21].
Even though their high-level goals are similar, the ring packing task is un-
derspecified and covers several application scenarios. It is not a priori obvi-
ous which RLWE degree N and modulus q should be targeted, and whether
one should aim at slots-encoding or coefficients-encoding for the RLWE cipher-
texts. Other parameters include the LWE dimension and modulus, as well as
the number of ciphertexts to be ring-packed. This flexibility also makes it dif-
ficult to compare the various methods. For instance, the ring packing methods
from [CGGI16, CDKS21, MS18] are for coefficients-encoding and small RLWE
moduli. On the other hand, the ring packing methods from [BGGJ20, LHH+21]
are designed for slots-encoding and large RLWE moduli.

A very important scenario for ring packing, encompassing all applications
listed earlier, is to use the RLWE-formats for efficient homomorphic computa-
tions. Slot-encoding then seems a preferable choice as it enables SIMD opera-
tions. Very often, the aim is to be able to perform considerable computations
on RLWE encryptions, which means the packed RLWE encryption should enjoy
fully homomorphic computations. For example, consider the application of ring
packing to bridging FHE computations on LWE-format ciphertexts and RLWE-
format ciphertexts. Data stored in LWE-format ciphertexts can conveniently be
manipulated in an atomic manner, and RLWE-format FHE schemes allow higher
throughput thanks to the ring structure. With efficient ring packing methods,
we can aggregate LWE ciphertexts into an RLWE ciphertext and utilize the
efficient, structured computations of RLWE FHE schemes.

FHE ring packing. For the reasons mentioned above, the most desirable target
for ring packing in the context of FHE computations is to obtain an RLWE-
format ciphertext for parameters that support SIMD fully homomorphic com-
putations with bootstrapping. The bootstrappability forces the RLWE degree
to be sufficiently high. Also, such ring packing should enable computations im-
mediately after the ring packing, without further processing. All known RLWE-
format FHE schemes that support SIMD computations are leveled [BGV14]:
ciphertexts are defined with respect to a modulus that belongs to a chain of
moduli Q0 < Q1 < A ciphertext is at the largest modulus Qcomp right after
bootstrapping and its modulus moves down while performing homomorphic com-

HERMES: Efficient Ring Packing using MLWE Ciphertexts 5

putations. It eventually reaches the smallest modulus Qrefresh that can be boot-
strapped. In the context of FHE computations, the aim of ring packing should
be to output slots-encoded RLWE-format FHE ciphertexts in modulus Qcomp and
a bootstrappable degree.

Existing ring packing approaches. In ring packing, we are given several LWE-
format ciphertexts ci ∈ ZK+1

q for a common key s: they satisfy ci ·s = mi mod q
for some message mi. The goal is to obtain an RLWE-format ciphertext whose
underlying plaintext polynomial contains the mi’s. Concretely, we aim at evalu-
ating C · s, where the matrix C whose rows are the ci’s is viewed as a plaintext,
the LWE key s is given encrypted in RLWE format and the resulting vector
should be encoded in RLWE format. In short, ring packing is an instance of
(plaintext matrix)-(ciphertext vector) homomorphic multiplication.

Diverse approaches have been proposed for this task. In [CGGI17, MS18,
BGGJ20], each entry in the key s is encrypted in RLWE format, each column cj
ofC is interpreted as a polynomial, and one evaluates the weighted sum

∑
j cj ·sj .

This is an adaptation of the column method from [HS14] for matrix-vector mul-
tiplication. In the row method of [CDKS21], each column ci of C is interpreted
as a polynomial and the secret key s is stored in a single RLWE ciphertext; the
ring automorphisms are used to remove the superfluous terms obtained when
multiplying the polynomials corresponding to ci and s. In [LHH+21], the au-
thors store the diagonals of C in polynomials and the secret key s is also stored
in a single RLWE ciphertext; they use the SIMD property of RLWE encryption
to compute cij · sj for many j’s in parallel. This is an extension of the diago-
nal method for matrix-vector multiplication described in [HS14] and attributed
therein to Dan Bernstein.

Our approach. Contrary to the most recent works on ring packing [CDKS21,
LHH+21], our technique is based on the column method. We improve it to an
extent that makes it outperform the strategies based on the row and diagonal
methods.

Our first optimization stems from boostrapping itself. Indeed, bootstrap-
ping includes steps that take a low-modulus coefficients-encoded ciphertext and
convert it to a high-modulus slots-encoded one. The sequence of relevant com-
ponents of bootstrapping is called HalfBoot in [CHK+21], where it was used in
the context of converting outputs of BFV computations to CKKS ciphertexts.
This strategy (which we rename HalfBTS for consistency with our notations) is
motivated by the fact that bootstrapping is less costly than known ring packing
methods to a high modulus such as Qcomp. We hence ring-pack to coefficients-
encoded RLWE-ciphertexts at the smallest modulus that can be handled by
HalfBTS (which is even lower than Qrefresh) and then HalfBTS to the target
modulus. We stress that FHE ring packing is reduced to a base ring packing to
a coefficients-encoded RLWE ciphertext with a small modulus. The rest of our
improvements concern this base ring packing.

Secondly, by using the ring switching technique from [GHPS13] , we decou-
ple the ring packing dimension from the FHE dimension, and ring-pack from
smaller LWE dimensions to smaller RLWE degrees: the only restriction is that

6 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

the dimensions/degrees are high enough to provide security. As far as we are
aware of, in the context of FHE computations, ours is the first work obtaining
a significant practical gain by using the ring switching technique (see, e.g., the
discussion in [HS21, Section 8]). These two techniques significantly improve the
run-time of the column method.

The techniques above can also be used to improve the row and diagonal
methods. We now explain why they benefit the column method the most. Thanks
to HalfBTS, the aim is that the output of ring packing is coefficients-encoded
at a small modulus. The modulus consumption during the (base) ring packing
is therefore a key factor for efficiency, as computations must be performed at
a higher modulus to end with the target small modulus. This is amplified by
the fact that a higher modulus consumption requires a higher dimension, to
maintain security. As the column method does not consume any modulus, it
can fully be performed at the lowest modulus. On the other hand, the diagonal
method from [LHH+21] requires many: the input modulus should be taken larger
to anticipate the modulus loss. Finally, we note that the column method also
benefits the most from the hoisting technique from [HS18, Section 5] and has
better complexity than the row method if there are few LWE ciphertexts to
ring-pack.

Reducing memory consumption. The column method still suffers from a signifi-
cant drawback compared to the other approaches. Because each LWE secret key
coefficient si is encrypted in an RLWE ciphertext, the whole key material re-
quires a considerable amount of memory. To mitigate this, we propose the block
method, which relies on ciphertexts in module-learning-with-errors (MLWE) for-
mat [BGV14, LS15].

We proceed as follows. Instead of decomposing the N ×N matrix C into N
columns and mapping each column to a degree N polynomial, we view it as
a
√
N ×
√
N matrix of blocks of dimensions

√
N ×
√
N . Each one of these blocks

is associated with an MLWE ciphertext with dimension N . The key (s1, . . . , sN)
is first decomposed into

√
N segments of length

√
N , each segment of which can

be stored in a single RLWE switching key of degreeN . Each row of blocks fromC
is then packed into a single block by using module key switching, leading to an
N ×
√
N matrix that is encrypted under a temporary key. We then complete the

process using the column method with
√
N RLWE switching keys of degree N .

Overall, the size of the key material has decreased from N RLWE ciphertexts
of degree N to 2

√
N of them. Our method relies on an efficient key switching

procedure for MLWE ciphertexts, which extends the LWE-to-LWE key switching
from [CDKS21].

The method can be extended to multiple levels of recursion, leading to smaller
key material sizes. The block method with t levels of recursion requires tN1/t

RLWE switching keys of degree N . The column method is the case of t = 1, re-
quiring N switching keys. The simplest block method, with t = 2, requires 2

√
N

switching keys.

Transciphering. The existing FHE schemes suffer from high ciphertext expan-
sion, with the notable exception of RLWE-based schemes at the smallest mod-

HERMES: Efficient Ring Packing using MLWE Ciphertexts 7

ulus, which encodes N messages into two degree N polynomials (the message
precision is a little lower than the modulus, adding to the expansion factor). To
further reduce this expansion factor, it is possible to implicitly represent the first
polynomial as the output of an extendable output-format function (XOF) on a
public seed. However, the granularity is very coarse, as a small expansion factor
is achieved only if one starts with as many messages as the degree (e.g., set to 215

or 216 to enable bootstrapping in CKKS). The transciphering framework solves
this problem using conversion between symmetric ciphers and homomorphic en-
cryption schemes. In the context of CKKS, the state of the art transciphering
approaches [HKL+22, CHK+21] rely on the Real-to-Finite-Field (RtF) transci-
phering framework from [CHK+21]. These works design stream ciphers for real
numbers. The key stream is homomorphically evaluated with the BFV scheme
(to perform finite field operations); the encrypted data is then added to the
BFV encryption of the key stream to obtain a BFV encryption of the plaintext
polynomial corresponding to the data; and then HalfBTS allows to obtain a slots-
encoded CKKS ciphertext. This approach is quite heavy for the server, which
has to run expensive BFV homomorphic computations. Further, the ciphers are
specifically designed for this task, and their security is not well-established yet.

Instead of the RtF framework, we use the transciphering strategy described
in [CDKS21], which consists in using an LWE-based symmetric cipher. Tran-
sciphering is then exactly ring packing. This approach was inefficient because
so was ring packing, but our ring packing algorithm makes it outperform the
proposals based on the RtF framework. The LWE ciphertexts are in a small
dimension and with a small modulus. As all but one of the coordinates are im-
plicitly represented using a seed, the expansion ratio is limited. Beyond efficiency,
this approach achieves high granularity: each message is encrypted individually,
as opposed to batches of 16 to 64 messages as in [HKL+22, CHK+21]. This gran-
ularity allows the client to send the data whenever it wishes, as it does not need
to wait for completing it (alternatively, it could use a block of 16 to 64 messages
with only one message, but this would damage the expansion ratio). Finally, the
ring packing approach does not require to introduce any new assumption.

2 Preliminaries

For a power-of-2 integerN ≥ 2, we define the polynomial ringRN = Z[X]/(XN+
1). It is isomorphic to the ring of integers of the degree-N cyclotomic field.
For q ≥ 2, we define Rq,N = Zq[X]/(XN + 1) = RN/qRN . We will always
choose q as a product of primes qi such that qi = 1 mod 2N for all i. This en-
ables fast multiplication over Rq,N , based on the Chinese Remainder Theorem
and the Number Theoretic Transform (NTT).

Let K, q ≥ 2. An LWEK
q ciphertext with modulus q and dimension K for

a secret key s ∈ ZK+1 and a plaintext m ∈ Zq is an element c ∈ ZK+1
q such

that ⟨c, s⟩ = m. For N a power of 2, an RLWEq,N ciphertext for a secret key
s ∈ R2

N and a plaintext polynomial m ∈ Rq,N is an element c ∈ R2
q,N such

that ⟨c, s⟩ = m. We let LWEK
q .Enc(m) denote an LWE ciphertext decrypting

8 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

to plaintext m ∈ Zq and RLWEq,N .Enc(m) an RLWE ciphertext decrypting to
plaintext m ∈ Rq,N . We suppose the plaintexts in the notations contain small
errors so that we can omit the contained error term e.

2.1 RLWE key switching

We describe RLWE key switching in terms of its substeps ModUp, ModDown and
MultSwk. Key switching can be based on gadget decomposition and on the use of
an intermediate integer. Typically, the de facto choice nowadays is a combination
of these from [HK20]. For simplicity, we focus on explaining the case where the
gadget decomposition number (dnum) is 1. The general case works similarly.

• ModUp : Rq,N → Rqp,N takes as input a polynomial in Rq,N , embeds it
into RN by identifying Zq with [−q/2, q/2) and then reduces modulo qp.
• MultSwk : Rqp,N ×R2

qp,N → R2
qp,N takes as inputs a polynomial â ∈ Rqp,N

and a switching key swk ∈ R2
qp,N , and simply computes â · swk. It costs 2

Hadamard multiplications of degree N .
• ModDown : R2

qp,N → R2
q,N takes as input a ciphertext ct ∈ R2

qp,N and
computes an approximate division by p:

ct = (b̂, â) 7→

(
b̂− [b̂]p

p
,
â− [â]p

p

)
.

Given two secret keys s and s′, the switching key from s to s′ is defined as

swk = (−âs′ + ps+ ê, â) ∈ R2
qp,N ,

where â is a uniform polynomial in Rqp,N and ê ∈ RN is random with small-
magnitude coefficients. This switching key can be used to convert a ciphertext
for s into a ciphertext for s′ that encrypts the same plaintext (up to a small
error). Let ct = (b, a) ∈ R2

q,N be a ciphertext for the secret key s so that
(b, a)·(1, s) = b+as = m for the plaintext m. Key switching on ct with switching
key swk is defined as follows:

KS(ct; swk) = ModDown
(
MultSwk

(
ModUp(a), swk

))
+ (b, 0) ∈ R2

q,N .

Depending on the context, we sometimes use the notation KSs→s′(ct). When
applying several automorphisms on a single ciphertext, ModUp(a) can be shared
through key switching for automorphisms so computed only once. On the other
hand, when summing up several key switching results, one can add everything
before ModDown to avoid redundant ModDown’s. Such techniques are referred
to as hoisting in [HS18]. We introduce a notation for the second technique for
later use. Suppose that ctj = (bj , aj), âj = ModUp(aj) for 0 ≤ j < ℓ and
b =

∑
0≤j<ℓ bj . Then we write:

KS((ctj)0≤j<ℓ; (swkj)0≤j<ℓ) = ModDown
(∑

0≤j<ℓ

MultSwk
(
âj , swkj

))
+ (b, 0).

HERMES: Efficient Ring Packing using MLWE Ciphertexts 9

2.2 The column method for ring packing

We consider the task of packing N LWE ciphertexts in dimension N into a single
RLWE ciphertext for degree N . By default, the column method is designed to
handle as many input ciphertexts as the RLWE degree. We will see later that
our algorithm offers more flexibility. By default, the column method output is a
coefficients-encoded RLWE ciphertext.

Let (b0,a0), . . . , (bN−1,aN−1) ∈ Zq × ZN
q be LWE ciphertexts such that

∀i < N : bi + ⟨ai, s⟩ = mi

for some m0, . . . ,mN−1 ∈ Zq and where s ∈ ZN
q is an LWE secret key. We aim

to get an RLWE ciphertext (b, a) ∈ R2
q,N such that

(b, a) · (1, s) = b(X) + a(X)s(X) =

N−1∑
i=0

miX
i,

where s is an RLWE secret key. Write ai = (ai,0, ai,1, . . . , ai,N−1) for i < N and
let αj(X) be defined as

αj(X) = a0,j + a1,jX + · · ·+ aN−1,jX
N−1,

for all j < N . Note that the coefficients of αj correspond to the jth column
obtained by stacking the ai’s on top of one another. This observation leads to
the following equality, where we write s = (sj)0≤j<N :

N−1∑
i=0

biX
N−1 +

N−1∑
j=0

sj · αj(X) =

N−1∑
i=0

miX
i.

The column method [CGGI17] regards each sj as a different secret key and
performs a key switching from sj to the RLWE key s for all j < N and sums
the results together. In more detail:

• (Switching key generation) For each j, compute

swkj = (−âjs+ psj + êj , âj) ∈ R2
qp,N ,

where âj is a uniform polynomial in Rqp,N and êj ∈ RN is random with
small-magnitude coefficients.

• (Ring packing) Given the αj(X)’s for j < N and
∑N−1

i=0 biX
N−1, we compute

modDown
(N−1∑

j=0

modup(αj(X)) · swkj
)
+
(
0,

N−1∑
i=0

biX
N−1

)
∈ R2

q,N ,

which is an RLWE ciphertext that decrypts to ≈
∑N−1

i=0 miX
i.

10 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

2.3 The CKKS scheme

We now provide a brief outline of the CKKS fully homomorphic encryption
scheme [CKKS17, CHK+18].

Encoding and decoding. In the CKKS scheme, messages are vectors in CN/2,
while plaintexts are the elements of RN . There exists an approximate (scaled)
isomorphism between these two spaces called encoding, whose inverse is referred
to as decoding. In order to encrypt a message, one first converts the message
into a plaintext via the inverse discrete Fourier transform (iDFT) and scales it
up; this process is called encode and denoted as Ecd. The other direction maps
a plaintext to a message and corresponds to evaluating the discrete Fourier
transform (DFT) and scaling the result downwards; this process is called decode
and is denoted as Dcd. To be more specific, Ecd : CN/2 → RN is defined as

z 7→ ⌊∆ · iDFT(z)⌉

where ∆ is a scaling factor and ⌊·⌉ denotes rounding. Dcd : RN → CN/2 is

m(x) 7→ 1

∆
· DFT(m).

Slots and coefficients. Let ct = (b, a) ∈ R2
q,N be a ciphertext encrypting a plain-

text m ∈ RN . Since there is an approximately scaled isomorphism between the
message and the plaintext polynomial, we can also view ct as encrypting the
message z = Dcd(m). In this work, the slots of a ciphertext refer to the slots
of z, and the coefficients of a ciphertext refer to coefficients of m.

Ciphertext levels. Since encoding is a scaled homomorphism, we have an approx-
imate identity

Ecd(z1) ∗ Ecd(z2) ≃ ∆ · Ecd(z1 ⊙ z2)

where ∗ denotes the polynomial multiplication and ⊙ denotes the componentwise
multiplication. Hence, in order to maintain the scale, we should scale the result
of every multiplication down by a factor ∆. This process is called rescale and
reduces the ciphertext modulus q by a factor ∆: the new modulus is ≈ q/∆.
Since homomorphic operations including multiplication and addition can only
be defined if two ciphertexts have the same ciphertext modulus, there is a notion
of ciphertext level that is associated with its modulus. Concretely, the lowest
modulus allowing meaningful decryption is designated as level 0 and we say that
each rescale decreases the level by 1. We let QEnc denote the modulus of level 0 as
it is the lowest modulus allowing meaningful encryption/decryption. We let QKS

the modulus of level 1 as it is the lowest modulus at which we can perform key
switching and obtain a ciphertext that still correctly decrypts.

CKKS bootstrapping. Each multiplication/rescale consumes one level. When the
level reaches to 0, we cannot proceed with further multiplications. Bootstrap is
an operation that allows one to raise the modulus while keeping the underlying
plaintext almost the same. CKKS bootstrapping consists of four steps:

HERMES: Efficient Ring Packing using MLWE Ciphertexts 11

• Slots-to-coeffs StC is a homomorphic evaluation of the DFT matrix. The co-
efficients of the resulting ciphertext become the slots of the input ciphertext.

• Modulus raises ModRaise raises the modulus via the canonical embedding,
similarly to ModUp (the moduli are distinct, which justifies the different
terminology). After mod-raising a ciphertext in RQEnc,N with underlying m,
one obtains a ciphertext inRQtop,N for a larger modulus Qtop with underlying
plaintext equal to m+QEncI for some small I ∈ RN .

• coefficients-to-slots CtS is a homomorphic evaluation of the iDFT matrix.
The slots of the resulting ciphertext become the coefficients of the input
ciphertext. In particular, this places the QEncI terms in the slots.

• Modulo evaluation EvalMod removes the QEncI part by homomorphically
evaluating (an approximation of) the modular reduction function.

Since CtS and EvalMod consume modulus, the ciphertext modulus Qcomp af-
ter bootstrapping is smaller than the modulus Qtop of the output of ModRaise.
Similarly, as StC consumes modulus, the ciphertext modulus Qrefresh before boot-
strapping is larger than the modulus QEnc of the input of ModRaise. We provide
basic information about a typical bootstrapping parameter set in Table 2.

N log2(QP) log2(QEnc) log2(Qrefresh) log2(Qcomp) log2(Qtop) TBTS Key size

216 1555 58 184 562 1258 27.4s 667MB

Table 2. Data on the FGb parameter preset of the HEaaN library. Here log2(QP)
denotes the size of the largest ciphertext modulus that can be used with the parameters
while maintaining the desired security. The bootstrapping time TBTS is for a single
thread and refers to the situation where all slots are used for data. The key size refers
to the total size of the keys needed to bootstrap (the ‘a’ parts of the key components
are represented with a seed, and an integer modulo q is represented on log2 q bits).

We note that when we start from a ciphertext whose data is packed into
coefficients, we no longer need StC at the beginning. Following [CHK+21], we
refer to bootstrapping without StC as HalfBTS.

Ring degrees. There are several functionalities in the CKKS scheme. The simpler
ones can be implemented with smaller ring degrees. We define NEnc and NKS

as ring degrees that support RLWE encryption (with correct decryption) and
RLWE key switching, respectively. We let NBTS be a ring degree that supports
CKKS bootstrapping. There are several possible choices for these degrees, but
one typically would set NEnc ≤ NKS ≤ NBTS. For a message precision of 20 bits,
we can set NEnc = 211 and NKS = 212. Among several options for NBTS, we
choose 215 or 216 throughout the paper.

3 Accelerating FHE Ring Packing

We present two techniques to accelerate FHE ring packing. The first one allows us
to reduce FHE ring packing to a base ring packing towards coefficients-encoding
RLWE ciphertexts with small modulus. The second one allows decreasing the
RLWE ring degree.

12 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

3.1 Moduli optimization

The cost of homomorphic computations highly depends on the working modulus.
The modulus is much larger for high CKKS levels than for low levels, and so is
the cost of computations. For instance, it is folklore to optimize homomorphic
computations by scheduling the moduli of FHE ciphertexts. However, moduli
optimization usually does not consider using bootstrapping since bootstrapping
is much heavier than other homomorphic operations.

This convention is not justified when evaluating circuits as heavy as boot-
strapping, or more. In that case, we argue that bootstrapping should be consid-
ered in the computing schedule. Indeed, for massive circuits, the improvement
from lowering the moduli can overwhelm the cost of bootstrapping. In our ring
packing scenario, this approach allows us to aggressively optimize the modulus.

Moduli-optimized ring packing. Instead of performing ring packing in high-enough
moduli to complete the computation at Qcomp, we perform ring packing in the
lowest modulus QEnc and for coefficients-encoding, and then run HalfBTS to in-
crease the modulus. As QEnc is much lower than Qcomp, the run-time saving on
ring packing itself is very significant. Note that packing to coefficients rather
than slots allows omitting StC during the bootstrapping, implying that HalfBTS
suffices. In summary, we perform FHE ring packing as follows:

1. Ring-pack to a coefficients-encoding RLWE ciphertext with modulus QEnc.
We call this step base ring packing.

2. Run HalfBTS.

Our moduli optimization strategy significantly improves the computational
cost and key size of ring packing methods. These improvements come from the
fact that ring packing is a more massive computation than bootstrapping. This
aggressive moduli optimization is the most effective technique among those we
introduce to decrease the runtime of ring packing.

We now explain why ring packing is a larger circuit than HalfBTS, which
explains why performing it at a high level is so costly. All known ring packing
methods are instances of (plaintext matrix)-(ciphertext vector) homomorphic
multiplication. Further, the plaintext matrix is unstructured, making it difficult
to optimize the matrix-vector product with special techniques such as decompo-
sition to sparse matrices. HalfBTS also contains a (plaintext matrix)-(ciphertext
vector) homomorphic multiplication, in its CtS step. But it can be efficiently
evaluated, even if it occurs at a very high modulus, thanks to the algebraic
structure of the plaintext matrix: it corresponds to an inverse DFT and can
be decomposed as a product of sparse matrices. The rest of HalfBTS, namely
ModRaise and EvalMod, can also be efficiently computed.

The aggressive moduli optimization is a general strategy that may be used to
improve all ring packing methods (i.e., the column, row, and diagonal methods).
The extent of the speed-up depends on how much the modulus can be lowered.
This is why our aggressive moduli management benefits the column method the
most, as shown in Table 9. The column method can be fully run at the lowest

HERMES: Efficient Ring Packing using MLWE Ciphertexts 13

modulus, while the others should start at a little larger moduli since their level
consumption is non-zero. This makes the column method competitive with the
others. However, the large key size remains an issue, which we will mitigate in
Section 4.

3.2 Ring switching

Ring switching was introduced in [BGV14, Section 5.5] and further studied
in [GHPS13]. It allows conversions between RLWE ciphertexts for rings of differ-
ent degrees when the corresponding number fields are subfields of one another.
In these works, the main focus is to lower the ring degree, but we will also switch
to higher degree rings.

Ring switching revisited. We use ring switching for coefficients-encoded
CKKS, while previous works mostly focus on slots-encoded BGV. This is be-
cause we utilize ring switching to optimize the base ring packing into coefficients-
encoded CKKS.

Ring switching via modules. We first introduce a different view of ring switching
via modules. When we have a ring extension, the large ring can be viewed as
a module over the subring. Assume that we are given two powers of 2 integers,
k and N , such that k divides N . Then we can view Rq,N as a rank-k Rq,N/k-
module. Let XN and XN/k respectively denote the indeterminates corresponding
to Rq,N and Rq,N/k. By setting βi = Xi

N for all i < k, we obtain an Rq,N/k-basis
of Rq,N : concretely, we have Rq,N ≃

∑
0≤i<kRq,N/k · βi. We define the module

decomposition map πk
q,N : Rq,N → (Rq,N/k)

k as πk
q,N (a) = (a0, · · · , ak−1), where

a =
∑

j ajβj . Note that πk
q,N is an Rq,N/k-linear. We also consider the ring

embedding ιkq,N : Rq,N/k → Rq,N defined by ιkq,N (XN/k) = Xk
N and extended as

an Rq,N/k-homomorphism.
Consider a ciphertext (b, a) ∈ R2

q,N , with b = −as+m and s ∈ Rq,N/k. We
have s =

∑
j sjβj = s0 · 1. We may then rewrite b = −as+m as:∑

j

bjβj =
∑
j

(−aj)s0βj +
∑
j

mjβj .

This is equivalent to
∀j < k : bj = −ajs0 +mj .

To summarize, if a ciphertext is encrypted with a secret key that belongs to a
subring of relative degree k, then the ciphertext can be split into k pieces, each
encrypting a part of the plaintext. We call the conversion (bj , aj)j 7→ (b, a) as
Combine and (b, a) 7→ (bj , aj)j as Split.

One can understand ring switching via Combine and Split. Ring switching to
a higher degree is made of Combine to go from lower degree RLWE ciphertexts
to a higher degree RLWE ciphertext with the same key, and of a switching key
operation to obtain a higher degree key. Ring switching to a lower degree consists

14 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

in switching the key of a large-degree RLWE ciphertext to a small-degree key
(which belongs to the subring) and then applying Split.

In the case of coefficients-encoded CKKS, the bijection between (bj , aj)j and
(b, a) is a direct sum, which means that it is just a rearrangement of coefficients,
thus Split and Combine barely have any computation cost. This is the main im-
provement of our revisiting of ring switching for coefficients-encoded CKKS. Note
that prior works on ring switching to slots-encoded BGV (such as [GHPS13]),
in contrast, require multiplication by an appropriate (small) scalar during the
ring switching.

Ring switching in ring packing. Most of the existing works on ring packing
do not consider parameters that would lead to bootstrappable RLWE cipher-
texts. Indeed, their cost would be prohibitive, as this would require a sufficiently
high ring packing degree (the ring degree of output RLWE ciphertexts), namely,
it should then be no less that NBTS. By using ring switching, we decouple the ring
packing degree (which is much smaller) from the bootstrapping degree NBTS.

The basic idea is to ring pack dimension-k LWE ciphertexts at a small modu-
lus q into low-degree (n) RLWE ciphertexts and then combine them into a boot-
strappable RLWE ciphertext of larger degree N = NBTS by using ring switching.
In particular, we first perform multiple base ring packings in the low parameters,
yielding lower-degree RLWE ciphertexts. After that, we use ring switching to
combine RLWE ciphertexts into a single RLWE ciphertext with a higher degree.
We can then switch to slots-encoding at a high modulus Q by using HalfBTS, as
explained above. The overall procedure can be summarized as follows.

1. Base-ring-pack from LWE ciphertexts to small-degree RLWE ciphertexts:

N · LWEk
q

Base ring pack−−−−−−−−−→ N/n · RLWEq,n

2. Ring-switch, to combine the small-degree RLWE ciphertexts into one:

N/n · RLWEq,n
Ring switch−−−−−−−→ 1 · RLWEq,N

3. HalfBTS to higher modulus:

1 · RLWEq,N
HalfBTS−−−−−→ 1 · RLWEQ,N

By decoupling the base FHE ring packing dimension from NBTS, our strategy
substantially improves the computation and memory costs of FHE ring packing
algorithms. Dividing the large ring packing into small ring packings does improve
the speed and key size. Indeed, performing N/n ring packings to a small degree n
is faster than a single ring packing to a large degreeN , and the key size for a small
ring packing is much smaller than it is for a large ring packing. The improvement
is illustrated in Table 9.

We can lower the degree as long as RLWE remains secure under the current
modulus. In particular, the only restriction is the security for the switching keys

HERMES: Efficient Ring Packing using MLWE Ciphertexts 15

with respect to their moduli and lowered degrees. Thanks to the moduli opti-
mization in Section 3.1, we perform base ring packing at the lowest modulus
applicable, which means we can lower the base ring packing dimension meaning-
fully, even to NEnc.

4 HERMES

The column method with the optimizations in Section 3 achieves a practical
runtime. However, it still suffers from the requirement of a large key size. In
this section, we propose a new ring packing algorithm, HERMES, which uses
a substantially smaller key size but has a comparable running time with the
optimized column method.

Intuitively, HERMES is a block method. Understanding ring packing as an
instance of (plaintext matrix)-(ciphertext vector) multiplication, we classified
the algorithms based on the way to store the plaintext matrix C. Specifically,
the column, row, and diagonal method stores each column, row, and diagonal
of C, respectively. For HERMES, we consider subblocks of C. More concretely,
we view C as a matrix of (rectangular) blocks consisting of NKS entries each.
The size of each subblock should be larger or equal to NKS for the security, and
less or equal to NKS for the efficiency. We then introduce module packing to pack
each row of blocks into a single block, resulting in reducing the width of C. By
recursively doing this, C finally would be reduced into a single column, which
corresponds to a RLWE instance.

In order to store each block, we use ciphertexts in a module-LWE (MLWE)
format, which is a generalization of LWE and RLWE. In the simplest case with
only two levels of recursion, HERMES consists of two steps: (1) store the LWE
instances in MLWE formats and module pack them into a smaller number of
MLWE formats with a lower rank, and (2) module pack the MLWE formats into
a single MLWE format of rank 1 which is an RLWE format. Since each step
consists of module packing with

√
K elementary switching keys, we significantly

reduce the overall key size compared to the column method, from K to 2
√
K

elementary switching keys. Here K is the dimension of input LWE ciphertexts.

As module packing is a generalization of ring packing, we aim to utilize the
techniques of the column method. However, the ingredients (i.e., key switching
and ring switching) of the column method cannot be used for MLWE formats
directly. To this end, we propose MLWE key switching and MLWE ring switching
in Section 4.2. By using the generalized ingredients, we finally describe ModPack,
an algorithm for module packing, in Section 4.3, and its use for HERMES in
Sections 4.4 and 4.5.

For ease of discussion, in Sections 4.2, 4.3 and 4.4, we mostly focus on the
base ring packing problem, assuming the output modulus is QEnc and the output
RLWE degree is the lowest possible, excluding the moduli optimization and the
ring switching between RLWE formats introduced in Section 3. In Section 4.5, we
put it all together to solve the FHE ring packing problem, introducing HERMES.

16 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

All throughout this section, we assume that ranks and degrees (N , k, ℓ, n,
k′ and ki) are powers of 2, except for the input LWE dimension K which should
be a multiple of a sufficiently large power of 2. Further, we use a few functions
to manipulate module elements. To ease the reading, we provide a function list
in Appendix A, with domains, ranges and definition locations.

4.1 Module-LWE (MLWE)

We use bold font to indicate a vector and use square brackets to index ciphertext
components. We also use subscripts for indexing an element of a vector, especially
in the module context. We briefly review Module-LWE (MLWE) which was
introduced in [BGV14, LS15]. Let q ≥ 2 and k, n be powers of 2. An MLWE
ciphertext with modulus q, rank k and degree n is denoted as MLWEk

q,n. It is

an element c = (c[0], c[1], · · · , c[k]) ∈ (Rq,n)
k+1. We also use the notation of

c = (b,a) where b = c[0] and a = (c[1], · · · , c[k]). If ⟨c, (1, s)⟩ = b+ ⟨a, s⟩ = m,
then the ciphertext c is said to be an encryption of plaintext m ∈ Rq,n with
secret key s = (s1, · · · , sk) ∈ (Rq,n)

k. To simplify the notations, we assume that
the error is contained in m. We call N = n · k the dimension of the ciphertext.
MLWE can be seen as a generalization of LWE and RLWE, as MLWEk

q,1 = LWEk
q

and MLWE1
q,n = RLWEq,n.

4.2 Building blocks for ModPack

We describe two building blocks for ModPack: MLWE ring switching and MLWE
key switching. Namely, we generalize Ring switching (Section 3.2) and key switch-
ing (Section 2.1) to MLWE.

MLWE ring switching. Suppose ℓ, k, n are powers of 2 and (cj)0≤j<ℓ are
MLWE ciphertexts of rank k and degree n, encrypted with the same secret
key s. Define c′ = Combinekn,ℓ((cj)0≤j<ℓ) as

c′[t] = (πℓ
q,nℓ)

−1((cj [t])0≤j<ℓ)

for each 0 ≤ t ≤ k. Then c′ is an MLWE ciphertext of rank k and degree nℓ,
encrypting the combined input data (i.e., its decryption contains the decryptions
of the cj ’s).

MLWE key switching. MLWE key switching is a technique to switch the key
of an MLWE ciphertext using a RLWE key switching as described in Section 2.1.
The method generalizes the LWE-to-LWE key switching from [CDKS21]. It con-
sists of the following three steps:

1. Embed the input MLWE ciphertext as part of an RLWE ciphertext of the
same dimension but a higher degree;

2. Switch the key of the RLWE ciphertext;

HERMES: Efficient Ring Packing using MLWE Ciphertexts 17

3. Extract an MLWE ciphertext that encrypts valid data from the RLWE ci-
phertext.

These steps will be specified below. To describe them, we need to introduce
some notations. We use the same notations as in Section 3.2. Additionally, we
define ϵkq,N : Rq,N → Rq,N/k as ϵkq,N (a) = a0: the ϵ

k
q,N map is extracting the first

coefficient of an element of Rq,N viewed as an Rq,N/k-module.

Example. For N = 8 and a =
∑

j ajX
j
8 ∈ Rq,8, we have

π2
q,8(a) = (a0 + a2X4 + a4X

2
4 + a6X

3
4 , a1 + a3X4 + a5X

2
4 + a7X

3
4).

Further, we have ϵ4q,8(a) = a0 + a4X2.

For a = (a0, · · · , ak−1) ∈ (Rq,N/k)
k, we define atw, the twist of a, as follows:

atw := (a0, ak−1 ·X−1
N/k, ak−2 ·X−1

N/k, · · · , a1 ·X
−1
N/k).

We define the inverse of the twist as

atw
−1

:= (a0, ak−1 ·XN/k, ak−2 ·XN/k, · · · , a1 ·XN/k).

It may be checked that atw
−1◦tw = (atw)tw

−1

= a.
Similarly, we can define the twist and its inverse for a ∈ Rq,N when a rank k

is specified:
atw,k = (πk

q,N)−1 ◦ (πk
q,N (a))tw.

Then we observe the following.

Lemma 1. For a, s ∈ Rq,N , we have

ϵkq,N
(
atw,k · s

)
=
〈
πk
q,N (a), πk

q,N (s)
〉
,

where ⟨·, ·⟩ refers to the formal inner product over (Rq,N/k)
k.

Proof. Write πk
q,N (a) = (a0, a1, · · · , ak−1) and πk

q,N (s) = (s0, s1, · · · , sk−1) with
ai, si ∈ Rq,N/k for all i. Then we have

ϵkq,N
(
atw,k · s

)
= ϵkq,N

atw,k ·
k−1∑
j=0

sjX
j
N

 =

k−1∑
j=0

ϵkq,N

(
atw,k · sjXj

N

)
.

As atw,k = a0 +
∑

1≤j<k ak−jX
−1
N/kX

j
N , we have ϵkq,N

(
atw,k · sjXj

N

)
= ajsj for

each 0 ≤ j < k, which completes the proof.

We now explain how to view an MLWE ciphertext as an RLWE ciphertext
(embedding) and the opposite (extraction). In general, we can view an MLWE
ciphertext as an MLWE ciphertext with the same dimension but with a higher
degree. In that case, as depicted in Fig. 1, the plaintext of the higher degree

18 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

MLWE ciphertext includes the data of the lower degree one and the other plain-
text slots are filled with random data. Also, we can extract a lower degree MLWE
ciphertext from a higher degree MLWE ciphertext. The MLWE embedding map
Embedkq,N : (Rq,N/k)

k+1 → (Rq,N)2 embeds an MLWE ciphertext of rank k and
degree N/k into an RLWE ciphertext with dimension N . It is defined as

Embedkq,N (b,a) =
(
ιkq,N (b), (πk

q,N)−1(atw)
)
,

where ιkq,N : Rq,N/k → Rq,N is the ring embedding and πk
q,N is the module

decomposition map (as defined in Section 3.2). Then, by Lemma 1, we have

Embedkq,N

(
MLWEk

q,N/k.Encs(m)
)
= RLWEq,N .Enc(πk

q,N)−1(s)(M). (1)

for some M ∈ Rq,N satisfying ϵkq,N (M) = m.

Fig. 1. MLWE embedding and extraction.

The MLWE extraction map Extractkq,N : (Rq,N)2 → (Rq,N/k)
k+1 extracts

an MLWE ciphertext of rank k and degree N/k from an RLWE ciphertext of
dimension N . It is defined as

Extractkq,N (B,A) =
(
ϵkq,N (B), (πk

q,N (A))(tw,k)−1
)
.

Then, by Lemma 1, we have

Extractkq,N (RLWEq,N .Encs(m)) = MLWEk
q,N/k.Encπk

q,N (s)(ϵ
k
q,N (m)). (2)

HERMES: Efficient Ring Packing using MLWE Ciphertexts 19

With Equations (1) and (2), we obtain the MLWE key switching procedure
(Theorem 1). First, we view the input MLWE ciphertext as a part of an RLWE
ciphertext. Then we switch the key of the RLWE ciphertext and extract an
MLWE ciphertext as the result.

Theorem 1 (MLWE key switching). Let q ≥ 2, and k,N be powers of 2 such
that k ≤ N . Suppose that c = MLWEk

q,N/k.Encs(m) for some plaintext m. Let

S = (πk
q,N)−1(s) and S ′ = (πk

q,N)−1(s′). Then the following holds:

Extractkq,N ◦ KSS→S′ ◦ Embedkq,N (c) = MLWEk
q,N/k.Encs′(m).

Proof. Let C = Embedkq,N (c). With Eq. (1), we have C = RLWEq,N .EncS(M),

where M ∈ Rq,N and ϵkq,N (M) = m. From Eq. (2), we obtain

Extractkq,N ◦ KSS→S′(C) = Extractkq,N (RLWEq,N .EncS′(M))

= MLWEk
q,N/k.Encs′(m).

This completes the proof.

4.3 ModPack: an algorithm for module packing

In this section, we describe ModPackK,k,k′

N , an algorithm for module packing,
with the following signature:

k/k′ ·MLWEK
q,N/k → MLWEk′

q,N/k′ . (3)

Here K refers to the rank of input MLWE ciphertexts. The degrees of input and
output ciphertexts are N/k and N/k′, respectively. For simplicity, we consider
the case of an input data size that is the same as the output’s. Since a degree d
MLWE ciphertext has d plaintext slots, the number of input MLWE ciphertexts
must be (N/k′)/(N/k) = k/k′.

Let s be an MLWEK
q,N/k secret key and s′ an MLWEk′

q,N/k′ secret key. By
viewing a K-dimensional vector as a concatenation of K/k′ vectors of dimen-
sion k′, we may write s = (š0, š1, · · · , šK/k′−1) with šj ∈ Rk′

q,N/k for each j. Let

sj = ι
k/k′

q,N/k′(šj) ∈ Rk′

q,N/k′ , Sj = (πk′

q,N)−1(sj), S ′ = (πk′

q,N)−1(s′) and swkj =

RLWEqp,N .EncS′(p · Sj) for 0 ≤ j < K/k′. Given some MLWEK
q,N/k ciphertexts

(cj)0≤j<k/k′ , where cj decrypts to (mj) under s, ModPackK,k,k′

N (Algorithm 1)
consists of the following steps:

1. C← CombineKN/k,k/k′((cj)0≤j<k/k′), then C is an MLWEK
N/k′ ciphertext en-

crypting

m′ = (π
k/k′

q,N/k′)
−1(m0, · · · ,mk/k′−1) ∈ Rq,N/k′ .

2. Write C = (C[t])0≤t≤K and divide C into (Cj)0≤j<K/k′ ∈ (Rk′+1
q,N/k′)

K/k′
,

where
Cj = (0,C[jk′ + 1],C[jk′ + 2], · · · ,C[jk′ + k′])

20 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

for j ̸= 0 and C0 = (C[0],C[1], · · · ,C[k′]). Note that each Cj does not
encrypt a valid data, while the decryption of their sum is m′ if we assume
that each Cj is encrypted with sj .

3. Use hoisted MLWE key switching to switch keys, i.e.,

C′ = Extractk
′

q,N ◦ KS
(
Embedk

′

q,N (Cj)0≤j<K/k′ ; (swkj)0≤j<K/k′

)
.

The output C′ is an MLWE encryption of m′ of rank k′ and degree N/k′, under
secret key s′. The algorithm is illustrated in Fig. 2.

Theorem 2 (ModPack). Let s = (š0, š1, · · · , šK/k′−1) ∈ RK
q,N/k with šj ∈

Rk′

q,N/k for each j, and s′ ∈ Rk′

q,N/k′ . Define sj = ι
k/k′

q,N/k′(šj) ∈ Rk′

q,N/k′ and

Sj = (πk′

q,N)−1(sj) for each j, and S ′ = (πk′

q,N)−1(s′). Given as input k/k′

MLWE ciphertexts cj = MLWEK
q,N/k.Encs(mj) for some mj and K/k′ switch-

ing keys swkj = RLWEqp,N .EncS′(p · Sj), ModPack returns C′ satisfying

C′ = MLWEk′

q,N/k′ .Encs′(m
′),

where
m′ = (π

k/k′

q,N/k′)
−1(m0, · · · ,mk/k′−1) ∈ Rq,N/k′ .

Proof. Consider C = CombineKN/k,k/k′((cj)0≤j<k/k′) and define (Cj)0≤j<K/k′ ∈
(Rk′+1

q,N/k′)
K/k′

as in Equation (2) for j ̸= 0 and C0 = (C[0],C[1], · · · ,C[k′]).

WriteC = (B,A),Cj = (Bj ,Aj), Embedk
′

q,N (Cj) = (Bj ,Aj), B =
∑

0≤j<K/k′ Bj
and Âj = ModUp(Aj) for each j. Then we have

ϵk
′

q,N

(∑
0≤j<K/k′

AjSj + B
)
=

∑
0≤j<K/k′

⟨Aj , sj⟩+B = ⟨A, s⟩+B = m′. (4)

Also, we have

KS
(
Embedk

′

q,N (Cj)0≤j<K/k′ ; (swkj)0≤j<K/k′

)
= ModDown

(∑
0≤j<K/k′

MultSwk(Âj , swkj)
)
+ (B, 0)

= RLWEq,N .EncS′

(∑
0≤j<K/k′

AjSj + B
)
.

(5)

From Equations (4), (5) and (2), we obtain

C′ = Extractk
′

q,N

(
RLWEq,N .EncS′

(∑
0≤j<K/k′

AjSj + B
))

= MLWEk′

q,N/k′ .Encs′(m
′),

as desired.

HERMES: Efficient Ring Packing using MLWE Ciphertexts 21

Algorithm 1: ModPackK,k,k′

N : k/k′ ·MLWEK
q,N/k → MLWEk′

q,N/k′

Input : (cj)0≤j<k/k′

(swkj)0≤j<K/k′

Output: C′

1 C← CombineKN/k,k/k′((cj)0≤j<k/k′)

2 C0 ← (C[0],C[1], · · · ,C[k′])
3 for j = 1, · · · ,K/k′ do
4 Cj ← (0,C[jk′ + 1],C[jk′ + 2], · · · ,C[jk′ + k′])
5 end for

6 C′ ← Extractk
′

q,N ◦ KS(Embedk
′

q,N (Cj)0≤j<K/k′ ; (swkj)0≤j<K/k′)
7 return C′

Fig. 2. Visualization of ModPack, which packs multiple MLWE ciphertexts into a sin-
gle MLWE ciphertext with the same dimension. The entries of each vector belong to
quotient polynomial rings. A light color means a ring with a smaller degree while a
dark color indicates a ring with a larger degree.

ModPackK,k,k′

N consists ofK/k′ executions ofModUp, 1 execution ofModDown
and 2K/k′ Hadamard multiplications. The overall key consists of K/k′ elemen-
tary switching keys. Each ModUp and ModDown involves O(N logN) integer
operations since degree-N NTT dominates, and a Hadamard multiplication
has O(N) complexity. The size of a switching key is 2N log(qp) since it is a
degree-N RLWE ciphertext of modulus qp.

Note that ModPackN,N,1
N is exactly the column method, and hence ModPack

can be seen as a generalization of the column method.

4.4 BaseHERMES: a base ring packing with MLWE midpoints

Below, we describe how to reduce the switching key size by using ModPack (Al-
gorithm 1), introducing BaseHERMES, a composition of ModPacks. To compose
several ModPacks to form a base ring packing, we insert MLWE midpoints with
intermediate degrees to split the ring packing procedure into several steps. Then,

22 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

we apply ModPack at each step. We set the rank of the input LWE ciphertexts
as K ≥ NEnc and set the number of input LWE ciphertexts as N ≥ NKS. The
dimension of switching key and the degree of the output RLWE ciphertexts are
set to N . Base ring switching and hence BaseHERMESK,κ

N have the following
signature:

N · LWEK
QEnc
→ 1 · RLWEQEnc,N (6)

Beyond the input LWE dimensionK and output RLWE degree N , BaseHERMES
is also parametrized by some κ = {k1 > · · · > kt}. It refers to the set of ranks
of the MLWE midpoints: t is the number of midpoints and kj is the rank of jth
midpoint for all j. We assume that k0 = N > kj > 1 = kt+1 for all j. In case

of κ = ∅, BaseHERMESK,∅
N is exactly ModPackK,k0,k1

N = ModPackK,N,1
N , which is

the column method.

Single MLWE midpoint. BaseHERMES
K,{k}
N consists in inserting an inter-

mediate state “k ·MLWEk
QEnc,N/k” in (6), i.e., in splitting the base ring packing

procedure into two steps:

N · LWEK
QEnc

Step 1−−−−→ k ·MLWEk
QEnc,N/k

Step 2−−−−→ 1 · RLWEQEnc,N . (7)

Step 1 is performed with k parallel executions of ModPackK,N,k
N , and Step 2 is

itself implemented by calling ModPackk,k,1N . More compactly, we may write:

BaseHERMES
K,{k}
N = ModPackk,k,1N ◦ (k ·ModPackK,N,k

N).

The algorithm is illustrated in Fig. 3. Note that once the states are determined,
there is a unique ModPack parametrization corresponding to it. The input of
the first step consists of the N LWE ciphertexts of dimension K, which may be
grouped and ordered arbitrarily, affecting the order of the plaintext slots of the
output.

Fig. 3. Visualization of BaseHERMES with a single middle point.

Table 3 compares the costs and sizes of switching keys of the BaseHERMESK,∅
N

(the column method) and BaseHERMES
K,{k}
N algorithms. It displays the number

HERMES: Efficient Ring Packing using MLWE Ciphertexts 23

of executions of ModUp and ModDown (each of which has consumes O(N logN)
arithmetic operations), the number of Hadamard multiplications and the number
of elementary switching keys (an elementary switching key is a degree-N RLWE
ciphertext of modulus QKS and thus has N log(QKS) bit-size). For K ≥

√
N ,

which is the typical scenario, the value of k minimizing the number of switching
keys is

√
K. It is therefore interesting to set k as the nearest power of two.

Method
ModUp

O(N logN)

ModDown

O(N logN)

HadamardMult

O(N)

SwitchingKey

O(N log(QKS))

BaseHERMESK,∅
N

(column method)
K 1 2K K

BaseHERMES
K,{k}
N

(single midpoint)

Step 1 K k 2K K/k

Step 2 k 1 2k k

Total K + k k + 1 2(K + k) K/k + k

Table 3. Comparison between BaseHERMESK,∅
N and BaseHERMES

K,{k}
N . Each cell pro-

vides the number of ModUp/ModDown/HadamardMult/SwitchingKey in each method.
For time complexity, we mostly focus on ModUp and ModDown since they have higher
cost O(N logN) than Hadamard multiplication’s O(N) cost.

To see the effectiveness of the new method, we consider the case of K = N
with k =

√
N (see Table 4). In this case, the computational complexity difference

is negligible compared to the main cost N executions of ModUp. However, the
number of elementary switching keys significantly reduces from N for the column
method to 2

√
N for the single midpoint method.

Method
ModUp

O(N logN)

ModDown

O(N logN)

HadamardMult

O(N)

SwitchingKey

O(N log(QKS))

BaseHERMESN,∅
N

(column method)
N 1 2N N

BaseHERMES
N,{

√
N}

N

(single midpoint)

Step 1 N
√
N 2N

√
N

Step 2
√
N 1 2

√
N

√
N

Total N +
√
N

√
N + 1 2(N +

√
N) 2

√
N

Table 4. Comparison between BaseHERMESN,∅
N and BaseHERMES

N,{
√
N}

N .

Generalization. By taking more MLWE midpoints, one can reduce the number
of elementary switching keys for a limited slowdown in time performance. In
general, we can insert t midpoints of rank kj satisfying N = k0 > k1 > · · · >
kt > kt+1 = 1 to build BaseHERMESK,κ

N with κ = {k1 > · · · > kt}. The state

diagram of BaseHERMESK,κ
N is as follows.

N · LWEK
QEnc

Step 1−−−−→ k1 ·MLWEk1

QEnc,N/k1
−−−−→ · · ·

−−−−→ kt ·MLWEkt

QEnc,N/kt

Step t+1−−−−→ 1 · RLWEQEnc,N .

24 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

Step 1 is performed with k1 parallel executions ofModPackK,k0,k1

N , whereas Step j

for j > 1 consists in kj parallel calls to ModPack
kj−1,kj−1,kj

N . To sum up, we have

BaseHERMESK,κ
N =(kt+1 ·ModPack

kt,kt,kt+1

N) ◦ (kt ·ModPack
kt−1,kt−1,kt

N) ◦ · · ·

◦ (k2 ·ModPackk1,k1,k2

N) ◦ (k1 ·ModPackK,k0,k1

N).

Table 5 gives the costs and the number of elementary switching keys.

Method
ModUp

O(N logN)

ModDown

O(N logN)

HadamardMult

O(N)

SwitchingKey

O(N log(QKS))

BaseHERMESK,∅
N

(column method)
K 1 2K K

BaseHERMESK,κ
N

(t midpoints)

Step 1 K k1 2K K/k1

Step 2 k1 k2 2k1 k1/k2

· · · - - - -

Step t+ 1 kt 1 2kt kt

Total K +
∑

1≤j≤t kj
∑

1≤j≤t+1 kj 2(K +
∑

1≤j≤t kj) K/k1 +
∑

1≤j≤t kj/kj+1

Table 5. Comparison between BaseHERMESK,∅
N and BaseHERMESK,κ

N .

Increasing the number of mid-points t allows to significantly reduce key-size.
For example, set ki = K1−i/(t+1). Then the key consists of (t + 1) · K1/(t+1)

elementary switching keys. The total number of ModUp’s and ModDown’s is
K + 2

∑t
i=1 K

i/(t+1) + 1, which is no more than three times larger than that

for BaseHERMESK,∅
N . Note that K +2

∑t
i=1 K

i/(t+1) +1 = K +2K−K1/(t+1)

K1/(t+1)−1
+

1 ≤ 3K +1. Therefore, key size decreases fast with t, whereas the cost at most
tripled.

In practice, as seen in Table 10, the single midpoint method already enjoys a
very small key compared to the bootstrapping key, and reducing it further does
not seem interesting in the FHE ring packing scenario.

4.5 HERMES

With ring switching, HalfBTS and BaseHERMES at hand, we can now describe
HERMES. HERMES ring-packs NBTS LWEK

QEnc,NEnc
ciphertexts into an RLWEQcomp

ciphertext. It consists of three steps:

1. Group the given NBTS LWE ciphertexts into NBTS/NKS groups, each one

with NKS LWE ciphertexts; for each group, run BaseHERMESK,κ
NKS

, for some
parameter κ, to obtain NBTS/NKS RLWEQEnc,NKS

ciphertexts.

2. Ring switch the RLWE ciphertexts to form a single RLWE ciphertext.

3. Run HalfBTS on the RLWE ciphertext to raise the modulus to Qcomp.

The algorithm is illustrated in Fig. 4.

HERMES: Efficient Ring Packing using MLWE Ciphertexts 25

Fig. 4. Visualization of HERMES, which ring-packs NBTS LWEK
QEnc

ciphertexts into an
RLWEQcomp,NBTS ciphertext.

5 Implementation

We provide some proof-of-concept implementation results for our method. We
used the C++ HEaaN library for the development. All experiments are mea-
sured on AMD® Ryzen 7 3700x 8-core processor with a single-threaded CPU.

In our (base) ring packing implementations, N denotes the degree of the
output RLWE ciphertext, ℓ the number of input LWE ciphertexts, and K the
dimension of the input LWE ciphertexts. The mean (resp. worst) precision is
− log2(E(∥e∥1/m)) (resp. − log2 max ∥e∥∞), where e ∈ Rm denotes the overall
(base) ring packing error; expectation and maximum are taken over 100 itera-
tions for each implementation.

5.1 HERMES Implementation

We first describe our ring packing implementation and parameters. We start
with 216 LWE ciphertexts of dimension 211 with scaling factor of ∆ = 242. Our
method consists of the following procedures.

1. We either use the column method (BaseHERMES2
11,∅

212) or the single mid-

point method (BaseHERMES
211,{26}
212) and obtain 24 RLWE ciphertexts of

degree 212.
2. We use ring switching to combine 24 RLWE ciphertexts of degree 212 into a

single RLWE ciphertext of degree 216.
3. We perform HalfBTS, in order to bootstrap the ciphertext to modulus Qcomp.

We used the bootstrapping parameter set from Table 2. We let HERMES0 denote
the method based on the column method and HERMES1 the method based on
the single midpoint method. The latency of HERMES0 and HERMES1 are 29.1s
and 30.7s, respectively, while their total key sizes including ring packing keys and
BTS keys are 782MB and 673MB, respectively. We provide detailed information
in Table 6.

5.2 Comparison to the state of the art

The only previous work that provides implementation results for ring packing to
RLWE slots at Qcomp is Pegasus [LHH+21]. We provide a comparison between

26 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

Latency (s) Key size (MB)
Precision

(mean, worst)

HERMES0 29.1 782 (23.8, 21.1)

HERMES1 30.7 673 (24.9, 21.8)

Table 6. HERMES implementation results. The latency includes base ring packing
and HalfBTS. The key size includes both ring packing keys and BTS keys. Let ℓ = 216

be the number of input LWE ciphertexts.

our method and [LHH+21] in Table 8. The value of log2(Qcomp) in [LHH+21]
is not given explicitly but we estimate from the data in [LHH+21, Section VI]
that it is equal to 45 · 6 = 270. For fair comparison, we constructed a CKKS
parameter with log2(Qcomp) = 270, see Table 7. We use a smaller ring degree N
than Pegasus by using the technique of [BTPH22] and choosing appropriate
Hamming weights. The Pegasus figures in Table 8 are borrowed from [LHH+21,
Table V].

N (h, h̃) log2(QP) log2(QEnc) log2(Qcomp) log2(Qtop) Key size

215 (256, 32) 820 45 270 765 542MB

Table 7. Data on the parameter set constructed for comparison with Pegasus. Here h
and h̃ denote the Hamming weights of the dense and sparse secret keys, respectively,
for the sparse-secret encapsulation technique from [BTPH22]. The column ‘log2(QP)’
denotes the size of the largest ciphertext modulus that can be used with the parameters
while maintaining the desired security. The key size refers to the total size of the keys
needed to HalfBTS.

N log2(Qcomp) ℓ Latency (s)
Amortized time

(ms/slot)

Key size

(MB)

[LHH+21] 216 270

28 23.4 93.0 1870

210 51.6 50.4
3540

212 51.7 12.6

HERMES1

216 562

28 19.4 75.8 1010

210 20.4 19.9 1050

212 21.9 5.35 927

216 30.7 0.468 673

215 270

28 6.15 24.0 812

210 6.23 6.08 832

212 6.68 1.63 718

215 10.2 0.311 547

Table 8. Comparison between HERMES and PEGASUS. The key size includes both
ring packing keys and BTS keys.

HERMES: Efficient Ring Packing using MLWE Ciphertexts 27

We compare HERMES1 with log2(Qcomp) = 270 and [LHH+21]. HERMES1

is 3.8 to 7.7 times faster for the same value of ℓ. Our throughput may be opti-
mized by choosing ℓ = 215, which leads to a factor 41 improvement compared
to [LHH+21] with ℓ = 212. For ℓ < N , we used the bootstrapping algorithm for
sparsely packed ciphertexts from [CHK+18, Section 5.2].

All the other previous works including [CDKS21] and [CGGI17] should show
similar or even slower latency than [LHH+21] because they homomorphically
perform a linear transformation with moduli larger than Qcomp.

5.3 Impact of our ingredients

We introduced several optimizations including ring switching and modulus opti-
mizations in Section 3. These optimizations are general ones that can be applied
to all the base ring packing methods to improve performance. In Section 4,
we proposed a method using multiple MLWE midpoints to reduce the key size
of [CGGI17] while retaining a similar ring packing time. In this section, we pro-
vide some implementation results explaining how effective our ingredients are.

Optimizations. For comparison, in Table 9, we report experimental results for
the improved versions of the row [CDKS21] and column [CGGI17] methods.
We first performed 24 base ring packings for each method at dimension 212,
gathered the ciphertexts into dimension 216 via ring switching, and then per-
formed HalfBTS. The improved row and column methods have a latency of 55.6s
and 29.1s, respectively, which are fairly fast compared to the implementation
of [LHH+21], indicating that our optimizations are indeed effective.

N K TRP
Base ring packing

key size
BTS key size

The row method

216

212 55.6s 670KB

667MB

+ ring switching

+ modulus optimization

The column method

211 29.1s 114MB
+ ring switching

+ modulus optimization

(HERMES0)

Table 9. Comparison between the improved row and column methods. Here TRP de-
notes the total ring packing time including HalfBTS.

The improved row method gives a lower key size but is slower, and the column
method is faster but has a significantly large key size. The key size of the row
method is negligible compared to the BTS key size while it is not for the column
method. Note that we used the BTS key reduction algorithm in [HS18], and BTS
key size could be reduced even further with [KLK+22]. The trade-off between
row and column methods gives a motivation for finding a hybrid method between
the two.

28 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

MLWE midpoints. In Table 10, we provide a comparison between different base
ring packing methods, in terms of time and memory. Our single midpoint method
is almost as fast as the improved column method but has a fairly small ring
packing key size compared to the improved row method. The latency difference
between the row method and the others comes from hoisting and the use of a
smaller LWE dimension K. Note that the output of the row method has lower
precision than in the other two methods.

N K log2 Q TbaseRP Key size
Precision

(mean, worst)

Improved row method

212

212

54

1.86s 664KB (25.2, 22.6)

BaseHERMESK,∅
N

211
231ms 113MB (30.9, 28.4)

(improved column method)

BaseHERMES
K,{2⌈log2 K/2⌉}
N 374ms 5.31MB (32.8, 30.3)

(single midpoint)

Table 10. Comparison of different base ring packing methods. Here TbaseRP denotes
the base ring packing time. The bit size difference between output scaling factor and
base modulus is set to 12 bits for fair comparison.

5.4 Transciphering using HERMES

The fundamental goal of the transciphering framework is to decrease the compu-
tational and communication costs for a client that sends FHE ciphertexts (e.g.,
CKKS ciphertexts) to a computing server. Beyond their size, another important
drawback of CKKS ciphertexts in this context is their low granularity. They
contain thousands of plaintext slots and the client has to wait and send a very
large ciphertext if it wants to fully exploit the number of slots to decrease the
expansion factor. To handle this, several works have focused on transciphering
from a symmetric encryption scheme to CKKS. As CKKS encrypts approxima-
tions to real numbers with moderate precision rather than bits or finite field ele-
ments, some care is required to obtain efficient transciphering. For this purpose,
HERA [HKL+22] and Rubato [CHK+21] rely on the so-called Real-to-Finite-field
framework (RtF), using symmetric ciphers with plaintexts of bit-sizes slightly
above the CKKS plaintext bit-sizes. The symmetric cipher is homomorphically
decrypted with the discrete-plaintext BFV/BGV FHE schemes and the result is
then mapped from BFV/BGV to CKKS.

HERMES provides a more direct solution. A client sends the encrypted data
in LWE or small-degree MLWE format to achieve high granularity, and it uses an
extendable output-format function (XOF) on a public seed to implicitly repre-
sent most of the ciphertext and achieve low ciphertext expansion. The server uses
HERMES to construct FHE ciphertexts. Our approach directly encrypts approx-
imations to real numbers in the LWE symmetric ciphers, hence allowing to by-
pass the costly BFV/BGV step in RtF framework. Thus, the efficiency of HER-
MES significantly reduces the server-side computational overhead even compared

HERMES: Efficient Ring Packing using MLWE Ciphertexts 29

to the state-of-the-art transciphering approaches for CKKS [HKL+22, CHK+21].
Figure 5 (inspired from [CHK+21, Figure 2]) illustrates the offline and online
phases of the client and server.

Using a XOF on a public seed makes much room for precomputation. Con-
cretely, the a part in (M)LWE ciphertexts ((b = ⟨a, s⟩+m,a)) is computed as

a = XOF(seed) for a public seed. The client can precompute a and b̂ = ⟨a, s⟩
using the secret key s and seed, and it computes b = b̂+m in the online phase.
To reduce the communication cost due to b, the client can cut its least sig-
nificant bits. Concretely, the client sends ⌊(2p̂/∆) · b⌉ = ⌊(2p̂/∆) · (̂b + m)⌉ ≈
(2p̂/∆)·b̂+⌊(2p̂/∆)·m⌉ instead of b, where p̂ is the input precision. The server can
scale up the received ⌊(2p̂/∆) · b⌉ by a factor ∆/2p̂, yielding an LWE encryption
of m with sufficient precision ≈ p̂.

The server can precompute the a part of the (M)LWE ciphertexts using seed.
It then pre-performs the base ring packing of HERMES for the ephemeral LWE
ciphertexts (0,a)’s, and obtains a precomputed RLWE ciphertext (B̂(X), A(X)).
In the online phase, the server first appropriately rearranges the received b parts
of input (M)LWE, yielding B̃(X). It then completes the ring packing by running

HalfBTS on (B̂(X) + B̃(X), A(X)). Sending part of the HERMES computation
to the offline phase works since through HERMES, the A(X) part of the output
RLWE ciphertext depends only on the a parts of input LWE ciphertexts.

LWE.Encs(0)s

public seed

public seed

BaseHERMES
keys

Base ring
packing

m Encode b

HalfBTS

RLWE encrypted message

Offline

Online

Client Server

HalfBTS
keys

Fig. 5. Visualization of transciphering using HERMES.

Experimental results. In Table 11, we compare HERMES transciphering with
HERA [CHK+21, Table 5, Par-128a] and Rubato [HKL+22, Table 6], which

30 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

are state-of-the-art for transciphering to CKKS. All parameter sets in the table
achieve security of ≈ 128 bits.

As in [CHK+21] and [HKL+22], we compute the expansion ratio as the ratio
between the ciphertext bit-size and the plaintext precision multiplied by the
number of slots. It is equal to (log q)/(p + 1), where log q is the bit size of the
ciphertext modulus and p is the precision. Note that this excludes the seed used
for a = XOF(seed), though its bit size is negligible compared to the ciphertext
bit size when amortized over many ciphertexts (by using a counter, only one
seed needs to be sent). We have log2(Q0) = 58, ∆ = 242 and p̂ = 22, implying
that log2(q) = 58− 42 + 22 = 38.

Our method allows some flexibility to choose n. For instance, we can choose
n = 1 to achieve the highest granularity, i.e., to send ciphertexts corresponding
to individual plaintexts. Rubato also considered several granularity levels, but
for optimizing client throughput. For a consistent comparison, we started from
MLWE ciphertexts of degrees n close to Rubato’s block sizes. We use HERMES1

with midpoint ring degree of 2⌈log2(
√
NBn)⌉ for each n, where NB is a ring di-

mension for BaseHERMES.

Our latency is 5.5 times smaller than HERA’s, and at least 2.8 times smaller
than Rubato’s, while achieving similar precision and similar number of levels
remaining after transciphering. Our expansion ratio is larger than those achieved
by HERA and Rubato, but might be improved by using different parameter sets
and/or the technique from [BCC+22] to increase the precision.

Scheme N n Latency (s) Expansion ratio Mean precision

RtF-HERA [CHK+21]

216

16 142 1.24 19.1

RtF-Rubato [HKL+22]

64 106 1.26 18.9

36 88.4 1.26 18.9

16 71.1 1.31 18.8

Ours

64 25.8 1.58 23.0

32 26.1 1.58 23.0

16 25.7 1.58 23.0

1 30.9 1.58 23.0

Table 11. Comparison between different transciphering schemes. Here n denotes the
block size which corresponds to the MLWE degree in our method, and latency denotes
the total transciphering time including online and offline phases of the client and server.
Note that there is a difference in precision: it is due to the difference in bootstrapping
algorithms used.

Acknowledgments. The research corresponding to this work was conducted
while the fourth author was visiting CryptoLab Inc. as an intern student. The
authors thank Yongsoo Song for letting us know about an incorrect understand-
ing of [CDKS21].

HERMES: Efficient Ring Packing using MLWE Ciphertexts 31

References

[BCC+22] Y. Bae, J. H. Cheon, W. Cho, J. Kim, and T. Kim. META-BTS: Boot-
strapping precision beyond the limit. In CCS, 2022.

[BGGJ20] C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: combining
ring-LWE-based fully homomorphic encryption schemes. J. Math. Cryptol.,
2020.

[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. ACM Trans. Comput. Theory,
2014.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical gapSVP. In CRYPTO, 2012.

[BTPH22] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux. Bootstrapping for
approximate homomorphic encryption with negligible failure-probability by
using sparse-secret encapsulation. In ACNS, 2022.

[CDKS21] H. Chen, W. Dai, M. Kim, and Y. Song. Efficient homomorphic conversion
between (ring) LWE ciphertexts. In ACNS, 2021.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully ho-
momorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-
ACRYPT, 2016.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE. In
ASIACRYPT, 2017.

[CHK+18] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for
approximate homomorphic encryption. In EUROCRYPT, 2018.

[CHK+21] J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon.
Transciphering framework for approximate homomorphic encryption. In
ASIACRYPT, 2021.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, 2017.

[Cry] CryptoLab.inc. HEaaN private AI: Homomorphic encryption library.
[DM15] L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryp-

tion in less than a second. In EUROCRYPT, 2015.
[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-

tion. 2012. Available at http://eprint.iacr.org/2012/144.
[GHPS13] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-

style homomorphic encryption. Journal of Computer Security, 2013.
[HK20] K. Han and D. Ki. Better bootstrapping for approximate homomorphic

encryption. In CT-RSA, 2020.
[HKL+22] J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy ciphers for

approximate homomorphic encryption. In EUROCRYPT, 2022.
[HS14] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO, 2014.
[HS18] S. Halevi and V. Shoup. Faster homomorphic linear transformations in

HElib. In CRYPTO, 2018.
[HS21] S. Halevi and V. Shoup. Bootstrapping for HElib. J. Cryptol., 2021.
[KLK+22] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. Ahn. ARK:

Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse. In MICRO, 2022.

[LHH+21] W.-J. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu. PEGASUS: bridging
polynomial and non-polynomial evaluations in homomorphic encryption. In
S&P, 2021.

32 Y. Bae, J. H. Cheon, J. Kim, J. H. Park and D. Stehlé

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

[LS15] A. Langlois and D. Stehlé. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr., 2015.

[MS18] D. Micciancio and J. Sorrell. Ring packing and amortized FHEW boot-
strapping. In ICALP, 2018.

[NLV11] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can homomorphic en-
cryption be practical? In CCSW, 2011.

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM, 2009.

[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

HERMES: Efficient Ring Packing using MLWE Ciphertexts 33

A List of Functions on Module Elements

Name Symbol Domain Range Introduced in

Module

decomposition
πk
q,N Rq,N (Rq,N/k)

k Sec. 3.2

Ring embedding ιkq,N Rq,N/k Rq,N Sec. 3.2

Combine Combinekn,ℓ (Rq,n)
(k+1)ℓ (Rq,nℓ)

k+1 Sec. 3.2 & 4.2

Split Split (Rq,N)2 (Rq,N/ℓ)
2ℓ Sec. 3.2

Extract the

first coefficient
ϵkq,N Rq,N Rq,N/k Sec. 4.2

Twist tw (Rq,N/k)
k (Rq,N/k)

k Sec. 4.2

Embed Embedkq,N (Rq,N/k)
k+1 (Rq,N)2 Sec. 4.2

Extract Extractkq,N (Rq,N)2 (Rq,N/k)
k+1 Sec. 4.2

ModPack ModPackK,k,k′

N (Rq,N/k)
(K+1)k/k′

(Rq,N/k′)k
′+1 Sec. 4.3

Table 12. List of functions used to manipulate module elements.

