
A preliminary version of this paper appears in the proceedings of the 45th IEEE Symposium on Security and Privacy (S&P 2024).

Multi-Stage Group Key Distribution and PAKEs:
Securing Zoom Groups against Malicious Servers without New Security Elements

(Full version v1.0 with supplementary materials, including full proofs)

Cas Cremers
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

cremers@cispa.de

Eyal Ronen
Tel Aviv University

Tel Aviv, Israel
er@eyalro.net

Mang Zhao
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
mang.zhao@cispa.de

Abstract—Video conferencing apps like Zoom have hundreds
of millions of daily users, making them a high-value target for
surveillance and subversion. While such apps claim to achieve
some forms of end-to-end encryption, they usually assume an
incorruptible server that is able to identify and authenticate all
the parties in a meeting. Concretely this means that, e.g., even
when using the “end-to-end encrypted” setting, malicious Zoom
servers could eavesdrop or impersonate in arbitrary groups.

In this work, we show how security against malicious servers
can be improved by changing the way in which such protocols
use passwords (known as passcodes in Zoom) and integrating
a password-authenticated key exchange (PAKE) protocol.

To formally prove that our approach achieves its goals, we
formalize a class of cryptographic protocols suitable for this
setting, and define a basic security notion for them, in which
group security can be achieved assuming the server is trusted
to correctly authorize the group members. We prove that Zoom
indeed meets this notion. We then propose a stronger security
notion that can provide security against malicious servers, and
propose a transformation that can achieve this notion. We show
how we can apply our transformation to Zoom to provably
achieve stronger security against malicious servers, notably
without introducing new security elements.

1. Introduction

Video conferencing apps such as Zoom are globally used
by hundreds of millions of users on a daily basis [1], and
aim to use cryptographic protocols to achieve some forms of
end-to-end encryption. While there have been many recent
advancements in highly-secure messaging protocols such as
Signal, their core protocols are typically not suitable for real-
time group applications, such as video conferencing, which
have have fundamentally different requirements involving
real-time constraints, robustness, and usability.

In practice, real-time group protocols used in real-world
widely deployed applications such as Zoom incorporate
design choices based on real-time requirements that include
assigning a group leader role to some participants, relying

on key distribution instead of key agreement, and using
simplified key evolution mechanisms. These design choices
improve features like robustness and usability, and enable
real-time communication, at the cost of lower security guar-
antees compared to some state-of-the-art secure messaging
protocols.

Nevertheless, many real-time group protocols explicitly
claim that they can provide a form of end-to-end security. For
example, in Zoom’s case, the ‘end-to-end security’ option in
the app’s settings is explained as “Encryption key stored on
your local device. No one else can obtain your encryption
key, not even Zoom.” However, it was shown that a malicious
Zoom server can eavesdrop or impersonate in groups [2],
[3]. The underlying reason is that in practice, a Zoom server
acts as the sole root of trust for the authenticity of users’
public keys and messages, and implicitly to those that are
used to distribute group-specific public keys, which in turn
are used by the leader to distribute the group key. Thus, if
the Zoom server replaces some of these public keys, it can
in fact learn your encryption key.

In this work, we propose a transformation to improve
the security of a class of protocols against malicious servers,
without introducing new security elements or even new
message flows. We achieve this by reworking the way in
which such protocols use passwords (known as passcodes
in Zoom). In the Zoom protocol, the server inherently needs
to know the group password and uses it to enforce access
control for the group. We propose a modification in which
the server no longer knows the password, which is distributed
only to the group members and is used by them directly for
access control. These passwords can be distributed as one
would have done currently (e-mail, messaging app, phone,
calendar appointment).

In our new threat model, we can no longer rely on the
server providing a priori secure channels between group
members. Instead, we employ password-authenticated key
exchange to prevent offline guessing attacks on the protocol.
We then formally prove that the transformed Zoom protocol
achieves a strong form of security even in the presence of
malicious servers.



At the technical level, we develop syntax and security
notions for multi-stage group key distribution protocols, of
which Zoom can be seen as an instance. We show under
which assumptions the Zoom protocol (version 4.0) can
be proven secure in our multi-stage group key distribution
model, and how the known attacks fit into this picture. We
design a generic transformation that can turn any protocol in
our class into a more secure protocol, for which we define
a stronger security notion. We show that our transformation
preserves the original security property, and provides security
against malicious servers. We apply our transformation to
the Zoom protocol, resulting in the ZoomPAKE protocol.
We also show how the ZoomPAKE protocol prevents the
attacks possible on the Zoom protocol.
Our main contributions are:
• We develop a solution to improve the security of Zoom-

like apps against malicious servers, without introducing
new security elements. The core observation is that Zoom
already uses group-specific passwords, but they are by
design known to the server. By leveraging techniques from
password-authenticated key exchange, we can get rid of
the reliance on the server for trusted channels.

• To formally prove the security of our solution, we need
to develop substantial machinery. We propose a formal
model and syntax of multi-stage group key distribution
protocols, called mGKD, of which Zoom can be seen as an
instance. For such protocols, we develop a basic security
notion Sec-mGKD-pki, which assumes the server did not
interfere with the public keys of a group’s participants,
and prove that Zoom meets this notion. We show how
real-world attacks manifest in this basic notion and notably
how malicious zoom servers can manipulate groups.

• We formally prove that our transformation turns a protocol
that is Sec-mGKD-pki secure into one that is also secure
in a model that makes no assumptions on the server but
only on the password, which we call Sec-mGKD-pw.

• We show how to efficiently apply our transformation to
the Zoom version 4.0 protocol to obtain the ZoomPAKE
protocol, in which the server no longer knows the password,
and groups are protected against malicious servers.

Outline We discuss related work in Section 2 and notation in
Section 3. In Section 4 we present our syntax for multi-stage
group key distribution (mGKD) protocols and three secu-
rity notions: basic Sec-mGKD-pki security, full end-to-end
Sec-mGKD-pw security, and the combined Sec-mGKD-pw+
security. We show in Section 5 that the Zoom library can
be modeled as a mGKD protocol and provably satisfies the
basic Sec-mGKD-pki security, and show how impersonation
attacks prevent it from satisfying the stronger Sec-mGKD-pw
notion. In Section 6, we develop a generic transformation
on any Sec-mGKD-pki secure mGKD protocol to achieve
Sec-mGKD-pw and Sec-mGKD-pw+ security and apply it
to Zoom.

We provide our customized notions w-PAKE security for
PAKE and frob security for AEAD and proof sketches of
all our theorems in appendix. We provide all details and full
proofs in the long version [4].

2. Related Work

While there is a lot of adjacent related work that we
will mention below, it turns out that there is surprisingly
little directly related work in analysis of real-time group
protocols. A number of surveys [5]–[10] examine numerous
historical designs for secure group key establishment in
different application scenarios. We identify three categories:
• centralized group key management/distribution protocols,

where each group has a single trusted authority for group
key generation and distribution.

• (continuous) group key agreement and distributed key
management protocols, where every party in a group
contributes to the group key generation and distribution.

• multi-factor key agreement and password-authenticated
key exchange protocols, where the group key generation
and distribution relies only on a secret that is used for
authorization to a group.

We review each of these categories below.

2.1. Centralized Group Key Management Protocols

A centralized group key management (CGKM) protocol
starts every group with a trusted authority, often referred
to as the “Key Distribution Center” (KDC). The KDC is
responsible for controlling for the whole group, e.g., member
authentication, access control, and group key generation and
distribution.

One of the first CGKM schemes is [11], [12]. In this
approach, the KDC creates a “Group Key Packet” (GKP) for
encrypting the communication payload with the help from
the first group participant. The KDC sends the GKP to every
party that wants to join the group and encrypts the new
GKP to all group participants using the old one. To achieve
forward secrecy, the KDC has to recreate the group whenever
a participant leaves the group. After that, numerous tree-like
CGKM constructions [13]–[18] were proposed to reduce
computation cost. In these approaches, all trust resides in the
KDC, which forms a single point of failure for compromise.

2.2. (Continuous) Group Key Agreement

Two important canonical group key agreement protocols
are [19], [20]. Their constructions have a binary tree-like
hierarchy, where the keying material of each party is a leaf
node at the bottom of the tree and the shared group key is
the top node of the tree. Every party can compute the key
material on the path from its associated leaf node to the
top using Diffie-Hellman Exchange (DHE). However, these
designs are inherently synchronous: the initialization of the
tree requires all parties to be online.

In the asynchronous secure messaging context, where
participants might be offline and group keys need to be
evolved, this approach does not work without modification.
These drawbacks were lifted by the design in [21], leading
to a line of papers in the continuous GKA (CGKA) domain,
including [22]–[24] that focus on continuously evolving
(ratcheting) group keys after the group establishment.

2



In general, ratcheting-like protocols such as CGKAs are
impractical for real-time group applications, as they have to
tolerate high amounts of packet loss and still being able to
continue immediately when some packets arrive on time.

2.3. Multi-factor Key Agreement and Password-
Authenticated Key Exchange

Multi-factor key agreement protocols often rely on three
classes of human authentication factors: (1) something you
know, e.g., passwords, (2) something you have, e.g., secure
devices, and (3) something you are, e.g., biometric data.
Among them, the password is possibly one of the most
convenient means for sharing in practice, as it can be easily
sent out-of-band, e.g., via email, in letters, or even in-person.

Human-chosen passwords are often low-entropy rather
than uniformly at random. Password-Authenticated Key Ex-
change (PAKE) protocols are designed to allow some parties
to establish a high-entropy session key with authentication
based on a low-entropy shared password without being
subject to offline guessing attacks. There are numerous
modern and efficient 2-party PAKE constructions in the
literature, such as CPace [25], [26] and SPAKE2 [27]–[29].
The are also several known group PAKE protocols [30]–[33].
However, the existing group PAKE protocols always require
multiple rounds for the key agreement and is restricted
to static groups. Thus, these group PAKE protocols are
impractical for the real-time group applications, where the
participants can freely join and leave the groups.

2.4. Existing Security Analysis for Zoom

In [2], [3], the authors describe several specific classes
of impersonation attacks on end-to-end Zoom (version 2.3.1).
First, a malicious meeting participant can impersonate any
other participant inside this group, since there is no entity
authentication in a group meeting. Second, the Zoom server
can replay some messages and impersonate a legitimate user
for a meeting. Third, if multiple users share a device, the
Zoom server colluding with any user can impersonate any
other users on the same device. Moreover, the authors also
present a tampering attack based on potential implementation
flaws and a Denial-of-Service attack. [2], [3] provide feasible
countermeasures for each of above specific attacks. However,
more general impersonation attacks by a malicious server
are not considered in [2], [3].

We notice a recent concurrent work [34] that formally
analyzes the security of the end-to-end Zoom protocol
assuming the existence of a trusted PKI. This work captures
various frameworks underlying the Zoom protocol, including
joining and leaving a group, a so-called “heartbeat” liveness
mechanism, and change of group leader/host. We give
a more detailed comparison between our work and [34]
in Appendix B.

3. Preliminaries

We use the following notational conventions. We write
ϵ to denote the empty string, and write x ∥ y to denote the
concatenation of strings x and y. We assume the existence of
a reserved error symbol ⊥. We write y ← x for deterministic
assignment or computation. We write y $←− D for randomized
sampling and y $←− f(x) for non-deterministic computation.
We write J·K for a boolean statement that is either true
(denoted by 1) or false (denoted by 0).

Within algorithms, we write “require C” to denote that C
is a requirement: if the condition C is not met, the algorithm
undoes the execution and outputs ⊥.

Moreover, we use several abbreviations. To avoid dupli-
cating some longer variable names, we use some update-
based variants of common operators: For a number x, we
write x++ as a shorthand for x ← x + 1. For a set S and
an element x, we write S

+← x for S ← S ∪ {x}, and
S
−← x for S ← S \ {x}. We write PPT as an abbreviation

of Probabilistic Polynomial Time.

4. multi-stage Group Key Distribution Protocols

In this section, we define our syntax for multi-stage
Group Key Distribution mGKD protocols. Our class of
mGKD protocols covers behaviors of a party for using real-
time group services, such as long-term identity information
generation, joining groups, group key rotation, and leaving
groups. Then, we propose three security models that capture
distinct security guarantees for real-time group services.

4.1. mGKD Definition

mGKD protocols are stateful interactive group communi-
cation protocols executed by a set of parties P . Each party
P must be uniquely identified by an identifier idP . Each
group is uniquely identified by an identifier gid. In each
group, one party performs the leader role; all other group
members perform the participant role. The role of each party
in different groups might be distinct: a party can be leader
in one group and participant in others. In practice, the leader
is typically the so-called host that initiated the group. In
this paper, we assume that each group gid is associated
with a unique leader and that the group’s leader stays in
the group for its entire duration. While one can in theory
implement changing leaders by starting a new group, we
leave the modeling and efficient implementation of multiple
and changing leaders to future work.

Definition 1. A multi-stage group key distribution pro-
tocol mGKD = (SignUp,Schedule,Register, Join, Leave,
KeyRotat) consists of the following algorithms:
Sign Up: mSignUp

$←− SignUp(P ) allows a (stateful) party
P to initialize a long-term identity information for signing
up. The private portion is locally stored. The public portion
is output as an outgoing sign-up message mSignUp.

Group Schedule: mgid
GSch

$←− Schedule(P, gid, gs) allows a
(stateful) party P to take the role of the leader for

3



scheduling a group gid using a group secret gs . The output
is an outgoing group schedule message mgid

GSch for the server.
The group secret gs is expected to be sent to authorized
participants over secure out-of-band channels.

Register: Register = (Register-L,Register-P) consists of
two sub-algorithms depending on the role of the caller:
• m′ $←− Register-L(P, gid, gs,m) (resp. m′ $←−
Register-P(P, gid, gs,m)) allows a (stateful) party P to
register for a group gid as leader (resp. participant)
using a group secret gs and an incoming message
m followed by group initialization. The output is an
outgoing message m′.

Participant Join: Join = (Join-L, Join-P) allows a partic-
ipant to interact with a leader for joining a group. This
interactive phase consists of two sub-algorithms depending
on the role of the caller:
• m′ $←− Join-L(P, idP ′ , gid, gs,m) (resp. m′ $←−
Join-P(P, idP ′ , gid, gs,m)) allows a leader P (resp. a
participant P ) of the group gid to input a group secret gs
and an incoming message m and to output an outgoing
message m′ for the participant (resp. the leader) P ′.

Member Leave: Leave = (Leave-L, Leave-P) consists of
two sub-algorithms depending on the role of the caller:
• Leave-L(P, gid, idP ′) (resp. Leave-P(P, gid, idP ′)) al-

lows the leader (resp. a participant) P of the group
gid to react to a party P ′’s leaving. If idP = idP ′ , the
leader (resp. the participant) P leaves the group gid
and erases the corresponding state information.

Key Rotation: KeyRotat = (KeyRotat-L,KeyRotat-P)
consists of two sub-algorithms depending on the role of
the caller:
• mKRot

$←− KeyRotat-L(P, gid,m) allows the leader P of
the group gid to input an incoming message m and to
locally update the group key. The output is an outgoing
message mKRot that enables all participants of the same
group gid to update group keys correspondingly.

• mKRot
$←− KeyRotat-P(P, gid,m) allows a participant

P of the group gid to input an incoming message m
and to locally update the group key. The output is an
(optionally empty) outgoing message mKRot.

We assume all incoming and outgoing messages of an
mGKD protocol are publicly accessible; we leave this implicit
as the concrete mechanisms can differ substantially between
protocols, but could for example be a PKI or a “bulletin
board” on the server. In contrast, the input group secret gs
of the Schedule algorithm is expected to be chosen by the
leader and be sent to authorized parties for joining the group
over secure out-of-band channels. Before a party P joins a
group gid, P has to register for this group, no matter whether
P has previously joined the group gid and left. The Member
Leave phase enables every party P to react to a participant P ′
leaving the group, notably, without any additional incoming
message. This captures the scenario where the server might
notify group members that a participant has left the group
without sending any leave request due to unexpected network
disconnection. The KeyRotat algorithm enables every party

to update their group key, the execution frequency of which
can be decided in advance, in a regular schedule and/or when
a party joins or leaves the group.

To model concurrent or sequential groups of a party P ,
let πgid

P denote party P ’s session with respect to the short-
term group gid. In addition, each party P has an associated
long-term state stP that is shared by all of P ’s sessions.

Definition 2. In a mGKD protocol, each party P has the
following state variables. The long-term state variables are
initialized during the Sign Up phase:
• stP .id: the associated and unique identifier of the party P .

In this paper, we assume it equal to idP .
• stP .isk : the identity secret key of the party P .
• stP .ipk : the identity public key of the party P .

The short-term per-group state variables are initialized
during the Register phase:
• πgid

P .sk: the group-specific secret key of the party P for
joining the group gid.

• πgid
P .pk: the group-specific public key of the party P for

joining the group gid.
• πgid

P .gk : the current group key used by party P , which is
supposed to be shared by all parties in the group gid. This
variable is initialized with ⊥.

• πgid
P .gkid: the index of the current group key of the party

P in the group gid. This variable is initialized with 0.
• πgid

P .GP : The set of all parties in the group gid. This
variable is initialized with the empty set ∅.

• πgid
P .status ∈ {⊥, registered, joined}: the status that indi-

cates whether the party P has initialized the state for (but
not yet registered for), or registered for (but not yet joined),
or joined the group gid. This variable is ⊥ by default.

Definition 3 (Correctness). Consider any group gid with an
associated leader P , any sequence of parties {P i}i, and a
sequence of executions that includes the following (perhaps
not consecutive) algorithms: i) a Sign Up of the leader P
or a participant P i for any i, ii) a Group Schedule of the
group gid and the leader P , iii) a Register of the leader
P or a participant P i for any i to the group gid, iv) a
successful Participant Join between the leader P and a
participant P i for any i, v) a Leaving of participant P i for
any i to all other parties in the group gid, vi) a successful
Key Rotation for the leader P and every participant P i in
the group gid, i.e., πgid

P i .status = joined. Correctness requires
that πgid

P .gkid = πgid
P i .gkid and πgid

P .gk = πgid
P i .gk for any P i

with πgid
P i .status = joined at any time.

4.2. A Generic Security Model

We next define a generic Sec-mGKD-X security model.
By presenting different instantiations of the freshness con-
ditions that the attacker must obey and of the winning
conditions that the attacker must pursue, we then introduce
three distinct concrete models for X ∈ {pki, pw, pw+}
in Section 4.3, Section 4.4, and Section 4.5.

Trust Model. We assume that all parties’ sampled randomness
is independent, uniform, and unpredictable. For simplicity,

4



we assume every leader samples group secret from a same
distribution D (according to the underlying protocol). We
assume that every party joins every group at most once.
We assume that every leader stays in the corresponding
group for the entire duration and leaves only when all other
participants have left. This means, once the leader leaves
the corresponding group, this group is immediately marked
as “invalid” and no party is allowed to register for or join
this group anymore. We assume that every party can send
register request for every group at most once. Our model
assumes a single shared group key for communication. Thus,
impersonation attacks between parties inside the group is
out of scope of this work.

Threat Model. We allow the attacker to have full control over
the network and can eavesdrop, drop, and insert messages
during all phases. We allow the attacker to corrupt the
long-term state stP for any participant P to capture the
real-world scenarios where the hardware devices might be
stolen. Moreover, we allow attackers to compromise the
short-term per-group state πgid

P for any participant P after
joining any group gid to capture attacks during the ongoing
communications. We also allow attackers to leak arbitrary
group keys (to analyze the impact on the security of previous
and future group keys). We allow attackers to reveal the group
secret for any group to capture the real-world scenarios where
the the out-of-band channels might be vulnerable.

Security Experiment. The security experiment is conducted
between a challenger C and an attacker A against a mGKD
protocol Π. At the beginning of the experiment, the chal-
lenger C samples a random challenge bit b ∈ {0, 1}. During
the experiment, C produces two sequences of variables
{GP (gid,gkid)}gid,gkid and {gk (gid,gkid)

P }gid,gkid,P . The variable
GP (gid,gkid) aims to record the identifier of every party that is
expected to know the gkid-th group key in the group gid from
the leader’s view. The challenger C monitors the states of
the leader P of any group gid. Whenever πgid

P .GP changes,
C records GP (gid,πgid

P .gkid) ← GP (gid,πgid
P .gkid)∪πgid

P .GP . The
variable gk

(gid,gkid)
P records the gkid-th group key derived by

any party P in the group gid. Whenever πgid
P .gkid changes

for any party P and group gid during the experiment, C stores
the new group key gk

(gid,πgid
P .gkid)

P ← πgid
P .gk . The attacker A

can interact with C by querying the following oracles, where
C responds according to Π. To simplify the explanation, we
partition the oracles into categorizes.

Oracle Category 1: Setup of groups and parties. This
category includes a NEWPARTY oracle that simulates the
Sign Up phase of a party, a NEWGROUP that simulates the
Group Schedule phase of a group, and a AUTHORIZE oracle
that simulates the group secret transmission from the leader
to the authorized participants over out-of-band channels.
• NEWPARTY(idP ): This oracle can be queried at most once

on each input. The challenger C initializes a state stP by set-
ting stP .id← idP . Then, C runs mP

SignUp
$←− SignUp(stP )

and followed by forwarding the sign-up message mP
SignUp

to A. The party P is marked as “created”.

• NEWGROUP(idP , gid): This oracle can be invoked at
most once for each gid. The input party P must be
marked as “created”. The challenger C samples the secret
of the group gid by gsgid $←− D and runs mgid

GSch
$←−

Schedule(P, gid, gsgid) for an associated outgoing message
mgid

GSch. Then, C marks the group gid as “created” and
“valid” and marks P as the leader of the group gid and
“authorized”. Finally, C returns mgid

GSch to A.
• AUTHORIZE(gid, idP ): The group gid must be marked as

both created and valid, and the party P must be marked
as created and have not registered for the group gid, i.e.,
πgid
P .status = ⊥. The challenger C marks P as authorized

for the group gid.

Oracle Category 2: Register phase. This category includes a
REGISTERAUTH oracle, which simulates that an authorized
party registers for a group using honest group secret, and a
REGISTERINJECT oracle, which simulates that an unautho-
rized (malicious) party registers for a group with an input
using some chosen group secret.

• REGISTERAUTH(idP , gid,m): This oracle can be queried
at most once for each tuple (idP , gid). The group gid must
be marked as both created and valid and the party P
must be authorized for the group gid. The challenger C
runs Register-L(P, gid, gsgid,m) if P is the leader of the
group gid and Register-P(P, gid, gsgid,m) otherwise. In
both cases, C forwards the output message m′ to A.

• REGISTERINJECT(idP , gid, gs,m): This oracle can be
queried at most once for each tuple (idP , gid). The group
gid must be marked as both created and valid and the party
P must be unauthorized for the group gid. The challenger
C runs Register-P(P, gid, gs,m) and forwards the output
message m′ to A.

Oracle Category 3: Participant Join phase. This category
includes a SENDJOINAUTH oracle, which simulates that
an authorized party (as either leader or participant) sends
messages to another party (either authorized or unauthorized)
during the Participant Join phase in the group, and a
SENDJOININJECT oracle, which simulates that an unautho-
rized (malicious) participant sends messages (to the leader)
during the Participants Join phase in the group.

• SENDJOINAUTH(idP , idP ′ , gid,m): The challenger C first
checks
– whether gid is marked as created and valid,
– whether P is authorized for this group gid,
– whether both parties P and P ′ have been created and

registered for this group,
– whether either P or P ′ is the leader of the group gid,
– whether the leader of the group, either P or P ′, has

joined the group, and that the other party hasn’t joined
the group yet.

If any of the check fails, C directly returns ⊥ to A.
Otherwise, C runs Join-L(P, idP ′ , gid, gsgid,m) if P is the
leader of the group gid or Join-P(P, idP ′ , gid, gsgid,m) if
P is a participant. Then, the output message m′ of either
Join-L or Join-P is returned to A.

5



• SENDJOININJECT(idP , idP ′ , gid, gs,m): The challenger C
first checks
– whether gid is marked as created and valid,
– whether P is unauthorized for the group gid,
– whether P ′ is the leader of the group gid,
– whether the participant P has been created and registered

for this group gid but has not joined the group yet, and
– whether the leader P ′ has joined the group gid.
If any of the check fails, C directly returns ⊥ to A.
Otherwise, C runs Join-P(P, idP ′ , gid, gs,m) and returns
the output message m′ of Join-P to A.

Oracle Category 4: Member Leave phase. This category
includes a SENDLEAVE oracle, which simulates that a
party notices another party leaving the group gid, and an
ENDGROUP oracle, which simulates that a leader leaves and
ends the group.
• SENDLEAVE(idP , gid, idP ′): The challenger C aborts if

– the gid is not marked as both created and valid, or
– the leaving party P ′ is the leader of the group gid, or
– the party P has not joined the group.
Otherwise, C runs Leave-L(P, gid, idP ′) if P is the leader
of the group gid and Leave-P(P, gid, idP ′) otherwise.

• ENDGROUP(gid): The challenger C first checks
– whether the group gid is created and valid, and
– whether the leader P of the group gid is the unique party

in his local party list, i.e., πgid
P .GP = {idP }.

If either check fails, C aborts. Otherwise, C runs
Leave-L(P, gid, idP ) and marks the group gid as “invalid”.

Oracle Category 5: Key Rotation phase. This category
includes only one SENDKEYROTAT oracle that simulates
the process where a party updates their local group key.
• SENDKEYROTAT(idP , gid,m): The party P must have

joined the group gid. The challenger C runs KeyRotat-L(P,
gid,m) if P is the leader of the group gid and
KeyRotat-P(P, gid,m) otherwise. The output message of
either KeyRotat-L or KeyRotat-P is returned to A.

Oracle Category 6: Secret information leakage. This
category includes four oracles CORRUPT, COMPROMISE,
LEAK, and REVEAL, that respectively simulates that the
attacker A knows the long-term state of a party, the short-
term per-group state of a party for a group, a group key of
a party in a group, and the group secret of a group.
• CORRUPT(idP ): The challenger C first checks whether the

party P is created. If the check fails, C simply returns ⊥.
Otherwise, C returns stP to the attacker A and marks stP
as “corrupted”.

• COMPROMISE(idP , gid): The challenger C checks whether
the party P has joined the group gid, i.e, πgid

P .status =
joined. If the check fails, C simply returns ⊥. Otherwise,
C returns πgid

P to the attacker A, followed by marking πgid
P

as “compromised” and gk
(gid,πgid

P .gkid)
P as “leaked”.

• LEAK(idP , gid, gkid): The challenger C checks whether
gk

(gid,gkid)
P has been set. If gk (gid,gkid)

P = ⊥, then C simply

returns ⊥. Otherwise, C marks gk
(gid,gkid)
P as “leaked” and

returns gk
(gid,gkid)
P to A.

• REVEAL(gid): If the group gid is not created, then the
challenger C simply returns ⊥. Otherwise, C marks gid as
“revealed” and returns gsgid to A.

Oracle Category 7: Test challenge bit. This category includes
only one TEST oracle that returns either a real group key if
the challenge bit b = 0, or a random key if b = 1.
• TEST(idP , gid, gkid): This oracle can be queried at most

once. If the party P is authorized for the group gid and the
party P has produced gkid-th group key, i.e., gk (gid,gkid)

P ̸=
⊥, then the challenger C returns gk

(gid,gkid)
P to A if the

challenge bit b = 0, or a random key from the same space
if b = 1. Then, C further marks the party P , the group
identifier gid, and the group key index gkid as “tested”.
Otherwise, C immediately returns ⊥.

Advantage Measures. In the end, the attacker A outputs a bit
b′ ∈ {0, 1}. Under two freshness conditions freshSec-mGKD-X

KAuth

and freshSec-mGKD-X
KPriv that prevent the attacker A from trivially

winning the experiment, we say the attacker A wins the
experiment Sec-mGKD-X against a mGKD protocol Π, if
either of the following events is triggered:

1) [Event EKAuth] there exists any group gid with the leader
P gid, any party P ′ that is authorized for the group gid, and
any group key index gkid, such that gk (gid,gkid)

P ′ ̸= ⊥ but
gk

(gid,gkid)
P gid ̸= gk

(gid,gkid)
P ′ , without violating the freshness

condition freshSec-mGKD-X
KAuth (idP ′ , gid, gkid).

2) [Event EKPriv] b = b′ without violating the freshness
condition freshSec-mGKD-X

KPriv (idP ′ , gid, gkid), where P ′, gid,
and gkid are respectively the tested party, group identifier,
and group key index.

We define AdvSec-mGKD-X
Π (A) as the advantage that A can

win the Sec-mGKD-X experiment against a mGKD protocol
Π, namely,

AdvSec-mGKD-X
Π (A) := max

(∣∣Pr[EKPriv]−
1

2

∣∣,Pr[EKAuth]
)

.

Definition 4 (Sec-mGKD-X). We say that a mGKD protocol
Π is Sec-mGKD-X-secure for X ∈ {pki, pw, pw+}, if the
advantage AdvSec-mGKD-X

Π (A) is negligible for any PPT
adversary A.

4.3. The Sec-mGKD-pki Security Model

Our basic security model Sec-mGKD-pki captures the
following security guarantees for an authorized party in a
group assuming the honest distribution of long-term sign-up
message of all parties within this group. Note that this basic
model guarantees that only group members can learn the key,
and where group membership is determined by the server.
In reality, and in our model, the server may insert group
members that are not authorized by the leader and do not
know the passcode.

1) (Implicit) Group Key Authentication: If a group member
accepts a group key, then the leader must have produced
the same group with the same group key index.

6



2) Group Key Secrecy: If a group member accepts a group
key, then an attacker cannot derive this key, even if it
knows other group keys.

3) Perfect Forward Secrecy: An attacker that compromises
a party’s long-term keys, can not learn the group keys of
any group the party was previously in.

Definition 5 (Sec-mGKD-pki Freshness Conditions). We
say the freshness condition freshSec-mGKD-pki

KAuth (idP ′ , gid, gkid),
where gid has a unique leader P gid, holds if and only if

1) the per-group states πgid
P gid and πgid

P ′ are not compromised,
2) the long-term states stP gid and stP ′ are not corrupted before

P gid and P ′ joined the group gid, and
3) the sign-up messages mP gid

SignUp and mP ′

SignUp of P gid and P ′

are honestly delivered to the other.
We say the freshness condition freshSec-mGKD-pki

KPriv (idP ′ ,
gid, gkid) holds if and only if

1) the group key gk
(gid,gkid)
P is not leaked for all parties P in

the group gid with idP ∈ GP (gid,gkid),
2) the short-term state πgid

P is not compromised for all parties
P in the group gid with idP ∈ GP (gid,gkid),

3) the long-term state stP gid of the leader P gid in the group gid
is not corrupted before all parties P with idP ∈ GP (gid,gkid)

joined the group gid,
4) the long-term state stP of all participants P in the group

gid with idP ∈ GP (gid,gkid) is not corrupted before P
joined the group gid, and

5) the sign-up messages mP
SignUp of all parties P with idP ∈

GP (gid,gkid) are honestly distributed within the group gid.

Conclusion. Our Sec-mGKD-pki security model captures all
guarantees listed at the beginning of this subsection:

1) (Implicit) Group Key Authentication: If authentication
does not hold, the attacker A can win via EKAuth.

2) Group Key Secrecy: The attacker is allowed to leak
arbitrarily many group keys except for the tested one. If
group key secrecy does not hold, A can win via EKPriv.

3) Perfect Forward Secrecy: The attacker is allowed to
corrupt the long-term state of the tested party. If perfect
forward secrecy does not hold, A can win via EKPriv.

4.4. The Sec-mGKD-pw Security Model

The basic Sec-mGKD-pki model has two restrictions:
• First, both freshness conditions freshSec-mGKD-pki

KPriv and
freshSec-mGKD-pki

KAuth require the honest distribution of the sign-
up messages. Since the sign-up messages are distributed by
servers or by PKI in practice, this restriction is also known
as “trusted PKI” assumption in the related literature. In
the full end-to-end setting, i.e., no trusted PKI or server
exists, a Sec-mGKD-pki secure mGKD protocol might still
suffer from machine-in-the-middle attacks such that the
attacker can easily impersonate any participant towards the
group leader and impersonate any group leader towards
any participant.

• Second, both freshness conditions freshSec-mGKD-pki
KPriv and

freshSec-mGKD-pki
KAuth allow the attacker to reveal all group

secrets but do not prevent unauthorized parties from
knowing the group keys. Thus, this Sec-mGKD-pki model
does not capture the security benefit provided by the group
secret transmitted over secure out-of-band channels.

The goal of the Sec-mGKD-pw security model is to
preserve the guarantees achieved in Sec-mGKD-pki model
and to capture the following additional security guarantee,
while getting rid of the “trusted PKI” assumption.

4) (Implicit) Group Member Authentication: If any party
produces the same group key as the leader of a group, then
this party must be authorized for this group, as long as the
group secret is not revealed.

We replace the “trusted PKI” assumption with the
arguably simpler assumption of a shared “secure (short)
group secret”. We assume that (short) group secrets (such
as passwords or pin codes) can be distributed over out-of-
band secure channels, e.g., by email, encrypted messaging
application (e.g., Signal), or even in person. In fact, a similar
passcode mechanism has been widely deployed in real life
by many service providers such as Zoom for access control
management (see Section 5.1). The only difference is that
the current Zoom passcode mechanism hands over passcode
and the rule of verifying it to the (possibly) untrusted server,
while in our model the group secret is known only to the
participants.

Definition 6 (Sec-mGKD-pw Freshness Conditions). We
say the freshness condition freshSec-mGKD-pw

KAuth (idP ′ , gid, gkid),
where gid has a unique leader P gid, holds if and only if

1) the per-group states πgid
P gid and πgid

P ′ are not compromised,
2) the long-term states stP gid and stP ′ are not corrupted before

P gid and P ′ joined the group gid, and
3) the group gid is not revealed.

We say the freshness condition freshSec-mGKD-pw
KPriv (idP ′ , gid,

gkid) holds if and only if
1) the group key gk

(gid,gkid)
P is not leaked for all authorized

parties P in the group gid with idP ∈ GP (gid,gkid),
2) the short-term state πgid

P is not compromised for all autho-
rized parties P in the group gid with idP ∈ GP (gid,gkid),

3) the long-term state stP gid of the leader P gid in the group
gid is not corrupted before all authorized parties P with
idP ∈ GP (gid,gkid) joined the group gid,

4) the long-term state stP of all authorized participants P
in the group gid with idP ∈ GP (gid,gkid) is not corrupted
before P joined the group gid, and

5) the group gid is not revealed.

Conclusion. Note that Sec-mGKD-pki and Sec-mGKD-pw
models share the same oracles and similar freshness condi-
tions. Thus, it is straightforward that our Sec-mGKD-pw
model also satisfies all guarantees listed in Section 4.3.
However, we stress two main distinctions of the freshness
conditions in Sec-mGKD-pw and Sec-mGKD-pki models
that make the security guarantees provided by these two
models very different.

1) [Full End-to-End Security] Both freshSec-mGKD-pw
KAuth and

freshSec-mGKD-pw
KPriv allow attackers to manipulate the trans-

7



mission of all messages, including the sign-up mes-
sages of all parties in any group, which are forbidden
by freshSec-mGKD-pki

KAuth sub-point 3) and freshSec-mGKD-pki
KPriv

sub-point 5). Instead, freshSec-mGKD-pw
KAuth sub-point 3) and

freshSec-mGKD-pw
KPriv sub-point 5) require no leakage of the

group secrets. This indicates that our Sec-mGKD-pw secu-
rity model captures the full end-to-end security, i.e., against
a malicious server. Consequently, this new Sec-mGKD-pw
model solves the first restriction of Sec-mGKD-pki model.

2) While the freshSec-mGKD-pki
KPriv (idP ′ , gid, gkid) condition sub-

points 1) - 4) require no group key leakage, no short-term
per-group state compromise, and no long-term state corrup-
tion for all parties P in the group with idP ∈ GP (gid,gkid),
our new freshSec-mGKD-pw

KPriv (idP ′ , gid, gkid) condition has the
same requirements in sub-points 1) - 4) but only for the au-
thorized parties in every group. By this, our Sec-mGKD-pw
model captures the following property:
• (Implicit) Group Member Authentication: The attacker

can leak arbitrarily many group keys of any unauthorized
party in the tested group. If an unauthorized party can
successfully produce a same group key as a leader, then
the attacker can test this leader, leak the group key of
this unauthorized party, and win via the event EKPriv.

4.5. The Sec-mGKD-pw+ Security Model

Note that the Sec-mGKD-pki and Sec-mGKD-pw mod-
els rely on different assumptions: trusted PKI and secure
group secret. We then define a third Sec-mGKD-pw+ model
that incorporates the above two models. The goal of the
Sec-mGKD-pw+ model is to capture the security of a mGKD
protocol if either the “trusted PKI” or the “secure group
secret” assumption holds.

Definition 7 (Sec-mGKD-pw+ Freshness Conditions). We
say the freshness condition freshSec-mGKD-pw+

KAuth (idP ′ , gid, gkid)

holds if and only if freshSec-mGKD-pki
KAuth (idP ′ , gid, gkid) or

freshSec-mGKD-pw
KAuth (idP ′ , gid, gkid) holds.

We say the freshness condition freshSec-mGKD-pw+
KPriv (idP ′ ,

gid, gkid) holds if and only if freshSec-mGKD-pki
KPriv (idP ′ , gid,

gkid) or freshSec-mGKD-pw
KPriv (idP ′ , gid, gkid) holds.

The following corollary is straightforward by definition:

Corollary 1. Let Π denote a mGKD protocol. If Π is
Sec-mGKD-pki and Sec-mGKD-pw secure, then Π is also
Sec-mGKD-pw+ secure, and vice versa.

5. Zoom’s protocol is a mGKD protocol

The Zoom library allows parties to establish end-to-
end group meeting communication. In this section, we first
introduce the Zoom overview [35] (version 4.0) in Section 5.1.
Then, we show that Zoom library is Sec-mGKD-pki secure
in Section 5.2 but not Sec-mGKD-pw secure in Section 5.3.

5.1. The Zoom End-to-End Connection Overview

For end-to-end encrypted meetings, Zoom only supports
connecting from installed clients: Browser-based connections
are not supported. Zoom distinguishes between users and de-
vices by non-cryptographic user identifiers uid and hardware
identifiers hid. We model the identifier of each party P by a
pair of user and hardware identifiers, i.e., idP = (uidP , hidP )
and assume that party identifiers are unique1.

Zoom deploys two infrastructures for transmitting cryp-
tographic primitives: an identity management system and
a multimedia router (MMR). While the identity manage-
ment system distributes cryptographic public keys generated
by individual clients, the MMR distributes cryptographic
messages between parties in a meeting. The connection
between parties and servers are established on TLS-tunnels
over TCP and are encrypted with AES in GCM mode. In
this paper, we assume the existence of Zoom servers but do
not explicitly model them, because our goal is to consider
them adversary-controlled. Zoom allows every party to set
up a group meeting. Groups are uniquely identified by their
group identifiers gid. Each group meeting is equipped with
a specific “bulletin board”, where all parties can post (their
own) and retrieve (others’) cryptographic messages. The
server is able to control and tamper with the bulletin boards.

The end-to-end secure Zoom library consists of six phases
following the mGKD protocol syntax2, of which we give an
overview in Figure 1. We recall the cryptographic algorithms
ZSign and ZBox underlying the Zoom library in Appendix C.
For domain separation, Zoom uses hardcoded context strings
(ctxt1,ctxt2,ctxt3).

Sign Up SignUp(P ): During the Sign Up phase, every party
P samples an identity public-private ZSign key pair and
stores them into the long-term state stP . The party P outputs
the identity public key to the server as the sign-up message.
This algorithm is executed only once for each party, i.e.,
each user on each hardware device.3

Group Schedule Schedule(P, gid, gs): During the Group
Schedule phase, the leader P parses a passcode pcgid from
the input gs . The leader P sends pcgid to not only the
server as the group schedule message mgid

GSch for the access
control management, but also to the authorized participants
for joining the group over out-of-band channels, e.g., email.

Register Register = (Register-L,Register-P): The Reg-
ister phase enables every party P to register for join-
ing the meeting gid. We separate the description for

1The Zoom white-paper [35] states that the user identifiers uid are
assigned by servers and the hardware identifiers hid are randomly sampled.
Based on this, we assume that they are unique in practice.

2The official Zoom white-paper [35] only sketches the re-joining
mechanism informally, and does not specify any mechanism to change
leaders. We leave the analysis both functionalities to future work.

3The Zoom library also supports anonymous log-in: people without
a Zoom account can also join a group meeting as a “guest participant”
(note that the guest cannot play the role of leader). Before a guest joins
a group, the Sign Up algorithm is always executed. This prevents other
parties from tracing them across meetings by noticing when a long-term
key is reused [35].

8



Leader P , idP = (uidP , hidP ) Participant P ′, idP ′ = (uidP ′ , hidP ′)Server

SignUp(P ): SignUp(P ′):
(pkZSign, skZSign) $←− ZSign.KG (pk′

ZSign, sk
′
ZSign)

$←− ZSign.KG
Sign
Up

stP .isk ← skZSign, stP .ipk ← pkZSign stP ′ .isk ← sk′
ZSign, stP ′ .ipk ← pk′

ZSign

mP
SignUp = stP .ipk mP ′

SignUp = stP ′ .ipk

Schedule(P, gid, gs):
Group

Schedule Parse ( pcgid , pw gid )← gs , mgid
GSch ← pcgid

gid, mgid
GSch

gid, gs (over an out-of-band channel)

Register-L(P, gid, gs,m): Register-P(P ′, gid, gs,m):
Parse mUUID← m, Parse ( pcgid , pw gid )← gs Parse mUUID← m, Parse ( pcgid , pw gid )← gs

(pkZBox, skZBox) $←− ZBox.KG (pk′
ZBox, sk

′
ZBox)

$←− ZBox.KG

πgid
P .sk ← skZBox, πgid

P .pk ← pkZBox πgid
P ′ .sk ← sk′

ZBox, π
gid
P ′ .pk ← pk′

ZBox

BindinggidP ← gid ∥ mUUID ∥ uidP ∥ hidP ∥ stP .ipk ∥ πgid
P .pk BindinggidP ′ ← gid ∥ mUUID ∥ uidP ′ ∥ hidP ′ ∥ stP ′ .ipk ∥ πgid

P ′ .pkRegister

σgid
P ← ZSign.Sign(stP .isk , ctxt1,Binding

gid
P ) σgid

P ′ ← ZSign.Sign(stP ′ .isk , ctxt1,Binding
gid
P ′)

πgid
P .status← joined, πgid

P .GP
+← idP πgid

P .status← registered

πgid
P .gk $←− {0, 1}256, πgid

P .gkid← 1 Run first pass of PAKEPP(pw
gid) for c(P

′,gid)
PP,1

pcgid , m(P,gid)
Reg = (πgid

P .pk, σgid
P ) pcgid , m(P ′,gid)

Reg = (πgid
P ′ .pk, σ

gid
P ′), c

(P ′,gid)
PP,1Server rejects if

mgid
GSch ̸= pcgid

Join-L(P, idP ′ , gid, gs,m): Join-P(P ′, idP , gid, gs,m):

Parse (mUUID,mP ′
SignUp,m

(P ′,gid)
Reg , c

(P ′,gid)
PP,1 )← m Parse (mUUID,mP

SignUp,m
(P,gid)
Reg , cgidP ′ , c

(P ′,gid)
PP,2 , nonceP

′
PP )← m

Parse ( pcgid , pw gid)← gs Parse ( pcgid , pw gid)← gs

Run second pass of PAKEPP(pw
gid) for k(P ′,gid)

PP and c
(P ′,gid)
PP,2 Run PAKEPP(pw

gid) for k(P ′,gid)
PP

nonceP
′

PP
$←− {0, 1}lPP , Store k

(P ′,gid)
PP cgidP ′ ← AEADPP.Dec(k

(P ′,gid)
PP , nonceP

′
PP, (m

P
SignUp,m

P ′
SignUp), c

gid
P ′)

Parse ipkP ′ ← mP ′
SignUp, (pkgid

P ′ , σ
gid
P ′)← m

(P ′,gid)
Reg require cgidP ′ ̸= ⊥, Store k

(P ′,gid)
PP

BindinggidP ′ ← gid ∥ mUUID ∥ uidP ′ ∥ hidP ′ ∥ ipkP ′ ∥ pkgid
P ′ Parse ipkP ← mP

SignUp, (pkgid
P , σgid

P )← m
(P,gid)
Reg

Participant
Join

BindinggidP ← gid ∥ mUUID ∥ uidP ∥ hidP ∥ ipkP ∥ pk
gid
PZSign.Vrfy(ipkP ′ , σ

gid
P ′ , ctxt1,Binding

gid
P ′)

Meta← gid ∥ mUUID ∥ uidP ∥ uidP ′ ZSign.Vrfy(ipkP , σ
gid
P , ctxt1,Binding

gid
P )

cgidP ′
$←− ZBox.Enc(πgid

P .sk, pkgid
P ′ , ctxt2, ctxt3,Meta, (πgid

P .gk , πgid
P .gkid)) Meta← gid ∥ mUUID ∥ uidP ∥ uidP ′

cgidP ′ ← AEADPP.Enc(k
(P ′,gid)
PP , nonceP

′
PP, (m

P
SignUp,m

P ′
SignUp), c

gid
P ′) (gk , gkid) $←− ZBox.Dec(πgid

P ′ .sk, pk
gid
P , ctxt2, ctxt3,Meta, cP ′)

πgid
P .GP

+← idP ′ , Store pkgid
P ′ πgid

P ′ .gk ← gk , πgid
P ′ .gkid← gkid, πgid

P ′ .status← joined, Store pkgid
P

idP ′ , cgidP ′ , c
(P ′,gid)
PP,2 , nonceP

′
PP

KeyRotat-L(P, gid,m): KeyRotat-P(P, gid,m):

require m = ϵ (cgidP ′ , nonceP
′

PP )← m

πgid
P .gk $←− {0, 1}256, πgid

P .gkid++ cgidP ′ ← AEADPP.Dec(k
(P ′,gid)
PP , nonceP

′
PP, (m

P
SignUp,m

P ′
SignUp), c

gid
P ′)

foreach idP ∈ πgid
P .GP and idP ̸= idP : require cgidP ′ ̸= ⊥Key

Rotation
cgid
P

$←− ZBox.Enc(πgid
P .sk, pkgid

P
, ctxt2, ctxt3,Meta, (πgid

P .gk , πgid
P .gkid)) (gk , gkid) $←− ZBox.Dec(πgid

P ′ .sk, pk
gid
P , ctxt2, ctxt3,Meta, cgidP ′)

noncePPP
$←− {0, 1}lPP require πgid

P ′ .gkid < gkid

cgid
P
← AEADPP.Enc(k

(P,gid)
PP , noncePPP, (m

P
SignUp,m

P
SignUp), c

gid

P
) πgid

P ′ .gkid← gkid, πgid
P ′ .gk ← gk

m
(P,gid)
KRot = {idP , c

gid

P
, noncePPP }P cgidP ′ , nonceP

′
PP

Leave-L(P, gid, idP ′′): Leave-P(P ′, gid, idP ′′):Member
Leave if idP ′′ = idP : πgid

P ← ⊥ else πgid
P .GP

−← idP ′′ if idP ′′ = idP ′ : πgid
P ′ ← ⊥

Figure 1. Overview of the Zoom protocol and our modified ZoomPAKE protocol. The boxes of the form added denote the additions from our transformation
for ZoomPAKE, i.e., which are not in current Zoom. Note we do require any additional message flows. The boxes of the form redundant denote the elements
that become redundant in our PAKE-based design: thus, for ZoomPAKE, we can essentially set pcgid to the empty string, and still obtain the same
guarantees, effectively replacing the old passcode by the new PAKE password. We recall the cryptographic algorithms ZSign and ZBox from the Zoom
library in Appendix C. All communications from and to the server are performed over unilaterally secured TLS connections, authenticating the server.
Possible out-of-band channels in the Group Schedule include, e.g., e-mail, messaging app, phone, calendar invite, or in-person.

9



Register-P(P ′, gid, gs,m), where the P ′ is a participant of
the group gid, and for Register-L(P, gid, gs,m), where P
the leader of the group gid.

• Register-P(P ′, gid, gs,m): The input message m is given
by the server and should be correctly parsed as a special
mUUID string. The mUUID string is a server-generated
per-group-instance random string that the individual parties
cannot control. Moreover, the participant P ′ also inputs
a group secret gs that can be correctly parsed as a
passcode pcgid. This algorithm first samples a public-
private per-group ZBox key pair and stores them into
the state πgid

P ′ . Next, it computes BindinggidP ′ , which is the
concatenation of the group identifier gid, server-generated
random string mUUID, as well as the party P ′’s identifier
idP ′ = (uid, hid), identity public key stP ′ .ipk , and per-
group public key πgid

P ′ .pk. Then, it signs the binding in-
formation BindinggidP ′ for a signature σgid

P ′ using ZSign.Sign
algorithm, the identity secret key stP ′ .isk , and a context
string ctxt1. The passcode pcgid and the output register
message m

(P ′,gid)
Reg consisting of the per-group public key

πgid
P ′ .pk and the signature σgid

P ′ is sent to the server. The
server adds m

(P ′,gid)
Reg to the “bulletin board” of the group

gid, if the passcode pcgid matches the group schedule
message mgid

GSch received from the group leader, and rejects
it otherwise. The status πgid

P ′ .status of the participant P ′ in
the group gid is set to registered.

• Register-L(P, gid, gs,m): If the party P is the leader of
the group gid, P runs the same execution as a participant
except for setting the status πgid

P .status to joined rather than
registered. Moreover, the leader P initializes the group by
sampling the first group key πgid

P .gk of bit length 256 and
sets the group key index πgid

P .gkid to 1. The identifier idP
is added into the local party set πgid

P .GP .

Participants Join Join = (Join-L, Join-P): The Zoom library
executes this interactive sub-protocol between the leader P
and a participant P ′ only one-pass:

• Join-L(P, idP ′ , gid, gs,m): When the leader P notices the
joining request of a new participant P ′, P retrieves an
incoming message m from the server and the group gid’s
“bulletin board” followed by parsing it into: (1) a server-
generated randomness mUUID, (2) the participant P ′’s sign-
up message mP ′

SignUp, and (3) the participant P ′’s register

message m
(P ′,gid)
Reg . Next, the leader P parses the participant

P ′’s identity public key ipkP ′ , per-group public key pkgidP ′ ,
and per-group signature σgid

P ′ from the incoming message,
followed by using them to produce the participant’s binding
information BindinggidP ′ . If the binding information cannot
pass the verification ZSign.Vrfy upon the participant’s
identity public key ipkP ′ , signature σgid

P ′ , and the context
ctxt1, then the leader aborts and undoes the previous
executions. Otherwise, the leader creates a metadata Meta
by concatenating the group identifier gid, server-generated
randomness mUUID, the leader’s user identifier uidP , and
the participant’s user identifier uidP ′ . Finally, the leader P

encrypts the current group key πgid
P .gk as well as the index

πgid
P .gkid using the ZBox.Enc encryption algorithm and the

leader P ’s per-group secret key πgid
P .sk, the participant P ′’s

per-group public key πgid
P ′ .pk, and auxiliary information

ctxt2, ctxt3, and Meta. The identifier of the participant P ′

and the ZBox ciphertext cgidP ′ are send to P ′ via the server.
The leader P stores the identifier idP ′ of the participant P ′

into the local party set πgid
P .GP and stores the participant’s

per-group public key pkgidP ′ .
• Join-P(P ′, idP , gid, gs,m): When a participant P ′, who

registered for a group gid, receives an incoming message
m that includes (1) a server-generated randomness mUUID,
(2) the leader P ’s sign-up message mP

SignUp, (3) the leader
P ’s register message m(P,gid)

Reg , and (4) the leader’s reply cgidP ′ ,
P ′ first parses the incoming message, creates the leader’s
binding information, and verifies it using ZSign.Vrfy al-
gorithm, similar to the leader’s execution. Then, P ′ also
generates the meta data Meta and uses it together with
its own per-group secret key πgid

P ′ .sk, the leader’s per-
group public key pkgidP , and the contexts ctxt2 and ctxt3,
to decrypt the ciphertext cgidP ′ . If any error occurs during
above steps, then the participant P ′ aborts and undoes the
previous executions. Otherwise, the participant P ′ stores
the decrypted group key as well as the associated index
into the per-group state πgid

P ′ .gk and πgid
P ′ .gkid, followed by

setting the status πgid
P ′ .status to joined. Moreover, P ′ stores

the leader P ’s per-group public key into the state. 4

Key Rotation KeyRotat = (KeyRotat-L,KeyRotat-P): The
execution of this algorithm is distinct according to the caller
P ’s role: a leader or a participant. We separate the description
for KeyRotat-L(P, gid,m), where P is the leader of the
group gid, and for KeyRotat-P(P ′, gid,m), where P ′ is a
participant of the group gid.
• KeyRotat-L(P, gid,m): The leader P of the group gid

executes this algorithm without any auxiliary incoming
input, i.e., m = ϵ. The leader P samples a new group key
πgid
P .gk of bit length 256 and increments the corresponding

index πgid
P .gkid by 1. Similar to the encryption during

the Participant Join phase, the leader encrypts the new
group key and index for each party in its local party set
πgid
P .GP except for himself. The output is a ciphertext

bundle that includes the identifiers of each participant and
the customized ciphertexts.

The server is expected to split the ciphertext bundles and
to send each ciphertext to the specified participant.
• KeyRotat-P(P ′, gid,m): The participant P ′ of the group
gid first parses the incoming message m from the server
to an ZBox ciphertext ctgidP ′ . Then, P ′ decrypts the new
group key gk and index gkid as during the Participant
Join phase. If any error occurs in the above steps or the
decrypted group key index is smaller than or equal to the
local one, then the participant P ′ aborts and undoes the

4In practice, Zoom has an independent mechanism for leader P to
synchronize the party set πgid

P .GP with every participant P ′. We omit it
here since, this does not impact Zoom security analysis in our models.

10



previous executions. Otherwise, P ′ simply overwrites the
local group key as well as the index by the new ones.

Member Leave Leave = (Leave-L, Leave-P): The execution
of this algorithm is distinct according to the caller P ’s role:
a leader or a participant. We separate the description for
Leave-L(P, gid, idP ′′), where the P is the leader of the group
gid, and for Leave-P(P ′, gid, idP ′′), where P ′ is a participant
of the group gid.
• Leave-L(P, gid, idP ′′): If idP = idP ′′ , i.e., the leader P

wants to leave the group gid, then P erases the per-group
instance πgid

P . Otherwise, the leader P notices a party P ′′

leaving the group gid, P simply removes the identifier of
the participant idP ′′ from the local party set πgid

P .GP .
• Leave-P(P ′, gid, idP ′′): If idP ′ = idP ′′ , i.e., the participant
P ′ wants to leave the group gid, then P ′ erases the per-
group instance πgid

P ′ . Otherwise, P ′ performs no action.

Instantiations. Underlying the ZSign and ZBox algorithms,
the key derivation function H1 is SHA256 and H2 is HKDF
algorithm (using an empty salt parameter). The length l
underlying ZBox algorithm is 192. The elliptic curve ECDH
underlying Diffie-Hellman key exchange is Curve25519. The
ZSign algorithm relies DS on EdDSA over Ed25519. The
AEAD algorithm is xchacha20poly1305.

5.2. Zoom is Sec-mGKD-pki secure

We omit the correctness analysis of the Zoom library. Be-
low, we investigate the provable security of the Zoom library.
The proof of the following theorem is give in Appendix D.

Theorem 1. Let Π denote the end-to-end Zoom protocol
in Section 5.1. Assume the ϵcoll-resH1

-collision resistance of
the underlying H1, the ϵeuf-cma

DS -euf-cma security of DS,
the ϵ

(n,m)-frob
AEAD -(n,m)-FROB security, ϵind$-cca

AEAD -IND$-CCA se-
curity, and ϵcti-cpaAEAD -cti-cpa security of the AEAD. Assume
the ϵmn-prf-ODH

ECDH,H2
hardness of the mn-prf-ODH problem over

ECDH and function H2. The advantage of any PPT at-
tacker A that breaks the Sec-mGKD-pki security of Π is
bounded by,

AdvSec-mGKD-pki
Π (A) ≤ ϵcoll-resH1

+ qNEWPARTYϵ
euf-cma
DS

+ cmaxRegqNEWGROUP

(
ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD

+ c
(nparty−1)
maxReg (nparty − 1)(ϵmn-prf-ODH

ECDH,H2
+ ϵind$-cca

AEAD )
)

where cmaxParty denotes the maximal number of parties in
every group, cmaxReg denotes the maximal number of register
requests for every group, nparty ≤ cmaxParty denotes the
number of parties in the set GP (gid,gkid) for tested group
identifier gid and group key index gkid, and qO denote the
maximal number of the queries to any oracle O.

Note that H1 = SHA256 provides an expected col-
lision resistance of 128 bits [36]. The EUF-CMA secu-
rity of Ed25519 was proven in [37]. The security of
xchacha20poly1305 was discussed in [38]. The maximal

number of parties per meeting is cmaxParty = 1000 [35].
The above theorem shows that the end-to-end Zoom library
provably provides Sec-mGKD-pki security and satisfies all
properties listed in Section 4.3.

Remark 1. Theorem 1 shows that Zoom achieves
Sec-mGKD-pki independent of the passcode: the passcode
is only used implicitly for access control by honest servers.

5.3. Zoom is not Sec-mGKD-pw secure

Recall that the Sec-mGKD-pki model has two restrictions
in Section 4.3. A natural question arises whether these
restrictions apply to the Sec-mGKD-pki secure Zoom library.

Does Zoom Provide Trusted PKI? The PKI is expected
to “enable users of an insecure public network such as the
Internet to securely and privately exchange data through
the use of a public and a private cryptographic key pair
that is obtained and shared through a trusted authority” [39,
Chapter 1]. As we mentioned in Section 5.1, all public
keys of all parties in the Zoom library are uploaded to an
infrastructure, called “identity management system”, that is
fully controlled by Zoom. The identity management system
distributes the identity public keys. While Zoom claims the
end-to-end security, the goal of which is to protect the secrecy
and integrity of the exchanged content between every two
parties against all third parties including the service providers,
assuming Zoom-controlled PKI trusted is controversial and
doubtful. Considering a malicious server, the server can easily
perform the “machine-in-the-middle” attack by forging the
sign-up messages and impersonate any party towards others.

Although there do exist other group meeting providers,
such as Cisco WebEx and Skype, that employ a third-party
PKI, such as Microsoft Certificate Authority (CA), we stress
that the reliability of PKI is still imperfect. Eckersley and
Burns [40] revealed that 14 CAs had been compromised.
Moreover, a number of attacks that successfully break several
CAs, including DigiNotar, Comodo, GlobalSign, StartSSL,
and TurkTrust, have been publicly noticed [41]. It is prudent
to consider the potential PKI compromise.

Does Zoom Provide (Implicit) Group Member Authentica-
tion? Unfortunately, this does not hold for Zoom. Although
the end-to-end Zoom library asks every leader to create every
new group together with an associated passcode, the leaders
hand over the power of passcode verification to the untrusted
server. By colluding with the untrusted server, an unautho-
rized (and malicious) party can join every group without
the knowledge of any passcode. The consequence is that
nobody in the group (including the leader) can distinguish
authorized participants from the others, in particular, in the
end-to-end setting.

6. A Generic Approach to Sec-mGKD-pw Secu-
rity: Password-Protected Transformation

If we could assume that each group gid has a unique
high-entropy group secret gsgid only shared by the leader

11



and authorized participants of the group gid, we could design
a trivial construction that meets the Sec-mGKD-pw security.
We can simply use a message authentication code MAC with
the group secret gsgid as key to sign and verify all outgoing
and incoming messages.

However, in practice we use low-entropy passwords
for usability, allowing the passwords to be shared over
various out-of-band channels. For instance, real-world service
providers often support only short passwords5. This restricts
the upper bound of the password entropy and enables
attackers to perform dictionary attacks on the password,
e.g., by brute force guessing.

In this section, we introduce a generic Password-
Protected (PP) transformation that provably transforms
any Sec-mGKD-pki secure mGKD protocol Π to another
Sec-mGKD-pw secure Π′ = PP[Π,PAKEPP,AEADPP] pro-
tocol by using a password-authenticated key exchange
PAKEPP and an authenticated encryption with associated
data AEADPP. We also prove that the PP transformation pre-
serves Sec-mGKD-pki security, i.e., if Π is Sec-mGKD-pki
secure, so is Π′. In this sense, Π′ satisfies stronger security
Sec-mGKD-pw+, due to Corollary 1. Finally, we illustrate
how to apply our PP transformation to the Zoom library, and
provide efficient instantiations for PAKEPP and AEADPP,
without causing additional message flows.

6.1. The Generic Transformation

The goal of our PP transformation is to ensure that
only the authorized parties that know the group secret can
recover any group key, even if the server is malicious. The
high-level overview of our PP transformation is to (1) let
the leader and every participant run a PAKEPP protocol
upon a new password (included in the group secret) to
produce a symmetric key kPP during the Participant Join
phase, and (2) use the key kPP and an AEADPP scheme to
encrypt/decrypt the original transcript of the mGKD protocol
Π during the Participant Join and Key Rotation phases. Note
that every participant has to first register for a group before
joining it. To avoid introducing additional message flows,
we design our PP transformation to shift the first pass of
PAKEPP to the participant’s Register phase. We give the
formal definition of our PP transformation below.

Definition 8. Let Π = (SignUp,Schedule,Register, Join,
Leave,KeyRotat) denote a multi-stage group key distribution
protocol. Let PAKEPP denote a password-authenticated
key exchange scheme. Let AEADPP denote an authen-
ticated encryption with associated data. We define the
password-protected (PP) transformation PP[Π,PAKEPP,
AEADPP] that outputs Π′ = (SignUp′,Schedule′,Register′,
Join′, Leave′,KeyRotat′) as follows:
Sign Up SignUp′(P ): Run mP

SignUp
$←− SignUp(P ) and

stores mP
SignUp locally into the long-term state stP .

Group Schedule Schedule′(P, gid, gs): Parse (gsgidΠ ,

pwgid) ← gs , run mgid
GSch

$←− Schedule(P, gid, gsgidΠ ), and

5For instance, meeting passcodes in Zoom are 1-16 digit numeric lock
codes; the default meeting password in Cisco WebEx has ≥ 11 characters.

output mgid
GSch. The full group secret gs is sent to authorized

parties over out-of-band channels.
Register Register′ = (Register-L′,Register-P′): We define

the sub-algorithms as follows:

• Register-L′(P, gid, gs,m): Parse (gsgidΠ , pwgid) ← gs ,
run m′ $←− Register-L(P, gid, gsgidΠ ,m), and output m′.

• Register-P′(P, gid, gs,m): First, parse (gsgidΠ , pwgid)←
gs . Next, run m′ $←− Register-P(P, gid, gsgidΠ ,m). Then,
run the first pass of PAKEPP upon the password pwgid

for a ciphertext c(P,gid)
PP . Finally, output (m′, c(P,gid)

PP ).
Participant Join Join′ = (Join-L′, Join-P′): This phase

consists of two steps. In either step, if any error occurs
during this algorithm, the caller P aborts and undoes the
executions. In the first step, the leader and the participant
run PAKEPP until PAKEPP outputs a key kPP.

• Join-L′(P, idP ′ , gid, gs,m) or Join-P′(P, idP ′ , gid, gs,
m): The caller P first parses (gsgidΠ , pwgid)← gs from
the group secret and other necessary information for
running PAKEPP from the input message m. Then, P
runs the next pass of PAKEPP on pwgid. If the key kPP is
still unavailable, P directly outputs the outgoing message
of PAKEPP. Otherwise, the key kPP is stored into the
per-group state πgid

P .
If the leader and the participant have computed the key
kPP before this algorithm invocation or in the first step in
this invocation, they execute the following second step.

• Join-L′(P, idP ′ , gid, gs,m): The leader P first parses
(gsgidΠ , pwgid) ← gs from the group secret. If the origi-
nal Join-L algorithm needs any incoming information
from the participant P ′, then the leader P extracts
an AEADPP ciphertext and an AEADPP nonce from
the input m. Next, the leader P decrypts the AEADPP

ciphertext using the key kPP, the AEADPP nonce, and an
associated data consisting of both parties’ sign-up mes-
sages, and obtains a message m1. Then, the leader P ex-
tracts other necessary information m2 from the input m
for running m′ $←− Join-L(P, idP ′ , gid, gsgidΠ ,m1 ∥ m2).
After that, P encrypts m′ using the AEADPP key kPP,
a random nonce, and an associated data consisting of
both parties’ sign-up messages. Finally, the leader P
outputs the AEADPP ciphertext and nonce.

• Join-P′(P, idP ′ , gid, gs,m): The participant P first
parses (gsgidΠ , pwgid) ← gs from the group secret.
If the original Join-P algorithm needs any incoming
information from the leader P ′, then the participant
P extracts an AEADPP ciphertext and an AEADPP

nonce from the input m. Next, the participant P de-
crypts the AEADPP ciphertext using the key kPP, the
AEADPP nonce, and an associated data consisting of
both parties’ sign-up messages, and obtains a mes-
sage m1. Then, the participant P extracts other nec-
essary information m2 from the input m for running
m′ $←− Join-P(P, idP ′ , gid, gsgidΠ ,m1 ∥ m2). After that,
P encrypts m′ using the AEADPP key kPP, a random
nonce, and an associated data consisting of both parties’

12



sign-up messages. Finally, the participant P outputs the
AEADPP ciphertext and nonce.

Member Leave Leave′ = (Leave-L′, Leave-P′): These al-
gorithms are identical to the original Leave = (Leave-L,
Leave-P). Note that if a per-group state is erased, then the
stored key kPP must also be erased.

Key Rotation KeyRotat′ = (KeyRotat-L′,KeyRotat-P′):
We define the sub-algorithms as follows. If any error
occurs during the above execution, then the caller aborts
and undoes the executions in this invocation.

• KeyRotat-L′(P, gid,m): The leader P first runs the
original mKRot

$←− KeyRotat-L(P, gid,m). Then, the
leader P extracts the portion cP in mKRot that is specific
to every participant P in the group gid, followed by
encrypting it using the stored corresponding AEADPP

key kPP, a random nonce, and an associated data
consisting of both parties’ sign-up messages as in the
Participant Join phase. Finally, the leader P outputs the
AEADPP ciphertext and nonce for every participant P
in the group gid.

• KeyRotat-P′(P, gid,m): The participant P first extracts
an AEADPP ciphertext and an AEADPP nonce from
the input m. Next, P recovers a message m1 from
the AEADPP ciphertext using the stored corresponding
AEADPP key kPP, the AEADPP nonce, and an associated
data consisting of both parties’ sign-up messages as
in the Participant Join phase. Then, the participant P
extracts other necessary information m2 from the input
m for running mKRot

$←− KeyRotat-P(P, gid,m1 ∥ m2)
and outputting mKRot.

For brevity we omit the correctness analysis. The theorem
below shows that our PP transformation provably turns a
Sec-mGKD-pki secure Π into a Sec-mGKD-pw secure Π′ =
PP[Π,PAKEPP,AEADPP] protocol. We give the theorem’s
proof in Appendix E.

Theorem 2. Let Π denote a mGKD protocol. Let PAKEPP

denote a password-authenticated key exchange scheme. Let
AEADPP denote an authenticated encryption with associ-
ated data scheme. Let Π′ = PP[Π,PAKEPP,AEADPP]. Let
D = DΠ ×Dpw denote the distribution of the group secrets.
Assume the ϵw-PAKE

PAKEPP,Dpw
-w-PAKE security of the underlying

PAKEPP, the ϵd-frob
AEADPP

-d-FROB security, ϵind$-cca
AEADPP

-IND$-CCA
security, and ϵcti-cpaAEADPP

-cti-cpa security of AEADPP. If there
exists any PPT attacker A that breaks the Sec-mGKD-pw
security of Π′, then there must exist a PPT attacker B that
breaks the Sec-mGKD-pki security of Π such that

AdvSec-mGKD-pw
Π′ (A) ≤ qNEWGROUP

(
ϵw-PAKE
PAKEPP,Dpw

+ ϵd-frob
AEADPP

+ cmaxReg(ϵ
cti-cpa
AEADPP

+ ϵind$-cca
AEADPP

) + AdvSec-mGKD-pki
Π (B)

)
where cmaxReg denotes the maximal number of register

requests for every group and qO denotes the maximal number
of queries to any oracle O.

Below, we further show that our PP transformation
preserves the Sec-mGKD-pki security of the original mGKD
protocol Π. We give the theorem’s proof in Appendix F.

Theorem 3. Let Π denote a mGKD protocol. Let PAKEPP

denote a password-authenticated key exchange scheme. Let
AEADPP denote an authenticated encryption with associated
data. Let Π′ = PP[Π,PAKEPP,AEADPP]. If there exists any
PPT attacker A that breaks the Sec-mGKD-pki security of
Π′, then there exists another PPT attacker B that breaks
the Sec-mGKD-pki security of Π such that

AdvSec-mGKD-pki
Π′ (A) ≤ AdvSec-mGKD-pki

Π (B)

Combining these two theorems, our PP transformation
provably endows a Sec-mGKD-pki secure mGKD protocol
Π with Sec-mGKD-pw security while preserving the original
one, i.e., Sec-mGKD-pw+ security due to Corollary 1.

6.2. Application to the Zoom Library

Then, we illustrate how to apply our PP transformation
to the Zoom library in Section 5.1 by using a 2-pass PAKEPP

scheme and an AEADPP scheme. We call the transformed
version ZoomPAKE and show the resulting protocol in Fig-
ure 1, where we use boxes to indicate the modifications. Note
that Zoom achieves Sec-mGKD-pki security without relying
on passcodes, as stated in Remark 1. The passcodes for the
server’s access control underlying Zoom are redundant in
the stronger threat model, and can therefore be set to the
empty string without impacting Sec-mGKD-pw security. In
the following we assume that the passcode is set to the empty
string, which amounts to replacing the passcode with the
new PAKE password computations.

The Sign Up and Member Leave phases are unchanged.

ZoomPAKE Group Schedule Phase: This algorithm is nearly
identical to the original one except that the leader sends the
new password to authorized parties over an out-of-band
channel instead of sending the passcode to the server.

ZoomPAKE Register Phase: Similar to the previous, parties
no longer need to send the passcode to the server. Then,
each participant P ′ runs the first pass of PAKEPP on the
password pwgid for a ciphertext c(P

′,gid)
PP,1 and outputs both

the original outgoing messages and c
(P ′,gid)
PP,1 .

ZoomPAKE Participant Join Phase: Our PP transformation
modifies both leaders’ and participants’ execution.

From the leader P ’s side, P first parses an additional
PAKEPP ciphertext c

(P ′,gid)
PP,1 from the input, and uses the

group secret as the password pwgid. Next, the leader P runs
the second pass of PAKEPP with necessary input for a key
k
(P ′,gid)
PP and a ciphertext c(P

′,gid)
PP,2 . Then, P stores k

(P ′,gid)
PP

and samples a random nonce of length lPP uniformly at
random. After that, P executes the original computation.
When the ZBox encryption cgidP ′ is derived, the leader P

further re-encrypts it using the key k
(P ′,gid)
PP , the random

nonce nonceP
′

PP, and the associated data consisting both

13



parties’ sign-up messages. The PAKEPP ciphertext c(P
′,gid)

PP,2
and the AEADPP ciphertext are output.

From the participant P ′’s side, P ′ first parses two more
components from the input messages: a PAKEPP ciphertext
c
(P ′,gid)
PP,2 and a nonce nonceP

′

PP. The participant P ′ also uses
the group secret gs as the password pwgid. Note that the
original ciphertext cgidP ′ is not the one of ZBox anymore
but the one of AEADPP. Next, P ′ runs PAKEPP for a key
k
(P ′,gid)
PP and decrypts the AEADPP ciphertext cgidP ′ using the

key k
(P ′,gid)
PP , the nonce nonceP

′

PP, and the associated data
consisting of the leader P ’s and the participant P ′’s sign-
up messages, for the original ZBox ciphertext. If any error
occurs during this step, the participant P ′ simply aborts.
Otherwise, the key k

(P ′,gid)
PP is stored locally. The remaining

computation of P ′ remains the same.

ZoomPAKE Key Rotation Join Phase: The key rotation
phase is very similar to the original one. The only difference
from the leader P ’s side is that P has to encrypt the ZBox
ciphertext using AEADPP for every participant P in his
local party set, i.e., idP ∈ πgid

P .GP and idP ̸= idP , using
the stored key k

(P,gid)
PP , output by PAKEPP, a independently

random nonce noncePPP, the associated data consisting of the
sign-up messages of P and P . The output is a ciphertext
bundle that includes AEADPP ciphertexts rather than the
original ZBox ciphertexts.

When receiving the AEADPP ciphertext, a participant
P ′ first decrypts it by using the stored key k(P

′,gid) for
a ZBox ciphertext cgidP ′ . Then, P ′ simply runs the original
KeyRotat-P algorithm using the new ciphertext cgidP ′ .

Instantiation Suggestions. We suggest to instantiate the
underlying PAKEPP with CPace [25] or SPAKE2 [27] for
the w-PAKE security, see Section A.5. The AEADPP can
be instantiated with CAU-C4 or CAU-SIV-C4 [42] for the
d-FROB security, see Section A.2.

7. Technical Summary

In this paper, we propose a new mGKD protocol that cap-
tures the behaviors of the Zoom library and three associated
security models: the basic Sec-mGKD-pki model considers
restricted end-to-end encrypted security assuming the exis-
tence of a trusted PKI; the Sec-mGKD-pw model captures
full end-to-end encrypted security without any trusted PKI;
and the Sec-mGKD-pw+ that combines the Sec-mGKD-pki
and Sec-mGKD-pw models. We proved that the Zoom library
version 4.0 satisfies the basic Sec-mGKD-pki, but does not
provide end-to-end Sec-mGKD-pw security.

To improve the Sec-mGKD-pki security of any mGKD
protocol (including the Zoom library) to the Sec-mGKD-pw+
security, we propose a novel PP transformation that makes
use of the group secret transmitted over out-of-band channels
and cryptographic primitives PAKE and AEAD. Intuitively,
to get the group keys that encrypts the real messages in the
group chat, every participant must first additionally execute
PAKE with the group leader for a shared key. This shared

key is peer-wise independent: the group leader knows all
shared keys and the participant only knows the one that it
produces. Whenever the leader needs to rotate and distribute
a new group key, the leader must additionally “wrap” the
original ciphertext, i.e., encrypt it using the shared keys
and AEAD, and every participant needs to first unwrap the
original ciphertext in order to recover the real group keys.
In particular, the application of our PP transform to the
Zoom library is very efficient in terms of the communication
rounds, as it does not cause any additional round trip time.

References

[1] “How many people use Zoom?” 2022, https://www.zippia.com/advice/
zoom-meeting-statistics/, (Accessed Feb 2023).

[2] T. Isobe and R. Ito, “Security analysis of end-to-end encryption for
Zoom meetings,” IEEE Access, vol. 9, pp. 90 677–90 689, 2021.

[3] ——, “Security Analysis of End-to-End Encryption for Zoom Meet-
ings,” Cryptology ePrint Archive, Paper 2021/486, 2021, https:
//eprint.iacr.org/2021/486.

[4] C. Cremers, E. Ronen, and M. Zhao. (2023) Multi-Stage Group Key
Distribution and PAKEs: Securing Zoom Groups against Malicious
Servers without New Security Elements (Full version with detailed
proofs). https://cispa.saarland/group/cremers/publications/extended/
msgkd-pakes.html.

[5] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issues
in multicast communications,” IEEE network, vol. 13, no. 6, 1999.

[6] S. Rafaeli and D. Hutchison, “A Survey of Key Management for
Secure Group Communication,” ACM Comput. Surv., vol. 35, no. 3,
p. 309–329, sep 2003, https://doi.org/10.1145/937503.937506.

[7] P. S. Kruus, “A survey of multicast security issues and architectures,”
NAVAL RESEARCH LAB WASHINGTON DC, Tech. Rep., 1998.

[8] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication
and Key Establishment, Second Edition, ser. Information Security and
Cryptography. Springer, 2020.

[9] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 2018.

[10] B. Poettering, P. Rösler, J. Schwenk, and D. Stebila, “SoK: Game-
based Security Models for Group Key Exchange,” Cryptology ePrint
Archive, Paper 2021/305, 2021, https://eprint.iacr.org/2021/305.

[11] H. Harney and C. Muckenhirn. Group Key Management Protocol
(GKMP) Specification. https://www.rfc-editor.org/rfc/rfc2093.

[12] ——. Group Key Management Protocol (GKMP) Architecture. https:
//www.rfc-editor.org/rfc/rfc2094.

[13] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM transactions on networking, vol. 8,
no. 1, pp. 16–30, 2000.

[14] A. T. Sherman and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE transactions on
Software Engineering, vol. 29, no. 5, pp. 444–458, 2003.

[15] J. Goshi and R. E. Ladner, “Algorithms for dynamic multicast
key distribution trees,” in Proceedings of the twenty-second annual
symposium on Principles of distributed computing, 2003, pp. 243–251.

[16] L. Xu and C. Huang, “Computation-efficient multicast key distribution,”
IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 5,
pp. 577–587, 2008.

[17] H. Lu, “A novel high-order tree for secure multicast key management,”
IEEE Transactions on Computers, vol. 54, no. 2, pp. 214–224, 2005.

[18] Z. Liu, Y. Lai, X. Ren, and S. Bu, “An efficient LKH tree balancing
algorithm for group key management,” in 2012 International Confer-
ence on Control Engineering and Communication Technology. IEEE,
2012, pp. 1003–1005.

14

https://www.zippia.com/advice/zoom-meeting-statistics/
https://www.zippia.com/advice/zoom-meeting-statistics/
https://eprint.iacr.org/2021/486
https://eprint.iacr.org/2021/486
https://cispa.saarland/group/cremers/publications/extended/msgkd-pakes.html
https://cispa.saarland/group/cremers/publications/extended/msgkd-pakes.html
https://doi.org/10.1145/937503.937506
https://eprint.iacr.org/2021/305
https://www.rfc-editor.org/rfc/rfc2093
https://www.rfc-editor.org/rfc/rfc2094
https://www.rfc-editor.org/rfc/rfc2094


[19] A. Perrig, “Efficient collaborative key management protocols for secure
autonomous group communication,” in International Workshop on
Cryptographic Techniques and E-Commerce (CrypTEC’99), 1999.

[20] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” in Proceedings of the
7th ACM Conference on Computer and Communications Security,
2000, pp. 235–244.

[21] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner,
“On Ends-to-Ends Encryption: Asynchronous group messaging with
strong security guarantees,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018.

[22] K. Klein, G. Pascual-Perez, M. Walter, C. Kamath, M. Capretto,
M. Cueto, I. Markov, M. Yeo, J. Alwen, and K. Pietrzak, “Keep the
dirt: tainted treekem, adaptively and actively secure continuous group
key agreement,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 268–284.

[23] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis
and improvements for the IETF MLS standard for group messaging,”
in Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August, 2020,
Proceedings, Part I. Springer, 2020, pp. 248–277.

[24] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara, and
K. Cohn-Gordon. The Messaging Layer Security (MLS) Protocol.
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-20.

[25] B. Haase and B. Labrique, “AuCPace: Efficient verifier-based PAKE
protocol tailored for the IIoT,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, no. 2, p. 1–48, Feb.
2019, https://tches.iacr.org/index.php/TCHES/article/view/7384.

[26] M. Abdalla, B. Haase, and J. Hesse, “Security analysis of CPace,”
in Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, December 6–10, 2021, Proceedings, Part
IV. Springer, 2021, pp. 711–741.

[27] M. Abdalla and D. Pointcheval, “Simple password-based encrypted
key exchange protocols,” in Topics in Cryptology–CT-RSA 2005: The
Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February, 2005. Proceedings. Springer, 2005, pp. 191–208.

[28] M. Abdalla and M. Barbosa, “Perfect Forward Security of SPAKE2,”
Cryptology ePrint Archive, Paper 2019/1194, 2019, https://eprint.iacr.
org/2019/1194.

[29] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and
J. Xu, “Universally Composable Relaxed Password Authenticated
Key Exchange,” Cryptology ePrint Archive, Paper 2020/320, 2020,
https://eprint.iacr.org/2020/320.

[30] E. Bresson, O. Chevassut, and D. Pointcheval, “Group Diffie-Hellman
key exchange secure against dictionary attacks,” in Advances in
Cryptology—ASIACRYPT 2002: 8th International Conference on the
Theory and Application of Cryptology and Information Security
Queenstown, New Zealand, December 1–5, 2002 Proceedings 8.
Springer, 2002, pp. 497–514.

[31] M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval, “Password-
based group key exchange in a constant number of rounds,” in Public
Key Cryptography-PKC 2006: 9th International Conference on Theory
and Practice in Public-Key Cryptography, New York, NY, USA, April
24-26, 2006. Proceedings 9. Springer, 2006, pp. 427–442.

[32] M. Abdalla and D. Pointcheval, “A scalable password-based group
key exchange protocol in the standard model,” in ASIACRYPT, vol.
4284. Springer, 2006, pp. 332–347.

[33] M. Abdalla, J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt, “(Pass-
word) authenticated key establishment: From 2-party to group,” in
Theory of Cryptography: 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007.
Proceedings 4. Springer, 2007, pp. 499–514.

[34] Y. Dodis, D. Jost, B. Kesavan, and A. Marcedone, “End-to-End
Encrypted Zoom Meetings: Proving Security and Strengthening
Liveness,” in Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, Proceedings. Springer-
Verlag, 2023.

[35] J. Blum, S. Booth, B. Chen, O. Gal, M. Krohn, J. Len, K. Lyons,
A. Marcedone, M. Maxim, M. E. Mou, A. Namavari, J. O’Connor,
S. Rien, M. Steele, M. Green, L. Kissner, and A. Stamos.
Zoom end-to-end encryption whitepaper. https://github.com/zoom/
zoom-e2e-whitepaper Version 4.0 (Released on 18.11.2022).

[36] Q. Dang, Recommendation for Applications Using Approved Hash
Algorithms. Special Publication (NIST SP), National Institute of
Standards and Technology, Gaithersburg, MD, 2012-08-24 2012, https:
//tsapps.nist.gov/publication/get pdf.cfm?pub id=911479 (Accessed
Feb 2023).

[37] J. Brendel, C. Cremers, D. Jackson, and M. Zhao, “The provable
security of Ed25519: theory and practice,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 1659–1676.

[38] S. Arciszewski, “XChaCha: eXtended-nonce ChaCha and
AEAD XChaCha20 Poly1305,” Internet Engineering Task Force,
Internet-Draft draft-irtf-cfrg-xchacha-03, Jan. 2020, work in Progress:
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/.

[39] J. R. Vacca, Public key infrastructure: building trusted applications
and Web services. Auerbach Publications, 2004.

[40] P. Eckersley and J. Burns, “The (Decentralized) SSL Observatory,”
in 20th USENIX Security Symposium (USENIX Security 11). San
Francisco, CA: USENIX Association, Aug. 2011, https://www.usenix.
org/conference/usenix-security-11/decentralized-ssl-observatory.

[41] J. Stapleton, “PKI Under Attack,” ISSA, vol. 11, no. 3,
2013, https://cdn.ymaws.com/www.members.issa.org/resource/resmgr/
JournalPDFs/PKI Under Attack ISSA0313.pdf.

[42] M. Bellare and V. T. Hoang, “Efficient schemes for committing
authenticated encryption,” in Advances in Cryptology–EUROCRYPT
2022: 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May
30–June 3, 2022, Proceedings, Part II. Springer, 2022, pp. 845–875.

[43] P. Rogaway, “Authenticated-Encryption with Associated-Data,” in
Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, ser. CCS ’02, 2002, p. 98–107.

[44] G. Barwell, D. Page, and M. Stam, “Rogue decryption failures: Rec-
onciling AE robustness notions,” in Cryptography and Coding: 15th
IMA International Conference, IMACC 2015, Oxford, UK, December
15-17, 2015. Proceedings 15. Springer, 2015, pp. 94–111.

[45] J. Brendel, M. Fischlin, F. Günther, and C. Janson, “PRF-ODH:
Relations, instantiations, and impossibility results,” in Advances in
Cryptology–CRYPTO 2017: 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceed-
ings, Part III 37. Springer, 2017, pp. 651–681.

[46] D. J. Bernstein, T. Lange, and P. Schwabe. NaCl: Networking and
Cryptography library. https://nacl.cr.yp.to/, (Accessed Jan 2023).

[47] F. Denis. The Sodium cryptography library. https://doc.libsodium.org/,
(Accessed Jan 2023).

Appendix A.
Preliminaries

Due to the page limit, we only introduce novel and
customized security notions here and recall other notions in
our full version [4].

15

https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-20
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2020/320
https://github.com/zoom/zoom-e2e-whitepaper
https://github.com/zoom/zoom-e2e-whitepaper
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911479
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911479
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://www.usenix.org/conference/usenix-security-11/decentralized-ssl-observatory
https://www.usenix.org/conference/usenix-security-11/decentralized-ssl-observatory
https://cdn.ymaws.com/www.members.issa.org/resource/resmgr/JournalPDFs/PKI_Under_Attack_ISSA0313.pdf
https://cdn.ymaws.com/www.members.issa.org/resource/resmgr/JournalPDFs/PKI_Under_Attack_ISSA0313.pdf
https://nacl.cr.yp.to/
https://doc.libsodium.org/


A.1. Digital Signature

Definition 9. A digital signature scheme over mes-
sage space M is a tuple of algorithms DS =
(DS.KG,DS.Sign,DS.Vrfy) as defined below.
• Key Generation (vk, sk) $←− DS.KG(pp): inputs the public

parameter pp and outputs a public verification and private
signing key pair (vk, sk).

• Signing σ $←− DS.Sign(sk,m): inputs a signing key sk and
a message m ∈M and outputs a signature σ.

• Verification true/false ← DS.Vrfy(vk,m, σ): inputs a
verification key vk, a message m, and a signature σ and
outputs a boolean value either true true or false.

We say a DS is δ-correct if for every (vk, sk) $←− DS.KG()
and every message m ∈M, we have

Pr[false← DS.Vrfy(vk,m,DS.Sign(sk,m))] ≤ δ

In particular, we call a DS (perfectly) correct if δ = 0.
In terms of the security notations, we recall the standard

existential unforgeability against chosen message attack
EUF-CMA.

Definition 10. Let DS = (DS.KG,DS.Sign,DS.Vrfy) be a
digital signature scheme with message space M. We say DS
is ϵ-euf-cma secure, if for every PPT attacker A, we have

AdvEUF-CMA
DS (A) := Pr[ExprEUF-CMA

DS (A) = 1] ≤ ϵ

where the experiment ExprEUF-CMA
DS (A) is defined in Figure 2.

ExprEUF-CMA
DS (A):

1 L ← ∅
2 (vk, sk) $←− DS.KG()

3 (m⋆, σ⋆) $←− AOSign (vk)
4 if m⋆ ∈ L
5 return 0
6 return JDS.Vrfy(vk,m⋆, σ⋆)K

OSign(m):
7 σ $←− DS.Sign(sk,m)

8 L +← m
9 return σ

Figure 2. EUF-CMA experiment for DS = (DS.KG,DS.Sign,DS.Vrfy).

A.2. Authenticated Encryption with Associated Data

Definition 11 ( [43]). Let Key, Nonce, Data, Message,
Ciphertext respectively denote the space of keys, nonces,
associated data, messages, and ciphertexts. An authenti-
cated encryption with associated data scheme AEAD =
(AEAD.Enc,AEAD.Dec) is a tuple of algorithms where
• AEAD.Enc the encryption algorithm inputs a key k ∈ Key,

a nonce nonce ∈ Nonce, an associated data D ∈ Data, and
a message m and (deterministically) outputs a ciphertext
c, i.e., c← AEAD.Enc(k, nonce, D,m).

• AEAD.Dec the decryption algorithm inputs a key k ∈ Key,
a nonce nonce ∈ Nonce, an associated data D ∈ Data, and
a ciphertext c ∈ Ciphertext and deterministically outputs
a message m ∈ Message ∪ {⊥}, i.e., m← AEAD.Dec(k,
nonce, D, c).

Definition 12. We say an AEAD is ϵ-ind$-cca (resp. cti-cpa)
secure, if the below defined advantage of any PPT attacker
A against ExprIND$-CCA

AEAD (resp. ExprCTI-CPAAEAD ) experiment in
Figure 3 is bounded by,

AdvIND$-CCA
AEAD := |Pr[ExprIND$-CCA

AEAD (A) = 1]− 1

2
| ≤ ϵ

AdvCTI-CPAAEAD := Pr[ExprCTI-CPAAEAD (A) = 1] ≤ ϵ

Below, we define two customized notions. The
(n,m)-frob notion ensures that each ciphertext cannot be
decrypted two distinct messages upon different nonces.
The d-frob security ensures that each ciphertext cannot be
decrypted to two valid messages upon different associated
data. They both are implied by the CMT-4 security in [42].

Definition 13. We say an AEAD has ϵ-(n,m)-frob (resp.
d-frob) secure, if the below defined advantage of any PPT
attacker A against Expr(n,m)-FROB

AEAD (resp. Exprd-FROB
AEAD ) exper-

iment in Figure 4 is bounded by,

Adv
(n,m)-FROB
AEAD := Pr[Expr

(n,m)-FROB
AEAD (A) = 1] ≤ ϵ

Advd-FROB
AEAD := Pr[Exprd-FROB

AEAD (A) = 1] ≤ ϵ

A.3. Hash Functions and Pseudorandom Functions

Definition 14. We say a function H : {0, 1}∗ → {0, 1}l for
some length l is ϵ-collision resistant if for any PPT attacker
A, the probability that A can produce two distinct string
m1 and m2 such that H(m1) = H(m2) is bounded by ϵ.

A.4. lr-prf-ODH Assumption

We recall the generic lr-prf-ODH definition in [45].

Definition 15. Let ECDH denote a cyclic group G with
order q over an elliptic curve EC with a generator g. Let
H : G× {0, 1}⋆ → {0, 1}lH denote a function. We define a
generic security notion lr-prf-ODH which is parameterized
by l, r ∈ {n, s,m} indicating how often the attacker is allowed
to query a certain “left” resp. “right” oracle (ODHu resp.
ODHv) where n indicates that no query is allowed, s that a
single query is allowed, and m that multiple (polynomially
many) queries are allowed to the respective side. Consider the
following security game Exprlr-prf-ODH

ECDH,H between a challenger
C and a PPT attacker A.

1) The challenger C samples u $←− Zq and provides G, g, and
gu to the attacker A.

2) If l = m, A can issue arbitrarily many queries to the
following oracle ODHu.
ODHu oracle. On a query of the form (S, x), C first checks

if S /∈ G and returns ⊥ if this is the case. Otherwise, it
computes y ← H(Su, x) and returns y.

3) Eventually, A issues a challenge query x⋆. On this query,
C samples v $←− Zq and a bit b $←− {0, 1} uniformly at
random. It then computes y⋆0 = H(guv, x⋆) and samples

16



ExprIND$-CCA
AEAD :

1 b $←− {0, 1}
2 LENC,LDEC ← ∅
3 k $←− K
4 b′ $←− AENC,DEC()
5 return Jb = b′K

ENC(nonce, D,m):
6 require (nonce, , , ) /∈ LENC

7 require (nonce, D,m, ) /∈ LDEC

8 if b = 0
9 c← AEAD.Enc(k, nonce, D,m)

10 else c $←− {0, 1}ℓ(|m|)

11 LENC
+← (nonce, D,m, c)

12 return c

DEC(nonce, D, c):
13 require (nonce, D, , c) /∈ LENC

14 m← AEAD.Dec(k, nonce, D, c)
15 if m ̸= ⊥
16 LDEC

+← (nonce, D,m, c)
17 return m

ExprCTI-CPAAEAD :
1 Lc ← ∅, k $←− K
2 (nonce, D, c) $←− AENC()
3 require c /∈ Lc

4 return JAEAD.Dec(k, nonce, D, c) ̸= ⊥K
ENC(nonce, D,m):
5 c← AEAD.Enc(k, nonce, D,m)
6 Lc ← Lc ∪ {c}
7 return c

Figure 3. IND$-CCA security [44] and CTI-CPA security [43] for an AEAD scheme. The functi on ℓ is a function that inputs the message length and
outputs the corresponding ciphertext length.

Expr
(n,m)-FROB
AEAD :

1 (c, (k1, nonce1, D1), (k2, nonce2, D2)) $←− A()
2 require ⊥ /∈ {c, k1, nonce1, D1, k2, nonce2, D2}
3 m1 ← AEAD.Dec(k, nonce1, D, c)
4 m2 ← AEAD.Dec(k, nonce2, D, c)
5 require (nonce1,m1) ̸= (nonce2,m2)
6 return Jm1 ̸= ⊥K and Jm2 ̸= ⊥K

Exprd-FROB
AEAD :

1 (c, (k1, nonce1, D1), (k2, nonce2, D2)) $←− A()
2 require ⊥ /∈ {c, k1, nonce1, D1, k2, nonce2, D2}
3 m1 ← AEAD.Dec(k, nonce1, D, c)
4 m2 ← AEAD.Dec(k, nonce2, D, c)
5 require D1 ̸= D2

6 return Jm1 ̸= ⊥K and Jm2 ̸= ⊥K

Figure 4. (n,m)-FROB security and d-FROB security for an AEAD scheme.

y⋆q
$←− {0, 1}lH uniformly at random. The challenger returns

(gv, y⋆b) to A.
4) Next, A may issue (arbitrarily interleaved) queries to the

following oracles ODHu and ODHv (depending on l and
r).
ODHu oracle. The attacker A may ask no (l = n), a single

(l = s), or arbitrarily many (l = m) queries to this oracle.
On a query of the form (S, x), the challenger first checks
if S /∈ G or (S, x) = (gv, x⋆) and returns ⊥ if this is the
case. Otherwise, it computes y ← H(Su, x) and returns
y.

ODHv oracle. The attacker A may ask no (r = n), a
single (r = s), or arbitrarily many (r = m) queries to
this oracle. On a query of the form (T, x), the challenger
first checks if T /∈ G or (T, x) = (gu, x⋆) and returns ⊥
if this is the case. Otherwise, it computes y ← H(T v, x)
and returns y.

5) At some point, A stops and outputs a guess b′ ∈ {0, 1}.
We say that the attacker wins the lr-prf-ODH game if

b′ = b. We say the lr-prf-ODH problem is ϵ-hard over ECDH
and H, if the advantage of any PPT attacker A that wins
above Exprlr-prf-ODH

ECDH,H experiment is bounded by ϵ.

In this paper, we only need the mn-prf-ODH assumption.

A.5. Password-Authenticated Key Exchange

The password-authenticated key exchange (PAKE) pro-
tocols allow two parties to establish a high-entropy key over
an insecure channel using a shared low-entropy password.
Below, we first define a weak security (w-PAKE) security
model against a PAKE protocol. This model is weaker
than and therefore implied by the security model defined
in [26], [28], [29]. Thus, some modern and widely used
PAKE schemes, including CPace [25] or SPAKE2 [27] that
are respectively proven secure in [26] and [28], [29], are
provably secure in this w-PAKE model.

Protocol Members. This weak semantic security model only
considers the two-party setting. I.e., the PAKE protocol has
only two members: either an initiator I or a responder R.

The initiator I indeed captures the behaviors of (all)
participants in each group gid in our mGKD protocol. The
responder R indeed captures the behaviors of the (unique)
leader in each group gid in our mGKD protocol.

Long-Lived Keys / Passwords. The initiator I and the
responder R hold the same password pw , which is sampled
from a distribution D. In many literature, the password is
also called the “long-lived key”.

Protocol Execution. The interaction between an attacker A
and the protocol members occurs only via oracle queries,
which model the attacker capabilities in a real attack. During
the execution, the attacker may create several instances of
a member. We consider the concurrent model, i.e., several
instances may be active at any given time. Let U id denote
the instance with identifier id of a member U . Let b ∈ {0, 1}
be a bit chosen uniformly at random. The attacker A can
query following three oracles:
• SENDPAKE(U id,m): This query models an active attack,

in which the adversary may tamper with the message being
sent over the public channel. The output of this query is
the message that the member instance U id would generate
upon receipt of message m.

• COMPROMISEPAKE(U id): This query models the misuse
of session keys by a member. If a session key is not defined
for instance U id or if a TESTPAKE query was asked to
either U id or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U id.

• TESTPAKE(U id): This query tries to capture the adver-
sary’s ability to tell apart a real session key from a random
one. If no session key for instance U id is defined or U id is
not fresh (which is defined below), then return the undefined
symbol ⊥. Otherwise, return the session key for instance
U id if b = 1 or a random key of the same size if b = 0.

17



Notation. We say an instance U id opened if a query
COMPROMISEPAKE(U id) has been made by the attacker.
We say an instance U id is unopened if it is not opened. We
say an instance U id tested if a query TESTPAKE(U id) has
been made by the attacker. We say an instance U id is untested
if it is not tested. We say an instance U id has accepted if it
goes into an accept mode after receiving the last expected
protocol message.

Session Identifiers and Partnering. We define the session
identifiers (sid ) as the transcript of the conversation between
the initiator and the responder instances before acceptance.

We say two instances I id1 and Rid2 to be partners if the
following conditions are met:

(a) Both I id1 and Rid2 accept, and
(b) Both I id1 and Rid2 share the same identifiers sid .

Freshness. The notion of freshness is defined to avoid
cases in which adversary can trivially break the security
of the scheme. The goal is to only allow the attacker to
ask TESTPAKE queries to fresh oracle instances. More
specifically, we say an instance U id is fresh if it has accepted
and if both U id and its partner are unopened and untested.

Semantic Security. Consider an execution of the above
experiment for an attacker A against a PAKE protocol Π.
The attacker A wins the experiment if and only if A guesses
b′ = b, where b is the hidden bit used by the TESTPAKE
oracle. The advantage of A breaking the weak security of
Π is defined as

Advw-PAKE
Π,D (A) := |Pr[A wins]− 1

2
|

We say that Π is ϵw-PAKE
PAKE,D -w-PAKE secure if for any PPT

attackers A it always holds that

Advw-PAKE
Π,D (A) ≤ ϵw-PAKE

Π,D

Appendix B.
Comparison with Concurrent Work [34]

The concurrent work [34] and this paper both analyze
the security of the end-to-end secure Zoom library while
having different focuses. The analysis in this paper and [34]
mainly has differences from three aspects.

1) Different Protocol Abstraction: [34] abstracts the Zoom
library as a novel leader-based continuous group key
agreement with liveness (LL-CGKA) scheme, that takes
the full “leader-participant-list” mechanism, the “heartbeat”
mechanism, and liveness into account. By this, their
analysis additionally captures that all members in a group
agree on a group roster, i.e., a list including the identifiers
of all group members. Moreover, their Zoom protocol
considers the change of group leader in Zoom.
However, their Zoom protocol assumes a PKI that “provides
to each long-term identity id their respective private signing
key isk”, while our protocol lets every party generate their
own identity key pair, which is closer to the white-paper [35,
Section 7.6]. Besides, their Zoom protocol omits the group

secret generation and distribution, which is mentioned
in [35, Section 2, Section 7.11], and therefore does not
formally distinguish the roles “participants”, i.e., the parties
that are authorized for a group, from the “insiders”, i.e.,
who develop and maintain Zoom’s server infrastructure
and its cloud providers. Our protocol captures the “group
secret” mechanism. Moreover, their Zoom protocol does not
include an independent key rotation phase but embed it into
the member leaving phase. However, the member leaving in
Zoom does not always trigger the key rotation, e.g., within
15 seconds of the previous member leaving [35, Section
7.6.6]. Our protocol has an independent Key Rotation phase
to capture the group key update.

2) Different Security Models: The model in [34] and our
Sec-mGKD-pki model respectively capture the character-
istic features of their LL-CGKA scheme and our mGKD
protocol. Apart from this, there are still following differ-
ences:
On the one hand, their model considers the change of
group leader and rejoining a group after leaving. Instead,
our model only considers the unique leader of a group and
prevent a party from rejoining a group after leaving.
On the other hand, their model considers a globally trusted
PKI that honestly distributes the identity public keys for all
parties in the world. However, our model only assumes the
honest sign-up messages distribution for any target group
that will lead the attacker to win. Moreover, the attacker in
their model has to corrupt each party’s long-term private
key and all alive per-group states at the same time. Our
model partitions the oracle for state leakage into two: the
corruption oracle that returns the long-term state of a party,
and the compromise oracle that returns a per-group state
of a party. By this, our model captures the fact that the
leakage of a party’s per-group state in one group does not
influence the security of another alive group.

3) Different Protocol Optimization: [34] improves the se-
curity of Zoom library by importing a new “period” term.
The leader in their optimization can opt not to sample a
new group key but simply ask every participant derives
the next group key from their local state. This improves
the efficiency while preserving forward secrecy.
Our optimization however has a totally different focus. Our
PP transformation aims to provide the security against
“insiders”, i.e., the security for authorized parties holds
even though no trusted PKI exists.

Appendix C.
Cryptographic Algorithms

The Zoom library makes use of the interface and imple-
mentation of two building blocks in the NaCl [46]-inspired
libsodium library [47]: Signing and Authenticated Public-Key
Encryption (aka. Box).

Zoom Signing Algorithm: The construction of the
Zoom Signing algorithm ZSign = (ZSign.KG,ZSign.Sign,
ZSign.Vrfy) is depicted in Figure 5.

18



ZSign.KG:
7 (pkZSign, skZSign) $←− DS.KG
8 return (pkZSign, skZSign)

ZSign.Vrfy(pkZSign, σ, ctxt,m):
9 m′ ← H1(ctxt) ∥ H1(m)

10 return DS.Vrfy(pkZSign, σ,m
′)

ZSign.Sign(skZSign, ctxt,m):
11 m′ ← H1(ctxt) ∥ H1(m)
12 σ ← DS.Sign(skZSign,m

′)
13 return σ

Figure 5. The Zoom-Signing algorithm ZSign. Zoom instantiates H1 with
SHA256 and DS with EdDSA over Ed25519.

• The key generation algorithm ZSign.KG simply generates
and outputs a DS key pair.

• The signing algorithm ZSign.Sign inputs a secret key
skZSign, a context ctxt, and a message m. The ZSign.Sign
first computes the hash function H1 over respective context
ctxt and message m, followed by concatenating them. Then,
the ZSign.Sign computes and outputs the signature of the
concatenation using DS upon the input secret key skZSign.

• The verification ZSign.Vrfy algorithm inputs a public key
pkZSign, a signature σ, a context ctxt, and a message m.
This ZSign.Vrfy algorithm simply computes the concate-
nation as in the signing algorithm and outputs the DS
verification result DS.Vrfy upon the public key pkZSign, the
signature σ, and the concatenation.

Zoom Authenticated Public-Key Encryption (aka. Box)
Algorithm: The Zoom Box algorithm ZBox = (ZBox.KG,
ZBox.Enc,ZBox.Dec) is depicted in Figure 6.

• The key generation algorithm ZBox.KG samples and out-
puts a Diffie-Hellman key pair over an elliptic curve ECDH.

• The encryption algorithm ZBox.Enc takes as inputs a
sender’s secret key skSZBox, a receiver’s public key pkRZBox,
two contexts ctxtH2 and ctxtCipher, a meta data Meta, and
a message m. It first samples a random nonce of bit length
l. Next, it computes the Diffie-Hellman exchange of skSZBox
and pkRZBox, which is combined with the context ctxtH2

and used as input to the hash function H2 for a key K.
Then, it computes the associated data D by concatenating
H1(ctxtCipher) and H1(Meta). The output is the nonce
nonce and an AEAD ciphertext produced from the key
K, nonce nonce, data D, and message m.

• The decryption algorithm ZBox.Dec takes as input a
receiver’s secret key skRZBox, a sender’s public key pkSZBox,
two contexts ctxtH2

and ctxtCipher, a meta data Meta, and
a ciphertext c. This algorithm parses the nonce nonce from
the ciphertext c, computes the key K and the associated
data D as in the encryption algorithm, and executes the
AEAD decryption. If the AEAD outputs a message m ̸= ⊥,
this algorithm simply outputs this m, and aborts otherwise.

Appendix D.
Proof of Theorem 1

We give the proof of Zoom’s security in Sec-mGKD-pki
as a sequence of games. Let Advi(A) denote the advantage
of an attacker A in winning Game i.

Game 0: This game is identical to the original
Sec-mGKD-pki experiment. Thus, we have that

Adv0(A) = AdvSec-mGKD-pki
Π (A)

Game 1: This game is identical to Game 0, except that
the challenger C let the attacker A immediately win if there
exists collision on function H1. That is, there exists two
distinct inputs m1 and m2 such that H1(m1) = H1(m2). By
this, we ensure that there exists no collision on the function
H1 in the following games. Due to the collision resistance
of H1, we can easily have that:

Adv0(A) ≤ Adv1(A) + ϵcoll-resH1

Game 2: This game is identical to the Game 1 except the
following modification:
• The challenger C aborts the game if A can trigger the

following event:
Event E1: There exists any party P 1, any party P 2, and

any group identifier gid such that
– the long-term state stP 1 is not corrupted before P 1

and P 2 both joined the group gid,
– the sign-up messages, i.e., the identity public keys

stP 1 .ipk = ipkP 1 of P 1 is honestly delivered to P 2

in the Participant Join phase between P 1 and P 2 for
the group gid, and

– P 1 and P 2 have disagreement on the binding infor-
mation BindinggidP 1 .

By this, we ensure that in the following games, if the sign-
up message of a party P 1 is delivered to another party P 2

before the corruption of the long-term state stP 1 in any group
gid, then P 2 and P 1 must agree on the Binding information
BindinggidP 1 .

Obviously, it holds that

Adv1 ≤ Adv2(A) + Pr[E1]

Below, we analyze the probability that A can trigger E1

by reduction. If the attacker A can trigger the event E1, then
we construct an attacker B1 that breaks the euf-cma security
of the underlying DS scheme. The attacker B1 receives a
public verification key vk⋆ and honestly initializes Game 1.
Moreover, B1 guesses the index i⋆of one NEWPARTY query
that will create the party P 1 in the event E1. Note that there
are at most NEWPARTY queries in the game. B1 guesses
correctly with probability at least 1

qNEWPARTY
. Then, B1 honestly

answers A’s queries except the following ones:
• NEWPARTY(idP ): If this is the i⋆-th query, then B1 ini-

tializes a state stP by setting stP .id← idP . Then, C sets
stP .ipk to vk⋆ that is given by its challenger. Finally, B1
forwards mP

SignUp = vk⋆ to A and marks P as “created”.
For other queries to this oracle, B1 executes them honestly.

• REGISTERAUTH(idP , gid,m): If the input party P is cre-
ated via the i⋆-th query to the NEWPARTY oracle, then
B1 honestly executes the checks. If no error occurs, B1
honestly produces its binding information Binding

›gid
P and

send H1(ctxt1) ∥ H1(Binding
›gid
P ) to its DS signing oracle.

19



ZBox.KG:
1 (pkZBox, skZBox) $←− ECDH
2 return (pkZBox, skZBox)

ZBox.Enc(skS
ZBox, pk

R
ZBox, ctxtH2

, ctxtCipher,Meta,m):

3 nonce $←− {0, 1}l
4 K′ ← skS

ZBox · pk
R
ZBox

5 K ← H2(K
′, ctxtH2

)
6 D ← H1(ctxtCipher) ∥ H1(Meta)
7 c′ ← AEAD.Enc(K, nonce, D,m)
8 c← (c′, nonce)
9 return c

ZBox.Dec(skR
ZBox, pk

S
ZBox, ctxtH2

, ctxtCipher,Meta, c):

10 Parse (c′, nonce)← c
11 K′ ← skR

ZBox · pk
S
ZBox

12 K ← H2(K
′, ctxtH2

)
13 D ← H1(ctxtCipher) ∥ H1(Meta)
14 m← AEAD.Dec(K, nonce, D, c′)
15 require m ̸= ⊥
16 return m

Figure 6. The Zoom-Box algorithm ZBox. We have that l = 192, and the underlying function H1 denotes SHA256. The function H2 denotes HKDF (using
an empty salt parameter). ECDH is performed on Curve25519. “·” denotes scalar multiplication. The AEAD is instantiated with xchacha20poly1305.

Then, B1 receives a signature σ
›gid
P and use it as the output

of the ZSign signature. The rest of this query is honestly
executed.
For other queries to this oracle, B1 executes them honestly.

• REGISTERINJECT(idP , gid, gs,m): If the input party P is
created via the i⋆-th query to the NEWPARTY oracle and
gid = ›gid, then B1 honestly executes the checks. If no
error occurs, B1 honestly produces its binding information
Binding

›gid
P and send H1(ctxt1) ∥ H1(Binding

›gid
P ) to its DS

signing oracle. Then, B1 receives a signature σ
›gid
P and use

it as the output of the ZSign signature. The rest of this
query is honestly executed.
For other queries to this oracle, B1 executes them honestly.

• SENDJOINAUTH(idP , idP ′ , gid,m): If the input party P ′

is created via the i⋆-th query to the NEWPARTY oracle,
then B1 extracts the binding information Binding

›gid
P ′ and a

signature σ
›gid
P ′ . If σ

›gid
P ′ is not output by any REGISTERAUTH

or REGISTERINJECT oracle for the binding information
Binding

›gid
P ′ but the verification DS.Vrfy(vk⋆,H1(ctxt1) ∥

H1(Binding
›gid
P ′ ), σ

›gid
P ′ ) = true passes, then B1 immediately

returns (H1(ctxt1) ∥ H1(Binding
›gid
P ′ ), σ

›gid
P ′ ) to its challenger

and aborts the experiment.
In all other cases inside this query or for other queries to
this oracle, B1 executes them honestly.

• SENDJOININJECT(idP , idP ′ , gid, gs,m): If the input party
P is created via the i⋆-th query to the NEWPARTY oracle,
then B1 extracts the binding information Binding

›gid
P ′ and a

signature σ
›gid
P ′ . If σ

›gid
P ′ is not output by any REGISTERAUTH

or REGISTERINJECT oracle for the binding information
Binding

›gid
P ′ but the verification DS.Vrfy(vk⋆,H1(ctxt1) ∥

H1(Binding
›gid
P ′ ), σ

›gid
P ′ ) = true passes, then B1 immediately

returns (H1(ctxt1) ∥ H1(Binding
›gid
P ′ ), σ

›gid
P ′ ) to its challenger

and aborts the experiment.
In all other cases inside this query or for other queries to
this oracle, B1 executes them honestly.

• CORRUPT(idP ): If the input party P is created via the i⋆-
th query to the NEWPARTY oracle, B1 aborts. Otherwise,
B1 honestly executes this oracle.

If the attacker A can trigger the event E1 and B1 guesses
the oracle that creates party P 1 correctly, then A must trigger
the event E1 before querying the CORRUPT that causes the
abortion. Moreover, there must also exist a group identifier
gid and a party P 2 such that

1) P 2 receives the honest sign-up message stP 1 .ipk = ipkP 1

of the the party P 1 in the group gid,
2) the long-term state stP 1 is not corrupted before P 1 and

P 2 joined the group gid, and
3) the parties P 1 and P 2 have disagreement on P 1’s binding

information BindinggidP 1 .
This means, B1 can always win in the SENDJOINAUTH or
SENDJOININJECT oracle.

Note also that the event “the attacker A can trigger event
E1” and the event “B1 guesses correctly” are independent.
Thus

ϵeuf-cma
DS

≥Pr[B1 wins]
≥Pr[A can trigger event E1 and B1 guesses correctly]
≥Pr[A can trigger event ] · Pr[B1 guesses correctly]

≥Pr[E1] ·
1

qNEWPARTY

The above equation can be rewritten as:

Pr[E1] ≤ qNEWPARTYϵ
euf-cma
DS

Thus, we have that

Adv1(A) ≤ Adv2(A) + qNEWPARTYϵ
euf-cma
DS

Game 3: This game is identical to Game 2 except the at
the beginning of the experiment the challenger C guesses a
group identifier ›gid, whose associated leader is denoted by
P
›gid, that will lead A to win, and lets A immediately lose

if the guess is wrong. By this, we ensure that the attacker
A can win only by triggering one of the events as follows:
• [In the case of event EKAuth] there exists any party P ′

that is authorized for the group ›gid and any group key
index gkid such that gk

(›gid,gkid)
P ′ ̸= ⊥ but gk

(›gid,gkid)
P›gid ̸=

gk
(›gid,gkid)
P ′ , without the violation of the freshness condition

freshSec-mGKD-pki
KAuth (idP ′ ,›gid, gkid), or

• [In the case of event EKPriv] A will query TEST oracle
with input (idP ′ ,›gid, gkid) for some party identifier P ′

and some group key index gkid and correctly guess the
challenge bit b = b′, without violation of the freshness
freshSec-mGKD-pki

KPriv (idP ′ ,›gid, gkid).
Note that each group must be created via NEWGROUP

oracle. There are at most qNEWGROUP groups in the experiment.
Thus, the guess is correct with probability at least 1

qNEWGROUP
.

20



Note that whether A wins in Game 2 and whether the
challenger guesses correctly in Game 3 is independent. We
have that

Adv2(A) ≤ qNEWGROUPAdv3(A)
Below, we analyze the advantage that A wins in Game

3 by case distinction, i.e., whether A wins by triggering
EKAuth in Case 1, the advantage of which is denoted by
AdvC1

3 , or by triggering EKPriv in Case 2, the advantage of
which is denoted by AdvC2

3 . Thus, we have that

Adv3(A) := max
(
AdvC1

3 (A),AdvC2
3 (A)

)
Case 1: A wins by triggering event EKAuth.

In this case, due to the winning conditions and the
freshness requirement, we know that for the group identifier›gid with a leader denoted by P

›gid, there must exist an
authorized party P ′ and a group key index gkid such that:

1) gk
(›gid,gkid)
P ′ ̸= ⊥ and gk

(›gid,gkid)
P›gid ̸= gk

(›gid,gkid)
P ′ ,

2) neither π
›gid
P ′ nor π

›gid
P›gid is compromised,

3) the long-term states stP ′ and st
P›gid are not corrupted before

P ′ and P
›gid both joined the group ›gid, and

4) the sign-up messages, i.e., the identity public keys
stP ′ .ipk = ipkP ′ and st

P›gid .ipk = ipk
P›gid , of P ′ and P

›gid
both honestly arrive at the other.

By Game 2, it must further hold that P ′ and P
›gid

agree on each other’s binding information Binding
›gid
P ′ and

Binding
›gid
P›gid , which include:

• the group identifier ›gid,
• the server-controlled randomness mUUID,
• both parties’ identifier (uid

P›gid , hidP›gid) and (uidP ′ , hidP ′),
• both parties’ identity keys ipk

P›gid and ipkP ′ , and

• both parties’ per-group public key pk
›gid
P›gid and pk

›gid
P ′ .

Game C1.4: This game is identical to Game 3 except the
following modification:
• The challenger guesses the index of query to the

REGISTERAUTH or REGISTERINJECT oracle, which cre-
ates the per-group state π

›gid
P ′ in the winning event EKAuth,

at the beginning of the experiment and aborts the game if
the guess is wrong.

Note that there are at most cmaxReg register queries to the
group ›gid via the REGISTERAUTH or REGISTERINJECT
oracles in the game. The probability that C guesses correctly
is at least 1

cmaxReg
. Thus, we have that

AdvC1
3 (A) ≤ cmaxRegAdv

C1
4 (A)

Note that the challenger C will know the identifier of the
party P ′ in the winning event EKAuth at the time of receiving
the guessed query to REGISTERAUTH or REGISTERINJECT
oracle. In the following games, we denote the party P ′ in
the winning event EKAuth with ‹P .

Game C1.5: This game is identical to the Game C1.4
except the following modifications:

• At the beginning of the experiment, the challenger C
samples a random ‹K of bit length lH2

.
• When the leader P›gid of the the group›gid needs to compute

the output K of the Hash function H2 over a Diffie-Hellman
exchange key K ′, which is computed by the leader’s
identity private key π

›gid
P›gid .sk and the party ‹P ’s public key

pk
›gid‹P , and a constant ctxtH2

in Line 5 in Figure 6 during
the Participant Join phase and the Key Rotation phase of‹P , C replaces K with ‹K.

• When ‹P needs to compute the output K of the Hash
function H2 over a Diffie-Hellman exchange key K ′, which
is computed by the party ‹P ’s identity private key π

›gid‹P .sk

and the leader P
›gid’s public key pk

›gid
P›gid , and a constant

ctxtH2
in Line 12 in Figure 6 during the Participant Join

phase and the Key Rotation phase with the leader of the
group ›gid, C replaces K with ‹K.

We analyze the gap between Game C1.4 and Game
C1.5 by reduction to the hardness of mn-prf-ODH problem
over ECDH and H2. If the attacker A can distinguish Game
C1.4 and Game C1.5, then we can construct another attacker
B2 that breaks mn-prf-ODH assumption over ECDH and H2.

The attacker B2 receives the ECDH parameters and U =
gu for some unknown u. Next, B2 immediately issues a
challenger query x⋆ = ctxtH2

to its challenger and receives
a tuple (V = gv, y⋆) for some unknown v. Then B2 invokes
A and simulates Game C1.4 honestly, except for answering
the queries to the following oracles.

• REGISTERAUTH(idP , gid,m): If the input party P is the
leader of the group ›gid, i.e., P = P

›gid, and the group
identifier gid =›gid, then B2 does not sample the ZBox key
pair uniformly at random. Instead, B2 replaces π

›gid
P›gid .pk

with U = gu that is given by challenger. The rest of this
query is executed honestly.
If the input party P is the participant that is guessed
in Game C1.4, i.e., P = ‹P , and the group identifier
gid = ›gid, then B2 does not sample the ZBox key pair
uniformly at random. Instead, B2 replaces π

›gid‹P .pk with
V = gv that is given by challenger. The rest of this query
is executed honestly.
For the other queries to this oracle, B2 executes them
honestly.

• REGISTERINJECT(idP , gid, gs,m): If the input party P is
the participant that is guessed in Game C1.4, i.e., P =‹P , and the group identifier gid = ›gid, then B2 does not
sample the ZBox key pair uniformly at random. Instead, B2
replaces π

›gid‹P .pk with V = gv that is given by challenger.
The rest of this query is executed honestly.
For the other queries to this oracle, B2 executes them
honestly.

• SENDJOINAUTH(idP , idP ′ , gid,m): If the input party P =

P
›gid, the group identifier gid =›gid, and ZBox public key

pk included in the fourth input m equals V = gv that is
given by the challenger, then B2 does not compute the the

21



Diffie-Hellman exchange in Line 4 and the computation of
H2 in Line 5 in Figure 6. Instead, B2 replaces the output
of H2 with y⋆ that is given by the challenger. The rest of
this query is executed honestly.
If the input party P = P

›gid, the group identifier gid =›gid,
and ZBox public key pk included in the fourth input m
does not equal to V = gv that is given by the challenger,
then B2 does not compute the the Diffie-Hellman exchange
in Line 4 and the computation of H2 in Line 5 in Figure 6.
Instead, B2 queries its ODHu oracle with input (pk, ctxtH2

)
for a reply y, followed by replacing the output of H2 with
the reply y. The rest of this query is executed honestly.
If the input party P = ‹P , the group identifier gid =›gid, and
ZBox public key pk included in the third input m equals
U = gu that is given by the challenger, then B2 does not
compute the the Diffie-Hellman exchange in Line 11 and
the computation of H2 in Line 12 in Figure 6. Instead,
B2 replaces the output of H2 with y⋆ that is given by the
challenger. The rest of this query is executed honestly.
For the other queries to this oracle, B2 executes them
honestly.

• SENDJOININJECT(idP , idP ′ , gid, gs,m): If the input party
P = ‹P , the group identifier gid =›gid, and ZBox public
key pk included in the fifth input m equals U = gu that is
given by the challenger, then B2 does not compute the the
Diffie-Hellman exchange in Line 11 and the computation
of H2 in Line 12 in Figure 6. Instead, B2 replaces the
output of H2 with y⋆ that is given by the challenger. The
rest of this query is executed honestly.
For the other queries to this oracle, B2 executes them
honestly.

• SENDKEYROTAT(idP , gid,m): Note that this oracle re-
quires that the P must have already joined the group
gid. In particular, B2 must have already computed the
output of H2 for every communication between the leader
of the group gid and the participants. In this oracle, B2
does not re-compute the Diffie-Hellman exchange and
the computation of H2. Instead, B2 simply reuses the
corresponding values derived in the SENDJOINAUTH or
SENDJOININJECT oracles.
The rest of this oracle is executed honestly.

• COMPROMISE(idP , gid): If the first input party P = P
›gid

or P = ‹P and the second input gid =›gid, then B2 aborts.
The rest of this oracle is executed honestly.

Note that if the attacker A can trigger the winning event
EKAuth without violating the freshness condition, then neither
π
›gid
P›gid nor π

›gid‹P is allowed to be compromised due to the
freshness condition freshKAuth. This game abortion in the
COMPROMISE oracle will not happen.

If the attacker A is able to distinguish Game C1.4 and
Game C1.5, then the attacker B2 returns to 0 to its challenger
if the A thinks this is Game C1.4 and 1 to its challenger if
the A thinks this is Game C1.5.

Note that B2 perfectly simulates Game C1.4 if y⋆ =
H2(g

uv, ctxtH2
) and Game C1.5 if y⋆ is sampled uniformly

at random. B2 wins whenever A can distinguish the games.

Thus, we have that

AdvC1
4 (A) ≤ AdvC1

5 (A) + ϵmn-prf-ODH
ECDH,H2

Final Analysis for Case 1: Finally, we analyze the advantage
that A can win by triggering EKAuth. This means, there exists
any group key index gkid such that

• gk
(›gid,gkid)‹P ̸= ⊥ and gk

(›gid,gkid)
P›gid ̸= gk

(›gid,gkid)‹P ,

• ‹P and P
›gid agree on each other’s binding information

Binding
›gid‹P and Binding

›gid
P›gid in the Participant Join phase,

and
• the per-group states π

›gid‹P and π
›gid
P›gid are not compromised.

From Game C1.5, we know that ‹P and P
›gid shares

the same random key ‹K for computing AEAD. From
gk

(›gid,gkid)‹P ̸= ⊥, we know that ‹P must receives a AEAD

nonce and ciphertext tuple (nonce, c), which is decrypted
to (gk

(›gid,gkid)‹P , gkid) ̸= (gk
(›gid,gkid)
P›gid , gkid) for some gkid. We

consider the following four cases:

• Case 1: gk
(›gid,gkid)
P›gid = ⊥. In this case, the leader P

›gid
has not generated the gkid-th group key. This mean, the
tuple (nonce, c) must be forged by A. Note that the AEAD
associated data D is known by A. If A can trigger this case,
then we can easily construct an attacker B3 that breaks the
CTI-CPA security of the underlying AEAD.

• Case 2: gk
(›gid,gkid)
P›gid ̸= ⊥ and c is not produced by P

›gid.
Similar to the above, if A can trigger this case, then we can
easily construct an attacker B3 that breaks the CTI-CPA
security of the underlying AEAD.

• Case 3: gk
(›gid,gkid)
P›gid ̸= ⊥ and c is produced by P

›gid
but the nonce nonce is not produced by P

›gid for this
gk

(›gid,gkid)
P›gid . Let nonce

›gid denote the nonce produced by

P
›gid for this gk

(›gid,gkid)
P›gid . If A can trigger this case, we

can easily construct an attacker B3 that breaks the cus-
tomized (n,m)-FROB security of AEAD by outputting(
c, (‹K, nonce, D), (‹K, nonce

›gid, D)
)

.

• Case 4: gk
(›gid,gkid)
P›gid ̸= ⊥ and (nonce, c) is produced by

P
›gid for this gk

(›gid,gkid)
P›gid . This case is impossible due to the

perfect correctness.
Merging the cases analysis above, it holds that

AdvC1
5 (A) ≤ max

(
ϵcti-cpaAEAD , ϵ

(n,m)-frob
AEAD

)
≤ ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD

We further have that

AdvC1
3 ≤ cmaxReg(ϵ

mn-prf-ODH
ECDH,H2

+ ϵcti-cpaAEAD + ϵ
(n,m)-frob
AEAD )

Case 2: A wins by triggering event EKPriv.
In this case, due to the winning event EKPriv and the

freshness requirement freshSec-mGKD-pki
KPriv , it must hold for the

guessed the group identifier ›gid with some leader P›gid and
some group key index gkid that

22



• b = b′,
• the group key gk

(›gid,gkid)
P is not leaked for all P such that

idP ∈ GP (›gid,gkid),
• the short-term state π

›gid
P is not compromised for all P such

that idP ∈ GP (›gid,gkid),
• the long-term state st

P›gid of the leader P›gid is not corrupted

before all other participants P such that idP ∈ GP (›gid,gkid)
and idP ̸= id

P›gid joined the group ›gid,
• the long-term state stP of all participants P such that
idP ∈ GP (›gid,gkid) is not corrupted before P joined the
group ›gid, and

• the sign-up messages of all parties P such that idP ∈
GP (›gid,gkid) are honestly distributed inside the group ›gid.

Game C2.4: This game is identical the Game 3 except for
the following modification:
• At the beginning of the experiment, the challenger C

guesses the number nparty of parties in the set GP (›gid,gkid),
where gkid is the tested group key identifier. The challenger
C aborts if the guess is wrong.

Note that there are at most cmaxParty parties in a group
simutanously. The probability that C guesses correctly is
bounded by 1

cmaxParty
. Thus, it holds that

AdvC2
3 (A) ≤ cmaxPartyAdv

C2
4 (A)

Game C2.5: This game is identical the Game C2.4 except
for the following modification:
• At the beginning of the experiment, the challenger C

guesses (nparty−1) indices of the queries REGISTERAUTH

or REGISTERINJECT that create the per-group states π
›gid
P i

for some parties P i, where 1 ≤ i ≤ (nparty − 1). The
challenger aborts if {P i}i are not participants in the set
GP (›gid,gkid), where gkid is the tested group key identifier.

Note that there are (nparty − 1) participants in the set
GP (›gid,gkid) and each per-group state can be created in at most
cmaxReg queries to the REGISTERAUTH or REGISTERINJECT
oracles. Thus, the challenger guesses correctly except for
the probability 1

c
(nparty−1)

maxReg

.

AdvC2
4 (A) ≤ c

(nparty−1)
maxReg AdvC2

5 (A)

Note that the challenger C will know the identifier of
the participants P ∈ GP (›gid,gkid) in the winning event
EKPriv at the time of receiving the (nparty − 1) guessed
queries to REGISTERAUTH or REGISTERINJECT oracle. In
the following games, we denote the nparty participants in the
winning event EKPriv with P 1, ..., P (nparty−1). This means,
GP (›gid,gkid) = {idP i}i ∪ {idP›gid}, where gkid is the tested
group key identifier.

Game C2.6: This game is identical the Game C2.5 except
for the following modification:

• At the beginning of the experiment, the challenger C
samples (nparty − 1) random string ‹K1, ..., ‹K(nparty−1) of
bit length lH2

.
• When the leader P›gid of the the group›gid needs to compute

the output K of the Hash function H2 over a Diffie-Hellman
exchange key K ′, which is computed by the leader’s
identity private key π

›gid
P›gid .sk and the party P i’s public

key pk
›gid
P i for any 1 ≤ i ≤ (nparty − 1), and a constant

ctxtH2
in Line 5 in Figure 6 during the Participant Join

phase and the Key Rotation phase of ‹P , C replaces K with‹Ki.
• When P i for any 1 ≤ i ≤ (nparty−1) needs to compute the

output K of the Hash function H2 over a Diffie-Hellman
exchange key K ′, which is computed by the party P i’s
identity private key π

›gid
P i .sk and the leader P

›gid’s public

key pk
›gid
P›gid , and a constant ctxtH2 in Line 12 in Figure 6

during the Participant Join phase and the Key Rotation
phase with the leader of the group ›gid, C replaces K with‹Ki.

The gap between Game C2.5 and Game C2.6 can be
given by a sequence of hybrid games.

Hybrid Game 0. This game is identical to Game C2.5.
Thus, we have that

Advhy.0(A) = AdvC2
5 (A)

Hybrid Game i, where 1 ≤ i ≤ (nparty − 1). This game
is identical to Hybrid Game (i− 1) except the following
modification

• At the beginning of the experiment, the challenger C
samples a random string ‹Ki of bit length lH2

.
• When the leader P›gid of the the group›gid needs to compute

the output K of the Hash function H2 over a Diffie-Hellman
exchange key K ′, which is computed by the leader’s
identity private key π

›gid
P›gid .sk and the party P i’s public

key pk
›gid
P i , and a constant ctxtH2

in Line 5 in Figure 6
during the Participant Join phase and the Key Rotation
phase of ‹P , C replaces K with ‹Ki.

• When P i needs to compute the output K of the Hash
function H2 over a Diffie-Hellman exchange key K ′, which
is computed by the party P i’s identity private key π

›gid
P i .sk

and the leader P
›gid’s public key pk

›gid
P›gid , and a constant

ctxtH2
in Line 12 in Figure 6 during the Participant Join

phase and the Key Rotation phase with the leader of the
group ›gid, C replaces K with ‹Ki.

If the attacker A can distinguish Hybrid Game (i− 1) and
Hybrid Game i, then we can easily construct an attacker
B4 that breaks the mn-prf-ODH security of the underlying
ECDH and H2, similar to the reduction in Game C1.5. Thus,
we can easily have that

Advhy.(i−1)(A) = Advhy.i(A) + ϵmn-prf-ODH
ECDH,H2

23



Hybrid Game (nparty − 1). This game is identical to
Game C2.6. Thus, we have that

Advhy.(nparty−1)(A) = AdvC2
6 (A)

To sum up, it holds that

AdvC2
5 (A) ≤ AdvC2

6 (A) + (nparty − 1)ϵmn-prf-ODH
ECDH,H2

Game C2.7: This game is identical to Game C2.6 except
the following modification:
• All ciphertexts between the leader P›gid and P i, for every
1 ≤ i ≤ (nparty− 1), are replaced by random strings of the
same length.

The gap between Game C2.6 and Game C2.7 can be given
by (nparty − 1) hybrid games, where the i-th hybrid game
replaces all ciphertexts between P gid and P i in the group›gid
encrypted using ‹Ki for every 1 ≤ i ≤ (nparty− 1). It is easy
to know that the gap between every adjacent hybrid games
can be reduced to the IND$-CCA security of the underlying
AEAD. Thus, we have that

Adv6(A) ≤ Adv7(A) + (nparty − 1)ϵind$-cca
AEAD

Now, the attacker A obtains no information about the
challenge bit b and can only randomly guess. The probability
that A wins is 1

2 , i.e.,

Adv7(A) = 0

We further have that

AdvC2
3 ≤ cmaxPartyc

(nparty−1)
maxReg (nparty−1)(ϵmn-prf-ODH

ECDH,H2
+ϵind$-cca

AEAD )

Final Analysis. By merging the statements above, the proof

is concluded by,

AdvSec-mGKD-pki
Π (A) ≤ ϵcoll-resH1

+ qNEWPARTYϵ
euf-cma
DS

+ cmaxRegqNEWGROUP

(
ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD

+ c
(nparty−1)
maxReg (nparty − 1)(ϵmn-prf-ODH

ECDH,H2
+ ϵind$-cca

AEAD )
)

where cmaxParty denotes the maximal number of parties per
meeting, l = 192 denote the length of random nonce in
ZBox algorithm, and qO denote the maximal number of the
queries to any oracle O.

Appendix E.
Proof of Theorem 2

The proof is given by a sequence of games. Let Advi(A)
denote the advantage of an attacker A in winning Game i.

Game 0: This game is identical to the original
Sec-mGKD-pw experiment. Thus, we have that

Adv0(A) = AdvSec-mGKD-pw
Π′ (A)

Game 1: This game is identical to the Game 0 except the
following modification:

• The challenger C guesses an group identifier›gid with some
leader P›gid that makes A win, and aborts the game if the
guess is wrong. Namely,

1) there exists any party P ′ that is authorized for the group›gid and any group key index gkid, such that gk (›gid,gkid)
P ′ ̸=

⊥ but gk
(›gid,gkid)
P›gid ̸= gk

(›gid,gkid)
P ′ , without violating the

freshness condition freshSec-mGKD-pw
KAuth (idP ′ ,›gid, gkid).

2) b = b′ without violating the freshness condition
freshSec-mGKD-pw

KPriv (idP ′ ,›gid, gkid), where P ′, ›gid, and
gkid are respectively the tested party, group identifier,
and group key index.

Note that each group must be created via the NEWGROUP
and that the NEWGROUP can be queried at most
NEWGROUP times. The challenger guesses correctly with
probability at least 1

qNEWGROUP
. Thus, we have that

Adv0 ≤ qNEWGROUPAdv1(A)

Note that the freshness condi-
tions freshSec-mGKD-pw

KAuth (idP ′ ,›gid, gkid) and
freshSec-mGKD-pw

KPriv (idP ′ ,›gid, gkid) both require that the
group ›gid is not revealed. In particular, this means that if
the challenger guesses correctly, then the attacker A cannot
query the REVEAL oracle with input ›gid.

Game 2: This game is identical to Game 1 except the
following modifications:
• Whenever the attacker A sends queries to the

SENDJOINAUTH(idP , idP ′ , gid,m) oracle for some parties
P and P ′ and group gid =›gid and the party P is expected
to derive a key kPP of the PAKE, the challenger does the
following:
– If there exists no authorized party P ′′ ̸= P in the group›gid such that P and P ′′ have the same transcript for the

PAKE execution, then the challenger samples the key
kPP for the conversation between P and P ′ uniformly
at random instead of computing it from PAKEPP.

– If there exists any other authorized party P ′′ ̸= P in the
group ›gid such that P and P ′′ have the same transcript
for the PAKE execution, then P ′′ must have already
sampled the key kPP (for a conversation with some
party P ′′′). In this case, the challenger replaces the key
kPP of P with the one of P ′′.
We analyze the gap between Game 1 and Game 2 by

reduction to the w-PAKE security of the PAKE scheme
PAKEPP. Namely, if the attacker A can distinguish Game 1
and Game 2, then we can construct an attacker B that breaks
the w-PAKE security of the PAKE scheme PAKEPP. The
attacker B1 simulates Game 1 honestly except for answering
the following oracles:
• NEWGROUP(idP , gid) if gid = ›gid: B1 samples gsΠ

from the distribution DΠ and runs the m
›gid
GSch

$←−
Schedule(P,›gid, gs›gidΠ ) of Π rather than Schedule′ of Π′

for an associated outgoing message m
›gid
GSch. Then, B1 marks

the group gid as “created” and “valid” and marks P as

24



the leader of the group gid and “authorized”. Finally, B1
returns mgid

GSch to A.
• REGISTERAUTH(idP , gid,m) if gid = ›gid and idP ̸=
id

P›gid : B1 aborts if this oracle has been queried on the same
tuple (idP ,›gid), or›gid is not marked as created and valid, or
the party P is not authorized for the group ›gid. Otherwise,
B1 first simply runs m′ $←− Register-P(P, gid, gs

›gid
Π ,m),

where gs
›gid
Π is the group secret of protocol Π. Then, B1

sends queries SENDPAKE(U (idP ,›gid), ϵ) to its challenger
and receives a reply c

(P,›gid)
PP . Finally, B1 forwards the tuple

(m′, c
(P,›gid)
PP ) to A.

• SENDJOINAUTH(idP , idP ′ , gid,m) if gid = ›gid: B1 first
checks
– whether ›gid is marked as created and valid,
– whether P is authorized for this group ›gid,
– whether both parties P and P ′ have been created and

registered for this group,
– whether either P or P ′ is the leader of the group ›gid,
– whether the leader of the group, either P or P ′, has

joined the group, and that the other party hasn’t joined
the group yet.

If any of the check fails, B1 directly returns ⊥ to A.
Otherwise, B1 behaviors differently depending on whether
the P in the group gid has produced a key kPP of PAKEPP

during the communication with P ′.
– If P has not produced the PAKEPP key in the com-

munication with P ′ in the group ›gid, then B1 first
extracts a valid input message m1 for running PAKEPP

from the input message m. Then, B1 sends queries
SENDPAKE(U (idP ,›gid),m1) to its challenger and re-
ceives a reply cPP. Finally, B1 checks whether PAKEPP

is expected to output a key. If so, B1 further queries
TESTPAKE(U (idP ,›gid)) to its challenger and uses the
reply kPP as the output key of PAKEPP.

– If the key kPP of PAKEPP is produced, then B1 first
extracts an input message m2 for running Join-L or
Join-P algorithm of Π (depending whether P is the
leader or a participant of the group ›gid) from the
input message m. Next, B1 runs c $←− Join-L(P, idP ′ ,›gid, gs›gidΠ ,m2) if P is the leader of the group ›gid or
c $←− Join-P(P, idP ′ ,›gid, gs›gidΠ ,m2) if P is a participant,
where gs

›gid
Π is the group secret of the protocol Π. Then,

B1 encrypts c using AEADPP under the key kPP, a
random nonce noncePP, an associated data consisting
the sign-up messages of both P and P ′ for a ciphertext
c′.

Finally, B1 returns cPP and c′ that are computed from
above steps.

• REVEAL(gid) if gid =›gid: B1 simply aborts the game.

Note that if A wins, then A cannot violate the freshness
condition and therefore never queries the REVEAL oracle
upon ›gid. Thus, the game abortion never happens. B1

perfectly simulates Game 1 if the challenge bit of the
w-PAKE game is 0 and Game 2 if the challenge bit of
the w-PAKE game is 1. If A can distinguish Game 1 and
Game 2, then B can also distinguish the challenge bit of
the w-PAKE security game. Thus, we have that

Adv1(A) ≤ Adv2(A) + ϵw-PAKE
PAKEPP,Dpw

Game 3: This game is identical to Game 2 except the
following modifications:
• The challenger C aborts the game if there exists a participant
P ′ such that
– P ′ is authorized for the group ›gid and successfully

completed the PAKEPP execution when joining the group›gid,
– P ′ successfully decrypts an AEADPP ciphertext that is

not output by P
›gid during the Participant Join phase or

Key Rotation phase, and
– the per-group state of P ′ and P

›gid in the group ›gid are
not compromised.
Recall that the key kPP of the authorized party P ′ for

the group ›gid is sampled random uniformly at random. If
P ′ can successfully decrypt an AEADPP ciphertext that is
not output by P

›gid during the Participant Join phase or Key
Rotation phase, then this means A can forge an AEADPP

ciphertext for the key kPP of P ′ and P
›gid and further breaks

the CTI-CPA security of the underlying AEADPP scheme.
Thus, we can easily construct another attacker B2 that breaks
the CTI-CPA security of AEADPP by invoking A. Note that
there are at most cmaxReg participants in the group ›gid. The
reduction B2 can simply guesses the index of the register
request of P ′, which is correct with probability at least 1

cmaxReg
,

and honestly simulates Game 2 to A. Note that A cannot
query COMPROMISE oracle upon (idP ′ ,›gid) or (id

P›gid ,›gid).
B2 can perfectly simulates Game 2 to A and win whenever
A can make the forgery. Thus, it holds that

Adv2(A) ≤ Adv3(A) + cmaxRegϵ
cti-cpa
AEADPP

Game 4: This game is identical to Game 3 except the
following modifications:
• The challenger C aborts the game if there exists a participant
P ′ such that:
– P ′ is authorized for the group ›gid and successfully

completed the Participant Join phase in the group ›gid,
– P ′ and P

›gid have disagreement on sign-up messages of
P ′ and P

›gid, and
– the per-group state of P ′ and P

›gid in the group ›gid are
not compromised.
Recall in Game 3 that we ensure that the authorized

participant P ′ must agree on all received AEADPP ciphertext
with the leader P›gid, in particular, during the Participan Join
phase in the group ›gid. If P ′ and P

›gid have disagreement on
sign-up messages of P ′ and P

›gid, which are the associated
data for encrypting and decrypting the AEADPP ciphertext,

25



then we can easily construct an B2 that breaks the d-frob
security of the underlying AEADPP scheme. Thus, we can
easily have that

Adv3(A) ≤ Adv4(A) + ϵd-frob
AEADPP

In particular, this game ensures that for all participant
P ′ that is authorized for the group ›gid and successfully
completed the Participant Join phase in the group ›gid, if
the per-group state of P ′ and P

›gid in the group ›gid are not
compromised, then the participant P ′ and the leader P

›gid
must agree on the each other’s sign-up messages. In other
words, the sign-up messages mP

›gid
SignUp and mP ′

SignUp of P
›gid

and P ′ must be honestly delivered to the other.
Below, we analyze the advantage that A wins in Game

4 by case distinction, i.e., whether A wins by triggering
EKAuth in Case 1, the advantage of which is denoted by
AdvC1

4 , or by triggering EKPriv in Case 2, the advantage of
which is denoted by AdvC2

4 . Thus, we have that

Adv4(A) := max
(
AdvC1

4 (A),AdvC2
4 (A)

)
Case 1: A wins by triggering event EKAuth.
Final Analysis of Case 1. In this case, A wins by
triggering event EKAuth. This means,there exists any
party P ′ that is authorized for the group ›gid and any
group key index gkid, such that gk

(›gid,gkid)
P ′ ̸= ⊥ but

gk
(›gid,gkid)
P›gid ̸= gk

(›gid,gkid)
P ′ , without violating the freshness

condition freshSec-mGKD-pw
KAuth (idP ′ ,›gid, gkid).

Recall that freshSec-mGKD-pw
KAuth (idP ′ ,›gid, gkid) holds if and

only if

1) the per-group states π
›gid
P›gid and π

›gid
P ′ are not compromised,

2) the long-term states st
P›gid and stP ′ are not corrupted before

P
›gid and P ′ joined the group ›gid, and

3) the group ›gid is not revealed.
Recall also that the freshness condition

freshSec-mGKD-pki
KAuth (idP ′ ,›gid, gkid) holds if and only if

1) the per-group states π
›gid
P›gid and π

›gid
P ′ are not compromised,

2) the long-term states st
P›gid and stP ′ are not corrupted before

P
›gid and P ′ joined the group ›gid, and

3) the sign-up messages mP
›gid

SignUp and mP ′

SignUp of P›gid and P ′

are honestly delivered to the other.
In Game 4, we ensure that the the sign-up messages

mP
›gid

SignUp and mP ′

SignUp of P›gid and P ′ are honestly delivered
to the other if

1) the party P ′ is authorized for the group ›gid completed the
Participant Join phase in the group ›gid,

2) the per-group states π
›gid
P›gid and π

›gid
P ′ are not compromised,

Thus, if the freshness condition
freshSec-mGKD-pw

KAuth (idP ′ ,›gid, gkid) holds, then the freshness
condition freshSec-mGKD-pki

KAuth (idP ′ ,›gid, gkid) must also hold.

Below, we prove that if A can win via the event EKAuth

against Π′, then we can construct another attacker B3 that
breaks the Sec-mGKD-pki security of Π via the event EKAuth

by invoking A. B3 answers the queries from A as follows:
• NEWPARTY(idP ): B3 simply forwards this query to its

challenger and the reply to A.
• NEWGROUP(idP , gid): B3 simply forwards this query to

its challenger and the reply to A. Moreover, B3 samples a
random pwgid from the distribution Dpw for the group gid.

• AUTHORIZE(gid, idP ): B3 simply forwards this query to
its challenger.

• REGISTERAUTH(idP , gid,m): B3 simply forwards this
query to its challenger for a reply c. If P is not the leader
of the group gid, then B3 additionally runs the first pass
of PAKEPP upon pwgid and returns c together with the
outgoing message of PAKEPP to A.

• REGISTERINJECT(idP , gid, gs,m): B3 parses gs into two
portions (gsΠ, pw). Next, B3 simply forwards the query
REGISTERINJECT(idP , gid, gsΠ,m) to its challenger for a
reply c. If P is not the leader of the group gid, then B3
additionally runs the first pass of PAKEPP upon pw and
returns c together with the outgoing message of PAKEPP

to A.
• SENDJOINAUTH(idP , idP ′ , gid,m): We consider two

cases: For the first case that gid =›gid, we consider the
following two steps:
– If the party P of the group gid has not derived the

key kPP, then B3 runs the next pass of PAKEPP upon
necessary information from the input message m and
the password pwgid. If the party P of the group gid now
is expected to derive the key kPP of PAKEPP and there
is no other party P ′′ in the group ›gid that has the same
transcript of PAKEPP as P , then B3 replaces it by a
random key of the same length.
If the party P of the group gid now is expected to derive
the key kPP of PAKEPP and there is a party P ′′ in the
group ›gid that has the same transcript of PAKEPP as P ,
then B3 replaces the key of P with the one of P ′′.

– If the party P of the group gid now has derived the
key kPP, then B3 first checks P agrees on the party
P ′’s sign-up message mP ′

SignUp. If not, then B3 simply
aborts. Otherwise, B3 checks whether m should include
an AEADPP ciphertext. If so, B3 decrypts the AEADPP

ciphertext using the random key kPP and other necessary
information from the input m for a message m1. Then,
B3 sends the query SENDJOINAUTH(idP , idP ′ , gid,m1)
to its challenger for a reply m2. After that, if m2 is not
an empty string, then B3 encrypts m2 using AEADPP

upon the random key kPP, a random nonce, an associated
data consisting the sign-up messages of P and P ′.

Finally, B3 forwards all outgoing messages in this algorithm
to A.
For the second case that gid ̸= ›gid, we consider the
following two steps:
– If the party P of the group gid has not derived the

key kPP, then B3 runs the next pass of PAKEPP upon
necessary information from the input message m and

26



the password pwgid.
– If the party P of the group gid now has derived the

key kPP, then B3 checks whether m should include
an AEADPP ciphertext. If so, B3 decrypts the AEADPP

ciphertext using the key kPP and other necessary infor-
mation from the input m for a message m1. Then, B3
sends the query SENDJOINAUTH(idP , idP ′ , gid,m1) to
its challenger for a reply m2. After that, if m2 is not
an empty string, then B3 encrypts m2 using AEADPP

upon the key kPP, a random nonce, an associated data
consisting the sign-up messages of P and P ′.

Finally, B3 forwards all outgoing messages in this algorithm
to A.

• SENDJOININJECT(idP , idP ′ , gid, gs,m): B3 parses gs into
two portion gsΠ and pw . We consider the following two
steps:
– If the party P of the group gid has not derived the

key kPP, then B3 runs the next pass of PAKEPP upon
necessary information from the input message m and
the password pw .

– If the party P of the group gid now has derived the
key kPP, then B3 checks whether m should include
an AEADPP ciphertext. If so, B3 decrypts the AEADPP

ciphertext using the key kPP and other necessary informa-
tion from the input m for a message m1. Then, B3 sends
the query SENDJOININJECT(idP , idP ′ , gid, gsΠ,m1) to
its challenger for a reply m2. After that, if m2 is not
an empty string, then B3 encrypts m2 using AEADPP

upon the key kPP, a random nonce, an associated data
consisting the sign-up messages included in m.

Finally, B3 forwards all outgoing messages in this algorithm
to A.

• SENDLEAVE(idP , gid, idP ′): B3 simply forwards this query
to its challenger. If a per-group state π needs to be erased,
then B3 also erases the corresponding PAKEPP secrets of
π.

• ENDGROUP(gid): B3 simply forwards this query to its
challenger. If the leader’s per-group state π needs to be
erased, then B3 also erases the corresponding PAKEPP

secrets of π.
• SENDKEYROTAT(idP , gid,m): We consider two cases:

– If P is the leader in the group gid, then B3 first queries
SENDKEYROTAT(idP , gid,m) to its challenger for a
reply c. Then, B3 extracts the portion cP in c that is
specific to every participant P in the group gid, followed
by encrypting it using the corresponding AEADPP key
kPP, a random nonce, and an associated data that is
same as the one in the corresponding Participant Join
phase. Finally, B3 outputs the AEADPP ciphertext and
nonce for every participant P in the group gid. If any
error occurs during the above execution, then B3 aborts
and undoes the above executions.

– If P is a participant in the group gid, then B3 first
extracts an AEADPP ciphertext and an AEADPP nonce
from the input m. Next, B3 recovers a message m1

from the AEADPP ciphertext using the corresponding
AEADPP key kPP, the AEADPP nonce, and an associated

data that is same as the one in the corresponding
Participant Join phase. Then, B3 extracts other neces-
sary information m2 from the input m for querying
SENDKEYROTAT(idP , gid,m1 ∥ m2) returns the reply
mKRot to A. If any error occurs during the above execu-
tion, then B3 aborts and undoes the above executions.

• CORRUPT(idP ): B3 simply forwards this query to its
challenger and the reply to A.

• COMPROMISE(idP , gid): B3 forwards this query to its
challenger. If the reply is not ⊥, then B3 forwards the
reply together with the key kPP of P in the group gid to
A. Otherwise, B3 simply returns ⊥ to A.

• LEAK(idP , gid, gkid): B3 simply forwards this query to its
challenger and the reply to A.

• REVEAL(gid): B3 forwards this query to its challenger.
Then, B3 forwards the reply together with the password
pwgid to A.

• TEST(idP , gid, gkid): B3 simply forwards this query to its
challenger and the reply to A.

Note that B3 perfectly simulates Game 4 to A. If
A can trigger the event EKAuth against Π′, then B3 can
also trigger the event EKAuth against Π. Recall that if the
freshness condition freshSec-mGKD-pw

KAuth (idP ′ ,›gid, gkid) holds,
then the freshness condition freshSec-mGKD-pki

KAuth (idP ′ ,›gid, gkid)
must also hold. Thus, if A can win the game against Π′ by
triggering the event EKAuth, then B3 can also win the game
against Π by triggering EKAuth. We have that

AdvC1
4 (A) ≤ AdvSec-mGKD-pki

Π (B3)

Case 2: A wins by triggering event EKPriv.
Game C2.5: This game is identical to Game 4 except the
following modifications:

• Whenever the challenger needs to let the leader P
›gid

compute a AEADPP ciphertext for a participant P ′, where
idP ′ ∈ π

›gid
P›gid .GP but P ′ is unauthorized for the group›gid, the challenger replaces this AEADPP ciphertext by a

random ciphertext of the same length.
Recall in Game 2 that we have the key kPP computed

by all authorized parties P in the group ›gid be uniformly
at random. This in particular means that all keys kPP
generated by the leader P

›gid for all participants P ′, which
are unauthorized for the group ›gid, are random. Note also
that the leader must be in the party set id

P›gid ∈ GP (›gid,gkid)
for all gkid unless the group ends. Thus for all party P ′ and
group key index gkid, the short-term state π

›gid
P›gid must not

be compromised, if freshSec-mGKD-pw
KPriv (idP ′ ,›gid, gkid) holds.

Then, we analyze the gap between Game 4 and Game C2.5
by n hybrid games, where n denotes the number of register
requests sent by unauthorized party. Obviously, it holds that
n ≤ cmaxReg.

Hybrid Game 0. This game is identical to Game 4.
Thus, we have that

Advhy.0(A) = AdvC2
4 (A)

27



Hybrid Game i, where 1 ≤ i ≤ n. This game is identical
to Hybrid Game (i− 1) except the following modifications:
• Whenever the challenger needs to sample a random key kPP

in the query SENDJOINAUTH(idP , idP ′ , gid,m), where
P = P

›gid, P ′ is the unauthorized party that sends the
i-th register request, and gid =›gid, the challenger do not
sample this key but mark this key as kiPP.

• Whenever the challenger needs to compute an AEADPP

ciphertext that is encrypted upon the key kiPP, the challenger
first checks whether a ciphertext has been produced upon
the same input. If such ciphertext exists, then the challenger
simply reuses this ciphertext. If not, then the challenger
samples a ciphertext of the same length uniformly at
random.

If the attacker A can distinguish Hybrid Game (i− 1) and
Hybrid Game i, then we can easily construct an attacker
B4 that breaks the IND$-CCA security of the underlying
AEADPP. Thus, we can easily have that

Advhy.(i−1)(A) = Advhy.i(A) + ϵind$-cca
AEADPP

Hybrid Game n. This game is identical to Game C2.5.
Thus, we have that

Advhy.n(A) = AdvC2
5 (A)

To sum up, it holds that

AdvC2
4 (A) ≤ AdvC2

5 (A) + nϵind$-cca
AEADPP

≤ AdvC2
5 (A) + cmaxRegϵ

ind$-cca
AEADPP

Final Analysis Of Case 2. Now, we prove that A cannot win
by triggering the events EKPriv by reduction. If the attacker
A can win against Π′ by triggering EKPriv, the we can
construct another attacker B5 that breaks the Sec-mGKD-pki
security of Π by triggering the event EKPriv. The attacker B5
honestly simulates Game C2.5 to A except for the following
modifications:
• NEWPARTY(idP ): B5 simply forwards this query to its

challenger and the reply to A.
• NEWGROUP(idP , gid): B5 simply forwards this query to

its challenger and the reply to A. Moreover, B5 samples a
random pwgid from the distribution Dpw for the group gid.

• AUTHORIZE(gid, idP ): B5 simply forwards this query to
its challenger.

• REGISTERAUTH(idP , gid,m): B5 simply forwards this
query to its challenger for a reply c. If P is not the leader
of the group gid, then B5 additionally runs the first pass
of PAKEPP upon pwgid and returns c together with the
outgoing message of PAKEPP to A.

• REGISTERINJECT(idP , gid, gs,m): We consider two case:
– If gid =›gid, then B5 first sends a query CORRUPT(idP )

to its challenger. Afterwards, B5 honestly runs
Register-P′(P, gid, gs,m) by himself.

– If gid ̸= ›gid, then B5 parses gs into two por-
tions (gsΠ, pw). Next, B5 simply forwards the query
REGISTERINJECT(idP , gid, gsΠ,m) to its challenger for
a reply c. Then B5 runs the first pass of PAKEPP upon

pw and returns c together with the outgoing message of
PAKEPP to A.

• SENDJOINAUTH(idP , idP ′ , gid,m): We consider two
cases: For the first case that gid =›gid, we consider the
following two steps:
– If the party P of the group gid has not derived the

key kPP, then B5 runs the next pass of PAKEPP upon
necessary information from the input message m and
the password pwgid. If the party P of the group gid now
is expected to derive the key kPP of PAKEPP and there
is no other party P ′′ in the group ›gid that has the same
transcript of PAKEPP as P , then B5 replaces it by a
random key of the same length.
If the party P of the group gid now is expected to derive
the key kPP of PAKEPP and there is a party P ′′ in the
group ›gid that has the same transcript of PAKEPP as P ,
then B5 replaces the key of P with the one of P ′′.

– If the party P of the group gid now has derived the
key kPP, then B5 first checks whether P ′ is authorized
for the group gid or not. If P ′ is authorized for the
group gid, then B5 further checks whether P agrees on
the party P ′’s sign-up message mP ′

SignUp. If not, then B5
simply aborts. Otherwise, B5 checks whether m should
include an AEADPP ciphertext. If so, this AEADPP

ciphertext must be encrypted by the party P ′ from
some message m1. Then, B5 simply sends the query
SENDJOINAUTH(idP , idP ′ , gid,m1) to its challenger for
a reply m2. After that, if m2 is not an empty string,
then B5 encrypts m2 using AEADPP upon the random
key kPP, a random nonce, an associated data consisting
the sign-up messages of P and P ′.
If P ′ is unauthorized for the group gid and this invocation
needs to outputs some AEADPP ciphertext, B5 simply
samples the AEADPP ciphertext randomly. If idP ′ is
expected to be added in to the set π

›gid
P›gid .GP , B5 does

not add idP ′ into this set. Instead, B5 marks it as “fake”.
Finally, B5 forwards all outgoing messages in this algorithm
to A.
For the second case that gid ̸= ›gid, we consider the
following two steps:
– If the party P of the group gid has not derived the

key kPP, then B5 runs the next pass of PAKEPP upon
necessary information from the input message m and
the password pwgid.

– If the party P of the group gid now has derived the
key kPP, then B5 checks whether m should include
an AEADPP ciphertext. If so, B5 decrypts the AEADPP

ciphertext using the key kPP and other necessary infor-
mation from the input m for a message m1. Then, B5
sends the query SENDJOINAUTH(idP , idP ′ , gid,m1) to
its challenger for a reply m2. After that, if m2 is not
an empty string, then B5 encrypts m2 using AEADPP

upon the key kPP, a random nonce, an associated data
consisting the sign-up messages of P and P ′.

Finally, B5 forwards all outgoing messages in this algorithm
to A.

28



• SENDJOININJECT(idP , idP ′ , gid, gs,m): We consider two
cases. For the first case that gid =›gid, B5 simply computes
Join-P(P, idP ′ , gid, gs,m) by himself.
For the second case that gid ̸=›gid, B5 parses gs into two
portion gsΠ and pw . Then, we consider the following two
steps:
– If the party P of the group gid has not derived the

key kPP, then B5 runs the next pass of PAKEPP upon
necessary information from the input message m and
the password pw .

– If the party P of the group gid now has derived the
key kPP, then B5 checks whether m should include
an AEADPP ciphertext. If so, B5 decrypts the AEADPP

ciphertext using the key kPP and other necessary informa-
tion from the input m for a message m1. Then, B5 sends
the query SENDJOININJECT(idP , idP ′ , gid, gsΠ,m1) to
its challenger for a reply m2. After that, if m2 is not
an empty string, then B5 encrypts m2 using AEADPP

upon the key kPP, a random nonce, an associated data
consisting the sign-up messages included in m.

Finally, B5 forwards all outgoing messages in this algorithm
to A.

• SENDLEAVE(idP , gid, idP ′): We consider two cases: For
the first case that gid = ›gid, we further consider the
following three sub-cases:
– If idP = id

P›gid and P ′ is unauthorized for the group ›gid
and marked as “fake”, then B removes the mark “fake”
on P ′.

– If P is marked as “fake”, then B5 executes
Leave-P(P, gid, idP ′) by himself.

– For all other queries, B5 forwards them to its challenger
and the reply to A.

For the second case that gid ̸=›gid, B5 simply forwards
this query to its challenger. If a per-group state π needs to
be erased, then B5 also erases the corresponding PAKEPP

secrets of π.
• ENDGROUP(gid): We consider the following two case: For

the first case that gid =›gid, if there exists no party P ′ that
is still marked as “fake”, then B5 forwards this query to
its challenger. Otherwise, B5 aborts.
For the second case that gid ̸=›gid, B5 simply forwards
this query to its challenger. If the leader’s per-group state π
needs to be erased, then B5 also erases the corresponding
PAKEPP secrets of π.

• SENDKEYROTAT(idP , gid,m) We consider two cases: For
the first case that gid =›gid, we further consider following
three cases:
– If P is the leader in the group gid, then B5 first queries

SENDKEYROTAT(idP , gid,m) to its challenger for a
reply c. Then, B5 extracts the portion cP in c that is
specific to every participant P in the group gid, followed
by encrypting it using the corresponding AEADPP key
kPP, a random nonce, and an associated data that is same
as the one in the corresponding Participant Join phase.
Moreover, for every party P ′ that is marked as “fake”,
B5 also samples a random AEADPP ciphertext and a

random nonce. Finally, B5 outputs all above AEADPP

ciphertexts and nonces. If any error occurs during the
above execution, then B5 aborts and undoes the above
executions.

– If P is an authorized participant in the group gid,
then B5 first extracts an AEADPP ciphertext and an
AEADPP nonce from the input m. If this AEADPP

is not produced by the leader for some message m1,
then B5 aborts. Otherwise, B5 extracts other neces-
sary information m2 from the input m for querying
SENDKEYROTAT(idP , gid,m1 ∥ m2) returns the reply
mKRot to A. If any error occurs during the above execu-
tion, then B5 aborts and undoes the above executions.

– If P is an unauthorized participant in the group gid, then
B5 executes KeyRotat-P(P, gid,m) by himself.

For the second case that gid ̸= ›gid, we further consider
following two sub-cases:
– If P is the leader in the group gid, then B5 first queries

SENDKEYROTAT(idP , gid,m) to its challenger for a
reply c. Then, B5 extracts the portion cP in c that is
specific to every participant P in the group gid, followed
by encrypting it using the corresponding AEADPP key
kPP, a random nonce, and an associated data that is
same as the one in the corresponding Participant Join
phase. Finally, B5 outputs the AEADPP ciphertext and
nonce for every participant P in the group gid. If any
error occurs during the above execution, then B5 aborts
and undoes the above executions.

– If P is a participant in the group gid, then B5 first
extracts an AEADPP ciphertext and an AEADPP nonce
from the input m. Next, B5 recovers a message m1

from the AEADPP ciphertext using the corresponding
AEADPP key kPP, the AEADPP nonce, and an associated
data that is same as the one in the corresponding
Participant Join phase. Then, B5 extracts other neces-
sary information m2 from the input m for querying
SENDKEYROTAT(idP , gid,m1 ∥ m2) returns the reply
mKRot to A. If any error occurs during the above execu-
tion, then B5 aborts and undoes the above executions.

• CORRUPT(idP ): B5 simply forwards this query to its
challenger and the reply to A.

• COMPROMISE(idP , gid): We consider the following two
cases. For the first case that gid =›gid, we further consider
the following two sub-cases:
– If P is an authorized party for the group gid, then B5

forwards this query to its challenger. If the reply is not
⊥, then B5 forwards the reply together with the key
kPP of P in the group gid to A. Otherwise, B5 simply
returns ⊥ to A.

– If P is an unauthorized party for the group gid, then
B5 must create πgid

P by himself. In this case, B5 simply
returns πgid

P to A.

For the second case that gid ̸=›gid, B5 forwards this query
to its challenger. If the reply is not ⊥, then B5 forwards
the reply together with the key kPP of P in the group gid
to A. Otherwise, B5 simply returns ⊥ to A.

29



• LEAK(idP , gid, gkid): We consider the following two cases.
For the first case that gid =›gid, we further consider the
following two cases:
– If P is an authorized party for the group gid, then B5

simply forwards this query to its challenger and the reply
to A.

– If P is an unauthorized party for the group gid, then
B5 must create gk

(gid,gkid)
P by himself. In this case, B5

simply returns gk
(gid,gkid)
P to A.

For the second case that gid ̸=›gid, B5 simply forwards
this query to its challenger and the reply to A.

• REVEAL(gid): B5 forwards this query to its challenger.
Then, B5 forwards the reply together with the password
pwgid to A.

• TEST(idP , gid, gkid): B5 simply forwards this query to its
challenger and the reply to A.

Note that B5 perfectly simulates Game C2.5 to A.
Moreover, B5 simulates the behaviors of all unauthorized
parties in the group ›gid by himself. Thus, the parties in the
group ›gid in the Sec-mGKD-pw experiment between B5 and
its challenger are identical to the authorized parties in the
group ›gid in the Sec-mGKD-pki experiment between A and
B5.

Note in Game 4 that we ensure that the sign-up messages
are honestly distributed between the leader and authorized
participants P ∈ GP (›gid,gkid) for the tested group ›gid and
group key index gkid. Thus, for the tested party P ′, the
tested group ›gid, and the tested group key index gkid, if A
can trigger EKPriv without violating the freshness condition
freshSec-mGKD-pw

KPriv (idP ′ , gid, gkid), then B can also trigger
EKPriv by outputting the same b′ as A, without violating the
freshness condition freshSec-mGKD-pki

KPriv (idP ′ , gid, gkid). Thus,
it holds that

AdvC2
5 (A) ≤ AdvSec-mGKD-pki

Π (B5)

Final Analysis Of The Full Proof. By merging the statements
above, if A can break the Sec-mGKD-pw security of Π′, then
there exists an attacker B that breaks the Sec-mGKD-pki
security of Π, such that

AdvSec-mGKD-pw
Π′ (A) ≤ qNEWGROUP

(
ϵw-PAKE
PAKEPP,Dpw

+ ϵd-frob
AEADPP

+ cmaxReg(ϵ
cti-cpa
AEADPP

+ ϵind$-cca
AEADPP

) + AdvSec-mGKD-pki
Π (B)

)
Appendix F.
Proof of Theorem 3

The proof is given by reduction. If there exists any PPT
attacker A that breaks the Sec-mGKD-pki of Π′, then we
construct an attacker B that breaks the Sec-mGKD-pki of
Π. The attacker B initializes the Sec-mGKD-pki experiment
and answers A’s oracle queries as follows:
• NEWPARTY(idP ): B simply forwards this query to its

challenger and then forwards the reply to A.

• NEWGROUP(idP , gid): B forwards this query to its chal-
lenger. Then, B samples a password pwgid from the
distribution Dpw and associate the password with the group
gid.

• AUTHORIZE(gid, idP ): B simply forwards this query to its
challenger.

• REGISTERAUTH(idP , gid,m): B forwards this query to its
challenger for a reply c1. If P is the leader of the group
gid, B simply returns c1. Otherwise, B runs the first pass
of PAKEPP upon the password pwgid for a ciphertext c2.
Finally, B returns (c1, c2) to A.

• REGISTERINJECT(idP , gid, gs,m): B first parses gs into
two portions gsΠ and pw . Next, B sends query
REGISTERINJECT(idP , gid, gsΠ,m) to its challenger for
a reply c1. Then, B runs the first pass of PAKEPP upon
the password pw for a ciphertext c2. Finally, B returns
(c1, c2) to A.
• SENDJOINAUTH(idP , idP ′ , gid,m): We consider two

steps.
The first step is executed if the party P has not output the
key kPP of the PAKEPP with P ′ in the group gid. B first
extracts necessary information from the input m and runs
the next pass of PAKEPP upon pwgid. If the key kPP is
available, B remembers this key for both parties P and P ′

in the group gid. Otherwise, B simply outputs the outgoing
message of PAKEPP.
The second step is executed if the party P has already
output the key kPP of the PAKEPP with P ′ in the group
gid. B first checks whether the input m includes any
AEADPP ciphertext and the AEADPP nonce. If so, B
first decrypts it using the key kPP, the AEADPP nonce,
the associated data consisting both P and P ′’s sign-up
messages, for a message m1. Otherwise, the message
m1 is set to empty string ϵ. Then, B sends the query
SENDJOINAUTH(idP , idP ′ , gid,m1) to its challenger for a
reply m2. Finally, B encrypts the message m2 using the
key kPP, a random nonce, the associated data consisting
both P and P ′’s sign-up messages, for a ciphertext.
The ciphertexts of AEADPP and optionally the one of
PAKEPP (if available) are returned to A.

• SENDJOININJECT(idP , idP ′ , gid, gs,m): B first parses gs
into two portions gsΠ and pw . Then, we consider two
steps.
The first step is executed if the party P has not output
the key kPP of the PAKEPP with P ′ in the group gid. B
first extracts necessary information from the input m and
runs the next pass of PAKEPP upon pw . If the key kPP is
available, B remembers this key for both parties P and P ′

in the group gid. Otherwise, B simply outputs the outgoing
message of PAKEPP.
The second step is executed if the party P has already
output the key kPP of the PAKEPP with P ′ in the
group gid. B first checks whether the input m includes
any AEADPP ciphertext and the AEADPP nonce. If so,
B first decrypts it using the key kPP, the AEADPP

nonce, the associated data consisting both P and P ′’s
sign-up messages, for a message m1. Otherwise, the
message m1 is set to empty string ϵ. Then, B sends

30



the query SENDJOININJECT(idP , idP ′ , gid, gsΠ,m1) to its
challenger for a reply m2. Finally, B encrypts the message
m2 using the key kPP, a random nonce, the associated
data consisting both P and P ′’s sign-up messages, for a
ciphertext.
The ciphertexts of AEADPP and optionally the one of
PAKEPP (if available) are returned to A.

• SENDLEAVE(idP , gid, idP ′): B forwards this query to its
challenger. If idP = idP ′ , then B also removes the key
kPP of the party P generated in the Participant Join phase
for P joining the group gid. If P is the leader of the group
gid, then B removes the key kPP of the party P generated
in the Participant Join phase for P ′ the group gid.

• ENDGROUP(gid): B forwards this query to its challenger.
Then B also removes all remaining keys kPP of the leader
of the group gid.

• SENDKEYROTAT(idP , gid,m): If P is the leader of the
group gid, then B forwards this query to its challenger for
a reply c. Then, the B extracts the portion cP in c that is
specific to every participant P in the group gid, followed by
encrypting it using the stored corresponding AEADPP key
kPP, a random nonce, and an associated data consisting of
the leader P and the participant P ’ sign-up messages as in
the Participant Join phase. Finally, B outputs the AEADPP

ciphertext and nonce for every participant P in the group
gid. If any error occurs during the above execution, then
the leader P aborts and undoes the above executions.
Otherwise, P is the participant of the group gid. B first
extracts an AEADPP ciphertext and an AEADPP nonce
from the input m. Next, B recovers a message m1 from
the AEADPP ciphertext using the stored corresponding
AEADPP key kPP, the AEADPP nonce, and an associated
data consisting of the participant P ’s and the leader’s sign-
up messages as in the Participant Join phase. Then, B
extracts other necessary information m2 from the input
m for querying SENDKEYROTAT(P, gid,m1 ∥ m2) to
its challenger. Finally, B forwards the reply from the
challenger to A. If any error occurs during the above
execution, then the participant P aborts and undoes the
above executions.

• CORRUPT(idP ): B simply forwards this query to its chal-
lenger and then forwards the reply to A.

• COMPROMISE(idP , gid): B simply forwards this query to
its challenger for a state π. Then, B forwards the state π
together with all keys kPP of party P for the group gid to
A.

• LEAK(idP , gid, gkid): B simply forwards this query to its
challenger and then forwards the reply to A.

• REVEAL(gid): B simply forwards this query to its chal-
lenger for a group secret gsΠ. Then, B forwards the group
secret gsΠ together with the password pwgid to A.

• TEST(idP , gid, gkid): B simply forwards this query to its
challenger and then forwards the reply to A.

It is easy to know that B perfectly simulates
Sec-mGKD-pki experiment to A and wins if A wins. The
proof is concluded by

AdvSec-mGKD-pki
mGKD′ (A) ≤ AdvSec-mGKD-pki

mGKD (B)

31



Contents

1 Introduction 1

2 Related Work 2
2.1 Centralized Group Key Management Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 (Continuous) Group Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Multi-factor Key Agreement and Password-Authenticated Key Exchange . . . . . . . . . . . . . . . . 3
2.4 Existing Security Analysis for Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Preliminaries 3

4 multi-stage Group Key Distribution Protocols 3
4.1 mGKD Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.2 A Generic Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 The Sec-mGKD-pki Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 The Sec-mGKD-pw Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 The Sec-mGKD-pw+ Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Zoom’s protocol is a mGKD protocol 8
5.1 The Zoom End-to-End Connection Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Zoom is Sec-mGKD-pki secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Zoom is not Sec-mGKD-pw secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 A Generic Approach to Sec-mGKD-pw Security: Password-Protected Transformation 11
6.1 The Generic Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Application to the Zoom Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Technical Summary 14

References 14

Appendix A: Preliminaries 15
A.1 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 Authenticated Encryption with Associated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.3 Hash Functions and Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.4 lr-prf-ODH Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.5 Password-Authenticated Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Appendix B: Comparison with Concurrent Work [34] 18

Appendix C: Cryptographic Algorithms 18

Appendix D: Proof of Theorem 1 19

Appendix E: Proof of Theorem 2 24

Appendix F: Proof of Theorem 3 30

32


	Introduction
	Related Work
	Centralized Group Key Management Protocols
	(Continuous) Group Key Agreement
	Multi-factor Key Agreement and Password-Authenticated Key Exchange
	Existing Security Analysis for Zoom

	Preliminaries
	multi-stage Group Key Distribution Protocols
	mGKD Definition
	A Generic Security Model
	The Sec-mGKD-pki Security Model
	The Sec-mGKD-pw Security Model
	The Sec-mGKD-pw+ Security Model

	Zoom's protocol is a mGKD protocol
	The Zoom End-to-End Connection Overview
	Zoom is Sec-mGKD-pki secure
	Zoom is not Sec-mGKD-pw secure

	A Generic Approach to Sec-mGKD-pw Security: Password-Protected Transformation
	The Generic Transformation
	Application to the Zoom Library

	Technical Summary
	References
	Appendix A: Preliminaries
	Digital Signature
	Authenticated Encryption with Associated Data
	Hash Functions and Pseudorandom Functions
	lr-prf-ODH Assumption
	Password-Authenticated Key Exchange

	Appendix B: Comparison with Concurrent Work EC23:DodisEnd
	Appendix C: Cryptographic Algorithms
	Appendix D: Proof of thm:Zoom Security
	Appendix E: Proof of thm:PP Password Security
	Appendix F: Proof of thm:PP Trusted Security

